
Technical Manual of the program system maiprogs

Matthias Maischak∗

Brunel University, Uxbridge, UK

Institut für Angewandte Mathematik, Universität Hannover

April 25, 2015

0 Overview

This manual contains the parameter lists of subroutines in the libraries and other source files
of the program system maiprogs which are shared by the different programs and which can
also be used for own programs. The interfaces are mostly stable and probably will not change
in the future. But its recommended that you try to use the newest version if possible.

For most internal data structures access functions are provided, which will only enhanced in
their functionality, but which will remain compatible on the language level. It is strongly
recommended that you use data structures only via their access functions, to keep the amount
of effort limited, which is necessary to update to a new maiprogs version.

For simple changes to maiprogs the config script allows to define additional directories in
depmod.conf, which are used to search for main programs and additional modules and whose
contents also override the versions in the main directories if you use the same name for a file
like in the main directory. By using this mechanism there is no need to change the original
file at all. Only make a copy to your own directory and change the copy. Be aware, you
should never use the same name for a module in your own source file as in a standard source
file, when the source files are differently named. This will confuse the build mechanism.

Remark: There is no warranty that these routines will work correctly as specified. The use of
these routines is on your own risk. Using these routines in commercial programs is prohibited
as long as not explicitly allowed by the author.

∗email: matthias.maischak@brunel.ac.uk

1

Contents

0 Overview 1

1 Introduction 4

2 Components of a FEM/BEM programme 4

3 Internal data structures for geometry definition 4

3.1 Geometry database . 6

4 Internal data structures for Meshes 6

4.1 One dimensional manifolds . 7

4.2 Two dimensional manifolds . 7

4.3 Three dimensional spaces . 8

4.4 Mesh databases . 9

5 Internal data structures for Splines 9

5.1 One-dimensional splines . 11

5.2 Two-dimensional splines . 11

5.3 Three-dimensional splines . 11

5.4 Spline databases . 12

5.5 bcdat database . 13

6 Problem data structure 13

6.1 matstr . 13

6.2 datstr . 14

6.3 genstr . 14

7 Matrices 14

7.1 Sparse Matrices . 14

7.2 Dense Matrices . 15

7.3 H-Matrices . 15

7.4 Block Matrices . 15

8 Bilinear forms and right hand sides 15

2

8.1 Bilinear forms . 16

8.2 Right hand sides . 17

9 Adaptive schemes 17

9.1 Storage for indicators and refinements . 17

9.2 Indicator components . 18

10 Local basis functions 19

10.1 Scalar basis functions . 19

10.2 Vector-valued basis functions . 20

10.2.1 Raviart-Thomas elements RTk on squares 20

10.2.2 Raviart-Thomas elements RTk on triangles 21

10.2.3 Nedelec elements NDk on cubes . 22

10.2.4 Nedelec elements NDk on tetrahedrals 23

11 Polynomials 23

12 Interfaces to the integral libraries 26

12.1 2D-BEM . 26

12.2 3D-BEM . 34

12.3 2D-FEM . 36

12.4 3D-FEM . 36

13 Interface of the batch control language 37

14 Logging facilities 40

15 Parallelization 40

16 Internal organization of solvers 41

17 Internal organization of preconditioners 41

18 Configuration 44

19 Functions and boundary data 44

3

1 Introduction

maiprogs is a fully fledged f90 program and makes use of most modern f90 features. Espe-
cially the whole package is structured by the use of modules, encapsulation by using generic
interfaces and declaring the module procedures private and also by the definition of data
types dedicated to the description of meshes and splines. Global constants are always de-
clared in the module header. Especially we have to note the definition of the kind parameter
dp=kind(0.0d0) which is used to define the precision of real variables, which is part of the
module const.

It is strongly recommended that you never access the internal data structures directly, but
use the access functions provided. If for some reason, you see no possibility to avoid the direct
use of internal data structures, either for reasons of speed or because some functionality is
missing, please contact the author of this package, for providing the needed functionality in
a future release.

2 Components of a FEM/BEM programme

In this section we want to outline the general structure of a FEM/BEM programme, i.e. we
want to present the sequence of steps which are to be taken to achieve an efficient FEM/BEM
code and give the reasons for the most crucial choices. We do not want discuss here the general
bookkeeping, but we want to concentrate on the way the whole programme is broken down
in smaller units which are mostly independent of each other and communicate only by some
data structures.

There are the following components: Geometry, Mesh, Splines, Matrix, Block Matrix, Right-
hand Side, Solver.

3 Internal data structures for geometry definition

There is only one general data format for geometry definitions in maiprogs. This general
container format is used in all 3 dimensions.

The components ending on ’g’ contain a geometry definition which plainly defines the ge-
ometry itself. The components ending on ’s’ contain an alternative definition of the same
geometry with additional information on the location of singularities which is used for the
generation of structured meshes.

In the following we will omitt the trailing g or s.

ng contains the number of macro elements in the geometry definition, rnode the node numbers
for each macro element, type the kind of macro element, rn an additional normal direction,
dn is a descriptor for every macro element which can take any value (currently alway 0), ori
in case of singularities describes the location. node contains the coordinates of all nodes.

bmode(0:1) as usual describes the dimension of the geometry.

The one-dimensional rnode structure can only be read consecutively. For every element
the first entry is the number of nodes (nr) belonging to this element, followed by the node
numbers.

4

type and number of nodes (nr) for every element define the kind of macro element.

type geom

integer, dimension(:), pointer :: rnodeg,typeg,dng

real(kind=dp), dimension(:), pointer :: rng

integer, dimension(:), pointer :: rnodes,types,ori,dns

real(kind=dp), dimension(:), pointer :: rns

real(kind=dp), dimension(:), pointer :: nodes

real(kind=dp), dimension(0:2) :: g0

integer :: bmode(0:1)

integer :: nnodes,nrnodeg,ngg

integer :: nrnodes,ngs

character(len=64) :: name

end type geom

bmode=(1,1)
(type,nr)
(0,2) line segment

bmode=(1,2)
(type,nr)
(0,2) line segment
(1,3) arc segment, described by three nodes located at the beginning, the middle and

the end of the segment
(10,n) Curvi-linear element represented by Lagrange based uniform-interpolation

polynomial with n nodes
bmode=(2,2)
(type,nr)
(0,3) triangle
(0,4) quadrilateral element
(1,4) triangle with one curved (arc) boundary segment, the first three nodes define

the arc segment, whereas the last node defines a corner
(1,5) quadrilateral element with one curved (arc) boundary segment, the first three

nodes define the arc segment, whereas the two nodes define corners. Effectively
nodes 1,3,4,5 define the corners of the curved quadrilateral element, whereas
node 2 is used to define the curvature

(1,6) quadrilateral element with two curved (arc) boundary segments, opposite to
each other. Nodes 1,3,4,6 define the corners of the curved quadrilateral element.
Node 2 defines the curvature of the first arc segment and node 5 defines the
curvature of the second arc segment

(10,n2) Curvi-linear element (square) represented by Lagrange based uniform-
interpolation polynomial with n2 nodes

5

bmode=(2,3)
(type,nr)
(0,3) triangle
(0,4) quadrilateral element
(1,4) triangle with one curved (arc) boundary segment, the first three nodes define

the arc segment, whereas the last node defines a corner
(2,4) curved triangular element (sphere-shell). The first three nodes define the cor-

ners of the curved triangle, the last node is a node in the curved triangle which
allows to determine the center of the sphere

(2,6) defines a curved quadrilateral element (cylinder-shell). The first three nodes
define the first arc segment, the last three nodes the second arg segment

(10,n2) Curvi-linear element (square) represented by Lagrange based uniform-
interpolation polynomial with n2 nodes

bmode=(3,3)
(type,nr)
(0,4) tetrahedral element
(0,5) pyramidal element (the first four nodes give the base of the pyramid)
(0,6) prismatic element (the first three nodes define the bottom)
(0,8) hexahedral element (the first four nodes define the bottom)
(1,8) cylinder with one curved surface. The first 4 nodes define one end of the

cylinder, the next 4 nodes the other end
(1,10) cylinder, this time based on a quadrilateral element
(1,12) hollow cylinder shell (not fully working yet). The first 6 nodes define one end

of the cylinder, the second 6 nodes the other end. From each set of 6 nodes
the first 3 nodes describe the outer arc and the other ones the second arc (cf.
bmode=(/2,2/),typ=1,nr=6).

(2,4) sphere. The first node is the center, the last three nodes define the surface
segment

(2,8) spherical segment with two curved surfaces. The first three nodes define the
corners of the first curved triangle, the fourth node is an additional node on the
surface. The next three nodes define the corners of the second curved triangle,
the last node is an additional node on the second surface.

3.1 Geometry database

The search function to access the geometry database is qgm, i.e. with gm=>qgm(str) the
pointer gm contains the result of our database query for a geometry with the name given by
the variable str.

Don’t confuse the database of defined geometries with the database of pre-defined geometries
(ads/geometries).

4 Internal data structures for Meshes

There are three data types created for the description of meshes in defined on a manifold
with 1, 2 or 3 dimensions. Note that the dimension of the manifold can be different from
the dimension of the space. Depending on this dimension the definitions are contained in the
modules spline1, spline2 or spline3 located in the file splines1.f90, splines2.f90 or splines3.f90
(mesh and spline definitions are located in the same files).

The three types mesh1,mesh2 and mesh3 have the following components in common:

6

• The component ng denotes the number of elements of the mesh.

• The component name contains the full-name of the mesh.

• The component bmode(0:1) contains in bmode(0) the dimension of the manifold and
in bmode(1) the dimension of the space.

4.1 One dimensional manifolds

type mesh1

real(kind=dp), dimension(:,:), pointer :: rx,rh,rn

integer, dimension(:,:), pointer :: rc,rct

integer :: ng,bmode(0:1)

character(len=32) :: name

end type mesh1

The mesh consists of ng boundary elements given by start points rx(:,i) and distance
vectors rh(:,i) (i=0,ng-1). For every boundary element, the normal direction is given by
rn(:,i). rc(0,i) gives the element number of the left neighbor (connected to the point
rx(:,i)) and rc(2,i) gives the element number of the right neighbor (connected to the
point rx(:,i)+rx(:,i)). In most cases we don’t need to deal with the internals of mesh
representation. The access subroutine

subroutine mh2mdn(mh,i,mx,dx,nx)

type(mesh1), intent(in) :: mh

integer, intent(in) :: i

real(kind=dp), intent(out) :: mx(0:1),dx(0:1),nx(0:1)

extracts the midpoint mx(0:1), the distance vector dx(0:1) (pointing from the midpoint to
the right endpoint) and the normal direction nx(0:1) of the i-th element from the mesh mh,
independent of the internal representation.

4.2 Two dimensional manifolds

type elem2

integer :: rnodes(0:4) ! rnodes(0) : 3=triangle, 4=quadrilateral

! rnodes(1:4) : node numbers

integer :: rc(0:3) ! neighbours

integer :: rct(0:3) ! sides of neighbours

integer :: father

integer :: sons(1:4)

integer :: ref

real(kind=dp) :: rn(0:2) ! Normal for 3d-mesh

end type elem2

type mesh2

real(kind=dp), dimension(:,:), pointer :: rx,rd1,rd2,rn

integer, dimension(:), pointer :: rt

integer, dimension(:,:), pointer :: rc,rct

real(kind=dp), dimension(:,:), pointer :: nodes

7

integer :: nnodes

integer, dimension(:,:), pointer :: rnodes

integer :: ng,bmode(0:1)

character(len=32) :: name

type(elem2), dimension(:), pointer :: elem ! Array of mesh elements

! allowing hanging nodes

integer :: nelem

end type mesh2

✲✂
✂
✂
✂
✂
✂
✂
✂✂✍

✻

✂✂

✂✂

✂✂

✲✂
✂
✂
✂
✂
✂
✂
✂✂✍

✻

❅❅

❅❅

❅❅

❅❅

parallelogram, rt(i)=4

rx(:,i) rd1(:,i), rp(0,i)

rd2(:,i), rp(1,i)

triangle, rt(i)=3

rx(:,i) rd1(:,i)

rd2(:,i)

4.3 Three dimensional spaces

type elem3

integer :: rnodes(0:8) ! rnodes(0) : 8=hexaeder, 4=tetraeder

! rnodes(1:8) : node numbers

integer :: rc(0:5) ! neighbours

integer :: rct(0:5) ! sides of neighbours

integer :: father

integer :: sons(1:8)

integer :: ref

end type elem3

type mesh3

real(kind=dp), dimension(:,:), pointer :: nodes

integer :: nnodes

integer, dimension(:,:), pointer :: rnodes

integer :: ng,bmode(0:1)

integer, dimension(:,:), pointer :: rc,rct

character(len=32) :: name

type(elem3), dimension(:), pointer :: elem ! Array of mesh elements

! allowing hanging nodes

integer :: nelem

8

end type mesh3

4.4 Mesh databases

5 Internal data structures for Splines

There are three data types created for the description of splines defined on a manifold with
1, 2 or 3 dimensions. Note that the dimension of the manifold can be different from the
dimension of the space. Depending on this dimension the definitions are contained in the
modules spline1, spline2 or spline3 located in the file splines1.f90, splines2.f90 or splines3.f90
(mesh and spline definitions are located in the same files).

The three types spline1, spline2 and spline3 have the following components in common:

• The component ng denotes the number of elements of the mesh to which the spline is
subordinated.

• The component name contains the full-name of the spline-variable.

• The component bmode(0:1) contains in bmode(0) the dimension of the manifold and
in bmode(1) the dimension of the space.

Initializing the internal coefficients necessary for a spline defined in the module polydat can
be done by calling the generic subroutine

subroutine polyinit(sp)

use spline{1,2,3}

type(spline{1,2,3}), intent(in) :: sp

The individual representations are defined in spline1, spline2 and spline3.

This section deals with the most important data structures of the whole program system,
i.e. the structures for meshes and solutions. We use a consistent scheme for all cases (2D-
BEM,3D-BEM,2D-FEM), but note that our scheme is most appropriate for the implemen-
tation of a general hp-mesh, i.e. an arbitrary distribution of mesh elements and polynomial
degrees.

Lets first make a few restricting assumptions on the kind of splines which we want to deal
with. Later we can generalize everything.

Our fundamental assumptions are the following:

• Our (global) basis functions are based on a mesh.

• On every mesh element we have a given set of local basis functions.

• The local basis functions are generated by mapping a reference element to the mesh
element.

• Basis functions are a linear combination of local basis functions.

• Every local basis functions belongs only to one and only one global basis function.

9

Using this fundamental assumptions we have the following objects to deal with:

• The mesh consisting of mesh elements: ωi.

• The mappings Fi : Q 7→ ωi from the reference element to the mesh elements.

• The set of basis function on the reference element: φrefk : Q 7→ R (or Rd).

• The local basis functions on every element: φloci,k(x) = φrefk (F−1
i (x)) : ωi 7→ R, or if φrefk

is vector valued: φloci,k(x) = Biφ
ref
k (F−1

i (x)) : ωi 7→ R
d with a transformation matrix

Bi ∈ R
d×d.

Then every global basis function can be represented in the following way:

φp(x) =
∑

p=ri,k

wi,kφ
loc
i,k(x) (1)

Here wi,k are weights belonging to every local basis functions and ri,k denotes the global
basis functions to which every local basis function belongs to.

First we start with the elements which are in common for all cases.

type spline{1,2,3}

integer :: ng,ktyp,vtypc,vtypf,dof

integer, dimension(:), pointer :: ri=>null() ! ri(0:ng)

integer, dimension(:), pointer :: rci=>null() ! rci(0:)

real(kind=dp), dimension(:), pointer :: rcw=>null() ! rcw(0:)

ktyp=1 means we deal with real numbers, and ktyp=2 means we are dealing with complex
valued numbers. vtypc denotes the number of coefficients belonging to a basis function.
vtypf=1 means we deal with a solution with scalar components, whereas vtypf=2,3 means
we are dealing with a vector-valued solution with two or three components. Note, vtypc and
vtypf can be different.

ng denotes the actual number of mesh elements. ri(i), (i=0,. . . ,ng-1) gives the beginning
of the local degrees of freedom in a global setting, therefore ri(i+1)-ri(i), (i=0,. . . ,ng-1)
gives the number of local degrees of freedom defined on the i-th mesh element. rci maps the
local degrees of freedom to the global degrees of freedom, i.e.

do i=0,ng-1

do j=0,ri(i+1)-ri(i)-1

write(*,*) i,j,(x(rci(ri(i)+j)*ktyp+r),r=0,ktyp-1)

end do

end do

prints the values of the vector x for all local degrees of freedom. rci is also used to eliminate
degrees of freedom to incorporate homogeneous boundary conditions. The corresponding
local degrees of freedom are just mapped to the first element behind the global degrees of
freedom. The number of existing global degrees of freedom is obtained by dof. In previous
versions the global degrees of freedom could be obtained by n=rci(ri(ng)), but this is not
longer permissable.

10

5.1 One-dimensional splines

Compute the value of solution ckom at point x in element i (1D)

subroutine fpsi1(x,i,sp,ckom,fw)

use poly, only: ptab1

integer, intent(in) :: i

real(kind=dp), intent(in) :: ckom(0:),x

type(spline1), intent(in) :: sp

real(kind=dp), intent(out) :: fw(0:*)

Compute the gradient of solution ckom at point x in element i (1D)

subroutine grdpsi1(x,i,sp,ckom,fwx)

use poly, only: pstab1

integer, intent(in) :: i

real(kind=dp), intent(in) :: ckom(0:),x

type(spline1), intent(in) :: sp

real(kind=dp), intent(out) :: fwx(0:*)

5.2 Two-dimensional splines

Compute the value of solution ckom at point x in element i (2D)

subroutine fpsi2(x,i,typ,sp,ckom,fw,a1,a2,a12)

use poly, only: ptab2n,basenum2

integer, intent(in) :: typ,i

real(kind=dp), intent(in) :: ckom(0:),x(0:1)

type(spline2), intent(in) :: sp

real(kind=dp), dimension(0:sp%bmode(1)-1), intent(in), optional :: a1,a2,a12

real(kind=dp), intent(out) :: fw(0:*)

Compute the gradient of solution ckom at point x in element i (2D)

subroutine grdpsi2(x,i,typ,sp,ckom,fwx,fwy,a1,a2,a12)

use poly, only: pstab2n,basenum2

integer, intent(in) :: typ,i

real(kind=dp), intent(in) :: ckom(0:),x(0:1)

type(spline2), intent(in) :: sp

real(kind=dp), dimension(0:sp%bmode(1)-1), optional :: a1,a2,a12

real(kind=dp), intent(out) :: fwx(0:*),fwy(0:*)

5.3 Three-dimensional splines

Compute the value of solution ckom at point x in element i (3D)

subroutine fpsi3(x,i,typ,sp,ckom,fw,a)

11

use poly, only: ptab3, basenum3

integer, intent(in) :: typ,i

real(kind=dp), intent(in) :: ckom(0:),x(0:2)

type(spline3), intent(in) :: sp

real(kind=dp), intent(in), optional :: a(0:2,0:7)

real(kind=dp), intent(out) :: fw(0:*)

Compute the gradient of solution ckom at point x in element i (3D)

subroutine grdpsi3(x,i,typ,sp,ckom,fwx,fwy,fwz,a)

use poly, only: pstab3, basenum3

integer, intent(in) :: typ,i

real(kind=dp), intent(in) :: ckom(0:),x(0:2)

type(spline3), intent(in) :: sp

real(kind=dp), intent(in), optional :: a(0:2,0:7)

real(kind=dp), intent(out) :: fwx(0:*),fwy(0:*),fwz(0:*)

5.4 Spline databases

There exist three databases for spline-definitions, which contain all managed spline-definitions
for 1-d,2-d and 3-d. The databases can be queried by the following pointer-valued functions
qspl1, qspl2, qspl3, e.g.

type(spline1), pointer :: sp1

sp1=>qspl1(’Name of Spline-definition’)

if (.not.associated(sp1)) then

write(msg,*) ’Spline-definition not found’

call logmsg

end if

The coefficients of representations of this spline-definitions can be queried by qspl1x, qspl2x,qspl3x.
This results to pointers to a data-structure which contains a pointer to the spline-definition
and a pointer to the vector of coefficients. Note that there can be more than one spline using
a single spline-definition.

type(spline1x), pointer :: sp1x

type(spline1), pointer :: sp1

real(kind=dp), dimension(:), pointer :: x

sp1x=>qspl1x(’Name of Spline’)

if (associated(sp1x)) then

! sp1x%sp is pointer to spline-definition

! sp1x%x is pointer to coefficient vector

sp1=>sp1x%sp

x=>sp1x%x

end if

12

5.5 bcdat database

Every spline-class has its own local database for additional information, which will not be
stored in its own component of the Fortran data structure. It is not necessary to change
fundamental data structures if you simply want to introduce new information.

Entries in the database are created by the generic subroutines crbcdat and addbcdat. crbcdat
simply creates the entry in the database using the fullname and nickname and reserves the
amount of memory given by ni (integer), nr (real) or nc (character). addbcdat uses directly
the given data i,r,c.

subroutine crbcdat(sp,fullname,nickname,ni,nr,nc)

type(spline?), intent(inout) :: sp

character(len=*), intent(in) :: fullname,nickname

integer, intent(in), optional :: ni,nr,nc

subroutine addbcdat(sp,fullname,nickname,i,r,c)

type(spline?), intent(inout) :: sp

character(len=*), intent(in) :: fullname,nickname

integer, intent(in), optional :: i(:)

real(kind=dp), intent(in), optional :: r(:)

character(len=*), intent(in), optional :: c

Using the name (fullname or nickname) you can query the bcdat-database in the usual way.
Namely by qbci for integer-data, by qbcr for real data and by qbcc for strings.

function qbci(sp,name)

integer, dimension(:), pointer :: qbci

type(spline?), intent(in) :: sp

character(len=*), intent(in) :: name

function qbcr(sp,name)

real(kind=dp), dimension(:), pointer :: qbcr

type(spline?), intent(in) :: sp

character(len=*), intent(in) :: name

function qbcc(sp,name)

type(string), pointer :: qbcc

type(spline?), intent(in) :: sp

character(len=*), intent(in) :: name

6 Problem data structure

6.1 matstr

Using matstr we describe the construction of the (block-)system-matrix. Entries are sep-
arated by ’:’ or ’|’. All matrices after a ’|’ are still in the matrix database and will be
managed and computed automatically, but are not part of the system-matrix. The entries
have the format ’test-spline.Matrix-name(arguments).trial-spline’, e.g. ’u.A(v,t).u’ for a ma-
trix depending on the splines v and t, where test- and trial-splines are the same. matstr

13

is analyzed by the subroutine setmatrix, the Matrix-name is evaluated by the subroutine
matcomp2c, matcomp3c etc. With defmatrix we assign a bilinear form to the matrix. A
list of available bilinear forms is given in Section 8.1.

6.2 datstr

Using datstr we describe the construction of the right hand side. Entries are separated by
’:’. The entries have the form ’test-spline=expression’, ’expression’ can be any linear com-
bination of given functions ’f,u0,t0’, given splines, operators applied to functions or splines,
and matrices multiplied with splines.

datstr is analyzed by the subroutine setlft. A list of available right hand side operations is
given in Section 8.2.

6.3 genstr

The order in genstr determines the order in which the coefficients are ordered in the coefficient
vectors ’ckom’ and ’lkom’. Entries are separated by ’:’ or ’|’. Only one ’|’ is allowed. Entries
before ’|’ belong to the unknowns in a linear equation system, whereas entries after ’|’ are
used to denote auxilliary splines. The following functionality is provided (here u, p denote
splines in the domain and D, D1 splines on the boundary, but the names are fully arbitrary,
but have to be chosen globally unique):

u The Spline space ’u’ will be initalized and the memory for a Spline
called ’u’ will be allocated.

u=p The Spline space ’u’ will be initalized based on the mesh used by
’p’ and using the same polynomial degrees as ’p’.

u=p+1 The Spline space ’u’ will be initalized based on the mesh used by
’p’ and using the polynomial degrees of ’p’ plus ’1’.

u=1 The Spline space ’u’ will be initalized using the previously given
mesh and the polynomial degree 1.

u=Spline(p) The memory for a spline called ’u’ will be allocated using the
Spline space ’p’.

D=Dir(u) ’D’ will be the trace space of ’u’, the coefficients of ’u’ will be
reordered, such that ’D’ will have consecutive coefficients

D<Dir(u)+1 ’D’ will use the trace mesh of ’u’ and polynomial degrees plus 1,
but will not share the coefficients with ’u’.

D1<Restrict(D2,G1)+1 ’D1’ will use the mesh and polynomial degrees of ’D2’ restricted
to the geometry ’G1’, but will not share the coefficients with ’D2’

D1=Reord(D,D1g)

D1<Reord(D,D1g)+1

7 Matrices

7.1 Sparse Matrices

Sparse matrices are represented by the data type matrix_sparse. The search function to
access the sparse matrix database is qsmat, i.e. with smat=>qsmat(str) the pointer smat

contains the result of our database query for a sparse matrix with the name given by the
variable str.

14

7.2 Dense Matrices

Dense matrices are represented by the data type matrix_dense. The search function to
access the dense matrix database is qdmat, i.e. with dmat=>qdmat(str) the pointer dmat

contains the result of our database query for a dense matrix with the name given by the
variable str.

7.3 H-Matrices

H-matrices are represented by the data type matrix_hmat. The search function to access
the H-matrix database is qhmat, i.e. with hmat=>qhmat(str) the pointer hmat contains the
result of our database query for a H-matrix with the name given by the variable str.

7.4 Block Matrices

There exists a container datatype matrix_block, which collects all the individual matrix
formats. Using bmat=qblock(str) we search all the individual databases and obtain a
container variable with pointers to any matrix found. Note, that bmat is not a pointer
in itself.

8 Bilinear forms and right hand sides

The choice of global basis functions (1) has far reaching consequences.

Right hand sides of the form bp =
∫

Ω
fφp, p = 0, . . . , dof − 1 can be assembled in the

following way:

1: for all i do
2: for all k do
3: belemi,k ←

∫

Ω
fφloci,k

4: end for
5: for all k do
6: p← ri,k
7: bp ← bp + wi,kb

elem
i,k

8: end for
9: end for

Sparse matrices of the form apq =
∫

Ω
∇φp∇φq, p, q = 0, . . . , dof − 1 can be assembled in

the following way:

1: for all i do
2: for all k,l do
3: aelemi,k,l ←

∫

Ω
∇φloci,k∇φ

loc
i,l

4: end for
5: for all k do
6: p← ri,k
7: for all l do
8: q ← ri,l
9: ap,q ← ap,q + wi,kwi,la

elem
i,k,l

10: end for
11: end for

15

12: end for

8.1 Bilinear forms

We have to distinguish bilinear forms which lead to sparse matrices from bilinear forms which
lead to dense matrices. They differ in the way they are assembled.

Laplace We have the following implemented Bilinear forms for FEM and BEM:

A aij =

∫

Ω

∇φi∇φj dx

M aij =

∫

Ω

φiφj dx

B aij =

∫

Ω

div pj ∗ ui dx

A0

A1 aij =

∫

Ω

∇φj ∗ θi dx

HDIV aij =

∫

Ω

φiφj + div φi div φj dx

PenaltyO
DGE/DGF
DGC
V Single layer potential

Vij = 2

∫

Γ

φi(x)

∫

Γ

G(x, y)φj(y) dsy dsx

K,K-I,K+I,I+K Double layer potential

Kij = 2

∫

Γ

φi(x)

∫

Γ

∂

∂ny
G(x, y)ψj(y) dsy dsx

W,W+PP Hypersingular integral operator
S Exterior Poincare-Steklov Operator

S =
1

2
(W + (K ′ + I)V −1(K + I))

Sin Interior Poincare-Steklov Operator

S =
1

2
(W + (K ′ − I)V −1(K − I))

R Inverse Exterior Poincare Steklov Operator

Lame
A

M aij =

∫

Ω

φiφj dx

Helmholtz

A aij =

∫

Ω

∇φi∇φj dx− k
2

∫

Ω

φiφj dx

M aij =

∫

Ω

φiφj dx

Maxwell

Convection
CONV Galerkin-Matrix
SUPG SUPG-Matrix
CMDir

16

Stokes
M
VDiv
STr
V,V+NN
K,K-I,K+I,I+K
W,W+PP
NN

NN(φiek, φjel) =

∫

Γ

n(x)φiek dsx

∫

Γ

n(y)φjel dsy

=

∫

Γ

nk(x)φi dsx

∫

Γ

nk(y)φj dsy

Bilaplace
A

M aij =

∫

Ω

φiφj dx

8.2 Right hand sides

f Volume data
Neu
Dir
0
u0 boundary data (displacement)
t0 boundary data (traction)
NV, NK Newton-Potenial

SUPG
’V’,’W’,’K’,’Ks’,’(K-I)’,’(K+I)’,’(Ks+I)’,’(Ks-I)’
S Poincare-Steklov operator (exterior domain)
Sin Poincare-Steklov operator (interior domain)
R inverse Poincare-Steklov operator (exterior domain)

NLin Non-linear term
Matrix()*Spline Matrix-vector multiplication
Spline Spline will be tested

9 Adaptive schemes

9.1 Storage for indicators and refinements

The error indicators will be computed by the commands adap,resh, etc. The error indicators
itself will be stored in an real-array with the name ekom in the bcdat-database of the corre-
sponding spline. Then the refinement information (later used by refine) will be computed
and stored in the integer-array with the name ref in the bcdat-database of the same spline.
There can be different error indicators for independent splines, which will be later refined
independently.

17

9.2 Indicator components

Indicator Variable

RES2CLAPUF(u) ETALAPUF η2 =
∑

T∈Th

h2T ‖∆uh + f‖2L2(T)

RES2CNEU(u) ETANEU η2 =
∑

e∈(∂Th∩ΓN

he‖t0 −
∂uh
∂n
‖2L2(e)

RES2CJUMP(u) ETAJUMP η2 =
∑

e∈∂Th

he‖[
∂uh
∂n

]‖2L2(e)

RES2CTRANS(u,D,N) TUWKS η2 =
∑

e

he‖t0 − (̺∇uh)n+
1

2
W (u0 − uh)−

1

2
(K ′ − I)(φh − t0)‖

2
L2(e)

IKVS η2 =
∑

e

he‖
d

ds
{(I −K)(u0 − uh)− V (φh − t0)}‖

2
L2(e)

RES2CDIVPF(p) DIVPF η2div =
∑

T∈Th

‖div ph + f‖2L2(T)

RES2CCURLP(p) CURLP η2curl =
∑

T∈Th

‖hT curl ph‖
2
L2(T)

RES2CNORMP(p) NORMP η2p =
∑

T∈Th

‖hT ph‖
2
L2(T)

RES2CPTJUMP(p) PTJUMP η2[p·t] =
∑

e

‖h1/2e [ph · t]‖
2
L2(e)

RES2CPTFREE(p) PTFREE η2pt =
∑

e∩ΓD 6=

‖h1/2e ph · t‖L2(e)2

RES2CGMPN(u,S,N) GMPN ηg = (log[1 + Ch̃(ΓN)])1/2‖h1/2e (g − ph · n)‖L2(ΓN)

η2∇ =
∑

T∈Th

‖ph −∇ϕh‖
2
[L2(T)]2

η2u =
∑

T∈Th

‖uh − ϕh‖
2
L2(T)

ηϕ+ξ = ‖ϕh + ξh̃‖L2(ΓN)

DW2F(u) ETAF
DW2JSIGMA(u) EJSIG
RES2CXIMTXI(u,D,N) XIMTXI ξ = (I +K)N − V (p · n)

ηξ = ‖h1/2e (ξh̃ − ξh‖L2(ΓN)

RES2CPTXIS(p,D,N) PTXIS ξ = (I +K)N − V (p · n)

ηpt+ξ′ = ‖h
1/2
e (ph · t+ ξ′

h̃
‖L2(ΓN)

RES2CXIMTXIF(p,S)
RES2CPTXISF(p,S)
RES2CPTFREEF(p,S)
RES2CZETA(u,D,N) ZETA ζ = (I +K ′)p · n+WD

η2ζ =
∑

e he‖ζ‖
2
L2(e)

LSQ2CDIVPF(p) DIVPF ‖div ph + f‖2H−1(T)

LSQ2CNABLA(u,p) NABLA ‖ph −∇uh‖
2
L2(T)

LSQ2CVARPHI(u,D,N)
LSQ2CDIFXI(u,D,N) DIFXI ‖W (uh − u0) + 2ph · n− 2t0 − (I −K ′)(σh − t0)‖

2
H̃−1/2(e)

PLAP2CETAGR(u)
PLAP2CETAF(u)
RES2CTRANSX(u,D,N)

18

10 Local basis functions

10.1 Scalar basis functions

The routines for manipulating polynomials are described in their own section. Here we
deal with the local properties of continuous splines and their representation. Mainly we use
antiderivatives of Legendre polynomials to ensure the continuity.

In one dimension this is not a problem at all, we just use the definition of the antiderivatives
of Legendre polynomials at a reference element, e.g.

L0(x) = (1− x)/2, L1(x) = (1 + x)/2, Ln(x) = (Ln(x)− Ln−2)/(2n− 1) =

∫ x

−1

Ln−1(y) dy

where Ln(x) is a Legendre-polynomial defined by

L0(x) = 1, L1(x) = x, (n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x)

The antiderivatives of Legendre polynomials have the important and simplifying property

Ln(±1) = 0, n ≥ 2

In two dimensions we have to distinguish two cases, i.e. two reference elements. First, we have
the rectangle Q = [−1, 1]2. Here we can use tensor products of antiderivatives of Legendre
polynomials as base functions, i.e.

φk,l(x, y) = Lk(x)Ll(y), 0 ≤ k ≤ px, 0 ≤ l ≤ py

If we take at look at this in matrix form we obtain

(0py)
↑

(0l)
01 11
00 10 (k0)→ (px0)

We can read this as follows:

φ00 lower left corner
φ10 lower right corner
φ01 upper left corner
φ10 upper right corner
φk0 (k ≥ 2) lower edge functions
φk1 (k ≥ 2) upper edge functions
φ0l (l ≥ 2) left edge functions
φ1l (l ≥ 2) right edge functions
φkl inner (bubble) functions

Second, we have the triangle T = {(x, y) : 0 ≤ y ≤ 1 − x, 0 ≤ x ≤ 1}. Here we have the
difficulties that we don’t use the interval [0, 1] instead of the standard interval [−1, 1] as before,
therefore we have to use the transformed polynomials L̃k(x) = Lk(2x− 1), x ∈ [0, 1], and the
main difficulty: We can not use tensor products anymore to construct continuous splines.
But we have to ensure that our splines at triangles can be connected easily with splines
defined at rectangles. We achieve this goal by using the polynomials L̄k(x) = L̃k(x)/(1− x),
k ≥ 2.

This leads to the definitions

19

φ00(x, y) = 1− x− y lower left corner
φ10(x, y) = x lower right corner
φ01(x, y) = y upper left corner

φk0(x, y) = L̃k(x)− yL̄k(x), 2 ≤ k ≤ p lower edge

φ0l(x, y) = L̃l(y)− xL̄l(y), 2 ≤ l ≤ p left edge
φk1(x, y) = L̄k+1(x)y, 1 ≤ k ≤ p− 1 right edge
φk,l(x, y) = L̄k+1(x)L̄l(y)(1− x− y), 1 ≤ k, 2 ≤ l, k + l ≤ p inner (bubble) functions

For the construction of continuous splines we have to take into account the orientation of the
edge functions

①
✲

✻ ✻

✲

1

2

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅❅①

①

✲

✻
❅
❅

❅
❅❅❘

❅
❅

❅
❅❅❘

✻

✲

1

2

1

2

10.2 Vector-valued basis functions

10.2.1 Raviart-Thomas elements RTk on squares

Ql,m all polynomials of degree ≤ l in x-direction and of degree ≤ m in y-direction. pk(e) all
polynomials of degree ≤ k on edge e. Raviart-Thomas space on squares

RTk(K) := Qk+1,k ×Qk,k+1, dimRTk(K) = 2(k + 1)(k + 2)

First we can construct a basis for RTk(K), i.e., we have RTk(K) = span{~ψi, i = 1, . . . , 2(k+
1)(k + 2)} with

~ψi(x, y) :=

{

(

1
0

)

xrys(0 ≤ r ≤ k + 1, 0 ≤ s ≤ k) if i = 1, . . . , (k + 1)(k + 2)
(

0
1

)

xrys(0 ≤ r ≤ k, 0 ≤ s ≤ k + 1) if i = (k + 1)(k + 2) + 1, . . . , 2(k + 1)(k + 2)

(2)
For the construction of a H(div,Ω) conforming space we have to ensure continuity of the
normal component across element edges. This can be achieved by defining moments mi, and
basis functions ~φi which are orthonormal with respect to this moments. Let

mi(~φ) :=







































∫

e0
~φ · n0pr ds(pr ∈ pk(e0), 0 ≤ r ≤ k) if i = 1, . . . , k + 1

∫

e1
~φ · n1pr ds(pr ∈ pk(e1), 0 ≤ r ≤ k) if i = k + 2, . . . , 2k + 2

∫

e2
~φ · n2pr ds(pr ∈ pk(e2), 0 ≤ r ≤ k) if i = 2k + 3, . . . , 3k + 3

∫

e3
~φ · n3pr ds(pr ∈ pk(e3), 0 ≤ r ≤ k) if i = 3k + 4, . . . , 4k + 4

∫

K
~φ
(

1
0

)

xrys(0 ≤ r ≤ k − 1, 0 ≤ s ≤ k) if i = 4k + 5, . . . , (k + 1)(k + 4)
∫

K
~φ
(

0
1

)

xrys(0 ≤ r ≤ k, 0 ≤ s ≤ k − 1) if i = (k + 1)(k + 4) + 1, . . . , 2(k + 1)(k + 2)
(3)

20

Then, the basis functions ~φi have to satisfy the condition

mj(~φi) = δij

We can represent ~φi with respect to ~ψl, i.e.

~φi =

2(k+1)(k+2)
∑

l=1

ail ~ψl.

This leads to the following linear system

mj(~φi) =

2(k+1)(k+2)
∑

l=1

ailmj(~ψl) = δij

If we define bjl := mj(~ψl), then we have

(ail)il = ((bjl)jl)
−1

For computational efficiency we later extend the coefficients ail with respect to ψl to a
basis of (Qk+1,k+2(K))2, which eliminates the need to distinguish several special cases in the
evaluation of φi.

10.2.2 Raviart-Thomas elements RTk on triangles

Pk(K) all polynomials of total degree ≤ k on triangle K. P̃ (K) all polynomials of total
degree = k on triangle K. pk(e) all polynomials of degree ≤ k on edge e. Raviart-Thomas
space on triangles

RTk(K) := {Pk(K)2 + ~xP̃k(K)}, k ≥ 0, dimRTk = (k + 1)(k + 3)

First we can construct a basis for RTk(K), i.e., we have RTk(K) = span{~ψi, i = 1, . . . , (k +
1)(k + 3)} with

~ψi(x, y) :=















(

1
0

)

xrys(0 ≤ r + s ≤ k) if i = 1, . . . , (k + 1)(k + 2)/2
(

0
1

)

xrys(0 ≤ r + s ≤ k) if i = (k + 1)(k + 2)/2 + 1, . . . , (k + 1)(k + 2)
(

x
y

)

xryk−r(0 ≤ r ≤ k) if i = (k + 1)(k + 2) + 1, . . . , (k + 1)(k + 3)

(4)
For the construction of a H(div,Ω) conforming space we have to ensure continuity of the
normal component across element edges. This can be achieved by defining moments mi, and
basis functions ~φi which are orthonormal with respect to this moments. Let

mi(~φ) :=



























∫

e0
~φ · n0pr ds(pr ∈ pk(e0), 0 ≤ r ≤ k) if i = 1, . . . , k + 1

∫

e1
~φ · n1pr ds(pr ∈ pk(e1), 0 ≤ r ≤ k) if i = k + 2, . . . , 2k + 2

∫

e2
~φ · n2pr ds(pr ∈ pk(e2), 0 ≤ r ≤ k) if i = 2k + 3, . . . , 3k + 3

∫

K
~φ
(

1
0

)

xrys(0 ≤ r + s ≤ k − 1) if i = 3k + 4, . . . , 3k + 3 + k(k + 1)/2
∫

K
~φ
(

0
1

)

xrys(0 ≤ r + s ≤ k − 1) if i = 3k + 4 + k(k + 1)/2, . . . , (k + 1)(k + 3)
(5)

Then, the basis functions ~φi have to satisfy the condition

mj(~φi) = δij

We can represent ~φi with respect to ~ψl, i.e.

~φi =

(k+1)(k+3)
∑

l=1

ail ~ψl.

21

This leads to the following linear system

mj(~φi) =

(k+1)(k+3)
∑

l=1

ailmj(~ψl) = δij

If we define bjl := mj(~ψl), then we have

(ail)il = ((bjl)jl)
−1

For computational efficiency we later extend the coefficients ail with respect to ψl to a basis
of (Pk+1(K))2, which eliminates the need to distinguish several special cases in the evaluation
of φi.

10.2.3 Nedelec elements NDk on cubes

Ql,m,n all polynomials of degree ≤ l in x-direction, of degree ≤ m in y-direction and of degree
≤ n in z-direction. Nedelec space on cubes

NDk(Q) := {u : u1 ∈ Qk−1,k,k, u2 ∈ Qk,k−1,k, u2 ∈ Qk,k,k−1}, dimNDk = 3k(k + 1)2

First we have to construct a basis for NDk(Q), i.e., we have NDk(Q) = span{~ψi, i =
1, . . . , 3k(k + 1)2} with

~ψi(x, y, z) :=



























































1
0
0



xryszt(0 ≤ r ≤ k − 1, 0 ≤ s ≤ k, 0 ≤ t ≤ k) if i = 1, . . . , k(k + 1)2





0
1
0



xryszt(0 ≤ r ≤ k, 0 ≤ s ≤ k − 1, 0 ≤ t ≤ k) if i = k(k + 1)2 + 1, . . . , 2k(k + 1)2





0
0
1



xryszt(0 ≤ r ≤ k, 0 ≤ s ≤ k, 0 ≤ t ≤ k − 1) if i = 2k(k + 1)2 + 1, . . . , 3k(k + 1)2

(6)
For the construction of a H(curl,Ω) conforming space we have to ensure continuity of the
tangential components across element faces. This can be achieved by defining moments mi,
and basis functions ~φi which are orthonormal with respect to this moments. Let

mi(~φ) :=











∫

e
~φ · ~tq ds if q ∈ pk−1(e)

∫

f
~φ× ~nq df if q ∈ Qk−2,k−1 ×Qk−1,k−2

∫

Q
~φ · q dx if q ∈ Qk−1,k−2,k−2 ×Qk−2,k−1,k−2 ×Qk−2,k−2,k−1

(7)

Then, the basis functions ~φi have to satisfy the condition

mj(~φi) = δij

We can represent ~φi with respect to ~ψl, i.e.

~φi =

3k(k+1)2
∑

l=1

ail ~ψl.

This leads to the following linear system

mj(~φi) =

3k(k+1)2
∑

l=1

ailmj(~ψl) = δij

If we define bjl := mj(~ψl), then we have

(ail)il = ((bjl)jl)
−1

22

10.2.4 Nedelec elements NDk on tetrahedrals

11 Polynomials

Most of the subroutines for use and manipulation of polynomials are contained in the mod-
ule poly located in the file fox/poly.f90. The module polydat contains some global data
structures, created to avoid the recomputation of polynomial coefficients.

Most important is the definition of the polynomial basis functions. They are declared by the
integer parameter ptyp. In the moment the following values for ptyp are allowed

ptyp basis
0 Monomials
1 Legendre polynomials
2 Tschebyscheff polynomials
3 Antiderivatives of Legendre polynomials
4 Orthonormal Legendre polynomials
5 Lagrange polynomials (uniform nodes)
6 Lagrange polynomials (arbitrary nodes)
10 Raviart-Thomas (RT) polynomials
13 Nedelec (ND) polynomials
14 Traces of Nedelec (TND) polynomials
15 PEERS polynomials

The type of polynomials for a given ptyp can be printed in clear text to standard output by
printpoly where fin is an error code if a wrong/non-existent type is chosen.

subroutine printpoly(ptyp,fin)

integer :: ptyp,fin

Other subroutines recommended for public use are the following:

Print the internal one-dimensional polynomial coefficients of order i to channel out

subroutine printpmi(i,out)

use polydat, only: npmi,pmi

integer, intent(in) :: i,out

Evaluate base functions up to degree p at point x

subroutine ptab1(x,p,ptyp,tab)

integer, intent(in) :: p,ptyp

real(kind=dp), intent(in) :: x

real(kind=dp), intent(out) :: tab(0:max(1,p))

Evaluate derivatives of base functions up to degree p at point x

subroutine pstab1(x,p,ptyp,tab)

use polydat, only: pmi,npmi

integer, intent(in) :: p,ptyp

real(kind=dp), intent(in) :: x

real(kind=dp), intent(out) :: tab(0:max(1,p))

23

Evaluate second derivatives of base functions up to degree p at point x

subroutine psstab1(x,p,ptyp,tab)

use polydat, only: npmi,pmi

integer, intent(in) :: p,ptyp

real(kind=dp), intent(in) :: x

real(kind=dp), intent(out) :: tab(0:max(1,p))

Evaluate base functions up to degree (px,py) at point (x,y)

subroutine ptab2n(x,y,px,py,typ,ptyp,tab)

use polydat, only: tslegs

real(kind=dp), intent(in) :: x,y

integer, intent(in) :: px,py,typ,ptyp

real(kind=dp), intent(out) :: tab(0:*)

Evaluate derivatives of base functions up to degree (px,py) at point (x,y), tab1 contains the
x-derivative and tab2 the y-derivative

subroutine pstab2n(x,y,px,py,typ,ptyp,tab1,tab2)

real(kind=dp), intent(in) :: x,y

integer, intent(in) :: px,py,typ,ptyp

real(kind=dp), dimension(0:*), intent(out) :: tab1,tab2

Evaluate base functions up to degree (px,py,pz) at point (x,y,z)

subroutine ptab3(x,y,z,px,py,pz,typ,ptyp,tab)

real(kind=dp), intent(in) :: x,y,z

integer, intent(in) :: px,py,pz,typ,ptyp

real(kind=dp), intent(out) :: tab(0:*)

Evaluate derivatives of base functions up to degree (px,py,pz) at point (x,y,z), tab1 contains
the x-derivative, tab2 the y-derivative and tab3 the z-derivative

subroutine pstab3(x,y,z,px,py,pz,typ,ptyp,tab1,tab2,tab3)

real(kind=dp), intent(in) :: x,y,z

integer, intent(in) :: px,py,pz,typ,ptyp

real(kind=dp), dimension(0:*), intent(out) :: tab1,tab2,tab3

Interpolates (fi,xi) with n+1 nodes using monomials

subroutine ipol1(fi,xi,n,coeff)

integer, intent(in) :: n

real(kind=dp), intent(in) :: fi(0:n),xi(0:n)

real(kind=dp), intent(out) :: coeff(0:n)

Compute all Lagrange base functions with polynomial degrees px on a rectangle or triangle
using a tensor product node distribution

24

subroutine ipol2(fi,xi1,xi2,typ,px,coeff)

integer, intent(in) :: px(0:1),typ

real(kind=dp), dimension(0:*), intent(in) :: xi1,xi2

real(kind=dp), dimension(0:mo,0:mo), intent(in) :: fi

real(kind=dp), dimension(0:mo,0:mo), intent(out) :: coeff

Compute the coefficients of the i-th Lagrange polynomial with n+1 nodes

subroutine lagrangei(xi,n,i,lagpol)

integer, intent(in) :: n,i

real(kind=dp), intent(in) :: xi(0:n)

real(kind=dp), intent(out) :: lagpol(0:n)

Compute uniform nodes for continuous (ctyp=1) or discontinuous (ctyp=0) interpolation on
an interval [a,b].

subroutine ipnodes(n,ctyp,a,b,xi)

integer, intent(in) :: n,ctyp

real(kind=dp), intent(in) :: a,b

real(kind=dp), intent(out) :: xi(0:n)

Transformation from monomial base to base ’ptyp’ on an interval.

subroutine ctpol1(coeff,p,ptyp)

integer, intent(in) :: p,ptyp

real(kind=dp), intent(inout) :: coeff(0:max(1,p))

Transformation from monomial base to base ’ptyp’ on a rectangle or a triangle.

subroutine ctpol2(coeff,px,typ,ptyp)

integer, intent(in) :: px(0:1),typ,ptyp

integer, parameter :: fm=10

real(kind=dp), intent(inout) :: coeff(0:fm,0:fm)

Transformation of a polynomial with monomial base functions to a polynomial with Legendre
polynomials as base functions.

subroutine ctleg1(coeff,p)

use polydat

integer, intent(in) :: p

real(kind=dp), intent(inout) :: coeff(0:p)

Transformation of Legendre-coefficients to Antiderivatives of Legendre-polynomials

subroutine cbfleg1(coeff,p)

integer, intent(in) :: p

real(kind=dp), intent(inout) :: coeff(0:p)

25

ni =

p
∏

j=0

j 6=i

(xi − xj)

Li(x) = n−1
i

p
∏

j=0

j 6=i

(x− xj)

L′
i(x) = n−1

i

p
∑

j=0

j 6=i

p
∏

k=0

i 6=k,j 6=k

(x− xk)

L′′
i (x) = n−1

i

p
∑

j=0

j 6=i

p
∑

k=0

i 6=k,j 6=k

p
∏

l=0

i 6=l,j 6=l,k 6=l

(x− xl)

12 Interfaces to the integral libraries

12.1 2D-BEM

The source code files of the integral libraries are called liblap2.f90, liblame2.f90, libhelm2.f90,
libint2.f90 and libgint2.f90. The file liblap2.f90 contains the implementation of the Galerkin
elements for the Laplacian, the file liblame2.f90 contains the implementation of the Galerkin
elements for the Lamé-operator and the file libhelm2.f90 contains the implementation of the
Galerkin elements for the Helmholtz-operator. Each of these files can be used independently
of the others, but all files need the file libint2.f90 which contains the elementary integrals and
the file libgint2.f90 which contains the generic numerical integration subroutines used by the
other files.

Before using any subroutines in which numerical integrations involved we have to call the
subroutine initgauss12 with a subroutine as argument which calculates for a given number
of nodes the values of nodes and weights. initgauss12 will generate internally a table for
the number of nodes from 1 to 32 for further use.

subroutine initgauss12(gauss)

external gauss

An example for such a gauss-routine is given in the following by using NAG-routines.

subroutine gauss(gqn,gqk,gqw)

integer gqn,itype,ifail

real gqk(1:gqn),gqw(1:gqn)

real a,b

external d01baz,d01bbf

a=-1.0

b= 1.0

itype=0

ifail=1

call d01bbf(d01baz,a,b,itype,gqn,gqw,gqk,ifail)

if (ifail.ne.0) then

26

ifail=0

call d01bcf(itype,a,b,a,b,gqn,gqw,gqk,ifail)

end if

end

Internal coefficients controlling the analytical or numerical integrations are set by

subroutine setc12(mode,ivalue,rvalue)

integer mode,ivalue

real rvalue

where ivalue is an integer parameter and rvalue a real parameter. mode=0 sets the kind
of integration, i.e. ivalue=0 means analytical integration, ivalue=1 means doing the outer
integration numerically and the inner integration analytically and ivalue=2 means all inte-
grations numerically. The number of Gauss nodes gqna for the outer integration is set by
mode=1 and the number of Gauss nodes gqnb for the inner integration by mode=2. The
number of Gauss nodes gqnc for the potential integration is set by mode=3. sigma and ijn

give the grading parameter and number of levels for the geometrical refined quadrature. mu
describes the increasing of the number of quadrature points. farreg gives the boundary of
the farfield where the usual quadrature rule is used without grading. By using mode=-1 the
standard values are set; this subroutine is automatically called by initgauss12.

mode ivalue rvalue
0 mtyp
1 gqna
2 gqnb
3 gqnc
4 ijn sigma
5 farreg
6 mu

We can use the subroutine getc12 to obtain the current values of the parameters.

subroutine getc12(mode,ivalue,rvalue)

integer mode,ivalue

real rvalue

In the following the interfaces and data formats of all user usable subroutines are presented.
The analogous subroutines of liblap2.f90, liblame2.f90 and libhelm2.f90 share a common
interface. Therefore we need only to state a generic interface. The actual names of the
subroutines are build by using the prefix lap-, lame- or helm-.

We usually don’t state the whole boundary, but we compute all integrals for two boundary
elements, from which all other terms can be inferred. There are two ways of describing a
boundary element Γi. First we can state the start point ai and the end point ei of Γi, or we
can state the mid point mi = (ei + ai)/2 and the difference vector from end point and mid
point di = (ei − ai)/2.

Most operators demand the definition of some constants.

In the case of the Lamé-equation the Lamé-coefficients are defined in the program by using

subroutine initlame(lambda,mu)

real(kind=dp), intent(in) :: lambda,mu

27

before any other subroutine is called. All internal constants which are needed by ’liblame2.f90’
are defined by this subroutine. As long as the coefficients don’t change it is sufficient to call
the subroutine only once.

In the case of the Helmholtz-equation the wavenumber ’kw’ and the number of terms of the
series expansion ’kn’ are defined by

subroutine inithelm(kw,kn)

real(kind=dp), intent(in) :: kw

integer, intent(in) :: kn

The test and ansatz functions are given by

ϕi,k(~x) =

{
(

di(~x−mi)
d2

i

)k

, ~x ∈ Γi

0 , otherwise
(8)

The Galerkin elements are usually given by

Fkl =

∫

Γ0

ϕ0,k(~x)

∫

Γ1

ϕ1,l(~y)F (~x, ~y) dsy dsx

= |d0| |d1|

∫ 1

−1

∫ 1

−1

tkxt
l
yF (d0 ∗ tx +m0, d1 ∗ ty +m1) dty dtx

The values of the Galerkin elements can be real numbers, complex numbers or matrices.
They are always stored in the same data structure.

integer, parameter :: fm=40

real(kind=dp) :: f(0:fm,0:fm,0:nt-1)

’fm’ denotes the highest allowed polynomial degree which can be used. ’nt’ stands for the
number of components of the Galerkin element. For example for the Lamé equation we

have four components, i.e. nt=4. We can access the Galerkin element F
(r,s)
kl , r, s = 0, 1 by

f(k, l, 2 ∗ r + s)

The Galerkin elements are computed by -integmd, which uses midpoint, difference vector and
normal vector for the boundary elements 0 and 1. The kind of integration to be performed
is defined in advance by setc12(0,ivalue,rvalue).

The highest polynomial degrees on boundary elements 0 and 1 must be given for the single
layer potential by pv0 and pv1, for the double layer potential by pk0 and pk1 and for the
hypersingular operator by pw0 and pw1. Note that not the hypersingular operator itself is
computed, but a partial integrated form, which can be used completely analogous.

subroutine -integmd(m0,d0,n0,m1,d1,n1,pv0,pv1,pk0,pk1,pw0,pw1,fv,fk,fw)

! midpoint, diffvec and normal of boundary element 0

real(kind=dp), intent(in) :: m0(0:1),d0(0:1),n0(0:1)

! midpoint, diffvec and normal of boundary element 1

real(kind=dp) :: m1(0:1),d1(0:1),n1(0:1)

integer, intent(in) :: pv0,pv1,pk0,pk1,pw0,pw1

integer, parameter :: fm=40

real(kind=dp), dimension(0:fm,0:fm,0:nt-1), intent(inout) :: fv,fk,fw

28

We can compute the Galerkin elements for the adjoint double layer potential, which are
usually computed by taking the transposed matrix of the double layer potential in the same
way .

subroutine -integmdks(m0,d0,n0,m1,d1,n1,pks0,pks1,fks)

! midpoint, diffvec and normal of boundary element 0

real(kind=dp), intent(in) :: m0(0:1),d0(0:1),n0(0:1)

! midpoint, diffvec and normal of boundary element 1

real(kind=dp), intent(in) :: m1(0:1),d1(0:1),n1(0:1)

integer, intent(in) :: pks0,pks1

integer, parameter :: fm=40

real(kind=dp), intent(inout) :: fks(0:fm,0:fm,0:nt-1)

For the computation of the right hand side we need the integrals over a general function
multiplied with the test-functions.

Ik =

∫

Γ0

f(~x)ϕ0,k(~x) dsx

subroutine -id(a0,e0,n0,f,n,gqn,gqk,gqw,iid)

c startpoint,endpoint and normal of the 0-th boundary element

real a0(0:1),e0(0:1),n0(0:1)

c external subroutine with parameters x,n,f

c x(0:1): source point

c n(0:1): normal direction of the boundary in x

c f(0:1): value of the function in x

external f

c maximal polynomial degree

integer n

c quadrature

integer gqn

real gqk(1:gqn),gqw(1:gqn)

c table of the identity

integer fm

parameter (fm=20)

real iid(0:fm,0:nt-1)

For the computation of the right hand side we also need

Fk =

∫

Γ0

f(~x)

∫

Γ1

F (~x, ~y)ϕ1,k(~y) dsy dsx

which can be computed by using the following subroutines which use the same parameter
list, where ’op’ stands for v (weakly singular), k (double layer), ks (adjoint double layer) and
w (hypersingular), e.g. lamevpot.

subroutine -op-pot(a0,e0,n0,a1,e1,n1,f,n,op-kr)

c startpoint, endpoint and normal of the 0-boundary element

real a0(0:1),e0(0:1),n0(0:1)

c startpoint, endpoint and normal of the 1-boundary element

real a1(0:1),e1(0:1),n1(0:1)

29

c external subroutine with parameters x,n,f

c x(0:1): source point

c n(0:1): normal direction of the boundary in x

c f(0:1): value of the function in x

external f

c highest polynomial degree

integer n

c table of the values

integer fm

parameter (fm=20)

real op-kr(0:fm,0:nt-1)

These subroutines also exist using midpoint and difference vector

subroutine -op-potmd(m0,d0,n0,m1,d1,n1,f,n,op-kr)

The values of the potential at a given point

Fk(~x) =

∫

Γ1

F (~x, ~y)ϕ1,k(~y) dsy

can be computed by using the following subroutines which use the same parameter list.

subroutine -op-potll(x,n0,m1,d1,n1,p1,op-kr)

c source point

real x(0:1)

c midpoint, diff-vector and normal direction of the boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

c normal direction in the source point x

real n0(0:1)

c highest polynomial degree

integer p1

c table of the values

integer fm

parameter (fm=20)

real op-kr(0:fm,0:nt-1)

The value of the potential can be calculated by summing up the results of ’-op-potll’ over
the whole boundary.

The kernel functions F (x, y) of the integral operators are given by

subroutine -op-kern(d,n0,n1,kern)

real d(0:1),n0(0:1),n1(0:1),kern(0:nt-1)

d(0:1) is the difference of x and y. n0 denotes the normal direction of the boundary in x and
n1 in y. kern(0:nt-1) is the value of the kernel function with ’nt’ components.

For the implementation of integral equations of the second kind we have to test a base
function with another base function

Ikl = 〈Iϕ0,k, ϕ1,l〉 =

∫

Γ0

ϕ0,k(~x)

∫

Γ1

ϕ1,l(~y) dsy dsx

This is given by the subroutine ’genidgal’.

30

subroutine genidgal(m0,d0,n0,m1,d1,n1,p0,p1,idkl)

c midpoint, diffvec and normal of boundary element 0

real m0(0:1),d0(0:1),n0(0:1)

c midpoint, diffvec and normal of boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

integer p0,p1

integer fm

parameter (fm=20)

real idkl(0:fm,0:fm)

Various subroutines located in ’libgint2.f90’ perform the numerical quadratures.

Numerical computation of the potential for monomials, given only the kernel function

subroutine genpotln(x,n0,m1,d1,n1,py,potkr,kernf,nt,opt)

c source point of the potential

real x(0:1)

c normal of boundary element 0

real n0(0:1)

c midpoint, diffvec and normal of boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

c maximal polynomial degree

integer py,nt

external kernf

c tabler of the values of the potential

integer fm

parameter (fm=20)

real potkr(0:fm,0:nt-1)

Numerical computation of the potential for arbitrary functions, given only the kernel function

subroutine genfpotln(x,n0,m1,d1,n1,

* potw,kernf,fkt,emult,nt,opt)

c source point of the potential

real x(0:1)

c normal of boundary element 0

real n0(0:1)

c midpoint, diffvec and normal of boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

integer nt

c kernel function, arbitray function, elementary multiplication

external kernf,fkt,emult

c table of the potential values

real potw(0:nt-1)

Numerical computation of the Galerkin elements, given only the kernel function

subroutine gengalln(m0,d0,n0,m1,d1,n1,p0,p1,f,kernf,nt,opt)

c midpoint, diffvec and normal of boundary element 0

31

real m0(0:1),d0(0:1),n0(0:1)

c midpoint, diffvec and normal of boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

integer p0,p1,nt,opt

integer fm

parameter (fm=20)

real f(0:fm,0:fm,0:nt-1)

Numerical computation of the outer integration, given the analytical computed potential

subroutine gengall(m0,d0,n0,m1,d1,n1,p0,p1,f,potll,nt,opt)

c midpoint, diffvec and normal of boundary element 0

real m0(0:1),d0(0:1),n0(0:1)

c midpoint, diffvec and normal of boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

integer p0,p1

integer fm

parameter (fm=20)

real f(0:fm,0:fm,0:nt-1)

external potll

Numerical quadrature of a potential with a function

subroutine genpot(m0,d0,n0,m1,d1,n1,f,potll,mult,

* p1,potkr,nt,opt)

c midpoint, diffvec and normal of boundary element 0

real m0(0:1),d0(0:1),n0(0:1)

c midpoint, diffvec and normal of boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

c external subroutine with parameters x,n,f

c x(0:1): source point

c n(0:1): normal direction in x

c f(0:1): value in x

external f,potll,mult

c maximal polynomial degree

integer p1

integer nt,opt

c table of the integrated potential

integer fm

parameter (fm=20)

real potkr(0:fm,0:nt-1)

Numerical quadrature of a numerical potential with a function

subroutine genpotfln(m0,d0,n0,m1,d1,n1,f,kernf,mult,

* p1,potkr,nt,opt)

c midpoint, diffvec and normal of boundary element 0

real m0(0:1),d0(0:1),n0(0:1)

c midpoint, diffvec and normal of boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

c external subroutine with parameters x,n,f

32

c x(0:1): source point

c n(0:1): normal direction in x

c f(0:1): values in x

external f,kernf,mult

c maximal polynomial degree

integer p1

integer nt,opt

c table of the integrated potential

integer fm

parameter (fm=20)

real potkr(0:fm,0:nt-1)

Numerical quadrature of a double integral consisting of a singular kernel and two functions

subroutine gengalfln(m0,d0,n0,m1,d1,n1,f0,f1,kernf,emult,

* galr,nt,opt)

c midpoint, diffvec and normal of boundary element 0

real m0(0:1),d0(0:1),n0(0:1)

c midpoint, diffvec and normal of boundary element 1

real m1(0:1),d1(0:1),n1(0:1)

c external subroutine with parameters x,n,f

c x(0:1): source point

c n(0:1): normal direction in x

c f(0:1): values in x

external f0,f1,kernf,emult

c maximal polynomial degree

integer p1

integer nt,opt

c table of the integral

real galr(0:nt-1)

Computation of the identity where f is allowed to have a singular point

Ikr =

∫ e0

a0

fr(x)

(

sx − (e0 + a0)/2

(e0− a0)/2

)k

dx

subroutine genid12(m0,d0,n0,p0,gqn,gqk,gqw,kid,fkt,nt,opt,sx)

c midpoint, diffvec and normal of boundary element 0

real m0(0:1),d0(0:1),n0(0:1)

c function

external fkt

c maximal polynomial degree

integer p0

c quadrature

integer gqn

real gqk(1:gqn),gqw(1:gqn)

integer nt,opt

c singular point

real sx(0:1)

c table of the identity

integer fm

33

parameter (fm=20)

real kid(0:fm,0:nt-1)

12.2 3D-BEM

The source code files of the integral libraries in the 3D-case are called liblap3.f90, liblame3.f90,
libhelm3.f90, libint3.f90 and libgint3.f90. The file liblap3.f90 contains the implementation of
the Galerkin elements for the Laplacian, the file liblame3.f90 contains the implementation
of the Galerkin elements for the Lamé-operator and the file libhelm3.f90 contains the im-
plementation of the Galerkin elements for the Helmholtz-operator. Each of this files can be
used independently of the others, but all files need the file libint3.f90 which contains the
elementary integrals and the file libgint3.f90 which contains generic numerical integration
subroutines used by the other files.

Before using any subroutines in which numerical integrations are involved we have to call the
subroutine initgauss23 with a subroutine as argument, which calculates for a given number
of nodes the values of the nodes and weights. The subroutines initgauss23, setc23 and
getc23 correspond to the subroutines initgauss12, setc12 and getc12 in the 2D-BEM
case and share the same interface.

subroutine -integ3(bx,dx1,dx2,nx,tx,by,dy1,dy2,ny,ty, &

& pvx,pvy,pkx,pky,pwx,pwy, &

& vklmn,kklmn,wklmn)

! Element type: 3=triangle, 4=rectangle

integer, intent(in) :: tx,ty

! vector of the origin, boundaries, normal direction

real(kind=dp), dimension(0:2), intent(in) :: bx,dx1,dx2,nx

real(kind=dp), dimension(0:2), intent(in) :: by,dy1,dy2,ny

! polynomial degree

integer, dimension(0:1), intent(in) :: px,pkx,pwx

integer, dimension(0:1), intent(in) :: py,pky,pwy

! Galerkin matrices

real(kind=dp),dimension(0:fm,0:fm,0:fm,0:fm,0:nt-1), intent(inout) :: vklmn,kklmn,wklmn

In the same way we can compute the Galerkin elements for the adjoint double layer potential,
which are usually computed by taking the transposed matrix of the double layer potential.

subroutine -integ3ks(bx,dx1,dx2,nx,tx,by,dy1,dy2,ny,ty, &

& pkx,pky,ksklmn)

! Element type: 3=triangle, 4=rectangle

integer, intent(in) :: tx,ty

! vector of the origin, boundaries, normal direction

real(kind=dp), dimension(0:2), intent(in) :: bx,dx1,dx2,nx

real(kind=dp), dimension(0:2), intent(in) :: by,dy1,dy2,ny

! polynomial degree

integer, intent(in) :: pkx(0:1),pky(0:1)

! Galerkin matrix

real(kind=dp), intent(inout) :: ksklmn(0:fm,0:fm,0:fm,0:fm,0:nt-1)

For the computation of the right hand side we need the integrals over a general function

34

multiplied with the test-functions.

Ikl =

∫

Γ0

f(~x)ϕ0,kl(~x) dsx

subroutine genid23(bx,dx1,dx2,nx,tx,px,gqn,gqk,gqw,kid,fkt,nt)

! Element typ: 3=triangle, 4=rectangle

integer, intent(in) tx

! vector of the origin, boundaries, normal direction

real(kind=dp), dimension(0:2), intent(in) :: bx,dx1,dx2,nx

! polynomial degree

integer, intent(in) :: px(0:1)

! quadrature

integer, intent(in) :: gqn

real(kind=dp), intent(in) :: gqk(1:gqn),gqw(1:gqn)

integer, intent(in) :: nt

! table of the identity

real(kind=dp), intent(inout) :: kid(0:fm,0:fm,0:nt-1)

For the computation of the right hand side we also need

Fkl =

∫

Γ0

f(~x)

∫

Γ1

F (~x, ~y)ϕ1,kl(~y) dsy dsx

which can be computed by using the following subroutines which use the same parameter
list, where ’op’ stands for v (weakly singular), k (double layer), ks (adjoint double layer) and
w (hypersingular), e.g. lamevpot.

subroutine -op-pot(bx,dx1,dx2,tx,nx,by,dy1,dy2,ty,ny,f,py,op-kr)

! Element typ: 3=triangle, 4=rectangle

integer, intent(in) :: tx,ty

! vector of the origin, boundaries, normal direction

real(kind=dp), dimension(0:2), intent(in) :: bx,dx1,dx2,nx

real(kind=dp), dimension(0:2), intent(in) :: by,dy1,dy2,ny

! polynomial degree

integer, intent(in) :: py(0:1)

! table of the potential

real(kind=dp), intent(inout) :: op-kr(0:fm,0:fm,0:*)

The values of the potential at a given point

Fkl(~x) =

∫

Γ1

F (~x, ~y)ϕ1,kl(~y) dsy

can be computed by using the following subroutines which use the same parameter list.

subroutine -op-potll(x,nx,by,dy1,dy2,ny,ty,py,op-kl)

!source point

real(kind=dp), intent(in) :: x(0:2),nx(0:2)

! vector of the origin, boundaries, normal direction

real(kind=dp), dimension(0:2), intent(in) :: by,dy1,dy2,ny

! Element typ: 3=triangle, 4=rectangle

integer, intent(in) :: ty

35

! polynomial degree

integer, intent(in) :: py(0:1)

! table of the potential

real(kind=dp), intent(inout) :: op-kl(0:fm,0:fm,0:*)

The value of the potential can be calculated by summing up the results of ’-op-potll’ over
the whole boundary.

The kernel functions F (x, y) of the integral operators are given by

subroutine -op-kern(d,n0,n1,kern)

real(kind=dp), intent(in) :: d(0:2),n0(0:2),n1(0:2)

real(kind=dp), intent(out) :: kern(0:nt-1)

d(0:2) is the difference of x and y. n0 denotes the normal direction of the boundary in x and
n1 in y. kern(0:nt-1) is the value of the kernel function with ’nt’ components.

12.3 2D-FEM

In case of the 2D-FEM Galerkin elements, we have to distinguish between Galerkin matrices
with test and ansatz spaces which are of the same kind

subroutine type-2-op(gm,p1,p2,p3,p4,px,py,typ,ptyp)

use poly

real(kind=dp), intent(inout) :: gm(0:*)

real(kind=dp), dimension(0:1), intent(in) :: p1,p2,p3,p4

integer, intent(in) :: px,py,typ,ptyp

and with different test and ansatz spaces.

subroutine type-2-op(gm,p1,p2,p3,p4,px1,py1,px2,py2,typ,ptyp1,ptyp2)

real(kind=dp), intent(inout) :: gm(0:*)

real(kind=dp), dimension(0:1), intent(in) :: p1,p2,p3,p4

integer, intent(in) :: px1,py1,px2,py2,typ,ptyp1,ptyp2

12.4 3D-FEM

subroutine type-3-op(gm,nodes,px,py,pz,typ,ptyp)

real(kind=dp), intent(inout) :: gm(0:*)

real(kind=dp), intent(in) :: nodes(0:2,0:7)

integer, intent(in) :: px,py,pz,typ,ptyp

subroutine type-3-op(gm,nodes,px1,py1,pz1,px2,py2,pz2,typ,ptyp1,ptyp2)

real(kind=dp), intent(inout) :: gm(0:*)

real(kind=dp), intent(in) :: nodes(0:2,0:7)

integer, intent(in) :: px1,py1,pz1,px2,py2,pz2,typ,ptyp1,ptyp2

36

13 Interface of the batch control language

All programs of maiprogs read the commands from a file. The implemented commands
are described in the user manual [3]. The subroutines and functions which are needed for
implementing the interpretation of the commands are described in the following. We have to
distinguish between the routines which open and close the files and the routines for reading
the parameters of commands.

The first subroutine is getopen which reads the arguments of the command line of the
program itself (–o, –o2, –f, –d, –i, –r) and then opens the command file and also initializes
most of the data structures.

subroutine getopen(eingabe0,ausgabe0,fin)

! only one call at program start for initialization

integer, intent(inout) :: fin ! error code, emergency stop

character(len=*), intent(in) :: eingabe0,ausgabe0

Here eingabe0 is the name of the default input file, whereas ausgabe0 is the name of the
default output file. fin is a flag for emergency exit.

The second subroutine is getline which reads the next line from the input and tries to
interpret the line as a standard command (#in, #out, #out2, #e, set, print, write2, do,
continue, history, debug, #id., #ti, #time). If it recognizes no command the input line is
returned to the calling program for further interpreting. It also controls the history buffer,
do-loop control etc.

subroutine getline(fin)

integer, intent(inout) :: fin

The last subroutine is getclose which just closes input and output files.

subroutine getclose()

Now the subroutines and functions for interpretation of the input lines are given. All com-
mands which read from the input line use the pointer inpp internally.

outset looks whether a channel (nr.1 upto 10) has been opened for output, and if not, it
opens the corresponding file.

subroutine outset(chno,aus)

integer, intent(in) :: akno

integer, intent(out) :: aus

! create a new file for channel akno, allocated unit will be in aus

rdint reads an integer from the input line, an argument has to be present, otherwise an error
message will be given.

function rdint()

integer :: rdint

rdreal reads a real number from the input line, an argument has to be present, otherwise
an error message will be given.

37

function rdreal

real(kind=dp) :: rdreal

xrdint reads an integer from the input line and uses a default value wert if there is no more
input or the symbol ’-’ is used.

function xrdint(wert)

integer :: xrdint

integer, intent(in) :: wert

xrdreal reads a real number from the input line and uses a default value wert if there is no
more input or the symbol ’-’ is used.

function xrdreal(wert)

real(kind=dp) :: xrdreal

real(kind=dp), intent(in) :: wert

The most modern and comfortable way to access arguments for bcl-commands is to use the
following set of commands yparse, yrdint, yrdreal and yrdstr. The subroutine yparse

reads all arguments at once. This makes it possible to enclose the arguments in brackets and
to separate them with colons, which was not possible before. Additionally, the arguments
can be named and therefore given in arbitrary order.

subroutine yparse

The name of the optional argument is given in str and its default value in value.

function yrdint(str,value)

integer :: yrdint

integer, intent(in) :: value

character(len=*), intent(in) :: str

function yrdreal(str,value)

real(kind=dp) :: yrdreal

real(kind=dp), intent(in) :: value

character(len=*), intent(in) :: str

function yrdstr(str,value)

character(len=80) :: yrdstr

character(len=*), intent(in) :: str,value

The subroutine setglobvar allows to set global variables which can be used by bcl scripts.
Here vt=0 means the variable is of integer type with value ’vi’ and vt=1 means the variable
is of real type with value ’vr’.

subroutine setglobvar(name,vt,vi,vr)

integer, intent(in) :: vt,vi

real(kind=dp), intent(in) :: vr

character(len=*), intent(in) :: name

38

The subroutine getglobvar allows to get global variables which are used by bcl scripts. Here
vt=0 means the variable is of integer type with value ’vi’ and vt=1 means the variable is of
real type with value ’vr’. If ’vt=-1’ the variable ’name’ is not defined.

subroutine getglobvar(name,vt,vi,vr)

integer, intent(out) :: vt,vi

real(kind=dp), intent(out) :: vr

character(len=*) :: name

The following subroutines and functions are designed for internal use.

ausset looks whether a file has been opened for output, and if not, it opens the file.

subroutine ausset(ausgabe,ausflag,aus)

integer, intent(inout) :: ausflag

integer, intent(in) :: aus

character(len=*), intent(in) :: ausgabe

iscmd is a logical function tests for the next command in the input line and compares with
str. The return value of iscmd is true after a command is recognized. Then the string
currentcmd will be set to the value of str and the subroutine timing will be called.

function iscmd(str)

logical :: iscmd

character(len=*), intent(in) :: str

Example 13.1 This example shows the use of getopen, getline and getclose.

! ’recin’ is the name of the default input file

! the main loop starts here

! note: common batch commands are contained in the file bcl.f

! and executed by the command getline

call getopen(’recin’,’recout’,fin)

10 call getline(fin)

if (fin.eq.1) then

! done, don’t do any more

else if (iscmd(’#px.’)) then

! write mesh to output file

...

else if (iscmd(’mesh’)) then

! initialisize the mesh

...

call timelog ! write computing time to screen and/or logfile

else

! error message

call errcmd()

end if

if (fin .ne. 1) goto 10

39

call getclose()

14 Logging facilities

Messages (informational, warnings, errors) are written to the screen and/or to a log file. In
the module ’error’ there is the subroutine logmsg and the character variable msg containing
the message.

subroutine logmsg(type,name,only)

character(len=*), intent(in), optional :: type,name,only

Supplying the optional argument type, we can define the type of the message, e.g. Error,
Warning, Info. Supplying the optional argument name, we can use the name of the reporting
procedure or command in the message. This has the advantage, that the reporting procedure
can call first another subroutine for further processing, supplying the name, which finally
leads to the call to logmsg. Using the optional argument, we can supercede the general
configuration, writing only to ’Screen’ or ’File’.

It is strongly advised to use the logging facilities for all kinds of structured output, i.e. for
anything besides debugging outputs, so that the output can also be organized in a multi-
core/multi-computer environment.

We have to note that the integral libraries are not covered by the logging facilities. The
integral libraries are intended to be used also externally, therefore a close connection would
be harmful for this purpose. In the next Fortran revision there will also be some kind
of exception handling incorporated into the language. Then logmsg will evaluate the type
argument for an extended action and error reporting.

The following subroutine timelog writes the consumed cpu time since the last command (or
timer reset) to the screen and/or log file. The measured time will be marked by str. If str
is missing the current bcl-command name will be used.

subroutine timelog(str)

character(len=*), optional, intent(in) :: str

15 Parallelization

maiprogs currently supports three kinds of parallelization. First, parallelization on shared-
memory systems with OpenMP is fully supported and activated by default (’config -openmp=yes’).

Second, parallelization on clusters (multi-computer systems) with MPI is supported (partly
still in development) and has to be explicitly activated using ’config -mpi=yes’.

Third, parallelization using graphic cards with CUDA is in the early stages of support and
has to be explicitly activated using ’config -cuda=yes’.

40

16 Internal organization of solvers

The generic and reusable solvers are contained in the files ’fox/lgsrev.f90’ for real numbers
and ’fox/xlgsrev.f90’ for complex numbers. These solvers are used by the subroutines in
the files ’fox/lgs.f90’, which extend the solvers with the matrix-vector multiplication for real
dense matrices, ’fox/xlgs.f90’ with matrix-vector multiplication for complex dense matrices,
’fox/femlgs.f90’ with matrix-vector multiplication for real and complex sparse matrices and
’fox/couplgs.f90’ with dense and sparse matrices for coupled systems.

17 Internal organization of preconditioners

Most preconditioners on matrix level are contained in the file ’fox/mlbas.f90’ for dense sys-
tems and in ’fox/mlfbas.f90’ for sparse systems.

All implemented preconditioners are of Schwarz type. These preconditioners are distinguished
by the construction of their subspace decomposition. In general we can write that a space V
with base {φi} is decomposed in subspaces

V = V0 + V1 + . . .+ VN , Vl = span{φli; i = 1, . . . , dimVl}

For the implementation we have to describe the construction of φli in terms of φi.

1. The simplest subspace decomposition is given by a partition of the base functions.
Restriction and prolongation operators are simply given by the identity acting on a
subspace.

2. Another possibility is a subspace decomposition given by a partition of the base func-
tions with an additional coarse grid on which base functions are given as linear com-
binations of an arbitrary number of fine grid base functions. These are the so called
Hh-methods.

3. A famous possibility is nested subspaces where we have a sequence of even coarser
subspaces/ grids which are constructed by the linear combination of few fine grid base
functions to a coarse grid base function. In the multiplicative Schwarz case these are
the multigrid methods and in the additive Schwarz case the BPX-like methods.

4. A further case is a complete transformation of the standard base functions to a base
with special properties, where usually a one-dimensional Schwarz preconditioner, the
diagonal scaling, is used. Known examples are the hierarchical base and prewavelet or
wavelet bases.

In the following we describe the interface to the implementations of these preconditioners.

1. The partition of the base functions is given by the arrays

integer nxm,ixm(0:*),xm(0:nxm),am(0:nxm)

An additional array for the local inverse is given by

integer ipvt(0:*)

Using these definitions we implement the additive Schwarz preconditioner

41

subroutine asmp(ktyp,b,ixm,xm,am,nxm,ipvt,n,z,r)

integer ktyp,n

real b(0:*),z(0:n-1),r(0:n-1)

the multiplicative Schwarz preconditioner

subroutine msmp(ktyp,b,a,ix,ixm,xm,am,nxm,ipvt,flag,n,z,r)

integer ktyp,flag,n,ix(0:*)

real a(0:*),b(0:*),z(0:n-1),r(0:n-1)

and the symmetric multiplicative Schwarz preconditioner

subroutine msmp2(ktyp,b,a,ix,ixm,xm,am,nxm,ipvt,flag,n,z,r)

integer ktyp,flag,n,ix(0:*)

real a(0:*),b(0:*),z(0:n-1),r(0:n-1)

2. The coarse grid base is given by the arrays

integer ncxm,icxm(0:*),cxm(0:ncxm)

real wcxm(0:*)

An additional array for the coarse grid inverse is given by

integer cipvt(0:*)

Now the additive Schwarz preconditioner with coarse grid is given by

subroutine varasmp(ktyp,b,ixm,xm,am,nxm,ipvt,

* icxm,wcxm,cxm,ncxm,cipvt,n,z,r)

integer ktyp,n

real b(0:*),z(0:n-1),r(0:n-1)

3. The memory distribution of the nested subspaces is given by

integer mtop,am(0:mtop),xfm(0:mtop),xfn(0:mtop)

The projections (restriction and prolongation) from level to level are given by the
following arrays

integer prom

parameter (prom=9)

integer pro(0:prom,0:*), hpro(0:prom,0:*)

real prow(1:prom,0:*),hprow(1:prom,0:*)

integer difsi(0:5,0:*)

real difsw(1:5,0:*)

Using these definitions we implement the Multilevel additive Schwarz method with
exact solution at the lowest level

subroutine bmasv2(ktyp,mtop,mdc,am,a,xfm,xfn,x,f,pro,prow,ix,

* difsi,difsw,rp,ri,ngm,ngn,

* hpro,hprow,haard,ipvt)

c computes one mas step at level mtop

c exact solution at lowest level

42

integer ktyp,mdc

real a(0:*),f(0:*),x(0:*)

real haard(0:*)

integer ix(0:*),ipvt(0:*)

integer rp(0:*),ri(0:1,0:*)

c Position und Anzahl der Netze

integer ngm(0:mtop),ngn(0:mtop)

the multigrid algorithm

subroutine mg(mtop,mu,nu1,nu2,mds,mdc,mgr,omega,

* am,a,xfm,xfn,x,f,pro,prow,ix,

* difsi,difsw,drh,rp,ri,rci,ngm,ngn,ncm,ncn,

* dntyp,ktyp,nt,ipvt)

c fuehrt einen Multigridschritt auf level mtop durch

integer mu,dntyp,ktyp,nt,mds,mdc,mgr

integer nu1(0:mtop),nu2(0:mtop)

real omega(0:mtop)

real a(0:*),f(0:*),x(0:*)

integer ix(0:*),rci(0:*),ipvt(0:*)

integer rp(0:nt-1,0:*),ri(0:1,0:*)

real drh(0:2,0:*)

c Position und Anzahl der Netze

integer ngm(0:mtop),ngn(0:mtop)

c Position und Anzahl der logischen Freiheitsgrade

integer ncm(0:mtop),ncn(0:mtop)

and the BPX-algorithm

subroutine bpx(mtop,mdc,xfm,xfn,x,f,pro,prow,

* difsi,difsw,drh,rp,ri,ngm,ngn,nt,ktyp)

c computes one bpx step at level mtop

integer nt,ktyp,mdc

real f(0:*),x(0:*)

real drh(0:2,0:*)

integer rp(0:nt-1,0:*),ri(0:1,0:*)

c Position und Anzahl der Netze

integer ngm(0:mtop),ngn(0:mtop)

4. subroutine hiera(ktyp,mtop,xfm,xfn,x,f,hpro,hprow,hdiag)

c Projeziere auf die hierarchische Basis

c Teile durch die Diagonale

c Projeziere zurueck

integer mtop,ktyp

integer xfm(0:mtop),xfn(0:mtop)

real f(0:*),x(0:*),hdiag(0:*)

integer prom

parameter (prom=9)

integer hpro(0:prom,0:*)

real hprow(1:prom,0:*)

43

18 Configuration

’makefile’ is the topmost Makefile whereas every folder contains its own Makefile which is
called by the topmost Makefile. ’config’ is a shell script which determines the operating
system, the used FORTRAN compiler and which libraries are available. Using this infor-
mations ’config’ sets the Compiler options and link paths which are necessary to compile
the whole program system. It decides also whether it is necessary or possible to add some
code to replace the BLAS and LAPACK-libraries, which are primarily used, by an optimized
version, e.g. Intel’s MKL. (this code is located in the directory ads/). It generates the files
’makefile.mai’ and ’makefile.gen’.

19 Functions and boundary data

Functions describing volume data, boundary data, nonlinear behavior and exact solutions
and their derivatives are given in the modules ’funct??’ located in the files ’funct??.f90’,
where ?? denotes the short-cut of the configuration. Here we have to distinguish mainly
between Dirichlet and Neumann boundary data and volume data with the prefixes d-, n- and
v-, respectively. The operators are denoted by the prefixes lap-, lame-, helm- and maxw-. The
data function is denoted by the postfix ’-f’ and the corresponding exact solution is denoted by
’-fe’. An additional derivative is indicated by a ’-s-’. E.g. the derivative of Dirichlet data for
the Laplacian is denoted by ’dslapf’ (d-s-lap-f) and the exact solution of the Dirichlet problem
by ’dlapfe’. Additionally there is the module ’ltyp??’ defined, containing the integer variable
’ltyp(0:1)’ steering the choice of the function which has to be evaluated. The subroutines
implementing the boundary data functions have the following structure

subroutine pre-op-f(x,nx,fx)

use ltyp??

real(kind=dp) :: x(0:*),nx(0:*),fx(0:*)

select case (ltyp(0))

case (0)

case (1)

end select

end subroutine pre-op-f

Volume data functions are given by

subroutine v-op-f(x,fx)

use ltyp??

real(kind=dp) :: x(0:*),fx(0:*)

select case (ltyp(0))

case (0)

case (1)

end select

end subroutine v-op-f

The actual components of the arguments ’x’ and ’nx’ depends on the configuration. ’nx’
describes the direction of a derivative, usually the normal direction. ’fx’ contains the result

44

of the evaluation of the function, which is denoted by ’ltyp(0)’ given by the common block
’ltypc’. There are printing functions for boundary data and volume data which describe the
function in clear-text on standard output.

subroutine pr-op-f(ltyp)

integer, intent(in) :: ltyp

select case (ltyp)

case (0)

case (1)

case default

end select

end subroutine pr-op-f

subroutine prv-op-f(ltyp)

integer, intent(in) :: ltyp

select case (ltyp)

case (0)

case (1)

case default

end select

end subroutine prv-op-f

References

[1] M. Maischak, The analytical computation of the Galerkin elements for the Laplace,
Lamé and Helmholtz equation in 2D-BEM. Preprint 95-15, DFG-Schwerpunkt Randele-
mentmethoden.

[2] M. Maischak, The analytical computation of the Galerkin elements for the Laplace,
Lamé and Helmholtz equation in 3D-BEM. Preprint 95-16, DFG-Schwerpunkt Randele-
mentmethoden.

[3] M. Maischak, Manual of the program system maiprogs. Preprint, Institut für Ange-
wandte Mathematik, Universität Hannover.

45

