
© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: F
Last amended by M.Beach on 22/06/00 14:14

Page 1 of 83

Revision F

Company X
SOFTWARE QUALITY MANAGEMENT

‘C’ COMPILER REPORT
KEIL C166 v3.12j

APPROVAL NAME SIGNATURE DATE

Author

Software Engineering

Project Manager

Validation Manager

Engineering Director

(Please destroy all earlier versions)

© Copyright Hitex (UK) Ltd. 1999

University Of Warwick Science Park

Coventry, CV4 7EZ

Tel. 02476 692066

Web: www.hitex.co.uk

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: F
Last amended by M.Beach on 22/06/00 14:14

Page 2 of 83

Contents

1 INTRODUCTION ...5
1.1 Overview... 5
1.2 Disclaimer... 5

2 ITEMS ADDRESSED BY THIS REPORT...6
2.1 Quality Control & Validation.. 6

2.1.1 Quality Systems...6
2.1.2 Year 2000 Issues...6
2.1.3 Compiler Testing Prior To Release ..6
2.1.4 Empirical Measures Of Compiler Integrity ..6
2.1.5 Compiler Problem Status...7

2.2 Standard Functions... 7
2.2.1 Standard ISO-C library functions not provided ...7
2.2.2 Standard ISO-C library functions that differ in prototype from what would be expected..8
2.2.3 Standard ISO-C functions behaving in a non-standard manner...11

2.3 Implementation-Specific Issues .. 11
2.3.2 The layout of storage for parameters. ..13
2.3.3 How a diagnostic is identified...17
2.3.4 What constitutes an interactive device. ..19
2.3.5 The number of bits in a character in the execution character set..20
2.3.6 The result of casting a pointer to an integer or vice versa. ...21
2.3.7 What constitutes an access to an object that has volatile-qualified type. ..21
2.3.8 The maximum number of declarators that may modify an arithmetic, structure or union type. ..21
2.3.9 Whether the value of a single-character character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set. Whether such a character constant may have
a negative value. ...22
2.3.10 The mapping of source file character sequences ...22
2.3.11 The null pointer constant to which the macro NULL expands. ..22
2.3.12 CTYPE.H Functions ..22
2.3.13 The values returned by the mathematics functions on domain errors...24
2.3.14 Compiler Actions With Unusually Terminated Source Files..28
2.3.15 The outcome when the result of an integer arithmetic function (abs, div, labs, or ldiv) cannot be represented................30
2.3.16 The outcome when an lvalue with an incomplete type is used in a context that requires the value of the designated
object. 31
2.3.17 Mismatches in type between lvalue and object ..31
2.3.18 Incomplete Data Declarations..33
2.3.19 Volatile/non-volatile mismatches..34
2.3.20 Incomplete Types And Tentative Declarations ...35
2.3.21 Shift Left And Shift Right Operations..35
2.3.22 Integer Division Behaviour ...36
2.3.23 Floating Point Truncation...36
2.3.24 Float To Integer Conversions...37
2.3.25 Type promotion, char To int...40
2.3.26 Type Promotion From int To long ...40

2.4 Compiler System Controls Which Impact Software Integrity And Maintainability.. 41
2.4.1 Overview ...41
2.4.2 Compiler Controls..42
2.4.3 Linker Controls ..44
2.4.4 CPU Configuration Controls In START167.A66 ...44
2.4.5 Characteristics Of HLARGE Model Programs..44
2.4.6 The Special Sections "?C_CLRMEMSEC" And "?C_INITSEC"..48

2.5 Floating Point Library Test ... 49
2.5.1 Preliminary Work ...49
2.5.2 Preliminary Results..49
2.5.3 Discussion Of Results..50

2.6 Limits Of The Keil C166 Compiler System.. 51
2.6.1 Compiler Implementation Limits...51
2.6.2 Siemens/Keil OMF66 Object Module Format Limits ...51

3 COMPOSITION OF THE COMPILER TOOLKIT..52

4 APPENDIX A...54
4.1.1 Moving The USERSTACK On-Chip ...54

5 APPENDIX B...58
5.1 Pointer Casting And Conversions ... 58

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: F
Last amended by M.Beach on 22/06/00 14:14

Page 3 of 83

5.1.1 Casting From Basic Types To Pointers..58

6 APPENDIX C...60
6.1 Pointers In The C166 Compiler... 60
6.2 The Most Common Pointers In C166.. 60

6.2.1 far Pointers ...60
6.2.2 huge Pointers ...60
6.2.3 xhuge Pointers ...60
6.2.4 sdata Pointers ...60

6.3 Summary Of Pointer Declarations .. 60
6.4 Special Note On #pragma MOD167 For C167 CPUs ... 61

7 APPENDIX D...62
7.1 BSI Definition Of Year 2000 Compliance – Keil C166 Tools... 62

8 APPENDIX E ...66
8.1 Results Log Of PARANOIA Test For KEIL C166 v3.12j ... 66
8.2 Results Log Of PARANOIA Test For Microsoft C v11.00 ... 70

9 APPENDIX F ...75
9.1 Plum-Hall test summary files. ... 75

9.1.1 Invocation Batch File ...75
9.1.2 Summary File 1 ...76
9.1.3 Summary File 2 ...79
9.1.4 Explanation Of Error Reports From The Plum Hall Test ...81

10 APPENDIX G...82
10.1 Known Problems In C166 v3.12j... 82

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: F
Last amended by M.Beach on 22/06/00 14:14

Page 4 of 83

 Revision History

New Revision Description Of Changes

A Preliminary version

B Preliminary version with register and userstack usage described

C Typographic corrections made and section on library functions added.

D Retesting with v3.12j. Compiler & OMF66 limits added. PARANOIA test repeated with single precision

E Addition of v3.12j problem list.

F Addition of Plum Hall error descriptions

G Change to divide by zero integer division results to indeterminate

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: F
Last amended by M.Beach on 22/06/00 14:14

Page 5 of 83

1 Introduction

1.1 Overview

The XXX product range has been designed using devices from the Siemens C16x family of
microcontrollers. Upon the advice of Hitex (UK) Ltd., the Keil C166 ‘C’ compiler toolkit was selected
to support software development.

This report has been prepared to address the issues raised in the Company X ‘C’ Software Coding
Requirements Revision X.X. Its purpose is to:

• Provide evidence of the adequacy of the compiler toolkit for this purpose.

• Provide details of how the compiler implements those features that are either not specified by
the ISO/ANSI ‘C’ standard, or are explicitly identified as specific to the implementation of the
compiler. This will enable to software development and validation personnel to be aware of
items that may not be portable to other platforms.

Where reference is made to the ISO/ANSI ‘C’ Standard, this shall be taken to mean “ISO/IEC
9899:1990 Programming Languages – C” 1990 with Technical Corrigendum 1995 as published by
ISO.

1.2 Disclaimer

Whilst every effort has been made to ensure the accuracy and completeness of this report, neither
Hitex (UK) Ltd. or the author can be held liable for any consequences resulting from errors,
omissions or interpretation of information presented therein.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: F
Last amended by M.Beach on 22/06/00 14:14

Page 6 of 83

2 Items Addressed By This Report

2.1 Quality Control & Validation

Evidence shall be provided that the C compiler has been developed to the requirements of a quality
management system that meets the requirements of ISO 9001:1994 and that its performance is
satisfactory, having passed tests executed using a recognised validation suite (e.g. Plum-Hall).

Details of known problems with the version of the compiler used shall be provided, along with
details of how such information can be kept up to date as new releases become available.

2.1.1 Quality Systems

Keil do not have an accredited ISO9000 quality management system, as is common in the
embedded compiler field. Hitex is certified to ISO EN 9001 08/94, certificate number report Q1 01
97 02 27639 001 and Keil Elektronik GmbH as a major supplier since 1989, has been fully
assessed as part of this process.

2.1.2 Year 2000 Issues

The tested 3.12j compiler is Year 2000 compliant, as defined by BSI PD2000 (appendix D)

2.1.3 Compiler Testing Prior To Release

The Keil C166 compiler is tested using the Plum-Hall C validation suite prior to release. The Keil
Plum-Hall licence number is CVS245. A listing of the results of the test are given in appendix F.

Note: "Plum-Hall" is a registered trademark of Plum-Hall Inc., USA.

2.1.4 Empirical Measures Of Compiler Integrity

The Keil C166 compiler is in use at approximately 300 UK locations. Based on UK usage, on
average one minor bug is reported and confirmed once every 12 weeks across approximately 300
active users of C166 v3.05a to 3.12j. The average time to fix a bug is three weeks from
confirmation of the problem.

Keil has been represented in the UK by Hitex since 1989 and is a tier-one supplier.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: F
Last amended by M.Beach on 22/06/00 14:14

Page 7 of 83

2.1.5 Compiler Problem Status

By special arrangement with Keil, a list of known problems for the tested release can be made
available. Such information for C166 v3.12j can be found in appendix G.

2.2 Standard Functions

2.2.1 Standard ISO-C library functions not provided

The Keil C166 compiler contains a subset of the ANSI library function set that is appropriate for use
in a deeply embedded C167 environment. It omits the following specific and classes of library
functions:

• Stream IO functions, fflush, fputc, fprintf,

• All file-orientated functions fopen(), fclose(),

• All signal functions

• All error handling functions

• All time and date functions

• All environment communication functions

• Type-generic functions

List Of ISO-C Library Functions Not Implemented In Keil C166

abort

asctime

assert

atexit

bsearch

clearerr

clock

ctime

difftime

div

exit

fclose

feof

ferror

fflush

fgetc

fgetpos

fgets

fmod

fopne

fprintf

fputc

fputs

fread

freopen

frexp

fscanf

fseek

fsetpos

ftell

fwrite

getc

getenv

gmtime

ldexp

ldiv

localeconv

localtime

mblen

mbstowcs

mktime

perror

putc

qsort

raise

remove

rename

reweind

setlocale

setvbuf

strcoll

strerror

strftime

strstr

strtod

strok

strol

stroul

strxfrm

system

time

tmpfile

tmpnam

ungetc

vfprintf

wcstombs

wctomb

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 8 of 83

2.2.2 Standard ISO-C library functions that differ in prototype from what would be
expected

2.2.2.1 Type Of size_t

size_t is the unsigned integer type result of the sizeof operator. It is implemented as a typedef in
stddef.h.

Example

typedef unsigned int size_t;

2.2.2.2 Keil C166 String Handling Function Prototypes

The string handling functions whose prototypes are listed in string.h differ slightly from the ISO
standard in that the source pointer does not have the const attribute. const objects in the C166
compiler are defined as being located in a read-only area such as ROM. The limitation of source
strings only being located in ROM would be impracticable in a real C167 system. Where a
parameter or return value is of type size_t, C166 gives the type as unsigned int.

extern int strpos (char *s, char c);
extern char *strcat (char *s1, char *s2);
extern char *strncat (char *s1, char *s2, unsigned int n);
extern int strcmp (char *s1, char *s2);
extern int strncmp (char *s1, char *s2, unsigned int n);
extern char *strcpy (char *s1, char *s2);
extern char *strncpy (char *s1, char *s2, unsigned int n);
extern size_t strlen (char *);
extern char *strchr (char *s, char c);
extern char *strrchr (char *s, char c);
extern int strrpos (char *s, char c);
extern int strspn (char *s, char *set);
extern int strcspn (char *s, char *set);
extern char *strpbrk (char *s, char *set);
extern char *strrpbrk(char *s, char *set);

Note: The passing of source and destination pointers the above library functions with an attribute
other than near will result in a WARNING which must not be ignored.

2.2.2.3 Additional Keil C166 String Functions

C166 provides additional versions of the ISO-C string functions that are intended for those cases
where the source and destination pointers are of type far. These are:

extern char far *fstrcat (char far *s1, char far *s2);
extern char far *fstrncat (char far *s1, char far *s2, unsigned int n);
extern int fstrcmp (char far *s1, char far *s2);
extern int fstrncmp (char far *s1, char far *s2, unsigned int n);
extern char *fstrcpy (char far *s1, char far *s2);
extern char *fstrncpy (char far *s1, char far *s2, unsigned int n);
extern size_t fstrlen (char far *);
extern char far *fstrchr (const char far *s, char c);
extern char far *fstrrchr (const char far *s, char c);
extern int fstrpos (const char far *s, char c);
extern int fstrrpos (const char far *s, char c);

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 9 of 83

extern int fstrspn (char far *s, char far *set);
extern int fstrcspn (char far *s, char far *set);
extern char *fstrpbrk (char far *s, char far *set);
extern char *fstrrpbrk (char far *s, char far *set);

Note: The 'f' prefix does not imply that these functions are file-orientated. Such functions are not
available in C166.

2.2.2.4 ISO-C String Handling Function Prototypes

char *strcpy(char * s1, const char * s2);
char *strncpy(char * s1, const char * s2, size_t n);
char *strcat(char * s1, const char * s2);
char *strncat(char * s1, const char * s2, size_t n);
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
char *strchr(const char *s, int c);
char *strrchr(const char *s, int c);
size_t strspn(const char *s1, const char *s2);
size_t strcspn(const char *s1, const char *s2);
char *strpbrk(const char *s1, const char *s2);

2.2.2.5 Unimplemented String Functions In C166

int strcoll(const char *s1, const char *s2);
size_t strxfrm(char * s1, const char * s2, size_t n);
char *strstr(const char *s1, const char *s2);
char *strtok(char * s1, const char * s2);
char *strerror(int errnum);

2.2.2.6 Keil C166 Memory Copying Functions

C166 memory copying functions differ from ISO-C versions in that source pointer does not have the
const attribute. Where a parameter or return value is of type size_t, C166 gives the type as
unsigned int.

extern int memcmp (void *s1, void *s2, unsigned int n);
extern void *memcpy (void *s1, void *s2, unsigned int n);
extern void *memchr (void *s, char val, unsigned int n);
extern void *memccpy (void *s1, void *s2, char val, unsigned int n);
extern void *memmove (void *s1, void *s2, unsigned int n);
extern void *memset (void *s, char val, unsigned int n);

Additional versions of these functions are provided that cater for those situations where memory
regions are to be handled that are larger than the default location qualifier for the current memory
model permits. These functions are listed below:

extern int fmemcmp (void far *s1, void far *s2, unsigned int n);
extern void far *fmemcpy (void far *s1, void far *s2, unsigned int n);
extern void far *fmemchr (void far *s, char val, unsigned int n);
extern void far *fmemccpy (void far *s1, void far *s2, char val, unsigned int n);
extern void far *fmemmove (void far *s1, void far *s2, unsigned int n);
extern void far *fmemset (void far *s, char val, unsigned int n);
extern int xmemcmp (void xhuge *s1, void xhuge *s2, unsigned long n);
extern void xhuge *xmemcpy (void xhuge *s1, void xhuge *s2, unsigned long n);
extern void xhuge *xmemchr (void xhuge *s, char val, unsigned long n);
extern void xhuge *xmemccpy (void xhuge *s1, void xhuge *s2, char val, unsigned long n);
extern void xhuge *xmemmove (void xhuge *s1, void xhuge *s2, unsigned long n);
extern void xhuge *xmemset (void xhuge *s, char val, unsigned long n);

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 10 of 83

2.2.2.7 ISO-C Memory Copying Functions

void *memcpy(void * s1, const void * s2 size_t n);
void *memmove(void *s1, const void *s2, size_t n);
char *strcpy(char * s1, const char * s2);
char *strncpy(char * s1, const char * s2, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
void *memchr(const void *s, int c, size_t n);
void *memset(void *s, int c, size_t n);

2.2.2.8 Input/Output Functions

Example Of gets()

char *gets(char *s);

The ISO-C gets function reads characters from the input stream pointed to by stdin, into the
array pointed to by s, until END-OF-FILE is encountered or a NEWLINE character is read. Any
NEWLINE character is discarded, and a null character is written immediately after the last
character read into the array

Example Of The Keil C166 gets()

char *gets (char *, unsigned int n);

The Keil C166 gets function calls the getchar function to read a line of characters into a string *s.
The line consists of all characters up to and including the first NEWLINE character ('\n'). The
NEWLINE character is replaced by a null character ('\0') in the string. The parameter n specifies
the maximum number of characters that may be read. If n characters are read before ENWLINE is
encountered, the gets function terminates the string with the null character ('\0') and returns.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 11 of 83

2.2.3 Standard ISO-C functions behaving in a non-standard manner.

2.2.3.1 Memory Allocation Functions

Memory management functions assume that the non-ISO C init_mempool() function has been
previously called with parameter consisting of the address of a RAM area which can be used for the
heap plus its overall size. malloc(), calloc(), realloc() can then access blocks in this
area.

Note: These functions should not be used in a safety-critical system

2.2.3.2 Formatted And Other IO Functions

printf() directs its formatted output to putchar() (contained in PUTCHAR.C) which by default
addresses C167 serial port 0.

scanf() obtains it input characters from _getkey() (contained in GETHAR.C) which be default
addresses C167 serial port 0.

gets() is covered in section 2.2.2.8

puts(const char *s) writes a string followed by a NEWLINE character ('\n') to the output
stream using the putchar function.

putchar(char c) transmits the input character c to the C167 serial port zero. It is common for
this function to be modified to allow characters to be directed to other output devices such as an
LCD panel or alternative serial port. The source code for the putchar incorporated in the Keil
runtime library set can be found in "\C166\LIB\PUTCHAR.C".

getchar() reads a single character from the input stream using the _getkey() function. The
character read is passed back to the putchar() function to be echoed.

getkey() waits for a character to be received by the C167 serial port zero. It is common for this
function to be modified to allow characters to be received from other input devices such as a keypad
or alternative serial port. The source code for _getkey()incorporated in the Keil runtime library
set can be found in "\C166\LIB\GETKEY.C".

2.3 Implementation-Specific Issues

The ISO/ANSI ‘C’ standard identifies a large number of items that are specific to the implementation
of the compiler. This section seeks to characterise those areas. Where indicated, small example
program has been generated to illustrate issues raised.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 12 of 83

2.3.1.1 Test Conditions

The following compiler controls were used during testing:

WARNINGLEVEL(3)

The special WARNINGLEVEL(3) will cause the compiler to generate WARNINGs in a lint-like
fashion. It will indicate most sources of potential run-time failure due to poor use of the C language
or misuse of pointers. It has been used throughout the testing phase.

OPTIMIZE(X)

In some cases, the aggressive optimisation carried out by C166 prevents a proper examination of
implementation-specific areas addressed in this report. In those cases where results would not be
invalidated by inhibiting the optimiser, the #pragma OPTIMIZE(0) control was used.

ERRORS

Compiler errors prevent the production of an object file so therefore program cannot be linked or
executed. Under such circumstances the result of the test for implementation-specific issues is
irrelevant.

MOD167

The target CPU was a C167CR that contains instruction set extensions only accessible through the
#pragma MOD167 control.

HLARGE

The recommended HLARGE memory model was used. A justification for this can be found in
section 2.4.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 13 of 83

2.3.2 The layout of storage for parameters.

2.3.2.1 Basic Data Types In C166

The data types available in C166 are:

bit = 1-bit 0 to 1
signed char = 8-bits -128 to +127
unsigned char = 8-bits 0 to 255
signed int = 16-bits -32768 to -32767
signed short = 16-bits -32768 to -32767
unsigned int = 16-bits 0 to 65535
unsigned short = 16-bits 0 to 65535
signed long = 32-bits -2147483648 to +2147483647
unsigned long = 32-bits 0 - 429496795
float = 32-bits +/-1.176E-38 to +/-3.4E+38
double = 64-bits +/- 1.7E-308 to +/- 1.7E+308
pointer = 16/32-bits Variable address

Notes:

(i) The 16-bit ANSI “short” type equates exactly to int. The latter takes the “natural” size of
the CPU, here 16-bits.

(ii) The machine size of the C166 is 16-bits hence int, short or unsigned int, unsigned
short should be used when possible to produce the most compact and efficient code. The
use of char and unsigned char will result in a lot of MOVBZ-type instructions which
waste time.

(iii) char and unsigned char: Unless a signed 8-bit number is required, always use
unsigned char. Char is normally reserved for ASCII characters which have no sign.

2.3.2.2 Representation Of Data

The C166 uses the Intel "little-endian" byte order.

2.3.2.2.1 Significant Character Values

The C166 compiler uses the following significant character values:

NEWLINE '\n'

LINEFEED '\r'

String null terminator '\0'

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 14 of 83

2.3.2.2.2 Representation Of 16 Bit Quantities

Thus int and short quantities are represented as follows:

Value = 0x1234

Address 0 Address 1

0x34 0x12

2.3.2.2.3 Representation Of 32 Bit Quantities

long quantities are represented thus:

Value = 0x12345678

Address 0 Address 1 Address 2 Address 3

0x78 0x56 0x34 0x12

2.3.2.2.4 Representation Of Floating Point Quantities

The IEEE754 format is used and data is stored in a little-endian format

2.3.2.3 Use Of Registers And Userstack

The C166 compiler uses two areas to store local data (automatics) and function parameters. Under
the default optimisation level of 6, C166 will attempt to use 12 registers in the current register bank
for local data and up to 5 registers for parameter passing. Bit parameters are passed exclusively in
register R15.

Note: The R0 register is used to create the userstack and its value MUST NEVER BE ALTERED
BY THE USER'S PROGRAM

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 15 of 83

Example Of Userstack Layout After Function Call

Given the following function with three parameters and four local variables at OPTIMIZE level 0, the
userstack will be loaded as shown in the illustration.

#pragma OPTIMIZE(0)

void func(char a, long b, int c) {

 char_x1 ;
 char_x2 ;
 int y ;
 float z ;

 ;
 ;

 }

UserStack Layout

2.3.2.4 Register Masks And Global Register Optimisation

C166 will attempt to place local data into 12 registers to improve execution speed by making best
use of the single-cycle MOV Rw,Rw type instructions. Local data that overflows the available
registers is placed on the userstack. C166 will only allocate locals to registers in a particular
function provided that no further functions are called. This limitation exists as there is no way that
the compiler can know whether the called function will use registers that are already used by the
caller. In addition, the called function will push those registers it requires onto the system stack,
with a consequent increase in run time.

The C166 compiler uses the REGISTERMASK concept to overcome this limitation. These “masks”
are generated in the list file by the compiler in the form of a code string, prefixed with ‘@’, within
which is contained coded information on each function’s register usage. This new information can

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 16 of 83

then be automatically attached to the function prototypes to tell the compiler in advance about which
registers any subsequently-called functions use and hence remove the need to push registers onto
the system in called functions.

; FUNCTION locate_trigger_point (BEGIN RMASK = @0x6DFF)
; SOURCE LINE # 165

00F0 F68E2C03 R MOV trigger_count,ZEROS
 ; SOURCE LINE # 166
00F4 F68E0200 R MOV trigger_offset,ZEROS
 ; SOURCE LINE # 168
00F8 E00A MOV R10,#00H

The use of REGISTERMASKs is controlled by the global Register Optimisation item on the
Options-Make Miscellaneous tab in uVISION.

Note1: Although the global register optimisation mechanism has been shown to be reliable, it is
recommended that it is not selected in a safety-critical system.

Note2: Although the ISO-C register location qualifier is compiled, it has no effect on the compiler
register variable allocation strategy and is thus redundant in C166.

With assembler coded functions, the user should manually work out the register mask and add it to
the assembler function’s prototype at the top of the C source file.

Functions written in assembler are assumed to have the worst case register usage and so any C
functions calling assembler will not have any registers available to them. It is thus up to the user to
manually generate the register mask and attach it to the function prototype that the calling module
sees:

extern void asm_func0(void) @0x0010 ; // The assembler function uses only R4
extern void asm_func1(void) @0x0018 ; // The assembler function uses R4 & R3
extern void asm_func2(void) @0x0000 ; // The assembler function uses all registers
extern void asm_func3(void) @0x8000 ; // The assembler function no registers

The register mask for the user's own assembler functions by reference to the following:

Bit Allocations In Register Mask

A one in any of the various fields in a register mask indicates the following:

MDX => user's assembler function uses the multiply/divide unit

R12-R1 => user's assembler function uses a general purpose register

DPP3 => user's assembler function modifies DPP3

DPP0 => user's assembler function modifies DPP0

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 17 of 83

2.3.3 How a diagnostic is identified.

2.3.3.1 Error and warning messages, with example reports

A "diagnostic" is considered to be a WARNING or ERROR message. A WARINING will prevent the
uVISION Make system from proceeding to the link stage. A valid OBJECT file will still be produced
however. An ERROR will inhibit the production of an OBJECT file and delete any previous one that
may already exist. Thus linking cannot take place.

Under the uVISION environment, WARNINGs and ERRORs are indicated by a green bar over the C
line in which a problem was encountered by the compiler.

Diagnostic messages are stored in two compiler-generated output files - the .ERR and .LST files.

2.3.3.2 The C166 Compiler .ERR file

Contains a list of WARNING and ERROR messages that occurred during the compilation in a
machine-readable form only. It is intended to be used only by the uViSION editor.

2.3.3.3 The C166 Compiler .LST File

The .LST file emitted by the compiler contains the original C source lines with a line number prefix
and the WARNING or ERROR message placed in the file so as to indicated where the problem
occurred.

Example Of A Warning Diagnostic

*** WARNING 34 IN LINE 7 OF MAIN.C: 'incompletevar': missing declaration specifiers

The WARNING number can be referenced in the Keil C166 User Manual

Example Of An Error Diagnostic

*** ERROR 25 IN LINE 24 OF MAIN.C: syntax error near '}'

The ERROR number can be referenced in the Keil C166 User Manual

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 18 of 83

Example Of A .LST File With ERROR And WARNING Messages

C166 COMPILER V3.12, MAIN
13/02/99 20:24:00 PAGE 1

DOS C166 COMPILER V3.12, COMPILATION OF MODULE MAIN
OBJECT MODULE PLACED IN MAIN.OBJ
COMPILER INVOKED BY: C:\C166\BIN\C166.EXE MAIN.C DB M167 WL(3) HLARGE

stmt level source

 1 #pragma WARNINGLEVEL(3)
 2 //#pragma OT(0)
 3 //
 4 // Sample Error And Warning Messages test
 5 //
 6 //
 7
 8 incompletevar ; // Deliberate incomplete definition. C166 assumes type
'int'
*** WARNING 34 IN LINE 8 OF MAIN.C: 'incompletevar': missing declaration specifiers
 9
 10 unsigned short svar ;
 11
 12 extern arr[] ;
 13
 14
 15 void main(void) {
 16 1
 17 1 arr[1] = svar ;
 18 1
 19 1 incompletevar = arr[3] ;
 20 1
 21 1 if(svar = 1) {
*** WARNING 137 IN LINE 21 OF MAIN.C: constant in condition expression
 22 2
 23 2 svar = 1 // Missing ';'
 24 2 }
*** ERROR 25 IN LINE 24 OF MAIN.C: syntax error near '}'
 25 2
 26 2 while(1) { ; }
*** ERROR 25 IN LINE 26 OF MAIN.C: syntax error near '1'
 27 2 }

C166 COMPILATION COMPLETE. 2 WARNING(S), 2 ERROR(S)

2.3.3.4 L166 Linker Diagnostics

The L166 linker also issues WARNING and ERROR diagnostic messages. These are stored
exclusively in the .M66 file.

2.3.3.4.1 Linker Syntax ERRORs

Syntax errors in the .LIN linker control file inhibit the production of an executable OMF66 file and the
.M66 map file. Details of the ERROR are reported in the .LER file. This is machine readable only
and is intended only to be used by the uVISION environment.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 19 of 83

2.3.3.4.2 Linker Linking And Location Diagnostics

WARNINGs and ERRORs messages are stored by the linker at the end of the M66 file, besides
being reported in the .LER file.

Example Of WARNING

*** WARNING 23: NDATA/NDATA0 OR NCONST MUST FIT IN ONE 16KB PAGE
 CLASS: NDATA0

L166 RUN COMPLETE. 1 WARNING(S), 0 ERROR(S)

Such a warning will still produce an executable OMF66 output file. However a run time failure may
occur due to the misplacement or mismatch of data.

LINKER WARNINGS MUST NEVER BE IGNORED.

Linker ERRORs are produced by references to undefined symbols. ERROR messages are stored
at the end of the .M66 file as well as being reported in the machine-readable only .LER file. The
occurance of errors during linking will prevent the production of an executable OMF66 file. Any
previous OMF66 will be deleted. It is therefore not possible to execute a program containing linking
errors.

Example Of ERROR

*** ERROR 127: UNRESOLVED EXTERNAL SYMBOL
 SYMBOL: nonexistantfunc
 MODULE: D:\C166DEV\ALARIS\PTRCAST\DUMMY.OBJ (DUMMY)

*** ERROR 128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: nonexistantfunc
 MODULE: D:\C166DEV\ALARIS\PTRCAST\DUMMY.OBJ (DUMMY)
 ADDRESS: 01B1H

*** ERROR 128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: nonexistantfunc
 MODULE: D:\C166DEV\ALARIS\PTRCAST\DUMMY.OBJ (DUMMY)
 ADDRESS: 01B2H

L166 RUN COMPLETE. 0 WARNING(S), 3 ERROR(S)

2.3.4 What constitutes an interactive device.

For the purposes of a C166 project the definition of an interactive device may sensibly restricted to
the on-chip serial port or any off-chip UART that is utilised by formatted IO functions such as printf(),
scanf() and their derivatives. This definition may be extended to include on- and off-chip
peripherals.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 20 of 83

2.3.5 The number of bits in a character in the execution character set.

The C166 compiler uses the ASCII 7-bit character set. Extended characters, i.e. those with a value
of greater than 0x7F are not supported. Multi-byte or "wide" characters are also not supported.

2.3.5.1 Legal Characters

The available character set is summarised below:

The 26 uppercase letters of the Latin alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k l m n o p q r s t u v w x y z

The 10 decimal digits

0 1 2 3 4 5 6 7 8 9

The following 29 graphic characters

! " # % & ' () * + , - . / : ; < = > ? [\] ^ _ { | } ~

plus the SPACE character, and control characters representing HORIZONTAL TAB, VERTICAL
TAB and FORMFEED.

If any character not listed above is encountered in a source file, compilation ends and an ERROR
message generated.

2.3.5.2 Termination Of Character Strings

Strings of characters in the source character set are terminated with a character having numerical
value ZERO.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 21 of 83

2.3.6 The result of casting a pointer to an integer or vice versa.

Note: This aspect of the C166 compiler implementation is very much dependent on the model used.

Warning: This will result in unpredictable accesses to memory if a pointer is used that was the
result of a cast from int. THIS MUST NOT BE DONE.

Only unsigned int types can be cast to pointers but even then the user must take into account
the effect of the data page pointer mechanism under all memory models except HCOMPACT and
HLARGE. Such programming techniques are not advisable in any commercial application.

It should be noted that all pointers that have no explicitly stated memory space qualifier under the
HLARGE and HCOMPACT models contain 4 bytes and are thus more correctly converted to long
types.

Cast int type to pointer

If the value of the int is < 0x8000 then an address will be access as expected under the
HCOMPACT and HLARGE models. Under all other models unexpected results may be obtained.

Cast pointer to int

Under HLARGE and HCOMPACT models the address contained in the pointer is transferred to the
int as expected provided it is < 0x10000.

Note: It would be more appropriate to cast the pointer to an object of type long.

Refer to the section on recommend memory models for further information

A full review of casting basic types to pointers and the associated risks is given in Appendix B

2.3.7 What constitutes an access to an object that has volatile-qualified type.

short volatile *xptr ;

A volatile quantity is one whose value may change without CPU and hence compiler
intervention. Memory-mapped IO devices and C167CR sfrs are regarded as volatile. Pointers
used to test RAM areas must also be volatile.

2.3.8 The maximum number of declarators that may modify an arithmetic, structure
or union type.

This item has been referred to KEIL

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 22 of 83

2.3.9 Whether the value of a single-character character constant in a constant
expression that controls conditional inclusion matches the value of the same
character constant in the execution character set. Whether such a character
constant may have a negative value.

The C166 compiler has common source and execution character sets. Thus a single-character
character constant in a constant expression that controls conditional inclusion will always match the
value of the same character constant in the execution character.

It should be noted that character constants used in conditional include controls must not be simple
numerical quantities, either positive or negative. Furthermore, all conditional inclusion constants,
manifest constants and macros must not begin with a numerical character of any kind.

2.3.10 The mapping of source file character sequences

The C166 compiler uses identical source and execution character sets. There is therefore no
mapping of characters between source and execution sets.

2.3.11 The null pointer constant to which the macro NULL expands.

The NULL macro expands to (void *) 0L) . A NULL (or uninitialised) pointer will return the value
found at location 0x0000. In most cases this will be byte value 0xFA, this being the first byte of the
JMPS instruction that is normally located at address 0x0000.

Example:

int *test_ptr ; // Pointer will point at NULL and return int value at address 0x0000

2.3.12 CTYPE.H Functions

Note1: All ctype.h functions return value 0x01 for true and value 0x00 for false. Such functions
operate on and return int values.

Note 2: All ctype.h functions return false (0x00) when a parameter is passed that is not part of the
range of characters that it is designed to check for. All such functions behave deterministically at all
times.

2.3.12.1 The Sets Of Characters Tested For By isalnum,

isalnum tests the input parameter for alphanumeric characters in the ranges 'A' to 'Z', 'a' to 'z' and
'0' to '9'.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 23 of 83

2.3.12.2 The Sets Of Characters Tested For By iscntrl,

The iscntrl() function tests for any control character whose value lies from 0x00 (NUL) through
0x1F (US) or has a value of 0x7F.

2.3.12.3 The Sets Of Characters Tested For By islower

The islower() function tests for any character that is a lowercase letter in the range of 'a' to 'z'.

2.3.12.4 The Sets Of Characters Tested For By isprint

The isprint() function tests for any printing character in the range 0x20 to 0x7E.

2.3.12.5 The Sets Of Characters Tested For By isupper

The isupper() function tests for any character that is a uppercase letter in the range of 'A' to 'Z'.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 24 of 83

2.3.13 The values returned by the mathematics functions on domain errors.

Only those mathematical functions that can generate domain or range errors are listed here. Their
behaviour under such conditions is documented.

2.3.13.1 C166 Mathematical Function List

Note: the double type == float unless #pragma FLOAT64 is in force.

 int abs (int val);
 long labs (long val);
 double fabs (double val);
 double sqrt (double val);
 double exp (double val);
 double log (double val);
 double log10 (double val);
 double sin (double val);
 double cos (double val);
 double tan (double val);
 double asin (double val);
 double acos (double val);
 double atan (double val);
 double sinh (double val);
 double cosh (double val);
 double tanh (double val);
 double atan2 (double y, double x);

 double ceil (double val);
 double floor (double val);
 double modf (double val, double *n);
 double pow (double x, double y);

 unsigned int _chkfloat_ (float x);
 unsigned int _chkdouble_ (double x);

2.3.13.2 Floating Point Limits

Single Precision

Not a number (NaN) for float types = 0xFFFFFFF

Positive Infinity = +INF = 0x7F80000

Negative Infinity = -INF = 0xFF80000

Double Precision

Not a number (NaN) for double types = 0xFFFFFFFFFFFFFFFF

Positive Infinity = +INF = 0x7FF0000000000000

Negative Infinity = -INF = 0xFFF0000000000000

Note: there is no provision for floating point exceptions in C166 and it is up to the user to adequately
respond to floating point errors.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 25 of 83

2.3.13.3 Trigonometric Functions That Are Subject To Domain Or Range Errors

2.3.13.4 The acos Function

Synopsis

#include <math.h>
double acos(double x);

Description

The acos function computes the principal value of the arc cosine of x. A domain error occurs for
arguments not in the range [-1, +1].

Returns

The acos function returns the arc cosine in the range [0, pi] radians. The domain error value
returned is NaN (0xFFFFFFFF)

2.3.13.4.1 The asin Function

Synopsis

#include <math.h>
double asin(double x);

Description

The asin function computes the principal value of the arc sine of x. A domain error occurs for
arguments not in the range [-1, +1].

Returns

The asin function returns the arc sine in the range +/-pi/2 radians. The domain error value returned
is NaN (0xFFFFFFFF)

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 26 of 83

2.3.13.4.2 The atan2 Function

Synopsis

#include <math.h>
double atan2(double y, double x);

Description

The atan2 function computes the principal value of the arc tangent of y / x, using the signs of both
arguments to determine the quadrant of the return value. A domain error may occur if both
arguments are zero.

Returns

The atan2 function returns the arc tangent of y / x, in the range [-pi, +pi] radians. No domain error
value is return if input parameters are both zero.

Caution: The user should check for zero parameters before calling the function

2.3.13.5 Hyperbolic Functions That Are Subject To Domain Or Range Errors

2.3.13.5.1 The cosh Function

Synopsis

#include <math.h>
double cosh(double x);

Description

The cosh function computes the hyperbolic cosine of x. A range error occurs if the magnitude of x
is too large.

Returns

The cosh function returns the hyperbolic cosine value. The range error value returned is INF
(0x7F8000)

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 27 of 83

2.3.13.5.2 The sinh Function

Synopsis

#include <math.h>
double sinh(double x);

Description

The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude of x is
too large.

Returns

The sinh function returns the hyperbolic sine value. The range error value returned is INF
(0x7F8000)

2.3.13.6 Integer Arithmetic Functions

2.3.13.6.1 The abs function

Synopsis

#include <stdlib.h>
int abs(int j);

Description

The abs function computes the absolute value of an integer j. If the parameter is the most
negative integer, the behaviour is undefined.

Returns

The abs function returns the absolute value. If the input parameter is the most negative integer,
the result is the most negative integer, no action having been taken by abs().

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 28 of 83

2.3.13.6.2 The labs function

Synopsis

#include <stdlib.h>
long labs(long j);

Description

The labs function is equivalent to the abs function except that the argument and the return
value each have type long.

Returns

The labs function returns the absolute value. If the input parameter is the most negative integer,
the result is the most negative integer, no action having been taken by labs().

2.3.14 Compiler Actions With Unusually Terminated Source Files

This section determines the outcome when a non-empty source file is compiled and:

2.3.14.1 Source file does not end in a new-line character

Result: Compilation succeeds without error or warning

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 29 of 83

2.3.14.2 Source file ends in a new-line character immediately preceded by a backslash character

Result:

The compiler issues ERROR 25; description: syntax error near '<EOF>'

Example

C166 COMPILER V3.12, MAIN1
13/02/99 18:43:04 PAGE 1

DOS C166 COMPILER V3.12, COMPILATION OF MODULE MAIN1
OBJECT MODULE PLACED IN MAIN1.OBJ
COMPILER INVOKED BY: C:\C166\BIN\C166.EXE MAIN1.C WL(3)

stmt level source

 1 #pragma OT(0) WL(3)
 2 //
 3 // End of file is backslash newline
 4 //
 5
 6 int test0 ;
 7 int test1 ;
 8
 9 void main(void) {
 10 1
 11 1 test0 = 1 ;
 12 1 test1 = 2 ;
 13 1
 14 1 }\
*** ERROR 25 IN LINE 14 OF MAIN1.C: syntax error near '<EOF>'
*** ERROR 7 IN LINE 14 OF MAIN1.C: compilation aborted

C166 COMPILATION COMPLETE. 0 WARNING(S), 2 ERROR(S)

2.3.14.3 Source file ends in a partial pre-processing token or comment.

Result:

The compiler issues ERROR 300; description: unterminated comment

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 30 of 83

Example

C166 COMPILER V3.12, MAIN3
13/02/99 18:44:17 PAGE 1

DOS C166 COMPILER V3.12, COMPILATION OF MODULE MAIN3
OBJECT MODULE PLACED IN MAIN3.OBJ
COMPILER INVOKED BY: C:\C166\BIN\C166.EXE MAIN3.C WL(3)

stmt level source

 1 #pragma OT(0) WL(3)
 2 //
 3 // End of file is in comment
 4 //
 5
 6 int test0 ;
 7 int test1 ;
 8
 9 void main(void) {
 10 1
 11 1 test0 = 1 ;
 12 1 test1 = 2 ;
 13 1
 14 1 }
 15
 16 /* This is a test comment
*** ERROR 300 IN LINE 16 OF MAIN3.C: unterminated comment

C166 COMPILATION COMPLETE. 0 WARNING(S), 1 ERROR(S)

2.3.15 The outcome when the result of an integer arithmetic function (abs, div, labs,
or ldiv) cannot be represented.

div and ldiv are not implemented in C166. abs and labs do not return unrepresentable values. In
the cases where the smallest possible numbers (-32768 and - 2147483648 respectively) are
passed, the functions do not attempt to produce the absolute value and simply return the input
parameter unchanged.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 31 of 83

2.3.16 The outcome when an lvalue with an incomplete type is used in a context that
requires the value of the designated object.

Incomplete types may be declared and compiled successfully. However any attempt to use an
object derived from an incomplete type will result in an error message.

Example

struct test1 ; // No member list
struct test1 test2, test3 ; // Create two identical structures

void main(void) {

 test3 = test2 ; // Attempt to copy structure fails

Result:

*** ERROR 129 IN LINE 45 OF MAIN.C: 'test3' uses undefined struct/union 'test1'
*** ERROR 129 IN LINE 45 OF MAIN.C: 'test2' uses undefined struct/union 'test1'
*** ERROR 52 IN LINE 45 OF MAIN.C: use of undefined type 'test1'

2.3.17 Mismatches in type between lvalue and object

The outcome when an object has its stored value accessed by an lvalue that does not have one of
the following types:

• the declared type of the object

• a qualified type of the declared type of the object

• the signed or unsigned type corresponding to the declared type of the object

• the signed or unsigned type corresponding to a qualified version of the declared type of the
object

• an aggregate or union type that (recursively) includes one of the aforementioned types
among its members

• a character type.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 32 of 83

2.3.17.1 Summary Of Results Under Type Mismatch Conditions

Conversion from bit to int, long, float, double is carried out with no loss of data

Conversion from int to long, float, double is carried out with no loss of data

Conversion from float to double is not required as both float and double are 64 bits when
#pragma FLOAT64 is in force.

Conversion from any other type to bit results in one if the source object is non-zero. It otherwise
results in zero.

Conversion to int from float is only valid if value of source object is < 32768.00000 (2P15)

Conversion to int from double under FLOAT64 is only valid if source object is < 32768.00000

Conversion to long from float is only valid if source object is < 2147483648.00000 (2P31)

Conversion to long from double under FLOAT64 is only valid if source object is <
2147483648.00000 (2P31)

Note: When converting from float types to integer or long, care must be taken that the value is not
greater than the maximum value that the target object can contain.

Further information on conversions between integer and float types is given in section 2.3.23 to
2.3.24.3

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 33 of 83

2.3.18 Incomplete Data Declarations

The outcome when an identifier for an object is declared with no linkage and the type of the object is
incomplete after its declarator, or after its init-declarator if it has an initializer.

Example:

int complete, idata incomplete_idata, near incomplete_near, arr[] ;
//
// int in NDATA, int in IDATA, int in NDATA, object not created
//
int x, idata y, near z, arr_init[] = { 1,2,3,4 } ;
//
// int in NDATA, int in NDATA, int array in NDATA with initialised data
//

Remarks

Objects declared with an incomplete type take the default type of "int".

Individual objects in lists of object declarations do not assume the type or location qualifier of the
preceding object.

Example:

int a, idata b, near c ;
//
// int in NDATA, int in IDATA, int in NDATA
//

The idata qualifier for object b is not applied to c, or any other object declaration that might follow
in the list.

Note: At WARNINGLEVEL(2) or above an incomplete declaration will result in a WARNING 34.
The object created will be of type 'int'

Example:

34 incompletevar ;

*** WARNING 34 IN LINE 34 OF MAIN.C: 'incompletevar': missing declaration specifiers

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 34 of 83

2.3.19 Volatile/non-volatile mismatches

The outcome when an attempt is made to refer to an object with volatile-qualified type by means of
an lvalue with non-volatile qualified type.

Example

 testvar = exvar ;
 testvar = exvar ;
 testvar = exvar ;
 testvar = exvar ;
 testvar = exvar ;
 testvar = exvar ;
 testvar = exvar ;

Data is transferred to lvalue at each attempted access to the volatile type.

Example Of Sequential Volatile Accesses

/+ CSP:0x0122 E014 MOV R4,#1
 /+ CSP:0x0124 F6F40090 MOV exvar,R4
 /+ #14 testvar = exvar ;
 /+ CSP:0x0128 F2F40090 MOV R4,exvar
 /+ CSP:0x012C F6F40290 MOV testvar,R4
 /+ #16 testvar = exvar ;
 /+ CSP:0x0130 F2F40090 MOV R4,exvar
 /+ CSP:0x0134 F6F40290 MOV testvar,R4
 /+ #18 testvar = exvar ;
 /+ CSP:0x0138 F2F40090 MOV R4,exvar
 /+ CSP:0x013C F6F40290 MOV testvar,R4
 /+ #20 testvar = exvar ;
 /+ CSP:0x0140 F2F40090 MOV R4,exvar
 /+ CSP:0x0144 F6F40290 MOV testvar,R4
 /+ #22 testvar = exvar ;
 /+ CSP:0x0148 F2F40090 MOV R4,exvar
 /+ CSP:0x014C F6F40290 MOV testvar,R4
 /+ #24 testvar = exvar ;
 /+ CSP:0x0150 F2F40090 MOV R4,exvar
 /+ CSP:0x0154 F6F40290 MOV testvar,R4
 /+ #26 testvar = exvar ;
 /+ CSP:0x0158 F2F40090 MOV R4,exvar
 /+ CSP:0x015C F6F40290 MOV testvar,R4
 /+ #28 while(1) { ; }
 /+ CSP:0x0160 0DFF JMPR CC_UC,^#28
 /+ ?C_ENDINIT 0000 ADD R0,R0

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 35 of 83

2.3.20 Incomplete Types And Tentative Declarations

The outcome when an identifier for an object with internal linkage and an incomplete type is
declared with a tentative definition.

The declaration:

static short arr[] ;

will result in an error and compilations ends. No object file is produced and the build process stops.
There is thus no hazard resulting from this tentative declaration.

2.3.21 Shift Left And Shift Right Operations

The implementation of the ‘shift left’ and ‘shift right’ operators shall be documented.

2.3.21.1 Left Shift - Signed

signedtest = 0x0001 ;

 for(i = 0 ; i < 16 ; i++) {
 signedtest <<= 1 ;
 }

The object is shifted left with zero shifted into the least significant bit. The most significant bit is
shifted into the carry flag of the C167 program status word (PSW)

2.3.21.2 Right Shift - Signed

signedtest = 0x8000 ;

for(i = 0 ; i < 16 ; i++) {
 signedtest >>= 1 ;
 }

If the most significant bit (b15) was set, ONES are shifted into most significant bit.

If the most significant bit (b15) was clear, ZEROS are shifted into most significant bit.

The least significant bit is shifted into carry flag

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 36 of 83

2.3.21.3 Left Shift - Unsigned

 unsignedtest = 0x0001 ;

 for(i = 0 ; i < 16 ; i++) {
 unsignedtest <<= 1 ;
 }

The object is shifted left with zeros shifted into the least significant bit. The most significant bit is
shifted into the carry flag of the C167 program status word (PSW)

2.3.21.4 Right Shift - Unsigned

 unsignedtest = 0x8000 ;

 for(i = 0 ; i < 16 ; i++) {
 unsignedtest >>= 1 ;
 }

The object is shifted right with zeros shifted into the most significant bit. The least significant bit is
shifted into the carry flag of the C167 program status word (PSW)

2.3.22 Integer Division Behaviour

The implementation of integer division shall be determined, documented and taken into account.
Attention shall be paid to the sign of the remainder.

Positive dividend & divisor => Positive result, positive remainder

Positive dividend, Negative divisor => Negative result, positive remainder

Negative dividend, positive divisor => Negative result, negative remainder

Negative dividend, negative divisor => Positive result, negative remainder

Positive dividend, zero divisor => indeterminate result

Negative dividend, zero divisor => indeterminate result

2.3.23 Floating Point Truncation

The manner in which the chosen compiler implements truncation and rounding when a floating point
number is converted to a smaller floating point number shall be determined, documented and taken
into account.

The Keil C166 supports single precision float and double precision double floating point types to
the IEEE754 standard. Without the #pragma FLOAT64, the double type is implemented as
float. With #pragma FLOAT64, float and double are implemented as double. It is therefore
not possible to convert a double precision double to float. There is therefore no potential for
loss of data through truncation.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 37 of 83

2.3.24 Float To Integer Conversions

The implementation of truncation from floating point quantities to integer types in the chosen
compiler shall be determined, documented and taken into account.

Converting from floating point types to integer types is not recommended. It should only be done
once and only then during some form of user interface function. Floating point numbers are only an
approximation to true values and the behaviour of conversions of float values near to integer values
is not defined. It is thus difficult to quantify the exact outcome of conversions and care must be
exercised.

Floating point types must not be used in any control loop or function, being reserved only
for user interface functions.

Some general guidelines can be given however:

If a floating point object has a positive or negative value greater than the highest value of an integer
type but less than the highest value of a long type, the value transferred is meaningless.

Caution: Before converting any float to an integer type, the value must be checked for potential
overflow which would give a meaningless result.

If a floating point object has a positive or negative value greater than the highest value of a long
type the value transferred is 0xFFFFFFF. This value will also be transferred to an integer type.

Caution: Before converting any float to a long type, the value must be checked for potential
overflow and hence a meaningless result.

2.3.24.1 Single Precision

Float (single precision) represents 6 to 7 significant digits. However it has been determined that in
typical engineering calculations only 5 digits can be relied on.

var32 = 65535.99 ;

If the length of the initialisation value exceeds 7 significant digits the entire fractional portion is lost.

Rounding up of fractional parts only occurs when the value to be converted is within one unit of
resolution i.e. the lowest representable value possible given the precision and size of the value to
be converted. The absolute value of this lowest representable value is dependent entirely on the
magnitude of the object and thus cannot be defined here.

Example:

float integer

65535.99 = 65535 = 0xFFFF

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 38 of 83

65535.99 + 00000.01 = 65536.00 = 0x10000

2.3.24.2 Double Precision

Double represents 14-15 significant digits. However it has been determined that in typical
engineering calculations only 13 digits can be relied on.

var64 = 65535.5000000001 ;

If the length of the initialisation value exceeds 14 significant digits the entire fractional portion is lost.

Rounding up of fractional parts only occurs when the value to be converted is within one unit of
resolution i.e. the lowest representable value possible given the precision and size of the value to
be converted. The absolute value of this lowest representable value is dependent entirely on the
magnitude of the object and thus cannot be defined here.

Example

double integer

65535.9999999999 = 65535 = 0xFFFF

65535.9999999999 + 00000.0000000001 = 65536 = 0x10000

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 39 of 83

2.3.24.3 Limits Of Single And Double Precision Floating Point Types

The C166 compiler has the following maximum and minimum values for floating point quantities:

Maximum float value 3.40282e38

Minimum float value 1.17549e-38

Maximum double value 1.79769313486231500e+308

Minimum double value2.22507385850720200e-308

Note: Single precision floating point numbers are stored in the following arrangement:

Address: +0 +1 +2 +3

Contents: MMMM MMMM MMMM MMMM MMMM MMMM SEEE EEEE

The mantissa "MMM....MMMMM" is a 24 bit quantity. The exponent "EEE EEEE" is stored as a
twos complement value with a 127 offset. The sign of the exponent "S" is a single bit value.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 40 of 83

2.3.25 Type promotion, char To int

Automatic promotion of char to int only occurs in arithmetic operations. Therefore no explicit
casting from char to int is required in the following example:

Example:

resultchar0 = (varchar0 * varchar1)/varchar2 ;

Gives the correct result as the implied 16 bit value in the numerator is allowed for by the use of a
16x8 divide instruction.

Note: Promotion from char to int in compare operations does not occur.

2.3.26 Type Promotion From int To long

As dictated by the ISO C standard, there is no automatic promotion from int to long. This must
be considered in the following situation.

unsigned int x, y,z ;

z = (x * y) / z ;

Here there is an implied long value in the numerator that will be lost unless the appropriate cast to
long is used. The correct ISO C way to perform this calculation is:

unsigned int x,y,z ;

z = ((unsigned long)x * (unsigned long)y)/(unsigned long)z ;

In tested version of C166, the following efficient code will result:

; a = ((long)x * (long)y)/(long)z ;
 ; SOURCE LINE # 20

MOV R5,WORD y
MOV R4,WORD x
MULU R4,R5
MOV R6,WORD z
DIVLU R6
MOV R4,MDL
MOV WORD a,R4

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 41 of 83

2.4 Compiler System Controls Which Impact Software Integrity And Maintainability

2.4.1 Overview

This section is the most important part of the report when assessing the integrity of the C166
executable within the product Assuming that the software has been written in accordance with the
standards and recommendations listed in the project coding standard, the highest risk of
malfunction will be due to CPU configuration errors and incorrect placement of specific ROM and
RAM objects. The sizing and placement of SYSTEM and USER stack must also be verified.

A detailed examination of the START167.A66 assembler file should be made to ensure that the
CPU bus interface is configured in accordance with the hardware design parameters. This topic is
outside the scope of this document.

The L166 linker control file should be assessed to ensure that ROM and RAM objects are located at
valid hardware addresses. Moreover the limitations on physical placement of certain CLASSES
must be borne in mind. This topic is considered to be within the scope of this report and is
examined in section 2.4.4.3 and 2.4.4.8

Other C167-specific safety-critical items to be checked for:

• Critical interrupt regions and atomic sequences

• Read-modify-write pipeline effects

• Data coherency in 32-bit quantities updated by interrupts

• Illegal sharing of interrupt priority and group level

• Illegal sharing of registerbanks by interrupt functions

• Misuse of near and huge pointers

• Trapping of runtime exceptions via the CLASS A & B trap system.

• Unexpected results with pointer arrays to constant strings

Note: To satisfactorily audit these aspects, specialist knowledge of the C167 architecture and C166
compiler/linker relationship is required.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 42 of 83

2.4.2 Compiler Controls

The objectives of portability, ease of programming and most efficient use of the C167 architecture
can be attained through the correct choice of memory model. For all external and internal ROM
C167 systems the HLARGE memory model provides the best fit to these objectives.

Under this model the user need only use the "idata" keyword to place data into the on-chip RAM
area of the C167 CPU and "sdata" to place data in the XRAM area(s).

The user should be fully acquainted with the consequences of using the following controls if
they are applied or check whether the programming techniques employed require their use.

NODPPSAVE

On the C167, DPP3 is always set to 3 to indicate the base of the SYSTEM area at 0xC000 and
DPP0 is never changed from its power-up value, unless the user alters it himself. Therefore, C166
need not stack these two registers on entry to an interrupt routine, thereby saving two PUSHes and
POPs (0.4us @20MHz).

NOALIAS

The NOALIAS control can cause unexpected results in when global or static objects are modified by
pointers. In most cases source code that could be upset by this control does not conform to the
MISRA-C guidelines and should therefore not be present anyway. It is recommended that this
control is not used.

Example Taken From C166 User Manual:

Without NOALIAS

struct { int i1; inti2; } *p_struct ;
int val ;

void func1(int *p_val) {
 p_struct->i1 = val ; // Read val
 *p_val = 0 ; // Zero val via pointer
 p_struct->i2 = val ; // Read val again. Now it is zero
 }

void func2(void) {
 func1(&val) ;
 }

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 43 of 83

With NOALIAS

struct { int i1; inti2; } *p_struct ;
int val ;

void func1(int *p_val) {
 p_struct->i1 = val ; // Read val
 *p_val = 0 ; // Zero val via pointer
 p_struct->i2 = val ; // Read val again. Value from first read carried forward
 } // so zeroing by pointer in previous line is not seen

void func2(void) {
 func1(&val) ;
 }

NOFIXDPP

The user stack is by default in the near data area which is addressed by DPP2. The NOFIXDPP
control is required if the DPPUSE control is used at the linking stage. It is also used if the USER
STACK is moved to the on-chip IDATA RAM, as required in many single chip applications.

STATIC

Normally, C166 will try to put as many local variables into registers (R1-R15) as possible as the
MOV Rw,Rw register-to-register instructions execute in 100ns (@20MHz). All the normal ADD,
SUB, CMP type instructions are available in the register-to-register variety so that any such
operation will 100ns at 20MHz. Variables that overflow the available local registers are placed on
the “User Stack”, as in a PC-type compiler and are addressed via MOV R1,[R0 + #displacement]
type instructions. As a RISC CPU, there are very few “stack-relative” instructions so that operating
on user stack variables usually takes several instructions.

A significant performance advantage for interrupt functions or those with a large number of local
variables can therefore be had by forcing the compiler to put locals that cannot fit into registers (R1-
R15) into (near) static RAM segments to create a “compiled” stack, as in the C51 compiler. The
common ADD, SUB and CMP instructions all can operate directly on RAM so that there is little
performance loss when compared to register variables.

Note: Any functions within modules compiled with this control will no longer be reentrant, thus if
enabled here in the C166 Options menu, no reentrancy will be possible across the entire program
which may not be acceptable. This control is therefore better used as a #pragma STATIC with only
those modules which contain functions which are used non-reentrantly, such as interrupt routines.

HOLD(location,size)

Instructs the compiler to put any object less than the given size into the stated memory area. In the
example, any object of 4 bytes or less (i.e. long, short, int, char) should be placed on-chip. This is a
way of making sure that large objects such as arrays and structures do not eat up valuable fast on-
chip RAM. Here, IDATA means the on-chip RAM at 0xFA00 (0xF600 on the C167).

PECDEF(a,b,c,...)

To ensure that the linker does not attempt to place data at the PEC pointer addresses, the user
must list the PEC channels initialised as arguments to the PECDEF control Failure to do so will
result in malfunctions of the PEC system with unpredictable results.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 44 of 83

2.4.3 Linker Controls

The use of the linker via its .LIN control file is central to ensuring correct and reliable system
operation. The user should satisfy himself that the addresses give for the CLASSES and
SECTIONS created by the compiler are suitable for the target hardware platform. Some guidance
on this is given in section 2.4.3.

2.4.4 CPU Configuration Controls In START167.A66

The proper configuration of the START167.A66 file is crucial to correct system performance. The
user should verify that the settings made are appropriate to the hardware design of the target
system. This topic is outside the scope of this report but Hitex would be willing to assist in any
appraisal of the configuration proposed or in use.

2.4.5 Characteristics Of HLARGE Model Programs

2.4.5.1 Defaults Under HLARGE Model

Default data memory space for HLARGE model:

huge

Under HLARGE, any data declaration that does not contain a location qualifier will be of type huge
except under circumstances described in section 2.4.1.3 under the #pragma HOLD() control.

Examples

unsigned short hvar ; // Variable in HDATA0 class

unsigned short *hptr ; // Pointer to huge (default) unsigned short object

unsigned short const hconstant = 2 ; // unsigned short constant in HCONST class in ROM area

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 45 of 83

2.4.5.2 Data Placement And Size Limitations

• Total size of all data declared without huge memory space qualifier <= 16MB

• Largest single array, structure or union <= 0xFFFF bytes

• No array, structure or union must be allowed to straddle a 64k segment boundary.

Note: The L166 linker will not permit this to happen

• No pointer must be incremented or decremented across a 64k segment boundary

Note: Pointers used for RAM tests, checksum or CRC must be of type xhuge.

• Pointers occupy 4 bytes

• Executable functions may be located at any memory address.

2.4.5.3 HLARGE Model Data CLASS Placement

HDATA, HDATA0, HCONST classes ideally should be located on 64k segment boundaries.

NDATA, NDATA0 classes must be located on a page boundary, i.e. an address divisible by 0x4000.

IDATA and IDATA0 classes must be located at 0xF600

SDATA and SDATA0 classes must be located in the region 0xC000 - 0xFDFF

FCODE class must be locate in the ROM area

NCONST class must be locate on a 0x4000 byte boundary in the ROM area

The sections "?C_CLRMEMSEC" and "?C_INITSEC" must be located near the base of he FCODE
class in ROM.

2.4.5.4 Management Of Near Data (NDATA) Under HLARGE

The #pragma HOLD(near,6) control is applied by default. This has the effect of placing all objects
of up and including 6 bytes in length into the near data classes. Thus all char, int, short and
long types will be placed into a 16k "near" block (NDATA & NDATA0 classes) that has the benefit
of faster addressing. Small arrays of up to 6 bytes will also be placed into the near area. The total
of all such near objects must not exceed 16kb.

The NDATA and NDATA0 classes must be placed at 0x4000 byte boundaries. The end address of
these classes must not be more than 0x4000 bytes above the start address and must be stated.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 46 of 83

2.4.5.5 High Speed Data

Variable data accessed frequently can benefit by being located in the C167 on-chip RAM. This can
be achieved via the idata location qualifier.

Example Of idata

unsigned short idata fast_variable ; // Put this data on-chip

2.4.5.6 Very Large Objects

Data objects of above 0xFFFF bytes in size should be declared with the xhuge keyword. Such
objects can be up to 16MB in size.

Example

unsigned short xhuge verybigarray[0x20000] ; // A very big array

unsigned short xhuge *ram_memtestptr ; // A pointer than will test 256kb RAM

Objects declared with xhuge will be placed into the XDATA and XDATA0 classes. These can be
placed at any address.

2.4.5.7 Typical Pointer Declarations

A generalised pointer declaration is thus:

<type> <const/volatile> <typequalifier> * <dataname> = (<type> <const/volatile>) <address>;

Pointers defined with nothing between the asterisk ‘*’ and the <dataname> are located by default in
the data class determined by the memory model. It is entirely possible to force the pointer itself into
a specific memory space. By putting a type and typequalifier after the ‘*’, the pointer can be
placed. This is most frequently required when is desired to put a pointer into EPROM, i.e. a
constant class. Jump tables or tables of function pointers fall into this category also.

Example - Put a huge constant pointer to a constant string into EPROM itself

char const huge * const fixed_string[] = { “String in EPROM “ } ;

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 47 of 83

Example - Put a huge constant pointer to a ram variable into EPROM

char huge ram_variable = 1 ; // Variable in far RAM

char huge * const fixed_string[] = &ram_variable ; // Set up a pointer in EPROM to ram
variable

Example - Create a pointer suitable for performing a destructive read/write RAM test over a
256k RAM that is not itself within the RAM to be tested. The pointer to be located in the on-
chip RAM

unsigned short xhuge volatile * idata mem_ptr ;

2.4.5.8 Typical Linker Control File

// This is intended as an example only and users must satisfy themselves as to
// suitability of this file to their application.
//
// Fix classes for HLARGE model
//
CLASSES(ICODE(000200H),
 FCODE(000200H-0007FFFH,018000H-02FFFFH),
 NCONST(004000H-07FFFH),
 IDATA(00F600H-00FDFFH),
 IDATA0(00F600H-00FDFFH),
 FCONST(018000H),
 HCONST(018000H),
 SDATA(00C000H-00DFFFH),
 SDATA0(00C000H-00DFFFH),
 NDATA(040000H-043FFFH),
 NDATA(040000H-043FFFH),
 FDATA(040000H),
 FDATA0(040000H),
 HDATA(040000H),
 HDATA0(040000H),
 XDATA0(040000H),
 XDATA(040000H))
//
//
SECTIONS(?C_CLRMEMSEC(0x400), // Put initialisation tables into ROM

 ?C_INITSEC)
//
// End of linking process....
//

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 48 of 83

2.4.6 The Special Sections "?C_CLRMEMSEC" And "?C_INITSEC".

These are special sections created by C166 to hold the initial values of RAM variables. When a
variable is declared such as int x = 0x80, the 0x80 is actually placed in ROM-based look up
table. During the startup.a66, this ROM data is transferred to its final resting place in RAM. By
default L166 will place these near the bottom of memory, on the assumption that this must be
EPROM. On systems where the program is at, for example 0x40000, it is up to the user to put
these into the correct area.

This is achieved by using the sections control in L166. They are best kept together; the only point
to watch is that the size of the two sections will vary according to how much initialised data there is
in the program. Thus, it is quite possible that they will grow such that they will overlap or move into
an illegal memory area. The linker will issue a warning which must not be ignored.

Example:

 main.obj,&
 start167.obj &
 to exec &
 VECTAB(0x40000) &
 CLASSES(NCODE(0x40400),NCONST(0x40400),NDATA(0x48000)) &
 SECTIONS(?C_CLRMEMSEC(0x40400),?C_INITSEC)
 REGFILE(exec.reg)

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 49 of 83

2.5 Floating Point Library Test

A paranoia check will be performed to validate the adequacy of the floating point arithmetic provided
by the compiler.

2.5.1 Preliminary Work

The supplied PARANOIA program was compiled with the Keil C166 compiler. Some modifications
were required to the keyboard reading function to allow the required user input. The HLARGE
memory model was used and the single floating point (default) mechanism enabled.

2.5.2 Preliminary Results

It was noted that the program source was seriously at variance with the requirements of MISRA-C
and accepted good C programming practice. A large number of setjmp, goto and other
inappropriate statements were observed. The operation of the program was undocumented.

The program consisted of one enormous monolithic function and if nothing else, the ability of C166
to compile it without error or memory exhaustion provides considerable reassurance as to the
compiler’s robustness. The suitability of the program for testing floating point performance of an
embedded CPU is questionable.

As a confidence check, the program was also tested on the alternative Tasking C166 compiler and
“industry standard” Microsoft C v11.00 compiler. The full report listings are given in Appendix E.

2.5.2.1 Keil C166 3.12j Results

The number of FAILUREs encountered = 3.
The number of SERIOUS DEFECTs discovered = 1.
The number of DEFECTs discovered = 3.
The number of FLAWs discovered = 1.

The arithmetic diagnosed has unacceptable Serious Defects.
Potentially fatal FAILURE may have spoiled this program's subsequent diagnoses.
END OF TEST.

2.5.2.2 Tasking C166 v6r3 Results

Program failed to compile and no executable could be produced. This has been referred to Tasking
for comments.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 50 of 83

2.5.2.3 Microsoft C v11.00 Results

Note: To force the compiler to behave in an equivalent mode to the Keil C166, the 386 code
generator was used and the floating point emulator library used. These measures prevented the
Pentium floating point co-processor being used.

The number of FAILUREs encountered = 6.
The number of SERIOUS DEFECTs discovered = 5.
The number of DEFECTs discovered = 10.
The number of FLAWs discovered = 2.

The arithmetic diagnosed has unacceptable Serious Defects.
Potentially fatal FAILURE may have spoiled this program's subsequent diagnoses.
END OF TEST.

2.5.3 Discussion Of Results

The Keil compiler was the only one tested that was able to compile and run the test program without
major modification. The results appear to suggest that the floating point performance is inadequate
but this should be viewed in the context that the notionally equivalent Tasking C166 compiler was
unable to compile the test piece and that the reported performance of an “industry standard” PC
compiler was significantly worse.

Note: The user should examine the results presented here and in Appendx E. In the light of these
and on the actual usage of floating point quantities in the application, the user should decide what
action to take.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 51 of 83

2.6 Limits Of The Keil C166 Compiler System

2.6.1 Compiler Implementation Limits

1. Maximum of 20 levels of indirection to any standard data type.

2. Names can be up to 255 characters long. Only the first 32 are significant. Names are case-
sensitive.

3. The maximum number of cases in a switch block is not fixed and is limited only by the
available memory size and the maximum size of individual functions.

4. The maximum number of nested function calls in and invocation parameter list is 10.

5. The maximum number of nested include files is 9.

6. The maximum depth of directives for conditional compilation is 20.

7. Instructions blocks ({...}) may be nested up to 32 levels.

8. Macros may be nested up to 8 levels.

9. A maximum of 32 parameters may be passed in a macro or function call.

10. The maximum length of a line or macro definition is 8000 characters.

2.6.2 Siemens/Keil OMF66 Object Module Format Limits

1. Number of sections: 32767. Each compilation unit generates one code section (it is assumed
that it contains at least one function) and a number of other sections (typically 1 to 8),
depending on the memory types used in variable declarations.

2. Number of global (public) identifiers 32767. All file level data and function definitions not
explicitly declared with the storage class static are public.

3. Number of external identifiers: 32767

4. Number of interrupt procedures: 128. This limit is imposed by the C167 architecture

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 52 of 83

3 Composition Of The Compiler Toolkit

The Keil C166 compiler toolkit consists of the following items:

Name Revision Description

C166 3.12j ‘C’ Compiler

A166 3.13 C166/7 Assembler

L166 3.13 Linker

LIB166 4.01 Librarian Tool

OH166 3.20 Object To Hex Converter

uVISION 1.32 Windows workbench & make utility

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 53 of 83

APPENDICES

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 54 of 83

4 Appendix A

4.1.1 Moving The USERSTACK On-Chip

The user stack is fixed in a section named ?C_CUSERSTACK, part of the NDATA class. However,
it is quite common to place it in the IDATA class so that it can be on-chip. As the user stack is
rarely very large, IDATA should be able to contain it.

A small modification is required to START167.A66 to move the USERSTACK into IDATA, as shown
below:

START167.A66 Modified To Put User Stack In On-Chip RAM

The modifications required are:

Upper part of START166.A66 at line #479

?C_USERSTACK SECTION DATA PUBLIC 'NDATA'

Should be modified to:

?C_USERSTACK SECTION DATA PUBLIC 'IDATA'

;

... and further down the file...

; USTSZ: User Stack Size Definition

; Defines the user stack space available for automatics. This stack space is

; accessed by R0. The user stack space must be adjusted according the actual

; requirements of the application.

USTSZ EQU 100H ; set User Stack Size to 40H Bytes.

;

... and further down the file, after the EINIT instruction at line #700...

Make R0 be loaded with DPP3 for an on-chip USER STACK, rather than DPP2, as at present...

............EINIT

$IF (NOT TINY)

 MOV R0,#DPP3:?C_USERSTKTOP ; This was DPP2:?C_USERSTKTOP

$ENDIF

$IF TINY

MOV R0,#?C_USERSTKTOP

$ENDIF

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 55 of 83

If your have forgotten to reduce the size of the user stack to something small enough to fit in the on-
chip RAM - the default 1000H bytes will cause L166 to issue a warning about the "IDATA class
being out of group range".

Note: The USERSTACKDPP3 and NOFIXDPP C166 compiler controls must be used if the
userstack is moved on-chip. This is to allow the compiler to correctly produce pointers to data that
is on this stack. Failure to do this will result in undefined results.

4.1.1.1 The System Stack

With the user stack taking care of function parameters and local variables, the system stack is used
for storing return addresses, the current PSW and CP plus any general purpose registers in the
current register bank used for local register variables. This stack is always located on-chip and
defaults to 256 words in length (80C166) at 0xfbff down to 0xfa00. The required stack size is set in
the START167.A66 file. Values of 32, 64, 128 and 256 words can be selected via SYSCON. The
CPU register “SP” has its top 5 bits hard-wired to ‘1’, the stack is always in the range 0xf800 to
0xfffe, i.e. on-chip.

4.1.1.2 Setting The System Stack Size

; STKSZ: Maximum System Stack Size selection (SYSCON.13 .. SYSCON.14)
_STKSZ EQU 0 ; System stack sizes
; ; 0 = 256 words (Reset Value)
; ; 1 = 128 words
; ; 2 = 64 words
; ; 3 = 32 words

The C166 is endowed with two special registers, STKOV and STKUN, which set the top and
bottom limits of the stack. The default value of STKOV (Stack overflow) is 0xfa00 whilst STKUN
(Stack underflow) defaults to 0xf00, in-line with the default 256 words.

The address of the stack is defined by loading the STKOV register is startup.a66

 Setup Stack Overflow
 _TOS EQU 0FC00H ;top of system stack
 _BOS EQU _TOS - (512 >> _STKSZ) ;bottom of system stack

 PUBLIC ?C_SYSSTKBOT
 ?C_SYSSTKBOT EQU _BOS

MOV STKOV,#(_BOS+6*2) ;INITIALIZE STACK OVFL REGISTER

L166 automatically reserves the appropriate on-chip memory and so no special actions are required
by the user.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 56 of 83

4.1.1.3 Setting Up The BUSCONx ADDRSELx Registers

The operation of BUSCON2,3,4 and ADDRSEL2,3,4 on the C165/7 is identical to the BUSCON1
and ADDRSEL1 on the C166. The big difference to the C166 is that there is a chip select pin for
each ADDRSEL. Thus, if an address is accessed in a region covered by an
ADDRSELx/BUSCONx pair, the corresponding chip select (CSx) pin goes low to enable the
appropriate memory (or other) device.

It is essential that the ADDRSELx registers are initialised before the corresponding BUSCONx.
This is to some extent common sense; the BUSCONx contains a BUSACT (bus active) bit which
activates the bus characteristics over the preset ADDRSEL range. Unexpected results can occur if
the BUSCONx is configured first for the following reasons:

(i) The C167/5 data book warns that no two ADDRSEL registers must describe an overlapping
region. As all the ADDRSELs are set to zero when coming out of RESET, enabling two
BUSCONs will cause an overlapping condition.

(ii) The BUSCONx region bus characteristics may differ from those of the background
SYSCON. If the BUSCONx is enabled while the ADDRSELx is set to zero, the area
currently executing could be changed.

Note1: The user must verify that the START167.A66 configures the ADDRSEL and BUSCON
registers in the order given above.

Note2: The use must ensure that the BUSCONx and ADDRSELx for the currently executing region
are not inadvertently changed.

The code to initialise the BUSCONx and ADDRSELx must be placed in the START167.A66, just
after the BFLDH and BFLDL instructions that set up BUSCON0. It is not sensible to put the
BUSCONx set up in C as any RAM areas described by a BUSCONx will not enabled and hence be
zeroed or otherwise initialised by the C_STARTUP code in START167.A66.

 ?C_RESET PROC TASK C_STARTUP INTNO RESET = 0
 ?C_STARTUP:

 $IF (WATCHDOG = 0)
 DISWDT Disable watchdog timer

 $ENDIF

 BCON0L SET (_MTTC0 << 5) OR (_RWDC0 << 4) OR ((NOT _MCTC0) AND 0FH)
 BCON0L SET BCON0L AND (NOT (_RDYEN0 << 2))
 BCON0L SET BCON0L OR (_RWDC0 << 4) OR (_MTTC0 << 5)
 BCON0H SET (_ALECTL0 << 1) OR (_BUSACT0 << 2) OR (_RDYEN0 << 4)

BFLDL BUSCON0,#3FH,#BCON0L
BFLDH BUSCON0,#17H,#BCON0H

 ; **** Add ADDRSEL and BUSCON setups here! ****

MOV ADDRSEL1,#421H
MOV ADDRSEL2,#421H

MOV BUSCON1,#421H
MOV BUSCON2,#421H

 SYS_H SET (_STKSZ << 5) OR (_ROMS1 << 4) OR (_SGTEN << 3)
 SYS_H SET SYS_H OR (_ROMEN << 2) OR (_BYTDIS << 1) OR _CLKEN
 ; Setup SYSCON Register

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 57 of 83

It is possible to create pointers to local data (i.e. automatics), although it is not really good practice.
If the user stack has been moved into the IDATA on-chip RAM, you must use the
USERSTACKDPP3 compilation control. This will force C166 to use DPP3 as the base for the
pointer so that it can happily point to the user stack in IDATA rather than via DPP2 into the NDATA
area.

 #pragma USERSTACKDPP3 // Force compiler to use DPP3 when finding
 // address of local array

 void func1(char a, char b) {

 char rx_buffer[0x20] ; // This array will be on user stack
 char *rx_ptr ;

 rx_ptr = &rx_buffer[a] ; // Point to ath object in local array

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 58 of 83

5 Appendix B

5.1 Pointer Casting And Conversions

It is entirely possible to turn a simple C data type (int, long) into a pointer. However, the user must
be aware of the number of bytes required to form the pointer in each case:

near pointers

One word carrying information on offset from DPP2 page number, 0-0x3FFF

far, huge, xhuge pointers

Two words carrying information on the page number in the upper word and offset from page base in
the lower.

sdata pointers

One word carrying information on offset from page number 3 (DPP3), 0xC000-0xFFFF

5.1.1 Casting From Basic Types To Pointers

To make a near pointer, an unsigned int can be used:

Example

int near near_address = 0x4000 ;
int y = 0x8000 ;

y = *(unsigned char near *) near_address ;

You must make very sure though with conversions to near pointers that the address is actually in
the near data area!

To make a far pointers, the source data must be of type long as only this type has sufficient bytes
to accommodate the pagenumber:offset information.

Example

unsigned long address = 0x38010 ;
unsigned char test ;

test = *(unsigned char far *) address ;

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 59 of 83

It should be noted that this on-the-fly casting from long to pointer is very inefficient and it is always
better to use a proper pointer type, as the following shows:

int var ;
unsigned long faddr = 0x30010 ;
int far *fptr = (int far *) 0x30010 ;

Using a proper pointer type:

var = *fptr ;
MOV R5,WORD fptr+2
MOV DPP0,R5
MOV R4,WORD fptr
MOV R4,[R4]
MOV WORD var,R4

Cast from long to pointer:

; var = *(int far*) faddr ;
MOV R4,WORD faddr
MOV R5,WORD faddr+2
ADD R4,R4
ADDC R5,R5
ADD R4,R4
ADDC R5,R5
MOV DPP0,R5
SHR R4,#2
MOV R8,[R4]
MOV DPP0,#12

Note: The conversion from long to a pointer is not like industry-standard PC compilers such as
Microsoft C (MSC) for the 80x86. The calculation of the 166’s page number is made during the
cast at run-time, hence all the extra code produced above. In MSC, the long must have the
segment number already in the right place. In the above example, rather than containing 0x30010,
the long would have to have held 0x3000 0010. This could cause problems when converting MSC
programs to the 166.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 60 of 83

6 Appendix C

6.1 Pointers In The C166 Compiler

Pointers to data in the near data area unsurprisingly called termed "near pointers". They may point
at any object in the near data area and as might be expected from the 16k pages, no single object
may be over 16k. A near pointer in C166 is itself 16-bits, with the top two bits fixed at 02 to indicate
DPP2.

6.2 The Most Common Pointers In C166

6.2.1 far Pointers

far pointers are less restricted in that the object being pointed at can be at any 18- or 24-bit address
but the size of the object being pointed at must be limited to 16kb. As the value of DPP0 is
calculated each time the pointer is used, far pointers are thus somewhat slower than near pointers.
The 16kb limit only causes problems the user attempts to increment a pointer over this range, as
might happen when using a pointer to access a large array. The reason for the limit is that when
incrementing a far pointer, when the offset exceeds 0x3FFF, the DPP0 is not incremented and the
offset simply wraps-around to zero again. Far pointers occupy 32-bits (two words)

6.2.2 huge Pointers

huge pointers (and objects) can be up to 64k in size as the overflow into the next page is not
catered for. However, as C166 does not allow an overflow from a 16- to 24-bit offset, huge pointers
will just wrap-around once they have been incremented more than 64kb from their start-point.

6.2.3 xhuge Pointers

xhuge pointers remove the 64kb limitation and allow objects of any size to be addressed without
restriction. They are however relatively slow, unless you are using the C167/5.

6.2.4 sdata Pointers

The final pointer type, sdata, is C166 family-specific. This is a pointer which is always points into
the system area, indicated by DPP3, between 0xC000 and 0xFFFF. sdata pointers are 16-bits in
size and are best used for pointing at internal RAM objects or IO mapped into the 0xC000 region.

6.3 Summary Of Pointer Declarations

Declare a near pointer:

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 61 of 83

int near *near_ptr ;

Declare a far pointer:

int far *far_ptr ;

Declare a sdata pointer:

int sdata *s_ptr ;

6.4 Special Note On #pragma MOD167 For C167 CPUs

The #pragma MOD167 is used for huge basic types and pointer accesses by using the EXTS
seg,off instruction.

MOD167 Huge Pointer Access

; *hptr = 0x55 ;
 ; SOURCE LINE # 19

MOV R6,#85
MOV R5,WORD hptr+2
MOV R4,WORD hptr
EXTS R5,#1
MOV [R4],R6

R5 holds the 64kb segment number and R6 holds the offset into the segment. In effect, this a full
32-bit access being equivalent to MOV [R5:R4],R6.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 62 of 83

7 Appendix D

7.1 BSI Definition Of Year 2000 Compliance – Keil C166 Tools

The following Keil tools of equal or later version number to those listed below are Year 2000
compliant according to the DISC PD2000-1 definition (follows):

C51 Compiler for 8051 V5.50 A51 Assembler V5.50 BL51 Linker V3.70
uVision-51 Windows V1.31 DScope51 for Windows V1.5 OH51 V1.2
C166 Compiler V3.11 A166 Assembler V3.12 L166 Linker V3.11
uVision-166 Windows V1.31 DScope166 for Windows V1.02 OH166 V2.0
C251 Compiler V2.12a A251 Assembler V1.4 L251 Linker V1.29
uVision-251 Windows V1.31 DScope251 for Windows V1.3w OH251 V1.4

Notes:

(i) Earlier versions of compilers will continue to function but date-related operation may not
return the correct values.

(ii) Older projects that are in the support and maintenance phase using earlier versions of Keil
compilers may suffer from Year 2000 problems if they rely on the __DATE__ intrinsic
macro. Other problems may arise and you should make a full audit of older projects to see
what the implications of this are.

(iii) Neither Keil nor Hitex can be held responsible for the consequences arising from the
continued use of tool versions of earlier release numbers than those listed above.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 63 of 83

DISC PD2000-1 A Definition of Year 2000 Conformity Requirements

A DEFINITION OF YEAR 2000 CONFORMITY
REQUIREMENTS

Introduction

This document addresses what is commonly known as Year 2000 Conformity (also sometimes
known as century or millennium compliance). It provides a definition of this expression and
requirements that must be satisfied in equipment and products, which use dates and times.

It has been prepared by British Standards Institution committee BDD/1/-/3 in response to demand
from UK industry, commerce and the public sector. It is the result of work from the following bodies
whose contributions are gratefully acknowledged: BT, CapGemini, CCTA, Coopers & Lybrand,
Halberstam Elias, ICL, National Health Service, National Westminster Bank.

BSI-DISC would also like to thank the following organisations for their support and encouragement
in the development of this definition: taskforce 2000, Barclays Bank, British Airways,
Cambridgeshire County Council, Computer Software Services Association, Department of Health,
Ernst & Young, Federation of Small Businesses, IBM, ICI, National Power, Paymaster Agency,
Prudential Assurance, Reuters, Tesco Stores.

While every care has been taken in developing this document, the contributing organisations accept
no liability for any loss or damage caused, arising directly or indirectly, in connection with reliance
on its contents except to the extent that such liability may not be excluded at law. Independent legal
advice should be sought by any person or organisation intending to enter into a contractual
commitment relating to Year 2000 conformity requirements.

THE DEFINITION

Year 2000 conformity shall mean that neither performance nor functionality is affected by dates prior
to, during and after the year 2000.

In particular:
Rule 1. No value for current date will cause any interruption in operation.

Rule 2. Date-based functionality must behave consistently for dates prior to, during and after year
2000.

Rule 3. In all interfaces and data storage, the century in any date must be specified either explicitly
or by unambiguous algorithms or inferencing rules.

Rule 4. Year 2000 must be recognised as a leap year.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 64 of 83

AMPLIFICATION OF THE DEFINITION AND RULES

General Explanation

Problems can arise from some means of representing dates in computer equipment and products
and from date-logic embedded in purchased goods or services, as the year 2000 approaches and
during and after that year. As a result, equipment or products, including embedded control logic,
may fail completely, malfunction or cause data to be corrupted.

To avoid such problems, organisations must check, and modify if necessary, internally produced
equipment and products and similarly check externally supplied equipment and products with their
suppliers. The purpose of this document is to allow such checks to be made on a basis of common
understanding.

Where checks are made with external suppliers, care should betaken to distinguish between claims
of conformity and the ability to demonstrate conformity.

Rule 1

1.1 This rule is sometimes known as general integrity.

1.2 If this requirement is satisfied, roll-over between all significant time demarcations (e.g. days,
months, years, centuries) will be performed correctly.

1.3 Current date means today's date as known to the equipment or product.

Rule 2

2.1 This rule is sometimes known as date integrity.
2.2 This rule means that all equipment and products must calculate, manipulate and represent
dates correctly for the purposes for which they were intended.
2.3 The meaning of functionality includes both processes and the results of those processes.

2.4 If desired, a reference point for date values and calculations may be added by organisations;
e.g. as defined by the Gregorian calendar.

2.5 No equipment or product shall use particular date values for special meanings; e.g. "99" to
signify "no end value" or "end of file" or "00" to mean "not applicable" or "beginning of file".

Rule 3

3.1 This rule is sometimes known as explicit/implicit century.
3.2 It covers two general approaches:

(a) explicit representation of the year in dates: e.g. by using four digits or by including a century
indicator. In this case, a reference may be inserted (e.g. 4-digit years as allowed by ISO standard
8601:1988) and it may be necessary to allow for exceptions where domain-specific standards (e.g.
standards relating to Electronic Data Interchange, Automatic Teller Machines or Bankers Automated
Clearing Services) should have precedence.

(b) the use of inferencing rules: e.g. two-digit years with a value greater than 50 imply 19xx, those
with a value equal to or less than 50 imply 20xx. Rules for century inferencing as a whole must

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 65 of 83

apply to all contexts in which the date is used, although different inferencing rules may apply to
different datesets.

General Notes

For Rules 1 and 2 in particular, organisations may wish to specify allowable ranges for values of
current date and dates to be manipulated. The ranges may relate to one or more of the feasible life-
span of equipment or products or the span of dates required to be represented by the organisation's
business processes. Tests for specifically critical dates may also be added (e.g. for leap years, end
of year, etc). Organisations may wish to append additional material in support of local requirements.

Where the term century is used, clear distinction should be made between the "value" denoting the
century (e.g. 20th) and its representation in dates (e.g. 19xx); similarly, 21st and 20xx.

ISBN 0 580 29746 2

DISC is a part of the British Standards Institution

BSI, 389 Chiswick High Road, London W4 4AL

Tel: 0181 996 9000

© Copyright DISC 1995,1996,1997

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 66 of 83

8 Appendix E

8.1 Results Log Of PARANOIA Test For KEIL C166 v3.12j

The following test was captured from Windows Hyperterm terminal via the clipboard. It was emitted
from the C167 serial port at 9600 baud.

Lest this program stop prematurely, i.e. before displaying

 `END OF TEST',

try to persuade the computer NOT to terminate execution when an
error like Over/Underflow or Division by Zero occurs, but rather
to persevere with a surrogate value after, perhaps, displaying some
warning. If persuasion avails naught, don't despair but run this
program anyway to see how many milestones it passes, and then
amend it to make further progress.

Answer questions with Y, y, N or n (unless otherwise indicated).

To continue, press RETURN
Diagnosis resumes after milestone Number 0 Page: 1

Users are invited to help debug and augment this program so it will
cope with unanticipated and newly uncovered arithmetic pathologies.

Please send suggestions and interesting results to
 Richard Karpinski
 Computer Center U-76
 University of California
 San Francisco, CA 94143-0704, USA

In doing so, please include the following information:
 Precision: single;
 Version: 10 February 1989;
 Computer:

 Compiler:

 Optimization level:

 Other relevant compiler options:

To continue, press RETURN
Diagnosis resumes after milestone Number 1 Page: 2

Running this program should reveal these characteristics:
 Radix = 1, 2, 4, 8, 10, 16, 100, 256 ...
 Precision = number of significant digits carried.
 U2 = Radix/Radix^Precision = One Ulp
 (OneUlpnit in the Last Place) of 1.000xxx .
 U1 = 1/Radix^Precision = One Ulp of numbers a little less than 1.0 .
 Adequacy of guard digits for Mult., Div. and Subt.
 Whether arithmetic is chopped, correctly rounded, or something else
 for Mult., Div., Add/Subt. and Sqrt.
 Whether a Sticky Bit used correctly for rounding.
 UnderflowThreshold = an underflow threshold.
 E0 and PseudoZero tell whether underflow is abrupt, gradual, or fuzzy.
 V = an overflow threshold, roughly.
 V0 tells, roughly, whether Infinity is represented.
 Comparisions are checked for consistency with subtraction
 and for contamination with pseudo-zeros.
 Sqrt is tested. Y^X is not tested.
 Extra-precise subexpressions are revealed but NOT YET tested.
 Decimal-Binary conversion is NOT YET tested for accuracy.

To continue, press RETURNLest this program stop prematurely, i.e. before display

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 67 of 83

ing

 `END OF TEST',

try to persuade the computer NOT to terminate execution when an
error like Over/Underflow or Division by Zero occurs, but rather
to persevere with a surrogate value after, perhaps, displaying some
warning. If persuasion avails naught, don't despair but run this
program anyway to see how many milestones it passes, and then
amend it to make further progress.

Answer questions with Y, y, N or n (unless otherwise indicated).

To continue, press RETURN
Diagnosis resumes after milestone Number 0 Page: 1

Users are invited to help debug and augment this program so it will
cope with unanticipated and newly uncovered arithmetic pathologies.

Please send suggestions and interesting results to
 Richard Karpinski
 Computer Center U-76
 University of California
 San Francisco, CA 94143-0704, USA

In doing so, please include the following information:
 Precision: single;
 Version: 10 February 1989;
 Computer:

 Compiler: Keil C166 v3.12j

 Optimization level: OT(6)

 Other relevant compiler options: HLARGE, MOD167

To continue, press RETURN
Diagnosis resumes after milestone Number 1 Page: 2

Running this program should reveal these characteristics:
 Radix = 1, 2, 4, 8, 10, 16, 100, 256 ...
 Precision = number of significant digits carried.
 U2 = Radix/Radix^Precision = One Ulp
 (OneUlpnit in the Last Place) of 1.000xxx .
 U1 = 1/Radix^Precision = One Ulp of numbers a little less than 1.0 .
 Adequacy of guard digits for Mult., Div. and Subt.
 Whether arithmetic is chopped, correctly rounded, or something else
 for Mult., Div., Add/Subt. and Sqrt.
 Whether a Sticky Bit used correctly for rounding.
 UnderflowThreshold = an underflow threshold.
 E0 and PseudoZero tell whether underflow is abrupt, gradual, or fuzzy.
 V = an overflow threshold, roughly.
 V0 tells, roughly, whether Infinity is represented.
 Comparisions are checked for consistency with subtraction
 and for contamination with pseudo-zeros.
 Sqrt is tested. Y^X is not tested.
 Extra-precise subexpressions are revealed but NOT YET tested.
 Decimal-Binary conversion is NOT YET tested for accuracy.

To continue, press RETURN
Diagnosis resumes after milestone Number 2 Page: 3

The program attempts to discriminate among
 FLAWs, like lack of a sticky bit,
 Serious DEFECTs, like lack of a guard digit, and
 FAILUREs, like 2+2 == 5 .
Failures may confound subsequent diagnoses.

The diagnostic capabilities of this program go beyond an earlier
program called `MACHAR', which can be found at the end of the
book `Software Manual for the Elementary Functions' (1980) by
W. J. Cody and W. Waite. Although both programs try to discover
the Radix, Precision and range (over/underflow thresholds)
of the arithmetic, this program tries to cope with a wider variety
of pathologies, and to say how well the arithmetic is implemented.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 68 of 83

The program is based upon a conventional radix representation for
floating-point numbers, but also allows logarithmic encoding
as used by certain early WANG machines.

BASIC version of this program (C) 1983 by Prof. W. M. Kahan;
see source comments for more history.

To continue, press RETURN
Diagnosis resumes after milestone Number 3 Page: 4

Program is now RUNNING tests on small integers:
-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.

Searching for Radix and Precision.
Radix = 2.000000 .
Closest relative separation found is U1 = 5.9604640e-08 .

Recalculating radix and precision
 confirms closest relative separation U1 .
Radix confirmed.
FAILURE: (1-U1)-1/2 < 1/2 is FALSE, prog. fails?.
FAILURE: Comparison is fuzzy,X=1 but X-1/2-1/2 != 0.
The number of significant digits of the Radix is 24.000000 .

To continue, press RETURN
Diagnosis resumes after milestone Number 30 Page: 5

Subtraction appears to be normalized, as it should be.
Checking for guard digit in *, /, and -.
 *, /, and - appear to have guard digits, as they should.

To continue, press RETURN
Diagnosis resumes after milestone Number 40 Page: 6

Checking rounding on multiply, divide and add/subtract.
Multiplication appears to round correctly.
/ is neither chopped nor correctly rounded.
Addition/Subtraction neither rounds nor chops.
Sticky bit used incorrectly or not at all.
FLAW: lack(s) of guard digits or failure(s) to correctly round or chop
(noted above) count as one flaw in the final tally below.

Does Multiplication commute? Testing on 20 random pairs.
 No failures found in 20 integer pairs.

Running test of square root(x).
Testing if sqrt(X * X) == X for 20 Integers X.
Test for sqrt monotonicity.
sqrt has passed a test for Monotonicity.
Testing whether sqrt is rounded or chopped.
Square root is neither chopped nor correctly rounded.
Observed errors run from 0.0000000e+00 to 5.0000000e-01 ulps.

To continue, press RETURN
Diagnosis resumes after milestone Number 90 Page: 7

Testing powers Z^i for small Integers Z and i.
WARNING: computing
 (0.00000000000000000e+00) ^ (0.00000000000000000e+00)
 yielded ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ;
 which compared unequal to correct 1.00000000000000000e+00 ;
 they differ by ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ .
Similar discrepancies have occurred 5 times.
DEFECT: computing
 (5.00000000000000000e-01) ^ (2.60000000000000000e+01)
 yielded 1.49011400000000000e-08;
 which compared unequal to correct 1.49011600000000000e-08 ;
 they differ by -2.04281000000000000e-14 .
Errors like this may invalidate financial calculations
 involving interest rates.
Similar discrepancies have occurred 14 times.

To continue, press RETURN
Diagnosis resumes after milestone Number 100 Page: 8

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 69 of 83

Seeking Underflow thresholds UfThold and E0.
FAILURE: multiplication gets too many last digits wrong.

To continue, press RETURN
Diagnosis resumes after milestone Number 110 Page: 9

Smallest strictly positive number found is E0 = 1.17549e-38 .
Since comparison denies Z = 0, evaluating (Z + Z) / Z should be safe.
What the machine gets for (Z + Z) / Z is 2.00000000000000000e+00 .
This is O.K., provided Over/Underflow has NOT just been signaled.

The Underflow threshold is 1.17549400000000000e-38, below which
calculation may suffer larger Relative error than merely roundoff.
Since underflow occurs below the threshold
UfThold = (2.00000000000000000e+00) ^ (-1.26000000000000000e+02)
only underflow should afflict the expression
 (2.00000000000000000e+00) ^ (-2.52000000000000000e+02);
actually calculating yields: 0.00000000000000000e+00 .
This computed value is O.K.

Testing X^((X + 1) / (X - 1)) vs. exp(2) = 7.38905700000000000e+00 as X -> 1.
DEFECT: Calculated 1.26641700000000000e-14 for
 (1 + (-5.96046400000000000e-08) ^ (-3.35544300000000000e+07);
 differs from correct value by -7.38905700000000000e+00 .
 This much error may spoil financial
 calculations involving tiny interest rates.
Testing powers Z^Q at four nearly extreme values.
 ... no discrepancies found.

To continue, press RETURN
Diagnosis resumes after milestone Number 190 Page: 10

DEFECT: Badly unbalanced range; UfThold * V = 0.00000000000000000e+00
 is too far from 1.

SERIOUS DEFECT: X / X differs from 1 when X = 0.00000000000000000e+00
 instead, X / X - 1/2 - 1/2 = .

What message and/or values does Division by Zero produce?
This can interupt your program. You can skip this part if you wish.
Do you wish to compute 1 / 0? Trying to compute 1 / 0 produces ... 0 0.00000
00e+00 .

Do you wish to compute 0 / 0?
 Trying to compute 0 / 0 produces ... 0 0.0000000e+00 .

To continue, press RETURN
Diagnosis resumes after milestone Number 220 Page: 11

The number of FAILUREs encountered = 3.
The number of SERIOUS DEFECTs discovered = 1.
The number of DEFECTs discovered = 3.
The number of FLAWs discovered = 1.

The arithmetic diagnosed has unacceptable Serious Defects.
Potentially fatal FAILURE may have spoiled this program's subsequent diagnoses.
END OF TEST.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 70 of 83

8.2 Results Log Of PARANOIA Test For Microsoft C v11.00

Configured for 386 code generation using Floating point Emulator

The following test was captured from a DOS window in Windows 95 via the clipboard.

Lest this program stop prematurely, i.e. before displaying

 `END OF TEST',

try to persuade the computer NOT to terminate execution when an
error like Over/Underflow or Division by Zero occurs, but rather
to persevere with a surrogate value after, perhaps, displaying some
warning. If persuasion avails naught, don't despair but run this
program anyway to see how many milestones it passes, and then
amend it to make further progress.

Answer questions with Y, y, N or n (unless otherwise indicated).

To continue, press RETURN

Diagnosis resumes after milestone Number 0 Page: 1

Users are invited to help debug and augment this program so it will
cope with unanticipated and newly uncovered arithmetic pathologies.

Please send suggestions and interesting results to
 Richard Karpinski
 Computer Center U-76
 University of California
 San Francisco, CA 94143-0704, USA

In doing so, please include the following information:
 Precision: single;
 Version: 10 February 1989;
 Computer:

 Compiler: MSC v8.00

 Optimization level:MAX

 Other relevant compiler options: -G3 for 386 code with no FPU

To continue, press RETURN

Diagnosis resumes after milestone Number 1 Page: 2

Running this program should reveal these characteristics:
 Radix = 1, 2, 4, 8, 10, 16, 100, 256 ...
 Precision = number of significant digits carried.
 U2 = Radix/Radix^Precision = One Ulp
 (OneUlpnit in the Last Place) of 1.000xxx .
 U1 = 1/Radix^Precision = One Ulp of numbers a little less than 1.0 .
 Adequacy of guard digits for Mult., Div. and Subt.
 Whether arithmetic is chopped, correctly rounded, or something else
 for Mult., Div., Add/Subt. and Sqrt.
 Whether a Sticky Bit used correctly for rounding.
 UnderflowThreshold = an underflow threshold.
 E0 and PseudoZero tell whether underflow is abrupt, gradual, or fuzzy.
 V = an overflow threshold, roughly.
 V0 tells, roughly, whether Infinity is represented.
 Comparisions are checked for consistency with subtraction
 and for contamination with pseudo-zeros.
 Sqrt is tested. Y^X is not tested.
 Extra-precise subexpressions are revealed but NOT YET tested.
 Decimal-Binary conversion is NOT YET tested for accuracy.

To continue, press RETURN

Diagnosis resumes after milestone Number 2 Page: 3

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 71 of 83

The program attempts to discriminate among
 FLAWs, like lack of a sticky bit,
 Serious DEFECTs, like lack of a guard digit, and
 FAILUREs, like 2+2 == 5 .
Failures may confound subsequent diagnoses.

The diagnostic capabilities of this program go beyond an earlier
program called `MACHAR', which can be found at the end of the
book `Software Manual for the Elementary Functions' (1980) by
W. J. Cody and W. Waite. Although both programs try to discover
the Radix, Precision and range (over/underflow thresholds)
of the arithmetic, this program tries to cope with a wider variety
of pathologies, and to say how well the arithmetic is implemented.

The program is based upon a conventional radix representation for
floating-point numbers, but also allows logarithmic encoding
as used by certain early WANG machines.

BASIC version of this program (C) 1983 by Prof. W. M. Kahan;
see source comments for more history.

To continue, press RETURN

Diagnosis resumes after milestone Number 3 Page: 4

Program is now RUNNING tests on small integers:
-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.

Searching for Radix and Precision.
Radix = 1073741824.000000 .
Closest relative separation found is U1 = 9.3132257e-010 .

Recalculating radix and precision
 gets better closest relative separation U1 = 9.9341078e-009 .
MYSTERY: recalculated Radix = 1.0066330e+008 .
DEFECT: Radix is too big: roundoff problems.
FLAW: Radix is not as good as 2 or 10.
FAILURE: (1-U1)-1/2 < 1/2 is FALSE, prog. fails?.
The number of significant digits of the Radix is 1.000000 .
SERIOUS DEFECT: Precision worse than 5 decimal figures .
Some subexpressions appear to be calculated extra
precisely with about 0.993608 extra B-digits, i.e.
roughly 7.95172 extra significant decimals.
That feature is not tested further by this program.

To continue, press RETURN

FAILURE: Incomplete carry-propagation in Addition.
Add/Subtract appears to be chopped.
Addition/Subtraction neither rounds nor chops.
Sticky bit used incorrectly or not at all.
FLAW: lack(s) of guard digits or failure(s) to correctly round or chop
(noted above) count as one flaw in the final tally below.

Does Multiplication commute? Testing on 20 random pairs.
DEFECT: X * Y == Y * X trial fails.

Running test of square root(x).
SERIOUS DEFECT:
sqrt(1.01330991615836160e+016) - 1.00663296000000000e+008 = -1.000000000000000
00e+000
 instead of correct value 0 .
SERIOUS DEFECT:
sqrt(9.86864969599650250e-017) - 9.93410775862457740e-009 = -9.868649843050824
90e-017
 instead of correct value 0 .
SERIOUS DEFECT:
sqrt(9.86864969599650250e-017) - 9.93410775862457740e-009 = -9.868649843050824
90e-017
 instead of correct value 0 .

To continue, press RETURN

sqrt(1.01330991615836160e+016) - 1.00663296000000000e+008 = -1.000000000000000
00e+000

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 72 of 83

 instead of correct value 0 .
SERIOUS DEFECT:
sqrt(9.86864969599650250e-017) - 9.93410775862457740e-009 = -9.868649843050824
90e-017
 instead of correct value 0 .
SERIOUS DEFECT:
sqrt(9.86864969599650250e-017) - 9.93410775862457740e-009 = -9.868649843050824
90e-017
 instead of correct value 0 .

To continue, press RETURN

Diagnosis resumes after milestone Number 70 Page: 7

Testing if sqrt(X * X) == X for 20 Integers X.
DEFECT:
sqrt(1.01330991615836160e+016) - 1.00663296000000000e+008 = -1.000000029802322
40e+000
 instead of correct value 0 .
Test for sqrt monotonicity.
sqrt has passed a test for Monotonicity.
Testing whether sqrt is rounded or chopped.

(PROGRAM HANGS UP AT THIS POINT)

(PROGRAM MODIFIED TO REMOVE SQRT TEST – OUTPUT LOGGING RESUMED)

Diagnosis resumes after milestone Number 70 Page: 7

Testing if sqrt(X * X) == X for 20 Integers X.
DEFECT:
sqrt(1.01330991615836160e+016) - 1.00663296000000000e+008 = -1.000000029802322
40e+000
 instead of correct value 0 .
Test for sqrt monotonicity.
sqrt has passed a test for Monotonicity.

To continue, press RETURN

Diagnosis resumes after milestone Number 90 Page: 8

Testing powers Z^i for small Integers Z and i.
DEFECT: computing
 (1.00000001490116120e-001) ^ (7.00000000000000000e+000)
 yielded 1.00000008274037100e-007;
 which compared unequal to correct 1.00000015379464460e-007 ;
 they differ by -7.10542735760100190e-015 .
Errors like this may invalidate financial calculations
 involving interest rates.
Similar discrepancies have occurred 10 times.

To continue, press RETURN

calculation may suffer larger Relative error than merely roundoff.
DEFECT: Range is too narrow; U1^5 Underflows.
Since underflow occurs below the threshold
UfThold = (1.00663296000000000e+008) ^ (-3.96250009536743160e+000)
only underflow should afflict the expression
 (1.00663296000000000e+008) ^ (-7.92500019073486330e+000);
actually calculating yields: 0.00000000000000000e+000 .
This computed value is O.K.

Testing X^((X + 1) / (X - 1)) vs. exp(2) = 7.38905572891235350e+000 as X -> 1.
DEFECT: Calculated 2.67379508591339170e+002 for
 (1 + (2.55000000000000000e+002) ^ (1.00784313678741460e+000);
 differs from correct value by 2.59990447998046870e+002 .
 This much error may spoil financial
 calculations involving tiny interest rates.
Testing powers Z^Q at four nearly extreme values.
DEFECT: computing
 (1.00000000000000000e+001) ^ (3.20000000000000000e+001)
 yielded 1.00000003318135350e+032;
 which compared unequal to correct 1.02679679275673470e+032 ;

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 73 of 83

 they differ by -2.67967595753811630e+030 .
Similar discrepancies have occurred 4 times.

To continue, press RETURN

DEFECT: Calculated 2.67379508591339170e+002 for
 (1 + (2.55000000000000000e+002) ^ (1.00784313678741460e+000);
 differs from correct value by 2.59990447998046870e+002 .
 This much error may spoil financial
 calculations involving tiny interest rates.
Testing powers Z^Q at four nearly extreme values.
DEFECT: computing
 (1.00000000000000000e+001) ^ (3.20000000000000000e+001)
 yielded 1.00000003318135350e+032;
 which compared unequal to correct 1.02679679275673470e+032 ;
 they differ by -2.67967595753811630e+030 .
Similar discrepancies have occurred 4 times.

To continue, press RETURN

Diagnosis resumes after milestone Number 190 Page: 10

DEFECT: Badly unbalanced range; UfThold * V = 0.00000000000000000e+000
 is too far from 1.

What message and/or values does Division by Zero produce?
This can interupt your program. You can skip this part if you wish.
Do you wish to compute 1 / 0?

(REPLY YES)

This much error may spoil financial
 calculations involving tiny interest rates.
Testing powers Z^Q at four nearly extreme values.
DEFECT: computing
 (1.00000000000000000e+001) ^ (3.20000000000000000e+001)
 yielded 1.00000003318135350e+032;
 which compared unequal to correct 1.02679679275673470e+032 ;
 they differ by -2.67967595753811630e+030 .
Similar discrepancies have occurred 4 times.

To continue, press RETURN

Diagnosis resumes after milestone Number 190 Page: 10

DEFECT: Badly unbalanced range; UfThold * V = 0.00000000000000000e+000
 is too far from 1.

What message and/or values does Division by Zero produce?
This can interupt your program. You can skip this part if you wish.
Do you wish to compute 1 / 0? y
 Trying to compute 1 / 0 produces ... 1.#INF000e+000 .

Do you wish to compute 0 / 0?

(REPLY YES)

(1.00000000000000000e+001) ^ (3.20000000000000000e+001)
 yielded 1.00000003318135350e+032;
 which compared unequal to correct 1.02679679275673470e+032 ;
 they differ by -2.67967595753811630e+030 .
Similar discrepancies have occurred 4 times.

To continue, press RETURN

Diagnosis resumes after milestone Number 190 Page: 10

DEFECT: Badly unbalanced range; UfThold * V = 0.00000000000000000e+000
 is too far from 1.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 74 of 83

What message and/or values does Division by Zero produce?
This can interupt your program. You can skip this part if you wish.
Do you wish to compute 1 / 0? y
 Trying to compute 1 / 0 produces ... 1.#INF000e+000 .

Do you wish to compute 0 / 0? y

 Trying to compute 0 / 0 produces ... -1.#IND000e+000 .

To continue, press RETURN

What message and/or values does Division by Zero produce?
This can interupt your program. You can skip this part if you wish.
Do you wish to compute 1 / 0? y
 Trying to compute 1 / 0 produces ... 1.#INF000e+000 .

Do you wish to compute 0 / 0? y

 Trying to compute 0 / 0 produces ... -1.#IND000e+000 .

To continue, press RETURN

Diagnosis resumes after milestone Number 220 Page: 11

The number of FAILUREs encountered = 6.
The number of SERIOUS DEFECTs discovered = 5.
The number of DEFECTs discovered = 10.
The number of FLAWs discovered = 2.

The arithmetic diagnosed has unacceptable Serious Defects.
Potentially fatal FAILURE may have spoiled this program's subsequent diagnoses.
END OF TEST.

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 75 of 83

9 Appendix F

9.1 Plum-Hall test summary files.

9.1.1 Invocation Batch File

@echo off
rem compiler - compile source file %1 with include-dirs %2 %3 ...

rem ###logic you must configure all this script for your compiler

rem remove old object file, in case something abends
if exist %1%OBJ% del %1%OBJ%
rem start a new "clg" (compiler log) file
echo --- compile %1 --- >%1.clg
rem choose the compile recipe according to number of args
if "%2" == "" goto notwo
if "%3" == "" goto nothree
if "%4" == "" goto nofour

if exist phstatus del phstatus

rem set INCLUDE= ... set external INCLUDE if compiler uses one ...
rem ###format you need to hand-configure the compile commands ...
set %PHIN%=%PHIP%;%2;%3;%4;%PHDST%;%PHSRC%\conform
%PHCC% %2%1.c OJ(%1%OBJ%) %CFLAGS% >>%1.clg
goto done
:nofour
set %PHIN%=%PHIP%;%2;%3;%PHDST%;%PHSRC%\conform
%PHCC% %2%1.c OJ(%1%OBJ%) %CFLAGS% >>%1.clg
goto done
:nothree
set %PHIN%=%PHIP%;%2;%PHDST%;%PHSRC%\conform
%PHCC% %2%1.c OJ(%1%OBJ%) %CFLAGS% >>%1.clg
goto done
:notwo
rem using only one arg is allowed only if PHSRC == PHDST
if %PHSRC% == %PHDST% goto onetree
echo usage: %0 pgm-name source-dir [include-dir]
echo The source-dir is required if you are compiling remote sources.
goto done
:onetree
set %PHIN%=%PHIP%;%PHDST%;%PHSRC%\conform
%PHCC% %1.c OJ(%1%OBJ%) %CFLAGS% >>%1.clg
:done

if errorlevel 1 echo 1 >phstatus

rem Any tests for success-or-failure of the compile command need
rem to test %PHSTATUS% .

rem You could execute the "diagnost" command here to display your
rem diagnostic messages.

rem diagnost %1.clg

exit 0

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 76 of 83

9.1.2 Summary File 1

EXPECTED ACTUAL ERRORS SKIPPED FILE NAME 5.00 1994-01-03
 16 16 0 0 conform/environ.out
 24 24 0 4 conform/interp91.out
 1224 1223 1 0 **conform/lang.out
 123 7208 0 16 **conform/libfrst.out
 821 821 0 0 conform/prec1.out
 1180 1180 0 0 conform/prec2.out
 1 1 0 0 conform/capacity/capacity.out
 11 11 0 0 conform/errauto/i91.out
 151 151 0 0 conform/errauto/j91.out
 32 31 1 0 **conform/errauto/m61.out
 0 0 0 0 conform/errauto/m62.out
 75 75 0 0 conform/errauto/m63.out
 5 4 1 0 **conform/errauto/m64.out
 77 76 1 0 **conform/errauto/m65.out
 24 24 0 0 conform/errauto/m66.out
 17 17 0 0 conform/errauto/m67.out
 39 39 0 0 conform/errauto/m68.out
 288 288 0 0 conform/exprtest/andif.out
 576 576 0 0 conform/exprtest/assign.out
 162 162 0 0 conform/exprtest/band.out
 324 324 0 0 conform/exprtest/bandeq.out
 288 288 0 0 conform/exprtest/cast.out
 162 162 0 0 conform/exprtest/compl.out
 288 288 0 0 conform/exprtest/div.out
 120 120 0 0 conform/exprtest/diveq1.out
 156 156 0 0 conform/exprtest/diveq2.out
 156 156 0 0 conform/exprtest/diveq3.out
 144 144 0 0 conform/exprtest/diveq4.out
 288 288 0 0 conform/exprtest/eq.out
 288 288 0 0 conform/exprtest/ge.out
 288 288 0 0 conform/exprtest/gt.out
 13 13 0 0 conform/exprtest/int1.out
 9 9 0 0 conform/exprtest/int2.out
 9 9 0 0 conform/exprtest/int3.out
 12 12 0 0 conform/exprtest/int4.out
 13 13 0 0 conform/exprtest/int5.out
 12 12 0 0 conform/exprtest/int6.out
 13 13 0 0 conform/exprtest/int7.out
 15 15 0 0 conform/exprtest/int8.out
 13 13 0 0 conform/exprtest/int9.out
 10 10 0 0 conform/exprtest/int10.out
 13 13 0 0 conform/exprtest/int11.out
 14 14 0 0 conform/exprtest/int12.out
 11 11 0 0 conform/exprtest/int13.out
 288 288 0 0 conform/exprtest/le.out
 162 162 0 0 conform/exprtest/lsh.out
 324 324 0 0 conform/exprtest/lsheq.out
 288 288 0 0 conform/exprtest/lt.out
 122 122 0 0 conform/exprtest/mineq1.out
 154 154 0 0 conform/exprtest/mineq2.out
 152 152 0 0 conform/exprtest/mineq3.out
 136 136 0 0 conform/exprtest/mineq4.out
 288 288 0 0 conform/exprtest/minus.out
 12 12 0 0 conform/exprtest/mix1.out
 9 9 0 0 conform/exprtest/mix2.out
 9 9 0 0 conform/exprtest/mix3.out
 12 12 0 0 conform/exprtest/mix4.out
 9 9 0 0 conform/exprtest/mix5.out
 14 14 0 0 conform/exprtest/mix6.out
 11 11 0 0 conform/exprtest/mix7.out
 17 17 0 0 conform/exprtest/mix8.out
 11 11 0 0 conform/exprtest/mix9.out
 12 12 0 0 conform/exprtest/mix10.out
 15 15 0 0 conform/exprtest/mix11.out
 16 16 0 0 conform/exprtest/mix12.out
 14 14 0 0 conform/exprtest/mix13.out
 288 288 0 0 conform/exprtest/ne.out
 288 288 0 0 conform/exprtest/not.out
 162 162 0 0 conform/exprtest/or.out
 288 288 0 0 conform/exprtest/orelse.out

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 77 of 83

 324 324 0 0 conform/exprtest/oreq.out
 122 122 0 0 conform/exprtest/plueq1.out
 156 156 0 0 conform/exprtest/plueq2.out
 154 154 0 0 conform/exprtest/plueq3.out
 144 144 0 0 conform/exprtest/plueq4.out
 288 288 0 0 conform/exprtest/plus.out
 576 576 0 0 conform/exprtest/postdec.out
 576 576 0 0 conform/exprtest/preinc.out
 576 576 0 0 conform/exprtest/quest.out
 12 12 0 0 conform/exprtest/real1.out
 11 11 0 0 conform/exprtest/real2.out
 13 13 0 0 conform/exprtest/real3.out
 11 11 0 0 conform/exprtest/real4.out
 10 10 0 0 conform/exprtest/real5.out
 12 12 0 0 conform/exprtest/real6.out
 15 15 0 0 conform/exprtest/real7.out
 11 11 0 0 conform/exprtest/real8.out
 8 8 0 0 conform/exprtest/real9.out
 15 15 0 0 conform/exprtest/real10.out
 10 10 0 0 conform/exprtest/real11.out
 16 16 0 0 conform/exprtest/real12.out
 15 15 0 0 conform/exprtest/real13.out
 162 162 0 0 conform/exprtest/remain.out
 324 324 0 0 conform/exprtest/remeq.out
 162 162 0 0 conform/exprtest/rsh.out
 324 324 0 0 conform/exprtest/rsheq.out
 120 120 0 0 conform/exprtest/timeq1.out
 154 154 0 0 conform/exprtest/timeq2.out
 156 156 0 0 conform/exprtest/timeq3.out
 146 146 0 0 conform/exprtest/timeq4.out
 288 288 0 0 conform/exprtest/timesop.out
 288 288 0 0 conform/exprtest/uminus.out
 162 162 0 0 conform/exprtest/xor.out
 324 324 0 0 conform/exprtest/xoreq.out
 16291 23372 4 20 TOTAL

$$CPU$$=DF(__MOD166__)
$$FLOAT$$=FLOAT64
$$MODEL$$=LA
$$OT$$=DF(__OPT__)
BACKSLASH=\
C166INC=C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC
;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC
C166LIB=C:\KEIL\C166\LIB
C251INC=C:\C251\INC
C251LIB=C:\C251\LIB
C51INC=C:\C51\INC
C51LIB=C:\C51\LIB
CFLAGS=DB SB NOPR LA FLOAT64 DF(__MOD166__) DF(__OPT__)
COMPUTERNAME=RK
ComSpec=C:\WINNT\system32\cmd.exe
DIRNAME=xxxxxxx\xxxxxxxx\xxxxxxxxx
DPPUSE=N
EXE=.66
EXEHO=.exe
EXENAME=xxxxxxxx
HOCFLAGS=-c -AL -Za
HOLFLAGS=-F 2800
HOMEDRIVE=C:
HOMEPATH=\
LFLAGS=CLASSES (FCODE(0x10000-0x2FFFF)) CASE LINES SYMBOLS PRINT(NUL)
LOGONSERVER=\\RK
NUMBER_OF_PROCESSORS=1
OBJ=.obj
OBJHO=.obj
OS=Windows_NT
Os2LibPath=C:\WINNT\system32\os2\dll;
Path=\plumhall\test.166;C:\WINNT\system32;C:\WINNT;C:\KEIL\C166\BIN;C:\UTIL
PATHEXT=.COM;.EXE;.BAT;.CMD
PHCC=C166
PHDST=\plumhall\test.166
PHDSTDRV=D:
PHHOCC=cl
PHIN=C166INC
PHIP=D:\KEIL\C166\INC

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 78 of 83

PHLI=L166
PHSRC=\plumhall\suite
PHTMP=This is a very long string that sets aside environment space.
PHTMP2=This is a very long string that sets aside environment space.
PROCESSOR_ARCHITECTURE=x86
PROCESSOR_IDENTIFIER=x86 Family 6 Model 5 Stepping 2, GenuineIntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=0502
PROMPT=PG
STARTUP=strt66lm
SYSPATH=C:\WINNT\system32;C:\WINNT;C:\KEIL\C166\BIN;C:\UTIL
SystemDrive=C:
SystemRoot=C:\WINNT
TEMP=C:\TEMP
TMP=C:\TEMP
USERDOMAIN=RK
USERNAME=Administrator
USERPROFILE=C:\WINNT\Profiles\Administrator
windir=C:\WINNT
WRKDRV=D:

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 79 of 83

9.1.3 Summary File 2

EXPECTED ACTUAL ERRORS SKIPPED FILE NAME 5.00 1994-01-03
 16 16 0 0 conform/environ.out
 24 24 0 4 conform/interp91.out
 1224 1223 1 0 **conform/lang.out
 123 7208 0 16 **conform/libfrst.out
 821 821 0 0 conform/prec1.out
 1180 1180 0 0 conform/prec2.out
 1 1 0 0 conform/capacity/capacity.out
 11 11 0 0 conform/errauto/i91.out
 151 151 0 0 conform/errauto/j91.out
 32 30 2 0 **conform/errauto/m61.out
 0 0 0 0 conform/errauto/m62.out
 75 75 0 0 conform/errauto/m63.out
 5 4 1 0 **conform/errauto/m64.out
 77 76 1 0 **conform/errauto/m65.out
 24 24 0 0 conform/errauto/m66.out
 17 17 0 0 conform/errauto/m67.out
 39 39 0 0 conform/errauto/m68.out
 288 288 0 0 conform/exprtest/andif.out
 576 576 0 0 conform/exprtest/assign.out
 162 162 0 0 conform/exprtest/band.out
 324 324 0 0 conform/exprtest/bandeq.out
 288 288 0 0 conform/exprtest/cast.out
 162 162 0 0 conform/exprtest/compl.out
 288 288 0 0 conform/exprtest/div.out
 120 120 0 0 conform/exprtest/diveq1.out
 156 156 0 0 conform/exprtest/diveq2.out
 156 156 0 0 conform/exprtest/diveq3.out
 144 144 0 0 conform/exprtest/diveq4.out
 288 288 0 0 conform/exprtest/eq.out
 288 288 0 0 conform/exprtest/ge.out
 288 288 0 0 conform/exprtest/gt.out
 13 13 0 0 conform/exprtest/int1.out
 9 9 0 0 conform/exprtest/int2.out
 9 9 0 0 conform/exprtest/int3.out
 12 12 0 0 conform/exprtest/int4.out
 13 13 0 0 conform/exprtest/int5.out
 12 12 0 0 conform/exprtest/int6.out
 13 13 0 0 conform/exprtest/int7.out
 15 15 0 0 conform/exprtest/int8.out
 13 13 0 0 conform/exprtest/int9.out
 10 10 0 0 conform/exprtest/int10.out
 13 13 0 0 conform/exprtest/int11.out
 14 14 0 0 conform/exprtest/int12.out
 11 11 0 0 conform/exprtest/int13.out
 288 288 0 0 conform/exprtest/le.out
 162 162 0 0 conform/exprtest/lsh.out
 324 324 0 0 conform/exprtest/lsheq.out
 288 288 0 0 conform/exprtest/lt.out
 122 122 0 0 conform/exprtest/mineq1.out
 154 154 0 0 conform/exprtest/mineq2.out
 152 152 0 0 conform/exprtest/mineq3.out
 136 136 0 0 conform/exprtest/mineq4.out
 288 288 0 0 conform/exprtest/minus.out
 12 12 0 0 conform/exprtest/mix1.out
 9 9 0 0 conform/exprtest/mix2.out
 9 9 0 0 conform/exprtest/mix3.out
 12 12 0 0 conform/exprtest/mix4.out
 9 9 0 0 conform/exprtest/mix5.out
 14 14 0 0 conform/exprtest/mix6.out
 11 11 0 0 conform/exprtest/mix7.out
 17 17 0 0 conform/exprtest/mix8.out
 11 11 0 0 conform/exprtest/mix9.out
 12 12 0 0 conform/exprtest/mix10.out
 15 15 0 0 conform/exprtest/mix11.out
 16 16 0 0 conform/exprtest/mix12.out
 14 14 0 0 conform/exprtest/mix13.out
 288 288 0 0 conform/exprtest/ne.out
 288 288 0 0 conform/exprtest/not.out
 162 162 0 0 conform/exprtest/or.out
 288 288 0 0 conform/exprtest/orelse.out

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 80 of 83

 324 324 0 0 conform/exprtest/oreq.out
 122 122 0 0 conform/exprtest/plueq1.out
 156 156 0 0 conform/exprtest/plueq2.out
 154 154 0 0 conform/exprtest/plueq3.out
 144 144 0 0 conform/exprtest/plueq4.out
 288 288 0 0 conform/exprtest/plus.out
 576 576 0 0 conform/exprtest/postdec.out
 576 576 0 0 conform/exprtest/preinc.out
 576 576 0 0 conform/exprtest/quest.out
 12 12 0 0 conform/exprtest/real1.out
 11 11 0 0 conform/exprtest/real2.out
 13 13 0 0 conform/exprtest/real3.out
 11 11 0 0 conform/exprtest/real4.out
 10 10 0 0 conform/exprtest/real5.out
 12 12 0 0 conform/exprtest/real6.out
 15 15 0 0 conform/exprtest/real7.out
 11 11 0 0 conform/exprtest/real8.out
 8 8 0 0 conform/exprtest/real9.out
 15 15 0 0 conform/exprtest/real10.out
 10 10 0 0 conform/exprtest/real11.out
 16 16 0 0 conform/exprtest/real12.out
 15 15 0 0 conform/exprtest/real13.out
 162 162 0 0 conform/exprtest/remain.out
 324 324 0 0 conform/exprtest/remeq.out
 162 162 0 0 conform/exprtest/rsh.out
 324 324 0 0 conform/exprtest/rsheq.out
 120 120 0 0 conform/exprtest/timeq1.out
 154 154 0 0 conform/exprtest/timeq2.out
 156 156 0 0 conform/exprtest/timeq3.out
 146 146 0 0 conform/exprtest/timeq4.out
 288 288 0 0 conform/exprtest/timesop.out
 288 288 0 0 conform/exprtest/uminus.out
 162 162 0 0 conform/exprtest/xor.out
 324 324 0 0 conform/exprtest/xoreq.out
 16291 23371 5 20 TOTAL

$$CPU$$=MOD167
$$FLOAT$$=FLOAT64
$$MODEL$$=MD
$$OT$$=DF(__OPT__)
BACKSLASH=\
C166INC=C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC
;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC;C:\KEIL\C166\INC
C166LIB=C:\KEIL\C166\LIB
C251INC=C:\C251\INC
C251LIB=C:\C251\LIB
C51INC=C:\C51\INC
C51LIB=C:\C51\LIB
CFLAGS=DB SB NOPR MD FLOAT64 MOD167 DF(__OPT__)
COMPUTERNAME=RK
ComSpec=C:\WINNT\system32\cmd.exe
DIRNAME=xxxxxxx\xxxxxxxx\xxxxxxxxx
DPPUSE=N
EXE=.66
EXEHO=.exe
EXENAME=xxxxxxxx
HOCFLAGS=-c -AL -Za
HOLFLAGS=-F 2800
HOMEDRIVE=C:
HOMEPATH=\
LFLAGS=CLASSES (FCODE(0x10000-0x2FFFF)) CASE LINES SYMBOLS PRINT(NUL)
LOGONSERVER=\\RK
NUMBER_OF_PROCESSORS=1
OBJ=.obj
OBJHO=.obj
OS=Windows_NT
Os2LibPath=C:\WINNT\system32\os2\dll;
Path=\plumhall\test.166;C:\WINNT\system32;C:\WINNT;C:\KEIL\C166\BIN;C:\UTIL
PATHEXT=.COM;.EXE;.BAT;.CMD
PHCC=C166
PHDST=\plumhall\test.166
PHDSTDRV=D:
PHHOCC=cl
PHIN=C166INC
PHIP=D:\KEIL\C166\INC

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 81 of 83

PHLI=L166
PHSRC=\plumhall\suite
PHTMP=This is a very long string that sets aside environment space.
PHTMP2=This is a very long string that sets aside environment space.
PROCESSOR_ARCHITECTURE=x86
PROCESSOR_IDENTIFIER=x86 Family 6 Model 5 Stepping 2, GenuineIntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=0502
PROMPT=PG
STARTUP=strt67mm
SYSPATH=C:\WINNT\system32;C:\WINNT;C:\KEIL\C166\BIN;C:\UTIL
SystemDrive=C:
SystemRoot=C:\WINNT
TEMP=C:\TEMP
TMP=C:\TEMP
USERDOMAIN=RK
USERNAME=Administrator
USERPROFILE=C:\WINNT\Profiles\Administrator
windir=C:\WINNT
WRKDRV=D:

9.1.4 Explanation Of Error Reports From The Plum Hall Test

The PLUM HALL test reports 4 Errors for the Keil C166 compiler that are characterised

below:

9.1.4.1 LANG Problem

LANG: this is a complex macro that is not expanded correctly:

ERROR in c68.c at line 239: "1+2+h" != "NEITHER '1+f(2)' NOR '1+h(2)'"

This problem appears when multiple nested macros are called with text expansions.

9.1.4.2 M61 Problem

M61: there is not compiler error message for following construct:

enum { A = INT_MAX, B }; // B overflows 'int' value range for enum

9.1.4.3 M64 Problem

M64: there is not compiler error message for:

 switch (i) {
 case LONG_MAX * 4 : // LONG_MAX * 4 overflows value range

9.1.4.4 M65 Problem

M65: is a duplication of the problem M61:

 int main() {
 enum { A = INT_MAX, B }; // Missing Error message
 return 0; }

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 82 of 83

10 Appendix G

10.1 Known Problems In C166 v3.12j

(These problems have been fixed in C166 v3.12k)

33) INCDIR: increased to max. 50 path-specs.
==
CORR: BOM.H (/5.10.98/)

34) Assembly-Errors when SRC is used
====================================
#pragma ot(3,size)
#pragma hold(near 2048)

extern unsigned char m[1034];

struct x {
 int x[5];
};
int i;

typedef struct {
 unsigned char s;
 char o;
} A;
const static A far a [] = {
 { 1, 2 }, { 3, 4 },
};
const static A near b [] = {
 { 1, 2 }, { 3, 4 },
};
void main (void) {
 ((struct x *) m)->x[b[0].o] = 0;
 ((struct x *) m)->x[a[0].o] = 0;
 ((struct x *) m)->x[i] = 0;
}
CORR: REG166.C, ASMGEN.C (/9.10.98/)

35) Gp or hangup
================
CORR: CFOLD.C (PostFold /9.10.98/)

36) tagName space clash
=======================
struct test_struct { // outer 'test_struct'

int structivar0;
int structivar1;

};
int z;

void main (void) {
 struct test_struct { // inner 'test_struct'
 int i;
 struct test_struct *next; // error: resolves to outer 'test_struct'
 };
 struct test_struct *ptr; // , array[15];
 if (ptr->next->i != 25) z = 1; // gives 'next' undefined member
}
CORR: GRM.C (rsutp /22.10.98/)

37) Incorrect Warning 'expr with no effect' and code removal
==
much like #30 !
 ((*(ANWEISUNGtyp *)memcpy (&gv0.BUF_AB[PROG_LES_BUFinst.IX],
 &gv0.SATZ[PROG_LES_BUFinst.LOOPCOUNTER],
 sizeof(gv0.BUF_AB[PROG_LES_BUFinst.IX]))));
CORR: GENEXP.C (GenExp /3.11.98/)

© Company X Ltd.
T:\WORD\TECHDOC\c166 report\companyX compiler report.doc
Revision: C
Last amended by M.Beach on 22/06/00 14:14

Page 83 of 83

38) Missing Error Meassage on constant modification
===
const int c_val = 3;
void main (void) {
 c_val = c_val + 2; // gives correct error meassage
 c_val += 2; // is not considered as a constant modification
}
CORR: ENODE.C (DoAdd /25.2.99/)

39) Unnecessary Warning
=======================
static unsigned char suc;
char test (void) {
 register signed char rsc;
 static signed char ssc;

 if ((unsigned char)rsc >= suc) // *** WARNING 173 IN LINE 9 OF TEST130.C: '>=':
signed/unsigned type mismatch
 rsc++;
 if ((unsigned char)ssc >= suc)
 ssc++;
 return (ssc+rsc);
}
CORR: CFOLD.C (RelOp8 /25.2.99/)

40) Word access to a odd address when pragma order is used
==
#pragma code debug or

void test(char *b, char *c) {;}

char const abc = 3;

void main (void) {
 char dummy2[] = "hello"; // 'hello' starts at an odd address and is copied word by word
 char dummy3[] = "hell";

 test(dummy2, dummy3); // use dummy variables
}

	Introduction
	Overview
	Disclaimer

	Items Addressed By This Report
	Quality Control & Validation
	Quality Systems
	Year 2000 Issues
	Compiler Testing Prior To Release
	Empirical Measures Of Compiler Integrity
	Compiler Problem Status

	Standard Functions
	Standard ISO-C library functions not provided
	Standard ISO-C library functions that differ in prototype from what would be expected
	Type Of size_t
	Keil C166 String Handling Function Prototypes
	Additional Keil C166 String Functions
	ISO-C String Handling Function Prototypes
	Unimplemented String Functions In C166
	Keil C166 Memory Copying Functions
	ISO-C Memory Copying Functions
	Input/Output Functions

	Standard ISO-C functions behaving in a non-standard manner.
	Memory Allocation Functions
	Formatted And Other IO Functions

	Implementation-Specific Issues
	
	Test Conditions

	The layout of storage for parameters.
	Basic Data Types In C166
	Representation Of Data
	Significant Character Values
	Representation Of 16 Bit Quantities
	Representation Of 32 Bit Quantities
	Representation Of Floating Point Quantities

	Use Of Registers And Userstack
	Register Masks And Global Register Optimisation

	How a diagnostic is identified.
	Error and warning messages, with example reports
	The C166 Compiler .ERR file
	The C166 Compiler .LST File
	L166 Linker Diagnostics
	Linker Syntax ERRORs
	Linker Linking And Location Diagnostics

	What constitutes an interactive device.
	The number of bits in a character in the execution character set.
	Legal Characters
	Termination Of Character Strings

	The result of casting a pointer to an integer or vice versa.
	What constitutes an access to an object that has volatile-qualified type.
	The maximum number of declarators that may modify an arithmetic, structure or union type.
	Whether the value of a single-character character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set. Whether such a character constant may have a negativ
	The mapping of source file character sequences
	The null pointer constant to which the macro NULL expands.
	CTYPE.H Functions
	The Sets Of Characters Tested For By isalnum,
	The Sets Of Characters Tested For By iscntrl,
	The Sets Of Characters Tested For By islower
	The Sets Of Characters Tested For By isprint
	The Sets Of Characters Tested For By isupper

	The values returned by the mathematics functions on domain errors.
	C166 Mathematical Function List
	Floating Point Limits
	Trigonometric Functions That Are Subject To Domain Or Range Errors
	The acos Function
	The asin Function
	The atan2 Function

	Hyperbolic Functions That Are Subject To Domain Or Range Errors
	The cosh Function
	The sinh Function

	Integer Arithmetic Functions
	The abs function
	The labs function

	Compiler Actions With Unusually Terminated Source Files
	Source file does not end in a new-line character
	Source file ends in a new-line character immediately preceded by a backslash character
	Source file ends in a partial pre-processing token or comment.

	The outcome when the result of an integer arithmetic function (abs, div, labs, or ldiv) cannot be represented.
	The outcome when an lvalue with an incomplete type is used in a context that requires the value of the designated object.
	Mismatches in type between lvalue and object
	Summary Of Results Under Type Mismatch Conditions

	Incomplete Data Declarations
	Volatile/non-volatile mismatches
	Incomplete Types And Tentative Declarations
	Shift Left And Shift Right Operations
	Left Shift - Signed
	Right Shift - Signed
	Left Shift - Unsigned
	Right Shift - Unsigned

	Integer Division Behaviour
	Floating Point Truncation
	Float To Integer Conversions
	Single Precision
	Double Precision
	Limits Of Single And Double Precision Floating Point Types

	Type promotion, char To int
	Type Promotion From int To long

	Compiler System Controls Which Impact Software Integrity And Maintainability
	Overview
	Compiler Controls
	Linker Controls
	CPU Configuration Controls In START167.A66
	Characteristics Of HLARGE Model Programs
	Defaults Under HLARGE Model
	Data Placement And Size Limitations
	HLARGE Model Data CLASS Placement
	Management Of Near Data (NDATA) Under HLARGE
	High Speed Data
	Very Large Objects
	Typical Pointer Declarations
	Typical Linker Control File

	The Special Sections "?C_CLRMEMSEC" And "?C_INITSEC".

	Floating Point Library Test
	Preliminary Work
	Preliminary Results
	Keil C166 3.12j Results
	Tasking C166 v6r3 Results
	Microsoft C v11.00 Results

	Discussion Of Results

	Limits Of The Keil C166 Compiler System
	Compiler Implementation Limits
	Siemens/Keil OMF66 Object Module Format Limits

	Composition Of The Compiler Toolkit
	Appendix A
	
	Moving The USERSTACK On-Chip
	The System Stack
	Setting The System Stack Size
	Setting Up The BUSCONx ADDRSELx Registers

	Appendix B
	Pointer Casting And Conversions
	Casting From Basic Types To Pointers

	Appendix C
	Pointers In The C166 Compiler
	The Most Common Pointers In C166
	far Pointers
	huge Pointers
	xhuge Pointers
	sdata Pointers

	Summary Of Pointer Declarations
	Special Note On #pragma MOD167 For C167 CPUs

	Appendix D
	BSI Definition Of Year 2000 Compliance – Keil C166 Tools

	Appendix E
	Results Log Of PARANOIA Test For KEIL C166 v3.12j
	Results Log Of PARANOIA Test For Microsoft C v11.00

	Appendix F
	Plum-Hall test summary files.
	Invocation Batch File
	Summary File 1
	Summary File 2
	Explanation Of Error Reports From The Plum Hall Test
	LANG Problem
	M61 Problem
	M64 Problem
	M65 Problem

	Appendix G
	Known Problems In C166 v3.12j

