
Grant Agreement: 287829

Comprehensive Modelling for Advanced Systems of Systems

Static Fault Analysis Support - Technical
Manual

Technical Note Number: D33.3b

Version: 1.1

Date: June 2014

Public Document

http://www.compass-research.eu

D33.3b - SFA - Technical Manual (Public)

Contributors:

Zoe Andrews, NCL
Richard Payne, NCL
Alexander Romanovsky, NCL
André Dider, UFPE
Alexandre Mota, UFPE

Editors:

Zoe Andrews, NCL
Richard Payne, NCL

Reviewers:

Alexandre Mota, UFPE
Joey Coleman, AU
Uwe Schulze, UB
Jan Peleska, UB

2

D33.3b - SFA - Technical Manual (Public)

Document History

Ver Date Author Description
0.01 18-06-2013 Richard Payne Initial document version
0.02 28-04-2014 Richard Payne Added initial introduction, HH profile,

related work
0.03 08-05-2014 Richard Payne Material added on Fault Analysis tool
0.04 16-05-2014 André Didier Material added on Fault Tolerance Plu-

gin, updated introduction and conclu-
sion accordingly

0.05 12-06-2014 André Didier Modified after reviewers’ comments
1.0 25-06-2014 Zoe Andrews Final version
1.1 07-07-2014 Richard Payne Minor corrections and removed line

numbers

3

D33.3b - SFA - Technical Manual (Public)

Summary

Work Package 33 delivers static analysis tool support for reasoning in SysML
and CML. This deliverable forms the documentation for Task 3.3.3 – static fault
analysis. Deliverable D33.3 forms two parts: executable code and documenta-
tion.

The documentation is provided in two documents. This document, D33.3b, is
the second part; the technical details of the static fault analysis support. D33.3b
provides details on: background material on static fault analysis; the development
of static fault analysis support for SysML; the SysML profile developed for static
fault analysis; the tool development for providing static fault analysis support
(via HiP-HOPS) in Artisan Studio; and the tool development for providing fault
tolerance verification in Symphony.

This part of the deliverable highlights the main achievements of Task 3.3.3:

• The Fault Analysis profile1 enables SoS engineers to develop fault analysis
models in SysML, allowing SoS models to be developed with failure data
and propagation logic decoration on the constituent parts of the SoS.

• Guidelines that describe how the fault modelling approach detailed in D24.2
can be used as input for the Fault Analysis Models and their analysis in HiP-
HOPS.

• A SysML to XML mapping and translation provides the ability to analyse
the Fault Analysis Model using the Fault Analysis Tool (via HiP-HOPS).

• Ergonomic profiling in Artisan Studio facilitates the definition of Fault Anal-
ysis Models in the SysML toolset and provides basic static checks on the
model.

• A SysML to CML mapping extension provides the ability to translate mod-
els (as per D24.2) of fault-tolerant SoSs from SysML into CML with a Sym-
phony plugin specifically designed for fault tolerance verification.

The first part of the Deliverable, D33.3a - User Manual, provides details on ob-
taining and installing the Fault Analysis Tool for SysML and fault tolerance verifi-
cation for CML, and also how to use the static Fault Analysis Tool within Artisan
Studio and the fault tolerance verification plugin in Symphony.

1Full name: Static Fault Analysis Profile

4

D33.3b - SFA - Technical Manual (Public)

Contents
1 Introduction 6

2 Related Work 7
2.1 Fault Analysis Tool Requirements 7
2.2 Fault Analysis Tool Comparison 7
2.3 Fault Analysis Tool Conclusion 12

3 HiP-HOPS Fault Analysis in SysML 14
3.1 The Fault Analysis Architectural Framework 14
3.2 Ergonomic Profiling in Artisan Studio 20
3.3 SysML to HiP-HOPS XML Translation 23
3.4 Discussion: From Fault Modelling to Fault Analysis 27

4 SysML to CML for Fault Tolerance Verification 30
4.1 Plugin architecture . 32

5 Conclusions 36

A Fault Analysis Architectural Framework Additional Diagrams 38
A.1 Fault Analysis Architectural Framework Viewpoint Definitions . . 38
A.2 Rule Definition Views . 46

5

D33.3b - SFA - Technical Manual (Public)

1 Introduction

This task continues work in fault modelling in Task 2.4.2, providing static fault
analysis in SysML and CML. There are two strands of work reported in this doc-
ument: i) fault analysis in SysML; and ii) fault tolerance verification in CML.
For both strands we propose the use of SysML for high-level SoS architectural
modelling as used in the COMPASS project.

We take slightly different approaches in the two strands. In the first strand, given
an SoS architectural model defined using SysML, we propose the use of a SysML
profile to markup the model elements with failure data and failure propagation
annotations. The SysML model may then be processed and output to an external
fault analysis tool (HiP-HOPS [PWP+11]) which produces fault trees and FMEA
tables.

In the second strand, we continue on the fault modelling work of Task 2.4.2
through the automatic translation of SysML models defined using the Fault Mod-
elling Architectural Framework into CML and performing formal verification to
ensure the correctness of recovery mechanisms in a SoS model. In the occurrence
of a fault, a recovery mechanism in a fault-tolerant system model puts the system
into the same state as if the fault had not happened. The success in the formal
verification assures this behavior.

In Section 2, we compare several external fault analysis tools to determine the tool
which best suits our requirements. Section 3 describes the first strand of work –
fault analysis in SysML, and in Section 4 we describe the second strand – fault
tolerance verification in CML. Finally we draw conclusions and discuss future
work in Section 5.

6

D33.3b - SFA - Technical Manual (Public)

2 Related Work

In this section, we consider possible external fault analysis tools that can be used
in T3.3.3. We first define requirements for such a tool, then consider each tool in
turn. Finally, given our requirements, we draw conclusions for the justification of
the selected tool.

2.1 Fault Analysis Tool Requirements

In this section we show a criteria list for choosing a tool to be used for static fault
analysis.

Active Development Is the tool still supported by the tool providers? Is there any
active development to the tool? How stable is the tool?

Inputs How are models input into the tool? Can models be developed in external
modelling tools and be provided as input to the (analysis) tool?

Scope for use with SysML If externally developed models may be input, how
close is the required syntax to SysML? Can models be easily translated?

Analysis Performed What analysis is performed by the tool? In Static Fault
Analysis, we require fault tree analysis – both qualitative (cut sets etc.) and
quantitative (e.g. probability of a failure occurring within x time units). It
would also be beneficial for a tool to output the complete fault tree to enable
custom analysis, such as determining the causal chain of a fault in order to
identify suitable recovery points.

Outputs How are results provided to the user? Can they be used by external tools
(e.g. Artisan Studio)?

Openness Is the tool commercial, free or open source? Is there a version of the
tool (full or trial) readily available (for testing purposes)?

2.2 Fault Analysis Tool Comparison

2.2.1 HiP-HOPS

HiP-HOPS (Hierarchically Performed Hazard Origin & Propagation Studies)2 is
a compositional safety analysis tool [PWP+11] which creates fault trees given

2http://hip-hops.eu

7

http://hip-hops.eu

D33.3b - SFA - Technical Manual (Public)

failure data of the components of a system, the deviations at component’s outputs
and the ways in which the failures may propagate through the system. The fault
trees are analysed and results output by the tool.

Active Development

The tool is being used in the MAENAD3 EU project and is actively supported.
The latest version of the tool was released in October 20124.

Inputs

The tool may be executed from the command line and takes, as an input, an an-
notated model in the form of an XML file. This file uses a schema file (written
in XSD) to define the syntax required by HiP-HOPS. Documentation is available
which describes the required XML syntax. The HiP-HOPS tool provided may
be run within Matlab/Simulink, in which annotated system models may be de-
fined. These models are, however, simply output as XML. Therefore HiP-HOPS
is compatible with an external modelling tool.

Scope for use with SysML

Given the XSD schema mentioned above, we may generate an XML file using
an external modelling tool. Using the Artisan Studio API we may translate the
model to an XML file. Alternatively, we could consider translating the underlying
XMI file to the HiP-HOPS XML file, though this would require Artisan Studio to
output profiled data to the XMI file. The format of HiP-HOPS input files appears
straightforward to replicate given a SysML model.

The system model aspect is simply a hierarchical description, with a system com-
posed of components, linked by their ports. Each component may be further de-
fined as a system. This architectural structure could be modelled in the internal
block diagram (IBD) of SysML. The additional failure annotations may be pro-
vided by a SysML profile.

Analysis Performed

HiP-HOPS generates (synthesises) fault trees, given an annotated system model.
These trees are created by combining the local failure data of system components
and subsystems. The fault trees are analysed to first obtain minimal cut sets, and
then used for quantitative analysis and the FMEA. The FMEA indicates the causes
of system failures by individual component failures.

3http://www.maenad.eu/
4According to the last modified date of the executable file available on the website. Note that

the tool has been updated since this comparison was carried out, latest version now March 2014.

8

http://www.maenad.eu/

D33.3b - SFA - Technical Manual (Public)

Outputs

The results are output in XML form, which are used to produce HTML documents
containing the fault tree, cut sets and FMEA data. It is possible that the XML
document could also be interpreted by Artisan Studio to provide a representation
of the results in SysML.

Openness

The HiP-HOPS tool is a closed commercial tool, but it does have a freely available
evaluation version that allows analysis of models with no more than 20 compo-
nents.

2.2.2 AltaRica with ARC

AltaRica5 is a formal modelling language used to describe hierarchical models
– which may include states and events, thus allowing behaviour of dynamic and
state-based models. AltaRica’s project had three phases, two phases in four years
to achieve the formal language and two years to build the workbench.

The ARC tool6 supports model checking for the AltaRica modelling language.
The ARC model checker has been extended with functionality to generate mini-
mal cut sets and “minimal sequences” (ordered sequences) of failure events from
an annotated AltaRica model [GPKV11].

Active Development

The ARC model checker was last updated in June 2013. The report on the ex-
tension to generate minimal cuts was published in October 2011. As there is
commonality between the authors of this report and the ARC tool developers it is
assumed that there is continued support for these features in the ARC tool.

Inputs

The input is an AltaRica model, which is assumed to be a textual file with a .alt
extension. The file specifies components as nodes which have “containers” for
defining states, events, transitions and subnodes.

Scope for use with SysML

The textual input format for the model checker can generated by the Artisan Studio
API to translate from a SysML model.

5https://altarica.labri.fr/forge/
6https://altarica.labri.fr/forge/projects/arc

9

https://altarica.labri.fr/forge/
https://altarica.labri.fr/forge/projects/arc

D33.3b - SFA - Technical Manual (Public)

AltaRica models are more focused on states and state transitions than hierarchi-
cal descriptions, so state machines (or possibly activity diagrams) appear to be
the closest SysML diagrams to an AltaRica model. Whilst an AltaRica model is
based on a labelled transition system (which should translate from SysML state
machines relatively easily) there are features of the language that would need fur-
ther investigation such as flows and synchronisation vectors. The fault modelling
aspects also require “tags” (which could be modelled by stereotypes in SysML)
to be added to the model.

Analysis Performed

The analysis is aimed at systems with many states and to ensure scalability the
results are limited to minimal cuts and minimal sequences. It is therefore not
possible to obtain the complete fault tree or FMEA tables and quantitative analysis
is not considered.

Outputs

The exact nature of the output format is unknown, but appears to just be a com-
mand line output. It is possible to generate a .dot file that can be opened in a Dot
Viewer tool7.

Openness

The ARC tool is open source and freely available. It is assumed that this is also
the case for the fault analysis extension.

2.2.3 FSAP/NuSMV-SA

Formal Safety Analysis Platform (FSAP) is a graphical interface for the NuSMV-
SA model checking and safety analysis engine8.

FSAP aims to provide support to GFML (Generic Failure Mode Library), GSRL
(Generic Safety Requirements Library), custom failures, results and fault tree
viewers.

NuSMV-SA is an extension to the NuSMV symbolic model checker9 providing
safety analysis capabilities (CTL and LTL property checking and invariant for-
mula simulation). The additions to NuSMV include: fault tree construction,

7DOT file format: http://en.wikipedia.org/wiki/DOT_(graph_
description_language)

8https://es.fbk.eu/tools/FSAP/
9http://nusmv.fbk.eu/

10

http://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://es.fbk.eu/tools/FSAP/
http://nusmv.fbk.eu/

D33.3b - SFA - Technical Manual (Public)

traces for minimal cut set, ordering analysis of minimal cut sets and FMEA ta-
bles. NuSMV-SA may be run independently of FSAP, although it is not possible
to get only NuSMV-SA. FSAP and NuSMV-SA are available together.

FSAP is available for evaluation or teaching purposes. To get a license, one should
contact FSAP team at: fsap@fbk.eu.

Note that Mhenni et al. [MCR+12, MNKC13] also propose a methodology using
NuSMV for model checking safety requirements, but this does not include safety
analysis such as FTA or FMEA. For this they propose to link to MeDISIS, but have
not implemented this link due to the inaccessibility of the tools [MCR+12].

Active Development The latest release of NuSMV (v2.5.4) was in October 2011.
The latest release for FSAP/NuSMV-SA (v1.2.4) was announced in December
2006.

Inputs FSAP/NuSMV-SA appears10 to take an XML file as input for failure anno-
tations (they call it a SAT, Safety Analysis Task) along with a textual SMV file for
the system model. Safety properties are written in CTL or LTL. A pattern library
of safety properties appears to be included within the tool.

Scope for use with SysML Whilst there appears to be an XML format for in-
putting failure annotations, there was no XSD file readily available11 to determine
its format, only a number of examples12. If this format were available it would
probably be feasible to generate this file and the SMV file of the system behaviour
from a SysML model.

Analysis Performed The tool appears to perform model checking of safety prop-
erties as well as FTA, FMEA and simulation-based analysis.

Outputs The fault tree analysis appears to output its results in two text files: one
for the events and one for the gates. Ordering and traces about minimal cut sets,
as well as FMEA tables are also output as text files.

Openness FSAP/NuSMV-SA is an in-development tool. The tool appears not to
be fully developed and only available (outside of the projects for which it was
developed) for evaluation and teaching purposes.

10https://es.fbk.eu/tools/FSAP/screenshots.html
11Correct at the time of exploring the fault analysis tool options
12https://es.fbk.eu/tools/FSAP/examples/

11

mailto:fsap@fbk.eu?subject=License for evaluation at COMPASS project --- http://compass-research.eu
https://es.fbk.eu/tools/FSAP/screenshots.html
https://es.fbk.eu/tools/FSAP/examples/

D33.3b - SFA - Technical Manual (Public)

2.2.4 MeDISIS

MéDISIS is a method (not yet a tool) presented in [DIK10, CIKD11] based on
SysML and AltaRica concepts. In [DIK10] they define an algorithm that can be
easily implemented in tools like Artisan Studio. The main contribution of the
method is that it uses AltaRica’s concept of flows, as it has not been handled
directly in other approaches using UML or AADL and is a basic feature consid-
ering systems modelling. Depending on the level of architecture modelling, it is
also suitable for SoS.

It also provides a database of “dysfunctional behaviour” (erroneous behaviour)
for standard components that enforces knowledge reuse by using, checking and
updating it within some company [CDIK13].

In [CDIK13], the following analyses are performed using the MéDISIS method:

FMEA Automatic synthesis of FMEA table for failure modes study.

AltaRica Mapping to evaluate failure scenarios.

Simulink Conversion to Simulink to perform simulation and fault injection.

2.2.5 MDA

MDA is an approach that uses Model-based Deviation Analysis [HCW02]. It
consists of formally modelling the nominal behaviour of the system and mod-
elling deviations either in parallel with the nominal model or in its input – defined
using NuSMV. As it is more concerned about input values, it may not apply to
all SoS architectures and system types. In [JHMW06], the authors show how to
model deviations directly in Simulink for Model-based Safety Analysis, but sug-
gest that a better approach is to insert deviations automatically, which is left as
future work.

2.3 Fault Analysis Tool Conclusion

Overall the HiP-HOPS tool was chosen because:

• Its use of a standardised XML interface complete with documentation on
how to use it and XSD files of the expected format made it feasible to link
it up with Artisan Studio

12

D33.3b - SFA - Technical Manual (Public)

• It produces full fault trees, not just cut sets. Such provision of more detailed
results enables a deeper understanding of the system, as well as quantitative
analysis and optimisation

• It is a mature and industry strength tool with active development. Therefore
not only would the Fault Analysis Tool we developed be more future proof
than comparable alternatives, but also the developers of HiP-HOPS would
be available to provide us with any extra information we needed to develop
the Fault Analysis Tool

The main downside of the HiP-HOPS tool is that it is not free, but it seems to be
the case that all industrial strength tools for fault analysis are commercial. The
availability of an evaluation version of HiP-HOPS makes it possible to explore
the functionality of the tool without having to purchase it.

13

D33.3b - SFA - Technical Manual (Public)

3 HiP-HOPS Fault Analysis in SysML

This task develops an extension to the SysML tool Artisan studio by implementing
support for a Fault Analysis framework, in the form of a Fault Analysis SysML
profile, and the necessary tool development to enable fault analysis of a SysML
model using the external HiP-HOPS tool.

In Section 3.1 we define the Fault Analysis Architectural Framework. This frame-
work is defined using the COMPASS AF Framework (CAFF) [HHP+13]. Given
the Fault Analysis Architectural Framework definition, three subsequent tasks are
required to produce robust, usable fault analysis tools:

1. a consistent embedding of the Fault Analysis Architectural Framework in
the form of a SysML profile in Artisan Studio – the Fault Analysis profile,
which is usable by SoS engineers familiar with SysML modelling;

2. the translation of a SysML model which applies the Fault Analysis profile
to the notation required by the HiP-HOPS tool – XML; and

3. providing the ability to run the analysis from within Artisan Studio.

This tooling effort is outlined in Figure 1.

Ergonomic Profiling

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts

Diagram Creation
Scripts

XML HiP-HOPS

SysML to HiP-HOPS translation

Future Work

Diagram Creation
Scripts

Diagram Creation
Scripts

Diagram Creation
Scripts

Figure 1: Fault Analysis tool chain

In Section 3.2 we describe briefly the ergonomic profiling for Artisan Studio,
which addresses Task 1 above. The SysML to XML translation and analysis tool
that execution addresses Tasks 2 and 3 above is summarised in Section 3.3.

3.1 The Fault Analysis Architectural Framework

In the Fault Analysis Architectural Framework, we use the HiP-HOPS concepts
and map the required input to a SysML model. In this section, we apply the CAFF
to define the Fault Analysis Architectural Framework. The CAFF approach re-
quires that viewpoints are identified for a pattern or architectural framework (in

14

D33.3b - SFA - Technical Manual (Public)

this case the relationships between those viewpoints are described) and the syn-
tax (or permitted modelling elements) of the viewpoints are defined. The CAFF
approach also advocates recording the context of the pattern and its viewpoints,
typically through use cases, and a collection of rules which constrain the view-
points.

We first define the ontology, the collection of concepts that are used when defin-
ing the profile stereotypes. Subsequently, we identify the Fault Analysis Archi-
tectural Framework views, the relationships between those views in a Viewpoint
Relationship View, define each view with Viewpoint Definition Views and finally
provide rules for each viewpoint, in Rule Definition Views. Contrary to the CAFF
approach, we do not define use cases for the Fault Analysis Architectural Frame-
work or its viewpoints.

3.1.1 Ontology and Concepts

The ontology and concepts of the Fault Analysis Architectural Framework are
given in this section. In Figure 2, the top-level element is the Fault Analysis
Model, which contains the SoS and a collection of Optimisation Parameters for
the model. Note that whilst we base our terminology on that used in HiP-HOPS,
we adjust the terms somewhat to use the language of SoS – hence the use of an
SoS model element, and subsequent use of Constituent systems.

At the next level, in Figure 3, the SoS contains a collection of Constituents and
Lines. Constituents have Ports which are connected by (SysML) Connectors and
those Connectors are combined to form multiway connectors known as Lines.
Each Constituent must have at least one Implementation, which may in turn con-
tain a collection of Components and Lines. Each Component must have at least
one Implementation, which can be broken down into further Components and
Lines.

The Failure Logic ontology is given in Figure 4. A Line End, representing an
endpoint of a Line, contains optional Propagation Logic. The Propagation Logic
contains compulsory Port Expressions and optional Failure Classes. In addition,
an Implementation may contain Basic Events and Output Deviations. The Output
Deviations reference a Port contained by the Constituent/Component owning the
Implementation.

15

D33.3b - SFA - Technical Manual (Public)

Figure 2: HiP-HOPS Ontology – Model Concepts

16

D33.3b - SFA - Technical Manual (Public)

Figure 3: Fault Analysis Architectural Framework Ontology – Structural Concepts

17

D33.3b - SFA - Technical Manual (Public)

Figure 4: Fault Analysis Architectural Framework Ontology – Failure Logic Con-
cepts

18

D33.3b - SFA - Technical Manual (Public)

3.1.2 Fault Analysis Architectural Framework Viewpoints and Their Rela-
tionships

The Fault Analysis Architectural Framework has several viewpoints shown in Fig-
ure 5, divided into three broad categories: the Model Definition, Structure and
Failure Logic. The Model Definition contains a single viewpoint: the Model
and Optimisation Definition Viewpoint. There are four Structural viewpoints:
SoS Definition Viewpoint, SoS Connections Viewpoint, Implementation Definition
Viewpoint and Implementation Connections Viewpoint. There are three Failure
Logic viewpoints: Failure Class Definition Viewpoint, Line Definition Viewpoint
and Implementation Failure Definition Viewpoint.

Figure 5: Fault Analysis Architectural Framework Profile Viewpoints

From Figure 6, we see that the Model and Optimisation Definition Viewpoint iden-
tifies the SoS to analyse. The SoS is subsequently defined in the SoS Definition
Viewpoint in terms of its Constituent Systems (CSs) and Lines. The SoS Connec-
tions Viewpoint describes the connections between the CSs. Lines are associated
with the connectors that they combine to form multiway connectors. The CSs
identified in the SoS Definition Viewpoint have their Implementations defined in

19

D33.3b - SFA - Technical Manual (Public)

Implementation Definition Viewpoints. This viewpoint defines Implementations in
terms of their Components and Lines. Each Component has an associated Imple-
mentation Definition Viewpoint in which its Implementation is defined and may
be further decomposed into sub-components and Lines. The components iden-
tified in an Implementation Definition Viewpoint are connected in an Implemen-
tation Connection Viewpoint, and Lines are associated with the connectors that
they combine to form multiway connectors. The Lines identified in the SoS Def-
inition Viewpoint and Implementation Definition Viewpoints are defined in Line
Definition Viewpoints. The failure information for Implementations is defined in
Implementation Failure Definition Viewpoints. Finally the Failure Classes used
in Line Definition Viewpoints and Implementation Failure Definition Viewpoints
are defined in a Failure Class Definition Viewpoint.

Figure 6: Fault Analysis Architectural Framework Profile Viewpoint Relationship
View

The viewpoints are described briefly in Table 1. The remainder of the CAFF views
for the Fault Analysis Architectural Framework are given in Appendix A.

3.2 Ergonomic Profiling in Artisan Studio

The ergonomic profiling available in Artisan Studio is a feature enabling the mod-
ification of the tool GUI to provide more comprehensive profile support. This
section describes the ergonomic profiling effort indicated in Figure 7.

In this task, we implemented: GUI scripts for toolbars; scripts to automate Fault
Analysis diagram creation; and scripts for derived tags. The purpose of these tasks
are to aid in the construction of Fault Analysis models, and as such we believe

20

D33.3b - SFA - Technical Manual (Public)

Table 1: The Fault Analysis Architectural Framework viewpoints

Name Purpose of Viewpoint
Model and Optimisation
Definition

Defines the global parameters of an Fault
Analysis Model, including parameters for opti-
misation (if required).

SoS Definition Defines the SoS in terms of its Constituents
and Lines.

SoS Connections Shows the connections between the Con-
stituents of an SoS and associates each con-
nection with a Line.

Implementation Definition Defines an Implementation of a Constituent or
a Component in terms of its Components and
Lines.

Implementation Connections Shows the connections between the Compo-
nents of an Implementation and associates each
connection with a Line.

Failure Class Definition Defines the possible Failure Classes of the
Fault Analysis Model.

Implementation Failure Defi-
nition

Defines the Basic Events of an Implementation
along with its Output Deviations.

Line Definition Defines the Propagation Logic associated with
each end of a Line.

Ergonomic Profiling

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts

Diagram Creation
Scripts

XML HiP-HOPS

SysML to HiP-HOPS translation

Future Work

Diagram Creation
Scripts

Diagram Creation
Scripts

Diagram Creation
Scripts

Figure 7: Ergonomic profiling in the Fault Analysis tool chain

21

D33.3b - SFA - Technical Manual (Public)

that these are best seen through the user manual (part A of this deliverable) and
through the use of the tool. In this section, therefore, we provide an overview of
the the final ergonomic profiling task from this collection of implementations: the
derived tags.

3.2.1 Derived Tag Scripts

We concentrate on the derived tag scripts due to the fact that these derived tags
enable a degree of model validation and prevention of compatibility issues (with
HiP-HOPS). The derived tags broadly fall under five categories:

1. Those that highlight the composition and aggregation relationships that have
been defined for a block. The reasoning behind this is that such a re-
lationship can be defined in the SysML model without being visible on
any diagrams. This enables the user to validate the relationships that have
been defined. The derived tags that fall under this category are: hiphops-
has-optimisation-params, hiphops-has-objective, hiphops-has-constituent,
hiphops-has-line, hiphops-has-component, hiphops-has-output-deviation,
hiphops-has-basic-event and hiphops-has-propagation-logic.

2. Those that highlight other relationships that have been defined for a model
element or view. Similarly to the previous set of derived scripts, some other
relationships (such as generalisation) may be defined but not visible in any
views so these are highlighted to enable user validation. The derived tags
that fall under this category are: hiphops-has-port, hiphops-is-implemented-
by and hiphops-includes-connector. Derived tags may also be used in this
way to prevent a user entering redundant data – this is the case for the de-
rived tag hiphops-model-fail-classes. This tag identifies the valid Failure
Classes defined in a given view and allows the user to just identify the view
in which Failure Classes of a Fault Analysis Model are defined.

3. Those that provide additional details about a model element that is being
referenced in another tag. For example, when referencing a port the default
is to just show the name of the port in the tag – sometimes it is useful to
know which block owns the port as well. The derived tags that fall under this
category are: hiphops-connectors-full-names and hiphops-full-port-name.

4. Those that provide information about the tool being used to define the Fault
Analysis Model (and also the version of the Fault Analysis Model) for de-
bugging purposes. The derived tags that fall under this category are: hiphops-
tool-name, hiphops-tool-version and hiphops-model-version.

22

D33.3b - SFA - Technical Manual (Public)

5. Those that check the name and description of model elements comply with
HiP-HOPS restrictions on these values. If an invalid character is used in the
name or description of model elements it is either removed or replaced by a
valid character in the respective derived tag. The user can then inspect the
derived tag to determine how their model elements will be named according
to the HiP-HOPS model and analysis. The derived tags that fall under this
category are: hiphops-identifier and hiphops-description.

3.3 SysML to HiP-HOPS XML Translation

The Fault Analysis Tool (executable) for Artisan Studio translates a SysML model,
defined using the Fault Analysis Architectural Framework, into an XML file con-
forming to the HiP-HOPS XML schema as indicated in Figure 8.

Ergonomic Profiling

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts

Diagram Creation
Scripts

XML HiP-HOPS

SysML to HiP-HOPS translation

Future Work

Diagram Creation
Scripts

Diagram Creation
Scripts

Diagram Creation
Scripts

Figure 8: Translation in the Fault Analysis tool chain

The translation also performs error checking to ensure that the model being trans-
lated conforms to the schema and meets the (informally defined) consistency and
correctness rules for the HiP-HOPS tool. The Fault Analysis Tool was devel-
oped as a VB.Net application and built as an executable that may be launched
through Artisan Studio. The application architecture is outlined in Figure 9. The
SysMLtoHiPHOPS.vbmodule receives input from the user in the form of inter-
action with GUI elements. This module has several routines which invoke func-
tions and routines of the underlying SysML2HH.vb module. Two ‘helper’ mod-
ules provide: constant values of the required Artisan Studio stereotype identifiers
(Stereotypes.vb); and functions for error checking and generating unavail-
ability formulae (SysML2HHUtilities.vb). The application developed also
includes two further modules, one that defines some generic helper functions for
use with Artisan Studio (StudioUtils.vb) and one that defines an exception
class for the purposes of error handling (Exceptions.vb).

The SysML model queries are performed using the Artisan Studio API – using

23

D33.3b - SFA - Technical Manual (Public)

routines
GetModel_Click
GenerateXML_Click
ChooseFolder_Click
OpenFile_Click
AnalyseModel_Click
OptimiseModel_Click

attributes
artSelectedItem : CCaseProjects
bValidModel : Boolean
sDestFolder : String
sGenFilePathName : String

SysMLtoHiPHOPS

functions/subroutines
GetSelectedItem
CheckHHModel
GenerateXML
TraverseModel
GetModelInfo
SetValidFailureClasses
GetObjective
GetSoS
GetSystem
GetComponent
GetImplementation
GetBasicEvent
GetOutputDev
GetLine
GetConnection

attributes
Studio : StudioGUIInterface
bSoSOutput : Boolean
dModelRiskTime : Double
sValidFClasses : String

SysML2HH

attributes
cModelStr : String
cSoSStr : String
cOptParamsStr : String
cLineStr : String
cImplStr : String
cSoSCVStr : String
cICVStr : String
cConstitStr : String
cImplStr : String
cBasicEventStr : String
cOutputDevStr: String

Sterotypes

functions/subroutines
GetUnavailForm
CheckNumParams
CheckOptParams
CheckOutputDevPort
CheckFailureExpression
CheckFailureExpressionTerm
CheckParentheses
MatchingIndex
CheckLineEndPorts
GetValidPortsConns
ExpandGraph
GetValidPortsDep
SimplePortExpression
CheckPortExpression
CheckPortExpressionTerm
SysML2Double
SysML2Integer
CheckForEmptyString

SysML2HHUtilities

uses helper
functions

uses to check model
and generate XML

uses constant
values

Figure 9: Fault Analysis tool architecture

Automation13. Automation provides the Fault Analysis Tool with the ability to
make requests to Artisan Studio through its API – requiring Artisan Studio to
be running, the relevant SysML model to be open and a specific model element
to be selected – in this case a Fault Analysis Model model element. The Fault
Analysis Tool is supplied as a GUI application, initiated through context menus
in Artisan Studio. The application has a series of behaviours based on button-
oriented interaction.

3.3.1 Fault Analysis Tool Behaviour

In this section, we briefly discuss the typical flow of behaviour of the tool. All
behaviours originate in the SysMLtoHiPHOPS.vb module.

Choose save destination The ChooseFolder Click routine, executed on the
press of the ‘Choose Folder’ button, provides a selection interface to the
users file system via the built-in FolderBrowserDialog class. The se-

13http://msdn.microsoft.com/en-us/library/windows/desktop/
ff486375(v=vs.85).aspx

24

http://msdn.microsoft.com/en-us/library/windows/desktop/ff486375(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff486375(v=vs.85).aspx

D33.3b - SFA - Technical Manual (Public)

lected destination is stored ready for use when saving the generated XML
file and HiP-HOPS results.

Obtain model The GetModel Click routine, executed on the press of the
‘Get Model’ button, identifies which item has been selected in Artisan Stu-
dio and checks that it is a Fault Analysis Model. The currently selected
item is obtained through a call to the GetSelectedItem routine of the
SysML2HH.vb class which queries the Artisan Studio API, and a call to
the CheckHHModel queries the selected model and tests if it has the cor-
rect stereotype applied. The user may not proceed until they have selected
the appropriate model element.

Generate XML File The GenerateXML Click, invoked upon pressing the
‘Generate XML’ button, first checks that the previous steps have been per-
formed successfully. If this is the case, a call is made to the GenerateXML
routine of the SysML2HH.vb class. This routine creates an XDocument
(XML) object, populates the object through a call to the TraverseModel
routine and saves the file to the specified location. The TraverseModel
routine traverses the Fault Analysis Model in Artisan Studio and produces
the required XML tags and data (that conform to the HiP-HOPS XML
schema). This, and subsequently invoked routines, form the bulk of the
functionality of the Fault Analysis Tool. The traversal and XML document
population is in itself not complex, however this process does include error
checking that is described in more detail in Section 3.3.2.

Perform fault analysis and model optimisation The final behaviours provided
by the Fault Analysis Tool are given in the AnalyseModel Click and
OptimiseModel Click routines. The two behaviours take the gener-
ated XML file, and execute the HiP-HOPS program as a system process.
Results are given in an XML file (at a user-specified destination) and dis-
played by HiP-HOPS in a web browser.

3.3.2 Fault Analysis Tool Error Checking

In this section we outline the error checking that is implemented within the Fault
Analysis Tool in order to ensure that the model created in SysML is compatible
with the HiP-HOPS tool. A custom defined exception SysML2HHException
has been defined to handle issues with the compatibility of the SysML model with
the requirements for the HiP-HOPS tool. The SysML2HHException inherits
the functionality of the (standard) ApplicationException. The exception
is caught by the GenerateXML Click sub-routine, which alerts the user to

25

D33.3b - SFA - Technical Manual (Public)

the issue via a MsgBox and outputs the error message from the exception to the
Generation status text box on the Fault Analysis Tool.

The error checking code falls under one of four categories:

Non-empty tags Certain information is required for analysis of the model, mean-
ing that a number of the tags may not be empty (see Appendix A of D33.3a).
This is a straightforward check that utilises the CheckForEmptyString
sub-routine for “value-type”14 variables and is carried out inline with other
error checking and model processing for “object-type” variables. In addi-
tion to those tags listed in Appendix A of D33.3a, the Fault Analysis Tool
also checks that each model element has a non-empty identifier (in theory,
this is a redundant checking mechanism because Artisan Studio should not
allow empty identifiers).

Numerical tags Some of the tags require numerical input, but numerical types
cannot be specified for tags in Artisan Studio therefore a text type has been
used for these tags and error checking in the Fault Analysis Tool ensures that
numerical values have been provided for these tags. To do this the functions
SysML2Integer and SysML2Double have been defined to parse the
tag into an integer type or double type respectively. If this parsing fails an
exception is thrown with a suitable error message.

Tag formatting constraints Some other tags have quite strict formatting require-
ments to enable analysis of the model. For example, the Unavailability for-
mula of a Basic Event requires the format type(paramId1=value1;
paramId2=value2; ...) where type, paramId1, paramId2 are
restricted to specific string literals and value1 and value2 are numeri-
cal values. The sub-routine GetUnavailForm is used to parse this ex-
pression to convert it to HiP-HOPS format and check for formatting errors.
Other constraints have similar sub-routines to parse and check the data. See
Section 2.2.6 of D33.3a for instructions on how to find out the formatting
constraints for a given tag.

Model level constraints There are also a number of constraints that go across
several model elements, for instance there must be at least one Output De-
viation that is classified as an SoS output. These constraints are detailed in
Appendix A of D33.3a and conformance to these constraints are checked in
the Fault Analysis Tool (except where stated). For the example given, the
variable bSoSOutput is initially set to False and is updated to True
when an Output Deviation that has its tag SoS output set to “true” is found.

14Attributes of a model element are either stored as an object for all attributes that reference
other model elements and as a string for all other attributes.

26

D33.3b - SFA - Technical Manual (Public)

If the value of bSoSOutput is still False after the whole model has been
parsed an exception is thrown.

3.4 Discussion: From Fault Modelling to Fault Analysis

In this section, we provide some initial, informal, discussion of links between pre-
vious work on the Fault Modelling Architectural Framework and the Fault Anal-
ysis Architectural Framework.

3.4.1 The Fault Modelling Architectural Framework

In our previous work we developed a Fault Modelling Architectural Framework
(FMAF) for designing fault-tolerant SoSs [ADP+13] and demonstrated how fault-
tolerant properties of such models could be verified [APR+13]. The FMAF de-
fines a set of viewpoints that prompts an SoS developer to consider the impact of
faults at the early stages of design, resulting in a coherent set of views that aid the
stakeholders of the SoS to understand its erroneous and recovery behaviour.

The FMAF has been developed with respect to established dependability concepts
[ALRL04]. An SoS failure [AIP+14] is defined as a deviation of the service pro-
vided by the SoS from expected (correct) behaviour. An error is defined as the
part of the SoS state that can lead to its subsequent service failure. The adjudged
or hypothesised cause of an error is called a fault and (in keeping with our cho-
sen nomenclature) a failure of a constituent system (CS) can cause a fault of the
SoS.

The set of viewpoints prescribed by the FMAF provide an approach for defin-
ing:

• faults, errors and failures of SoSs;

• relationships between faults, errors and failures and CSs;

• structural designs that enable fault tolerance;

• the behaviour of the SoS in the presence of errors; and

• the recovery behaviour provided by CSs.

For further details of these viewpoints, see [ADP+13].

27

D33.3b - SFA - Technical Manual (Public)

3.4.2 Relationship with FMAF

The Fault Analysis Architectural Framework and FMAF are defined using a com-
mon framework – the CAFF. We may therefore make extensions and also combine
them using their ontologies to identify shared modelling elements and relation-
ships. In this section, we briefly consider the areas in which the Fault Analysis
Architectural Framework and FMAF overlap.

The Fault Analysis Architectural Framework and the FMAF can be used in combi-
nation to provide a consistent and complementary set of fault-explicit viewpoints
of an SoS model. The structural viewpoints of the FMAF could be used to de-
rive and provide a skeleton Fault Analysis model – identifying the CSs making
up the SoS and their composition. These elements may be used to populate initial
SoS Definition, SoS Connections, Implementation Definition and Implementation
Connections views. Note – the Line and Line End elements can not be derived
from the FMAF, and therefore must be added (along with any Propagation Logic
elements) manually in the Fault Analysis Architectural Framework.

Both aspects of the model should have a consistent understanding of the faults, er-
rors and failures of the SoS. To achieve this we recommend that a single definition
of these is used for both sets of viewpoints, by making use of the FMAF Fault/Er-
ror/Failure Definition Viewpoint (FEFDV). The FEFDV provides details of all of
the relevant faults, errors and failures of the SoS and identifies any relationships
that exist between them.

Given a model with a fully defined FEFDV, we suggest two key links to the Fault
Analysis Architectural Framework:

• Any fault located in a CS as identified in a FEFDV should be traceable to
a Basic Event in the Fault Analysis Architectural Framework. Conceivably,
the fault property as defined in the FMAF could be decorated with informa-
tion that may be used to derive Basic Events.

• A failure of the SoS as identified in a FEFDV should correspond to an Out-
put Deviation in the Fault Analysis Architectural Framework and that Out-
put Deviation should be identified as an SoS output. As above, failures in
the FMAF could be given additional information to populate the Output
Deviations in the Fault Analysis Architectural Framework.

Another source of Output Deviations may come from examining the scope of the
interruptible regions that represent erroneous behaviour within an FMAF Fault
Activation View. Further, FMAF Recovery Views could provide information about
how Constituents can mask faults (and as such give an indication as to when de-

28

D33.3b - SFA - Technical Manual (Public)

viations are not propagated across a Constituent).

Traceability links could be used as a semi-formal way (see for example [AIP+14])
of relating the complementary aspects of the Fault Analysis Architectural Frame-
work and the FMAF. This may utilise the Traceability Pattern as described in [Per13],
however the implementation of this is the subject of further research.

29

D33.3b - SFA - Technical Manual (Public)

4 SysML to CML for Fault Tolerance Verification

In this section we provide an overview of the fault tolerance verification plugin
for the Symphony tool platform15. The fault tolerance verification is based on
concepts from [Ros97, p. 313], extended to CML in [ADP+13]. This verifi-
cation provides static analysis for a given CML model using the CML model-
checker [FMDW13].

The plugin can check any well-formed CML model and relies on the modifications
of the SysML-to-CML mapping reported in [ADP+13] where SysML is used as
the starting point of SoS modelling. The modifications give a CML semantics for
those SysML fault-modelling elements.

The original definition of fault tolerance uses a stable failures refinement check
[ADP+13, p. 22]: Lazy refines NoFaults, for example. Currently, however,
the CML model-checker only supports deadlock-freedom, livelock-freedom, non-
determinism, and traces refinement verifications [FMDW13]. We therefore need
to adapt the original refinement check to use the supported checks. If we assume
deadlock-freedom of the process under analysis, the adaptation is possible via
a deadlock-freedom check of the parallel composition of the CML processes in
the original refinement check. For the above example, the refinement check is
equivalent to a deadlock-freedom verification of: Lazy [|Alpha|] NoFaults,
where Alpha is the alphabet of the selected process.

The implementation of the plugin followed the standard plugin development pro-
cedures for the Symphony tool platform (refer to [CMCP13] for more information
about plugin development for the Symphony Platform). The functional view of
the plugin is shown in Figure 10. The Fault Tolerance Plugin allows the user to
verify the correctness of the recovery mechanisms of a fault-tolerant system by
selecting a CML process and choosing the appropriate verification from a popup
menu. The plugin then:

1. Prepares files and folders for the selected CML process – the Model-Checker
file names are defined.

2. Schedules five Eclipse jobs for the selected CML process:

(a) Deadlock-freedom verification;

(b) Livelock-freedom verification;

(c) Semifairness verification;
15All references to Symphony and Symphony Platform are based on version 0.3.2 and the rele-

vant user manual [CMCP13].

30

D33.3b - SFA - Technical Manual (Public)

Figure 10: FT plugin functional view

(d) Full fault tolerance verification;

(e) Limited fault tolerance verification.

The first three of these verification jobs are explained in [ADP+13] and the
final two are replaced by a deadlock-freedom verification as explained at
the beginning of this section.

3. Checks the prerequisites for each job before their execution.

4. Dispatches each verification to the model-checker.

5. Handles the response, showing the results on the Symphony Platform.

The full fault tolerance verification considers all unwanted events, including un-
handled failures. The plugin warns the user if a model is fully fault-tolerant16.
The fault tolerance limited verification considers recovery of faults only (this be-
haviour can be customised to set the limiting conditions for this verification – see
D33.3a).

Recall that both fault tolerance verifications use a deadlock-freedom verification
of a parallel composition of processes. Those processes are:

Full fault tolerance a no faults and a lazy abstraction version of the selected
16Note that even in a well-designed system there are typically unrecoverable failures because

no system is infallible. Therefore full fault tolerance is usually not achievable.

31

D33.3b - SFA - Technical Manual (Public)

process.

Limited fault tolerance a no faults version of the selected process and a lazy
abstraction version limited to a subset of the unwanted events.

For each job listed above, we use a CML process definition template in the Message
.properties file. This template is used to generate a temporary CML file for the
selected process. For example, for a process with name P, the resultant temporary
CML file is:� �
process FT_P_Lazy = NoFaults_P [| Alpha_P |] Lazy_P

process Lazy_P =
begin
@ (P [| E |] ChaosE) \\ (E union H)

end

process NoFaults_P =
begin
@ (P [| E |] Stop) \\ H

end
� �
In this case, the deadlock-freedom verification runs on the process FT_P_Lazy

.

The generated CML files, in conjunction with the user-defined CML model and
the verification properties, are all dispatched to the CML model-checker. The
model-checker converts each property verification to a single FORMULA file. It
then runs the file and processes the results, which are formatted by the FT plugin
and shown to the user.

4.1 Plugin architecture

The plugin architecture follows Java programming best practices (design with re-
sponsibilities) and respects Symphony Platform structure.

The class diagram in Figure 11 shows the main classes of the plugin. The Select-
ProcessHandler class is responsible for selecting a CML process within the Sym-
phony Platform. After selecting the process, the class calls its abstract method
doOnSelectedProcess, which receives the process definition for which the ver-
ification is run. Subclasses override this method to inherit the process selection
heuristics and implement the behaviour for each user command. Subclasses Fault-

32

D33.3b - SFA - Technical Manual (Public)

Figure 11: FT plugin class diagram

33

D33.3b - SFA - Technical Manual (Public)

ToleranceVerificationHandler and ClearFaultToleranceHandler run the verifica-
tion and clear its results, respectively.

The sequence diagram in Figure 12 shows the sequence of methods for verifying
fault tolerance (class FaultToleranceVerificationHandler). Classes IFaultToler-

Figure 12: FT plugin sequence diagram and integration with the model-checker

anceVerificationRequest and IFaultToleranceVerificationResponse define methods
to access the required parameters for executing all verification jobs and to show
the results to the user. After their creation, instances of these classes are passed as
parameters to all of the following methods (prepareFolder, startJobs and create-
Jobs). Each job then gets the instance of model-checker’s FormulaIntegrator and
calls the analyseFile method.

34

D33.3b - SFA - Technical Manual (Public)

4.1.1 Scheduling mechanism

The most elaborate algorithm in the architecture is the scheduling of the verifica-
tion jobs, which establishes a sequence of execution. The algorithm allows some
jobs to run in parallel although this is not supported in the current version of the
model-checker. The model-checker has scalability issues for larger systems, so
it is important to run only essential jobs. The Fault Tolerance Plugin has been
implemented to support larger systems once the model-checker has been updated
to scale for larger systems.

The scheduling mechanism considers prerequisites for each job:

• Deadlock-freedom, divergence-freedom and semifairness jobs will only run
if all processes are fully defined in the CML model;

• Full fault tolerance jobs will only run if:

– All processes are defined;

– All processes are deadlock-free, divergence-free and semifair; and

– The limited fault tolerance verification has not yet been run or if the
process is limited fault-tolerant.

• Limited fault tolerance jobs will only run if:

– All processes are defined;

– All processes are deadlock-free, divergence-free and semifair; and

– The full fault tolerance verification has not yet been run or if the pro-
cess is not full fault-tolerant.

The jobs for deadlock-freedom, divergence-freedom and semifairness verifica-
tions can run in any order, but all three must run before limited and full fault
tolerance verification jobs. Full and limited fault tolerance verification jobs can
run in any order.

35

D33.3b - SFA - Technical Manual (Public)

5 Conclusions

In this deliverable, we have presented the static fault analysis plugin for Artisan
Studio and the fault tolerance plugin for the Symphony tool. The former allows a
SysML modeller the ability to: define an SoS model in terms of its structure; pro-
vide failure data for the constituent elements, propagation of SoS errors through to
SoS failures; and analyse the resulting model. The tool support constitutes SysML
profile support for the newly developed Fault Analysis Architectural Framework,
translation to XML and the invocation of an external fault analysis tool. The latter
plugin provides support for a CML modeller to verify the correctness of a recovery
mechanism, assuring the fault tolerance of the system model.

In the final section of this deliverable, we identify some areas of future work.
The Fault Analysis Tool for Artisan Studio provides a proof of concept for fault
analysis at the architectural modelling level. We see three main areas of future
work in relation to this tool:

• In Section 3.4 we identify the relationship of the Fault Analysis Architec-
tural Framework with previous work undertaken in fault modelling. Whilst
this is a clear piece of future work, we consider a more substantial piece of
work would be to consider the role of fault modelling and analysis in the
SoS engineering guidelines produced in [HPH+13]. We may consider, for
example the link between the needs and requirements of an SoS (and its
constituents) and the faults, errors and failures of an SoS. Related to this is
the possibility of using the results of analysis as a means to generate test
cases. Both of these areas require considerable additional work.

• In the current implementation, the results of the Fault Analysis Tool are
given in the form of an HTML page generated by HiP-HOPS. Future work
would be the the reporting of results within the SysML model, as indicated
in the tool chain in Figure 13. This requires the matching of the output of
the HiP-HOPS tool with the model elements in the original SysML model,
and a clear understanding of how best to interpret the results in the visual
language of SysML.

• Some aspects of the HiP-HOPS functionality are not yet supported in the
Fault Analysis Tool, in particular there is no support for multiple Perspec-
tives or for defining Hazards. Including support for Perspectives would al-
low hardware models to be separated from software models, thus enabling
separation of concerns and enriching the opportunities for defining fault
tolerance and optimising models. Hazards allow more complex failure sce-
narios to be defined. In future versions of the tool it would be valuable to

36

D33.3b - SFA - Technical Manual (Public)

explore extensions to the Fault Analysis Tool that include more advanced
features of HiP-HOPS such as these.

Ergonomic Profiling

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts XML HiP-HOPS

Artisan Studio

Fault Analysis Profile

Fault Analysis
executable

GUI Scripts Derived tag
Scripts

Diagram Creation
Scripts

XML HiP-HOPS

SysML to HiP-HOPS translation

Future Work

Diagram Creation
Scripts

Diagram Creation
Scripts

Diagram Creation
Scripts

Figure 13: Future work in the Fault Analysis tool chain

For the FT plugin, we showed in Section 4 that the original definition of fault
tolerance is achieved by a refinement-check, and we used an equivalent deadlock-
freedom verification due to a limitation of the CML model-checker. The equiva-
lence of these properties is only valid for deadlock-free processes. To overcome
this limitation, we need the model-checker to be able to verify CML refinements.
In this case, we would need to modify the plugin to run two property verifications
and two refinement verifications (instead of five property verifications).

37

D33.3b - SFA - Technical Manual (Public)

A Fault Analysis Architectural Framework Addi-
tional Diagrams

A.1 Fault Analysis Architectural Framework Viewpoint Defi-
nitions

For each viewpoint, we define the model elements that may be used in that view:

Model and Optimisation Definition Viewpoint

The Viewpoint Definition View for a Model and Optimisation Definition Viewpoint
is given in Figure 14. The Model and Optimisation Definition Viewpoint contains
a single Fault Analysis Model, which in turn contains a single SoS element and
an optional Optimisation Parameters element, which may contain an arbitrary
number of Objective elements.

Figure 14: Fault Analysis Architectural Framework Profile Viewpoints

38

D33.3b - SFA - Technical Manual (Public)

SoS Definition Viewpoint

The Viewpoint Definition View for a SoS Definition Viewpoint is given in Figure 15.
The viewpoint contains a single SoS element, one or more Constituent elements
and zero or more Line elements.

Figure 15: Fault Analysis Architectural Framework Profile Viewpoints

SoS Connections Viewpoint

The Viewpoint Definition View, for a SoS Connections Viewpoint, is given in Fig-
ure 16. The viewpoint contains a single SoS, the Constituents of the SoS and
the Lines17 of the SoS. Each Line needs to be associated with a set of Connector
elements that connect Constituents via the Ports that they expose.

17Note that in the current Fault Analysis Tool Line elements must be defined. In future releases
we intend to make this optional for simple cases.

39

D33.3b - SFA - Technical Manual (Public)

Figure 16: Fault Analysis Architectural Framework Profile Viewpoints

Implementation Definition Viewpoint

Figure 17 depicts the Viewpoint Definition View for the Implementation Definition
Viewpoint. The viewpoint contains either a Constituent or Component element. A
collection of Implementation elements is defined for that Constituent or Compo-
nent. An Implementation contains zero or more (sub-) Component elements and
zero or more Line elements.

Implementation Connections Viewpoint

The Viewpoint Definition View, for an Implementation Connections Viewpoint, is
given in Figure 18. The viewpoint contains a single Implementation, the Com-
ponents of the Implementation and the Lines18 of the Implementation. Each Line
needs to be associated with a set of Connector elements that connect Components
via the Ports that they expose.

18Note that in the current Fault Analysis Tool Line elements must be defined. In future releases
we intend to make this optional for simple cases.

40

D33.3b - SFA - Technical Manual (Public)

Figure 17: Fault Analysis Architectural Framework Profile Viewpoints

Implementation Failure Definition Viewpoint

Figure 19 shows the Viewpoint Definition View for the Implementation Failure
Definition Viewpoint. The viewpoint contains an Implementation element. An
Implementation contains zero or more Basic Event and Output Deviation ele-
ments.

Line Definition Viewpoint

The Viewpoint Definition View for the Line Definition Viewpoint is given in Fig-
ure 20. The viewpoint contains a single Line element, which contains two or more
Line Ends. Each Line End represents a Port and contains zero or more Propaga-
tion Logic elements.

41

D33.3b - SFA - Technical Manual (Public)

Figure 18: Fault Analysis Architectural Framework Profile Viewpoints

Failure Class Definition Viewpoint

The Viewpoint Definition Viewpoint for the Failure Class Definition Viewpoint is
given in Figure 21. The viewpoint contains only a collection of Failure Class
model elements.

42

D33.3b - SFA - Technical Manual (Public)

Figure 19: Fault Analysis Architectural Framework Profile Viewpoints

43

D33.3b - SFA - Technical Manual (Public)

Figure 20: Fault Analysis Architectural Framework Profile Viewpoints

44

D33.3b - SFA - Technical Manual (Public)

Figure 21: Fault Analysis Architectural Framework Profile Viewpoints

45

D33.3b - SFA - Technical Manual (Public)

A.2 Rule Definition Views

Finally, we may define a collection of rules for the viewpoints in the Fault Analysis
Architectural Framework. This set of rules is similar to a static semantics for the
profile and may be encoded in Artisan Studio through ergonomic profiling and
static model-correctness checks. We define a set of rules broadly split up into the
viewpoints of the profile; some rules naturally refer to model elements in other
diagrams

Model and Optimisation Definition Viewpoint

� �
RDV Rule Definition View [Model and Optimisation Definition

Viewpoint]

Rule 1: There must exist exactly one Model and Optimisation
Definition Viewpoint in a Fault Analysis Model.

Rule 2: Only one Fault Analysis Model element may exist in a
Fault Analysis Model.

Rule 3: Exactly one SoS must be defined for the Fault Analysis
Model.

Rule 4: Tool name and Tool version are optional, but if one is
defined then both must be (NB: these are automatically
defined using derived tags).

Rule 5: The Target and Goal of an Objective are compulsory.
� �
SoS Definition Viewpoint

� �
RDV Rule Definition View [SoS Definition Viewpoint]

Rule 1: There must exist exactly one SoS Definition View per
Fault Analysis Model.

Rule 2: The SoS defined in the SoS Definition View must be
identified by the Fault Analysis Model of the Model and
Optimisation Definition View.

Rule 3: The SoS must contain at least one Constituent.
Rule 4: If the SoS has more than one Constituent, it must have

at least one Line (NB: In future versions of the Fault
Analysis Tool Lines may be implicitly defined where possible
via Connectors in the SoS Connections View).

Rule 5: The Risk time on a Constituent (if defined) must be
lower than the Risk time of the owning Fault Analysis Model.
� �

46

D33.3b - SFA - Technical Manual (Public)

SoS Connections Viewpoint

� �
RDV Rule Definition View [SoS Connections Viewpoint]

Rule 1: There must exist exactly one SoS Connections View per
Fault Analysis Model.

Rule 2: The SoS defined in the SoS Connections View must be
identified by the Fault Analysis Model of the Model and
Optimisation Definition View and defined in an SoS Definition
View.

Rule 3: All of the Constituent model elements identified in the
SoS Definition View must be included in the SoS Connections
View.

Rule 4: All of the Line model elements identified in the SoS
Definition View must be included in the SoS Connections View
(NB: In future versions of the Fault Analysis Tool, Lines may
be implicitly defined where possible via Connectors in the

SoS Connections View).
Rule 5: All Connectors must be connected to a Port on a

Constituent.
Rule 6: All Lines included on an SoS Connections View must be

associated with at least one Connector.
� �
Implementation Definition Viewpoint

� �
RDV Rule Definition View [Implementation Definition Viewpoint]

Rule 1: The ’top-level’ model element must be either a
Constituent or a Component.

Rule 2: There must exist an Implementation Definition View for
each Constituent and each Component.

Rule 3: There may be multiple Implementations (and
Implementation Definition Viewpoints) per Constituent or
Component.

Rule 4: One and only one Implementation must have their hiphops-
current tag set to TRUE.

Rule 5: Only one ’top-level’ model element may be included per
Implementation Definition View.

Rule 6: The Risk time on a Component (if defined) must be lower
than the Risk time of the owning Fault Analysis Model.
� �

47

D33.3b - SFA - Technical Manual (Public)

Implementation Connections Viewpoint

� �
RDV Rule Definition View [Implementation Connections Viewpoint]

Rule 1: For every Implementation model element that has one or
more Components, there must exist exactly one Implementation
Connections View.

Rule 2: Only one Implementation may be included in a
Implementation Connections View.

Rule 3: The Implementation defined in the Implementation
Connections View must be defined in an Implementation
Definition View.

Rule 4: All of the Component model elements identified in the
Implementation Definition View for the Implementation in this
Implementation Connections View must be included in the
Implementation Connections View.

Rule 5: All of the Line model elements identified in the
Implementation Definition View for the Implementation in this
Implementation Connections View must be included in the
Implementations Connections View (NB: In future versions of
the Fault Analysis Tool, Lines may be implicitly defined
where possible via Connectors in the Implementations
Connections View).

Rule 6: All Connectors must be connected to a Port on a
Component.
� �

Implementation Failure Definition Viewpoint

� �
RDV Rule Definition View [Implementation Failure Definition

Viewpoint]

Rule 1: There must be exactly one Implementation in an
Implementation Failure Definition View.

Rule 2: The Failure Class of an Output Deviation must be defined
in the Failure Class Definition View associated with the

Fault Analysis Model (NB: this rule is not currently enforced
by the Fault Analysis Tool).

Rule 3: The Failure expression of an Output Deviation has the
following constraints:

The Failure expression is written in Boolean logic, using
operators AND and OR (NB: future versions may also support
Boolean operators NOT and XOR and Pandora temporal operators
PAND, POR and SAND).

48

D33.3b - SFA - Technical Manual (Public)

Operands can be:
1. The Name of a Basic Event defined within the same

Implementation Failure Definition Viewpoint.
2. Input deviations of format : <Failure Class>-<Port> where <

Port> must be defined within the same Constituent/Component
and <Failure Class> must be defined within the Failure Class
Definition View associated with the Fault Analysis Model

(3. A Local or Global Goto -- not currently supported).
(4. An exported deviation from the target of an allocation link

-- not currently supported).

Rule 4: The Unavailability formula of a Basic Event must be a
valid HiP-HOPS Unavailability formula: see HiP-HOPS User
Manual.
� �

Line Definition Viewpoint

� �
RDV Rule Definition View [Line Definition Viewpoint]

Rule 1: There must exist at least two Line Ends on a Line
Definition View.

Rule 2: If the Line is owned by an SoS, then each Port
represented by a Line End must exist on a Constituent owned
by that SoS.

Rule 3: If the Line is owned by an Implementation, then each
Port represented by a Line End must exist on a Component
owned by that Implementation.

Rule 4: If a Propagation Logic element has a Failure Class, this
must be defined in the Failure Class Definition View
associated with the Fault Analysis Model (NB: this rule is
not currently enforced by the Fault Analysis Tool).

Rule 5: All Ports referred to in a Port expression of a
Propagation Logic element must be associated with a Line End
that is also defined in the same Line Definition View.

Rule 6: All Failure Classes referred to in a Port expression of
a Propagation Logic element must be defined in the Failure
Class Definition View associated with the Fault Analysis
Model.

Rule 7: The set of Line Ends defined for a Line must be those
that represent Ports that are connected to each other in the
respective Connections View.
� �

49

D33.3b - SFA - Technical Manual (Public)

Failure Class Definition Viewpoint

� �
RDV Rule Definition View [Failure Class Definition Viewpoint]

Rule 1: There must exist one Failure Class Definition View for a
Fault Analysis Model.

Rule 2: There must exist at least one Failure Class model
element.
� �

50

D33.3b - SFA - Technical Manual (Public)

References

[ADP+13] Zoe Andrews, André Didier, Richard Payne, Claire Ingram, Jon Holt,
Simon Perry, Marcel Oliveira, Jim Woodcock, Alexandre Mota, and
Alexander Romanovsky. Report on Timed Fault Tree Analysis –
Fault modelling. Technical report, COMPASS Deliverable, D24.2,
September 2013.

[AIP+14] Zoe Andrews, Claire Ingram, Richard Payne, Alexander Ro-
manovsky, Simon Perry, and Jon Holt. Traceable Engineering of
Fault-Tolerant SoSs. In International INCOSE Symposium, Las Ve-
gas, USA,, June-July 2014. To appear.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Transactions on Dependable and Secure Comput-
ing, 1:11–33, 2004.

[APR+13] Zoe Andrews, Richard Payne, Alexander Romanovsky, André LR
Didier, and Alexandre Mota. Model-based development of fault tol-
erant systems of systems. In 2013 IEEE International Systems Con-
ference (SysCon 2013), Orlando, USA, April 2013.

[CDIK13] Robin Cressent, Pierre David, Vincent Idasiak, and Frederic Kratz.
Designing the database for a reliability aware Model-Based Sys-
tem Engineering process. Reliability Engineering & System Safety,
111(0):171 – 182, 2013.

[CIKD11] R. Cressent, V. Idasiak, F. Kratz, and P. David. Mastering safety and
reliability in a model based process. In Reliability and Maintainabil-
ity Symposium (RAMS), Lake Buena Vista, Florida, USA, January
2011.

[CMCP13] Joey W. Coleman, Anders Kaels Malmos, Luı́s D. Couto, and
Richard Payne. Third release of the COMPASS Tool — Developer
Documentation. Technical report, COMPASS Deliverable, D31.3b,
November 2013.

[DIK10] Pierre David, Vincent Idasiak, and Frédéric Kratz. Reliability study
of complex physical systems using SysML. Reliability Engineering
System Safety, 95(4):431–450, 2010.

51

D33.3b - SFA - Technical Manual (Public)

[FMDW13] Adalberto C Farias, Alexandre C Mota, André LR Didier, and Jim
Woodcock. Model Checking Support. Public D33.1, COMPASS,
September 2013.

[GPKV11] Alain Griffault, Gérald Point, Fabien Kuntz, and Aymeric Vincent.
Symbolic computation of minimal cuts for AltaRica models. Techni-
cal Report Research Report RR-1456-11, LaBRI, Université de Bor-
deaux, September 2011.

[HCW02] Mats P.E. Heimdahl, Yunja Choi, and Mike Whalen. Deviation anal-
ysis through model checking. In Automated Software Engineering,
2002. Proceedings. ASE 2002. 17th IEEE International Conference
on, pages 37–46, 2002.

[HHP+13] Finn Overgaard Hansen, Stefan Hallerstede, Simon Perry, Jon Holt,
and Klaus Kristensen. Initial Report on Guidelines for Architec-
tural Level SoS Modelling. Technical report, COMPASS Deliver-
able, D21.2, March 2013.

[HPH+13] Jon Holt, Simon Perry, Finn Overgaard Hansen, Alvaro Miyazawa,
Klaus Kristensen, and Ralph Hains. Initial Report on Guidelines for
Systems Engineering for SoS. Technical report, COMPASS Deliv-
erable, D21.3, September 2013.

[JHMW06] Anjali Joshi, Mats P.E. Heimdahl, Steven P. Miller, and Mike W.
Whalen. Model-Based Safety Analysis. Technical Report
NASA/CR-2006-213953, University of Minnesota, Minneapolis,
Minnesota 55455, February 2006.

[MCR+12] F. Mhenni, J.-Y. Choley, A. Rivière, N. Nguyen, and H. Kadima.
SysML and Safety Analysis for Mechatronic Systems. In
Mecatronics-REM 2012, Paris, France, November 2012.

[MNKC13] F. Mhenni, N. Nguyen, H. Kadima, and J.-Y. Choley. Safety Analy-
sis Integration in a SysML-Based Complex System Design Process.
In 2013 IEEE International Systems Conference (SysCon 2013), Or-
lando, USA, April 2013.

[Per13] Simon Perry. Report on Modelling Patterns for SoS Architectures.
Technical report, COMPASS Deliverable, D22.3, February 2013.

[PWP+11] Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann, A. Uh-
lig, U. Grätz, and R. Lien. Engineering Failure Analysis and De-
sign Optimisation with HiP-HOPS. Engineering Failure Analysis,
18:590–608, 2011.

52

D33.3b - SFA - Technical Manual (Public)

[Ros97] Andrew William Roscoe. The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

53

	Introduction
	Related Work
	Fault Analysis Tool Requirements
	Fault Analysis Tool Comparison
	Fault Analysis Tool Conclusion

	HiP-HOPS Fault Analysis in SysML
	The Fault Analysis Architectural Framework
	Ergonomic Profiling in Artisan Studio
	SysML to HiP-HOPS XML Translation
	Discussion: From Fault Modelling to Fault Analysis

	SysML to CML for Fault Tolerance Verification
	Plugin architecture

	Conclusions
	Fault Analysis Architectural Framework Additional Diagrams
	Fault Analysis Architectural Framework Viewpoint Definitions
	Rule Definition Views

