
Dimple User Manual
MATLAB Interface

Version 0.07

April 13, 2015

1

Contents

1 What is Dimple? 18

2 Installing Dimple 19

2.1 Installing Binaries . 19

2.2 Installing from Source . 20

2.3 Adjusting MATLAB’s Java Memory Limit 21

3 Getting Started: Basic Examples 22

3.1 A Hidden Markov Model . 23

3.2 A 4-bit XOR . 29

3.3 Nested Graphs . 33

3.4 An LDPC Code . 36

4 How to Use Dimple 37

4.1 Defining Models . 37

4.1.1 Overview of Graph Structures . 37

4.1.2 Creating a Graph . 37

4.1.3 Creating Variables . 38

4.1.3.1 Types of Variables . 38

4.1.3.2 Specifying Variable Domains 39

4.1.3.2.1 Discrete Variables 39

4.1.3.2.2 Real Variables . 41

4.1.3.3 Creating Arrays of Variables 41

4.1.3.4 Naming Variables . 42

4.1.4 Creating Factors and Connections to Variables 42

4.1.4.1 Basic Factor Creation . 42

2

4.1.4.2 Vectorized Factor Creation 44

4.1.4.3 Using MATLAB Factor Functions 46

4.1.4.4 Using Factor Tables . 47

4.1.4.5 Using Sub-Graphs . 48

4.1.4.6 Using Built-In Factors . 49

4.1.4.7 Implicit Factor Creation Using Overloaded Operators and
Functions . 50

4.1.4.8 Naming Factors . 52

4.1.5 Modifying an Existing Graph . 52

4.1.5.1 Removing a Factor . 52

4.1.5.2 Splitting Variables . 53

4.1.5.3 Joining Variables . 54

4.1.5.4 Joining Factors . 55

4.1.5.5 Changing Factor Tables . 57

4.1.6 Plotting a Graph . 57

4.1.6.1 Plotting Nested Graphs . 64

4.1.7 Structuring Software for Model Portability 68

4.2 Performing Inference . 69

4.2.1 Choosing a Solver . 69

4.2.2 Conditioning on Input Data . 71

4.2.2.1 Using a Likelihood Function as Input 71

4.2.2.2 Fixing a Variable to a Known Value 72

4.2.2.3 Using a Data Source in a Rolled-Up Graph 73

4.2.3 Choosing a Schedule . 73

4.2.3.1 Built-in Schedulers . 74

4.2.3.2 Custom Schedules . 75

4.2.4 Running the Solver . 77

3

4.2.4.1 Multithreading . 79

4.2.5 Getting the Results of Inference . 79

4.2.6 Explicit Scheduling and Retrieving Message Values 81

4.3 Using Rolled Up Factor Graphs . 83

4.3.1 Markov Model . 83

4.3.1.1 Variable Streams and Slices 84

4.3.1.2 Buffer Size . 85

4.3.1.3 DataSources . 86

4.3.1.4 DataSink . 87

4.3.1.5 Accessing Variables . 87

4.3.2 Markov Model with Parameter . 88

4.3.3 Real Variables . 88

4.3.4 Manually Advancing . 90

4.4 Using Finite Field Variables . 92

4.4.1 Overview . 92

4.4.2 Finite Fields Without Optimizations 92

4.4.3 Optimized Finite Field Operations 93

4.4.3.1 FiniteFieldVariables . 93

4.4.3.2 Addition . 93

4.4.3.3 Multiplication . 94

4.4.3.4 NVarFiniteFieldPlus . 94

4.4.3.5 Projection . 94

4.4.4 Primitive Polynomials . 95

4.4.5 Algorithmics . 95

4.5 Parameter Learning . 96

4.5.1 PseudoLikelihood Parameter Estimation on Undirected Graphs . . . 96

4.5.1.1 Creating a parameter learner 96

4

4.5.1.2 Learning . 96

4.5.1.3 Batch Mode . 97

4.5.1.4 Setting Data . 97

4.5.1.5 Calculating the Pseudo Likelihood 97

4.5.1.6 Calculating the Gradient 98

4.5.1.7 Calculating the Numerical Gradient 98

4.5.2 Expectation-Maximization on Directed Graphs 98

4.6 Graph Libraries . 99

4.6.1 Multiplexer CPDs . 99

4.6.2 N-Bit Xor Definition . 100

5 API Reference 101

5.1 FactorGraph . 102

5.1.1 Constructor . 102

5.1.2 Properties . 102

5.1.2.1 Solver . 102

5.1.2.2 Scheduler . 103

5.1.2.3 Schedule . 103

5.1.2.4 NumIterations . 104

5.1.2.5 NumSteps . 104

5.1.2.6 Name . 104

5.1.2.7 Label . 105

5.1.2.8 Score . 105

5.1.2.9 BetheFreeEnergy . 105

5.1.2.10 Internal Energy . 105

5.1.2.11 Bethe Entropy . 106

5.1.3 Methods . 106

5

5.1.3.1 addFactor . 106

5.1.3.2 addFactorVectorized . 108

5.1.3.3 addFactorNoCache . 109

5.1.3.4 addDirectedFactor . 109

5.1.3.5 initialize . 110

5.1.3.6 solve . 110

5.1.3.7 continueSolve . 110

5.1.3.8 solveOneStep . 111

5.1.3.9 advance . 111

5.1.3.10 hasNext . 111

5.1.3.11 baumWelch . 111

5.1.3.12 join . 112

5.1.3.13 split . 113

5.1.3.14 removeFactor . 113

5.1.3.15 plot . 113

5.1.3.16 addBoundaryVariables . 114

5.1.4 Introspection . 115

5.1.4.1 Retrieving All Factors . 115

5.1.4.2 Retrieving Factors but Not Nested Factor Graphs 116

5.1.4.3 Retrieving Variables . 116

5.1.4.4 Retrieving All Nodes . 116

5.1.4.5 Determining if a FactorGraph is a tree 117

5.1.4.6 Retrieving an Adjacency Matrix 117

5.1.4.7 Depth First Search . 118

5.2 Variables and Related Classes . 120

5.2.1 Variable Types . 120

5.2.2 Common Properties and Methods 120

6

5.2.2.1 Properties . 120

5.2.2.1.1 Name . 120

5.2.2.1.2 Label . 120

5.2.2.1.3 Domain . 121

5.2.2.1.4 Solver . 121

5.2.2.1.5 Guess . 121

5.2.2.1.6 Score . 121

5.2.2.1.7 Internal Energy 122

5.2.2.1.8 Bethe Entropy . 122

5.2.2.1.9 Ports . 122

5.2.2.2 Methods . 122

5.2.2.2.1 setNames . 123

5.2.2.2.2 invokeSolverSpecificMethod 123

5.2.2.2.3 invokeSolverSpecificMethodWithReturnValue . . . 123

5.2.2.3 Operators . 123

5.2.2.3.1 Operators for Implicit Factor Creation 124

5.2.2.3.2 repmat . 125

5.2.3 Discrete . 125

5.2.3.1 Constructor . 125

5.2.3.1.1 Domain . 126

5.2.3.1.2 List of Matrix Dimensions 127

5.2.3.2 Properties . 127

5.2.3.2.1 Belief . 127

5.2.3.2.2 Value . 127

5.2.3.2.3 Input . 128

5.2.3.2.4 FixedValue . 128

5.2.3.3 Methods . 129

7

5.2.3.3.1 hasFixedValue . 129

5.2.4 Bit . 129

5.2.4.1 Constructor . 129

5.2.4.2 Properties . 129

5.2.4.2.1 Belief . 130

5.2.4.2.2 Value . 130

5.2.4.2.3 Input . 130

5.2.4.2.4 FixedValue . 130

5.2.4.3 Methods . 130

5.2.4.3.1 hasFixedValue . 130

5.2.5 Real . 131

5.2.5.1 Constructor . 131

5.2.5.2 Properties . 131

5.2.5.2.1 Belief . 131

5.2.5.2.2 Value . 132

5.2.5.2.3 Input . 132

5.2.5.2.4 FixedValue . 133

5.2.5.3 Methods . 133

5.2.5.3.1 hasFixedValue . 133

5.2.6 RealJoint . 133

5.2.6.1 Constructor . 133

5.2.6.2 Properties . 134

5.2.6.2.1 Belief . 134

5.2.6.2.2 Value . 134

5.2.6.2.3 Input . 134

5.2.6.2.4 FixedValue . 135

5.2.6.3 Methods . 136

8

5.2.6.3.1 hasFixedValue . 136

5.2.7 Complex . 136

5.2.7.1 Constructor . 136

5.2.7.2 Properties . 136

5.2.7.2.1 Belief . 137

5.2.7.2.2 Value . 137

5.2.7.2.3 Input . 137

5.2.7.2.4 FixedValue . 137

5.2.7.3 Methods . 137

5.2.7.3.1 hasFixedValue . 137

5.2.8 FiniteFieldVariable . 137

5.2.8.1 Constructor . 138

5.2.9 DiscreteDomain . 138

5.2.9.1 Construction . 138

5.2.9.2 Properties . 138

5.2.9.2.1 Elements . 138

5.2.10 RealDomain . 139

5.2.10.1 Constructor . 139

5.2.10.2 Properties . 139

5.2.10.2.1 LB . 139

5.2.10.2.2 UB . 139

5.2.11 RealJointDomain . 139

5.2.11.1 Constructor . 139

5.2.11.2 Properties . 140

5.2.11.2.1 NumElements . 140

5.2.11.2.2 RealDomains . 140

5.2.12 ComplexDomain . 140

9

5.2.12.1 Constructor . 140

5.2.12.2 Properties . 141

5.2.12.2.1 NumElements . 141

5.2.12.2.2 RealDomains . 141

5.2.13 FiniteFieldDomain . 141

5.2.13.1 Construction . 141

5.2.13.2 Properties . 141

5.2.13.2.1 Elements . 142

5.2.13.2.2 PrimitivePolynomial 142

5.2.13.2.3 N . 142

5.2.14 NormalParameters . 142

5.2.14.1 Constructor . 142

5.2.14.2 Properties . 142

5.2.14.2.1 Mean . 142

5.2.14.2.2 Precision . 143

5.2.14.2.3 Variance . 143

5.2.14.2.4 StandardDeviation 143

5.2.15 MultivariateNormalParameters . 143

5.2.15.1 Constructor . 143

5.2.15.2 Properties . 143

5.2.15.2.1 Mean . 143

5.2.15.2.2 Covariance . 144

5.2.15.2.3 InformationVector 144

5.2.15.2.4 InformationMatrix 144

5.3 Factors and Related Classes . 145

5.3.1 Factor . 145

5.3.1.1 Properties . 145

10

5.3.1.1.1 Name . 145

5.3.1.1.2 Label . 145

5.3.1.1.3 DirectedTo . 145

5.3.1.1.4 Score . 146

5.3.1.1.5 InternalEnergy . 147

5.3.1.1.6 Bethe Entropy . 147

5.3.1.1.7 Belief . 147

5.3.1.1.8 Ports . 148

5.3.1.2 Methods . 148

5.3.1.2.1 setNames . 148

5.3.1.2.2 invokeSolverSpecificMethod 148

5.3.1.2.3 invokeSolverSpecificMethodWithReturnValue . . . 149

5.3.2 DiscreteFactor . 149

5.3.2.1 Properties . 149

5.3.2.1.1 Belief . 149

5.3.2.1.2 FullBelief . 150

5.3.3 FactorFunction . 150

5.3.3.1 Constructor . 150

5.3.4 FactorTable . 151

5.3.4.1 Constructor . 151

5.3.4.2 Properties . 152

5.3.4.2.1 Indices . 152

5.3.4.2.2 Weights . 152

5.3.4.2.3 Domains . 152

5.3.4.3 Methods . 152

5.3.4.3.1 set . 152

5.3.4.3.2 get . 153

11

5.3.4.3.3 change . 153

5.4 Options . 154

5.4.1 Option Keys . 154

5.4.2 Setting Options . 154

5.4.3 Looking up Option Values . 156

5.4.4 Option Initialization . 157

5.4.5 Setting Defaults on the Dimple Environment 157

5.5 Schedulers . 158

5.6 Solvers . 161

5.6.1 Solver-Specific Options . 161

5.6.2 Solver-Specific Methods . 161

5.6.3 Common Options . 162

5.6.3.1 SolverOptions.enableMultithreading 162

5.6.3.2 DimpleOptions.randomSeed 162

5.6.4 Common Methods . 162

5.6.4.1 getMultithreadingManager 163

5.6.4.1.1 Multithreading Modes 163

5.6.4.1.2 Setting Number of Threads and Workers 163

5.6.5 Common Belief Propagation Options 165

5.6.5.1 BPOptions.iterations . 165

5.6.5.2 BPOptions.damping . 165

5.6.5.3 BPOptions.nodeSpecificDamping 166

5.6.5.4 BPOptions.maxMessageSize 166

5.6.5.5 BPOptions.updateApproach 166

5.6.5.6 BPOptions.automaticExecutionTimeScalingFactor 167

5.6.5.7 BPOptions.automaticMemoryAllocationScalingFactor . . . 167

5.6.5.8 BPOptions.optimizedUpdateSparseThreshold 167

12

5.6.6 Sum-Product Solver . 169

5.6.6.1 GibbsOptions for Sampled Factors 170

5.6.7 Min-Sum Solver . 172

5.6.8 Junction Tree Solver . 173

5.6.8.1 Junction Tree Options . 173

5.6.8.1.1 JunctionTreeOptions.useConditioning 174

5.6.8.1.2 JunctionTreeOptions.maxTransformationAttempts 174

5.6.9 Gibbs Solver . 175

5.6.9.1 Gibbs Options . 177

5.6.9.1.1 GibbsOptions.numSamples 177

5.6.9.1.2 GibbsOptions.scansPerSample 177

5.6.9.1.3 GibbsOptions.burnInScans 178

5.6.9.1.4 GibbsOptions.numRandomRestarts 178

5.6.9.1.5 GibbsOptions.saveAllSamples 178

5.6.9.1.6 GibbsOptions.saveAllScores 178

5.6.9.1.7 GibbsOptions.discreteSampler 178

5.6.9.1.8 GibbsOptions.realSampler 179

5.6.9.1.9 GibbsOptions.enableAutomaticConjugateSampling 179

5.6.9.1.10 GibbsOptions.computeRealJointBeliefMoments . . 179

5.6.9.1.11 GibbsOptions.enableAnnealing 180

5.6.9.1.12 GibbsOptions.annealingHalfLife 180

5.6.9.1.13 GibbsOptions.initialTemperature 180

5.6.9.2 Graph Methods . 180

5.6.9.3 Variable Methods . 182

5.6.9.4 Discrete-Variable-Specific Methods 184

5.6.9.5 Real-Variable-Specific Methods 184

5.6.9.6 RealJoint-Variable-Specific Methods 185

13

5.6.9.7 Factor Methods . 185

5.6.9.8 Schedulers and Schedules 185

5.6.9.8.1 Block Schedule Entries 186

5.6.10 Particle BP Solver . 188

5.6.10.1 Particle BP Options . 188

5.6.10.1.1 ParticleBPOptions.numParticles 188

5.6.10.1.2 ParticleBPOptions.resamplingUpdatesPerParticle 188

5.6.10.1.3 ParticleBPOptions.iterationsBetweenResampling . 188

5.6.10.1.4 ParticleBPOptions.initialParticleRange 188

5.6.10.1.5 ParticleBPOptions.proposalKernel 189

5.6.10.1.6 ParticleBPOptions.enableAnnealing 189

5.6.10.1.7 ParticleBPOptions.annealingHalfLife 189

5.6.10.1.8 ParticleBPOptions.initialTemperature 190

5.6.10.2 Graph Methods . 190

5.6.10.3 Variable Methods . 190

5.6.10.4 Real-Variable-Specific Methods 190

5.6.11 LP Solver . 192

5.6.11.1 LP Options . 192

5.6.11.1.1 LPOptions.LPSolver 192

5.6.11.1.2 LPSolver.MatlabLPSolver 192

5.6.12 Proposal Kernels . 194

5.6.12.1 NormalProposalKernel . 194

5.6.12.1.1 NormalProposalKernel.standardDeviation 194

5.6.12.2 CircularNormalProposalKernel 194

5.6.12.2.1 CircularNormalProposalKernel.lowerBound 194

5.6.12.2.2 CircularNormalProposalKernel.upperBound 194

5.6.12.3 UniformDiscreteProposalKernel 195

14

5.6.13 Samplers . 196

5.6.13.1 CDFSampler . 196

5.6.13.2 MHSampler . 196

5.6.13.2.1 MHSampler.discreteProposalKernel 196

5.6.13.2.2 MHSampler.realProposalKernel 196

5.6.13.3 SliceSampler . 197

5.6.13.3.1 SliceSampler.initialSliceWidth 197

5.6.13.3.2 SliceSampler.maximumDoublings 197

5.6.13.4 SuwaTodoSampler . 197

5.7 Streaming Data . 199

5.7.1 Variable Stream Common Properties and Methods 199

5.7.1.1 Properties . 199

5.7.1.1.1 DataSource . 199

5.7.1.1.2 DataSink . 199

5.7.1.1.3 Dimensions . 199

5.7.1.1.4 Size . 199

5.7.1.1.5 Variables . 200

5.7.1.1.6 Domain . 200

5.7.1.2 Methods . 200

5.7.1.2.1 getSlice . 200

5.7.2 DiscreteStream . 201

5.7.2.1 Constructor . 201

5.7.3 BitStream . 201

5.7.3.1 Constructor . 201

5.7.4 RealStream . 201

5.7.4.1 Constructor . 201

5.7.5 RealJointStream . 202

15

5.7.5.1 Constructor . 202

5.7.6 ComplexStream . 202

5.7.6.1 Constructor . 202

5.7.7 FactorGraphStream . 203

5.7.7.1 Properties . 203

5.7.7.1.1 BufferSize . 203

5.7.8 Data Source Common Properties and Methods 203

5.7.8.1 Properties . 204

5.7.8.1.1 Dimensions . 204

5.7.9 DoubleArrayDataSource . 204

5.7.9.1 Constructor . 204

5.7.9.2 Methods . 204

5.7.9.2.1 add . 204

5.7.10 MultivariateDataSource . 205

5.7.10.1 Constructor . 205

5.7.10.2 Methods . 205

5.7.10.2.1 add . 205

5.7.11 FactorFunctionDataSource . 205

5.7.11.1 Constructor . 205

5.7.11.2 Methods . 206

5.7.11.2.1 add . 206

5.7.12 Data Sink Common Properties and Methods 206

5.7.12.1 Properties . 207

5.7.12.1.1 Dimensions . 207

5.7.12.2 Methods . 207

5.7.12.2.1 hasNext . 207

5.7.13 DoubleArrayDataSink . 207

16

5.7.13.1 Constructor . 207

5.7.13.2 Properties . 207

5.7.13.2.1 Array . 207

5.7.13.3 Methods . 208

5.7.13.3.1 getNext . 208

5.7.14 MultivariateDataSink . 208

5.7.14.1 Constructor . 208

5.7.14.2 Methods . 208

5.7.14.2.1 getNext . 208

5.8 Event Monitoring . 210

5.8.1 Event types . 211

5.8.2 Event logging . 212

5.8.3 Advanced event handling . 214

5.9 List of Built-in Factors . 215

5.9.1 Factor Creation Utility Functions . 228

5.10 List of Overloaded MATLAB Operators and Functions 231

5.11 Other Top Level Functions . 233

5.11.1 setSolver . 233

5.11.2 dimpleVersion . 233

5.11.3 dimpleOptions . 233

Appendix A A Short Introduction to Factor Graphs 234

Appendix B Creating Custom Dimple Extensions in Java 238

B.1 Creating a Custom Factor Function . 238

B.2 Creating a Custom Proposal Kernel . 240

B.3 Compiling Dimple Extensions in Java . 241

B.4 Adding Java Binary to MATLAB Path . 242

17

1 What is Dimple?

Dimple is an open-source API for probabilistic modeling and inference. Dimple allows
the user to specify probabilistic models in the form of graphical models (factor graphs,
Bayesian networks, or Markov networks), and performs inference on the model using a
variety of supported algorithms.

Probabilistic graphical models unify a great number of models from machine learning, sta-
tistical text processing, vision, bioinformatics, and many other fields concerned with the
analysis and understanding of noisy, incomplete, or inconsistent data. Graphical models
reduce the complexity inherent in complex statistical models by dividing them into a series
of logically (and statistically) independent components. By factoring the problem into sub-
problems with known and simple interdependencies, and by adopting a common language
to describe each sub-problem, one can considerably simplify the task of creating complex
probabilistic models. A brief tutorial on graphical models can be found in Appendix A.

An important attribute of Dimple is that it allows the user to construct probabilistic models
in a form that is largely independent of the algorithm used to perform inference on the
model. This modular architecture benefits those who create probabilistic models by freeing
them from the complexities of the inference algorithms, and it benefits those who develop
new inference algorithms by allowing these algorithms to be implemented independently
from any particular model or application.

Key features of Dimple:

• Supports both undirected and directed graphs.

• Supports a variety of solvers for performing inference, including sum-product and
Gaussian belief propagation (BP), min-sum BP, particle BP, discrete junction tree,
linear programming (LP), and Gibbs sampling.

• Supports both discrete and continuous variables.

• Supports arbitrary factor functions as well as a growing library of standard distribu-
tions and mathematical functions.

• Supports nested graphs.

• Supports rolled-up graphs (repeated HMM-like structures).

• Growing support for parameter estimation (including the EM algorithm).

• Supports both MATLAB1 and Java2 API.

Using MATLAB to program Dimple requires an existing licensed version of MATLAB, of
version at least 2013b.

1MATLAB is a registered trademark of The Mathworks, Inc.
2Java is a registered trademark of Oracle and/or its affiliates.

18

2 Installing Dimple

2.1 Installing Binaries

Users can follow these instructions to install Dimple.

1. MATLAB of at least version 2013b is required.

2. Download the latest version of Dimple from http://dimple.probprog.org.

3. Extract the Dimple zip file.

4. Execute the startup.m script in the resulting Dimple directory to load Dimple in
MATLAB.

5. To avoid having to manually change to this directory and execute this script every
time you start MATLAB, you will need to add the following lines to MATLAB’s
startup.m file:

cd <Path -to -Dimple >

startup

Google “MATLAB startup.m” for more details regarding startup.m files.

6. Verify the installation:

(a) Start MATLAB

(b) At the MATLAB command prompt type:

testDimple;

(c) Verify the output ends with something like the following (showing that all tests
passed):

**

PASSED ALL TESTS

252 of 252 tests passed , 0 failed

**

--testDimple

==

19

2.2 Installing from Source

Developers interested in investigating Dimple source code, helping with bug fixes, or con-
tributing to the source code can install Dimple from source. Developers only interested in
using Dimple should install from binaries (described in the previous section).

1. Install Gradle from http://www.gradle.org/. (Gradle is a Java build tool that pulls
down jars from Maven repositories.)

2. Download the source from https://github.com/AnalogDevicesLyricLabs/dimple

3. Change to root directory of Dimple source

4. Checkout the appropriate release branch (“release 0.07”) from git:

> git checkout release 0.07

If you skip this step, you will be using the master development branch. This is not
recommended because the code is not stable, will mostly likely not have up-to-date
documentation, and will often contain incomplete features or unresolved bugs.

5. Run gradle by typing “gradle”

If you want to edit java files with Eclipse:

1. From eclipse, Import->Existing Projects Into Workspace

2. Browse to the dimple directory, select sovers/java, and click Finish.

20

2.3 Adjusting MATLAB’s Java Memory Limit

Each object in Dimple corresponds to underlying Java objects. The amount of heap memory
reserved for Java (when called from MATLAB) is limited, and typically low. In some cases,
this can cause Dimple to fail if the memory it requires exceeds this modest limit. To increase
the value of this limit, edit the file java.opts in the MATLAB startup directory, and add
the following two lines:

-Xmx1024m

-Xms512m

The value after Xmx is the maximum amount of heap memory allocated to Java, and Xms
is the starting value. You may use wish to use larger values if your system has sufficient
memory. Google “MATLAB java.opts file” to determine the specific location of this file on
your operating system.

21

3 Getting Started: Basic Examples

The following sections demonstrate Dimple with four basic examples. The first example
is a simple hidden Markov model. The second models a 4-bit XOR constraint. The third
demonstrates how to use nested graphs. The final example is a simple LDPC code.

See /demo/12 Tutorial for the code.

22

3.1 A Hidden Markov Model

We consider a very simple hidden Markov model (HMM), the Rainy/Sunny HMM illustrated
in the Wikipedia article about HMMs. Two friends who live far apart, Alice and Bob, have
a daily phone conversation during which Bob mentions what he has been doing during the
day. Alice knows that Bob’s activity on a given day depends solely on the weather on that
day, and knows some general trends about the evolution of weather in Bob’s area.

Alice believes she can model the weather in Bob’s area as a Markov chain with two states
‘Sunny’ and ‘Rainy’. She remembers hearing that on the first day of last week it was quite
likely (70% chance) that it was sunny in Bob’s town. She also knows that a sunny day
follows another sunny day with 80% chance, while a sunny day succeeds a rainy day with
50% chance.

She knows Bob pretty well, and knows that Bob only ever does one of three things: stay
inside to read a book, go for a walk, or cook. She knows that if it is sunny, Bob will
go for a walk with 70% probability, cook with 20% probability, and stay inside with 10%
probability. Conversely, if it is rainy, Bob will go for a walk with 20% probability, cook with
40% probability, and stay inside with 40% probability.

Bob told Alice that he went for a walk on Monday, Tuesday, and Thursday, cooked on
Wednesday and Friday, and read a book on Saturday and Sunday.

Alice wants to know what the most likely weather is for every day of last week. The above
naturally defines an HMM which can easily be modeled within Dimple

Creating the Factor Graph

The first thing to do in many Dimple programs, is to create a factor graph. This is easily
done by instantiating a FactorGraph.

See demo/12 Tutorial/DimpleTutorial HMM.m

HMM = FactorGraph ();

Declaring Variables

Once a Factor Graph has been defined, we can define the variables of the factor graph. In
our case, there will be seven variables, MondayWeather to SundayWeather. The syntax
to create a variable is Discrete(domain,dimensions). In our case, the domain will consist
of the two distinct values: Sunny and Rainy.For now, we will not specify dimensions (this
will be covered in 4 Bit XOR example). The domain should either be a cell, or a matrix of
numbers.

23

Domain ={’sunny ’,’rainy ’};

MondayWeather=Discrete(Domain);

TuesdayWeather=Discrete(Domain);

WednesdayWeather=Discrete(Domain);

ThursdayWeather=Discrete(Domain);

FridayWeather=Discrete(Domain);

SaturdayWeather=Discrete(Domain);

SundayWeather=Discrete(Domain);

IMPORTANT: In the above, had we used the declaration Domain=[’sunny’,’rainy’] instead
(square brackets instead of curly brackets), the domain would have consisted of 10 letters
instead of 2 strings (i.e., the variables would have been 10-ary instead of binary).

Adding Factors

We now add the different factors of the factor graph. We will first add the factors corre-
sponding to the Markov Chain structure. This is done with addFactor, which is a method
of the factor graph previously defined.

The method has syntax addFactor(funchandle,arguments), where funchandle is the handle
of a regular MATLAB function (which can be specified by the user), and the arguments
are the variables involved in the factor being defined (in the same order as the inputs of
the MATLAB function). The number of inputs of the function referred to by the function
handle has to be equal to the number of arguments of addFactor.

In our case, we define a simple MC transition Tutorial(state1,state2) as follows (See /de-
mos/12 Tutorial/MC transition Tutorial.m):

function [probability]= MC_transition_Tutorial(state1 ,state2)

switch state1

case ’sunny’

if state2 ==’sunny ’

probability =0.8;

else

probability =0.2;

end

case ’rainy’

probability =0.5;

end

We can now add the factor to the factor graphs by using the addFactor method:

HMM.addFactor(@MC_transition_Tutorial ,MondayWeather ,TuesdayWeather);

HMM.addFactor(@MC_transition_Tutorial ,TuesdayWeather ,WednesdayWeather);

HMM.addFactor(@MC_transition_Tutorial ,WednesdayWeather ,ThursdayWeather);

HMM.addFactor(@MC_transition_Tutorial ,ThursdayWeather ,FridayWeather);

24

HMM.addFactor(@MC_transition_Tutorial ,FridayWeather ,SaturdayWeather);

HMM.addFactor(@MC_transition_Tutorial ,SaturdayWeather ,SundayWeather);

We now need to add factors corresponding to the observations of each day. As it happens,
when using an addFactor method, the arguments need not be all random variables—some
can be declared as constants. We see now how to use this fact to easily add the observations
to each day. We first declare an observation function

see /demo/12 Tutorial/observation function Tutorial.m:

function [probability]= observation_function_Tutorial(state ,observation)

switch state

case ’sunny’

switch observation

case ’walk’

probability =0.7;

case ’book’

probability =0.1;

case ’cook’

probability =0.2;

end

case ’rainy’

switch observation

case ’walk’

probability =0.2;

case ’book’

probability =0.4;

case ’cook’

probability =0.4;

end

end

Adding the observations is then very easy:

HMM.addFactor(@observation_function_Tutorial ,MondayWeather ,’walk’);

HMM.addFactor(@observation_function_Tutorial ,TuesdayWeather ,’walk’);

HMM.addFactor(@observation_function_Tutorial ,WednesdayWeather ,’cook’);

HMM.addFactor(@observation_function_Tutorial ,ThursdayWeather ,’walk’);

HMM.addFactor(@observation_function_Tutorial ,FridayWeather ,’cook’);

HMM.addFactor(@observation_function_Tutorial ,SaturdayWeather ,’book’);

HMM.addFactor(@observation_function_Tutorial ,SundayWeather ,’book’);

As we can see, though the function itself depends on two variables, each factor only depends
on one random variable (the other argument being set as a constant during the addFactor
call). This in effect creates a factor connected only to one variable of the factor graph.

25

There is a cost incurred every time addFactor is called in MATLAB. For large Factor Graphs
with many factors of the same type, it can be advantageous to use the MATLAB vectorized
version of addFactor. The following code will create a transition factor between each pair of
consecutive variables and will execute much more quickly than a for loop with addFactor.

N = 1000;

Weather = Discrete(Domain ,N,1);

HMM.addFactorVectorized(@MC_transition_Tutorial ,Weather (1:(end -1)),Weather

(2:end));

This works with continuous variables and Nested Graphs as well. In addition, it’s possible
to specify which dimensions to vectorize over:

N = 20;

b = Bit(3,N);

fg = FactorGraph ();

fg.addFactorVectorized(@xorDelta ,{b,2});

The previous code will create N xor factors across each of the N sets of 3 variables.

Specifying Inputs

The last step consists in adding the prior for the MondayWeather variable. We could, as
above, use a factor with a single variable. Let us introduce a new property to easily add a
single variable factor— the input property (on variables).

For a vector of probabilities (i.e., nonnegative numbers which sums up to one), Vari-
able.Input adds a single factor which depends on this variable only, with values equal to
those given by the vector.

In our case, we do:

MondayWeather.Input =[0.7 0.3];

The Input property can be used in several different ways. Some notes of interest regarding
the Input property:

• The Input method can typically be used for prior probabilities of the root variables
in a Bayes Net, or for the initial node of a Markov Chain or HMM.

• The Input property can also be used for any factors with only one variable, for in-
stance, for observation factors (see the introduction to factor graphs on how to remove
observations and turn them into single node factors).

26

• The observation function Tutorial in the above example was not entirely required (see
below)—we could have used the input property instead.

• IMPORTANT: Unlike the addFactor method, the Input property can be used only
once for each variable. That is, once you have specified an input for a variable, re-
specifying this input will destroy the previous factor and create a new one. In the
example above, using only the Input property, it would not have been possible to sep-
arately incorporate both the prior on Monday’s weather and the factor corresponding
to Mondays observation. However, this feature is very useful when Input is used to
specify external information, and when the user wants to see the effect of external
information. Say for instance that Bob mentions to Alice that it rained on Wednes-
day. Alice can simply use the call WednesdayWeather.Input=[0 1] . If Bob corrects
himself and says he misremembered, and that it actually was sunny that day, Alice
can correct the information using again the call WednesdayWeather.Input=[1 0] .

Solving the Factor Graph

Finally, we explain how to solve the factor graph by using the solve, iterate, and NumIter-
ations factor graph methods.

The typical way of solving a factor graph will be by choosing the number of iterations and
then running the solver for the desired number of iterations. In our case, this is simply done
by typing the following code:

HMM.NumIterations =20;

HMM.solve;

IMPORTANT:

By default, the solver will use either a Flooding Schedule or a Tree Schedule depending on
whether the factor-graph contains cycles. A loopy graph (one containing at least one cycle)
will use a Flooding Schedule by default. This schedule can be described as:

• Compute all variable nodes

• Compute all factor nodes

• Repeat for a specified number of iterations

If the factor-graph is a tree (one that contains no cycles), the solver will automatically
detect this and use a Tree Schedule by default. In this schedule, each node is updated in
an order that will result in the correct beliefs being computed after just one iteration. In
this case, NumIterations should be 1, which is its default value.

27

Accessing Results

Once the solver has finished running, we can access the marginal distribution of each variable
by using the Belief property:

belief = TuesdayWeather.Belief;

This returns a vector of probability of the same length as the domain total size (i.e., the
product of its dimensions), with the probability of each domain variable. Another way to
solve the factor graph is to use the Solver.iterate(n) method, which runs the factor graph
for n iterations (without arguments, it runs for 1 iteration).

HMM.Solver.iterate ();

HMM.Solver.iterate (5);

IMPORTANT: The iterate method is useful to access intermediate results (i.e, see how
beliefs change through the iterations).

IMPORTANT: One distinction between the solve and iterate methods is that all messages
and beliefs are reinitialized when starting the solve method. Running solve twice in a row
is therefore identical to running it once, unlike iterate. When calling iterate() for the first
time, first call initialize(), which reinitialize all messages.

28

3.2 A 4-bit XOR

The following example creates a simple factor graph with 4 variables tied through a 4-bit
XOR, with ‘priors’ (we abuse language here and call ‘prior’ the probability distribution of
each random variable if they were not tied through the 4-bit XOR).

Through this example, we will learn how to define arrays of random variables, see how
to use MATLAB indexing within Dimple, see an example of a hard constraint in a factor
graph, and see how to use the Bit type of random variable.

We consider a set of four random variables (B1,B2,B3,B4) taking values 0 or 1. The joint
probability distribution is given by:

Pr(B1, B2, B3, B4) = δB1+B2+B3+B4=0(mod2)P (B1)P (B2)P (B3)P (B4)

where the delta function is equal to 1 if the underlying constraint is satisfied, and 0 otherwise
(this ensures that illegal assignment have probability zero). The P (Bi) are single variable
factors which help model which values of Bi are more likely to be taken (we call them
‘priors’, though, once again, this is an abuse of language. Typically, the factor will represent
an observation of Oi of variable Bi, and the factor P (Bi) is set equal to the normalized
function P (Oi|Bi) 3

For our example, we will choose P (B1 = 1) = P (B2 = 1) = P (B3 = 1) = .8 and P (B4 = 1)
= 0.5.

We will build our factor graph in two different ways. The first directly uses a 4-bit XOR,
and uses mostly tools seen in the previous example, while the second introduces the Bit
kind of random variable, and how to use an intermediate variable to reduce the degree of a
factor graph with parity checks (i.e., XOR function).

The first way of building the factor graph uses an inefficient N-bit XOR function defined as
follows

From /demo/12 Tutorial/BadNBitXorDelta Tutorial.m:

function [valid]= BadNBitXorDelta_Tutorial(variables)

valid=mod(sum(variables) ,2)==0;

end

Using everything we have learned in the previous example, the sequence of instructions we
use is simply:

From /demo/12 Tutorial/DimpleTutorial BadNBitXor.m:

3 Normalizing P (Oi|Bi) happens to be equal to P (Bi|Oi) in a factor graph with only the two variables
Oi and Bi with a prior on both values of Bi being equally likely.

29

FourBitXor=FactorGraph ();

Domain =[0;1];

B1=Discrete(Domain);

B2=Discrete(Domain);

B3=Discrete(Domain);

B4=Discrete(Domain);

FourBitXor.addFactor(@BadNBitXorDelta_Tutorial , [B1 ,B2 ,B3 ,B4]);

B1.Input =[0.2 0.8];

B2.Input =[0.2 0.8];

B3.Input =[0.2 0.8];

B4.Input =[0.5 0.5];

FourBitXor.solve;

disp(B1.Value);

disp(B1.Belief);

Note that the MATLAB BadNBitXorDelta Tutorial is a function which takes only ONE ar-
gument, but this argument is an array. This is reflected in the declaration FourBitXor.addFactor
(@BadNBitXorDelta Tutorial, [B1,B2,B3,B4]), where we created an array of random vari-
ables using square brackets.

IMPORTANT: We also introduce the Discrete method ‘Value’, which returns the most
likely assignment of that random variable.

The first remark above is rather important, as it highlights of the concept of arrays of
random variables in the MATLAB Dimple API. Dimple handles arrays of random variables
in a very natural manner, and most array indexing operations of MATLAB are supported
in Dimple in a similar fashion.

To create a multidimensional array of random variables in the MATLAB Dimple API, we
construct a Variable class instance where every constructor argument after the first is a
dimension of an array:

VarArray=Variable(Domain ,dimension1 ,dimension2 ,.., dimensionk)

creates an array of variables with domain ‘Domain’, and with dimensions [dimension1][dimension2]..[
dimensionk].

IMPORTANT: If only one dimension is specified, Dimple creates a square array.

VarArray1=Discrete(Domain ,3,1)

VarArray2=Discrete(Domain ,3)

VarArray3=Discrete(Domain ,3,3)

In the example above, VarArray1 is a vector of 3 random variables with domain Domain,
while VarArray2 and VarArray2 are both a 3-by-3 matrix of random variables with domain
Domain.

Another way to create an array is, as above, to group the variables using square brackets:

30

RowArray =[B1 B2 B3 B4];

ColumnArray=RowArray ’;

IMPORTANT: The above method is a simple ”grouping” (reference) of variables ; it does
not duplicate them.

Concatenation and subindexing of random arrays work in exactly the same fashion as MAT-
LAB.

SubArray1=VarArray2 (2 ,1:2);

SubArray2=VarArray2 (1 ,2:3);

SubArray3 =[SubArray1;SubArray2];

repmat works as well. The following code snippet will set C to a 10x10 Bit matrix. Rather
than creating new variables, it simply replicates the existing variables.

b = Bit(10,1);

c = repmat(b,1,10);

Using the Variable methods Belief, Value or Domain on a random array returns the array
of Beliefs (resp. ML values, domains, etc..) for these variables.

SubArray2.Value

returns a (1,2) array containing the most likely values of VarArray2(1,2) and VarArray2(1,3).

IMPORTANT: Since Beliefs or Inputs are arrays themselves, calling them on an array
returns an array one dimension larger.

Often, we will find it useful to have random Bits. For that purpose, one can directly create
random Bits with the Bit class. A Bit is simply a Discrete with Domain [0, 1]. Also, in
order to simplify Input declarations, for a Bit variable named BitVar, BitVar.Input takes a
single number, the probability of 1.

Similarly, BitVar.Belief returns the marginal probability of BitVar being equal to 1.

The second version of the 4-bit XOR will uses Bit variables to represent our random vari-
ables. Furthermore, it will decompose the 4 bits XOR into two 3-bits XOR. It is indeed
easy to prove that B1 +B2 +B3 +B4 = 0(mod2) is equivalent to

B1 +B2 + C = 0(mod2)

B3 +B4 + C = 0(mod2)

31

for an internal bit C. While the reduction from one 4-bit to two 3-bit XORs might not
seem tremendous, it is easy to see that more generally, any N-bit XOR can be reduced
to a tree of 3-bit XORs, with depth log(N). Because the complexity of running Belief
Propagation is exponential in the degree of factors, using this technique leads to dramatic
speed improvements.

Using all the techniques mentioned above, we derive a new factor graph for the 4-bit XOR,
equivalent to the one previously defined.

From /demo/12 Tutorial/xorDeltaTutorial.m:

function valid = XorDeltaTutorial(x,y,z)

valid = bitXor(bitXor(x,y),z) == 0;

end

From demo/12 Tutorial/DimpleTutorial 4BitXor.m:

XorGraph = FactorGraph ();

b = Bit(4,1);

c = Bit();

XorGraph.addFactor(@XorDeltaTutorial ,b(1),b(2),c);

XorGraph.addFactor(@XorDeltaTutorial ,b(3),b(4),c);

b.Input = [.8 .8 .8 .5];

XorGraph.solve ();

disp(b.Belief);

disp(b.Value);

The following figure represents the Factor Graph that is created and solved in this example.

32

3.3 Nested Graphs

Suppose we wish to use two 4-bit XORs from the previous example to create a 6-bit code.
The following diagram shows our desired Factor Graph.

Dimple provides a way to replicate multiple copies of a Factor Graph and nest these instances
in a containing Factor Graph. A nested Factor Graph can be seen as a special factor
function between a set of variables (‘connector variables’), which, when ‘zoomed in,’ is in
fact another factor graph, with factors involving both the connector variables, and other
‘internal variables.’ In the second version of the XOR example, we created a 4-bit XOR
connected to 4 variables, by also creating an extra Bit C. What if we wanted to use that
construction as a 4-bit XOR for potentially many different sets of 4 bits, overlapping or not,
by replicating the factor graph as needed? Nested factor graphs provide an elegant solution
to this problem.

A nestable factor graph is created by specifying first a set of ”connector” random variables,
and instantiating a FactorGraph with these variables passed in to the constructor.

IMPORTANT: The factor graph defined this way is still a proper factor graph, and in
principle, we can run BP on it. However, in practice, it is used as a ”helper” factor graph
(and are ”helper” random variables), which will mostly be replicated in the actual factor
graph of interest.

The following code creates a nestable factor graph, with connector variables (B1, B2, B3, B4)

From /demo/12 Tutorial/DimpleTutorialNested.m:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define 4 bit xor from two 3 bit xors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

b = Bit(4,1);

XorGraph = FactorGraph(b);

c = Bit();

XorGraph.addFactor(@xorDeltaTutorial ,b(1),b(2),c);

33

XorGraph.addFactor(@xorDeltaTutorial ,b(3),b(4),c);

IMPORTANT: In principle, variables attached to a Factor Graph can be defined before or
after defining the factor graph (but obviously always before the factors they are connected
to). However, connector variables naturally need to be defined before the nestable factor
graph.

Consider a nestable factor graph NestableFactorGraph(connectvar1, connectvar2,..,vark)
with k connector variables. Consider also an actual factor graph of interest, FactorGraph,
containing (among others) k variables of interest (var1,..,vark). By using the addFactor
method, we can replicate the NestableFactorGraph and use it to connect the variables
(var1,..,vark) in the same way the connector variables are connected in the nestable factor
graph: FactorGraph.addFactor(NestableFactorGraph,var1,..,vark).

In essence, the nestable factor graph represents a factor between the dummy connector
variables, and the addFactor method is adding this factor to the desired actual variables.

IMPORTANT: Nested factor graphs support arbitrary levels of nesting. That is, a nested
factor graph can be composed of nested factor graphs.

Armed with this tool, we can very simply use our custom 4-bit XOR to implement the
factor graph described at the beginning of the section:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Create graph for 6 bit code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

d = Bit(6,1);

MyGraph = FactorGraph(d);

MyGraph.addFactor(XorGraph ,d([1:3 5]));

MyGraph.addFactor(XorGraph ,d([1 2 4 6]));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set input and Solve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

d.Input = [.75 .6 .9 .1 .2 .9];

MyGraph.NumIterations = 20;

34

MyGraph.solve();

disp(d.Value ’);

IMPORTANT: Note the use of standard MATLAB array indexing in the d([1:3 5]) method
above. Also, note that technically, our nestable factor graph declared above only had one
argument (not four), an array of four random variables (as opposed to four separately
declared random variables). As a result, the addFactor call requires a single argument—an
array of four random

35

3.4 An LDPC Code

For our last example, we will show how to use a library function to very quickly code up a
complex factor graph.

We present the code that defines a Factor Graph to decode an LDPC (low-density parity
check) code (in the file /demo/11 SingleCodewordLDPC/createLDPC.m):

function [ldpc ,x] = createLdpc ()

A = load(’matrixout.txt’);

blockLength = size(A,2);

numCheckEquations = size(A,1);

ldpc = FactorGraph ();

x = Bit(blockLength ,1);

for i = 1: numCheckEquations

varIndices = find(A(i,:));

gd = getNBitXorDef(length(varIndices));

ldpc.addFactor(gd,x(varIndices));

end

ldpc.NumIterations = 100;

end

At this point, all the code above should be clear, except for the getNBitXorDef call.
getNBitXorDef(N) returns a nestable factor graph with an array of N bits as connected
variables, representing an N-bit XOR factor between those N bits. It implements the most
efficient (in some sense) implementation of an N-bit XOR using a tree of 3-bits XORs.

The check matrix connectivity is loaded from a file into matrix A. The for loop iterates all
check equations, creates a nestable n-bit XOR Graph and adds that graph to the LDPC.
The user can set Input on x and the returned variables, solve the ldpc object, and retrieve
the results with Value or Beliefs.

36

4 How to Use Dimple

4.1 Defining Models

4.1.1 Overview of Graph Structures

While Dimple supports a variety of graphical model forms, including factor graphs, Bayesian
networks, or Markov networks, the Dimple programming interface is oriented toward the
language of factor graphs. Factor graphs are normally defined to be bipartite graphs—that
is, graphs consisting of two types of nodes: factor nodes and variable nodes, connected
by edges. Factor nodes connect only to variable nodes and vice versa. A mathematical
overview of factor graphs can be found in Appendix A.

The model creation aspect of Dimple primarily involves defining variables and connecting
these variables to factors. While dimple supports basic factor graphs, in which variables
and factors are connected directly with no hierarchy, Dimple also supports more complex
structures such as nested factor graphs, and rolled-up factor graphs, described below.

Basic factor graph: This is a graph in which all variables and factors are connected
directly, with no hierarchy. Basic graphs are inherently finite in extent.

Nested factor graph: When a portion of a factor graph is used more than once, it may
be convenient to describe that portion once, and then place copies of that sub-graph
within a larger graph. Nested graphs can be used as a form of modularity that allows
abstracting the details of a sub-graph from the description of the outer graph. A
sub-graph can be thought of as a single factor in the outer graph that happens to be
described as a factor graph itself. In Dimple, graphs may be nested to an arbitrary
depth of hierarchy. Creation of a nested sub-graph within another graph is described
in section 4.1.4.5.

Rolled-up factor graph: In some cases, a structure in a factor graph is repeated a great
many times, or an unbounded or data-dependent number of times. In such cases, Dim-
ple allows creation of rolled-up factor graphs, where only one copy of the repeated
section is described in the model. The result is a factor graph that is implicitly un-
rolled when inference is performed. The amount of unrolling depends on a potentially
unbounded set of data sources. Creation of rolled-up factor graphs is described in
section 4.3.

4.1.2 Creating a Graph

To create a new factor graph, call the FactorGraph constructor and assign it to a variable.
For example,

myGraph = FactorGraph ();

37

Note that Dimple makes use of MATLAB objects. In this case, a FactorGraph is such an ob-
ject, and “FactorGraph()” corresponds to the constructor of that object; in this case, called
with no arguments (if there are no arguments, the parentheses may be omitted). The Factor-
Graph object has a number of properties and methods that can be called using MATLAB’s
standard notation for object properties and methods. For example, “myGraph.Name” refers
to the Name property of the factor graph.

The created factor graph does not yet contain any variables or factors. Once a graph
is created, then variables and factors can be added to it, as described in the subsequent
sections.

Creating a factor graph in this way corresponds to a basic factor graph, or the top-level
graph in a nested-graph hierarchy. To create a factor graph that will ultimately be used as
a sub-graph in a nested graph hierarchy, the constructor must include arguments that refer
to the “boundary variables” that will connect it to the outer graph. For example,

mySubGraph = FactorGraph(varA , varB , varC);

In this case, the variables listed in the constructor, must already have been created. Creation
of variables is described in section 4.1.3.

Creation of sub-graphs is described in more detail in section 4.1.4.5.

4.1.3 Creating Variables

4.1.3.1 Types of Variables

Dimple supports several types of variables:

Discrete: A Discrete variable is one that has a finite set of possible states. The domain
of a discrete variable is a list of the possible states. These states may be anything—
numbers, strings, arrays, objects, etc.

Bit: A Bit is a special-case of a discrete variable that has exactly two states: 0 and 1.
Note that when using Bit variables, there are some differences in the API versus using
Discrete variables. These differences are noted in the appropriate sections of this
manual.

Real: A Real variable is a continuous variable defined on the real line, or some subset of
the real line.

RealJoint: A RealJoint variable is a multidimensional continuous variable, defined on RN

or a subset of RN. Unlike a vector of Real variables, the components of a RealJoint
variable cannot be connected independently in a graph.

38

Complex: A Complex variable is a special-case of a RealJoint variable with two dimen-
sions. In some cases, the values of a Complex variable are expressed as MATLAB
complex numbers.

FiniteFieldVariable: A FiniteFieldVariable is a special-case of a discrete variable that
represents a finite field with N = 2n elements. These fields are often used, for ex-
ample, in error correcting codes. These variables can be used along with certain
custom factors that are implemented more efficiently for sum-product belief propa-
gation than the alternative using discrete variables and factors implemented directly.
See section 4.4 for more information on how these variables are used.

A factor graph may mix any combination of these variable types, though there are some
limitations in the use of certain variable types by some solvers. Specifically, some solvers
do not currently support Real variables.

A variable of a given type can be created using the corresponding object constructor. For
example,

myDiscreteVariable = Discrete (1:10);

myBitVariable = Bit();

myRealVariable = Real();

In this case, each of the above lines created a single variable of the corresponding type.
In the case of a Discrete variable, a constructor argument is required, which defines the
domain of the variable. In the above example, the domain is the set of integer numbers 1
through 10.

Note that variables may be created prior to creation of the factor graph that they will
ultimately become part of4. A variable is not yet associated with any factor graph until it
is connected to at least one factor, as described in section 4.1.4.

4.1.3.2 Specifying Variable Domains

4.1.3.2.1 Discrete Variables

When creating a Discrete variable, the domain of that variable must be specified5. Once
created, the domain of a variable cannot change.

The domain of the discrete variable is always the first argument of the constructor. The
domain is a list in the form of either a MATLAB numerical array, or a MATLAB cell array.
Each entry in the array corresponds to one possible state of the variable. In the case of a

4For nested graphs, at least the boundary variables must be created prior to creation of the factor graph.
5Note that for Bit variables, the domain is implicit and is not specified in the constructor.

39

cell array, the entries are arbitrary–they may be, for example, strings, vectors, arrays, or
objects.

Some examples:

v1 = Discrete (1:10);

v2 = Discrete ([1.5, 1/3, 27.4327 , -13.6, sqrt (2), sin(pi/7)]);

v3 = Discrete ({’Sun’, ’Clouds ’, ’Rain’, ’Snow’});

v4 = Discrete ({ [1 2; 3 4], [5 6 7; 8 9 10], 3.7});

Even though the domains are discrete, the actual values of the domain states may be
anything, including real numbers. Though, when using real numbers and objects, care
must be taken, for example, when making equality comparisons.

The values of a domain need not be defined in-line in the constructor, but may be defined
elsewhere in the program. For example:

myDomain = 1:10;

...

myVariable = Discrete(myDomain);

Alternatively, the domain can be defined as a DiscreteDomain object, which provides an
object wrapper around the domain. For example:

myDomain = DiscreteDomain (1:10);

...

myVariable = Discrete(myDomain);

In this case, the myDomain object has properties that can be queried, such as “.Elements”,
which provides a list of the elements of the domain.

In this case, the myDomain object has properties that can be queried, such as “.Elements”
, which provides a list of the elements of the domain.

To see the domain of a variable, you can query the Domain property. For a discrete variable,
this returns a DiscreteDomain object, which you can query as described above to see the
elements of the domain. For example:

disp(myVariable.Domain.Elements);

The Domain property could be used, for example, to take one variable and create others
that have the same domain. For example,

newVariable = Discrete(otherVariable.Domain);

40

4.1.3.2.2 Real Variables

When creating a Real variable, specifying a domain is optional. If no domain is specified,
the domain is assumed to be the entire real line from −∞ to ∞.

The domain of a Real variable is an array of two real numbers: the first specifies the lower
bound on the variable, and the second specifies the upper bound (the upper bound must
be greater than or equal to the lower). Either or both of the values may be −∞ or ∞.

As with discrete variables, the domain may be specified ahead of time, and may be created
by defining in this case a RealDomain object, which takes two arguments: the lower and
upper bound, respectively. Some examples:

r1 = Real();

r2 = Real([0 Inf]);

r3 = Real([-pi pi]);

myDomain = RealDomain (-2.6, 12.4);

r4 = Real(myDomain);

The Domain property of a Real variable returns in this case a RealDomain object, which
contains two properties, LB and UB, which correspond to the lower bound and upper bound,
respectively.

4.1.3.3 Creating Arrays of Variables

In many cases, a factor graph contains a set of variables that all have the same type and
the same domain. In this case, it is often convenient to treat these as a single vector
or multidimensional array of variables. An array of variables can be created all at once
by specifying the dimensions of the array as the final arguments in the constructor. For
example,

v1 = Bit (10 ,10);

v2 = Discrete(myDomain , 3, 4, 5, 2, 10);

v3 = Real([-pi pi], 20, 1);

The first example creates a 10x10 matrix, the second a multidimensional array with 5
dimensions, each with the specified length, and the third a column vector.

The dimensions follow the MATLAB convention of row, followed by column, followed by any
additional dimensions. Also like other MATLAB functions, specifying a single dimension
of length N implies a square NxN matrix.

Once a variable array has been created, individual variables or sub-arrays may be referenced
using standard MATLAB notation for array indexing. For example:

41

oneVariable = v1(3,2);

subArray = v2(:,:,:,1,8:end);

subVector = v3 (5:10);

4.1.3.4 Naming Variables

Variables can be named, which can be useful in debugging as well as displaying a factor
graph visually. A single variable can be named by setting the Name property:

myVariable.Name = ’My variable ’;

The variable name can be retrieved by referencing the Name property.

An array of variables can be named, each with distinct names by using the setNames
method6:

myVariableArray.setNames(’X’);

This results in a unique name assigned to each variable with the specified prefix, followed
by a unique vector variable index number.

All variables in a factor graph must have unique names. Sometimes it’s desirable to give
multiple variables the same label for plotting or displaying. In this case, users can set the
Label property. If the Label property is not set, plotting and displaying uses the name. If
the Label property is set, the Label is used when displaying and plotting.

myVar.Label = ’myvar’;

4.1.4 Creating Factors and Connections to Variables

4.1.4.1 Basic Factor Creation

Creation of a factor graph involves defining the variables of that graph, and then successively
creating factors that connect to these variables.

Before creating a factor, the following must already have been created:

6For large arrays, using this method is significantly faster than naming each variable individually in a
loop.

42

• The factor-graph into which the factor will be placed.

• All of the variables that the factor will connect to.

The most basic way of creating a factor is by calling the “addFactor” method on the factor
graph object. For example:

myGraph.addFactor(factorSpecification , myVariable1 , myVariable2);

Resulting from this method call, the specified factor is created, the factor is connected to
the variables listed in the arguments, and the factor and all connected variables become
part of the designated factor graph (if they are not already).

The factor specification is one or more arguments that define the factor. Dimple supports a
variety of ways of specifying a factor, each of which is described in more detail in subsequent
sections. A factor specification may be one of the following:

• A MATLAB function handle

• A factor-table

• A built-in factor

• The name of a built-in factor

• A sub-graph

• A built-in overloaded MATLAB operator7

• A custom Java FactorFunction object8

After the factor specification argument(s), the remaining arguments are all treated as vari-
ables or constants. The variables may be individual variables or arrays of variables, or
combinations thereof.

The number and type of variables that can be connected to a factor depend on the type of
factor being created. In some cases, a factor is defined flexibly to accommodate an arbitrary
number of connected variables, while in other cases there are restrictions. In most cases,
the order of variables matters. The definition of a factor generally requires a specific order
of variables, where each variable or set of variables may be required to be of a specific type.
In such cases, the arguments of the addFactor method call must appear in the required
order.

For example, “Normal” is a built-in factor that describes a set of normally distributed
variables with variable mean and precision. In this case, the first argument must be the
mean, the second must be the precision, and the remaining one or more variables are the
normally distributed variables. In this case, the factor creation could look like the following:

7This method of factor creation does not use addFactor, but instead uses a different syntax to create the
factor implicitly.

8The mechanism to create and use custom Java FactorFunction objects is described in Appendix B.

43

fg = FactorGraph ();

meanValue = Real();

precisionValue = Real ([0 Inf]);

normalSamples = Real (100 ,100);

fg.addFactor(’Normal ’, meanValue , precisionValue , normalSamples);

In this example, the factor specification argument is the name of the built-in factor, and
the normalSamples argument refers to the entire array of 100x100 normally distributed
variables. The number of these sample variables is of arbitrary length only because of the
way the “Normal” built-in factor was defined.

Note that these variables could have been listed explicitly as separate arguments. For
example, if there were only two such variables, we could have written:

normalSamples = Real (2,1);

fg.addFactor(’Normal ’, meanValue , precisionValue , normalSamples (1),

normalSamples (2));

When creating a factor, it is sometimes convenient to supply a constant value to one or more
of the factor’s arguments instead of a variable. This can be done simply by substituting
a value that is not a Dimple variable. In this case, the value must be consistent with the
possible values the particular factor is designed to accept. In the above example, if we
wished to have a variable mean value, but define a fixed precision of 0.2, we could have
written:

fg.addFactor(’Normal ’, meanValue , 0.2, normalSamples (1), normalSamples (2));

Note that in this case, the “Normal” built-in factor requires the precision to be positive,
so if we had provided a constant value of -0.2, for example, this would have resulted in an
error. The particular requirements of a factor are specific to the definition of that factor.

4.1.4.2 Vectorized Factor Creation

In many cases, a factor graph has repeated patterns of variables and factors, where the
factors are all of the same type. In this case, Dimple provides a vectorized factor creation
method that allows adding an entire array of factors all at once with a single operation.
Using this approach is typically significantly faster than adding factors one-by-one in a loop.

The most straightforward use of this method is when all of the associated variables are all
arrays with the same dimensions as the array of factors. For example, supposed we have a
100x100 array of variables, A, and a 100x100 array of variables, B. And we wish to add a
set of 100x100 factors, where each factor connects the corresponding A and B variables. In
this case, we would write:

44

A = Bit (100 ,100);

B = Bit (100 ,100);

fg.addFactorVectorized(factorSpecification , A, B);

This need not be limited to arrays with two dimensions, but generalizes to an arbitrary set
of dimensions.

The vectorized approach can also be used to connect arrays of variables to individual vari-
ables or constants. For example, continuing the above example:

C = Real();

fg.addFactorVectorized(factorSpecification , A, B, C);

fg.addFactorVectorized(factorSpecification , A, B, 0.1);

In the first addFactorVectorized call, above, each of the 100x100 factors created is connected
to the corresponding element of A and B, and all of them connect to the variable C. In the
second case, above, all of the 100x100 factors use the constant 0.1 as the third argument.

Note that unlike the previous use of addFactor, having array arguments resulted in many
copies of the factors rather than a single factor connecting to many variables. In some cases,
it is desirable to have some combination of these. Dimple provides a syntax for determining
which dimensions of an array should be vectorized (creating multiple factors) and which
should be treated as array inputs to a each factor.

Expanding on the example above, say A were a 100x100 array and B were a 100x100x5
array, and for each 100x100 factors we wished to connect one element of A with each of
the 5 elements of B corresponding the entire length of its third dimension. In this case, we
could write:

A = Bit (100 ,100);

B = Bit (100 ,100 ,5);

fg.addFactorVectorized(factorSpecification , A, {B, [1 2]});

In the above, the variable argument B is replaced with a cell-array containing the variable
followed by an array listing the dimensions for which the “vectorized” connection to the
array of factors should be made. In this case, first two dimensions, of size 100x100 corre-
spond to the 100x100 factors that we wish to vectorize factor creation. Since dimension 3
was not included in this list, then for each value of row and column dimension, the entire
length of B variables in the third dimension are connected to the corresponding factor.

All arguments passed to addFactorVectorized that are arrays of variables (rather than single
variables or constants) must have the same number of dimensions over which they are
vectorized and those dimensions must be of the same size. For example, in the above
example, we could not have specified vectorizing over B’s second and third dimensions,
which do not have the same size as A. However, if B were instead 5x100x100, we could have
done so.

45

If arrays of variables that must be connected are not already of the same size, or have the
same order of dimensions, the MATLAB functions repmat, permute, reshape, or squeeze
may be applied to variable arrays to reorganize them into the appropriate form. In the
case of repmat, Dimple does not actually make multiple copies of the variables, but instead
provides repeated references to the same variables. This allows, for example, a vector of
variables to be connected to a grid of variables, where each element of the vector connects
to an entire row of factors in the grid. Below is an example of such a case:

A = Bit (100 ,100);

B = Bit (100 ,1);

fg.addFactorVectorized(factorSpecification , A, repmat(B,1 ,100));

4.1.4.3 Using MATLAB Factor Functions

A factor may be specified by defining a MATLAB function, and passing a handle to that
function. The function must accept values that correspond to the possible states of the
connected variables (in the same order as specified in the addFactor call), and return a
non-negative weight corresponding to the unnormalized value of the factor.

Using a MATLAB function to specify a factor is valid in Dimple only when all of the
connected variables are discrete (either Discrete or Bit). Real values are allowed in other
parts of a graph, as long as they are not directly connected to a factor defined this way.

Starting with a very simple example, suppose we wish to create a factor that corresponds
to a two-input logical AND function, where the first argument is the output of the AND
function, and the second and third are the inputs. This is a deterministic factor, where the
weight of the factor is 1 (or any arbitrary constant) if the output variable equals the logical
AND of the two inputs, and 0 otherwise.

To define this factor function, we create a MATLAB function that is accessible via the
MATLAB path. In this example, we will call the function AndExample, in the file AndEx-
ample.m. We can define this function as follows:

function factorValue = AndExample(out , in1 , in2)

factorValue = (in1 && in2) == out;

end

We then create a factor using this factor function, connecting it to previously defined Bit
variables, x, y, and z:

myFactorGraph.addFactor(@AndExample , x, y, z);

The “@” symbol indicates a MATLAB function handle, which is a reference to the previously
defined function.

46

It would have been possible to instead define the function in-line as a MATLAB anonymous
function. Though, this does not allow a function to be reused to create multiple factors.
The following is equivalent to the example above:

myFactorGraph.addFactor(@(out , in1 , in2) (in1 && in2) == out , x, y, z);

In this case, the factor function had a fixed number of arguments. If instead, we would
like the number of input arguments to be variable, we can make use of MATLAB’s variable
argument lists:

function factorValue = AndExampleImproved(out , varargin)

factorValue = prod(cell2mat(varargin)) == out;

end

We can use this factor with an arbitrary number of input variables:

myFactorGraph.addFactor(@AndExampleImproved , x, y, z, a, b, c, d);

MATLAB factor functions need not be so simple. First of all, their outputs can be any
non-negative value. But they can also take more interesting values than just the integers.
For example, suppose we define a factor of two variables over a domain consisting of strings
such that the factor output value is proportional to the number of times the second string
is found in the first, relative to the length of the first string.

function factorValue = StringMatchExample(string , pattern)

factorValue = numel(strfind(string , pattern)) / length(string);

end

4.1.4.4 Using Factor Tables

When Dimple creates a factor using a factor function, for some solvers, behind the scenes it
translates that factor function into a table by enumerating all possible states of all connected
variables. While steps are taken to make this efficient, including storing only non-zero values
and reusing tables for identical factors, the time it takes to create the factor table can in
some cases be very large. In some situations, a user may have specific knowledge of the
structure of a factor that would allow them to create the same table much more efficiently.
To accommodate such cases, Dimple allows factors to be specified using user-created factor
tables.

A factor table consists of two parts: a two dimensional array of integers and a single dimen-
sional array of doubles. Each row of the two dimensional table represents a combination

47

of variable values for which the factor value is non-zero. Each column represents a vari-
able connected to the factor. The values of this table specify an index into the discrete
domain of a variable. Each row of the two dimensional table corresponds to one entry of
the array of doubles, where that entry contains the value of the factor corresponding to the
corresponding set of variable values.

Once the user has created the table, they can create a factor using this table in one of
two ways. The first is to provide the two dimensional array of indices and vector of values
directly as the first two arguments of the addFactor call, respectively:

fg = FactorGraph ();

b = Bit(2,1);

indices = [0 0; 1 1];

values = [2 1];

fg.addFactor(indices , values , b);

In the following example we first create a factor table object and then create a factor using
that table. This has the advantage of using less overall memory if this same factor table
will be used in multiple factors.

fg = FactorGraph ();

b = Bit(2,1);

indices = [0 0; 1 1];

values = [1 1];

myFactorTable = FactorTable(indices , values , b.Domain , b.Domain);

fg.addFactor(myFactorTable , b);

4.1.4.5 Using Sub-Graphs

In a nested graph, a factor at one layer of the graph hierarchy can correspond to an entire
sub-graph. To add a sub-graph as a factor to another graph, first the sub-graph must have
already been created. A sub-graph is created almost the same as any ordinary graph, with
the exception of defining a subset of its variables to be “boundary” variables. These indicate
how the sub-graph will connect to other variables in the outer graph.

To understand how sub-graph creation works, we first note that when a sub-graph is added
to an outer graph, a new copy of the sub-graph is made, with entirely new variables and
factors. The original sub-graph is used only as a template for creating the copies. This
means that the actual variables used in the sub-graph are never directly used in the final
nested graph. Internal variables within the sub-graph are created new when the sub-graph
is added. Boundary variables, on the other hand, are connected to variables in the outer
graph, which might already exist in that graph.

When a sub-graph is created, its boundary variables must be defined in the graph con-
structor. The boundary variables listed in the constructor must be of the identical type
and have the identical domain (in the case of discrete variables) as the variables they will

48

later connect when added to the outer graph. Additionally, the order of variables listed in
creation of the sub-graph must match exactly the order of variables listed when adding the
sub-graph to an outer graph.

For example, we define a subgraph as follows:

a = Discrete (1:10);

b = Bit;

x = Bit;

mySubGraph = FactorGraph(a, b);

mySubGraph.addFactor(exampleFactor1 , a, b);

mySubGraph.addFactor(exampleFactor2 , b, x);

To add this subgraph to an outer graph, we use addFactor (or addFactorVectorized), spec-
ifying the factor using the subgraph object.

N = 5;

fg = FactorGraph;

P = Discrete (1:10 , N, 1);

Q = Bit(N,1);

for i = 1:N

fg.addFactor(mySubGraph , P(i), Q(i));

end

Equivalently, this can be vectorized using:

fg.addFactorVectorized(mySubGraph , P, Q);

4.1.4.6 Using Built-In Factors

Dimple supports a set of built-in factors that can be specified when adding a factor to a
graph. The complete list of available built-in factors can be found in section 5.9.

In many cases, a built-in factor may be specified simply by referring to the name of the
factor as a string (which is case sensitive). As an example,

Mean = Real();

Precision = Real();

Values = Real (1 ,100);

MyGraph.addFactor(’Normal ’, Mean , Precision , Values);

Built-in factors may be specified by name only if no constructor arguments are needed.
If constructor arguments are needed, then there are two ways to specify the factor. The
preferred way is to create a FactorFunction object, which takes the name of the factor
followed by the constructor arguments for that factor. For example:

49

MyGraph.addFactor(FactorFunction(’Gamma ’, 1, 1), X);

The same FactorFunction can be used more than once, which avoids creating additional
copies of the FactorFunction object. For example:

myFactorFunction = FactorFunction(’Gamma’, 1, 1);

MyGraph.addFactor(myFactorFunction , X1);

MyGraph.addFactor(myFactorFunction , X2);

A short-hand notation may alternatively be used, in which the name of the factor function
and its constructor arguments are contained in a cell array. For example:

MyGraph.addFactor ({’Gamma’, 1, 1}, X);

4.1.4.7 Implicit Factor Creation Using Overloaded Operators and Functions

Dimple supports a set of built-in factors that can be added implicitly using overloaded
MATLAB operators or functions. For example,

fg = FactorGraph ();

a = Discrete (1:4);

b = Discrete (1:10);

c = a + b;

The last line of this example will automatically create a new variable, c, and a ’Sum’ factor
connected to variables c, a, and b. The domain of c will be defined appropriately given the
domains of the input variables. In this example, the domain of c would automatically be
set to the range [2:14].

These operations can be compounded in a single line of code, and variables of different data
types as well as constants can be intermingled (as long as the type is supported by the
specific operator). In this case, intermediate anonymous variables will be created in the
graph associated with intermediate results of the operation. For example,

z = (a + b) * c^d - sqrt(-e);

Like using the addFactor method, adding factors implicitly can include constants. Specifi-
cally, for binary operators, one of the inputs may be a constant instead of a variable. For
example:

50

x = a^2;

y = (a + b + 2) * 3;

Since adding a factor implicitly does not specifically refer to the factor graph, the graph to
which these factors are added is also implicit. In particular, these implicitly defined factors
are added to the last factor graph that was created. So, in the first example above, the
factor would be added to fg, regardless of whether other factor graphs had previously been
created.

Adding built-in factors implicitly using overloaded MATLAB operators or functions can
also be vectorized, with some limitations. Specifically, if each of the input variables are
vectors of the same dimension, then the result will be to create a vector of output variables
of the same dimension, along with a vector of factors relating the inputs and outputs.

In some cases, to be consistent with MATLAB notation, there is a distinction made between
the vectorized and non-vectorized operator. Specifically, Dimple uses MATLAB’s notation
for pointwise product and power operators to indicate a vectorized operation. For example,
if variables a through e are vectors of variables of identical size, then the following would
create a variable vector z, and a series of factors relating these variables.

z = (a .* b) + c.^d - sqrt(-e);

For binary operators, one of the inputs may be a scalar variable or a scalar constant instead
of a variable vector. For a scalar variable, the result is that scalar variable connecting to
each instance of the factors that are created. For a constant, each instance of the factor uses
the same constant for that input (vectors of distinct constants are not currently supported).
As an example:

a = Real();

b = Discrete(domain , 1, 10);

z = a + b;

In cases where the user wishes to use operator overloading with nested graphs, it may be
necessary to use the FactorGraph’s addBoundaryVariables method. For instance, if they
create a nested graph such that y = a+b and the user requires y to be a boundary variable,
the addBoundaryVariables method must be used. For example:

ng = FactorGraph ();

a = Bit();

b = Bit();

y = a+b;

ng.addBoundaryVariables(y,a,b);

fg = FactorGraph ();

a2 = Bit();

b2 = Bit();

51

y2 = Discrete ([0 1 2]);

fg.addFactor(ng,y2,a2,b2);

The specific set of operators supported is given in section 5.10.

4.1.4.8 Naming Factors

Just like variables, factors can be named, which can be useful in debugging as well as
displaying a factor graph visually. To name a factor, the factor object must be accessible
via a variable. When using addFactor, the result is the factor object, which can be assigned
to a variable. A single factor can be named by setting the Name property of the factor
object.

myFactor = fg.addFactor(exampleFactor , a, b, c);

myFactor.Name = ’My factor ’;

And the factor name can be retrieved by referencing the Name property.

An array of factors can be named, each with distinct names by using the setNames method:

myFactorArray = addFactorVectorized(exampleFactor , a, b, c);

myFactorArray.setNames(’F’);

This results in a unique name assigned to each factor with the specified prefix, followed by
a unique vector variable index number.

Just like Variables, Factors also support the notion of a Label, which can be used to allow
multiple factors to share the same label.

4.1.5 Modifying an Existing Graph

4.1.5.1 Removing a Factor

It is possible to remove a Factor from an existing FactorGraph:

fg = FactorGraph ();

b = Bit(3,1);

fg.addFactor(@xorDelta ,b(1:2));

f = fg.addFactor(@xorDelta ,b(2:3));

b.Input = [.8 .8 .6];

fg.NumIterations = 2;

fg.solve ();

assertElementsAlmostEqual ([.96 .96 .96]’,b.Belief);

52

fg.removeFactor(f);

fg.solve ();

p1 = .8*.8;

p0 = .2*.2;

total = p1+p0;

p1 = p1/total;

p0 = p0/total;

assertElementsAlmostEqual ([p1 p1 .6]’,b.Belief);

4.1.5.2 Splitting Variables

It can be useful to make a copy of a variable and relate it to the old variable with an equals
factor. The following code shows how to do this.

a = Bit();

a.Name = ’a’;

b = Bit();

b.Name = ’b’;

fg = FactorGraph ();

f = fg.addFactor(@(x,y) x~=y,a,b);

f.Name = ’unequal ’;

b2 = fg.split(b);

b2.Name = ’b2’;

a2 = fg.split(a,f);

a2.Name = ’a2’;

fg.plot (1);

We’ve added code to name all the variables and factors so that the following plot is infor-
mative.

53

Note that the split method takes a list of factors as the second through nth argument. This
is the list of factors that will be moved from the original variable to the copied variable. All
unspecified factors will remain connected to the initial variable.

4.1.5.3 Joining Variables

It is possible to join variables in an existing graph, which will create a new joint variable
and modify all factors connected to the original variables to reconnect to the new joint
variable. This can be useful in eliminating loops in a graph. The following code creates a
loopy graph and then uses join to remove the loop.

a = Bit();

a.Name = ’a’;

54

b = Bit();

b.Name = ’b’;

c = Bit();

c.Name = ’c’;

d = Bit();

d.Name = ’d’;

fg = FactorGraph ();

f1 = fg.addFactor(@xorDelta ,a,b,c);

f1.Name = ’xor’;

f2 = fg.addFactor(@(x,y,z) (x|y)==z ,a,b,d);

f2.Name = ’or’;

newvar = fg.join(a,b);

newvar.Name = ’a,b’;

fg.plot (1);

The following is the loopy graph:

And after joining the variables we have:

4.1.5.4 Joining Factors

It is possible to remove loops by joining factors as well as by joining variables. (NOTE:
an easier way to eliminate loops is to use the Junction Tree solver (see 5.6.8), which will
produce a transformed version of the graph without altering the original graph.)

55

b = Bit(4,1);

for i = 1:4

b(i).Name = sprintf(’b%d’,i);

end

fg = FactorGraph ();

f1 = fg.addFactor(@xorDelta ,b(1:3));

f2 = fg.addFactor(@xorDelta ,b(2:4));

f3 = fg.join(f1,f2);

f3.Name = ’twoxors ’;

b.Input = input;

fg.solve ();

actualBelief = b.Belief;

fg.plot (1);

The following plot shows the graph with the loops:

And the following plot shows the graph after the factor is joined:

To join factors, Dimple does the following:

• Find the variables in common between two factors.

• Take the cartesian product of the tables but discard rows where the common variable
indices differ.

• Consolidate the columns with common variables.

• Multiply the values for each row.

56

4.1.5.5 Changing Factor Tables

For factors connected only to discrete variables, the factors are stored in the form of a factor
table (regardless of how the factor was originally specified). It is possible to modify some
or all of the entries of that factor table in an existing factor graph.

Modifying a single entry or set of entries in a factor table can be done by getting the
FactorTable property and calling the set method. For example, the following changes a
single entry in a factor. In this example, the factor has two edges, the first with domain
containing strings, the second with a domain containing numbers. The arguments of the
set method prior to the last one specify the domain settings for which the factor value is to
be changed. The final argument is the new factor value for the particular domain setting,
which will replace the previous value.

factor.FactorTable.set(’red’, 1, 0.4);

To change multiple elements at once, the sets of arguments may be included in a comma-
separated list of cell arrays:

factor.FactorTable.set({’red’, 1, 0.4}, {’blue’, 1, 0.25}, {’blue’, 2, 0});

More detail on the use of the set method can be found in section 5.3.4.3.1.

Alternatively, the entire factor table can be replaced with another one. For this, the change
method would be used instead:

indexList = [0 0 0; 0 1 1; 1 1 0; 1 0 1];

weightList = [0.2 0.15 0.4 0.9];

factor.FactorTable.change(indexList , weightList);

Here the indexList is is an array where each row represents a set of zero-based indices into
the list of domain elements for each successive domain in the set of domains associated
with the variables connected to this factor. The weightList is a one-dimensional array of
real-valued entries in the factor table, where each entry corresponds to the indices given by
the corresponding row of the indexList.

IMPORTANT: Identical factor tables are automatically shared between factors. If changing
the factor table for a factor and if that factor is shared by other factors, then this changes
it globally for all such factors.

4.1.6 Plotting a Graph

When debugging Factor Graphs, it is sometimes useful to be able to plot a Factor Graph.
The FactorGraph class provides a plot method that can be used to visualize a Factor Graph.

57

The following code describes how to use the plot function in various ways.

%First we build a Factor Graph to use for plotting examples

fg = FactorGraph ();

b = Bit(6,1);

for i = 1:6

b(i).Name = sprintf(’b%d’,i);

end

%We use Label rather than Name for the factors so that we can assign

%them the same Label. Name must be a unique identifier ,

%Label is just used for printing/plotting.

f1 = fg.addFactor(@xorDelta ,b(1:4));

f1.Label = ’f’;

f2 = fg.addFactor(@xorDelta ,b(4:6));

f2.Label = ’f’;

pause_time = 1;

%Calling plot with no arguments shows no labels. It draws variables as

%circles and factors as squares.

fg.plot();

This will result in the following graph:

Note that factors are displayed as squares and variables as circles.

pause(pause_time);

%The following is equivalent to the previous plot command. We are simply

%explicitly turning off labels.

fg.plot(’labels ’,false);

58

Results in the same plot as above.

pause(pause_time);

%Now we turn on the labels. Now we see the names we assigned to the

%various nodes and variables of the Factor Graph.

fg.plot(’labels ’,true);

Results in the following:

If the user has specified a Label, those will be displayed, otherwise the object’s Name’s will
be displayed.

pause(pause_time)

%We can specify a subset of nodes to plot

fg.plot(’labels ’,1,’nodes ’,{b(1:2) ,f1});

Results in the following:

59

Only the specified nodes and their connectivity were included.

pause(pause_time)

%By can set a global color for all the nodes in the graph.

fg.plot(’labels ’,1,’color ’,’g’);

Setting a global color:

pause(pause_time)

%We can specify a color for one node in the graph.

fg.plot(’labels ’,1,’nodes ’,{b(1:2) ,f1},’color ’,b(1),’g’);

Setting a color for a specific node:

60

pause(pause_time)

%We can specify colors for multiple nodes in the graph.

fg.plot(’labels ’,1,’nodes ’,{b(1:2) ,f1},’color ’,{b(2),f1},{’r’,’c’});

Setting colors for multiple nodes:

pause(pause_time)

%We can mix setting a global color , colors for a single node mutliple

%times , and colors for multiple nodes. The global color is used in all

%cases where a color has not explicitly been set for a node.

fg.plot(’labels ’,1,’color ’,b(1),’g’,’color ’,b(2),’r’,’color ’,{b(3),b(4)},{’y

’,’c’},’color ’,’b’);

Mixing and matching the various coloring options:

61

pause(pause_time)

%We can also specify a root node on which we perform a depth first search

%up to a specific depth and then only print nodes up to that depth.

for depth = 0:5

%Furthermore , we color the root node green so we know which is the root

%node.

fg.plot(’labels ’,1,’depth ’,b(1),depth ,’color ’,b(1),’g’,’color ’,’b’);

pause(pause_time);

end

Specifying a depth will display a specified root node and all nodes that are N steps away.
The following shows the result of calling plot with ‘depth’ of b(1) and 2:

62

We also colored the root node green to make it clear which was the root node.

%The following shows how using the depth feature we might be able to find

%out interesting information. Here we increase the depth until we visually

%see a loop.

[ldpc ,vars] = createLDPC ();

v = vars (1);

for depth = 0:6

ldpc.plot(’depth ’,v,depth);

pause(pause_time);

end

Here, we show how we can use plot to find interesting information about a large graph. The
final plot with a depth of 6 shows a cycle in an LDPC Factor Graph:

63

4.1.6.1 Plotting Nested Graphs

By default, the plotting method ignores hierarchy and plots the flattened graph. If the user
specifies the ’nesting’ parameter, however, they can specify how deep to descend into the
hierarchy before considering NestedGraphs to be Factors and plotting them as such.

When labels are turned off, nested graphs are displayed as triangles

First let’s build a graph with three levels of nesting.

b = Bit(2,1);

template1 = FactorGraph(b);

iv = Bit();

template1.addFactor(@xorDelta ,b(1),iv);

template1.addFactor(@xorDelta ,b(2),iv);

b = Bit(2,1);

template2 = FactorGraph(b);

iv = Bit();

template2.addFactor(template1 ,b(1),iv);

template2.addFactor(template1 ,b(2),iv);

template2.plot();

b = Bit(2,1);

fg = FactorGraph(b);

iv = Bit();

fg.addFactor(template2 ,b(1),iv);

fg.addFactor(template2 ,b(2),iv);

Here we show the graph plotted with various levels of nesting.

64

fg.plot(’nesting’,0);

Notice the Nested Graphs show up as triangles.

fg.plot(’nesting ’ ,1);

fg.plot(’nesting ’ ,2);

65

Note that once we have reached the bottom, we are actually seeing the Factors plotted.

We can retrieve an instance of a nested graph and plot that with nesting set.

fg.NestedGraphs {1}. plot(’nesting ’ ,0);

pause(pause_time);

When plotting graphs, boundary variables show up as stars.

Next we mix depth first search with nesting

fg.plot(’nesting ’,0,’depth ’,iv ,0);

66

fg.plot(’nesting ’,0,’depth ’,iv ,1);

fg.plot(’nesting ’,0,’depth ’,iv ,2);

67

4.1.7 Structuring Software for Model Portability

Because the specification of a model in Dimple is expressed in code, this code can be
intermingled with other code that makes use of the model. However, it is recommended
that code for defining a model be clearly separated from code that makes use of the model
or performs other functions. Specifically, we recommend a structure whereby a graph (or
subgraph) is encapsulated in a function that creates the graph and returns the graph object,
optionally along with some or all of the variables in the graph. Depending on the application,
the graph creation function may take some application-specific arguments. For example:

function [fg, vars] = createMyGraph(xDim , yDim)

fg = FactorGraph ();

v = Bit(xDim , yDim);

p = Discrete (1:10);

vars = {v, p};

fg.addFactorVectorized(@exampleFactor , v(:, 1:end -1), v(:, 2:end), p);

fg.addFactorVectorized(@exampleFactor , v(1:end -1, :), v(2:end , :), p);

end

This function can then be used by calling, for example:

[fg ,vars] = createMyGraph (4,4);

While it is possible to use Dimple to retrieve variables from the factor graph object itself,
returning variables in the graph creation function allows them to be more easily managed
and manipulated. The set of returned variables should include, at least, the variables that
will subsequently be conditioned on input data and the variables that will be queried after
performing inference. But since which variables will be used for these or other purposes
may not be known ahead of time, it is often useful to simply return all variables. If more
than one variable or variable array is to be returned, this could be done either by returning
each as a separate return value, or combining them all into a single cell array, as shown in
the above example.

In a nested graph, it is often preferable to use a structure like that shown above at each
layer of nesting. In this way, a sub-graph creation function might be reused in more than
one different outer graph.

In general, functions that create a Dimple model should not include operations that are
related to performing inference. This includes choosing the solver, setting parameters that
affect the solver behavior. There may in some cases be exceptions. For example, while
conditioning variables on input data would normally not be considered part of the model,
in some situations, it might be appropriate to consider this part of the model and to include
it in the model creation code.

68

4.2 Performing Inference

Once a model has been created in Dimple, the user may then perform inference on that
model. This typically involves first conditioning on input data, then performing the in-
ference computation, and then querying the model to retrieve information such as beliefs
(marginals), maximum a posteriori (MAP) value, or samples from the posterior distribu-
tion.

4.2.1 Choosing a Solver

To perform the inference computation, Dimple supports a variety of solver algorithms that
the user can choose from. For each solver, there are a number of options and configuration
parameters that the user may specify to customize the behavior of the solver.

At a high level, Dimple supports three categories of solver:

• Belief propagation (BP)

• Gibbs sampling

• Linear programming (LP)

The BP solvers further segment into solvers that are sum-product based—used primarily
to compute marginals of individual variables in the model:

• SumProduct

• JunctionTree

• ParticleBP

and solvers that are min-sum based—used to compute the maximum a posteriori (MAP)
value:

• MinSum

• JunctionTreeMAP

In either case, the result may be approximate, depending on the specific model and solver
settings.

In the case of sum-product, the solvers further divide based on how continuous variables are
dealt with (Real, Complex, and RealJoint variables). The SumProduct solver (which is the
default solver) uses a Gaussian representation for messages passed to and from continuous

69

variables, while the ParticleBP solver uses a particle representation9. In the current version
of Dimple, the min-sum solvers support only discrete variables10.

The two forms of Junction Tree solver are variants of BP that provide exact inference results
by transforming a loopy graphical model into a non-loopy graph by joining factors and
variables and then performing the sum-product or min-sum algorithm on the transformed
model. This is only feasible for models that are “narrow” enough, i.e., ones in which a large
number of variables would not have to be removed to eliminate any loops. The Junction
Tree solvers currently support only discrete variables (and continuous variables that have
been conditioned with fixed values). See section 5.6.8 for more details.

The Gibbs solver supports all variable types, and may be used to generate samples from the
posterior distribution, or to determine marginals or approximate the maximum a posteriori
value (see section 5.6.9).

The LP solver transforms a factor graph over discrete variables into an equivalent linear
program then solves this linear program (see section 5.6.11). This solver is limited to factor
graphs containing only discrete variables.

The Solver is a property of a factor graph. To set the Solver for a given graph, this property
is set to the name of the solver. For example:

myGraph.Solver = ’Gibbs’;

The solver name is case insensitive. The current set of valid solver names are:11

• SumProduct

• MinSum

• JunctionTree

• JunctionTreeMAP

• ParticleBP

• Gibbs

• LP

More detail on each of these solvers is provided in section 5.6.

If no solver is specified for a graph, Dimple will use the SumProduct solver by default.

9In the current version of Dimple, the ParticleBP solver does not support Complex or RealJoint variables.
10This restriction may be lifted in a future version.
11In Dimple versions 0.04 and earlier, there was a separate Gaussian solver, which implemented the Gaus-

sian BP for continuous variables. In subsequent versions of Dimple, this functionality has been incorporated
into the SumProduct solver. For backward compatibility, the solver may be set to ‘Gaussian,’ but will use
the SumProduct solver in this case.

70

4.2.2 Conditioning on Input Data

In many cases, the model created in Dimple represents the prior, before conditioning on the
data. In this case, then assuming inference on the posterior model is desired, then the user
must condition the model on the data before performing inference.

There are two primary ways to condition on input data. In the first approach, the values
actually measured are not included in the model, and instead the effect of the data is
specified via a likelihood function for each variable that is indirectly influenced by the data.
In the second approach, the variables that will be measured are included in the model, and
the value of each is fixed to the actual measured data value.

4.2.2.1 Using a Likelihood Function as Input

Suppose a variable to be measured, y, depends only on another variable, x, and the condi-
tional distribution p(y|x) is known. Then conditioned on the measured value, y = Y , then
the likelihood of x is given by L(x) = p(y = Y |x). If our model includes the variable x, but
does not include y, then we can indicate the effect of measuring y = Y by specifying the
likelihood function L(x) as the “input” to the variable x using the Input property of the
variable.

The particular form of the Input property depends on the type of variable. For a Discrete
variable type, the Input property is a vector with length equal to the size of the variable do-
main. The values represent the (not necessarily normalized) value of the likelihood function
for each element of the domain. For example,

v = Discrete (1:4);

v.Input = [1.2, 0.6, 0, 0.8];

Notice that values in the Input vector may be greater than one—the Input is assumed to
be arbitrarily scaled. All values, however, must be non-negative.

For a Bit variable, the Input property is specified differently. In this case, the Input is set
to a scalar that represents a normalized version of the likelihood of the value 1. That is,

L(x = 1)

L(x = 0) + L(x = 1)

For example,

b = Bit();

b.Input = 0.3;

In this case, the value must be between 0 and 1, inclusive.

71

For a Real variable, the Input property is expressed in the form of a FactorFunction object
that can connect to exactly one Real variable. The list of available built-in FactorFunctions
is given in section 4.1.4.6. Typically, an Input would use one of the standard distributions
included in this list. In this case, it must be one in which all the parameters can be fixed to
pre-defined constants. For the Gibbs and ParticleBP solvers, any such factor function may
be used as an Input. For the SumProduct solver, however, only a Normal factor function
may be used. Below is an example of setting the Input for a Real variable:

r = Real();

r.Input = FactorFunction(’Normal ’, measuredMean , measurementPrecision);

See section 5.2.6.2.3 for a description of how to set the Input on RealJoint (or Complex)
variables.

If the inputs are to be applied to an array of variables, this can generally be done all at
once by setting the Input property of the entire array. For a Discrete variable array, the
Input is set to an array with the same dimensions as the variable array (or subarray), but
with an extra dimensions corresponding to the Input vector for each variable in the array.
(If a dimension in the array is 1, that dimension is not included.) For example:

v = Discrete (1:4, 2, 1);

v.Input = [1.2, 0.6, 0, 0.8 ; 0.4, 0, 1.1, 0.9];

For an array of Bit variables, the Input is an array with the same dimensions as the Bit
array. For example:

b = Bit(2,3);

b.Input = [0.3 0.7 0.1; 0.0 0.8 0.6];

In the current version of Dimple, Inputs on Real variable arrays must be set one at a time,
or all set to a single common value12.

4.2.2.2 Fixing a Variable to a Known Value

In some cases, the variable that will be measured is included in the model. In this case,
once the value becomes known, the variable may be fixed to that specific value so that the
remainder of the model becomes conditioned on that value. The FixedValue property is
used to set a variable to a fixed value. For a single variable, the FixedValue is set to any
value in the domain of that variable. For example:

v = Discrete (1:4);

v.FixedValue = 2;

12This restriction may be removed in a future version.

72

v = Discrete ([1.2 , 5.6, 2.7, 6.94]);

v.FixedValue = 5.6;

b = Bit();

b.FixedValue = 0;

r = Real([-pi , pi]);

r.FixedValue = 1.7;

For Discrete variables, the FixedValue property is currently limited to variables with nu-
meric domains, though the domains need not include only integer values13.

For arrays of variables, the FixedValue property may be set for the entire array by setting
it to an array of values of with the same dimensions as the array (or subarray) being set.
For example:

b = Bit(2,3);

b.FixedValue = [0 1 0; 1 1 0];

To see if a FixedValue has been set on a variable, you can use the hasFixedValue method.
For a single variable this method returns a boolean value, and for an array of variables this
method returns a boolean array.

Because the Input and FixedValue properties serve similar purposes, setting one of these
overrides any previous use of the other. Setting the Input property removes any fixed value
and setting the FixedValue property removes any input14.

4.2.2.3 Using a Data Source in a Rolled-Up Graph

In a rolled-up graph, the Input property of a variable can be set using a data source. Detail
on how to do this can be found in section 4.3

4.2.3 Choosing a Schedule

All of the Dimple solvers operate by successively performing the inference computation on
each element in the graph. In the case of BP solvers, both variable and factor nodes must
be updated, and the performance of the inference can depend strongly on the order that

13This limitation may be removed in a future version.
14For implementation reasons, setting the fixed value of a Discrete or Bit variable also sets the Input to a

delta function—with the value 0 except in the position corresponding to the fixed value that had been set.

73

these updates occur. Similarly, for the Gibbs solver, while variables must be updated in an
order that maintains the requirements of valid Gibbs sampling, performance may depend
on the particular order chosen.

The order of updates in Dimple is called a “schedule.” The schedule may either be deter-
mined automatically using one of Dimple’s built-in “schedulers,” or the user may specify a
custom schedule.

Each solver has a default scheduler, so if the user does not explicitly choose one, a reasonable
choice is made automatically.

4.2.3.1 Built-in Schedulers

If no scheduler or custom schedule is specified, a default scheduler will be used. The default
scheduler depends on the selected solver.

Another scheduler may be specified by setting the Scheduler property of a graph:

myGraph.Scheduler = ’ExampleScheduler ’;

When setting the scheduler for a graph, the name of the scheduler is case sensitive.

For the Junction Tree solvers, a tree schedule will always be used, so there is no need to
choose a different scheduler. For the remaining BP solvers (SumProduct, MinSum, and
ParticleBP), the following schedulers are available. More detail on each of these schedulers
is provided in section 5.1.2.2.

• TreeOrFloodingScheduler

• TreeOrSequentialScheduler

• FloodingScheduler

• SequentialScheduler

• RandomWithoutReplacementScheduler

• RandomWithReplacementScheduler

In a nested graph, for most of the schedulers listed above (except for the random schedulers),
the schedule is applied hierarchically. In particular, a subgraph is treated as a factor in
the nesting level that it appears. When that subgraph is updated, the schedule for the
corresponding subgraph is run in its entirety, updating all factors and variables contained
within according to its specified schedule.

It is possible for subgraphs to be designated to use a schedule different from that of its
parent graph. This can be done by specifying either a scheduler or a custom schedule for
the subgraph prior to adding it to the parent graph. For example:

74

SubGraph.Scheduler = ’SequentialScheduler ’;

ParentGraph.addFactor(SubGraph , boundaryVariables);

ParentGraph.Scheduler = ’FloodingScheduler ’;

For the TreeOrFloodingScheduler and the TreeOrSequentialScheduler, the choice of schedule
is done independently in the outer graph and in each subgraph. In case that a subgraph is a
tree, the tree scheduler will be applied when updating that subgraph even if the parent graph
is loopy. This structure can improve the performance of belief propagation by ensuring that
the effect of variables at the boundary of the subgraph fully propagates to all other variables
in the subgraph on each iteration.

For the RandomWithoutReplacementScheduler and RandomWithReplacementScheduler, if
these are applied to a graph or subgraph, the hierarchy of any lower nesting layers is ignored.
That is, the subgraphs below are essentially flattened prior to schedule creation, and any
schedulers or custom schedules specified in lower layers of the hierarchy are ignored.

Because of the differences in operation between the Gibbs solver and the BP based solvers,
the Gibbs solver supports a distinct set of schedulers. For the Gibbs solver, the follow-
ing schedulers are available. More detail on each of these schedulers is provided in sec-
tion 5.1.2.2.

• GibbsSequentialScanScheduler

• GibbsRandomScanScheduler

Because of the nature of the Gibbs solver, the nested structure of a graph is ignored in
creating the schedule. That is, the graph hierarchy is essentially flattened prior to schedule
creation, and only the scheduler specified on the outermost graph is applied.

4.2.3.2 Custom Schedules

Dimple supports user defined custom schedules created with a list of nodes and/or edges.
A custom schedule is specified using the Schedule method. Specifying a custom schedule
overrides any scheduler that the graph would otherwise use.

The following code demonstrates this feature:

eq = @(x,y) x == y;

fg = FactorGraph ();

a = Bit();

b = Bit();

c = Bit();

eq1 = fg.addFactor(eq ,a,b);

eq2 = fg.addFactor(eq ,b,c);

75

%define schedule

% update b

% update eq1 ->a

% update eq2 ->c

% update a->eq1

% update c->eq2

% update eq1 ->b

% update eq2 ->b

schedule = {

b,

{eq1 ,a},

{eq2 ,c},

{a,eq1},

{c,eq2},

{eq1 ,b},

{eq2 ,b}

};

fg.Schedule = schedule;

%Set priors

a.Input = .6;

b.Input = .7;

c.Input = .8;

%Solve

fg.NumIterations = 1;

fg.solve ();

Dimple also supports nesting custom schedules and nesting in general. The following ex-
ample demonstrates specifying nested graphs in a schedule.

eq = @(x,y) x == y;

b = Bit(2,1);

nfg = FactorGraph(b);

nfg.addFactor(eq ,b(1),b(2));

b = Bit(3,1);

fg = FactorGraph ();

nf1 = fg.addFactor(nfg ,b(1),b(2));

nf2 = fg.addFactor(nfg ,b(2),b(3));

fg.Schedule = {b(1),nf1 ,b(2),nf2 ,b(3)};

b(1).Input = .7;

fg.NumIterations = 1;

fg.solve ();

And finally we look at nesting a custom schedule:

%Now let ’s try nesting with a custom schedule on the nested graph.

%Create a graph to nest and give it a funny schedule

% nfg: eb(1) - f1 - ib - f2 - eb(2)

eb = Bit(2,1);

76

ib = Bit();

nfg = FactorGraph(eb);

f1 = nfg.addFactor(eq,eb(1),ib);

f2 = nfg.addFactor(eq,ib,eb(2));

%Set an input and solve

eb(1).Input = .8;

nfg.NumIterations = 1;

nfg.solve();

%We expect the output to be equal to the input since the tree

%scheduler passes the info along.

assertElementsAlmostEqual(eb(2).Belief ,eb(1).Input (1));

%Now we create a schedule that will not propagate the info.

nfg.Schedule = {ib ,{f1 ,eb(1)},{f2 ,eb(2)},eb(1),eb(2),f1 ,f2};

nfg.solve();

assertElementsAlmostEqual(eb(2).Belief ,.5);

%Nest it and see if the schedule is preserved

b = Bit(2,1);

fg = FactorGraph ();

g = fg.addFactor(nfg ,b);

fg.Schedule = {b(1),b(2),g};

b(1).Input = .8;

fg.NumIterations = 1;

fg.solve ();

assertElementsAlmostEqual(b(2).Belief ,.5);

4.2.4 Running the Solver

Once a factor graph has been created and conditioned on any input data, inference may be
performed on the graph by calling the solve method:

myGraph.solve();

The solve method performs all necessary computation, leaving the results available to be
subsequently accessed. The behavior of the solve method is determined by the chosen
schedule as well as by any solver-specific configuration parameters.

For example, for all of the BP solvers, the number of iterations can be set. By default, the
number of iterations is 1, but for a loopy factor graph, generally multiple iterations should
be performed. To set the number of iterations prior to solving, the BPOptions.iterations
option may be set on the graph:

myGraph.setOption(’BPOptions.iterations ’, 10);

myGraph.solve();

77

As a shortcut, the NumIterations property of the graph may be used to set the option:

myGraph.NumIterations = 10;

myGraph.solve();

For the Gibbs solver, the BPOptions.iterations option isn’t used and will be ignored if set;
other options specific to this solver should be used instead. For example, to set the number
of Gibbs samples to run before stopping (assuming the solver has been set to ’Gibbs’):

myGraph.setOption(’GibbsOptions.numSamples ’, 1000);

myGraph.solve();

Note that in most cases solver options can be set directly on the factor graph and the
values will only be used if the applicable solver is in use for that graph. Option values
will usually not take effect until the solver objects have been initialized, but this is done
automatically when the solve() method is run. If you need to interact directly with the
solver representation of the factor graph, you can access it using the Solver property .

In general, each solver has a series of custom options and methods that can be used to
configure the behavior of the solver and query its state. A complete list of these can be
found in section 5.6.

In some cases, it is useful to observe the intermediate behavior of the solver before it
has completed. For the BP solvers, this can be done by using the solver-specific iterate
method instead of the solve method. When called without any arguments, this results in
running one iteration. An optional argument allows specifying the number of iterations to
run. Successive calls to iterate do not reset the state of the solver, allowing it to be called
multiple times in succession. However, before running iterate for the first time, the initialize
method must be called in order to reset the state before beginning. For example, here we
run one iteration at a time, displaying the belief of a particular variable after each iteration:

myGraph.initialize ();

for i=1: numberOfIterations

myGraph.Solver.iterate ();

disp(someVariable.Belief);

end

If instead we wanted to run 5 iterations at a time, the iterate call would be replaced with:

myGraph.Solver.iterate (5);

For the Gibbs solver, a similar method allows running one or a specified number of samples
at a time, skipping initialization as well as any burn-in or random restarts. This is the
sample method, which behaves the same as the iterate method.

78

4.2.4.1 Multithreading

Some solvers support multithreading. The following option can be used to turn on multi-
threading:

fg.setOption(’SolverOptions.enableMultithreading ’, true);

By default, multithreading is turned off. Once multithreading is turned on, for large graphs
or large factors, users can see acceleration up to N times where N is the number of cores in
their machine.

4.2.5 Getting the Results of Inference

Once the solver has been run, the results of inference can be obtained from the elements
of the graph. The kinds of results that may be desired vary with the application, and the
kinds of results that are available depend on the particular solver and other factors.

One of the most common types of results are beliefs on individual variables in the graph.
The belief of a variable is an estimate of the marginal distribution of that variable given
the graph and any conditioning data.

When available, the belief is accessed via the Belief property of a variable:

b = myVariable.Belief;

The particular form of the Belief property depends on the type of variable, and in some
cases on the solver. For a Discrete variable type, the Belief property is a vector with length
equal to the size of the variable domain. The values represent the normalized value of the
approximate marginal probability of each element of the domain. For a Bit variable, the
Belief property is a single number that represents the marginal probability of the value 1.

For Real variables when using the SumProduct solver, the Belief is represented the mean
and precision parameters of a Normal distribution and for RealJoint variables they are
represented as a mean vector and covariance matrix of a multivariate Normal distribution.
Using the ParticleBP solver, beliefs are available for Real variables, but a different interface
is used to obtain the beliefs in a useful form. This is summarized in section 5.6.10.4. Beliefs
for Real variables are not currently supported in the Gibbs solver.

Beliefs can be obtained directly from an array of variables using the Belief property of the
array. For a Discrete variable array, the Belief is an array with the same dimensions as
the variable array (or subarray), but with an extra dimensions corresponding to the Belief
vector for each variable in the array. (If a dimension in the array is 1, that dimension is not
included.) For an array of Bit variables, the Belief is an array with the same dimensions as
the Bit array.

79

Another useful inference result returned by the Value property of a variable. This property
returns a single value from the domain of the variable that corresponds to the maximum
value of the belief:

v = myVariable.Value;

As with the Belief property, this can be used either on individual variables or on a variable
array. Support for this property is currently limited to discrete variables.

When using the Gibbs solver, there are additional inference results that may be useful. For
example, for a given real variable, you can request the best sample value that has been seen
during inference.

bestValue = myVariable.Solver.getBestSample ();

This is defined as the value of that variable associated with the sample over all variables that
resulted in the most probably configuration observed given the graph and any conditioning
data. Considering the graph as a potential function over the configuration space of all
variables, this corresponds to the lowest energy configuration that had been observed.

By default, the Gibbs solver doesn’t save all samples, but if so configured for a given variable
(or all variables) prior to running the solver, the solver will save all samples, allowing the
entire set of samples (post burn-in) to be obtained.

myVariable.saveAllSamples ();

myGraph.solve();

allSamples = myVariable.Solver.getAllSamples ();

There are a number of other useful results that can be obtained from the Gibbs solver,
which are detailed in section 5.6.9.

It is also possible to retrieve beliefs from factors. The belief of a factor is defined as the
joint belief over all joint states of the variables connected to that factor. In the current
version of Dimple, this works only for factors connected exclusively to discrete variables.
The beliefs can be extracted using one of two properties of a factor:

fb = myFactor.Belief;

Using the Belief property results in a compact representation of the belief that leaves out
values corresponding to zero values of the factor.

It is also possible to call:

fb = myFactor.FullBelief;

80

The FullBelief property results in a multidimensional array of beliefs over the range of all
possible states of the connected variables. The more compact representation may be needed
where the full representation would result in a data structure too large to be practical. More
information about the Belief and FullBelief properties can be found in sections 5.3.2.1.1
and 5.3.2.1.2, respectively.

4.2.6 Explicit Scheduling and Retrieving Message Values

Dimple supports the ability to retrieve and set messages as well as to explicitly update
edges, factors and variables.

%OK , first we create a simple Factor Graph with a single xor connecting two

%variables.

fg = FactorGraph ();

b = Bit(2,1);

f = fg.addFactor(@xorDelta ,b);

%We can go ahead and set some inputs

b(1).Input = .8;

b(2).Input = .7;

%we can examine some edges

disp(f.Ports {1}. InputMsg);

disp(f.Ports {1}. OutputMsg);

%we can even set some edge messages

f.Ports {1}. InputMsg = [.6 .4];

%we can update a node

b(1).update ();

b(2).update ();

%or all the variables in a vector.

b.update ();

%or a specific edge

b(1).updateEdge(f);

%but updating via portNum is quicker

b(1).updateEdge (1);

%of course , if we don ’t know the portNum , we can get it

portNum = b(1).getPortNum(f);

b(1).updateEdge(portNum);

%We can do the same kind of stuff with factors

f.updateEdge(b(1));

f.updateEdge(f.getPortNum(b(2)));

%Let ’s look at some messages again

b(1).Ports {1}. InputMsg

b(2).Ports {1}. InputMsg

%and some beliefs

81

b.Belief

82

4.3 Using Rolled Up Factor Graphs

4.3.1 Markov Model

In our first rolled up graph we build a simple Markov model describing an infinite stream
of variables.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Markov Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Build nested graph

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Here we build a graph that connects two variables by an xor

%equation An xor equation with only two variables is the

%equivalent of an equals constraint.

in = Bit();

out = Bit();

ng = FactorGraph(in,out);

ng.addFactor(@xorDelta ,in,out);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create rolled up graph.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Now we build a FactorGraph that creates an infinite chain of %variables.

bs = BitStream ();

fg = FactorGraph ();

%Passing variable streams as arguments to addFactor will result

%in a rolled up graph. Passing in a slice of a variable stream

%specifies a relative offset for where the nested graph should

%be connected to the variable stream.

fs = fg.addFactor(ng,bs,bs.getSlice (2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create data source

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

data = repmat ([.4 .6]’,1,10);

ds = DoubleArrayDataSource(data);

dsink = DoubleArrayDataSink ();

bs.DataSource = ds;

bs.DataSink = dsink;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%solve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fg.solve ();

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%get Beliefs

83

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while dsink.hasNext ()

dsink.getNext ()

end

Let’s talk about some of the aspects of rolled up graphs illustrated in this example in more
detail:

4.3.1.1 Variable Streams and Slices

Variable Streams represent infinite streams of variables. When instantiating a VariableStream,
users have to specify a domain. The following are examples of instantiating Discrete Vari-
ableStreams:

• DiscreteStream(DiscreteDomain({0,1,2}));

• DiscreteStream({0,1,2}); - equivalent to the previous example

• DiscreteStream({0,1}); - A stream of bits

• BitStream(); - Shorthand for the previous example.

Users can optionally create streams of vectors of variables. When doing so, users have to
specify the dimensions of their variables

• DiscreteStream([0 1 2],N,1) - For a column vector

• DiscreteStream([0 1 2],1,N) - For a row vector

• DiscreteStream([0 1 2],M,N,P) - For a three dimensional tensor

When adding a repeated FactorGraph, users need to be able to specify how a nested graph
connects to the variable streams. Slices can be used to indicate where in the stream a nested
graph should connect. Slices are essentially references to a Variable Stream with a specified
offset and increment. Slices have two main methods:

• hasNext() – Returns true if the next variable referenced by the slice can be retrieved.

• getNext() – Returns the next variable in the slice if it can be referenced. Otherwise
throws an error.

Users typically shouldn’t use these methods. Slices should primarily be used as arguments
to addFactor.

First we need to instantiate a variable stream:

84

S = BitStream ();

We can get slices in the following way:

• S.getSlice(start); – Start specifies this slices starting point as an index into the variable
stream.

4.3.1.2 Buffer Size

Users can specify a bufferSize for each FactorGraph stream. A FactorGraphStream is
instantiated every time addFactor is called with a nestedGraph and VariableStreams or
Slices. The default bufferSize is 1. Solving a graph with bufferSize one will result in a
forward only algorithm. The bufferSize indicates how many nested graphs to instantiate
for one step. In our Markov Model example, when buffer size is set to 1 and we plot the
graph before solving we see this:

We see one factor and two instantiated variables. If we set bufferSize to 5 and plot we get:

85

We see five factors and 6 variables. After the first time we call ‘advance’ BlastFromThePast
factors will be added to the oldest variable. These factors contain messages from the past.
There are two ways to set the BufferSize for a FactorGraph stream:

• Fg.addFactor(ng,bufferSize,stream,slice,etc...); - Specified as second argument to addFac-
tor.

• Fgs = fg.addFactor(ng,stream,slice,etc...); fgs.BufferSize = bufferSize; - Set on the
FactorGraphStream directly.

4.3.1.3 DataSources

Users can create data sources and attach them to VariableStreams. As variables are cre-
ated, data is retrieved from the DataSources and applied as inputs to the variables. If a
VariableStream is never connected to a DataSource, hasNext() will always return true for
that VariableStream. When a VariableStream is connected to a data source, hasNext() only
returns true when there’s more data in the DataSource.

DataSources implement the hasNext and getNext methods. Methods include:

• DoubleArrayDataSource(); – Constructor that creates an empty data source

• DoubleArrayDataSource(data); – Constructor that expects a matrix as input. The
data should be formatted such that each column provides input data for a step in the
rolled up graph.

• DoubleArrayDataSource(dimensions); – Dimensions is a row vector specifying the
dimensions of the variable for each step of the repeated graph.

• DoubleArrayDataSource(dimensions,data); – Dimensions means the same as above.
The data is added to the double array data source as though add(data) were called.
See the following:

86

• add(data); – Users can add more data to the end of the data source. Data should
have the following dimensions: [VarDimensions SizeOfInputData NumSteps). So if
the user creates an MxN variable and wants to repeat it P times and the variable has
domain of length K, the data should have the dimensions: [M N K P]

Dimple also has support for MultivariateDataSources.

• MultivariateDataSource() – Creates a data source object and assumes there is a single
variable per step.

• MultivariateDataSource(dimensions) – Creates a data source objects that can be as-
sociated with a variable stream with the given dimensions.

• add(means,covariance) – Means should be in the form [VarDimensions NumberMeansPer-
Var] and Covariance should be of the form [VarDimensions NumberMeansPerVar
NumberMeansPerVar]

4.3.1.4 DataSink

Users can retrieve their data using data sinks.

• DoubleArrayDataSink(); – Create a double array data sink

• DoubleArrayDataSink(dimensions) – Creates a double array data sink for a variable
with the specified dimensions.

• MultivariateDataSink() – Created a multivariate data sink

• MultivariateDataSink(dimensions) – Creates a multivariate data sink with the speci-
fied dimensions.

• hasNext() – Is there more data in the data sink?

• getNext() – Retrieve the next chunk of data. For DoubleArrays, this returns data
in the same form as is supplied to data sources. The MultivariateDataSink object
returns MultivariateNormalParameters objects.

• varStream.DataSink = dataSink; – Data sinks can be assigned to variable streams.

4.3.1.5 Accessing Variables
In the absence of data sinks, users need a way to retrieve variables to get beliefs. The
following methods allow the user to do that:

Vs = BitStream ();

87

• Vs.Size – Number of variables in the buffer.

• Vs.get(index) – Retrieves a variable of the specified index. This is a 1-based value.

4.3.2 Markov Model with Parameter

When adding a repeated graph, it is possible to specify some variables as streams and others
as individual variables. We sometimes call these individual variables parameters. Using this
feature is straightforward:

ng = FactorGraph(a,b);

ng.addFactor(@xorDelta ,a,b);

p = Bit();

s = BitStream ();

fg = FactorGraph ();

fgs = fg.addFactor(ng ,p,s);

fgs.BufferSize = 5;

fg.plot();

This code results in the following graph:

4.3.3 Real Variables

Rolled up graphs work with real variables as well. Here we create another Markov Model.
We use the SumProduct solver and a built-in ‘Product’ factor. We create a data source
that only has information about the first variable. The means beliefs are growing by 110%
as we iterate through the stream because the factor provides a constraint that each variable
is 110% of the previous variable.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Build graph

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a = Real();

b = Real();

ng = FactorGraph(a,b);

88

ng.addFactor(’Product ’,b,a,1.1);

fg = FactorGraph ();

s = RealStream ();

fg.addFactor(ng,s,s.getSlice (2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%set data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

data = [[1; .1] repmat ([0 Inf]’,1,10)];

dataSource = DoubleArrayDataSource(data);

s.DataSource = dataSource;

s.DataSink = DoubleArrayDataSink ();

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Solve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fg.solve ();

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%get belief

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while s.DataSink.hasNext ();

disp(s.DataSink.getNext ());

end

This produces the following output:

1.0000 0.1000

1.1000 0.1100

1.2100 0.1210

1.3310 0.1331

1.4641 0.1464

1.6105 0.1611

1.7716 0.1772

1.9487 0.1949

2.1436 0.2144

89

4.3.4 Manually Advancing

By default, rolled up graphs will advance until there is no data left in a DataSource. Users
may override this behavior by either using FactorGraph.solveOneStep or setting the Fac-
torGraph.NumSteps parameter. By default, NumSteps is set to Inf. By setting this to a
finite number, N, users can examine the graph at every N steps of the rolled up graph. This
allows the user to pull Beliefs off of any portion of the graph.

%%

%simple Markov Model with larger buffer size

%Create the data

N = 10;

data = repmat ([.4 .6]’,1,N);

%Create a data source

dataSource = DoubleArrayDataSource(data);

%Create a variable stream.

vs = DiscreteStream ({0 ,1});

vs.DataSource = dataSource;

%Create our nested graph

in = Bit();

out = Bit();

ng = FactorGraph(in,out);

ng.addFactor(@(a,b) a==b,in,out);

%Create our main factor graph

fg = FactorGraph ();

%Build the repeated graph

bufferSize = 2;

fgs = fg.addFactor(ng , bufferSize , vs ,vs.getSlice (2));

%Initialize our messages

fg.initialize ();

while 1

%Solve the current time step

fg.solveOneStep ();

%Get the belief for the first variable

belief = vs.get (3).Belief;

disp(belief)

if fg.hasNext

fg.advance ();

else

break;

end

end

In this code snippet, the user initializes the graph and calls advance until there is no data
left. At each step, the user retrieves the beliefs from the third instance of the variable in

90

the variable stream.

The user can also progress N steps:

%Initialize our messages

fg.initialize ();

fg.NumSteps = 2;

while 1

%Solve the current time step

fg.continueSolve (); %This method is need to avoid initialization

%Get the belief for the first variable

belief = vs.get (3).Belief;

disp(belief)

if fg.hasNext

fg.advance ();

else

break;

end

end

91

4.4 Using Finite Field Variables

4.4.1 Overview

Dimple supports a special variable type called a FiniteFieldVariable and a few custom
factors for these variables. They represent finite fields with N = 2n elements. These
fields find frequent use in error correcting codes. Because Dimple can describe any discrete
distribution, it is possible to handle finite fields simply by describing their factor tables.
However, the native FiniteFieldVariable type is much more efficient. In particular, variable
addition and multiplication, which naively require O(N3) operations, are calculated in only
O(N logN) operations.

4.4.2 Finite Fields Without Optimizations

As we mentioned previously, a user can construct (non-optimized) finite fields from scratch.

First we create a domain for our variables using the MATLAB gf function (for Galois Field).

m = 3;

numElements = 2^m;

domain = 0: numElements -1;

tmp = gf(domain ,m);

real_domain = cell(length(tmp) ,1);

for i = 1: length(tmp)

real_domain{i} = tmp(i);

end

Next we create a bunch of variables with that domain.

x_slow = Discrete(real_domain);

y_slow = Discrete(real_domain);

z_slow = Discrete(real_domain);

Now we create our graph and add the addition constraint.

fg_slow = FactorGraph ();

addDelta = @(x,y,z) x+y==z;

fg_slow.addFactor(addDelta ,x_slow ,y_slow ,z_slow);

This code runs in O(N3) time since it tries all combinations of x,y, and z. Next we set some
inputs.

92

x_input = rand(size(x_slow.Domain.Elements));

y_input = rand(size(y_slow.Domain.Elements));

x_slow.Input = x_input;

y_slow.Input = y_input;

Finally we set number of iterations, solve, and look at beliefs.

fg_slow.NumIterations = 1;

fg_slow.solve();

z_slow.Belief

The solver runs in O(N2) time since z is determined by x and y, x is determined by z, and
y, and y is determined by x and z.

4.4.3 Optimized Finite Field Operations

Rather than building finite field elements from scratch, a user can use a built-in variable
type and associated set of function nodes. These native variables are much faster, both
for programming and algorithmic reasons. All of these operations are supported with the
SumProduct solver.

4.4.3.1 FiniteFieldVariables

Dimple supports a FiniteFieldVariable variable type, which takes a primitive polynomial
(to be discussed later) and dimensions of the matrix as constructor arguments:

v = FiniteFieldVariable(prim_poly ,3,2);

This would create a 3x2 matrix of finite field Variables with the given primitive polynomial.

4.4.3.2 Addition

Users can use the following syntax to create an addition factor node with three variables:

myFactorGraph.addFactor(’FiniteFieldAdd ’,x,y,z);

using the ’FiniteFieldAdd’ built-in factor.

93

Adding this variable take O(1) time and solving takes O(N logN) time, where N is the size
of the finite field domain.

4.4.3.3 Multiplication

Similarly, the following syntax can be used to create a factor node with three variables for
multiplication:

myFactorGraph.addFactor(’FiniteFieldMult ’,x,y,z);

Under the hood this will create one of two custom factors, CustomFiniteFieldConstMult or
CustomFiniteFieldMult. The former will be created if x or y is a constant and the latter
will be created if neither is a constant. This allows Dimple to optimize belief propagation
so that it runs in O(N) for multiplication by constants and O(Nlog(N)) in the more general
case.

4.4.3.4 NVarFiniteFieldPlus

Suppose we have the finite field equation x1 + x2 + x3 + x4 = 0.

We can not express that using the FiniteFieldAdd factor directly, since it accepts only three
arguments. However, we can support larger addition constraints by building a tree of these
constraints. We do so using the following function:

NumVars = 4;

[graph ,vars] = getNVarFiniteFieldPlus(prim_poly ,NumVars);

This function takes a primitive polynomial and the number of variables involved in the
constraint and builds up a graph such that x1 + ...+ xn = 0 .

It returns both the graph and the external variables of the graph. This can be used in one
of two ways: setting inputs on the variables and solving the graph directly or using this as
a nested sub-graph.

4.4.3.5 Projection

Elements of a finite field with base 2 can be represented as polynomials with binary co-
efficients. Polynomials with binary coefficients can be represented as strings of bits. For
instance, x3 + x+ 1 could be represented in binary as 1011. Furthermore, that number can
be represented by the (decimal) integer 11. When using finite fields for decoding, we are
often taking bit strings and re-interpreting these as strings of finite field elements. We can

94

use the FiniteFieldProjection built-in factor to relate n bits to a finite field variable with a
domain of size 2n.

The following code shows how to do that:

args = cell(n*2,1);

for j = 0:n-1

args{j*2+1} = j;

args{j*2+2} = bits(n-j);

end

myFactorGraph.addFactor(’FiniteFieldProjection ’,v,args {:});

4.4.4 Primitive Polynomials

See Wikipedia for a definition.

4.4.5 Algorithmics

Dimple interprets the domains as integers mapping to bit strings describing the coefficients
of polynomials. Internally, the FiniteFieldVariable contains functions to map from this
representation to a representation of powers of the primitive polynomial. This operation is
known as the discrete log. Similarly Dimple FiniteFieldVariables provide a function to map
the powers back to the original representation (i.e., an exponentiation operator).

• The addition code computes x+y by performing a fast Hadamard transform of the dis-
tribution of both x and y, pointwise multiplying the transforms, and then performing
an inverse fast Hadamard transform.

• The generic multiplication code computes xy by performing a fast Fourier transform
on the distribution of the non-zero elements of the distribution, pointwise multiplying
the transforms, performing an inverse fast Fourier transform, and then accounting for
the zero elements.

• The constant multiplication code computes x by converting the distribution of the
non-zero values of x to the discrete log domain (which corresponds to reshuffling the
array), adding the discrete log of modulo N − 1 (cyclically shifting the array), and
exponentiating (unshuffling the array back to the original representation).

95

4.5 Parameter Learning

Dimple currently has two supported parameter learning algorithms: Expectation-Maximization
on directed graphs and PseudoLikelihood Parameter Estimation on undirected graphs. Both
of these algorithms are provided as early stage implementations and the APIs will likely
change in the next version of Dimple.

4.5.1 PseudoLikelihood Parameter Estimation on Undirected Graphs

The PseudoLikelihood Parameter Estimation uses the following as its objective function:

`PL(θ) =
1

M

∑
m

∑
i

∑
a∼i

(x
(m)
−i , x

(m)
i)− 1

M

∑
m

∑
i

logZ(xN(i); θ)

Currently it uses a very naive gradient descent optimizer. Future versions will likely have
pluggable optimizers for each learning algorithm. (Likely including algorithms like BFGS).

4.5.1.1 Creating a parameter learner

The following creates a learner and initializes a few variables:

pl = PLLearner(factorGraph ,factorTables ,variables);

Arguments:

• factorGraph - the Factor Graph of interest

• factorTables - a cell array of factor tables for which to learn parameters.

• variables - a cell array of variable matrices (the order must match your data ordering).

4.5.1.2 Learning

The following method runs pseudo likelihood gradient descent. After it is run, the factor
tables will contain the values of the learned parameters. For now the optimizer is simply
a routine that multiplies the gradient by a scale factor and applies that change to the
parameters. In the future, optimizers will be first class citizens and can be plugged into
learners.

args.numSteps = 100;

96

args.scaleFactor = 0.05;

pl.learn(samples ,args);

Arguments:

• samples - An MxN matrix where M is the number of samples and N is the number
of variables. Variable data must be specified in the same order the variables were
specified in the learner’s constructor. For now, this data specifies the domain indices,
not the domain values. This should be fixed in the future (so the user can do either).
In reality, we’ll probably split out training data into a more interesting data structure.
(Same with the optimizer)

• args.numSteps - How many gradient descent steps should the optimizer run.

• args.scaleFactor - The value by which we multiply the gradient before adding to the
current parameters. oldParams = oldParams + scaleFactor*gradient

4.5.1.3 Batch Mode
Users can divide their samples into subsets to run pseudo likelihood parameter learning in
”batch” mode. Assuming users have their samples stored in a cell array of matrices, they
could iterate over the cell array as follows:

for i = 1: length(samples)

pl.learn(samples{i},args);

end

4.5.1.4 Setting Data
When calling the learn routine, users can set the data. However, if users want some visibility
into the gradient or the numerical gradient, they must first set the data using the setData
method

pl.setData(samples)

Arguments:

• samples - Takes the same form as in the learn method.

4.5.1.5 Calculating the Pseudo Likelihood
Users can retrieve the pseudo likelihood given the currently set samples using the following
code:

likelihood = pl.calculatePseudoLikelihood ();

97

Return value:

• likelihood - The log pseudo likelihood.

4.5.1.6 Calculating the Gradient
For debugging purposes, the user can retrieve the gradient given the current sample set and
parameter settings.

result = pl.calculateGradient ()

Return values:

• result - MxN matrix where M is the number of factor tables being learned and N is
the number of weights per factor table.

4.5.1.7 Calculating the Numerical Gradient
For debugging purposes, the user can return a numerical gradient

pl.calculateNumericalGradient(table , weightIndex , delta)

Arguments:

• table - Which table to modify

• weightIndex - Which weight index to modify

• delta - the delta (in the log domain) of the parameter.

4.5.2 Expectation-Maximization on Directed Graphs

See the FactorGraph.baumWelch method in the API section. see section 5.1.3.11

98

4.6 Graph Libraries

Dimple provides a few graphs that are useful as nested graphs.

4.6.1 Multiplexer CPDs

Suppose you wanted a factor representing a DAG with the following probability distribution:

p(Y = y|a, z1, z2, ...) ∝ δ(y = za)

where all variables are Discrete.

You could code this up in Dimple as follows:

function weight = myFunc(y,a,z)

weight = y == z(a);

end

N = 3; %Number of possible sources

M = 2; %Domain of Zs and Y

y = Discrete (1:M);

a = Discrete (1:N);

z = Discrete (1:M,N,1);

fg = FactorGraph ();

fg.addFactor(@myFunc ,y,a,z);

However, to build this FactorTable takes O(NMN+1) where N is the number of Zs and M
is the domain size of the Zs. Runtime is almost as bad at O(NMN). However, there is an
optimization that can result in O(MN2) runtime and graph building time. Dimple provides
a MultiplexerCPD graph that can be used as a nested graph to achieve this optimization.

cpd = MultiplexerCPD ({1 ,2} ,3);

Y = Discrete (1:2);

A = Discrete (1:3);

Z1 = Discrete (1:2);

Z2 = Discrete (1:2);

Z3 = Discrete (1:2);

fg = new FactorGraph ();

fg.addFactor(cpd ,Y,A,Z1,Z2,Z3);

Dimple supports each Z having different domains. In this case, Y’s domain must be the
sorted union of all the Z domains

99

cpd = MultiplexerCPD ({{1 ,2} ,{1 ,2 ,3} ,{2 ,4}});

Y = Discrete (1:4);

A = Discrete (1:3);

Z1 = Discrete (1:2);

Z2 = Discrete (1:3);

Z3 = Discrete ([2 4]);

fg = FactorGraph ();

fg.addFactor(cpd ,Y,A,Z1,Z2,Z3);

Note that when using the SumProduct solver, a custom implementation of the built-in
‘Multiplexer’ factor function (see section 5.9) exists that is even more efficient than using the
MultiplexerCPD graph library function. When using other solvers with discrete variables,
the MultiplexerCPD graph library function should be more efficient. When the Z variables
are real rather than discrete, the ‘Multiplexer’ factor function is the only option.

4.6.2 N-Bit Xor Definition

An N-bit soft xor can be decomposed into a tree of three bit soft xors. Dimple provides the
getNBitXorDef function to generate such a graph. The following code shows how to use
such a graph.

fg = FactorGraph ();

fg.addFactor(getNBitXorDef (4),Bit(4,1));

100

5 API Reference

The following section describes the functions, classes, properties, options and methods that
comprise the Dimple API for MATLAB. In some cases, API documentation may also be
obtained using either the MATLAB ’help’ or ’doc’ command with the name of the element
of interest.

101

5.1 FactorGraph

The FactorGraph class represents a single factor graph and contains a collection of all factors
and variables associated with that factor graph.

5.1.1 Constructor

FactorGraph ([boundaryVariables])

For a basic factor graph, the constructor can be called without arguments.

For a nested factor graph (one that may be used as a sub-graph within another graph), the
constructor must include a list of the boundary variables of the graph. When used as a
sub-graph, the boundary variables are dummy variables with the same specification as the
variables in the outer graph that will ultimately connect to the sub-graph. A graph defined
with boundary variables may alternatively be used as a top-level graph, in which case the
boundary variables are used directly.

5.1.2 Properties

5.1.2.1 Solver

Read-write. Indicates the choice of solver to be used for performing inference on the graph.
The default solver is SumProduct.

When setting the solver, the solver is given by a string representing the name of the solver.
The solver name is case insensitive.

fg.Solver = ’SolverName ’;

The current set of valid solver names are:

• SumProduct

• MinSum

• JunctionTree

• JunctionTreeMAP

• ParticleBP

• Gibbs

102

• LP

A description of each of these solvers is given in section 5.6.

Note that the solver can be modified at any time. After running the solver on a graph, the
solver may be modified and the new solver run using the same graph15.

5.1.2.2 Scheduler

Read-write. Indicates the scheduler to be used for performing inference on the graph (unless
a custom schedule is specified instead). A scheduler defines a rule that determines the update
schedule of a factor graph when performing inference.

When setting the scheduler, the scheduler is given by a string representing the name of the
scheduler. The scheduler name is case sensitive.

fg.Scheduler = ’SchedulerName ’;

Each scheduler is applicable only to a certain subset of solvers. The list of all available
built-in schedulers and a description of their behavior can be found in section 5.5.

5.1.2.3 Schedule

Read-write. Specifies a custom schedule to be used for performing inference. A custom
schedule is in the form of a list of nodes or edges in the graph to be updated. Specifically, a
cell array where each entry is either a node in the graph (either variable or factor), or a cell
array containing a neighboring pair of nodes ({variable, factor} or {factor, variable}). The
order of the entries in the cell array indicate the order that updates should be performed in
a single iteration (or scan) when performing inference. Examples of using custom schedules
are given in section 4.2.3.2.

For BP solvers, any of these entries may be included, and have the following interpretation16.

Variable Update messages for all outgoing edges of that variable.

Factor Update messages for all outgoing edges of that factor.

{Variable, Factor} Update a single outgoing edge of the variable in the direction con-
necting to the specified factor.

15In this case, care must be taken to set any solver-specific parameters to the new values after changing
the solver.

16When using the JunctionTree or JunctionTreeMAP solvers, the specified Schedule is ignored.

103

{Factor, Variable} Update a single outgoing edge of the factor in the direction connecting
to the specified variable.

For BP solvers, a check is made when a custom schedule is set to ensure that all edges in
the graph are updated at least once.

For the Gibbs solvers, the Schedule should include only variable entries. Any other entries
will be ignored.

If a custom schedule is set on a factor graph (either an entire graph or a sub-graph), this
schedule is used instead of any built-in scheduler that may have previously been set (or the
default scheduler).

In a nested graph, the Schedule property at each nesting level may be set independently.
For some built-in schedulers, the user may mix custom schedules at some nesting layers,
while using built-in schedulers at others. The particular built-in schedulers that support
such mixing are described in section 5.1.2.2.

5.1.2.4 NumIterations

Read-write. The NumIterations property sets the number of iterations BP will to run when
using the solve method. This only applies to solvers that use BP, which are the SumProduct,
MinSum, and ParticleBP solvers.

The default value is 1. For a factor graph with a tree-structure, when using the default
scheduler, one iteration is appropriate. Otherwise, it would normally be appropriate to set
the number of iterations to a larger value.

5.1.2.5 NumSteps

Read-write. This property is used for rolled-up graphs (see section 4.3). This property
determines the number of steps over which to perform inference when using the solve or
continueSolve methods (see sections 5.1.3.6 and 5.1.3.7). A step corresponds to a single
run of the solver over the current portion of the rolled-up graph, followed by advancing the
graph to the next position. By default, this property is infinite, resulting in no limit to the
number of steps to be run (running until there is no more source data).

5.1.2.6 Name

Read-write. When read, retrieves the current name of the factor graph. When set, modifies
the name of the factor graph to the corresponding value. The value set must be a string.

104

fg.Name = ’string ’;

5.1.2.7 Label

Read-write. All variables and factors in a Factor Graph must have unique names. However,
sometimes it is desirable to have variables or factors share similar strings when being plotted
or printed. Users can set the Label property to set the name for display. If the Label is
not set, the Name will be used for display. Once the label is set, the label will be used for
display.

5.1.2.8 Score

Read-only. When read, computes and returns the score (energy) of the graph given a
specified value for each of the variables in the graph. The score represents the energy
of the graph given the specified variable configuration, including all factors as well as all
Inputs to variables (which behave as single-edge factors). The score value is relative, and
may be arbitrarily normalized by an additive constant. The value of the score corresponds
to the sum over factors and variables of their corresponding scores (see sections 5.3.1.1.4
and 5.2.2.1.6).

The value of each variable used when computing the Score is the Guess value for that
variable (see section 5.2.2.1.5). If no Guess had yet been specified for a given variable, the
value with the most likely belief (which corresponds to the Value property of the variable)
is used17.

For a rolled-up graph, the Score property represents only the score for only the portion of
the graph in the current buffer.

5.1.2.9 BetheFreeEnergy

Read-only. (Only applies to the Sum Product Solver). When read returns:

BetheFreeEnergy = InternalEnergy −BetheEntropy

5.1.2.10 Internal Energy

Read-only. (Only applies to the Sum Product Solver). When read returns:

17For some solvers, beliefs are not supported for all variable types; in such cases there is no default value,
so a Guess must be specified.

105

InternalEnergy =
∑
a∈F

InternalEnergy(a) +
∑
i∈V

InternalEnergy(i)

Where F is the set of all Factors and V is the set of all variables. If Dimple treated inputs
as single node Factors, this method would only sum over factors.

For a definition of a Factor’s InternalEnergy, see sections 5.3.1.1.5. For a definition of a
Variable’s InternalEnergy, see section 5.2.2.1.7.

5.1.2.11 Bethe Entropy

Read-only. (Only applies to the Sum Product Solver). When read returns:

BetheEntropy =
∑
a∈F

BetheEntropy(a)−
∑
i∈V

(di − 1)BetheEntropy(i)

Where F is the set of all Factors, V is the set of all variables, and di is the degree of variable
i (i.e. the number of factors i is connected to).

For a definition of a Factor’s BetheEntropy, see sections 5.3.1.1.6. For a definition of a
Variable’s InternalEnergy, see section 5.2.2.1.8.

5.1.3 Methods

5.1.3.1 addFactor

MyGraph.addFactor(factorSpecification , variableList);

The addFactor method is used to add a factor to a factor-graph, connecting that factor to a
specified set of variables. There are several ways of specifying the factor. The method takes
a factorSpecification argument followed by a comma-separated list of variables or variable
arrays.

The list of variables or variable arrays indicates which variables to connect to the factor.
The order of the variables listed must correspond to the order of edges of the factor. In
the case of variable arrays, the array is flattened to a one-dimensional form using the
usual MATLAB ordering, defining the order of the individual variables in the array. In
this ordering, the array is scanned in successive dimensions, beginning with the first (row)
dimension (equivalent to the MATLAB (:) operator).

106

Some of the variables may be replaced by constants. In this case, no variable is created,
but instead the specified constant value is used in place of a variable for the corresponding
edge of the factor. The value of a constant must be a valid value given the definition of
the corresponding factor. Constants may be arrays, but in this case, they are not flattened.
Instead they are treated as array-valued constants18.

The factorSpecification may be specified in one of a number of different ways. The following
table lists the various ways the factorSpecification can be specified:

Factor Specification Description

functionHandle The MATLAB function handle for a factor function. A fac-
tor function written in MATLAB is a function that takes ar-
guments corresponding values from the domain of each of the
connected variables (in the order listed) and returns a non-
negative weight corresponding to the unnormalized value of
the factor. In MATLAB, the function handle of a function
is indicated using the @ operator, for example, @myFactor.
Anonymous functions are also supported. Specifying a fac-
tor in this form is supported only if all connected variables
are discrete.

FactorTable A FactorTable object as described in section 5.3.4. Specify-
ing a factor in this form is supported only if all connected
variables are discrete.

indexList, weightList A factor table specified in an alternative form. The indexList
and weightList arguments are defined identically to their
definition in the FactorTable constructor described in sec-
tion 5.3.4. Specifying a factor in this form is supported only
if all connected variables are discrete.

weightArray A factor table specified in an alternative form. The
weightArray argument is defined identically to its definition
in the FactorTable constructor described in section 5.3.4.
Specifying a factor in this form is supported only if all con-
nected variables are discrete.

builtInFactorName String indicating the name of a built-in factor. The list of
Dimple built-in factors is given in section 5.9. Referring to
a built-in factor by name assumes no constructor arguments
are needed for the corresponding FactorFunction. Built-in
factor names are case sensitive.

FactorFunction A FactorFunction object as described in section 5.3.3. This
form can be used to specify a built-in factor that requires
constructor arguments. The list of Dimple built-in factors
is given in section 5.9.

factorFunctionAltForm A factor function specified in an alternative form. The form
is a cell array, where the first entry is a string indicating the
name of the built-in factor, and the remaining entries are
constructor arguments for the built-in factor.

18This is because Dimple supports variables that have domains for which individual domain elements are
arrays.

107

Factor Specification Description

FactorGraph A sub-graph to be nested within this graph. The number
and order of the variables listed in the variableList must cor-
respond to the number and order of the boundary variables
declared when the sub-graph was created. When adding a
nested graph within an outer graph, the specified sub-graph
is used as a template to create a new factor graph that is
actually added to the outer graph. Copies are made of all
of the variables and factors in the specified sub-graph.

javaFactorFunction The fully-qualified name of a Java FactorFunction class.
Creation of custom Java FactorFunctions is described in Ap-
pendix B.

5.1.3.2 addFactorVectorized

To get reasonable speed out of MATLAB, one needs to vectorize their code. If a user wishes
to build a FactorGraph with large numbers of factors in a regular arrangement, they will
want to avoid making many calls to addFactor. The addFactorVectorized method can be
used instead to create many factors at once.

fg.addFactorVectorized(factorSpecification , variableList);

Using addFactorVectorized is very similar to using addFactor. The factorSpecification is de-
fined identically to addFactor (see section 5.1.3.1). The variableList is similar, but includes
some options for customizing how vectorization is done.

In the simplest case, the variableList includes a comma-separated list of variable arrays, all
with the same dimensions. In this case, the result is creation of an array of factors with the
same dimensions as the variables, where one element of each of the listed variable arrays is
connected to the corresponding factor in the factor array.

One or more of the variables in the variableList may be a scalar (single variable) rather
than an array. In this case, that variable is connected to all of the factors in the created
factor array. The other variables in the variableList that are not scalars must all have the
same dimensions.

In some cases, it may be useful to vectorize over some dimensions of a variable, but have
other dimensions be flattened and connect to each individual factor in the factor array. In
such cases, an entry in the variable list may be specified as a cell array containing two
elements:

• The variable array

• A vector of indices, where each index represents a dimension over which the variable
should be vectorized.

108

For example:

A = Bit (100 ,100);

B = Bit (100 ,100 ,5);

fg.addFactorVectorized(factorSpecification , A, {B, [1 2]});

For variable B, first two dimensions, of size 100x100 correspond to the 100x100 factors that
we wish to vectorize factor creation. Since dimension 3 was not included in this list, then
for each value of row and column dimension, the entire length of B variables in the third
dimension are connected to the corresponding factor.

The vectorized dimensions for all non-scalar variables must be of the same size.

As in addFactor, some of the variables in variableList may be replaced with constants. In
this case, every copy of the factor in the factor array uses the same constant value.

Further description and examples of using addFactorVectorized is given in section 4.1.4.2.

5.1.3.3 addFactorNoCache

When creating a factor for discrete variables, Dimple attempts to determine if the resulting
factor tables would be the same as any previously created factors. If so, it shares the factor
table to save space. In some cases, it may not be desirable for certain factors to share a
factor table (for example if entries in one of the factor tables will later be modified). In
such cases, the addFactorNoCache method can be used in lieu of the addFactor method.
The interface for the addFactorNoCache is identical to that of the addFactor method.

5.1.3.4 addDirectedFactor

When adding a factor that will be designated as directed, this method provides a shorthand
way to indicate this on factor creation.

fg.addDirectedFactor(factorSpecification , variableList , directedTo);

The factorSpecification is defined identically to addFactor (see section 5.1.3.1).

Instead of being a comma-separated list, the variableList argument is a cell array containing
the list of variables or variable arrays to be connected to the factor. Otherwise, the behavior
of the variable list is the same as for the addFactorMethod.

The directedTo argument is a cell array containing a subset of the variables listed in the
variableList, specifically, the set of variables that are directed outputs of the factor.

109

Using addDirectedFactor is equivalent to the following (where the variableList in this case
is a comma-separated list instead of a cell array):

f = fg.addFactor(factorSpecification , variableList);

f.directedTo(directedTo);

5.1.3.5 initialize

MyGraph.initialize ();

The initialize method resets the state of the factor graph and its associated solver. When
performing inference incrementally, for example using the iterate method, the initialize
method must be called before the first iterate call. When using the solve method to perform
inference, there is no need to call initialize first. The initialize method takes no arguments.

5.1.3.6 solve

MyGraph.solve();

The solve method runs the solver on the factor graph for the specified duration. Calling
solve initializes the graph prior to solving.

For BP-based solvers, the solver runs the number of iterations specified by the NumIter-
ations property. For the Gibbs solver, it runs for the specified number of samples (see
section 5.6.9).

For rolled-up factor graphs, the solver runs the solver over multiple steps of the graph.
A step corresponds to a single run of the solver over the current portion of the rolled-up
graph, followed by advancing the graph to the next position. It performs the number of
steps of inference specified by the NumSteps property or until there is no more data in a
data source, whichever comes first.

5.1.3.7 continueSolve

This method is used for manually advancing a rolled-up graph (see section 4.3.4). This
method takes no arguments and returns no value. When called, it performs the number of
steps of inference specified by the NumSteps property or until there is no more data in a
data source, whichever comes first. A step corresponds to a single run of the solver over
the current portion of the rolled-up graph, followed by advancing the graph to the next

110

position. The initialize method should be called prior to calling this method for the first
time on an entire rolled-up graph, but should not be called before calling this method again
to run additional steps.

5.1.3.8 solveOneStep

This method is used for manually advancing a rolled-up graph (see section 4.3.4). This
method takes no arguments and returns no value. When called, it performs inference on
the current portion of the rolled-up graph. Inference is performed on this section of the
graph using whatever solver-specific parameters had previously been specified. The graph is
not re-initialized prior to performing inference, starting instead from the final state resulting
from inference on the previous graph position. The initialize method should be called prior
to calling this method for the first time on an entire rolled-up graph, but should not be
called after each advance to the next section.

5.1.3.9 advance

This method is used for manually advancing a rolled-up graph (see section 4.3.4). This
method takes no arguments and returns no value. When called, it advances the graph to
the next position. Advancing the graph involves getting the next value of all data sources,
and writing the next available value to all data sinks.

5.1.3.10 hasNext

This method is used for manually advancing a rolled-up graph (see section 4.3.4). This
method takes no arguments. It returns a boolean value indicating whether or not it is
possible to advance the graph to the next position. This will be true only if all of the data
sources have at least one more available value.

5.1.3.11 baumWelch

fg.baumWelch(factorList , numRestarts , numSteps);

The baumWelch method performs the Expectation-Maximization (EM) algorithm on a
factor graph (the specific case of EM on an HMM graph is called the Baum-Welch algorithm,
though EM in Dimple can be applied to any graph structure).

This method has the following limitations:

111

• The factors on which parameter estimation is being performed must be directed (see
section 5.3.1.1.3).

• The factors on which parameter estimation is being performed must be connected
only to discrete variables.

• The Solver must be set to use the SumProduct solver (the default solver).

The factorList argument is either a single Factor or FactorTable, or a cell array of Factors or
FactorTables. The weight values in these factor tables are the parameters to be estimated.
All other factors in the graph remain fixed and unmodified. When including a FactorTable,
if that table is used in more than one factor in the graph, the entries in the table are tied,
estimating them jointly for all factors containing that table.

The numRestarts argument indicates the number of times the EM process is repeated using
distinct random restart values for the parameters. When numRestarts is greater than 1,
the EM process is repeated with different random initialization, and the final resulting
parameter values are chosen from the run that resulted in the smallest Bethe free energy
for the graph.

The numSteps argument indicates (for each restart), how many steps of the EM algorithm
are to be run. A single step of the EM algorithm is one run of belief propagation followed
by re-estimation of the parameter values.

Note that the number of iterations for each run of belief propagation is determined from
the NumIterations property. If the graph is a tree, the number of iterations should be 1
(the default value). If the graph is loopy, it should be set to a larger value (in this case, the
EM algorithm is only approximate).

Upon completion of this method, the result appears in the factor tables that were listed in
the factorList argument. That is, the factor table weights contain the resulting estimated
values. To read these values, the Weights property of the factor table can be read (see
section 5.3.4). For a factor, the factor table can be extracted using the FactorTable property
(see section 5.3.4), and then the weights can be read from that.

5.1.3.12 join

The join method can be used to join a set of existing variables or a set of existing factors
in a graph. In the current version of Dimple this method is supported only for discrete
variables, and factors connected only to discrete variables.

When joining variables, the join method is called with a comma-separated list of variables
to be joined.

fg.join(variableList);

112

The result is a new variable with a domain that is the Cartesian product of the domains of
all of the variables being joined.

When joining factors, the join method is called with a comma-separated list of factors to
be joined.

fg.join(factorList);

The result is a new factor with a factor table that corresponds to the product of the factors
being joined. The new factor connects with the union of all variables that were previously
connected to any of the joined variables.

5.1.3.13 split

The split method splits a variable in an existing graph into two variables connected by an
Equality factor.

fg.split(variable , [factorList]);

The method takes an optional comma-separated list of factors. This list of factors identifies
factors already connected to the variable that are to be moved to the new instance of the
variable. All unspecified factors remain connected to the original instance.

5.1.3.14 removeFactor

fg.removeFactor(factor);

This method removes the specified factor from an existing factor graph that contains it.
This also removes all edges that connect this factor to neighboring variables.

5.1.3.15 plot

The plot method is used to visualize a factor graph or a portion of a factor graph. Examples
of various use cases for plotting factor graphs are given in section 4.1.6.

The plot method may be called with no arguments, or with a set of optional arguments.
The optional arguments are defined in the following table. These are in the form of names
(as strings) followed by one or more values.

113

Name Values Description

’labels’ true/false Boolean value indicating whether or not to display the name
of each variable and factor node. By default labels are not
displayed.

’color’ [nodeList], color Specifies the color of some or all nodes in the graph. If
no nodeList is included, then this specifies the color of all
nodes in the graph. If nodeList is specified, then the color
applies to only the listed nodes. The nodeList argument is a
cell-array of nodes in the graph (factors and variables). The
color argument is a string indicating a MATLAB color (e.g.,
’r’). More than one set of ’color’ arguments may appear in
a single call to plot.

’nodes’ nodeList Indicates the set of nodes in the graph to be included in the
plot. The nodeList argument is a cell-array of nodes in the
graph (factors and variables). By default the entire graph is
plotted.

’depth’ rootNode, depth This argument indicates a portion of the graph to be dis-
played by specifying a root node and depth (distance) from
that node. The plot includes only the root node and all
other nodes that are within the specified distance from the
root. By default the entire graph is plotted.

’nesting’ nestingDepth By default, the plotting method ignores hierarchy and plots
the flattened graph. The nesting argument specifies how
deep to descend into the nesting hierarchy before considering
nested graphs to be factors and plotting them as such.

5.1.3.16 addBoundaryVariables

fg.addBoundaryVariables ([factorList]);

This method takes a comma separated list of variables. The listed variables can then be
used as boundary variables in a nested graph.

ng = FactorGraph ();

a = Bit(2,1);

y = a(1) + a(2);

ng.addBoundaryVariables(y,a);

fg = FactorGraph ();

y = Discrete (0:2);

a = Bit(2,1);

fg.addFactor(ng,y,a);

a.Input = [1 0];

fg.solve ();

114

5.1.4 Introspection

The FactorGraph class provides several feature for inspecting aspects of the graph. The
ability to nest graphs complicates things a bit. Nested FactorGraphs can be considered
Factors. All of the introspection features allow the user to view nested graphs as leaf
factors or to descend into them and operate on the children of the nested graphs. Each
feature provides several methods:

• <FeatureName>(int relativeNestingDepth) – The relativeNestingDepth specifies how
deep to descend into the nested FactorGraphs before treating deeper NestedGraphs
as Factors. Specifying 0 will treat the top level nested Graphs as factors. Specifying a
large enough number will descend all the way to the leaf factors. Specifying something
between 0 and the FactorGraph’s maximum depth will descend as far as this parameter
specifies before considering NestedGraphs to be factors. The parameter contains the
word “relative” because users can retrieve nested graphs. They can call one of the
feature’s methods on that nested graph.

• <FeatureName>Flat() – equivalent of <FeatureName>(max int)

• <FeatureName>Top() – equivalent of <FeatureName>(0)

• <FeatureName>() – equivalent of <FeatureName>Flat(). It was thought that users
will most often want to operate on the FactorGraph in its flattened form.

Now, on to the specific features.

5.1.4.1 Retrieving All Factors

Users can retrieve Factors and/or NestedGraphs associated with a graph using the Factors
methods and properties:

• Fg.Factors

• Fg.FactorsFlat

• Fg.FactorsTop

• Fg.getFactors(relativeNestingDepth)

When the user specifies a relativeNestingDepth or calls FactorsTop, the resulting cell array
will contain a mix of leaf factors and Nested Graphs.

115

5.1.4.2 Retrieving Factors but Not Nested Factor Graphs

The FactorGraph class provides the following:

• NonFactorGraphFactors

• NonFactorGraphFactorsFlat

• NonFactorGraphFactorsTop

• getNonFactorGraphFactors(relativeNestingDepth)

As the name implies, this will behave similar to the Factors properties and methods but
will exclude nested graphs.

5.1.4.3 Retrieving Variables

The FactorGraph class provides the following:

• Variables – calls VariablesFlat

• VariablesFlat – Returns a list of all the Variables in the graph, including those con-
tained by nested graphs.

• VariablesTop – Returns only those variables contained in the top level of the graph.

• getVariables(relativeNestingDepth,forceIncludeBoundaryVariables) – Returns all vari-
ables contained in the FactorGraph from which the method is called as Variables that
are as deep as the specified relativeNestingDepth. The second parameter is optional
and defaults to false. When false, boundary variables are only included by the root
graph. When true, boundary variables are included regardless of whether a graph is
a root or nested graph.

5.1.4.4 Retrieving All Nodes

The FactorGraph provides the following:

• Nodes

• NodesFlat

• NodesTop

• getNodes(relativeNestingDepth,forceIncludeBoundaryVariables)

These methods call the Factor and Variable methods and concatenate the results together.

116

5.1.4.5 Determining if a FactorGraph is a tree

The FactorGraph class provides the following:

• isTree(relativeNestingDepth)

• isTreeTop

• isTreeFlat

isTree – Users can call <factor graph name>.isTree() to determine if a FactorGraph is a
tree. If the graph contains cycles, this method will return false. Like the other methods, the
relativeNestingDepth determines at what point to consider NestedGraphs to be leaf nodes.

5.1.4.6 Retrieving an Adjacency Matrix

All of the following methods return a pair: [A, labels] where A is a square connectivity
matrix and labels is a cell array of strings specifying the names of the nodes in A.

• getAdjacencyMatrix(relativeNestingDepth,forceIncludeBoundaryVariables) – relativeN-
estingDepth behaves the same as in other methods that take this parameter. So does
forceIncludeBoundaryVariables. forceIncludeBoundaryVariables has a default value
of false.

• getAdjacencyMatrix(nodes,forceIncludeBoundaryVariables) – Users can specify a spe-
cific subset of nodes in which they are interested. This method will return an adjacency
matrix with only those nodes. Nodes are considered connected only if there is an edge
directly connecting them.

• getAdjacencyMatrixTop() – equivalent to getAdjacencyMatrix(0,false)

• getAdjacencyMatrixFlat() – equivalent to getAdjacencyMatrix(intmax,false)

FactorGraph also provides an AdjacencyMatrix Property:

• AdjacencyMatrix – equivalent to getAdjacencyMatrixFlat and only returns A (not
the labels). MATLAB properties can only return one object.

An example of getAdjacencyMatrix:

fg = FactorGraph ();

b = Bit(2,1);

b(1).Name = ’b1’;

117

b(2).Name = ’b2’;

f = fg.addFactor(@xorDelta ,b);

f.Name = ’f’;

[A,labels] = fg.getAdjacencyMatrix ();

A =

0 0 1

0 0 1

1 1 0

labels =

’b1’

’b2’

’f’

5.1.4.7 Depth First Search

• depthFirstSearch(node, searchDepth, relativeNestingDepth) –

– node – Specifies the node from which to initiate the search

– searchDepth – specifies how far from node the search should go.

– relativeNestingDepth – determines how deep to go down the NestedGraphs before
considering NestedGraphs to be leaf nodes.

• depthFirstSearchFlat(node, searchDepth) – equivalent of depthFirstSearch(node,searchDepth,maxint)

• depthFirstSearchThop(node, searchDepth) – equivalent of depthFirstSearch(node,searchDepth,0)

An example:

fg = FactorGraph ();

b = Bit(6,1);

for i = 1:6

b(i).Name = sprintf(’b%d’,i);

end

f1 = fg.addFactor(@xorDelta ,b(1:4));

f1.Name = ’f1’;

f2 = fg.addFactor(@xorDelta ,b(4:6));

f2.Name = ’f2’;

nodes = fg.depthFirstSearch(b(1) ,3);

calling fg.plot(’color’,b(1),’g’,’labels’,true) reveals the following structure of this graph

118

As you might guess fg.depthFirstSearch(b(1),3) will return a collection of six nodes: b1, f1,
b2, b3, b4, and f2. It will not include b5 and b6 since those are at a depth of four from b1.

119

5.2 Variables and Related Classes

5.2.1 Variable Types

The following variable types are defined in Dimple. Some variable types are supported by
only a subset of solvers. The following table lists the Dimple variable types and the solvers
that support them.

Variable Type Supported Solvers

Discrete all
Bit all
Real SumProduct, Gibbs, ParticleBP
RealJoint SumProduct, Gibbs
Complex SumProduct, Gibbs
FiniteFieldVariable all19

5.2.2 Common Properties and Methods

The following properties and methods are common to variables of all types.

5.2.2.1 Properties

5.2.2.1.1 Name

Read-write. When read, retrieves the current name of the variable or array of variables.
When set, modifies the name of the variable to the corresponding value. The value set must
be a string.

var.Name = ’string ’;

When setting the Name, only one variable in an array may be set at a time. To set the
names of an entire array of variables to distinct values, the setNames method may be used
(see section 5.2.2.2.1).

5.2.2.1.2 Label

19The performance enhanced implementations of built-in factors for FiniteField variables are only available
when using the SumProduct solver.

120

Read-write. All variables and factors in a Factor Graph must have unique names. However,
sometimes it is desirable to have variables or factors share similar strings when being plotted
or printed. Users can set the Label property to set the name for display. If the Label is
not set, the Name will be used for display. Once the label is set, the label will be used for
display.

var.Label = ’string ’;

5.2.2.1.3 Domain

Read-only. Returns the domain in a form that depends on the variable type, as summarized
in the following table:

Variable Type Domain Data Type

Discrete DiscreteDomain (see section 5.2.9)
Bit DiscreteDomain (see section 5.2.9)
Real RealDomain (see section 5.2.10)
RealJoint RealJointDomain (see section 5.2.11)
Complex ComplexDomain (see section 5.2.12)
FiniteFieldVariable FiniteFieldDomain (see section 5.2.13)

5.2.2.1.4 Solver

Read-only. Returns the solver-object associated with the variable, to which solver-specific
methods can be called. See section 5.6, which describes the solvers, including the solver-
specific methods for each solver.

5.2.2.1.5 Guess

Read-write. Specifies a value from the variable to be used when computing the Score of the
factor graph (or of the variable or neighboring factors). The Guess must be a valid value
from the domain of the variable.

If the Guess had not yet been set, its value defaults to the most likely belief (which corre-
sponds to the Value property of the variable)20.

5.2.2.1.6 Score

20For some solvers, beliefs are not supported for all variable types; in such cases there is no default value,
so a Guess must be specified in order to compute the Score.

121

Read-only. When read, computes and returns the score (energy) of the Input to this variable,
which is treated as a single-edge factors, given a specified value for the variable. The score
value is relative, and may be arbitrarily normalized by an additive constant.

The value of the variable used when computing the Score is the Guess value for this variable
(see section 5.2.2.1.5). If no Guess had yet been specified, the value with the most likely
belief (which corresponds to the Value property of the variable) is used21.

5.2.2.1.7 Internal Energy

Read-only. (Only applies to the Sum Product Solver). When read, returns:

InternalEnergy(i) =
∑
d∈D

Bi(d) ∗ (−log(Input(d)))

Read-only. When read returns:

Where D is variable i’s domain, Input is the variable’s input, and Bi is the variable Belief.

5.2.2.1.8 Bethe Entropy

Read-only. (Only applies to the Sum Product Solver). When read, returns:

BetheEntropy(i) = −
∑

d ∈ DBi(d) ∗ log(Bi(d))

Where D is variable i’s domain and Bi is the variable Belief.

5.2.2.1.9 Ports

Read-only. Retrieves a cell array containing a list of Ports connecting the variable to its
neighboring factors.

5.2.2.2 Methods

21For some solvers, beliefs are not supported for all variable types; in such cases there is no default value,
so a Guess must be specified.

122

5.2.2.2.1 setNames

For an array of variables, the setNames method sets the name of each variable in the array
to a distinct value derived from the supplied string argument. When called with:

varArray.setName(’baseName ’);

the resulting variable names are of the form: baseName vv0, baseName vv1, baseName vv2,
etc., where each variable’s name is the concatenation of the base name with the suffix vv

followed by a unique number for each variable in the array.

5.2.2.2.2 invokeSolverSpecificMethod

variableArray.invokeSolverSpecificMethod(’methodName ’, arguments);

For an array of variables, the invokeSolverSpecificMethod calls the specified solver-specific
method on each of the variables in the array. Here, ’methodName’ is a text string with the
name of the solver-specific method, and arguments is an optional comma-separated list of
arguments to that method. This method does not result in any return values. For solver
specific methods that return results, use the invokeSolverSpecificMethodWithReturnValue
method instead.

5.2.2.2.3 invokeSolverSpecificMethodWithReturnValue

returnArray = variableArray.invokeSolverSpecificMethodWithReturnValue(’

methodName ’, arguments);

For an array of variables, the invokeSolverSpecificMethodWithReturnValue calls the spec-
ified solver-specific method on each of the variables in the array, returning a return value
for each variable. Here, ’methodName’ is a text string with the name of the solver-specific
method, and arguments is an optional comma-separated list of arguments to that method.
The returnArray is a cell-array of the return values of the method, with dimensions equal
to the dimensions of the variable array.

5.2.2.3 Operators

123

5.2.2.3.1 Operators for Implicit Factor Creation

Dimple supports a set of overloaded MATLAB operators and functions that operate on
variables to implicitly add factors to a factor graph.

The list of supported operators and functions is given in section 5.10. A description of how
to use these operators and functions is given in section 4.1.4.7.

Using one of the defined operators or functions with one or more variables will result in cre-
ation of a new variable, which can be assigned to a new variable name, with the appropriate
domain. It will also result in the creation of a factor which is added to the most recently
created factor graph. This factor will connect to the input variables and the newly created
result variable. For example:

c = a + b;

This results in the creation of a Sum factor with connected variables, c, a, and b (in that
order).

These operators and functions can be compounded into a single line of code, resulting in
creation of intermediate anonymous variables. For example:

z = (a + b) * c^d - sqrt(-e);

Like using the addFactor method, some of the inputs to these operators and functions may
be constants. Specifically, for binary operators, one of the inputs may be a constant instead
of a variable. For example:

x = a^2;

y = (a + b + 2) * 3;

z = a * (2 + 1i);

These operators and functions can be applied to arrays of variables, with some limitations.
Specifically, if each of the input variables are vectors of the same dimension, then the result
will be to create a vector of output variables of the same dimension, along with a vector of
factors relating the inputs and outputs.

In some cases, to be consistent with MATLAB notation, there is a distinction made between
the vectorized and non-vectorized operator. Specifically, Dimple uses MATLAB’s notation
for pointwise product and power operators to indicate a vectorized operation. For example,
if variables a through e are vectors of variables of identical size, then the following would
create a variable vector z, and a series of factors relating these variables.

z = (a .* b) + c.^d - sqrt(-e);

124

For binary operators, one of the inputs may be a scalar variable or a scalar constant instead
of a variable vector. For a scalar variable, the result is that scalar variable connecting to
each instance of the factors that are created. For a constant, each instance of the factor uses
the same constant for that input (vectors of distinct constants are not currently supported).

5.2.2.3.2 repmat

Dimple overloads the MATLAB repmat function when called with a Dimple variable or
variable array as its first argument. The result of this function is an array of variables in
the requested dimensions. Dimple does not actually make multiple copies of the variables,
but instead creates a variable array that provides repeated references to the same variables
in the existing array.

For example:

var = Bit(10, 1);

varRef = repmat(var , 1, 10);

In this case varRef is a 10x10 array of variables. Each element of varRef, however, is not
a distinct Dimple variable, but a reference to an element in var, where for each row of
varRef, there are 10 repeated copies of the corresponding variable in var. Use of repmat for
variables can be useful when using addFactorVectorized (see sections 4.1.4.2 and 5.1.3.2).

5.2.3 Discrete

A Discrete variable represents a variable that can take on a finite set of distinct states. The
Discrete class corresponds to either a single Discrete variable or a multidimensional array
of Discrete variables. All properties/methods can either be called for all elements in the
collection or for individual elements of the collection.

5.2.3.1 Constructor

The Discrete constructor can be used to create an N-dimensional collection of Dimple Dis-
crete variables. The constructor is called with the following arguments (arguments in brack-
ets are optional).

Discrete(domain , [dimensions])

• domain is a required argument indicating the domain of the variable. The domain
may either be a numeric array of domain elements, a cell array of domain elements,
or a DiscreteDomain object (see section 5.2.3.1.1).

125

• dimensions is an optional variable-length comma-separated list of matrix dimensions
(an empty list indicates a single Discrete variable).

For example:

domain = [0 1 2];

w = Discrete(domain);

x = Discrete(domain , 4);

y = Discrete(domain , 2, 3);

z = Discrete(domain , 2, 3, 4);

We examine each of these arguments in more detail in the following sections.

5.2.3.1.1 Domain

Every Discrete random variable has a domain associated with it. A domain is a set. Ele-
ments of the set may be any object type. For example, the following are Discrete variables
with valid domains:

a = Discrete ({1, 2, 3});

b = Discrete ({1+i, i, 2*i});

c = Discrete ({[1 0; 0 1], [i 1, 2*i 1]});

d = Discrete ({[1 0; 0 1], 2, i+1});

e = Discrete ({1.2 , 3, pi/2});

f = Discrete ({’red’, ’green’, ’blue’});

(a) creates a variable whose domain consists of three values: 1, 2, and 3. (b) creates a
variable whose domain consists of three complex numbers. (c) creates a variable whose
domain consists of two elements, each of which is a 2x2 complex matrix. (d) creates a
variable whose domain consists of three elements: a matrix, real scalar, and complex scalar.
(e) creates a variable whose domain consists of both floating-point and integer values. (f)
creates a variable whose domain is a set of strings.

In the previous example we used cell arrays to specify the elements of a domain. When
the domain consists only of numeric values (integer or floating-point), domains can instead
be specified as a numeric array. In this case, each element of the array (regardless of the
array’s dimensions) is considered a distinct entry in the domain.

a = Discrete (0:2);

b = Discrete ([1 2 3; 4 5 6]);

c = Discrete ([0:2] ’);

(a) creates a variable with a domain of 0, 1, and 2. (b) creates a variable with a domain of
1, 2, 3, 4, 5, 6. (c) creates a variable with domain of 0, 1, and 2.

126

The domain may also be specified using a DiscreteDomain object. In that case, the domain
of the variable consists of the elements of this object. For example:

myDomain = DiscreteDomain (0:10);

a = Discrete(myDomain);

See section 5.2.9 for more information about the DiscreteDomain class.

5.2.3.1.2 List of Matrix Dimensions

If the variable constructor is called without any dimensions, a single variable will be created.

If one dimension n is specified, a square array of dimensions n x n variables will be created22.

With k dimensions specified, n1, n2, ..., nk, a multidimensional variable array of dimensions
n1 x n2 x ... x nk will be created.

5.2.3.2 Properties

5.2.3.2.1 Belief

Read-only. For any single variable, the Belief method returns a vector whose length is
the total number of elements of the domain of the variable. When called after running a
solver to perform inference on the graph, each element of the vector contains the estimated
marginal probability of the corresponding element of the domain of the variable. The results
are undefined if called prior to running a solver.

For an array of variables, the Belief method will return an array of vectors (that is, an array
one dimension larger than the variable array) containing the beliefs of each variable in the
array.

5.2.3.2.2 Value

Read-only. In some cases, one may wish to retrieve the single most likely element of a
variable’s domain. The Value property does just that.

For any single variable, the Value method returns a single value chosen from the domain
of the variable. When called after running a solver to perform inference on the graph, the
value returned corresponds to the element in the variable’s domain that has the largest

22This follows a common MATLAB convention.

127

estimated marginal probability23. The results are undefined if called prior to running a
solver.

For an array of variables, the Value method will return an array of values, each from the do-
main of the corresponding variable representing the largest estimated marginal probability
for that variable.

5.2.3.2.3 Input

Read-write. For any variable, the Input method can be used to set and return the current
input of that variable. An input behaves much like a single edge factor connected to
the variable, and is typically used the represent the likelihood function associated with a
measured value (see section 4.2.2.1).

When read, for a single variable returns an array of values with each value representing the
current input setting for the corresponding element of the variable’s domain. The length
of this array is equal to the total number of elements of the domain. When read, for an
array of variables, the result is an array with dimension one larger than the dimension of
the variable array. The additional dimension represents the current set of input values for
the corresponding variable in the array.

When written, for a single variable, the value must be an array of length equal to the
domain of the variable. The values in the array must all be non-negative, and non-infinite,
but are otherwise arbitrary. When written, for an array of variables, the values must be a
multidimensional array where the first set of dimensions exactly match the dimensions of
the array (or the portion of the array) being set, and length of the last dimension is the
number of elements in the variable’s domain.

5.2.3.2.4 FixedValue

Read-write. For any variable, the FixedValue property can be used to set the variable
to a specific fixed value, and to retrieve the fixed-value if one has been set. This would
generally be used for conditioning a graph on known data without modifying the graph (see
section 4.2.2.2).

Reading this property results in an error if no fixed value has been set. To determine if a
fixed value has been set, use the hasFixedValue method (see section 5.2.3.3.1).

When setting this property on a single variable, the value must be a value included in the
domain of the variable. The fixed value must be a value chosen from the domain of the
variable. For example:

23If more than one domain element has identical marginal probabilities that are larger than for any other
value, a single value from the domain is returned, chosen arbitrarily among these.

128

a = Discrete (1:10);

a.FixedValue = 3;

When setting this property on a variable array, the value must be an array of the same
dimensions as the variable array, and each entry in the array must be an element of the
domain.

Because the Input and FixedValue properties serve similar purposes, setting one of these
overrides any previous use of the other. Setting the Input property removes any fixed value
and setting the FixedValue property replaces the input with a delta function—the value 0
except in the position corresponding to the fixed value that had been set.

5.2.3.3 Methods

5.2.3.3.1 hasFixedValue

This method takes no arguments. When called for a single variable, it returns a boolean
indicating whether or not a fixed-value is currently set for this variable. When called for
a variable array, it returns a boolean array of dimensions equal to the size of the variable
array, where each entry indicates whether a fixed value is set for the corresponding variable.

5.2.4 Bit

A Bit is a special kind of Discrete with domain [0 1].

5.2.4.1 Constructor

The Bit constructor can be used to create an N-dimensional collection of Dimple Discrete
variables. Its constructor does not require a domain, since the domain is predetermined.
The constructor takes only a variable-length list of matrix dimensions, where an empty list
indicates a single Bit variable.

Bit([dimensions])

The behavior of the list of dimensions is identical to that for Discrete variables as described
in section 5.2.3.1.2.

5.2.4.2 Properties

129

5.2.4.2.1 Belief

Read-only. For a single Bit variable, the Belief property is a single number that represents
the estimated marginal probability of the value one.

For an array of Bit variables, the Belief property is an array of numbers with size equal to the
size of the variable array, with each value representing the estimated marginal probability
of one for the corresponding variable.

5.2.4.2.2 Value

See section 5.2.3.2.2.

5.2.4.2.3 Input

Read-write. For setting the Input property on a single Bit variable, the value must be a
single number in the range 0 to 1, which represents the normalized likelihood of the value
one (see section 4.2.2.1). If L(x) is the likelihood of the variable, the Input should be set

to L(x=1)
L(x=0)+L(x=1) .

For setting the Input property on an array of Bit variables, the value must be an array of
normalized likelihood values, where the array dimensions must match the dimensions of the
array (or the portion of the array) being set.

5.2.4.2.4 FixedValue

See section 5.2.3.2.4.

5.2.4.3 Methods

5.2.4.3.1 hasFixedValue

See section 5.2.3.3.1.

130

5.2.5 Real

A Real variable represents a variable that takes values on the real line, or on a contiguous
subset of the real line. The Real class corresponds to either a single Real variable or a
multidimensional array of Real variables. All properties/methods can either be called for
all elements in the collection or for individual elements of the collection.

5.2.5.1 Constructor

Real([domain], [dimensions])

All arguments are optional and can be used in any combination.

• domain specifies a bound on the domain of the variable. It can either be specified
as a two-element array or a RealDomain object (see section 5.2.10). If specified as
an array, the first element is the lower bound and the second element is the upper
bound. -Inf and Inf are allowed values for the lower or upper bound, respectively. If
no domain is specified, then a domain from −∞ to ∞ is assumed.

• dimensions specify the array dimensions. The behavior of the list of dimensions is
identical to that for Discrete variables as described in section 5.2.3.1.2.

Examples:

• Real() specifies a scalar real variable with an unbounded domain.

• Real(4,1) specifies a 4x1 vector of real variables with unbounded domain.

• Real([-1 1]) specifies a scalar real variable with domain from -1 to 1.

• Real([-Inf 0], 4, 10, 2) specifies a 4x10x2 array of real variables, each with the domain
from negative infinity to zero.

• Real(RealDomain(-pi, pi)) specifies a scalar real variable with domain from −π to π.

5.2.5.2 Properties

5.2.5.2.1 Belief

Read-only. The behavior of this property for Real variables is solver specific. Some solvers
do not support this property at all and will return an error when read. See section 5.6 for
more detail on each of the supported solvers.

131

For the SumProduct solver, this property returns the estimated marginal distribution of
the variable in the form of a NormalParameters object (see section 5.2.14), which includes a
mean and precision value24. For an array of Real variables, this property returns a cell array
of NormalParameters objects, each corresponding to the estimated marginal distribution of
the corresponding variable. The results are undefined if called prior to running a solver.

5.2.5.2.2 Value

Read-only. The behavior of this property for Real variables is solver specific. Some solvers
do not support this property at all and will return an error when read. See section 5.6 for
more detail on each of the supported solvers.

For the SumProduct solver, the Value corresponds to the mean value of the belief.

5.2.5.2.3 Input

Read-write. For a Real variable, the Input property is expressed in the form of a Fac-
torFunction object that can connect to exactly one Real variable. The list of available
built-in FactorFunctions is given in section 4.1.4.6. Typically, an Input would use one of
the standard distributions included in this list. In this case, it must be one in which all the
parameters can be fixed to pre-defined constants. For the Gibbs and ParticleBP solvers,
any such factor function may be used as an Input. For the SumProduct solver, however,
only a Normal factor function may be used. Below is an example of setting the Input for a
Real variable:

r = Real();

r.Input = FactorFunction(’Normal ’, measuredMean , measurementPrecision);

Equivalently, a simpler alternative form for specifying the Input may be used. In this form
the name of the factor followed by the arguments to the corresponding constructor are listed
as elements of a cell array:

r = Real();

r.Input = {’Normal ’, measuredMean , measurementPrecision };

To remove an Input that had previously been set, the Input may be set to an empty array.

In the current version of Dimple, Inputs on Real variable arrays must be set one at a time,
or all set to a single common value25.

24For backward compatibility with Dimple version 0.04 and earlier, the Belief can be treated as a two-
dimensional array where the first element is the mean and the second is the standard deviation.

25This restriction may be removed in a future version.

132

5.2.5.2.4 FixedValue

Read-write. The behavior of the FixedValue property for a Real variable is nearly identical
to that of Discrete variables (see section 5.2.3.2.4). When setting the FixedValue of a Real
variable, the value must be within the domain of the variable, that is greater than or equal
to the lower bound and less than or equal to the upper bound. For example:

a = Real([-pi pi]);

a.FixedValue = 1.7;

Because the Input and FixedValue properties serve similar purposes, setting one of these
overrides any previous use of the other. Setting the Input property removes any fixed value
and setting the FixedValue property removes the input.

5.2.5.3 Methods

5.2.5.3.1 hasFixedValue

See section 5.2.3.3.1.

5.2.6 RealJoint

A RealJoint variable is a tightly coupled set of real variables that are treated by a solver
as a single joint variable rather than a separate collection of variables. For example, in the
SumProduct solver, the messages associated with RealJoint variables involve joint mean
and covariance matrix rather than an individual mean and variance for each variable.

Like other variables, the RealJoint class can represent either a single RealJoint variable
(representing a collection of real values) or an array of RealJoint variables.

5.2.6.1 Constructor

RealJoint(domain , [dimensions])

RealJoint(numElements , [dimensions])

The arguments are defined as follows:

133

• domain specifies a bound on the domain of the variable. It is specified by a RealJoint-
Domain object (see section 5.2.11). If no domain is specified, then an unbounded
domain is assumed and numElements must be specified instead.

• numElements specifies the number of joint real-valued elements. This argument is
present only if the domain argument is not specified.

• dimensions specify the array dimensions (the array of individual RealJoint variables).
The behavior of the list of dimensions is identical to that for Discrete variables as
described in section 5.2.3.1.2.

5.2.6.2 Properties

5.2.6.2.1 Belief

Read-only. The behavior of this property for RealJoint variables is solver specific. Some
solvers do not support this property at all and will return an error when read. See section 5.6
for more detail on each of the supported solvers.

For the SumProduct solver, this property returns the estimated marginal distribution of the
variable in the form of a MultivariateNormalParameters object (see section 5.2.15), which
includes a mean vector and covariance matrix. For an array of RealJoint variables, this
property returns a cell array of MultivariateNormalParameters objects, each correspond-
ing to the estimated marginal distribution of the corresponding variable. The results are
undefined if called prior to running a solver.

5.2.6.2.2 Value

Read-only. The behavior of this property for Real variables is solver specific. Some solvers
do not support this property at all and will return an error when read. See section 5.6 for
more detail on each of the supported solvers.

For the SumProduct solver, this property returns the mean vector, with dimension equal
to the dimension of the RealJoint variable.

For an array of RealJoint variables, this property returns an array where the initial dimen-
sions correspond to the dimensions of the variable array (or portion of the variable array),
and the final dimension corresponds to the dimension of the RealJoint variable.

5.2.6.2.3 Input

134

Read-write. For a RealJoint variable, the Input property is expressed in one of two forms:
either a single FactorFunction object that can connect to exactly one RealJoint variable, or a
set of FactorFunction objects that can each connect to exactly one Real variable. The latter
case corresponds to a likelihood function where each dimension is independent. The list of
available built-in FactorFunctions is given in section 4.1.4.6. Typically, an Input would use
one of the standard distributions included in this list. In this case, it must be one in which
all the parameters can be fixed to pre-defined constants. For the Gibbs and ParticleBP
solvers, any such factor function may be used as an Input. For the SumProduct solver,
however, only a MultvariateNormal factor function or a set of Normal factor functions may
be used.

Below is an example of setting the Input for a RealJoint variable using a single multivariate
factor function:

r = Real();

r.Input = FactorFunction(’MultivariateNormal ’, measuredMeanVector ,

measurementCovarianceMatrix);

Equivalently, a simpler alternative form for specifying the Input may be used. In this form
the name of the factor followed by the arguments to the corresponding constructor are listed
as elements of a cell array:

r = Real();

r.Input = {’MultivariateNormal ’, measuredMeanVector ,

measurementCovarianceMatrix };

To remove an Input that had previously been set, the Input may be set to an empty array.

To specify a set of univariate factor functions the value of this property must be a cell array
of FactorFunction objects, one for each dimension of the RealJoint variable.

In the current version of Dimple, Inputs on RealJoint variable arrays must be set one at a
time, or all set to a single common value26.

5.2.6.2.4 FixedValue

Read-write. The behavior of the FixedValue property for a RealJoint variable is similar to
that of Discrete variables (see section 5.2.3.2.4). When setting the FixedValue of a Real
variable, the value must be within the domain of the variable. When setting a fixed value,
the value must be in an array with dimension equal to the dimension of the RealVariable.
For example:

a = RealJoint (4);

26This restriction may be removed in a future version.

135

a.FixedValue = [1.7, 2.0, 0, -1.2];

For an array of RealJoint variables, the fixed values of all variables may be set together. In
this case, the initial dimensions of the input array must equal the dimensions of the variable
array (or subset of the variable array) being set, while the final dimension must equal the
dimension of the RealJoint variable.

Because the Input and FixedValue properties serve similar purposes, setting one of these
overrides any previous use of the other. Setting the Input property removes any fixed value
and setting the FixedValue property removes the input.

5.2.6.3 Methods

5.2.6.3.1 hasFixedValue

See section 5.2.3.3.1.

5.2.7 Complex

Complex is a special kind of RealJoint variable with exactly two joint elements.

The behavior of all properties and methods is identical to that of RealJoint variables, with
the exception of a few methods (described below), which that refer directly to complex
numerical values.

5.2.7.1 Constructor

Complex ([domain], [dimensions])

The arguments are defined as follows:

• domain specifies the domain of the Complex variable using a ComplexDomain object
(see 5.2.12). If no domain is specified, then an unbounded domain is assumed.

• dimensions specify the array dimensions (the array of individual Complex variables).
The behavior of the list of dimensions is identical to that for Discrete variables as
described in section 5.2.3.1.2.

5.2.7.2 Properties

136

5.2.7.2.1 Belief

Read-only. See section 5.2.6.2.1.

5.2.7.2.2 Value

Read-only. This method behaves similarly to the Value property for a RealJoint variable,
except the value returned is a single complex number. For an array of Complex variables,
each entry in the returned array is a complex number.

5.2.7.2.3 Input

Read-write. See section 5.2.6.2.3.

5.2.7.2.4 FixedValue

Read-write. This method behaves similarly to the FixedValue property for a RealJoint
variable, except that the fixed value is a single complex number. For an array of Complex
variables, each entry in the array should be a complex number. For example:

a = Complex(); a.FixedValue = 5 + 1i*2;

5.2.7.3 Methods

5.2.7.3.1 hasFixedValue

See section 5.2.3.3.1.

5.2.8 FiniteFieldVariable

Dimple supports a special variable type called a FiniteFieldVariable, which represent finite
fields with N = 2n elements. These fields find frequent use in error correcting codes. These
variables are used along with certain custom factors that are implemented more efficiently
for sum-product belief propagation than the alternative using discrete variables and factors
implemented directly. See section 4.4 for more information on how these variables are used.

The behavior of all properties and methods is identical to that of Discrete variables.

137

5.2.8.1 Constructor

FiniteFieldVariable(primitivePolynomial , [dimensions])

The arguments are defined as follows:

• primitivePolynomial the primitive polynomial of the finite field. The format of the
primitive polynomial follows the same definition used by MATLAB in the gf function.
See the MATLAB help on the gf function for more detail.

• dimensions specify the array dimensions (the array of individual FiniteFieldVariable
variables). The behavior of the list of dimensions is identical to that for Discrete
variables as described in section 5.2.3.1.2.

5.2.9 DiscreteDomain

The DiscreteDomain class represents a domain with a finite fixed set of elements. It is the
type of Domain used by Discrete variables. DiscreteDomain objects are immutable.

5.2.9.1 Construction

DiscreteDomain(elementList)

The elementList argument is either a cell array or array of domain elements. Every entry
of the array or cell array is considered an element of the domain, regardless of the number
of dimensions it has. For a cell array, each object in the cell array is considered an element
of the domain regardless of the object type. For a numeric array, every entry in the array
must be numeric.

5.2.9.2 Properties

5.2.9.2.1 Elements

Read-only. This property returns the set of elements in the discrete domain in the form of
a one-dimensional cell array.

138

5.2.10 RealDomain

The RealDomain class is used to refer to the domain of Real variables.

5.2.10.1 Constructor

RealDomain ([lowerBound , [upperBound]])

• lowerBound indicates the lower bound of the domain. The value must be a scalar
numeric value. It may be set to -Inf to indicate that there is no lower bound. The
default value is -Inf.

• upperBound indicates the upper bound of the domain. The value must be a scalar
numeric value. It may be set to Inf to indicate that there is no upper bound. The
default value is Inf.

5.2.10.2 Properties

5.2.10.2.1 LB

Read-only. This property returns the value of the lower bound. The default value is negative
infinity.

5.2.10.2.2 UB

Read-only. This property returns the value of the upper bound. The default value is positive
infinity.

5.2.11 RealJointDomain

The RealJointDomain class is used to refer to the domain of RealJoint variables.

5.2.11.1 Constructor

139

RealJointDomain(numDimensions);

RealJointDomain(listOfRealDomains);

RealJointDomain(numDimensions , realDomain);

• numDimensions indicates the number of dimensions in the domain of the RealJoint
variable. If the form of constructor that specifies numDimensions is called, then all
dimensions are assumed to be unbounded.

• listOfRealDomains is a comma-separated list or cell array of RealDomain objects,
one for each dimension. Each RealDomain in the list indicates the domain for the
corresponding dimension of the RealJoint variable.

• realDomain specifies a single RealDomain. If the number of dimensions is specified
along with a single RealDomain, then that RealDomain is used for each dimension of
the domain of the RealJoint variable.

5.2.11.2 Properties

5.2.11.2.1 NumElements

Read-only. Indicates the number of elements in the RealJointDomain, which corresponds
to the number of dimensions of an associated RealJoint variable.

5.2.11.2.2 RealDomains

Read-only. Returns the collection of RealDomains that correspond to each dimension of
the RealJointDomain.

5.2.12 ComplexDomain

The ComplexDomain class, a subclass of the RealJointDomain class, is used to refer to the
domain of Complex variables.

5.2.12.1 Constructor

ComplexDomain ();

ComplexDomain(listOfRealDomains);

ComplexDomain(realDomain);

140

• listOfRealDomains comma-separated list of exactly two RealDomain objects, one for
each dimension. Each RealDomain in the list indicates the domain for the correspond-
ing dimension of the Complex variable (real followed by imaginary). If no RealDo-
mains are specified, then both dimensions are assumed to be unbounded.

• realDomain specifies a single RealDomain to apply to both dimensions of the domain
of the Complex variable.

5.2.12.2 Properties

5.2.12.2.1 NumElements

Read-only. Indicates the number of elements in the ComplexDomain, which should always
equal two.

5.2.12.2.2 RealDomains

Read-only. Returns the collection of RealDomains that correspond to each dimension of
the ComplexDomain (real followed by imaginary).

5.2.13 FiniteFieldDomain

The FiniteFieldDomain class represents the domain of a FiniteFieldVariable. FiniteField-
Domain objects are immutable.

5.2.13.1 Construction

FiniteFieldDomain(primitivePolynomial)

• primitivePolynomial is an integer representation of the primitive polynomial of the
finite field.

5.2.13.2 Properties

141

5.2.13.2.1 Elements

Read-only. This property returns the set of elements in the discrete domain in the form of
a one-dimensional cell array.

5.2.13.2.2 PrimitivePolynomial

Read-only. This property returns the primitive polynomial associated with the domain
using an integer representation.

5.2.13.2.3 N

Read-only. This property returns the number of bits in the finite field. The size of the
Elements property is 2N .

5.2.14 NormalParameters

The NormalParameters class is used to specify the parameters of a univariate Normal dis-
tribution, as used in the SumProduct solver.

5.2.14.1 Constructor

NormalParameters(mean , precision)

• mean is the mean value of the distribution.

• precision is the precision of the distribution, which is the inverse of the variance.

5.2.14.2 Properties

5.2.14.2.1 Mean

Read-only. Returns the mean value.

142

5.2.14.2.2 Precision

Read-only. Returns the precision value.

5.2.14.2.3 Variance

Read-only. Returns the variance (inverse of the precision).

5.2.14.2.4 StandardDeviation

Read-only. Returns the standard deviation (square root of the variance).

5.2.15 MultivariateNormalParameters

The MultivariateNormalParameters class is used to specify the parameters of a multivariate
Normal distribution, as used in the SumProduct solver.

5.2.15.1 Constructor

MultivariateNormalParameters(meanVector , covarianceMatrix)

• meanVector indicates the mean value of each element in a joint set of variables. The
value must be a one-dimensional numeric array.

• covarianceMatrix indicates the covariance matrix associated with the elements of a
joint set of variables. The value must be a two-dimensional numeric array with each
dimension identical to the length of the meanVector.

5.2.15.2 Properties

5.2.15.2.1 Mean

Read-only. Returns a vector of values, where each value indicates the mean value of the
corresponding element in a joint set of variables.

143

5.2.15.2.2 Covariance

Read-only. Returns a two-dimensional array of values, representing the covariance matrix
of a joint set of variables.

5.2.15.2.3 InformationVector

Read-only. Returns a vector of values representing the information matrix, defined as Σ−1µ,
where Σ is the covariance matrix and µ is the mean vector.

5.2.15.2.4 InformationMatrix

Read-only. Returns a two-dimensional array of values representing the information matrix,
defined as Σ−1, where Σ is the covariance matrix.

144

5.3 Factors and Related Classes

5.3.1 Factor

The Factor class can represent either a single factor or a multidimensional array of fac-
tors. The Factor class is never created directly, but is the result of using the addFactor or
addFactorVectorized (or related) methods on a FactorGraph.

5.3.1.1 Properties

5.3.1.1.1 Name

Read-write. When read, retrieves the current name of the factor or array of factors. When
set, modifies the name of the factor to the corresponding value. The value set must be a
string.

factor.Name = ’string ’;

When setting the Name, only one factor in an array may be set at a time. To set the
names of an entire array of factors to distinct values, the setNames method may be used
(see section 5.3.1.2.1).

5.3.1.1.2 Label

Read-write. All variables and factors in a Factor Graph must have unique names. However,
sometimes its desirable to have variables or factors share similar strings when being plotted
or printed. Users can set the Label property to set the name for display. If the Label is
not set, the Name will be used for display. Once the label is set, the label will be used for
display.

factor.Label = ’string ’;

factor.setLabel (" string ");

5.3.1.1.3 DirectedTo

145

Read-write. The DirectedTo property indicates a set of variables to which the factor is
directed. The value may be either a single variable or a cell array of variables. The
DirectedTo property is used by some solvers, and in some cases is required for proper
operation of certain features. Such cases are identified elsewhere in this manual.

For example, if a factor F corresponds to a function F (a, b, c, d), where a, b, c, and d are
variables, then the factor is directed toward c and d if

∑
c,d F (a, b, c, d) is constant for all

values of a and b. In this case, we may set:

F.DirectedTo = {c, d};

In some cases, the set of DirectedTo variables can be automatically determined when a
factor is created. In this case it need not be set manually by the user. This includes many
built-in factors supported by Dimple. If this property is set by the user, then in the case
of factors connected only to discrete variables, Dimple will check that the factor is in fact
directed in the specified direction.

If the set of variables the factor are directed toward are part of a variable array, then these
may be specified together in a single cell array. For example, if varArray is an array of
variables, and a factor F is directed toward all of the variables in varArray, then we can set:

F.DirectedTo = varArray;

In the case of a vector of factors, we can identify the variables to which each factor is
directed in a vectorized way. For example:

s = Discrete(domain ,N);

fg.addFactorVectorized(factorFunction , s(1:(end -1)), s(2: end)).DirectedTo =

s(2:end);

This example also shows that the DirectedTo property can be set directly on the result of
the factor creation without assigning the factor to a named variable.

As a more complicated vectorized example, the following creates 12 factors, each of which
contains 10 variables (5 from a and 5 from b). The first 2 of the 5 from a and the first from
b are what the factor is directed to.

a = Bit(3,4,5);

b = Bit(3,4,5);

fg.addFactorVectorized(factorFunction , {a, [1 2]}, {b, [1 2]}).DirectedTo =

{a(:,: ,1:2), b(:,:,1)};

5.3.1.1.4 Score

146

Read-only. When read, computes and returns the score (energy) of the factor given a
specified value for each of the neighboring variables to this factor. The score represents the
energy of the factor given the specified variable configuration. The score value is relative,
and may be arbitrarily normalized by an additive constant.

The value of each variable used when computing the Score is the Guess value for that
variable (see section 5.2.2.1.5). If no Guess had yet been specified for a given variable, the
value with the most likely belief (which corresponds to the Value property of the variable)
is used27.

The variable energy is normalized by the maximum input probability.

5.3.1.1.5 InternalEnergy

Read-only. (Only applies to the Sum Product Solver). When read returns:

InternalEnergy(a) =
∑
~x∈ ~X

Ba(~x) ∗ (−log(Weight(~x)))

Where a is an instance of a Factor, X is the set of variables connected to a, Weight is the
FactorTable entry for the specified set of variable values, and Ba is the belief of that factor
node.

5.3.1.1.6 Bethe Entropy

Read-only. (Only applies to the Sum Product Solver). When read returns:

BetheEntropy(a) = −
∑

~x∈domain(~X)

Ba(~x) ∗ log(Ba(~x))

Where a is an instance of a Factor, X is the set of variables connected to a, and Ba is the
belief of that factor node.

double be = f.getBetheEntropy ();

5.3.1.1.7 Belief

27For some solvers, beliefs are not supported for all variable types; in such cases there is no default value,
so a Guess must be specified.

147

Read-only. (Only applies to the Sum Product Solver). To support the Bethe Free Energy
property, Dimple provides getBelief associated with a Factor.

Beliefa(~x) = Weight(~x)
N∏
i=0

µXi→a(xi)

Where ~x ∈ domain(~X) and ~X is the set of variables connected to the factor a.

b = f.Belief;

5.3.1.1.8 Ports

Read-only. Retrieves a cell array containing a list of Ports connecting the factor to its
neighboring variables.

5.3.1.2 Methods

5.3.1.2.1 setNames

For an array of factors, the setNames method sets the name of each factor in the array to
a distinct value derived from the supplied string argument. When called with:

factorArray.setName(’baseName ’);

the resulting factor names are of the form: baseName vv0, baseName vv1, baseName vv2,
etc., where each factor’s name is the concatenation of the base name with the suffix vv

followed by a unique number for each factor in the array.

5.3.1.2.2 invokeSolverSpecificMethod

factorArray.invokeSolverSpecificMethod(’methodName ’, arguments);

For an array of factors, the invokeSolverSpecificMethod calls the specified solver-specific
method on each of the factors in the array. Here, ’methodName’ is a text string with the
name of the solver-specific method, and arguments is an optional comma-separated list of

148

arguments to that method. This method does not result in any return values. For solver
specific methods that return results, use the invokeSolverSpecificMethodWithReturnValue
method instead.

5.3.1.2.3 invokeSolverSpecificMethodWithReturnValue

returnArray = factorArray.invokeSolverSpecificMethodWithReturnValue(’

methodName ’, arguments);

For an array of factors, the invokeSolverSpecificMethodWithReturnValue calls the specified
solver-specific method on each of the factors in the array, returning a return value for each
variable. Here, ’methodName’ is a text string with the name of the solver-specific method,
and arguments is an optional comma-separated list of arguments to that method. The
returnArray is a cell-array of the return values of the method, with dimensions equal to the
dimensions of the factor array.

5.3.2 DiscreteFactor

When all variables connected to a Factor are discrete, a DiscreteFactor is created.

5.3.2.1 Properties

5.3.2.1.1 Belief

Read-only. The belief of a factor is the joint belief over all joint states of the variables
connected to that factor. There are two properties that represent the belief in different ways:
Belief and FullBelief. Reading the Belief property after the solver has been run28 returns
the belief in a compact one-dimensional vector that includes only values that correspond
to non-zero entries in the factor table. This form is used because in some situation, the
full representation over all possible variable values (as returned by the FullBelief property)
would result in a data structure too large to be practical.

fb = myFactor.Belief;

The result is a vector of belief values, where the order of the vector corresponds to the order
of the factor table entries. The order of factor table entries can be determined from the
factor using:

28In the current version of Dimple, the Belief property is only supported for factors connected exclusively
to discrete variables, and is supported only by the SumProduct solver. These restrictions may be removed
in a future version.

149

ind = f.FactorTable.Indices

This returns a two-dimensional array, where each row corresponds to one entry in the
factor table, and where each column-entry in a row indicates the index into the domain
of the corresponding variable (where the order of the variable is the order used when the
factor was created).

5.3.2.1.2 FullBelief

Read-only. Reading the FullBelief property after the solver has been run29 returns the belief
in a multi-dimensional array, where each dimension of the multi-dimensional array ranges
over the domain of the corresponding variable (the order of the dimensions corresponds to
the variable order used when the factor was created).

fb = myFactor.FullBelief;

5.3.3 FactorFunction

The FactorFunction class is used to specify a Dimple built-in factor function in a way that
can be reused for creating multiple factors, and that allows specification of constructor
arguments.

5.3.3.1 Constructor

FactorFunction(factorFunctionName , [constructorArguments])

• factorFunctionName is a string that indicates the name of the built-in factor function.

• constructorArguments is a variable-length comma-separated list of constructor argu-
ments, whose interpretation is specific to the particular built-in factor function. If no
arguments are needed, this list would be empty.

There are no available properties or methods in this class.

29In the current version of Dimple, the Belief property is only supported for factors connected exclusively
to discrete variables, and is supported only by the SumProduct solver. These restrictions may be removed
in a future version.

150

5.3.4 FactorTable

The FactorTable class is used to explicitly specify a factor table in lieu of Dimple creating
one automatically from a factor function. This is sometimes useful in cases where the factor
table is highly structured, but automatic creation would be time consuming due to a large
number of possible states of the connected variables.

5.3.4.1 Constructor

FactorTable ([(indexList , weightList) | weightMatrix], domains)

A FactorTable is constructed by specifying the table values in one of two forms, or by
creating an all-zeros FactorTable to be filled in later using the set method. The first form,
specifying an indexList and weightList, is useful for sparse factor tables in which many
entires are zero and need not be included in the table. The second form, specifying a
weightMatrix, is useful for dense factor tables in which most or all of the entries are non-
zero.

• indexList is an array where each row represents a set of zero-based indices into the
list of domain elements for each successive domain in the given set of domains.

• weightList is a one-dimensional array of real-valued entries in the factor table, where
each entry corresponds to the indices given by the corresponding row of the indexList.

• weightMatrix is an N dimensional array of real-valued entries in the factor table. The
number of dimensions, N, must correspond to the number of discrete domain elements
given in the subsequent arguments, and the number of elements in each dimension
must equal the number of elements in the corresponding domain element.

• domains is a comma-separated list of one or more discrete variable domains. Each
domain either in the form of a DiscreteDomain object or a cell-array of the elements of
the domain. From an existing variable, the domain can be obtained using the Domain
property of that variable.

An example using the first method is:

a = Bit;

b = Bit;

c = Bit;

ft = FactorTable ([0 0 0; 0 1 1; 1 0 1; 1 1 0], [1 .9 .5 .3], a.Domain , b.

Domain , c.Domain);

An example using the second method is:

151

a = Discrete ({’red’,’green’,’blue’});

b = Bit;

ft = FactorTable ([.5 .4; .3 .1; 0 .4], a.Domain , b.Domain);

5.3.4.2 Properties

5.3.4.2.1 Indices

Read-write. When read, returns an array of indices of the factor table corresponding to
entries in the factor table. Each row represents a set of zero-based indices into the list of
domain elements for each successive domain in the given set of domains.

When written, replaces the previous array of indices with a new array. When writing using
this property, the number of rows in the table must not change since this must equal the
number of entires in the Weights. To change both Indices and Weights simultaneously, use
the change method.

5.3.4.2.2 Weights

Read-write. When read, returns a one-dimensional array of real-valued entries in the factor
table, where each entry corresponds to the indices given by the corresponding row of the
indexList.

When written, replaces the previous array of weights. When writing using this property,
the number of entries must not change since this must equal the number of rows in the
Indices. To change both Indices and Weights simultaneously, use the change method.

5.3.4.2.3 Domains

Read-only. Returns a cell-array of DiscreteDomain objects, each of which represents the
corresponding domain specified in the constructor, in the same order as specified in the
constructor.

5.3.4.3 Methods

5.3.4.3.1 set

152

This method allows setting individual entries in the factor table. For each entry to be set,
the domain values (not indices) are specified followed by the weight value. To set a single
entry, the domain values are specified in a comma-separated list, followed by the weight
value. To set multiple entries in a single call, a cell array of such comma-separated lists are
specified.

An example of setting a single entry:

ft.set(’red’, 1, 0.45);

An example of setting multiple entries:

ft.set({’red’, 1, 0.45}, {’blue’, 0, 0.75});

5.3.4.3.2 get

This method retrieves the weight associated with a particular entry in the factor table. The
entry is specified by a comma-separated list of domain values (not indices). For example:

w = ft.get(’red’, 1);

5.3.4.3.3 change

This method allows simultaneously replacing both the array of Indices and Weights in the
factor table.

ft.change(indexList , weightList);

The arguments indexList and weightList are exactly as described in the FactorTable con-
structor.

153

5.4 Options

Dimple provides an option mechanism used to configure the runtime behavior of various
aspects of the system. This section describes the Dimple option system and how it is used.
Individual options are described in more detail later in this document.

Options were introduced in version 0.07 and replace earlier mechanisms based on solver-
specific method calls. Those methods are now deprecated and will be removed in a future
release. Users with existing Dimple code using such methods should switch to using options
as soon as it is convenient to do so.

5.4.1 Option Keys

Options are key/value pairs that can be set on Dimple factor graph, variable, or factor
objects to configure their behavior. An option key uniquely identifies an option, along with
its type and default value.

In the MATLAB API, option keys are represented by unique strings of the form ’Option-
Class.optionName’ (a complete list of supported option keys is returned by the dimpleOp-
tions() function). For instance:

graph.setOption(’BPOptions.iterations ’, 12);

Specifying a string that does not correspond to a known option key will result in a runtime
error when key is used to set or look up an option value.30

5.4.2 Setting Options

Options may be set on any FactorGraph, Factor, or Variable object or their solver-specific
counterparts. Options may also be set on the DimpleEnvironment object, which is described
in more detail below. Options set on graphs will be applied to all factors, variables, and
subgraphs contained in the graph unless overridden on one of those members. Likewise
options set on a model object will be applied to an associated Solver object to it unless
overridden directly in the Solver object. In most cases, it should not be necessary to set
options directly on Solver objects.

Options can be set using the setOption method of the Node class. For example:

graph.setOption(’BPOptions.damping ’, .9);

When applied to an array object the option will be set on each. For example:

30Internally option keys are represented using singleton Java objects, which are looked up by the string
keys. If you have a reference to the Java IOptionKey object, you can use it in place of the string throughout
this interface. Consult the Java version of this manual for further details.

154

vars = Real (2,2);

vars.setOption(’BPOptions.damping ’, .9);

In this case, to apply a distinct value to each element of the array, the values are specified
in a cell-array of the same dimensions as the array object:

vars = Real (2,2);

vars.setOption(’BPOptions.damping ’, {.7 .8; .6 .9});

Multiple options may be set at the same time using the setOptions method. This takes
arguments in one of the following forms:

• A comma-separated list containing alternating option keys and values.

nodes.setOptions(’BPOptions.iterations ’, 10, ...

’BPOptions.damping ’ , .9);

• A vector cell array containing alternating option keys and values.

nodes.setOptions ({’BPOptions.iterations ’, 10, ...

’BPOptions.damping ’ , .9});

• A nx2 cell array where each row contains a key and value.

nodes.setOptions ({’BPOptions.iterations ’, 10; ...

’BPOptions.damping ’ , .9});

• A cell array with dimensions matching the dimensions of the left hand side where each
cell contains one of the above two forms.

options = cell (2,2);

options {1,1} = {’BPOptions.iterations ’, 10; ...

’BPOptions.damping ’, .85};

options {2,2} = {’BPOptions.iterations ’, 12};

nodes.setOptions(options);

All of these methods will ensure that the type of the option values are appropriate for that
key and may also validate the value. For instance when setting the BPOptions.damping
option, the value must be a double in the range from 0.0 to 1.0. If a value is not valid for
its key an OptionValidationException will be thrown.

Options may be unset on any object on which they were previously set using the unset
method:

155

graph.unsetOption(’BPOptions.damping ’);

All options may be unset on an object using the clearLocalOptions method:

graph.clearLocalOptions ();

5.4.3 Looking up Option Values

There are a number of methods for retrieving option values from objects on which they can
be set. Most users will only need to use these to debug their option settings.

The option value that applies to a given object is determined hierarchically, based on an
order that depends on the structure of the graph. An option value specified at any level
applies to all objects below it in the hierarchy, unless specifically specified for an object
lower in the hierarchy. At any level, the option value overrides the value specified at a
higher level. When querying an object to determine what option value will be used, the
hierarchy is searched in the following order31:

1. Search the object itself.

2. If the object is a solver object, next look at the corresponding model object.

3. If the object has a parent graph, then recursively search that graph, otherwise the
DimpleEnvironment for that object will be searched (there is usually only one envi-
ronment).

There are two methods for looking up option values:

• getOption(key) - returns the values of the specified option as determined by the above
lookup rules or else the option’s default value if not set. If invoked on an object array
then this will return a cell array containing the values. For example:

>>> graph.getOption(’BPOptions.damping ’)

ans =

0.9000

>>> vars.getOption(’BPOptions.damping ’)

ans =

[0.7000] [0.6000]

[0.8000] [0.9000]

31The algorithm is actually slightly more complicated than this but the details should only matter to those
implementing custom factors or solvers. For details see the documentation for EventSourceIterator in the
HTML Java API documentation.

156

• getLocalOptions() - returns a cell array containing keys and values of options that
are set directly on that object in the same format accepted by the setOptions method
described in the previous section. For example:

>>> graph.getLocalOptions ()

ans =

’BPOptions.damping ’ [0.9000]

’BPOptions.iterations ’ 10

5.4.4 Option Initialization

While option values are visible as soon as they are set on an object, they may not take
effect until later because internal objects that are affected by the change may have cached
state based on the previous settings, or may not yet exist. The documentation for individual
options should indicate when changes to the settings are incorporated, but in most cases that
will happen when the initialize() method is called on the affected object. Since this happens
automatically when invoking the FactorGraph.solve() method, users will often not have to
be concerned with this detail. But if you performing other operations, such as directly calling
FactorGraph.iterate(), then you will probably need to invoke FactorGraph.initialize() for
modified option settings to take effect.

5.4.5 Setting Defaults on the Dimple Environment

Sometimes you may want to apply the same default option settings across multiple graphs.
While you can simply set the options on all of the graphs individually, another choice is
to set it on the DimpleEnvironment object. The DimpleEnvironment holds shared state
for a Dimple session. Typically there will be only one instance of this class. Because the
environment is the last place searched for option lookup, you can use it as a place to set
default values of options to override those defined by the option keys.

You can obtain a reference to the active global environment using the static DimpleEn-
vironment.active() method: and set default option values on it. For instance, to globally
enable multithreading for all graphs, you could write:

env = DimpleEnvironment.active ();

env.setOption(’SolverOptions.enableMultithreading ’, true);

157

5.5 Schedulers

A scheduler defines a rule that determines the update schedule of a factor graph when per-
forming inference. This section describes all of the built-in schedulers available in Dimple.

Each scheduler is applicable only to a certain subset of solvers. For the BP solvers (other
than the Junction Tree solvers, that is, SumProduct, MinSum, and ParticleBP), the follow-
ing schedulers are available:

Name Description

DefaultScheduler Same as the TreeOrFloodingScheduler, which is the default
if no scheduler or custom schedule is specified.

TreeOrFloodingScheduler The solver will use either a Tree Schedule or a Flooding
Schedule depending on whether the factor-graph contains cy-
cles. In a nested graph, this choice is applied independently
in each subgraph. If the factor-graph is a tree, the sched-
uler will automatically detect this and use a Tree Schedule.
In this schedule, each node is updated in an order that will
result in the correct beliefs being computed after just one it-
eration. If the entire graph is a tree, NumIterations should
be set to 1, which is its default value. If the factor-graph
is loopy, the solver will instead use a Flooding Schedule (as
described below).

TreeOrSequentialScheduler The solver will use either a Tree Schedule (as described above)
or a Sequential Schedule (as described below) depending on
whether the factor-graph contains cycles. In a nested graph,
this choice is applied independently in each subgraph.

FloodingScheduler The solver will apply a Flooding Schedule. For each iteration,
all variable nodes are updated, followed by all factor nodes.
Because the graph is bipartite (factor nodes only connect to
variable nodes, and vice versa), the order of update within
each node type does not affect the result.

SequentialScheduler The solver will apply a Sequential Schedule. For each factor
node in the graph, first, for each variable connected to that
factor, the edge connecting the variable to the factor is up-
dated; then the factor node is updated. The specific order
of factors chosen is arbitrary, and depends on the order that
factors were added to the graph.

RandomWithoutReplacementScheduler The solver will apply a Sequential Schedule with the order
of factors chosen randomly without replacement. On each
subsequent iteration, a new random order is chosen. Since
the factor order is chosen randomly with replacement, on
each iteration, each factor will be updated exactly once.

158

RandomWithReplacementScheduler The solver will apply a Sequential Schedule with the order of
factors chosen randomly with replacement. On each subse-
quent iteration, a new random order is chosen. The number
of factors updated per iteration is equal to the total number
of factors in the graph. However, since the factors are cho-
sen randomly with replacement, not all factors are necessarily
updated in a single iteration, and some may be updated more
than once.

For the JunctionTree and JunctionTreeMAP solvers, only a Tree Schedule will be used.
When using these solvers, the Scheduler setting will be ignored.

In a nested graph, for most of the schedulers listed above (except for the random schedulers),
the schedule is applied hierarchically. In particular, a subgraph is treated as a factor in
the nesting level that it appears. When that subgraph is updated, the schedule for the
corresponding subgraph is run in its entirety, updating all factors and variables contained
within according to its specified schedule.

It is possible for subgraphs to be designated to use a schedule different from that of its
parent graph. This can be done by specifying either a scheduler or a custom schedule for
the subgraph prior to adding it to the parent graph. For example:

SubGraph.Scheduler = ’SequentialScheduler ’;

ParentGraph.addFactor(SubGraph , boundaryVariables);

ParentGraph.Scheduler = ’FloodingScheduler ’;

For the TreeOrFloodingScheduler and the TreeOrSequentialScheduler, the choice of schedule
is done independently in the outer graph and in each subgraph. In case that a subgraph is a
tree, the tree scheduler will be applied when updating that subgraph even if the parent graph
is loopy. This structure can improve the performance of belief propagation by ensuring that
the effect of variables at the boundary of the subgraph fully propagates to all other variables
in the subgraph on each iteration.

For the RandomWithoutReplacementScheduler and RandomWithReplacementScheduler, if
these are applied to a graph or subgraph, the hierarchy of any lower nesting layers is ignored.
That is, the subgraphs below are essentially flattened prior to schedule creation, and any
schedulers or custom schedules specified in lower layers of the hierarchy are ignored.

Because of the differences in operation between the Gibbs solver and the BP based solvers,
the Gibbs solver supports a distinct set of schedulers. For the Gibbs solver, the following
schedulers are available:

159

Name Description

GibbsDefaultScheduler Same as the GibbsSequentialScanScheduler, which is the de-
fault when using the Gibbs solver.

GibbsSequentialScanScheduler The solver will apply a Sequential Scan Schedule. For each
scan, each variable is resampled in a fixed order. The specific
order of variables chosen is arbitrary, and depends on the
order that variables were added to the graph.

GibbsRandomScanScheduler The solver will apply a Random Scan Schedule. Each suc-
cessive variable to be resampled is chosen randomly with re-
placement. The number of variables resampled per scan is
equal to the total number of variables in the graph, but not
all variables are necessarily resampled in a given scan, and
some may be resampled more than once.

Because of the nature of the Gibbs solver, the nested structure of a graph is ignored in
creating the schedule. That is, the graph hierarchy is essentially flattened prior to schedule
creation, and only the scheduler specified on the outermost graph is applied.

Schedulers are not applicable in the case of the LP solver.

160

5.6 Solvers

5.6.1 Solver-Specific Options

Each solver supports a number of options specific to that solver. These are described
in the following sections. Solver-specific options may be used to configure how overall
inference works for that solver or may be used to configure the behavior of individual
factors or variables for that solver. Solver-specific options are typically set on the applicable
model object (factor graph, factor, or variable) and the values will be observed and used to
configure the corresponding solver objects:

model-object .setOption(’SolverOptionClass.optionName ’, option-value)

Solver-specific options may be set at any time, even before the solver for a graph has been
specified. Options that are not applicable to the object on which it is set or that are not
applicable to the active solver will simply be ignored. For more details on the options
mechanism see subsection 5.4 of this document.

5.6.2 Solver-Specific Methods

Each solver also may support solver-specific methods, which are described in the following
sections. As with options, solver-specific methods may be available for various objects: a
factor-graph, variable, or factor. In each case, to call a solver-specific method, the method
is applied to the solver object, returned by the Solver property. For example:

factorGraph.Solver.solverSpecificMethod (arguments);

variable.Solver.solverSpecificMethod (arguments);

factor.Solver.solverSpecificMethod (arguments);

Some solver-specific methods return results, while others do not. Some solver-specific meth-
ods require arguments, while others do not. If no arguments are needed, the parentheses
are optional.

In some cases it is convenient to call solver-specific methods on each element in an array of
objects. Utility methods are provided for this purpose. Specifically, to call a solver-specific
method that has no return value:

objectArray.invokeSolverSpecificMethod(’methodName ’, arguments);

161

In this case, ’methodName’ is a text string with the name of the solver-specific method,
and arguments is an optional comma-separated list of arguments to that method.

To call a solver specific method that has a return value:

returnArray = objectArray.invokeSolverSpecificMethodWithReturnValue(’

methodName ’, arguments);

In this case, returnArray is a cell-array of the return values of the method, with dimensions
equal to the dimensions of the object array.

5.6.3 Common Options

A few options are applicable to multiple solvers and are therefore described in this subsec-
tion.

5.6.3.1 SolverOptions.enableMultithreading

Type boolean
Default false
Affects graph

Description Controls whether to use multithreading for this solver. Multithreading is
currently only supported by the MinSum and SumProduct solvers but will
eventually be implemented in others. This value will be ignored if not ap-
plicable.

5.6.3.2 DimpleOptions.randomSeed

Type 64-bit integer
Default N/A
Affects graph

Description When set, this option specifies a random seed that may be used by solvers
that use a random number generator. The seed will only be used if explic-
itly set; the default value is not used. This can be used to ensure repeatable
behavior during testing or profiling but should not be used for normal oper-
ation.

5.6.4 Common Methods

There are also some methods that are common to all solvers. These are:

162

5.6.4.1 getMultithreadingManager

Dimple users can retrieve a MultithreadingManager on which to perform additional actions.

fg.Solver.getMultithreadingManager ()

Users can configure both the multithreading mode and the number of workers using the
MultithreadingManager.

5.6.4.1.1 Multithreading Modes Dimple provides various multithreading algorithms
that have different speed advantages depending on the size of the user’s graph and FactorTa-
bles. In the future Dimple should be modified to automatically detect the best threading
algorithm. Currently, however, it defaults to the ”Phase” multithreading mode and requires
the user manually set the mode to change this. For a given graph, users can try both modes
and see which is faster.

The currently supported multithreading modes are:

• Phase - Divides the schedule into ”phases” where each phase contains schedule entries
that are entirely independent of one another. These phases are then easy to parallelize.

• SingleQueue - Uses a single queue and a dependency graph to pull off work for each
thread on the fly.

The following methods can be used for getting and setting modes:

• fg.Solver.getMultithreadingManager().getModes() - Returns a Java array of enums
specifying the valid modes.

• fg.Solver.getMultithreadingManager().setMode(ModeName) - Allows users to set the
mode by string. Currently ”Phase” or ”SingleQueue” will work.

• fg.Solver.getMultithreadingManager().setMode(enum) - Allows users to set the mode
by the enums returned by the getModes method.

5.6.4.1.2 Setting Number of Threads and Workers Dimple provides a Threading-
Pool as a singleton for multithreading. It sets the number of threads in this pool to the
number of virtual cores in the user’s machine by default. Users can override this default
value. In addition, Dimple allows users to specify the number of ”workers” for a given
FactorGraph. This ”NumWorkers” is also set to the number of virtual cores on the user’s
machine by default. Whereas NumThreads specifies how many threads are in the thread-
Pool, NumWorkers specifies how work is divided up across the graph. These workers are
run by the thread pool. Best performance is achieved when NumWorkers and NumThreads

163

are the same. However, NumThreads is global and shared by all graphs where NumWorkers
is specific to a given FactorGraph.

The following methods can be used to change number of workers:

• fg.Solver.getMultithreadingManager().getNumWorkers()

• fg.Solver.getMultithreadingManager().setNumWorkers(num)

• fg.Solver.getMultithreadingManager().setNumWorkersToDefault()

The following global methods can be used to set the number of threads in the ThreadPool

• getDimpleNumThreads()

• setDimpleNumThreads(numThreads)

• setDimpleNumThreadsToDefault()

164

5.6.5 Common Belief Propagation Options

There are a number of options that are applicable to multiple solvers that are based on
some form of message-passing belief propagation. These include the Sum-Product, Min-
Sum, Particle BP, and Junction Tree solvers. These options are defined in the BPOptions
class. The following options are supported:

5.6.5.1 BPOptions.iterations

Type integer
Default 1
Affects graph

Description Controls how many iterations to perform when running solve(). This is
not applicable to all solvers. It is currently only used by the SumProduct,
MinSum and ParticleBP solvers. It only makes sense to set this to a value
greater than one if the graph is not singly connected or ”loopy”, that is when
there is more than one unique path between two or more nodes in the graph.
You can tell if a graph is loopy using the FactorGraph method isForest(),
which will be false if the graph is not singly connected.

5.6.5.2 BPOptions.damping

Type double
Default 0.0
Affects variables and factors

Description The belief propogation based solvers supports damping, in which mes-
sages are damped by replacing each message by a weighted sum of
the computed message value and the previous value of that mes-
sage (when the corresponding edge was most-recently updated). In
the current version of Dimple, damping is supported only in dis-
crete variables and factors that connect only to discrete variables32.

The damping parameter specifies a weighting value in the range 0
through 1:

message = computedMessage · (1−D) + previousMessage ·D

where D is the damping value. So that a value of 0 means that the
previous message will not be considered, effectively turning off damping.

This option applies the same damping parameter to all edges connected
to the variable or factor on which it is set. If you want different values
for different edges, you need to use the BPOptions.nodeSpecificDamping
option.

165

5.6.5.3 BPOptions.nodeSpecificDamping

Type double vector
Default empty
Affects variables and factors

Description This is the similar to the BPOptions.damping option but allows you
specify different weights for different edges. Unlike the simple damping
option, this usually makes no sense to set on the graph itself since factors
and variables will typically have different numbers and arrangements of
edges. The value must either be an empty list, indicating that damping
should be turned off, or a list of weights with the same length as the
number of siblings of the affected variable and factor. The damping
weights will be applied in the order in which the siblings are declared.

This option takes precedence over the simple damping option if both
are specified for the same node.

5.6.5.4 BPOptions.maxMessageSize

Type integer
Default integer max
Affects discrete factors

Description This specifies the maximum size of the outgoing messages on the discrete
factors on which it is set. If this number K is less than the full size of
the message (i.e. the size of the domain of the target variable), then
only the K-best values – those with the largest weights – will be included
in the message. This can results in a faster but more approximate form
of inference and is most suited to graphs with very large-dimension variables.

IMPORTANT: k-best and damping are not compatible with each other33

5.6.5.5 BPOptions.updateApproach

166

Type string
Default AUTOMATIC
Affects discrete factors

Description This option controls which update algorithm is applied to discrete factors.
The option can take one of three values:

• NORMAL - Perform updates using just the factor tables. Do not use
the optimized update technique.

• OPTIMIZED - Use the optimized update algorithm. Note that factors
that have only one edge, or factors that do not have all of their edges
updated simultaneously by the schedule, ignore this setting and use
the normal approach.

• AUTOMATIC - Automatically determine whether to use the opti-
mized algorithm. The automatic selection algorithm can be tuned
through the BPOptions.automaticExecutionTimeScalingFactor and
BPOptions.automaticMemoryAllocationScalingFactor options.

5.6.5.6 BPOptions.automaticExecutionTimeScalingFactor

Type double
Default 1.0
Affects discrete factors

Description This option is an execution time scaling factor used when the BPOp-
tions.updateApproach option is set to AUTOMATIC. It controls how ex-
ecution time costs are weighed. The value must be a positive number.

5.6.5.7 BPOptions.automaticMemoryAllocationScalingFactor

Type double
Default 10.0
Affects discrete factors

Description This option is an memory allocation scaling factor used when the BPOp-
tions.updateApproach option is set to AUTOMATIC. It controls how mem-
ory allocation costs are weighed. The value must be a positive number.

5.6.5.8 BPOptions.optimizedUpdateSparseThreshold

167

Type double
Default 1.0
Affects discrete factors

Description This option controls the representation of the auxiliary tables used by
the optimized update algorithm, which is controlled through the BPOp-
tions.updateApproach. Internally, the optimized algorithm creates multiple
factor tables to perform the update. This option specifies a density, below
which an auxiliary table uses a sparse representation. It must be a number in
the range [0.0, 1.0]. The value 1.0 (the default), indicates that a sparse repre-
sentation should be used if there are any zero-entries in the table. The value
0.0 will prevent the sparse representation from being used entirely. Sparse
tables typically decrease execution time, but they use more memory. When
the update approach is set to AUTOMATIC, this option impacts both the
execution time and memory allocation estimates used to choose the update
approach.

168

5.6.6 Sum-Product Solver

Use of the sum-product solver is specified by calling:

fg.Solver = ’SumProduct ’;

If no solver is specified, the SumProduct solver is used by default.

The SumProduct solver supports both discrete and continuous variables. The SumProduct
solver uses the sum-product form of belief propagation to perform inference on a graph. For
discrete variables, each message to or from a factor is in the form of a vector of length equal
to the domain size of the variable. For continuous variables, messages are represented using
a Gaussian parameterization. In some cases, this is an approximation to the exact message.
For Real variables, a message is in the form of a pair of values representing the mean and
variance of the corresponding Normal distribution. For Complex and RealJoint variables,
a message is in the form of a vector and matrix, representing the mean and covariance of
the corresponding multivariate Normal distribution.

While the Gaussian representation of messages for continuous variables is sometimes an
approximation, there are some specific built-in factors for which exact Gaussian messages are
computed. This can be done when a factor preserves the Gaussian form of the distribution
on each edge. The following table is a list of such lists built-in factors. See section 5.9 for
more information on built-in factors.

Built-in Factor Variable Types Notes

Normal Real Applies only if mean and precision param-
eters are constants and all connected vari-
ables are Real and unbounded34.

MultivariateNormal Complex or
RealJoint

All connected variables must be RealJoint
or Complex and unbounded.

Sum Real All connected variables must be Real and
unbounded.

Subtract Real All connected variables must be Real and
unbounded.

Negate Real All connected variables must be Real and
unbounded.

ComplexSum Complex All connected variables must be Complex
and unbounded.

ComplexSubtract Complex All connected variables must be Complex
and unbounded.

ComplexNegate Complex All connected variables must be Complex
and unbounded.

RealJointSum RealJoint All connected variables must be RealJoint
of the same dimension and unbounded.

RealJointSubtract RealJoint All connected variables must be RealJoint
of the same dimension and unbounded.

34Unbounded means that the domain of the variable must not have finite upper or lower bounds

169

Built-in Factor Variable Types Notes

RealJointNegate RealJoint All connected variables must be RealJoint
of the same dimension and unbounded.

Product Real, Constant Applies only if the product is one un-
bounded Real variable times one scalar
constant to produce an unbounded Real
variable.

MatrixRealJoint
VectorProduct

RealJoint,
Constant

Applies only if the product is one un-
bounded RealJoint variable times a con-
stant matrix to produce an unbounded
RealJoint variable.

LinearEquation Real Linear equation. All connected variables
must be Real and unbounded.

For factors that are neither discrete-only or listed in the above table, an approximate com-
putation is used in computing messages from such a factor. This includes any factor that
connects to both discrete and continuous variables as well as factors that connect only to
continuous variables but do not appear in the list above. The approximate method is sample
based and uses Gibbs sampling to sample from the factor, allowing approximate messages
to be computed from the sample statistics. Several methods described below allow control
over the behavior of these sampled factors.

For discrete-only factors, two factor update algorithms are available: normal and optimized.
The optimized algorithm can be applied only to factors with more than one edge, and
only when the schedule updates all of the factor’s edges simultaneously. The optimized
algorithm computes the outbound message update with fewer operations than the normal
algorithm, which can decrease execution time; however, it also uses more memory and
increases initialization time. Several options, described below, influence which algorithm
is used. Key among them is the updateApproach option, which can be set to normal,
optimized, or automatic. When set to automatic, Dimple makes an estimate of the memory
usage and execution time of each algorithm in order to select one.

5.6.6.1 GibbsOptions for Sampled Factors

Factors connected to continuous variables that do not support exact message computation,
instead use a sampled approximation (see section 5.6.6) where the sampling is performed
using the Gibbs solver.

For all such factors in a graph, you may set any of the Gibbs solver options described in
paragraph 5.6.9.1 to control how the sampling will be done. The most important of these
options have different default values when used with Sum-Product. This is accomplished by
setting the options on the solver graph object when it is constructed. In order to override
these defaults, it is necessary to set them on the solver graph (to apply to all such factors,
using graph.Solver.setOption(...)), or on the factor specific factor object (to apply to
a single factor, using factor.setOption(...)).

170

These options and their SumProduct-specific default values are:

• GibbsOptions.numSamples: 1000

• GibbsOptions.burnInScans: 10

• GibbsOptions.scansPerSample: 1

171

5.6.7 Min-Sum Solver

Use of the MinSum solver is specified by calling:

fg.Solver = ’MinSum ’;

Unlike the Sum-Product solver, the Min-Sum solver supports only discrete variables. It
only uses the standard BP Options described in Common Belief Propagation Options.

172

5.6.8 Junction Tree Solver

There are two distinct forms of Junction Tree solver in Dimple: the sum-product form used
for computing exact marginal variable beliefs and the min-sum form used for computing
MAP values. The Junction Tree solvers support only discrete variables.

Use of one of the two forms of Junction Tree solver by calling either:

fg.Solver = ’JunctionTree ’;

for the sum-product version or

fg.Solver = ’JunctionTreeMAP ’;

for the min-sum version.

The Junction Tree solvers are useful for performing exact inference on loopy discrete graph-
ical models for which the standard sum-product or min-sum algorithms will only produce
approximate results. This works by transforming the model into a corresponding non-loopy
model, building a proxy solver layer that connects the original model to the transformed
version and doing inference on that model. If your model already is non-loopy then you can
simply use sum-product or min-sum directly for exact inference. To test to see if a graph
is loopy or not, use isForest():

useJunctionTree = ~fg.isForest ();

One significant limitation when using this solver is that the cost of inference and amount
of memory needed to store the factor tables is proportional to the size of the tables, which
in turn is exponential in the number of variables represented in a table. The Junction Tree
algorithm may be unable to determine an equivalent tree structure that has small enough
factors either to fit in memory or to perform inference on in an acceptable amount of time.
The typical failure mode in such cases is to get an OutOfMemoryError when attempting
to run solve. The Junction Tree algorithm works best when used with smaller graphs or
larger graphs that have few loops or are loopy but long and narrow.

5.6.8.1 Junction Tree Options

The following options are available for use with both versions of the Junction Tree solver.

Because exact inference can be done in a single iteration, the Junction Tree solver fixes the
number of iterations to one and will ignore attempts to set it to another value. Because
damping would result in inexact inference, the Junction Tree solver does not provide options
for using damping.

173

5.6.8.1.1 JunctionTreeOptions.useConditioning

Type boolean
Default false
Affects graph

Description Specifies whether to use conditioning when constructing the transformation
of the model. When true, then any variables in the model that have a fixed
value will be disconnected from the rest of the graph in the transformed
version and its value will be incorporated in the factors of the transformed
model. This will produce a more efficient transformed model when there
are fixed values in the original model. Using this will require that a new
transformation be computed every time a fixed value changes.

5.6.8.1.2 JunctionTreeOptions.maxTransformationAttempts

Type integer
Default 1
Affects graph

Description Specifies the maximum number of times the junction tree transformer should
try to determine an optimal transformation. Each attempt uses a greedy
”variable elimination” algorithm using a randomly chosen cost function and
random choices to break ties, so more iterations could produce a more effi-
cient tree transformation.

174

5.6.9 Gibbs Solver

Use of the Gibbs solver is specified by calling:

fg.Solver = ’Gibbs ’;

The Gibbs solver supports both discrete and continuous variables.

This solver performs Gibbs sampling on a factor graph. It supports a variety of output in-
formation on the sampled graph, including the best joint sample (lowest energy), marginals
of each variable (discrete variables only), and a full set of samples for a user-selected set
of variables. The solver supports both sequential and randomized scan, and it supports
tempering with an exponential annealing schedule.

The Gibbs solver supports several user selectable generic samplers (those that don’t require
specific conjugacy relationships). The following table lists the available generic samplers,
and the variable types supported by each.

Sampler Variable Type Description

CDFSampler Discrete35 Samples from the full conditional distribution
of the variable. This is the default sampler for
discrete variables.

SliceSampler Real36 Slice sampler using the doubling procedure. See
Neal, Slice Sampling (2000). This is the default
sampler for real variables.

MHSampler Discrete & Real Metropolis-Hastings sampler. For discrete vari-
ables, the default proposal kernel is uniform over
values other than the current value. For real
variables, the default proposal kernel is Normal
with standard deviation 1 (the standard devia-
tion is user settable). Alternate proposal kernels
are also available (see below).

SuwaTodoSampler Discrete Suwa-Todo sampler. See Suwa, Todo, Markov
Chain Monte Carlo Method without Detailed
Balance (2010).

BlockMHSampler Discrete & Real Block Metropolis-Hastings sampler. Allows
block proposals for a collection of more than
one variable at a time. In the current version
of Dimple, there are no built-in general purpose
block proposal kernels. To use this sampler, a
custom block proposal kernel must be written
in Java, and used by specifying a block schedule
entry that references this proposal kernel. See
section 5.6.9.8.1 for more information.

35In this table, Discrete support implies any of the discrete variable types, including Discrete and Bit.
36In this table, Real support implies any of the continuous variable data types, including Real, Complex,

and RealJoint.

175

In cases where the factors of the graph support a conjugate distribution, the solver will
automatically determine this and use the appropriate conjugate sampler. The following
table lists the supported conjugate samplers and the corresponding factors that support
them. The corresponding sampler will be used for a given variable if all of the edges
connected to that variable support the same sampler37.

Sampler Built-in Factor Edge

BetaSampler Beta value
Binomial ρ

DirichletSampler Dirichlet value
Categorical α
DiscreteTransition α

GammaSampler Gamma value, β
NegativeExpGamma β
Normal τ
LogNormal τ
Poisson λ
CategoricalUnnormalizedParameters α
DiscreteTransitionUnnormalizedParameters α

NegativeExpGammaSampler NegativeExpGamma value
CategoricalEnergyParameters α
DiscreteTransitionEnergyParameters α

NormalSampler Normal value, µ
LogNormal µ

Additionally, conjugate sampling is supported across a subset of applicable deterministic
functions. In the current version of Dimple, this includes the following factors:

Factor Function Edges Condition

Multiplexer in, out If any of the in variables would support the same con-
jugate sampler as the out variable, then those in vari-
ables will use conjugate sampling.

The Gibbs solver automatically performs block-Gibbs updates for variables that are de-
terministically related. The Gibbs solver automatically detects deterministic relationships
associated with built-in deterministic factor functions (see section 5.9 for a list of these
functions).

For user-defined factors specified by MATLAB factor functions or factor tables, the Gibbs
solver will detect if they are deterministic functions as along as the factor is marked as the di-
rected outputs are indicated using the DirectedTo property, as described in section 5.3.1.1.3.

The Gibbs solver also automatically performs block-Gibbs updates for certain built-in fac-
tors that Gibbs sampling on individual variables would fail due to the dependencies between
variables imposed by the factor. In these cases, a custom proposal distribution ensures that

37Additionally, for the conjugate sampler to be used, the domain of the variable must not be bounded to
a range smaller than the natural range of the corresponding distribution.

176

proposals are consistent with the constraints of the factor. However, the custom proposals
are not assured to result in efficient mixing. In the current version of Dimple, the following
built-in factors automatically implement block-Gibbs updates:

• Multinomial

• MultinomialUnnormalizedParameters

• MultinomialEnergyParameters

Most Dimple methods work more-or-less as normal when using the Gibbs solver, but in
some cases the interpretation is slightly different than for other solvers. For example, the
.Belief method for a discrete variable returns an estimate of the belief based on averaging
over the sample values.

NOTE: The setNumIterations() method is not supported by the Gibbs solver as the term
“iteration” is ambiguous in this case. Instead, the method setNumSamples() should be used
to set the length of the run. The Solver.iterate() method performs a single-variable update
in the case of the Gibbs solver, rather than an entire scan of all variables.

The following sections list the solver-specific aspects of the API for the Gibbs solver.

5.6.9.1 Gibbs Options

The following options affect the behavior of various aspects of the Gibbs solver:

5.6.9.1.1 GibbsOptions.numSamples

Type integer
Default 1
Affects graph

Description Specifies the number of samples to be generated when solving the graph post
burn-in. (This value times the value of GibbsOptions.numRandomRestarts
plus one determines the total number of samples that will be produced.)

5.6.9.1.2 GibbsOptions.scansPerSample

Type integer
Default 0
Affects graph

Description Specifies sampling rate in terms of the number of scans38 of the graph to
perform for each sample.

177

5.6.9.1.3 GibbsOptions.burnInScans

Type integer
Default 0
Affects graph

Description Specifies the number of scans of the graph to perform during the burn-in
phase before generating samples.

5.6.9.1.4 GibbsOptions.numRandomRestarts

Type integer
Default 0
Affects graph

Description Specifies the number of random restarts (zero by default, which means run
once and don’t restart). For a value greater than zero, the after running the
specified number of samples, the solver is restarted with the variable values
randomized, and re-run (including burn-in). The sample values (the best
sample value, or all samples, if requested) are extracted across all runs.

5.6.9.1.5 GibbsOptions.saveAllSamples

Type boolean
Default false
Affects graph

Description Specifies whether to save all sample values for variables when running Gibbs.
Note that this is practical only if the number of variables in the graph times
the number of samples per variable is reasonably sized.

5.6.9.1.6 GibbsOptions.saveAllScores

Type boolean
Default false
Affects graph

Description Specifies whether to save scores for all generated samples in Gibbs. If true,
then for each sample the total energy/log-likelihood a.k.a. score of the graph
will be saved. The saved scores can later be retrieved by the getAllScores()
method described below.

5.6.9.1.7 GibbsOptions.discreteSampler

178

Type string
Default CDFSampler
Affects variables

Description Specifies the default sampler to use for discrete variables when a conjugate
sampler is not suitable. The sampler may be configured by use of additional
options defined by each sampler type. See subsubsection 5.6.13 for more
details.

5.6.9.1.8 GibbsOptions.realSampler

Type string
Default SliceSampler
Affects variables

Description Specifies the default sampler to use for real-valued variables (including Com-
plex and RealJoint) when a conjugate sampler is not suitable. The sampler
may be configured by use of additional options defined by each sampler type.
See subsubsection 5.6.13 for more details.

5.6.9.1.9 GibbsOptions.enableAutomaticConjugateSampling

Type boolean
Default true
Affects variables

Description Specifies whether to use conjugate sampling when available for a given vari-
able. Note that if a specific sampler has been specified for a particular
variable (by setting the GibbsOptions.realSampler option directly on the
model or solver variable object) then a conjugate sampler will not be used
regardless.

5.6.9.1.10 GibbsOptions.computeRealJointBeliefMoments

Type boolean
Default false
Affects variables

Description Specifies whether to compute the belief moments (mean vector and covari-
ance matrix) for RealJoint (and Complex) variables while sampling. To
minimize computation, these are not computed by default for RealJoint vari-
ables (Real variables always compute similar statistics, and do not have a
corresponding option to enable them). If true, the belief moments are com-
puted for each sample on-the-fly (without saving all samples). The computed
moments can later be retrieved by the getSampleMean and getSampleCo-
variance solver-specific methods for the variable (see section 5.6.9.6)

179

5.6.9.1.11 GibbsOptions.enableAnnealing

Type boolean
Default false
Affects graph

Description Specifies whether to use a tempering and annealing process when running
Gibbs.

5.6.9.1.12 GibbsOptions.annealingHalfLife

Type double
Default 1.0
Affects graph

Description Specifies the rate at which the temperature will be lowered during the tem-
pering and annealing process. This rate is specified in terms of the number
of samples required for the temperature to be lowered by half. This value is
only used if annealing has been enabled as specified by the enableAnnealing
option.

5.6.9.1.13 GibbsOptions.initialTemperature

Type double
Default 1.0
Affects graph

Description Specifies the initial temperature to use when annealing is enabled (as speci-
fied by the enableAnnealing option).

5.6.9.2 Graph Methods

The following methods are available on a graph set to use the Gibbs solver:

Variable initialization (both on the first run and subsequent restarts) is randomized when-
ever possible. For a discrete variable, the value is sampled from the Input (uniform if an
input is not specified). For a real variable, if an Input is specified and the Input supports
one of the conjugate samplers listed above, that sampler is used to initialize the variable.
If bounds are also specified for the variable domain, the values is truncated to fall within
the bounds. If only bounds are specified (which are finite above and below), then the value
is uniformly sampled from within the bounds. If no finite bounds are specified and there is
no input, the variable is initialized to zero (or the value specified by setInitialSampleValue)
on the initial run, and left at the final value of the previous run on restart.

Enable or disable the use of tempering, or determine if tempering is in use.

180

graph.Solver.setTemperature(T);

graph.Solver.getTemperature ();

Set/get the current temperature. Setting the current temperature overrides the current
annealing temperature.

graph.Solver.getAllScores ();

Returns an array including the score value for each sample. This method only returns a
non-empty value if the GibbsOptions.saveAllScores option was set to true on the graph
before generating samples.

graph.Solver.getTotalPotential ();

After running the solver, returns the total potential (score) over all factors of the graph
(including input priors on variables) given the most recent sample values.

graph.Solver.sample(numSamples)

This method runs a specified number of samples without re-initializing, burn-in, or random-
restarts (this is distinct from iterate(), which runs a specified number of single-variable
updates). Before running this method for the first time, the graph must be initialized using
the initialize() method.

graph.Solver.burnIn ()

Run the burn-in samples independently of using solve (which automatically runs the burn-in
samples). This may be run before using sample() or iterate().

graph.Solver.getRejectionRate ()

Get the overall rejection rate over the entire graph. The rejection rate is the ratio of the
number of MCMC proposals that were rejected to the total number of sampler updates.
Rejections only occur in MCMC samplers, such as the MHSampler. In other samplers,
such as conjugate samplers or the CDFSampler, rejection doesn’t occur and the rate for
variables that use these samplers is zero (in these cases, sampling the same value twice in a
row is not considered rejection). When getting the rejection rate for the entire graph, both
the number of rejections and number of updates is counted for all variables, as well as all
blocks of variables over which a block sampler is used. These counts are accumulated from
the time the graph is initialized, which automatically occurs when running solve(). This

181

includes both burn-in and subsequent sampling. These counts can also be reset explicitly
using the resetRejectionRateStats method (see below), which allows these values to be
determined, for example, during a specific set of samples.

graph.Solver.resetRejectionRateStats ()

Explicitly reset the rejection-rate statistics. These are automatically reset when the graph
is initialized, which automatically occurs when running solve(), but may be reset manually
at other times using this method.

5.6.9.3 Variable Methods

variable.Solver.getCurrentSample ();

Returns the current sample value for a variable.

variable.Solver.getAllSamples ();

Returns an array including all sample values seen so far for a variable. Over multiple
variables, samples with the same index correspond to the same joint sample value. This
method only returns a non-empty value if the GibbsOptions.saveAllSamples options was
enabled for the variable when sampling was performed.

variable.Solver.getBestSample ();

Returns the value of the best sample value seen so far, where best is defined as the sample
with the minimum total potential over the graph (sum of -log of the factor values and input
priors). When getting the best sample from multiple variables, they all correspond to the
same sample in time, thus should be a valid sample from the joint distribution.

variable.Solver.setInitialSampleValue(initialSampleValue)

variable.Solver.getInitialSampleValue ()

Set/get the initial sample value to be used as the starting value for this variable. This
value is used only on the first run (not subsequent restarts). Setting this value overrides
any randomization of the starting value on the first run.

variable.Solver.setSampler(samplerName);

variable.Solver.getSampler ();

variable.Solver.getSamplerName ();

182

Set/get the sampler to be used for this variable. Setting the sampler for a given variable
overrides the default sampler for the given variable type, and also overrides any conjugate
sampler that might otherwise be used. Using this method the sampler may be set only to
one of the generic samplers appropriate for the given variable type.

The getSampler method returns the sampler object, while the getSamplerName method
returns a string indicating the name of the sampler being used for this variable. Automatic
assignment of a conjugate sampler is done at graph initialization time, so in order to deter-
mine what sampler will actually be used, these methods must be called either after a call
to the graph initialize method, or after running the solver.

variable.Solver.getRejectionRate ()

Get the rejection rate for the sampler used for a specific variable. The rejection rate is the
ratio of the number of MCMC proposals that were rejected to the total number of sampler
updates. Rejections only occur in MCMC samplers, such as the MHSampler. In other
samplers, such as conjugate samplers or the CDFSampler, rejection doesn’t occur and the
rate for variables that use these samplers is zero (in these cases, sampling the same value
twice in a row is not considered rejection). These counts are accumulated from the time
the graph is initialized, which automatically occurs when running solve(). This includes
both burn-in and subsequent sampling. These counts can also be reset explicitly using the
resetRejectionRateStats method (see below), which allows these values to be determined,
for example, during a specific set of samples.

variable.Solver.getNumScoresPerUpdate ()

Returns the average number of score computations performed per update when sampling
from this variable. Use of an MCMC sampler requires computation of the score (energy) for
specific settings of the variables. For some samplers, such as the slice sampler, the number
of times the score is computed varies, and depends on the particular values and the form of
the distribution. The returned value indicates the average number of times the score has
been computed. If a non-MCMC-based sampler is used, the returned value will be zero.
The count is accumulated from the time the graph is initialized, which automatically occurs
when running solve(). This includes both burn-in and subsequent sampling. The count can
also be reset explicitly using the resetRejectionRateStats method (see below), which allows
this value to be determined, for example, during a specific set of samples.

variable.Solver.resetRejectionRateStats ()

Explicitly reset the rejection-rate statistics for a specific variable (the statistics for comput-
ing the rejection rate as well as the number of scores per update). These are automatically
reset when the graph is initialized, which automatically occurs when running solve(), but
may be reset manually at other times using this method.

183

5.6.9.4 Discrete-Variable-Specific Methods

The following methods apply only to Discrete, Bit, and FiniteField variables when using
the Gibbs solver.

variable.Solver.getSampleIndex;

Returns the index of the current sample for a variable, where the index refers to the index
into the domain of the variable.

variable.Solver.getAllSampleIndices;

Returns an array including the indices of all samples seen so far for a variable.

variable.Solver.getBestSampleIndex;

Returns the index of the best sample seen so far.

variable.Solver.setInitialSampleIndex(initialSampleIndex)

variable.Solver.getInitialSampleIndex ()

Set/get the initial sample index associated with the starting value for this variable. The
value associated with this index is used only on the first run (not subsequent restarts).
Setting this index overrides any randomization of the starting value on the first run.

5.6.9.5 Real-Variable-Specific Methods

The following methods apply only to Real variables when using the Gibbs solver.

variable.Solver.getSampleMean;

Returns the mean value of all samples that have been collected. This is and estimate of the
mean of the belief for the corresponding variable.

variable.Solver.getSampleVariance;

Returns the variance of all samples that have been collected. This is and estimate of the
variance of the belief for the corresponding variable.

184

5.6.9.6 RealJoint-Variable-Specific Methods

The following methods apply only to RealJoint and Complex variables when using the Gibbs
solver.

variable.Solver.getSampleMean;

Returns the mean vector of all samples that have been collected. This is and estimate of
the mean of the belief for the corresponding variable. This method is only available if, prior
to performing inference, the option GibbsOptions.computeRealJointBeliefMoments is set to
true.

variable.Solver.getSampleCovariance;

Returns the covariance matrix computed over all samples that have been collected. This
is and estimate of the covariance of the belief for the corresponding variable. This method is
only available if, prior to performing inference, the option GibbsOptions.computeRealJointBeliefMoments
is set to true.

5.6.9.7 Factor Methods

factor.Solver.getPotential ();

Returns the potential value of a factor given the current values of its connected variables.

factor.Solver.getPotential(values);

Get the potential value of a factor given the variable values specified by the argument vector.
The argument must be a vector with length equal to the number of connected variables.
For a table-factor (connected exclusively to discrete variables), each value corresponds the
index into the domain list for that variable (not the value of the variable itself). For a
real-factor (connected to one or more real variables), each value corresponds to the value of
the variable.

5.6.9.8 Schedulers and Schedules

The built-in schedulers designed for belief propagation are not appropriate for the Gibbs
solver. Instead, there are two built-in schedulers specifically for the Gibbs solver:

185

• GibbsSequentialScanScheduler

• GibbsRandomScanScheduler

The GibbsSequentialScanScheduler chooses the next variable for updating in a fixed order.
It updates all variables in the graph, completing an entire scan, before repeating the same
fixed order. (In Gibbs literature this seems to be known as a sequential-scan, systematic-
scan, or fixed-scan schedule.)

The GibbsRandomScanScheduler randomly selects a variable for each update (with replace-
ment).

The default scheduler when using the Gibbs solver is the GibbsSequentialScanScheduler,
which is used if no scheduler is explicitly specified.

The user may specify a custom schedule when using the Gibbs solver. In this case, the
schedule should include only Variable node updates (not specific edges), and no Factor
updates (any Factor updates specified will be ignored).

To explicitly specify a scheduler, use the Scheduler or Schedule property of the FactorGraph
(see sections 5.1.2.2 and 5.1.2.3).

5.6.9.8.1 Block Schedule Entries

The Gibbs solver allows a schedule to optionally include block entries that allow a group of
variables to be updated at once. A block schedule entry can either be included in a custom
schedule or added to the schedule produced by one of the Gibbs-specific built-in schedulers.
A block schedule entry includes two pieces of information:

• A reference to a block sampler, which is used to perform the update

• A list of variables to be included in this block

In the current version of Dimple, the only built-in block sampler is the BlockMHSampler,
which implements block Metropolis-Hastings sampling for the variables included in the
block. The BlockMHSampler requires a block proposal kernel to be specified. In the
current version of Dimple, there are no built-in general purpose block proposal kernels. To
use this sampler, a custom block proposal kernel must be written in Java (see section B.2).

To specify a block schedule entry in a custom schedule, the schedule entry consists of a
cell-array in which the first element of the cell is a reference to a Java sampler object, and
the subsequent entries are the variables to be included in the block. For example:

import com.analog.lyric.dimple.solvers.gibbs.samplers.block.BlockMHSampler;

...

fg.Schedule = {{ BlockMHSampler(MyProposalKernel), a, b, c}, d, e};

186

In the above example, we create a block schedule entry that updates variables a, b, and
c together, with separate schedule entries for variables d and e. The constructor for the
BlockMHSampler requires a proposal kernel. In the above example, “MyProposalKernel”
is a user-provided custom proposal class written in Java. (Note that the “import” line in
the above example is simply to avoid having to write the fully qualified name each time the
BlockMHSampler is used.)

Block schedule entries can also be used with either of the Gibbs-specific built-in schedulers
described above. When a block entry is added in this way, for each of the variables included
in a block entry, the individual variable entries that would have been present in the schedule
are removed. That is, those variables are only included in the corresponding block entry (or
entries) and are not also updated independently. In case of the GibbsRandomScanScheduler,
each update selects an entry randomly from among all blocks plus all variables that are not
in a block.

A block schedule entry can be added when using a built-in Gibbs-specific scheduler using:

fg.Scheduler.addBlockScheduleEntry(blockSampler , listOfVariables);

The following example shows adding a block schedule entry that includes two elements of
the variable x, and variable y.

fg.Scheduler.addBlockScheduleEntry(BlockMHSampler(MyKernel), x(2:3) , y);

Multiple block schedule entries can be added at once using:

fg.Scheduler.addBlockScheduleEntries ({ blockSampler1 , listOfVariables1}, {

blockSampler1 , listOfVariables1}, ...);

The following example shows adding a block schedule entry that includes two elements of
the variable x, and variable y, and a second block that includes variables a and b.

fg.Scheduler.addBlockScheduleEntries ({ BlockMHSampler(MyKernel1), x(2:3) , y},

{BlockMHSampler(MyKernel2), a, b});

To implement a custom block proposal kernel, a new Java class must be created that
implements the IBlockProposalKernel interface. See section B.2 for more detail.

187

5.6.10 Particle BP Solver

Use of the particle BP solver is specified by calling:

fg.Solver = ’ParticleBP ’;

The following lists the solver-specific options for the ParticleBP solver.

5.6.10.1 Particle BP Options

The following options affect the behavior of various aspects of the ParticleBP solver:

5.6.10.1.1 ParticleBPOptions.numParticles

Type integer
Default 1
Affects real variables

Description Specifies the number of particles used to represent the variable. This option
takes affect when the solver variable is constructed and when it is initialized.

5.6.10.1.2 ParticleBPOptions.resamplingUpdatesPerParticle

Type integer
Default 1
Affects real variables

Description For variables on which it is set, specifies the number of updates per particle
to perform each time the particle is resampled.

5.6.10.1.3 ParticleBPOptions.iterationsBetweenResampling

Type integer
Default 1
Affects graph

Description Specifies the number of iterations between re-sampling all of the variables in
the graph. Default is 1, meaning resample between every iteration.

5.6.10.1.4 ParticleBPOptions.initialParticleRange

188

Type 1x2 vector
Default [-infinity infinity]
Affects variables

Description Set the range over which the initial particle values will be defined. The
initial particle values are uniformly spaced between the min and max values
specified. If the range is specified using this method, it overrides any other
initial value. Otherwise, if a finite domain has been specified, the initial
particle values are uniformly spaced between the lower and upper bound of
the domain. Otherwise, all particles are initially set to zero.

% Set particle range to the unit interval for all variables in the graph:

graph.setOption(’ParticleBPOptions.initialParticleRange ’, [0.0, 1.0]);

5.6.10.1.5 ParticleBPOptions.proposalKernel

Type string
Default NormalProposalKernel
Affects real variables

Description Specifies the type of proposal kernel to use for the specified variables. The
selected proposal kernel may have additional options that can be used to
configure its behavior. These can also be set on the variables.

5.6.10.1.6 ParticleBPOptions.enableAnnealing

Type boolean
Default false
Affects graph

Description Determines whether to use a tempering and annealing process during infer-
ence.

5.6.10.1.7 ParticleBPOptions.annealingHalfLife

Type double
Default 1.0
Affects graph

Description Specifies the rate at which the temperature will be lowered during the tem-
pering and annealing process. This rate is specified in terms of the number
of iterations required for the temperature to be lowered by half. This value is
only used if annealing has been enabled as specified by the enableAnnealing
option.

189

5.6.10.1.8 ParticleBPOptions.initialTemperature

Type double
Default 1.0
Affects graph

Description Specifies the initial temperature to use when annealing is enabled (as speci-
fied by the enableAnnealing option).

5.6.10.2 Graph Methods

The following solver-specific methods are available on the solver graph.

graph.Solver.setTemperature(newTemperature);

temp = graph.Solver.getTemperature ();

Set/get the current temperature. Setting the current temperature overrides the current
annealing temperature. This should rarely be necessary.

5.6.10.3 Variable Methods

The Particle BP solver supports both discrete and real variables. For discrete variables, the
solver uses sum-product BP as normal, and all of the corresponding methods for the sum-
product solver may be used for discrete variables. For real variables, several solver-specific
methods are defined, as follows.

5.6.10.4 Real-Variable-Specific Methods

variable.Solver.setProposalStandardDeviation(stdDev);

variable.Solver.getProposalStandardDeviation ();

Set/get the standard deviation for a Gaussian proposal distribution (the default is 1).

variable.Solver.getParticleValues ();

Returns the current set of particle values associated with the variable.

variable.Solver.getBelief(valueSet);

190

Given a set of values in the domain of the variable, returns the belief evaluated at these
points. The result is normalized relative to the set of points requested so that the sum over
the set of returned beliefs is 1.

NOTE: the generic variable method Belief (or getBeliefs() with no arguments) operates
similarly to the discrete-variable case, but the belief values returned are those at the current
set of particle values. Note that this representation does not represent a set of weighted
particles. That is, the particle positions are distributed approximately by the belief and the
belief values represent the belief. It remains to be see if this should be the representation
of belief that is used, or if an alternative representation would be better. The alternative
solver-specific getBelief(valueSet) method allows getting the beliefs on a user-specified set
of values, which may be uniform, and would not have this unusual interpretation.

191

5.6.11 LP Solver

Use of the linear programming (LP) solver is specified by calling:

fg.Solver = ’LP’;

The LP solver transforms a factor graph MAP estimation problem into an equivalent linear
program, which is solved using a linear programming software package. The solver can
either be a linear programming solver (in which case the MAP is estimated using an LP
relaxation, with no guarantees of correctness), or by an integer linear programming (ILP)
solver, in which case the solution is guaranteed to be the MAP. Because this solver release
on an external package, you will need to install and configure the specified package before
using this solver.

The LP solver supports only discrete variables.

In the current version of Dimple (version 0.7), there is no support for rolled-up graphs when
using the LP solver.

The following options are applicable to the LP solver:

5.6.11.1 LP Options

The following options affect the behavior of various aspects of the LP solver:

5.6.11.1.1 LPOptions.LPSolver

Type string
Default ‘’
Affects graph

Description Selects which external LP solver will be used to solve the linear program.
Valid values include ‘matlab’, ‘CPLEX’, ‘GLPK’, ‘Gurobi’, ‘LpSolve’, ‘Min-
Sate’, ‘Mosek’, and ‘SAT4J’. The default value is synonomous with specify-
ing ‘matlab’ and will delegate the solver specified by the MatlabLPOption
that will be run from the MATLAB frontend. This will obviously only work
when running Dimple from MATLAB. None of these solvers are included
with Dimple and must be installed and configured separately. The interface
for the non-MATLAB based solvers is provided by the third-party Java ILP
package. See javailp.sourceforge.net for more information about configuring
various solvers.

5.6.11.1.2 LPSolver.MatlabLPSolver

192

http://javailp.sourceforge.net

Type string
Default ‘’
Affects graph

Description Selects which LP solver will be run from MATLAB to solve the linear pro-
gram. This option is only relevant if the LPSolver option has been set to
‘matlab’ and Dimple is being run from MATLAB. The choices for the string
solvername are ‘matlab’, ‘glpk’, ‘glpkIP’, ‘gurobi’, and ‘gurobiIP’. The ‘mat-
lab’, ‘glpk’, and ‘gurobi’ solvers are linear programming solvers, while ‘glp-
kIP’ and ‘gurobiIP’ are ILP solvers. The default value is synonomous with
‘matlab’.
Using the matlab LP solver requires the the MATLAB Optimization Tool-
box. Using ‘glpk’ or ‘glpkIP’ requires glpkmex to be in the matlab path,
and ‘gurobi’ and ‘gurobiIP’ require the gurobi matlab interface to be in the
matlab path; in either case the appropriate packages will need to be obtained
and installed.

193

5.6.12 Proposal Kernels

The following proposal kernels are provided by Dimple for use in samplers. Additional
kernels may be added by creating new proposal kernel Java classes that implement the
appropriate interfaces.

5.6.12.1 NormalProposalKernel

The following options may be used to configure this kernel:

5.6.12.1.1 NormalProposalKernel.standardDeviation

Type double
Default 1.0
Affects variables

Description Specifies the standard deviation to use on NormalProposalKernel instances
attached to the variables that are affected by the option setting. The value
must be non-negative.

5.6.12.2 CircularNormalProposalKernel

The CircularNormalProposalKernel makes proposals from a Normal distribution on a cir-
cularly wrapping range of the real line. For example, setting the bounds of the range to −π
and π would create proposals representing angles on a circle.

Since this is a subclass of NormalProposalKernel, the standardDeviation option defined for
that class will also affect this one. The following additional options may also be used:

5.6.12.2.1 CircularNormalProposalKernel.lowerBound

Type double
Default −π
Affects variables

Description Specifies lower bound to use on CircularNormalProposalKernel instances
attached to the variables that are affected by the option setting.

5.6.12.2.2 CircularNormalProposalKernel.upperBound

194

Type double
Default +π
Affects variables

Description Specifies upper bound to use on CircularNormalProposalKernel instances
attached to the variables that are affected by the option setting.

5.6.12.3 UniformDiscreteProposalKernel

This kernel does not have any configurable options.

195

5.6.13 Samplers

Samplers are used by sampling solvers (e.g. Gibbs) to generate samples for variables either
singly or in blocks.

The following non-conjugate single variable samplers are currently available:

5.6.13.1 CDFSampler

The CDFSampler can be used with discrete variable types. It samples from the full con-
ditional distribution of the variable. It is the default sampler used for discrete variables in
the Gibbs solver.

It does not support any configuration options.

5.6.13.2 MHSampler

The MHSampler may be used for discrete or real variables. It implements the Metropolis-
Hastings sampling algorithm. The sampler may be configured to use different proposal
kernels for discrete and real variables as described below.

The following options may be used to configure the MHSampler for a given variable:

5.6.13.2.1 MHSampler.discreteProposalKernel

Type string
Default UniformDiscreteProposalKernel
Affects variables

Description Specifies the proposal kernel to use when using the MHSampler on discrete
variables for which this option setting is visible. Depending on the kernel
selected, it may also be configured by additional option settings. See sub-
subsection 5.6.12 for more details.

5.6.13.2.2 MHSampler.realProposalKernel

196

Type string
Default NormalProposalKernel
Affects variables

Description Specifies the proposal kernel to use when using the MHSampler on real
variables for which this option setting is visible. Depending on the kernel
selected, it may also be configured by additional option settings. See sub-
subsection 5.6.12 for more details.

5.6.13.3 SliceSampler

The slice sampler may be used with real variables. It implements the algorithm described
in Neal’s paper “Slice Sampling” 2010. It is the default sampler used for real variables in
the Gibbs solver.

The following options may be used to configure the SliceSampler for a given variable:

5.6.13.3.1 SliceSampler.initialSliceWidth

Type double
Default 1.0
Affects variables

Description The size of the initial slice to use when sampling for SliceSampler instances
used by variables that are affected by the option setting. For variables with
a natural range that is much smaller or much larger than the default value
of one, it may be beneficial to modify this value.

5.6.13.3.2 SliceSampler.maximumDoublings

Type integer
Default 10
Affects variables

Description The maximum number of doublings used during the doubling phase
of the slice sampler. The maximum slice interval is on the order of
initialSliceWidth · 2maximumDoublings

5.6.13.4 SuwaTodoSampler

The Suwo-Todo sampler can be used for discrete variables. It implements the algorithm
described in Suwa and Todo’s paper “Markov Chain Monte Carlo Method without Detailed
Balance” (2010).

197

This sampler does not support any configuration options.

198

5.7 Streaming Data

5.7.1 Variable Stream Common Properties and Methods

Dimple supports several types of variable streams:

• DiscreteStream

• BitStream

• RealStream

• RealJointStream

• ComplexStream

Each of these share common properties and method listed in the following sections.

5.7.1.1 Properties

5.7.1.1.1 DataSource

Read-write. When written, connects the variable stream to a data source (see section 5.7.8).
The data sink must be of a type appropriate for the particular variable stream type.

5.7.1.1.2 DataSink

Read-write. When written, connects the variable stream to a data sink (see section 5.7.12).
The data sink must be of a type appropriate for the particular variable stream type.

5.7.1.1.3 Dimensions

Read-only. Indicates the dimensions of the variable stream. The dimensions correspond to
the size of the variable array at each position in the stream.

5.7.1.1.4 Size

Read-only. Indicates the number of elements in the variable stream that are actually instan-
tiated. Each element corresponds to one copy of the variable or variable array at a specific

199

point in the stream. Dimple instantiates the minimum number of contiguous elements to
cover the slices of the stream that are actually used in factors (see section 5.7.1.2.1), plus
the number of additional elements to cover the indicated BufferSize (see section 5.7.7.1.1).

5.7.1.1.5 Variables

Read-only. Returns a variable array containing all of the currently instantiated variables in
the stream.

5.7.1.1.6 Domain

Read-only. Returns the domain in a form that depends on the variable type, as summarized
in the following table:

Stream Type Domain Data Type

DiscreteStream DiscreteDomain (see section 5.2.9)
BitStream DiscreteDomain (see section 5.2.9)
RealStream RealDomain (see section 5.2.10)
RealJointStream RealJointDomain (see section 5.2.11)
ComplexStream ComplexDomain (see section 5.2.12)

5.7.1.2 Methods

5.7.1.2.1 getSlice

varStream.getSlice(startIndex);

The getSlice method is used to extract a slice of the stream, which means a version of
the stream that may be offset from the original stream itself. This is generally used for
specifying streams to connect to a factor when calling addFactor.

Takes a single numeric argument, startIndex, which indicates the starting position in
the stream. The resulting stream slice is essentially a reference to the stream offset by
startIndex-1. For example, a startIndex of 2 returns a slice offset by 1, such that the first
location in the slice corresponds to the second location in the original stream. A startIndex
of 1 returns a slice identical to the original stream.

200

5.7.2 DiscreteStream

5.7.2.1 Constructor

The DiscreteStream constructor is used to create a stream of Discrete variables or arrays
of Discrete variables.

DiscreteStream(domain , [dimensions]);

• domain is a required argument indicating the domain of the variable. The domain
may either be a numeric array of domain elements, a cell array of domain elements,
or a DiscreteDomain object (see section 5.2.3.1.1).

• dimensions is an optional variable-length comma-separated list of matrix dimensions
(an empty list indicates a single Discrete variable).

5.7.3 BitStream

5.7.3.1 Constructor

The BitStream constructor is used to create a stream of Bit variables or arrays of Bit
variables.

BitStream ([dimensions]);

• dimensions is an optional variable-length comma-separated list of matrix dimensions
(an empty list indicates a single Bit variable stream).

5.7.4 RealStream

5.7.4.1 Constructor

The RealStream constructor is used to create a stream of Real variables or arrays of Real
variables.

RealStream ([domain], [dimensions]);

All arguments are optional and can be used in any combination.

201

• domain specifies a bound on the domain of the stream. It can either be specified
as a two-element array or a RealDomain object (see section 5.2.10). If specified as
an array, the first element is the lower bound and the second element is the upper
bound. -Inf and Inf are allowed values for the lower or upper bound, respectively. If
no domain is specified, then a domain from −∞ to ∞ is assumed.

• dimensions specify the array dimensions. The behavior of the list of dimensions is
identical to that for Discrete variables as described in section 5.2.3.1.2.

5.7.5 RealJointStream

5.7.5.1 Constructor

The RealJointStream constructor is used to create a stream of RealJoint variablesor arrays
of RealJoint variables.

RealJointStream(domain , [dimensions])

RealJointStream(numJointVariables , [dimensions]);

The arguments are defined as follows:

• domain specifies a bound on the domain of the variable. It is specified by a RealJoint-
Domain object (see section 5.2.11). If no domain is specified, then an unbounded
domain is assumed and numJointVariables must be specified instead.

• numJointVariables specifies the number of joint real-valued elements. This argument
is present only if the domain argument is not specified.

• dimensions specify the array dimensions (the array of individual RealJointStream
variables). The behavior of the list of dimensions is identical to that for Discrete
variables as described in section 5.2.3.1.2.

5.7.6 ComplexStream

5.7.6.1 Constructor

The ComplexStream constructor is used to create a stream of Complex variablesor arrays
of Complex variables .

ComplexStream ([domain], [dimensions]);

The arguments are defined as follows:

202

• domain specifies the domain of the ComplexStream using a ComplexDomain object
(see 5.2.12). If no domain is specified, then an unbounded domain is assumed.

• dimensions specify the array dimensions (the array of individual Complex variables).
The behavior of the list of dimensions is identical to that for Discrete variables as
described in section 5.2.3.1.2.

5.7.7 FactorGraphStream

A FactorGraphStream is constructed automatically and returned as the result of adding
a factor to a graph using the addFactor method where one or more of the arguments are
variable streams.

5.7.7.1 Properties

5.7.7.1.1 BufferSize

Read-write. When written, modifies the number of instantiated elements in the Factor-
GraphStream to include the specified number of copies of the corresponding factor and
connected variables. By default, the BufferSize is 1. When running the solver on one step
of the overall factor graph, the solver uses the entire buffer. Making the buffer size larger
means using more of the history in performing inference for each step. The results of infer-
ence run on previous steps that is beyond the size of the buffer is essentially frozen, and is
no longer updated on subsequent steps of the solver.

5.7.8 Data Source Common Properties and Methods

Dimple supports several types of streaming data sources. A data source is a source of Input
values to the variables within a variable stream39. When performing inference, as each step
that the graph is advanced, the next source value is read from the data source, and the
earlier values are shifted back to earlier time-steps in the graph.

Each source type corresponds to a particular format of input data. Each type is appropriate
only to a specific type of variable stream and solver. The following table summarizes these
requirements.

Data Source Variable Stream Type Supported Solvers

DoubleArrayDataSource DiscreteStream, BitStream all
RealStream SumProduct

MultivariateDataSource RealJointStream SumProduct
FactorFunctionDataSource RealStream SumProduct, Gibbs, ParticleBP

39In the current version of Dimple, data sources are limited to providing Inputs to variables. A future
version of Dimple may expand this capability to allow sourcing FixedValues or other types of input data.

203

Each of these share common properties and method listed in the following sections.

5.7.8.1 Properties

5.7.8.1.1 Dimensions

Read-only. Indicates the dimensions of the data source. The dimensions correspond to the
size of the variable array at each position in the stream that the data source will feed.

5.7.9 DoubleArrayDataSource

5.7.9.1 Constructor

DoubleArrayDataSource ([dimensions], [initialData]);

• dimensions is an optional row vector indicating the matrix dimensions of the data
source (an empty argument indicates a single data source to connect to a single variable
stream).

• initialData is an optional array of data the stream will contain (more data can be
added later). This is a multidimensional array where the first dimensions correspond
to the dimension of the variable stream this will feed, the next dimensions corresponds
to the length of the Input vector for each variable (the domain size for discrete variable
streams, and 2 for real variable streams used with the SumProduct solver), and the
final dimension is the number of time-steps of data to provide. For single variable
streams, the first dimensions are omitted.

5.7.9.2 Methods

5.7.9.2.1 add

dataSource.add(data);

204

This method appends the data source with the specified data. The data argument is a mul-
tidimensional array, where the first dimensions correspond to the dimension of the variable
stream this will feed, the next dimensions corresponds to the length of the Input vector for
each variable (the domain size for discrete variable streams, and 2 for real variable streams
used with the SumProduct solver), and the final dimension is the number of time-steps of
data to provide. For single variable streams, the first dimensions are omitted.

5.7.10 MultivariateDataSource

5.7.10.1 Constructor

MultivariateDataSource ([dimensions]);

• dimensions is an optional row vector indicating the matrix dimensions of the data
source (an empty argument indicates a single data source to connect to a single variable
stream).

5.7.10.2 Methods

5.7.10.2.1 add

dataSource.add(means , covariances);

This method appends the data source with the a single time-step of data (multiple time-
steps must be added using successive calls to this method). Means should have dimensions
[VariableDimensions NumberJointVariables] and Covariances should be of the form [Vari-
ableDimensions NumberJointVariables NumberJointVariables].

5.7.11 FactorFunctionDataSource

5.7.11.1 Constructor

FactorFunctionDataSource ([dimensions]);

205

• dimensions is an optional row vector indicating the matrix dimensions of the data
source (an empty argument indicates a single data source to connect to a single variable
stream).

5.7.11.2 Methods

5.7.11.2.1 add

dataSource.add(data);

This method appends the data source with the a single time-step of data (multiple time-
steps must be added using successive calls to this method).The data argument is a multidi-
mensional cell array, with dimension equal to the corresponding dimensions of the variable
stream this will feed. Each element is a FactorFunctions (see section 5.3.3), which is to
represent the Input of the corresponding variable.

5.7.12 Data Sink Common Properties and Methods

Dimple supports several types of streaming data sinks:

Dimple supports several types of streaming data sinks. A data sink is a data structure used
to store successive results of inference from the variables with a variable stream. Specifically,
it stores the Belief values of these variables40. When performing inference, as each step that
the graph is advanced, the Belief value for the earliest element of the variable stream is stored
in the data sink.

Each sink type corresponds to a particular format of output data. Each type is appropriate
only to a specific type of variable stream and solver. The following table summarizes these
requirements.

Data Sink Variable Stream Type Supported Solvers

DoubleArrayDataSink DiscreteStream, BitStream all
RealStream SumProduct

MultivariateDataSink RealJointStream SumProduct

Each of these share common properties and method listed in the following sections.

40In the current version of Dimple, data sinks are limited to the Beliefs to variables. A future version of
Dimple may expand this capability to allow sinking other types of result data.

206

5.7.12.1 Properties

5.7.12.1.1 Dimensions

Read-only. Indicates the dimensions of the data sink. The dimensions correspond to the
size of the variable array at each position in the stream that the data sink will be fed from.

5.7.12.2 Methods

5.7.12.2.1 hasNext

hasNext = dataSink.hasNext ();

Used in connection with the getNext method (described in the sections below), this method
takes no arguments and returns a boolean indicating whether or not there are any more
time steps in the dataSink that have not yet been extracted.

5.7.13 DoubleArrayDataSink

5.7.13.1 Constructor

DoubleArrayDataSink ([dimensions]);

• dimensions is an optional array indicating the matrix dimensions of the data sink (an
empty argument indicates a single data sink to connect to a single variable stream).

5.7.13.2 Properties

5.7.13.2.1 Array

Read-only. Extracts the entire contents of the data sink as an array. The first dimensions of
the array correspond to the Dimensions of the data sink , the next dimension corresponds

207

to the size of the belief array for each variable,and the final dimension corresponds to the
number of time steps that had been gathered. For discrete variables, the dimension of
the belief array corresponds to the domain sizes, while for real variables used with the
SumProduct solver the dimension is 2, where the elements correspond to the mean and
standard deviation, respectively.

5.7.13.3 Methods

5.7.13.3.1 getNext

b = dataSink.getNext ();

This method takes no arguments, and returns the set of belief values from the next time-
step. The returned value is a multidimensional array, where the first dimensions correspond
to the Dimension of the data sink, and the next dimension corresponds to the size of the
belief array for each variable. For discrete variables, the dimension of the belief array
corresponds to the domain sizes, while for real variables used with the SumProduct solver
the dimension is 2, where the elements correspond to the mean and standard deviation,
respectively.

5.7.14 MultivariateDataSink

5.7.14.1 Constructor

MultivariateDataSink ([dimensions]);

• dimensions is an optional array indicating the matrix dimensions of the data sink (an
empty argument indicates a single data sink to connect to a single variable stream).

5.7.14.2 Methods

5.7.14.2.1 getNext

b = dataSink.getNext ();

208

This method takes no arguments, and returns the set of belief values from the next time-
step. The returned value is a cell array of MultivariateNormalParameters objects (see
section 5.2.15), each of which contains and mean vector and covariance matrix. The dimen-
sions of this cell array correspond to the Dimension of the data sink.

209

5.8 Event Monitoring

Sometimes it can be useful to monitor the actions Dimple takes as the model or data changes
or as inference is performed. Such monitoring can be helpful when debugging your model,
when trying to determine whether inference has converged while using belief propogation
on a loopy graph, or when attempting to determine whether a graph has been adequately
mixed when using the Gibbs solver. To address this need, Dimple provides an event-based
system consisting of events that can be triggered when various actions of interest occur and
associated event handlers and an event listener that handles dispatching of events. The
event system is designed to have no effect on the performance of inference when it has not
been enabled, but may have a noticeable effect when it is being used.

The full power of the event system is only available directly in the Java API but the
MATLAB API does provide a simple event logging interface that allows events to be logged
to the console or an external log file.

210

5.8.1 Event types

Figure 1: Dimple event hierarchy

Dimple Events are organized hierarchically, and the current version of the full hierarchy
is shown in Figure 1. Note that any event types marked with an ’A’ in the diagram are
abstract super types and are used to organize the events by category. Actual event instances
will belong to non-abstract types, which are for the most part leaf-nodes in the diagram.
Events are subdivided into three categories:

• ModelEvent: includes changes to the structure of the model including adding and
removing variables, factors and subgraphs. The concrete model event types are:

– FactorAddEvent and FactorRemoveEvent: raised when a factor is added or re-
moved from the model.

– VariableAddEvent and VariableRemoveEvent: raised when a variable is added
or removed from the model.

– SubgraphAddEvent and SubgraphRemoveEven: raised when a subgraph is added
or removed from the model.

211

– BoundaryVariableAddEvent and BoundaryVariableRemoveEvent: raised when a
boundary variable is added or removed.

• DataEvent: includes changes to data including changes to fixed values and inputs.
The concrete data event types are:

– VariableFixedValueChangeEvent: raised when a fixed value is set or unset on a
variable.

– VariableInputChangeEvent: raised when an input distribution is set or unset on
a variable.

• SolverEvent: includes solver-specific events of interest that occur while running infer-
ence. The concrete event types are:

– FactorToVariableMessageEvent and VariableToFactorMessageEvent: raised when
edge messages are updated in belief propagation solvers. Currently only the
sumproduct and minsum solvers generate these messages.

– GibbsVariableUpdateEvent and GibbsScoredVariableUpdateEvent: raised when
sample values are changed by the Gibbs solver. The two event types are the
same except that the scored version adds information about the change in score
induced by the sample update.

Additional events may be added in future releases. New event types may also be added by
developers who have extended Dimple with their own solvers or custom factors in Java.

When specifying event types in the MATLAB API, use the event type name in a string
value:

logger = getEventLogger ();

logger.log(’FactorToVariableMessageEvent ’, fg);

Unrecognized event types will result in an exception.

Note that Dimple events are not MATLAB events and you cannot use MATLAB’s event
API to trigger or listen for Dimple events.

5.8.2 Event logging

The easiest way to monitor events in Dimple is through an event logger. Given an event
logger instance, you can configure it to log either to the console or to a text file, you can
configure how verbose the output should be, and specify which events for which model
objects should be logged.

Event loggers are instances of the EventLogger class. You may create an instance using the
constructor:

212

logger = EventLogger ();

or you may simply get the default global instance using the getEventLogger() function,
which will create a new logger the first time it is invoked:

logger = getEventLogger ();

Newly constructed loggers will output to standard error by default and will have a default
verbosity of zero, which will produce the most terse output. You may configure the logger
to change the verbosity level or to direct output to a different target. For example:

% Use more verbose log output.

logger.Verbosity = 2;

% Append output to a file in the working directory.

logger.open(’event -logger.txt’);

% ... or output to standard output

logger.open(’stdout ’);

Usually a single logger will be sufficient, but you can create multiple logger objects that
direct output to different targets.

To enable logging for a particular class of events on your model, use the log method with
the event type of interest. If the event type is abstract (is annotated with the letter A in
Figure 1), then all event subtypes will be logged. If the event type is not abstract, then
only that particular event type will be logged. In particular, if you specify SolverEvent on a
graph using the Gibbs solver, you will see GibbsScoredVariableUpdateEvent messages but
if you specify GibbsVariableUpdateEvent you will get only messages for that specific class
and will not get scored messages.

% Log all solver events for given model.

logger.log(’SolverEvent ’, model);

% Log unscored Gibbs update messages

logger.log(’GibbsVariableUpdateEvent ’, model);

% Log variable to factor messages for a single variable

logger.log(’VariableToFactorMessageEvent ’, x);

You may remove previously created log registration either by using the unlog method to

213

remove individual entries or the clear method to remove all entries. When using unlog,
the arguments must match the original arguments passed to log. (Note that setting the
verbosity to a negative value or closing the output will also turn off logging it will not prevent
Dimple from creating the underlying events, so make sure to use the clear() method when
you are done with logging if you do not want to slow down inference.)

% Disable a previous log registration

logger.log(’SolverEvent ’, model);

% Disable all logging

logger.clear ();

When using logging, it is usually very helpful to give the variables, factors and subgraphs
unique, easy to read, names. This will make your log output much easier to understand.

5.8.3 Advanced event handling

The MATLAB API does not support handling Dimple events outside of the EventLogger
class. More advanced uses cases may be implemented using the Java API. See the Java
version of this manual for details.

214

5.9 List of Built-in Factors

The following table lists the current set of built-in Dimple factors. For each, the name is
given, followed by the set of variables that would be connected to the factor, followed by
any constructor arguments. Optional variables and constructor arguments are in brackets.
And an arbitrary length list or array of variables is followed by ellipses. The allowed set
of variable data-types for each variable is given in parentheses (B = Bit, D = Discrete,
F = FiniteFieldVariable, R = Real, C = Complex, RJ = RealJoint).

Name Variables Constructor Description

Abs out(D,R)
in(D,R)

[smoothing] Deterministic absolute value function,
where out = abs(in). An optional smooth-
ing value may be specified as a constructor
argument41.

ACos out(D,R)
in(D,R)

[smoothing] Deterministic arc-cosine function, where
out = acos(in). An optional smoothing
value may be specified as a constructor
argument41.

AdditiveNoise out(R)
in(B,D,R)

σ Add Gaussian noise with a known stan-
dard deviation, σ, specified in constructor.

And out(B)
in...(B)

- Deterministic logical AND function,
where out = AND(in...).

ASin out(D,R)
in(D,R)

[smoothing] Deterministic arc-sine function, where
out = asin(in). An optional smoothing
value may be specified as a constructor
argument41.

ATan out(D,R)
in(D,R)

[smoothing] Deterministic arc-tangent function, where
out = atan(in). An optional smoothing
value may be specified as a constructor
argument41.

Bernoulli [ρ](R)
x...(B)

[ρ] Bernoulli distribution, p(x|ρ), where ρ is
a parameter indicating the probability of
one, and x is an array of Bit variables.
There can be any number of x variables,
all associated with the same parameter
value. The conjugate prior for the param-
eter, ρ, is a Beta distribution42. The pa-
rameter, ρ, can be a variable or a constant
specified in the constructor.

41If smoothing is enabled, the factor function becomes e−(out−F (in))2/smoothing (making it non-
deterministic) instead of δ(out − F (in)), where F is the deterministic function associated with this factor.
This is useful for solvers that do not work well with deterministic real-valued factors, such as particle BP,
particularly when annealing is used.

42It is not necessary to use the conjugate prior, but in some cases there may be a benefit.

215

Name Variables Constructor Description

Beta [α](R)
[β](R)
value...(R)

[α]
[β]

Beta distribution. There can be any num-
ber of value variables, all associated with
the same parameter values. Parameters
α and β can be variables, or if both are
constant they can be specified in the con-
structor.

Binomial [N](D)
ρ(R)
x(D)

[N] Binomial distribution, p(x|N, ρ), where N
is the total number of trials, ρ is a pa-
rameter indicating the success probability,
and x is a count of success outcomes. Pa-
rameter N can be a Discrete variable with
positive integer values or a constant inte-
ger value specified in the constructor. The
domain of x must include integers from 0
through N , or if N is a variable, through
the maximum value in the domain of N .
The conjugate prior for the parameter, ρ,
is a Beta distribution42.

Categorical [α](RJ)
x...(D)

[α] Categorical distribution, p(x|α), where α
is a vector of parameter variables and x is
an array of discrete variables. The num-
ber of elements in α must equal the do-
main size of x. There can be any number
of x variables, all associated with the same
parameter values.
The α parameters are represented as a
normalized probability vector. The con-
jugate prior for this representation is a
Dirichlet distribution42.
In the current implementation, the do-
main of the x variable must be zero-based
contiguous integers, 0...N − 143.

43This limitation may be lifted in a future version.

216

Name Variables Constructor Description

Categorical
EnergyParameters

[α]...(R)
x...(D)

N, [α] Categorical distribution, p(x|α), where α
is a vector of parameter variables and x is
an array of discrete variables. The num-
ber of elements in α and the domain size of
x must equal the value of the constructor
argument, N. There can be any number of
x variables, all associated with the same
parameter values.
In this alternative version of the Categori-
cal distribution, the α parameters are rep-
resented as energy values, that is, α =
− log(ρ), where ρ are unnormalized prob-
abilities. The conjugate prior for this rep-
resentation is such that each entry of α
is independently distributed according to
a negative exp-Gamma distribution, all
with a common β parameter42.
In the current implementation, the do-
main of the x variable must be zero-based
contiguous integers, 0...N − 143.

Categorical
Unnormalized
Parameters

[α]...(R)
x...(D)

N, [α] Categorical distribution, p(x|α), where α
is a vector of parameter variables and x is
an array of discrete variables. The num-
ber of elements in α and the domain size of
x must equal the value of the constructor
argument, N. There can be any number of
x variables, all associated with the same
parameter values.
In this alternative version of the Categori-
cal distribution, the α parameters are rep-
resented as a vector of unnormalized prob-
ability values. The conjugate prior for this
representation is such that each entry of α
is independently distributed according to
a Gamma distribution, all with a common
β parameter42.
In the current implementation, the do-
main of the x variable must be zero-based
contiguous integers, 0...N − 143.

ComplexAbs out(R)
in(C)

[smoothing] Deterministic complex absolute value,
where out =

√
Re(in) + Im(in). An op-

tional smoothing value may be specified
as a constructor argument41.

ComplexConjugate out(C)
in(C,R)

[smoothing] Deterministic complex conjugate function,
where out = in∗. An optional smoothing
value may be specified as a constructor
argument41.

217

Name Variables Constructor Description

ComplexDivide quotient(C)
dividend(C,R)
divisor(C,R)

[smoothing] Deterministic complex divide function,
where quotient = dividend

divisor . An optional
smoothing value may be specified as a con-
structor argument41.

ComplexExp out(C)
in(C,R)

[smoothing] Deterministic complex exponentiation
function, where out = exp(in). An op-
tional smoothing value may be specified
as a constructor argument41.

ComplexNegate out(C)
in(C,R)

[smoothing] Deterministic complex negation function,
where out = -in. An optional smoothing
value may be specified as a constructor
argument41.

ComplexProduct out(C)
in...(C,R)

[smoothing] Deterministic complex product function,
where out =

∏
in. An optional smooth-

ing value may be specified as a constructor
argument41.

ComplexSubtract out(C)
posIn(C,R)
negIn...(C,R)

[smoothing] Deterministic complex subtraction func-
tion, where out = posIn −

∑
negIn. An

optional smoothing value may be specified
as a constructor argument41.

ComplexSum out(C)
in...(C,R)

[smoothing] Deterministic complex summation func-
tion, where out =

∑
in. An optional

smoothing value may be specified as a con-
structor argument41.

ComplexTo
RealAndImaginary

outReal(R)
outImag(R)
in(RJ)

[smoothing] Deterministic conversion of a Complex
variable to two Real variables, with the
first representing the real component
and the second representing the imagi-
nary component. An optional smoothing
value may be specified as a constructor
argument41.

Cos out(D,R)
in(D,R)

[smoothing] Deterministic cosine function, where out
= cos(in). An optional smoothing
value may be specified as a constructor
argument41.

Cosh out(D,R)
in(D,R)

[smoothing] Deterministic hyperbolic-cosine function,
where out = cosh(in). An optional
smoothing value may be specified as a con-
structor argument41.

Dirichlet [α](RJ)
value...(RJ)

[α] Dirichlet distribution. There can be any
number of value variables, all associated
with the same parameter values. Param-
eter vector α can be a RealJoint variable
or a constant specified in the constructor.
The dimension of α and each of the value
variables must be identical.

218

Name Variables Constructor Description

DiscreteTransition y(D)
x(D)
A...(RJ)

- Parameterized discrete transition factor,
p(y|x,A), where x and y are discrete vari-
ables, and A is a matrix of transition prob-
abilities. The transition matrix is orga-
nized such that columns correspond to the
output distribution for each input state.
That is, the transition matrix multiplies
on the left. Each column of A corresponds
to a RealJoint variable. The number of
columns in A must equal the domain size
of x, and the dimension of each element of
A must equal the domain size of y.
Each element of A corresponds to a nor-
malized probability vector. The conjugate
prior for this representation is such that
each element of A is distributed according
to a Dirichlet distribution42.
In the current implementation, the do-
main of the x variable must be zero-based
contiguous integers, 0...N − 143.

DiscreteTransition
EnergyParameters

y(D)
x(D)
A...(R)

Ny, Nx|
N

Parameterized discrete transition factor,
p(y|x,A), where x and y are discrete vari-
ables, and A is a matrix of transition prob-
abilities. The transition matrix is orga-
nized such that columns correspond to the
output distribution for each input state.
That is, the transition matrix multiplies
on the left. The number of columns in A
and the domain size of x must equal the
value of the constructor argument, Nx and
the number of rows in A and the domain
size of y must equal the value of the con-
structor argument Ny. If Nx and Ny are
equal, a single constructor argument, N ,
may be used.
The elements of the matrix A are repre-
sented as energy values, that is, Ai,j =
− log(ρi,j), where ρ is an unnormalized
transition probability matrix. The conju-
gate prior for this representation is such
that each entry of A is independently
distributed according to a negative exp-
Gamma distribution, all with a common
β parameter42.
In the current implementation, the do-
main of the x variable must be zero-based
contiguous integers, 0...N − 143.

219

Name Variables Constructor Description

DiscreteTransition
Unnormalized
Parameters

y(D)
x(D)
A...(R)

Ny, Nx|
N

Parameterized discrete transition factor,
p(y|x,A), where x and y are discrete vari-
ables, and A is a matrix of transition prob-
abilities. The transition matrix is orga-
nized such that columns correspond to the
output distribution for each input state.
That is, the transition matrix multiplies
on the left. The number of columns in A
and the domain size of x must equal the
value of the constructor argument, Nx and
the number of rows in A and the domain
size of y must equal the value of the con-
structor argument Ny. If Nx and Ny are
equal, a single constructor argument, N ,
may be used.
The elements of the matrix A are rep-
resented as unnormalized probability val-
ues. The conjugate prior for this repre-
sentation is such that each entry of A is
independently distributed according to a
Gamma distribution, all with a common
β parameter42.
In the current implementation, the do-
main of the x variable must be zero-based
contiguous integers, 0...N − 143.

Divide quotient(D,R)
dividend(D,R)
divisor(D,R)

[smoothing] Deterministic divide function, where
quotient = dividend

divisor . An optional smooth-
ing value may be specified as a constructor
argument41.

Equality value...(B,D,R) [smoothing] Deterministic equality constraint. An op-
tional smoothing value may be specified
as a constructor argument41.

Equals out(B)
in...(B,D,R)

- Deterministic equals function, where
out = (in(1) == in(2) == ...).

ExchangeableDirichlet [α](R)
value...(RJ)

N, [α] Exchangeable Dirichlet distribution. This
is a variant of the Dirichlet distribution
parameterized with a single common pa-
rameter for all dimensions. There can be
any number of value variables, all associ-
ated with the same parameter value. Pa-
rameter α can be a Real variable or a con-
stant specified in the constructor. The
dimension of each of the value variables
must be identical and equal to the value
of N, specified in the constructor.

220

Name Variables Constructor Description

Exp out(D,R)
in(D,R)

[smoothing] Deterministic exponentiation function,
where out = exp(in). An optional smooth-
ing value may be specified as a constructor
argument41.

FiniteFieldAdd out(F)
in1(F)
in2(F)

- Deterministic finite field two-input addi-
tion. See section 4.4 for a description of
how to use finite field variables.

FiniteFieldMult out(F)
in1(F)
in2(F)

- Deterministic finite field two-input multi-
plication. See section 4.4 for a description
of how to use finite field variables.

FiniteFieldProjection fieldVar(F)
indices(const)
bits...(B)

- Deterministic projection of a finite field
variable onto a set of bit variables cor-
responding to the bits of the field value.
The indices argument is a constant array,
which must be a permutation of 0 through
N−1, where N is the number of bits in the
finite field value. The indices represent the
order of the projection of the bits in the fi-
nite field value onto the corresponding Bit
variable in the list of bits. See section 4.4
for a description of how to use finite field
variables.

Gamma [α](R)
[β](R)
value...(R)

[α]
[β]

Gamma distribution. There can be any
number of value variables, all associated
with the same parameter values. Param-
eters α and β can be variables, or if both
are constant they can be specified in the
constructor.

GreaterThan out(B)
in1(B,D,R)
in2(B,D,R)

- Deterministic greater-than function,
where out = in1 > in2.

InverseGamma [α](R)
[β](R)
value...(R)

[α]
[β]

Inverse Gamma distribution. There can
be any number of value variables, all as-
sociated with the same parameter values.
Parameters α and β can be variables, or
if both are constant they can be specified
in the constructor.

LessThan out(B)
in1(B,D,R)
in2(B,D,R)

- Deterministic greater-than function,
where out = in1 < in2.

221

Name Variables Constructor Description

LinearEquation out(D,R)
in(B,D,R)

weights
[smoothing]

Deterministic linear equation, multiplying
an input vector by a constant weight vec-
tor to equal the output variable. The
weight vector is specified in the construc-
tor. The number of in variables must
equal the length of the weight vector. An
optional smoothing value may be specified
as a constructor argument41.

Log out(D,R)
in(D,R)

[smoothing] Deterministic natural log function, where
out = log(in). An optional smoothing
value may be specified as a constructor
argument41.

LogNormal [µ](R)
[τ](R)
value...(R)

[µ]
[τ]

Log-normal distribution. There can be
any number of value variables, all associ-
ated with the same parameter values. Pa-
rameters µ (mean) and τ = 1

σ2 (precision)
can be variables, or if both are constant
then fixed parameters can be specified in
the constructor.

MatrixProduct C(D,R)
A(D,R)
B(D,R)

Nr

Nx

Nc

[smoothing]

Deterministic matrix product function,
C = AB, where A, B, and C are ma-
trices. Constructor arguments, Nr speci-
fies the number of rows in A and C, Nx

specifies the number of columns in A and
number of rows in B, and Nc specifies the
number of columns in B and C. An op-
tional smoothing value may be specified
as a constructor argument41.

MatrixVectorProduct y(D,R)
M(D,R)
x(D,R)

Nx

Ny

[smoothing]

Deterministic matrix-vector product func-
tion, y = Mx, where x and y are vectors
and M is a matrix. Constructor argu-
ments, Nx and Ny, specify the input and
output vector lengths, respectively. The
matrix dimension is Ny×Nx. An optional
smoothing value may be specified as a con-
structor argument41.

MatrixRealJoint
VectorProduct

y(RJ)
M(D,R)
x(RJ)

Nx

Ny

[smoothing]

Deterministic matrix-vector product func-
tion, y = Mx, where x and y are RealJoint
values and M is a matrix. Constructor
arguments, Nx and Ny, specify the input
and output vector lengths, respectively.
The matrix dimension is Ny×Nx. An op-
tional smoothing value may be specified
as a constructor argument41.

222

Name Variables Constructor Description

Multinomial [N](D)
α(RJ)
x...(D)

[N] Multinomial distribution, p(x|N,α),
where N is the total number of trials, α
is a vector of parameter variables, and x
is a count of outcomes in each category.
Parameter N can be a Discrete variable
with positive integer values or a constant
integer value specified in the constructor.
The number of elements in α must exactly
match the number of elements of x. The
domain of each x variable must include
integers from 0 through N , or if N is a
variable, through the maximum value in
the domain of N .
The α parameters are represented as
a normalized probability vector. The
conjugate prior for this representation is
a Dirichlet distribution42.

Multinomial
EnergyParameters

[N](D)
α...(R)
x...(D)

D, [N] Multinomial distribution, p(x|N,α),
where N is the total number of trials, α
is a vector of parameter variables, and x
is a count of outcomes in each category.
Parameter N can be a Discrete variable
with positive integer values or a constant
integer value specified in the constructor.
The number of elements in α must exactly
match the number of elements of x, which
must match the value of the constructor
argument, D. The domain of each x
variable must include integers from 0
through N , or if N is a variable, through
the maximum value in the domain of N .
In this alternative version of the Multi-
nomial distribution, the α parameters
are represented as energy values, that is,
α = − log(ρ), where ρ are unnormalized
probabilities. The conjugate prior for this
representation is such that each entry of
α is independently distributed according
to a negative exp-Gamma distribution,
all with a common β parameter42.

223

Name Variables Constructor Description

Multinomial
Unnormalized
Parameters

[N](D)
α...(R)
x...(D)

D, [N] Multinomial distribution, p(x|N,α),
where N is the total number of trials, α
is a vector of parameter variables, and x
is a count of outcomes in each category.
Parameter N can be a Discrete variable
with positive integer values or a constant
integer value specified in the constructor.
The number of elements in α must exactly
match the number of elements of x, which
must match the value of the constructor
argument, D. The domain of each x
variable must include integers from 0
through N , or if N is a variable, through
the maximum value in the domain of N .
In this alternative version of the Multi-
nomial distribution, the α parameters are
represented as a vector of unnormalized
probability values. The conjugate prior
for this representation is such that each
entry of α is independently distributed
according to a Gamma distribution, all
with a common β parameter42.

Multiplexer out(any)
select
in...(any)

[smoothing] Deterministic multiplexer44. The selector
must be a discrete variable that selects
one of the inputs to pass to the output.
The data type of all inputs must be iden-
tical to that of the output. For RealJoint
variables, the dimension of all inputs must
equal that of the output. The with domain
of the selector variable must be zero-based
contiguous integers, 0...N − 1, where N
is the number of input variables. An op-
tional smoothing value may be specified
as a constructor argument41.

44Note that for the SumProduct solver, an optimized custom implementation of this factor function is
used automatically, which avoids creation of a corresponding factor table.

224

Name Variables Constructor Description

MultivariateNormal value...(RJ) µ
Σ

Multivariate Normal distribution. There
can be any number of value variables, all
associated with the same parameter val-
ues. Parameters µ (mean vector) and
Σ (covariance matrix) are constant that
must be specified in the constructor45.
The dimension of the mean vector, both
dimensions of the covariance matrix, and
the dimension of each value variable must
be identical.

Negate out(D,R)
in(D,R)

[smoothing] Deterministic negation function, where
out = -in. An optional smoothing
value may be specified as a constructor
argument41.

NegativeExpGamma [α](R)
[β](R)
value...(R)

[α]
[β]

Negative exp-Gamma distribution, which
is a distribution over a variable whose neg-
ative exponential is Gamma distributed.
That is, this is the negative log of a
Gamma distributed variable. There can
be any number of value variables, all as-
sociated with the same parameter values.
Parameters α and β can be variables, or
if both are constant they can be specified
in the constructor, and correspond to the
parameters of the underlying Gamma dis-
tribution.

Normal [µ](R)
[τ](R)
value...(R)

[µ]
[τ]

Normal distribution. There can be any
number of value variables, all associated
with the same parameter values. Parame-
ters µ (mean) and τ = 1

σ2 (precision) can
be variables, or if both are constant then
fixed parameters can be specified in the
constructor.

Not out(B)
in(B)

- Deterministic logical NOT of function,
where out = in.

NotEquals out(B)
in...(B,D,R)

- Deterministic not-equals function, where
out = ∼(in(1) == in(2) == ...).

Or out(B)
in...(B)

- Deterministic logical OR function, where
out = OR(in...).

45In this version of Dimple, there is no support for variable parameters in the MultivariateNormal distri-
bution.

225

Name Variables Constructor Description

Poisson [λ](R)
k(D)

[λ] Poisson distribution, p(k|λ), where λ is
the rate parameter, and k is the discrete
output. While the value of k for a Pois-
sion distribution is unbounded, the do-
main should be set to include integers
from 0 through a maximum value. The
maximum value should be a multiple of
the maximum likely value of λ46. The
conjugate prior for the parameter, λ, is
a Gamma distribution42.

Power out(D,R)
base(D,R)
power(D,R)

[smoothing] Deterministic power function, where
out = base power. An optional smooth-
ing value may be specified as a constructor
argument41.

Product out(D,R)
in...(B,D,R)

[smoothing] Deterministic product function, where
out =

∏
in. An optional smoothing

value may be specified as a constructor
argument41.

Rayleigh [σ](R)
value...(R)

[σ] Rayleigh distribution. There can be any
number of value variables, all associated
with the same parameter value. Parame-
ter σ can be a variable, or if constant, can
be specified in the constructor.

RealAndImaginary
ToComplex

out(C)
inReal(R)
inImag(R)

[smoothing] Deterministic conversion of two Real vari-
ables to a Complex variable, where the
first input represents the real compo-
nent and the second represents the imag-
inary component. An optional smoothing
value may be specified as a constructor
argument41.

RealJointNegate out(RJ)
in(RJ)

[smoothing] Deterministic negation function for Re-
alJoint variables, where out = -in. An op-
tional smoothing value may be specified
as a constructor argument41.

RealJointProjection out(R)
in(RJ)

index
[smoothing]

Deterministic conversion of a RealJoint
variable to a Real variable corresponding
to one specific element of the RealJoint
variable. The index constructor argu-
ment indicates which element of the Re-
alJoint variable to be used (using zero-
based numbering). An optional smooth-
ing value may be specified as a constructor
argument41.

46If the maximum value is 5 times larger than the largest value of λ, then less than 0.1 of the probability
mass would fall above this value.

226

Name Variables Constructor Description

RealJointSubtract out(RJ)
posIn(RJ)
negIn...(RJ)

[smoothing] Deterministic subtraction function for Re-
alJoint variables, where out = posIn −∑

negIn. An optional smoothing value
may be specified as a constructor
argument41.

RealJointSum out(RJ)
in...(RJ)

[smoothing] Deterministic summation function for Re-
alJoint variables, where out =

∑
in. An

optional smoothing value may be specified
as a constructor argument41.

RealJointTo
RealVector

out...(R)
in(RJ)

[smoothing] Deterministic conversion of a RealJoint
variable to a vector of Real variables. An
optional smoothing value may be specified
as a constructor argument41.

RealVectorTo
RealJoint

out(RJ)
in...(R)

[smoothing] Deterministic conversion of a vector of
Real variables to a RealJoint variable. An
optional smoothing value may be specified
as a constructor argument41.

Sin out(D,R)
in(D,R)

[smoothing] Deterministic sine function, where out =
sin(in). An optional smoothing value may
be specified as a constructor argument41.

Sinh out(D,R)
in(D,R)

[smoothing] Deterministic hyperbolic-sine function,
where out = sinh(in). An optional
smoothing value may be specified as a con-
structor argument41.

Sqrt out(D,R)
in(D,R)

[smoothing] Deterministic square root function, where
out = sqrt(in). An optional smoothing
value may be specified as a constructor
argument41.

Square out(D,R)
in(D,R)

[smoothing] Deterministic square function, where out
= in2. An optional smoothing value may
be specified as a constructor argument41.

Subtract out(D,R)
posIn(B,D,R)
negIn...(B,D,R)

[smoothing] Deterministic subtraction function, where
out = posIn −

∑
negIn. An optional

smoothing value may be specified as a con-
structor argument41.

Sum out(D,R)
in...(B,D,R)

[smoothing] Deterministic summation function, where
out =

∑
in. An optional smoothing

value may be specified as a constructor
argument41.

Tan out(D,R)
in(D,R)

[smoothing] Deterministic tangent function, where
out = tan(in). An optional smoothing
value may be specified as a constructor
argument41.

Tanh out(D,R)
in(D,R)

[smoothing] Deterministic hyperbolic-tangent func-
tion, where out = tanh(in). An optional
smoothing value may be specified as a con-
structor argument41.

227

Name Variables Constructor Description

VectorInnerProduct z(D,R)
x(D,R,RJ)
y(D,R,RJ)

[smoothing] Deterministic vector inner product func-
tion, z = xẏ, where x and y are vectors
and z is a scalar. Each vector input may
be either an array of scalar variables, or a
single RealJoint variable. The number of
elements in x and y must be identical. An
optional smoothing value may be specified
as a constructor argument41.

VonMises [µ](R)
[τ](R)
value...(R)

[µ]
[τ]

Von Mises distribution. There can be any
number of value variables, all associated
with the same parameter values. Parame-
ters µ (mean) and τ = 1

σ2 (precision) can
be variables, or if both are constant then
fixed parameters can be specified in the
constructor. The distribution is non-zero
for value variables in the range −π to π.

Xor out(B)
in...(B)

- Deterministic logical XOR function,
where out = XOR(in...).

5.9.1 Factor Creation Utility Functions

Dimple includes some helper functions to create other built-in factors using a similar syntax
to the overloaded MATLAB functions described in section 5.10. As for other overloaded
functions, above, Dimple automatically creates the factors as well as the output variable(s).
Such helper functions are defined for the following built-in distributions:

• Bernoulli

• Beta

• Binomial

• Categorical47

• CategoricalEnergyParameters

• Dirichlet

• ExchangeableDirichlet

• Gamma

• InverseGamma

• LogNormal

47This utility can be used to create either a Categorical or CategoricalUnnormalizedParameters factor,
depending on whether the first argument is a RealJoint variable or an array of Real variables.

228

• Multinomial48

• MultinomialEnergyParameters

• MultivariateNormal49

• NegativeExpGamma

• Normal

• Poisson50

• Rayleigh

• VonMises

For each, the arguments are the parameters of the distribution. For example:

W = Gamma(alpha , beta);

X = Normal(mean , precision);

Y = Categorical(alpha);

Z = Rayleigh(sigma);

D = Dirichlet(alpha);

E = ExchangeableDirichlet(dimension , alpha);

The parameters can be variables, constants51, or some of each52.

By default, calling one of these functions creates a single output variable, and the factor is
added to the most-recently created graph. But, optional arguments allow you to specify the
dimensions of the array of output variables, or to specify the factor graph. These arguments
can be in either order after the parameters. For example:

W = Gamma(alpha , beta , altGraph);

X = Normal(mean , precision , [100, 1]);

Y = Categorical(alpha , [10, 10, 2], aGraph);

Z = Rayleigh(sigma , myGraph , size(somethingElse));

Dimple also includes built-in helper functions to create other factors that aren’t distribu-
tions. Specifically:

48This utility can be used to create either a Multinomial or MultinomialUnnormalizedParameters factor,
depending on whether the first argument is a RealJoint variable or an array of Real variables.

49In the current version of Dimple, only constant parameters are supported by the MultivariateNormal
factor.

50This utility takes an argument λ, either a variable or constant, plus an additional argument maxK,
which indicates the maximum likely value of the output variable, k. The value of maxK should be a
multiple of the maximum likely value of λ (if maxK is 5 times larger than the largest value of λ, then less
than 0.1 of the probability mass would be greater than maxK).

51If all parameter inputs are constants, then instead of creating both variables and factors, the variables
are created, and the Input to each variable is set accordingly.

52For cases where a parameter is a vector of real values, the parameter may be a Real variable array, a
cell-arrays that may mix Real variables and constants, or an array of constants.

229

outValue = If(condition , trueValue , falseValue);

The “If” helper function implements a conditional assignment function using the built-in
Multiplexer factor. The function creates an output variable (or array of variables) that is
of the same type and dimension as the trueValue and falseValue variables. These two input
variables must either be of identical type, domain, and dimensions, or one of these may be
a constant. The condition must be a Bit variable or array of variables. If trueValue and
falseValue are arrays, the function creates an array of Multiplexer factors, each connected
to the corresponding inputs and outputs. In the case of an array, if condition is a scalar Bit
variable, all of these are connected to the same condition bit. Otherwise, condition must
be of the same dimension as the other inputs. As with the other factor creation utilities,
the function optionally takes a graph input to specify a particular graph in which to add
the factors.

Dimple also includes some built-in helper functions to create structured graphs, combining
smaller factors to form an efficient implementation of a larger subgraph. Specifically, the
following functions are provided:

• getNBitXorDef(n), where n is a positive integer. Returns a nestable graph and an
array of n-Bit connector variables. Efficient tree implementation of the XORDelta
function.

• getVXOR(n), where n is a positive integer. Returns a nestable graph and an array of
n-Bits connector variables. Constrains exactly one bit to be 1, and all others to be 0.

• MultiplexerCPD(domains) - See section 4.6.1

• MultiplexerCPD(domain, numZs) - See section 4.6.1

230

5.10 List of Overloaded MATLAB Operators and Functions

The following table lists the set of overloaded MATLAB operators that can be used to
implicitly create factors. The table shows the operator, the corresponding built-in factor
(as described in section 5.9), the valid variable data types of the inputs and outputs (B = Bit,
D = Discrete, or R = Real, C = Complex, RJ = RealJoint), and wether or not vectorized
inputs are supported. The use of these operators and functions is described in section 4.1.4.7.

Operator Factor Out In1 In2 Vectorized Description

& And B B B X Logical AND
| Or B B B X Logical OR
xor() Xor B B B X Logical XOR
∼ Not B B - X Logical NOT
+ Sum D,R53 D,R D,R X Plus

ComplexSum C C,R C,R X Complex plus
RealJointSum RJ RJ RJ - RealJoint plus

− Subtract D,R53 D,R D,R X Minus
ComplexSubtract C C,R C,R X Complex minus
RealJointSubtract RJ RJ RJ - RealJoint minus
Negate D,R53 D,R - X Unary minus
ComplexNegate C C, R - X Unary complex minus
RealJointNegate RJ RJ - - Unary RealJoint minus

∗ Product D,R53 D,R D,R X54 Scalar multiply
ComplexProduct C C,R C,R X54 Complex scalar multiply
VectorInnerProduct R D,R,RJ D,R,RJ - Vector inner product55

MatrixProduct R D,R D,R - Matrix multiply56

MatrixVectorProductR D,R D,R - Matrix-vector multiply57

MatrixRealJoint
VectorProduct

RJ RJ,D,R RJ,D,R - Matrix-vector multiply58

.∗ Product D,R53 D,R D,R X Point-wise multiply
ComplexProduct C C,R C,R X Complex pointwise multiply

/ Divide D,R53 D,R D,R X59 Scalar divide
ComplexDivide C C,R C,R X59 Complex scalar divide

./ Divide D,R53 D,R D,R X Point-wise divide
ComplexDivide C C,R C,R X Complex pointwise divide

∧ Power D,R53 D,R D,R X60 Scalar power
Square61 D,R53 D,R D,R X60 Scalar square

53If either input is Real, then the output is Real
54One of the inputs may be a vector as long as the other is a scalar.
55If both inputs are vectors of the same dimension, then the VectorInnerProduct factor will be used. Each

vector may be an array of scalar variables or a RealJoint variable.
56If both inputs are two-dimensional matrices of appropriate dimension, then the MatrixProduct factor

will be used.
57If one input is a vector and the other is a matrix of appropriate dimension, then the MatrixVectorProduct

factor will be used.
58If one input is a RealJoint variable and the other is a matrix of scalar variables or constants of appropriate

dimension, then the MatrixRealJointVectorProduct factor will be used.
59The dividend may be a vector as long as the divisor is a scalar.
60The base may be a vector as long as the exponent is a scalar.
61If the power is the constant 2, the Square factor is used instead of the Power factor.

231

Operator Factor Out In1 In2 Vectorized Description

.∧ Power D,R53 D,R D,R X Point-wise power
Square61 D,R53 D,R D,R X Point-wise square

′ ComplexConjugate C C - X Complex conjugate
< LessThan B D,R D,R X Less than
> GreaterThan B D,R D,R X Greater than
<= GreaterThan62 B D,R D,R X Less than or equal to
>= LessThan63 B D,R D,R X Greater than or equal to
Equals() Equals B B,D,R B,D,R64X Equals65

NotEquals() NotEquals B B,D,R B,D,R64X Not equals66

mod() - D D D X Modulo function67

abs() Abs D,R D,R - X Absolute value
ComplexAbs R C - X Complex absolute value

sqrt() Sqrt R R - X Square root
log() Log R R - X Natural log
exp() Exp R R - X Exponential function

ComplexExp C C - X Complex exponential
sin() Sin R R - X Sine
cos() Cos R R - X Cosine
tan() Tan R R - X Tangent
asin() ASin R R - X Arc-sine
acos() ACos R R - X Arc-cosine
atan() ATan R R - X Arc-tangent
sinh() Sinh R R - X Hyperbolic sine
cosh() Cosh R R - X Hyperbolic cosine
tanh() Tanh R R - X Hyperbolic tangent

62Uses GreaterThan factor, reversing the order.
63Uses LessThan factor, reversing the order.
64This function is not limited to two inputs, but can take an arbitrary number of inputs
65Equivalent to the == operator, but the == operator is not overloaded for this purpose so that it can

instead be used to determine whether or not two variables reference the same Dimple variable.
66Equivalent to the ∼= operator, but the ∼= operator is not overloaded for this purpose so that it can

instead be used to determine whether or not two variables reference the same Dimple variable.
67Currently, the mod() operator supports discrete variables only, and it uses the MATLAB definition of

mod on negative numbers. This may be subject to change in future versions.

232

5.11 Other Top Level Functions

5.11.1 setSolver

setSolver(’SolverName ’);

This function changes the default solver to the solver designated by the argument, which
is a string indicating the name of the solver (see section 5.1.2.1 for the list of valid solver
names, and section 5.6 for a description of each solver). The solver name is case insensitive.

5.11.2 dimpleVersion

Dimple provides a method to return a string describing the current Dimple version.

version = dimpleVersion ();

This will produce something of the form:

<Release Number > <Git Branch Name > YYY -MM-DD HH:MM:SS <Timezone Offset >

For example:

0.04 master 2013 -10 -11 14:00:05 -0400

The date in the version string represents the last git commit date associated with the
compiled code.

5.11.3 dimpleOptions

Returns a complete list option keys, corresponding to all of available Dimple options. See
section 5.4 for a description of the Dimple options mechanism.

dimpleOptions ()

233

A A Short Introduction to Factor Graphs

We introduce factor graphs, a powerful tool for statistical modeling. Factor graphs can be
used to describe a number of commonly used statistical models, such as hidden Markov
models, Markov random fields, Kalman filters, and Bayes nets.

Suppose that we are given a set of n discrete random variables: a1, ..., an. The random vari-
ables have some joint probability distribution: p(a1, a2, ..., an). Suppose that the joint prob-
ability distribution factors, in the following sense: there exist subsets S1, ..., Sk ⊆ {1, 2, ..., n}
where Sj = {Sj1, s

j
2, ..., s

j
t(j)} and such that p(a1, a2, ..., an) =

∏k
j=1 fj(asj1

, a
sj2
, ..., a

sj
t(j)

).

For example, if the ai form a Markov chain, then the joint probability can be factored as

p(a1, a2, ..., an) = p(a1)
n−1∏
j=1

p(aj+1|aj) (1)

= f0(a1)

n−1∏
j=1

fj(aj , aj+1) (2)

The factors above are normalized, in the sense that as the ai vary, the probabilities sum to
one. We will define our factors more generally and ask only that they are proportional to
the joint probability. So, we call the fj a collection of factors of p if

p(a1, a2, ..., an) ∝
k∏
j=1

fj(asj1
, a
sj2
, ..., a

sj
t(j)

)

The product of the factors then differs from the joint probability only by multiplication by
a normalizing constant.

When a probability distribution can be expressed as a product of small factors (i.e., |Sj |
is small for all j), then if is possible to invoke a host of powerful tools for modeling and
inference, as we will soon see.

Suppose that we are given a factored representation of a joint probability distribution. It is
possible to describe the structure of the factors as a graph. We can represent each variable
ai and each function fj by a node in the graph, and place an (undirected) edge between
node ai and node fj if and only if the variable ai is an argument in the function fj . These
two types of nodes are referred to as factor nodes and variable nodes. Because all edges
lie between the two disjoint classes of nodes, the resulting graph is bipartite. This graph is
called a factor graph.

In the remainder of this documentation, we slightly abuse notation and use fj and ai to
refer both to the nodes of the factor graph and to the underlying factors and variables (i.e.,
both the graphical representation of these entities and the mathematical entities underlying
them).

To understand what factor graphs look like, we will construct several examples. First, let
us continue with a Markov chain. Equation 1 expressed a Markov chain in factored form,

234

where
fj(aj , aj+1) = p(aj+1|aj)

We display the corresponding factor graph in the following figure:

Next, let us consider a hidden Markov model (HMM). We can construct the corresponding
factor graph by extending the previous example. An HMM contains a Markov chain tran-
siting from state ai to ai+1. There is also an observation bi made of each state; if we are
given ai, then bi is conditionally independent of all other variables. We can incorporate this
probability by using a factor:

gi(ai) = Pr(bi|ai)

The product of our factors is then

f0

n−1∏
j=1

fj(aj , aj + 1)

 n∏
j=1

gj(aj) = Pr(a1)

n−1∏
j=1

Pr(aj+1|aj)

 n∏
j=1

Pr(bj |aj)

= Pr(a1, ..., an, b1, ..., bn)

Since the bi observed, then Pr(b1, ..., bn) is a constant. Therefore

Pr(a1, ..., an, b1, ..., bn) ∝ Pr(a1, ..., an, b1, ..., bn)

Pr(b1, ..., bn)

= Pr(a1, ..., an|b1, ..., bn)

as desired.

235

The resulting factor graph takes the following form illustrated in the figure above. Note
that the variables bi need not appear explicitly in the factor graph; we have incorporated
their effect in the gi factors.

Generalizing from a Markov chain to an HMM illustrates a very powerful feature of factor
graphs. Complicated mathematical models are often composed of simpler parts. When
these models are expressed as factor graphs, we can frequently reuse the simpler factor
graphs to construct the more complicated ones. This can be done simply in Dimple by
using the nested graphs feature (see section 3.3 on Nested Graphs).

As a final example, we will construct a factor graph for error correction (for this more
advanced topic, we will assume the reader is familiar with LDPC codes). Suppose that we
receive a codeword from a 4-bit LDPC error-correcting code that has been corrupted by
noise. The sender wishes to communicate a four-bit codeword (a1, a2, a3, a4) satisfying some
parity check equations, but the receiver only observes the corrupted values (b1, b2, b3, b4).
(The domain of the bi is determined by the communication channel. For instance, if we
have a discrete binary symmetric channel, then the bi will be bits; if we have a continuous
additive white Gaussian noise channel and some modulation scheme, the bi will be real-
valued.) Let H be the parity check matrix of the LDPC code used, i.e., the codeword
(a1, a2, a3, a4) verifies the equation Ha = 0 mod 2.

For instance, suppose that H is the following parity check matrix:

H =

 1 1 0 1
1 1 1 0
0 1 1 1

Suppose that the error is independent, i.e., if we condition on ai, bi is conditionally inde-
pendent of the other variables. Then, the following factor graph represents the decoding
task at hand.

The construction above applies to any linear binary ECC. However, if every row and column
of H is sparse (as would be the case with an LDPC code), then every factor is small, and
every node in the factor graph will be of small degree.

Given a factor graph, the objective is often to compute the marginal distribution of the

236

random variables ai of the graph (this also allows us to find the most likely value taken by
each variable, by maximization of the marginal probability). Dimple provides an implemen-
tation of belief propagation (BP) (in its sum-product version), in order to approximately
compute the marginal distribution of each random variable.

BP is an iterative message-passing algorithm where messages pass along the edges of the
factor graph. A “message” can be viewed as an un-normalized probability distribution. The
algorithm comes in a number of variants depending on the message update rule and the
order of the message updates.

The sum-product form of BP generalizes a number of algorithms, including the “forward-
backward” algorithm of HMMs, and the BCJR algorithm of coding theory. It always gives
the exact answer when the underlying factor graph is a tree (if the graph contains no cycles).
Although it is not an exact algorithm for general graphs, BP has been found to give excellent
results for a wide variety of factor graphs, and runs particularly fast on sparse factor graphs
(i.e., factor graphs of low node degree).

237

B Creating Custom Dimple Extensions in Java

B.1 Creating a Custom Factor Function

There are some cases in which it is desirable to add a custom factor function written in
Java rather than MATLAB. Specific cases where this is desirable are:

• A factor function is needed to support continuous variables that is not available as a
Dimple built-in factor.

• A MATLAB factor function runs too slowly when creating a factor table, where a
Java implementation may run more quickly.

To create a custom factor function, you must create a Java class that extends the Dimple
FactorFunction class. When extending the FactorFunction class, the following method
must be overwritten:

• evalEnergy: Evaluates a set of input values and returns an energy value (negative
log of a weight value).

The user may extend other methods, as appropriate:

• Constructor: If a constructor is specified (for example, to pass constructor arguments),
it must call the constructor of the super class.

• isDirected: Indicates whether the factor function is directed. If directed, then there
are a set of directed outputs for which the marginal distribution for all possible input
values is a constant. If not overridden, this is assumed false.

• getDirectedToIndices: If a factor function is directed, indicates which edge indices
are the directed outputs (numbering from zero), returning an array of integers. There
are two forms of this method, which may be used depending on whether the set of
directed outputs depends on the number of edges in the factor that uses this factor
function (many factor functions support a variable number of edges). If isDirected
is overridden and can return true, then this method must also be overridden.

• isDeterministicDirected: Indicates whether a factor function is both directed and
deterministic. If deterministic and directed, then it is in the form of a deterministic
function such that for all possible settings of the input values there is exactly one
output value the results in a non-zero weight (or, equivalently, a non-infinite energy)68.
If not overridden, this is assumed false.

• evalDeterministic: If a factor function is directed and deterministic, this method
evaluates the values considered the inputs of the deterministic function and returns

68The indication that a factor function is deterministic directed is used by the Gibbs solver, and is necessary
for such factor functions to work when using the Gibbs solver.

238

the resulting values for the corresponding outputs. Note that these are not the weight
or energy values, but the actual values of the associated variables that are considered
outputs of the deterministic function. If isDeterministicDirected is overridden
and can return true, then this method must also be overridden.

• eval: Evaluates a set of input values and returns a weight instead of an energy value.
Overriding this method would only be useful if implementing this method can be done
significantly more computationally efficiently than the default implementation, which
calls evalEnergy and then computes exp(−energy).

The following is a very simple example of a custom factor function:

import com.analog.lyric.dimple.factorfunctions.core.FactorFunction;

/*

* This factor enforces equality between all variables and weights

* elements of the domain proportional to their value

*/

public class BigEquals extends FactorFunction

{

@Override

public final double evalEnergy(Value [] input)

{

if (input.length == 0)

return 0;

Value firstVal = input [0];

for (int i = 1; i < input.length; i++)

if (! input[i]. valueEquals(firstVal))

return Double.POSITIVE_INFINITY;

return 0;

}

}

239

B.2 Creating a Custom Proposal Kernel

In some cases, it may be useful to add a custom proposal kernel when using the Gibbs solver
with a Metropolis-Hastings sampler. In particular, since the block Metropolis-Hastings
sampler does not have a default proposal kernel, it is necessary to add a custom proposal
kernel in this case.

To create a custom proposal kernel, you must create a Java class that implements either
the Dimple IProposalKernel interface in the case of a single-variable proposal kernel, or
the IBlockProposalKernel interface in the case of a block proposal kernel.

These interfaces define the following methods that must be implemented:

• next This method takes the current value(s) of the associated variable(s) along with
the corresponding variable domain(s), and returns a proposal. The proposal object
returned (either a Proposal object for a single-variable proposal or a BlockProposal:
object for a block proposal) includes both the proposed value(s) as well as the forward
and reverse proposal probabilities (the negative log of these probabilities).

• setParameters: Allows the class to include user-specified parameters that can be set
to modify the behavior of the kernel. This method must be implemented but may be
empty if no parameters are needed.

• getParameters: Returns the value of any user-specified parameters that have been
specified. This method must be implemented but may return null if no parameters
are needed.

240

B.3 Compiling Dimple Extensions in Java

The new class must be compiled to class files, or optionally create a jar file. If using Eclipse,
users can simply create a new project, create the new class, and the .class files will be created
automatically.

241

B.4 Adding Java Binary to MATLAB Path

In MATLAB, you must use the javaaddpath call to add the Java class or jar files to the
javaclasspath. For example:

javaaddpath(’<path to my project >/ MyFactorFunctions/bin’);

or

javaaddpath(’<path to the jar >/myjar.jar’);

242

	What is Dimple?
	Installing Dimple
	Installing Binaries
	Installing from Source
	Adjusting MATLAB's Java Memory Limit

	Getting Started: Basic Examples
	A Hidden Markov Model
	A 4-bit XOR
	Nested Graphs
	An LDPC Code

	How to Use Dimple
	Defining Models
	Overview of Graph Structures
	Creating a Graph
	Creating Variables
	Types of Variables
	Specifying Variable Domains
	Discrete Variables
	Real Variables

	Creating Arrays of Variables
	Naming Variables

	Creating Factors and Connections to Variables
	Basic Factor Creation
	Vectorized Factor Creation
	Using MATLAB Factor Functions
	Using Factor Tables
	Using Sub-Graphs
	Using Built-In Factors
	Implicit Factor Creation Using Overloaded Operators and Functions
	Naming Factors

	Modifying an Existing Graph
	Removing a Factor
	Splitting Variables
	Joining Variables
	Joining Factors
	Changing Factor Tables

	Plotting a Graph
	Plotting Nested Graphs

	Structuring Software for Model Portability

	Performing Inference
	Choosing a Solver
	Conditioning on Input Data
	Using a Likelihood Function as Input
	Fixing a Variable to a Known Value
	Using a Data Source in a Rolled-Up Graph

	Choosing a Schedule
	Built-in Schedulers
	Custom Schedules

	Running the Solver
	Multithreading

	Getting the Results of Inference
	Explicit Scheduling and Retrieving Message Values

	Using Rolled Up Factor Graphs
	Markov Model
	Variable Streams and Slices
	Buffer Size
	DataSources
	DataSink
	Accessing Variables

	Markov Model with Parameter
	Real Variables
	Manually Advancing

	Using Finite Field Variables
	Overview
	Finite Fields Without Optimizations
	Optimized Finite Field Operations
	FiniteFieldVariables
	Addition
	Multiplication
	NVarFiniteFieldPlus
	Projection

	Primitive Polynomials
	Algorithmics

	Parameter Learning
	PseudoLikelihood Parameter Estimation on Undirected Graphs
	Creating a parameter learner
	Learning
	Batch Mode
	Setting Data
	Calculating the Pseudo Likelihood
	Calculating the Gradient
	Calculating the Numerical Gradient

	Expectation-Maximization on Directed Graphs

	Graph Libraries
	Multiplexer CPDs
	N-Bit Xor Definition

	API Reference
	FactorGraph
	Constructor
	Properties
	Solver
	Scheduler
	Schedule
	NumIterations
	NumSteps
	Name
	Label
	Score
	BetheFreeEnergy
	Internal Energy
	Bethe Entropy

	Methods
	addFactor
	addFactorVectorized
	addFactorNoCache
	addDirectedFactor
	initialize
	solve
	continueSolve
	solveOneStep
	advance
	hasNext
	baumWelch
	join
	split
	removeFactor
	plot
	addBoundaryVariables

	Introspection
	Retrieving All Factors
	Retrieving Factors but Not Nested Factor Graphs
	Retrieving Variables
	Retrieving All Nodes
	Determining if a FactorGraph is a tree
	Retrieving an Adjacency Matrix
	Depth First Search

	Variables and Related Classes
	Variable Types
	Common Properties and Methods
	Properties
	Name
	Label
	Domain
	Solver
	Guess
	Score
	Internal Energy
	Bethe Entropy
	Ports

	Methods
	setNames
	invokeSolverSpecificMethod
	invokeSolverSpecificMethodWithReturnValue

	Operators
	Operators for Implicit Factor Creation
	repmat

	Discrete
	Constructor
	Domain
	List of Matrix Dimensions

	Properties
	Belief
	Value
	Input
	FixedValue

	Methods
	hasFixedValue

	Bit
	Constructor
	Properties
	Belief
	Value
	Input
	FixedValue

	Methods
	hasFixedValue

	Real
	Constructor
	Properties
	Belief
	Value
	Input
	FixedValue

	Methods
	hasFixedValue

	RealJoint
	Constructor
	Properties
	Belief
	Value
	Input
	FixedValue

	Methods
	hasFixedValue

	Complex
	Constructor
	Properties
	Belief
	Value
	Input
	FixedValue

	Methods
	hasFixedValue

	FiniteFieldVariable
	Constructor

	DiscreteDomain
	Construction
	Properties
	Elements

	RealDomain
	Constructor
	Properties
	LB
	UB

	RealJointDomain
	Constructor
	Properties
	NumElements
	RealDomains

	ComplexDomain
	Constructor
	Properties
	NumElements
	RealDomains

	FiniteFieldDomain
	Construction
	Properties
	Elements
	PrimitivePolynomial
	N

	NormalParameters
	Constructor
	Properties
	Mean
	Precision
	Variance
	StandardDeviation

	MultivariateNormalParameters
	Constructor
	Properties
	Mean
	Covariance
	InformationVector
	InformationMatrix

	Factors and Related Classes
	Factor
	Properties
	Name
	Label
	DirectedTo
	Score
	InternalEnergy
	Bethe Entropy
	Belief
	Ports

	Methods
	setNames
	invokeSolverSpecificMethod
	invokeSolverSpecificMethodWithReturnValue

	DiscreteFactor
	Properties
	Belief
	FullBelief

	FactorFunction
	Constructor

	FactorTable
	Constructor
	Properties
	Indices
	Weights
	Domains

	Methods
	set
	get
	change

	Options
	Option Keys
	Setting Options
	Looking up Option Values
	Option Initialization
	Setting Defaults on the Dimple Environment

	Schedulers
	Solvers
	Solver-Specific Options
	Solver-Specific Methods
	Common Options
	SolverOptions.enableMultithreading
	DimpleOptions.randomSeed

	Common Methods
	getMultithreadingManager
	Multithreading Modes
	Setting Number of Threads and Workers

	Common Belief Propagation Options
	BPOptions.iterations
	BPOptions.damping
	BPOptions.nodeSpecificDamping
	BPOptions.maxMessageSize
	BPOptions.updateApproach
	BPOptions.automaticExecutionTimeScalingFactor
	BPOptions.automaticMemoryAllocationScalingFactor
	BPOptions.optimizedUpdateSparseThreshold

	Sum-Product Solver
	GibbsOptions for Sampled Factors

	Min-Sum Solver
	Junction Tree Solver
	Junction Tree Options
	JunctionTreeOptions.useConditioning
	JunctionTreeOptions.maxTransformationAttempts

	Gibbs Solver
	Gibbs Options
	GibbsOptions.numSamples
	GibbsOptions.scansPerSample
	GibbsOptions.burnInScans
	GibbsOptions.numRandomRestarts
	GibbsOptions.saveAllSamples
	GibbsOptions.saveAllScores
	GibbsOptions.discreteSampler
	GibbsOptions.realSampler
	GibbsOptions.enableAutomaticConjugateSampling
	GibbsOptions.computeRealJointBeliefMoments
	GibbsOptions.enableAnnealing
	GibbsOptions.annealingHalfLife
	GibbsOptions.initialTemperature

	Graph Methods
	Variable Methods
	Discrete-Variable-Specific Methods
	Real-Variable-Specific Methods
	RealJoint-Variable-Specific Methods
	Factor Methods
	Schedulers and Schedules
	Block Schedule Entries

	Particle BP Solver
	Particle BP Options
	ParticleBPOptions.numParticles
	ParticleBPOptions.resamplingUpdatesPerParticle
	ParticleBPOptions.iterationsBetweenResampling
	ParticleBPOptions.initialParticleRange
	ParticleBPOptions.proposalKernel
	ParticleBPOptions.enableAnnealing
	ParticleBPOptions.annealingHalfLife
	ParticleBPOptions.initialTemperature

	Graph Methods
	Variable Methods
	Real-Variable-Specific Methods

	LP Solver
	LP Options
	LPOptions.LPSolver
	LPSolver.MatlabLPSolver

	Proposal Kernels
	NormalProposalKernel
	NormalProposalKernel.standardDeviation

	CircularNormalProposalKernel
	CircularNormalProposalKernel.lowerBound
	CircularNormalProposalKernel.upperBound

	UniformDiscreteProposalKernel

	Samplers
	CDFSampler
	MHSampler
	MHSampler.discreteProposalKernel
	MHSampler.realProposalKernel

	SliceSampler
	SliceSampler.initialSliceWidth
	SliceSampler.maximumDoublings

	SuwaTodoSampler

	Streaming Data
	Variable Stream Common Properties and Methods
	Properties
	DataSource
	DataSink
	Dimensions
	Size
	Variables
	Domain

	Methods
	getSlice

	DiscreteStream
	Constructor

	BitStream
	Constructor

	RealStream
	Constructor

	RealJointStream
	Constructor

	ComplexStream
	Constructor

	FactorGraphStream
	Properties
	BufferSize

	Data Source Common Properties and Methods
	Properties
	Dimensions

	DoubleArrayDataSource
	Constructor
	Methods
	add

	MultivariateDataSource
	Constructor
	Methods
	add

	FactorFunctionDataSource
	Constructor
	Methods
	add

	Data Sink Common Properties and Methods
	Properties
	Dimensions

	Methods
	hasNext

	DoubleArrayDataSink
	Constructor
	Properties
	Array

	Methods
	getNext

	MultivariateDataSink
	Constructor
	Methods
	getNext

	Event Monitoring
	Event types
	Event logging
	Advanced event handling

	List of Built-in Factors
	Factor Creation Utility Functions

	List of Overloaded MATLAB Operators and Functions
	Other Top Level Functions
	setSolver
	dimpleVersion
	dimpleOptions

	Appendix A Short Introduction to Factor Graphs
	Appendix Creating Custom Dimple Extensions in Java
	Creating a Custom Factor Function
	Creating a Custom Proposal Kernel
	Compiling Dimple Extensions in Java
	Adding Java Binary to MATLAB Path

