
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Physics

Computer Engineering

Taavi Ilves

ESTCUBE-1 ELECTRICAL POWER SYSTEM

OPERATION SOFTWARE

Master’s Thesis

Supervisors: Ph.D Mart Noorma

M.Sc. Mihkel Pajusalu

Tartu 2013

Contents

Acronyms and abbreviations 6

1 Introduction 8

2 Electrical Power System 9
2.1 ESTCube-1 and its subsystems 9

2.2 EPS . 9

2.3 PDU board . 11

2.4 MCU board . 12

2.4.1 Microcontroller . 12

2.4.2 Real time clock . 13

2.4.3 Data storage . 13

2.4.4 Measurement systems . 14

2.4.5 Other external components 15

3 Requirements and platform 16
3.1 Requirements . 16

3.1.1 Functional requirements 16

3.1.2 Nonfunctional requirements 17

3.2 AVR platform design . 19

3.2.1 Memory . 19

3.2.2 Timers . 21

3.2.3 Interrupts . 21

3.3 Build toolchain . 22

3.3.1 avr-gcc optimization 23

4 Implementation overview 24
4.1 Structure . 24

4.1.1 Naming conventions . 25

4.1.2 Source files structure . 25

4.1.3 Drivers . 26

3

CONTENTS CONTENTS

4.1.4 Frontend . 28

4.1.5 Utils . 29

4.2 Software components . 30

4.2.1 ICP . 30

4.2.2 Bootloader . 32

4.2.3 Guardian . 33

4.2.4 Command handling . 34

4.2.5 Beacon . 36

4.3 Running modes . 37

4.3.1 Access Port mode . 37

4.3.2 Safe mode . 38

4.3.3 Normal mode . 38

5 Development and testing 39

6 Results 40

7 Conclusion 41

8 Acknowledgments 42

References 43

ESTCube-1 elektrienergia alamsüsteemi operatsiooni tarkvara 47

Appendices 49

Appendix A CD Contents 49

Appendix B Version upgrade history 50
B.0.4 Version 0x07 . 50

B.0.5 Version 0x08 . 50

B.0.6 Version 0x09 . 51

B.0.7 Version 0x0A . 51

B.0.8 Version 0x0B . 52

4

CONTENTS CONTENTS

B.0.9 Version 0x0C . 52

Appendix C Development and testing platform 53

Appendix D EPS Commands 56

Appendix E -O1 optimization level explanation 61

5

Acronyms and abbreviations

1U one unit

ADC Analog-to-Digital Converter

ALU Arithmetic Logic Unit

APD Access Port Device

BLS Boot Loader Section

CTL Subsystem Control Circuit

EPS Electrical Power System

ESB EPS System Bus

FRAM Ferroelectric Random-Access Memory

I2C Inter-integrated Circuit

ICP Internal Communication Protocol

LEO Low-Earth Orbit

MPB Main Power Bus

PA Radio Power Amplifier

PCB Printed Circuit Board

PWM Pulse Width Modulation

RBF Remove Before Flight

RISC Reduced Instruction Set Computer

RTC Real-time Clock

SPB Secondary Power Bus

SPI Serial Peripheral Interface

SSB Satellite System Bus

TCXO Temperature-Compensated Crystal Oscillator

6

USART Universal Synchronous/Asynchronous Receiver/Transmitter

WDT Watchdog Timer

XO Crystal Oscillator

7

1 INTRODUCTION

1 Introduction

Adoption of the CubeSat standard [1] has been one of the most notable develop-

ments in 21st century space technology. ESTCube-1 is a one unit (1U) CubeSat

built by students from the University of Tartu, Tallinn Technical University and

Estonian Aviation Academy. [2, 3, 4, 5, 6] Its mission payload was designed and

assembled in collaboration with the Finnish Meteorological Institute and the Ger-

man Aerospace Center (DLR).

ESTCube-1 is built from separate semi-independent modules, or subsystems, all

of which have their own dedicated functions. One of the subsystems is the Electri-

cal Power System (EPS); its main functions are power harvesting from solar cells,

power storage and distribution to other subsystems. Some of its functions are not

directly connected to power handling for example beacon sending and Real-time

Clock (RTC).

Satellite power management is a very demanding and responsible job which must

be handled in conjunction with hardware and software. Lower level decisions

are made on the electronic level; higher level decisions, on the other hand, are

done using software (e.g. power distribution between subsystems). This work is

focused on EPS software design, structure, and specific components.

The goals of this work are as follows:

• build and test EPS operation software,

• to give an overview of hardware from the software’s perspective,

• list the requirements for building software,

• outline software structure, design and important components,

• produce a complete and stable build system.

Work presented in this study was conducted over half a year and is still ongoing

process at the time of writing, due to successful launch of ESTCube-1 on May 7

2013.

8

2.2 EPS 2 ELECTRICAL POWER SYSTEM

2 Electrical Power System

2.1 ESTCube-1 and its subsystems

ESTCube-1 is CubeSat with a main mission to test E-sail tether in LEO plasma

conditions. [7, 8, 9] Satellite is modular by design and its modules are semi-

independent functional subsystems. All connections between subsystems are over

Satellite System Bus (SSB). Table 1 lists all subsystems.

Subsystem Name Main function
ADCS Attitude Determination and

Control System

attitude determination, magneto-

torquers control

CAM Camera subsystem taking images of mission [2]

CDHS Command and Data Handling

System

mission control[3]

COM Communication subsystem radio communications

EPS Electrical Power System power harvesting, storing, distri-

bution [4, 5, 6]

PL Payload main mission payload

Table 1: ESTCube-1 subsystems

2.2 EPS

EPS is a subsystem of ESTCube-1; its main functions are power harvesting, stor-

ing and distributing and low level decision-making in terms of satellite overall

and specific subsystems states. EPS is also the first subsystem in ESTCube-1 to

receive power in the initial start-up and it is directly controlling first 48 hours in

space by being the only powered up subsystem.

EPS consists of four function-specific submodules: solar energy harvesting, power

9

2.2 EPS 2 ELECTRICAL POWER SYSTEM

storage, power distribution and control block. These submodules are all connected

over Main Power Bus (MPB). MPB’s typical normal voltages range between 3.7

- 4.2 V and has the same voltage as batteries. [8, 10] General design from power

perspective is shown on Figure 1, the direction of current is shown with arrows.

EPS consists of two Printed Circuit Board (PCB)s which are connected over

EPS System Bus (ESB). One board contains all the control logic (MCU board,

explained in detail in Section 2.4) with higher level circuitry and the second one

consists of power managing circuits (PDU board), including switches, regulators,

battery protection, solar panel MPPTs etc. ESB has 2x24 shared lines between

MCU and PDU board.

EPS is connected to other subsystems over SSB which contains all the shared lines

for data and power. SSB has 4x30 inter-connected pins; 43 of those are grounded,

the rest act as power lines for 3.3V, 5V, 12V; digital signal pins for 3.3V and 5V;

and some analog signal pins for mission control.

Figure 1: General design of the electrical power system

Next follows a brief introduction to PDU board functions and components. PDU

10

2.3 PDU board 2 ELECTRICAL POWER SYSTEM

board specifics are not in the scope of this thesis and a lot of details are left out

to call attention only to the necessary details of the control logic. There are other

works explaining hardware design topics in detail. [6, 8, 10]

2.3 PDU board

PDU board has three main functions – energy harvesting, storage and power dis-

tribution.

Energy harvesting from solar arrays are done by three parallel MPPT modules.

Each module contains independent boost converters with embedded MPPT (SPV-

1040, STMicroelectronics) and the current sense chip (LT6105, Linear Technol-

ogy). Parallel configuration is used for redundancy to lower the risk of single point

of failure. Separate MPPT chips are used to free up MCU resources and to make

MPPT system autonomous. [8] Energy harvesting module outputs are connected

to MPB.

All harvested energy is stored in two P-CGR 18650C Lithium-Ion cells (Pana-

sonic) providing 9Wh total. Both batteries are connected to MPB through bat-

tery protection circuits containing current limiting chips (TPS2557, Texas Instru-

ments) which also include FRAM state savers for switching charge and discharge.

MPB is connected to satellite subsystems with 3.3 V, 5 V, and 12V power lines.

Each voltage line has two parallel switching regulators followed by a subsystem

Subsystem Control Circuit (CTL) circuit. LTC3440 buck-boost converters (Lin-

ear Technology) are used for 3.3V and 5V switching regulators; LM2700 boost

converters (National Semiconductors) are used for 12V switching regulators. A

CTL consists of current limiting switches (TPS2557 or TPS2551, Texas Instru-

ments), current sense chips, and FRAM state savers. Only exception is 12V line

which doesn’t include a CTL circuitry.

11

2.4 MCU board 2 ELECTRICAL POWER SYSTEM

2.4 MCU board

MCU board contains components needed for governing EPS, communicating with

other subsystems and providing them power. At the heart of the MCU board lies

microprocessor ATmega1280 (Atmel Corporation). The processor is supported by

three separate Ferroelectric Random-Access Memory (FRAM) chips, a real time

clock, an I/O expander, different level-converters, a Watchdog Timer (WDT), and

a circuit for beacon keyer.

MCU board also includes certain power management and measurement compo-

nents for Secondary Power Bus (SPB). Parallel array of capacitors is present.

These capacitors are charged via MPB and are capable to hold enough charge to

keep processor alive in the order of 100ms.[9] This backup time allows the pro-

cessor maintenance job to detect a faulty consumer, short-circuit or other failure.

The Processor can then isolate the issue by shutting down relevant regulators or

CTLs. Power maintenance and repair jobs are part of the Guardian routine which

are discussed in Section 4.2.3.

Next the key components in controller logic are introduced to understand the con-

text for writing software for EPS.

2.4.1 Microcontroller

The main processing unit in EPS is ATmega1280 from Atmel AVR micropro-

cessor family and its role varies from simple subsystem on/off switching to high

level communication and satellite decision-making. ATmega1280 has been tested

in radiation environment similar to Low-Earth Orbit (LEO) before [11] and was

considered suitable for the current mission. [8]

ATmega1280 is an 8-bit advanced RISC architecture microprocessor with 128

KB in-system programmable flash memory. Its maximum main clock frequency

is 16 MHz, although, in EPS, 8 MHz clock is used. [12] It features two 8-bit

timer/counters, four 16-bit timer/counters with PWM generation functions, 8/16

12

2.4 MCU board 2 ELECTRICAL POWER SYSTEM

channel 10bit Analog-to-Digital Converter (ADC), four Universal Synchronous/

Asynchronous Receiver/Transmitter (USART) I/O and different internal, and ex-

ternal interrupt sources, to name some of its most prominent features from EPS

perspective. The processor is viewed as a programming environment in Section

3.2.

Microcontroller has JTAG interface for testing and programming the on-chip re-

programmable flash which has been divided into Boot Program and Application

Program sections. [12] The processor also provides Boot Loader Support which

allows custom bootloader to be used with external memory support. EPS specific

bootloader is discussed in Section 4.2.2.

ATmega1280 is powered by SPB and it requires 5V.

2.4.2 Real time clock

Timekeeping is designated to DS3234 (Maxim) chip which is an accurate RTC

with an integrated Temperature-Compensated Crystal Oscillator (TCXO). [13]

Communication between MCU and RTC is made over an Serial Peripheral Inter-

face (SPI). DS3234 also supports a backup battery as an alternative power source,

but it was to not included to simplify the design.

2.4.3 Data storage

For data storage purposes three separate FRAMs are used – one 256 kb FM18W08

and two 2Mb FM25V20. Both chips are manufactured by Ramtron International

Corporation.

FM18W08 is connected with processor via ATmega1280 External Memory Inter-

face which allows very comfortable access to reading and writing from program-

ming point of view. It holds general information about the state of the satellite

that needs to survive shorter and longer periods of power outage like:

• initial start-up parameters,

13

2.4 MCU board 2 ELECTRICAL POWER SYSTEM

• different purpose registers,

• counters,

• time-stamps,

• bootloader internal housekeeping data, etc.

It offers 38 years of data retention which is more than enough for the current

mission.[14]

Data that needs more space is kept in FM25V20 chips which are communicated

via a SPI bus. Boot loader firmware binary images and logging framework data

are currently kept in FM25V20 chips, leaving much free space for future needs,

e.g. longer period telemetry gathering. FM25V20 provides reliable data retention

for 10 years. [15]

2.4.4 Measurement systems

Both MCU and PDU boards have different current and voltage measure points

which gives a very detailed overview regarding consumed, stored and produced

electrical power. Three different Analog-to-Digital Converter (ADC) are used:

MAX1230 (Maxim), MAX1119 (Maxim), and ATmega1280 integrated ADC.

MAX1230 is a 12-bit 16 input channel SPI interfaced ADC with an operating

temperature range from -40◦C to +85◦C. [16] Two different MAX1230 chips,

providing a total of 32 measure points, are used mainly for measuring the current

and voltage of regulators, CTLs, and magnetic torquers.

MAX1119 is a 8-bit dual channel ADC with an SPI interface and similar temper-

ature parameters as MAX1230. [17] Two MAX1119 are used to measure MBP

and SBP external voltage and battery A & B temperatures.

ADC from ATmel1280 offers 10-bit resolution from up to 16 multiplexed input

signals, 13 of which are used for SPB, MPB, MPPTs, and batteries.

Telemetry data is used for analyzing satellite behavior both by ground station and

Guardian routine (Section 4.2.3).

14

2.4 MCU board 2 ELECTRICAL POWER SYSTEM

2.4.5 Other external components

Although ATmega1280 hosts an internal Watchdog Timer (WDT), a separate ex-

ternal WDT MAX6369 (Maxim) is used. Internal WDTs are easy to integrate but

are more likely to be affected by errors caused by bit-polarity flipping, making

them less reliable. [18] MAX6369 is statically set up by three pull-up resistors.

This setup requires WDT input to be toggled at least once in 16 seconds to avoid

MCU reset. [19]

Although not residing on EPS MCU or PDU board, EPS uses Si750 directly

in COM subsystem over SSB. Si750 is an Inter-integrated Circuit (I2C) pro-

grammable Crystal Oscillator (XO) used for downlink radio. [20] EPS uses it

directly to send beacon both in safe and normal operational mode. Beacon imple-

mentation specifics are explained in Section 4.2.5.

15

3 REQUIREMENTS AND PLATFORM

3 Requirements and platform

Software requirements and chosen platform must be considered before implemen-

tation. This section lists functional and nonfunctional requirements for EPS, in-

troduces AVR specific features and aspects and AVR toolchain which are essential

to implementation.

3.1 Requirements

3.1.1 Functional requirements

1. Initial start in space requirements are listed in chronological order:

(a) After receiving first time power with Remove Before Flight (RBF)

pins removed and kill-switches released, wait 30 minutes. Every sub-

system beside EPS are shut down, antennas are not opened and nothing

is being broadcasted.

(b) Run the antennas opening-procedure 10 times in 30 second cycles –

antennaburner on for 15 seconds and off for 15 seconds.

(c) Wait 10 minutes.

(d) From the initial start, send 48-hour safe-mode beacon in three minute

cycles.

(e) Proceed to safe mode.

2. Do not run initial start sequence when any of RBF pin is connected.

3. In safe mode, send beacon every three minutes.

4. In normal mode, send beacon upon CDHS request.

5. Reserve Radio Power Amplifier (PA) resource to COM, when COM re-

quests.

16

3.1 Requirements 3 REQUIREMENTS AND PLATFORM

6. RTC can be adjusted from Ground Station.

7. Provide RTC synchronization for other subsystems.

8. Provide ADCS with a controlling interface for magnetotorquers.

9. Provide an interface to power up, down and reset every subsystem.

10. Provide detailed data about the electrical conditions in satellite.

11. Receive and send out commands in Internal Communication Protocol (ICP)

format over UART. All commands must share CDHS command header.

12. Provide an interface for software updates over UART.

13. When connected to Access Port Device (APD), provide requested control

over all regulators and CTLs, provide requested debugging data, support

software updates, and be able to charge batteries.

14. When connected to APD, antenna burner must not be activated and COM5V

CTL must not be switched on.

15. Protect Li-Ion batteries from overcharging or depletion. Batteries must be

preserved as long as possible.

16. Keep COM running to enable up- and downlink with GS.

17. Keep CDHS running.

18. Reserve PA to COM upon request.

19. PA can be forced to shut down upon request. After shutting down PA cannot

be powered on, until requested.

3.1.2 Nonfunctional requirements

1. Toggle watchdog timer at least once in every 16 seconds.

17

3.1 Requirements 3 REQUIREMENTS AND PLATFORM

2. Be able to run without batteries in case of damaged or dead batteries.

3. Reserve PA to COM under one seconds, upon request. Interrupt beacon-

sending procedure if needed.

4. Reserve PA to COM for eight seconds, upon request. When COM releases

PA, keep PA reservation for four seconds. PA reservation can be renewed at

any time, when requested.

5. Be able to detect communication problems with COM and CDHS and reset

those subsystems if needed.

6. In case of communication problems with CDHS or COM, provide alterna-

tive communication routes to those subsystems.

7. Support log of software behavior. Logging data must survive resets.

8. Commit reset of the satellite in seven days if no communication with ground

station has been established in that time.

9. Have a counter for software resets.

10. Software updater must be able to detect faults in firmware images and re-

cover from faulty software by committing rollback to fail-safe image. Roll-

back should be committed when ten successive resets have been made under

60 seconds.

11. Software updater should be able to keep three 64 kb firmware images. Two

images slots should be over-writeable by GS operator any time. Fallback

image slot overwriting must be available with separate procedure descrip-

tions (may contain multiple software updates).

12. Software updater must provide metadata information about uploaded im-

age files, e.g. image size, version, checksum, and exact upload completion

progress.

18

3.2 AVR platform design 3 REQUIREMENTS AND PLATFORM

13. Subsystem must do everything to be functional in case of radiation-induced

errors. Although protection from radiation is mainly achieved by hardware

design, software must consider that radiation induced errors will happen.

3.2 AVR platform design

AVR microprocessor family uses modified Harvard architecture, which means that

program and data use separate memories and buses. This allows pre-fetch next

instruction from program memory, while current instruction is being executed.

This, in turn, allows processor to execute instructions in each clock cycle. AVR

features 32 general purpose 8-bit registers with one clock cycle access time. An

Arithmetic Logic Unit (ALU) can access operands, execute operation and store

the result back into the general register within one clock cycle. [12, 21] AVR is

Reduced Instruction Set Computer (RISC) and most of its instructions take 1-2

clock cycles, lengthiest are 4-5 clocks branching operations (RCALL, ICALL,

EICALL, CALL, RET, RETI). [12, 22]

3.2.1 Memory

ATmega1280 has 8KB internal SRAM for program memory which hosts by de-

fault .bss- & .data variables, heap, and stack. .bss holds uninitialized global and

static variables, .data holds defined static data. Heap is used for dynamic mem-

ory allocation and stack temporary data, local variables, and return addresses af-

ter interrupts and subroutine calls. [23, 12] External RAM can be over External

Memory Interface.

AVR gcc allows different configurations for holding variables, heap or stack in

external RAM, depending on implementation specifics. Internal RAM can be ac-

cessed faster and it is a strongly advised to hold stack in internal RAM, because

of frequent use of stack. Although EPS uses external RAM, default memory con-

figuration is still utilized, because external memory is slower and less reliable.

19

3.2 AVR platform design 3 REQUIREMENTS AND PLATFORM

Figure 2 illustrates default AVR memory configuration. The size of the external

RAM is illustrative on the figure.

Figure 2: AVR RAM overview

Because of the dynamic nature of heap and stack size, stack-heap collision can

occur, which results in non-predictable effects, such as resets or undesired be-

havior. AVR does not provide any tools to avoid stack-heap collision or estimate

stack size at all. There are some indirect ways to measure stack size provided by

AVR community, but these are not always trustworthy and does not prevent the

collision problem. [24]

EPS implementation avoids dynamic memory allocation (malloc(), realloc(),

calloc() and free() commands in AVR libc library), making heap growth

minimal. Only places where malloc() is used are in ICP (see section 4.2.1)

initialization procedures, executing these calls only once in program start-up.

On the contrary, stack growth and shrinking is a normal RAM usage during pro-

gram execution, since subroutine calls push return address into stack and using

local variables pushes general registers into stack. After subroutine end, general

registers are restored, return address is popped out of stack and jumped onto. Sim-

ilar processes happen on interrupts.

When interrupt vector is being executed, another interrupt can occur. By default,

AVR allows interrupts within interrupts, since managing Status Register (SREG)

is left to software. [12] In some circumstances this can lead to unfinished inter-

rupts growing stack until collision appears. To avoid this kind of behavior, every

20

3.2 AVR platform design 3 REQUIREMENTS AND PLATFORM

interrupt should disable interrupts while its execution with cli() and sei()

commands.

There are also compiler optimizations that fight against stack-heap collisions that

are discussed in Section 3.3.1.

3.2.2 Timers

AVR features two 8-bit and four 16-bit timers with rich feature set, e.g. indepen-

dent prescaler and compare modes, Pulse Width Modulation (PWM) generation,

and different interrupt sources. Timer use in EPS is shown in Table 2. All func-

tions are explained in software components Section 4.2.

Timer Resolution Main function
Timer 0 8-bit Software UART

Timer 1 16-bit Software UART receive

Timer 2 8-bit unused

Timer 3 16-bit Beacon keyer

Timer 4 16-bit PWM generation for magnetotorquers

Timer 5 16-bit General purpose 1 second tick

Table 2: EPS timer usage

3.2.3 Interrupts

ATmega1280 defines 57 interrupts, 49 of these are internal interrupts and 8 are

external. Internal interrupts include reset, USART, I2C, SPI, analog compara-

tor, ADC conversion, pin change, and different timer related interrupts. External

interrupts are connected to specific AVR I/O pins.

EPS interrupts are listed in table 3.

21

3.3 Build toolchain 3 REQUIREMENTS AND PLATFORM

Interrupt name General description
ADC_vect Internal ADC Conversion Complete

USART1_RX_vect USART receive buffer for COM

USART1_UDRE_vect USART transmit buffer for COM

USART3_RX_vect USART receive buffer for CDHS

USART3_UDRE_vect USART transmit buffer for CDHS

TWI_vect I2C communication

TIMER0_COMPA_vect Software UART receive and transmit timings han-

dling

TIMER1_CAPT_vect Software UART receive pin falling edge detect

TIMER3_COMPA_vect Beacon keyer

TIMER5_COMPA_vect General purpose second tasks

Table 3: EPS interrupts

3.3 Build toolchain

Atmel provides build toolchains for Assembler and C languages with its AVR

Studio environment. Software implementation for EPS is written in C and most

of development work is done using AVR 8-bit GNU Toolchain version 3.3.1 from

AVR Studio 5.1. For flight builds AVR 8-bit GNU Toolchain version got upgraded

to 3.4.2, since 3.3.1 lacked inline optimization features.

AVR GNU Toolchain includes compiler (avr-gcc), binutils (assembler, linker),

and source code libraries (avr-libc). All these tools are part of GNU ecosystem

and they have been patched to include AVR specific changes. [25]

Build toolchain is used by GNU Make build, which is responsible for compilation,

linking and creating different outputs, e.g. binary image, assembly and Intel HEX

file-formats. GNU Make is configured with Makefile, which specifies all the

options, flags and optimizations used by building process. Besides normal build

procedures, building for test target and standardized Subversion tagging is also

possible. Makefile is included in Appendix A.

22

3.3 Build toolchain 3 REQUIREMENTS AND PLATFORM

3.3.1 avr-gcc optimization

One part of compilation is code optimization which directly affects machine code

size and its running speed. avr-gcc offers many independent optimization op-

tions, but some more common optimizations are grouped into optimization levels,

i.e. -O0, -O1, -O2, -O3, and -Os. -O0 means no optimization is used, -O3 is high-

est optimization level and -Os optimizes output for size. EPS uses -O1 level with

few extra flags, listed below with short explanations [26]:

• -finline-small-functions – integrate functions into their callers

when their body is smaller than the expected function call code,

• -finline-functions-called-once – consider all static func-

tions called once for inlining into their caller even if they are not marked

inline,

• -findirect-inlining – inline also indirect calls that are discovered

to be known at compile time thanks to previous inlining,

• -ffunction-sections – allows garbage collection to remove unused

functions in linker stage with –gc-sections option,

• -fpack-struct – pack all structure members together without holes,

• -fshort-enums – allocate to an enum type only as many bytes as it

needs for the declared range of possible values,

• -O1 – see Appendix E for complete list.

-finline-small-functions, -finline-functions-called-once,

and -findirect-inlining are used to lower the number of subroutine calls,

which cause stack growth and helps to lower potential risk of stack-heap collision.

23

4 IMPLEMENTATION OVERVIEW

4 Implementation overview

In order to meet all the requirements both lower and higher level software are

needed. EPS operation software gathers all needed parts for using the lower level

devices, e.g. analog digital converters, external FRAM modules, etc., and is re-

sponsible for communicating with the ground station and other subsystems. This

section describes various aspects of EPS operational software implementation,

e.g. code structure, running modes, different software components, and higher

level command-handling.

EPS operation software implementation is written in C language.

Latest version of operation software is included in Appendix A.

EPS_Commander.c is not included in the source files for confidentiality rea-

sons.

4.1 Structure

At the basic structural level all software is divided into separate files based on their

functionality. Nearly every functional entity consists of header files (.h exten-

sion) and real implementation files (.c extension). Header file defines functional

entity’s external interface – all functions what are useful for some other functional

entity. Function prototype consists of return type, function name, and function

parameters. Every command defined in header must be implemented in its imple-

mentation file. Implementation files usually use local functions and parameters to

provide all the required functionality. These local functions and parameters are

not visible and accessible to other functional entities.

24

4.1 Structure 4 IMPLEMENTATION OVERVIEW

4.1.1 Naming conventions

Source files follow custom naming convention for every file, interfaced subroutine

and global variable, with some exceptions regarding software components. Nam-

ing convention is used to ease navigating and separation of different functional

entities.

Every source file in source file tree has a prefix ’EPS_’, followed by the actual

functional entity name, starting with a capital letter, and ending with file extension.

Allowed extensions are .h for interfaces and .c for implementations. Following

examples illustrate the format: EPS_Timekeeper.c, EPS_Guardian.h.

Subroutines and variables described in interface must have prefix ’EPS_’, fol-

lowed by interface name plus underscore, and then subroutine or variable name

starting with a lowercase letter. The following example demonstrates the outcome

for one function and one global variable: EPS_Unsorted_unsetCdhsFw(),

EPS_Main_mode.

All macros are written in capital letters with underscores between words.

These main principles are being followed quite clearly throughout the source files,

but many deviations still exist. The most common deviations are arbitrary usage

of camel-case, underscore between words and lack of ’EPS_’ or ’EPS_Name_’

prefixes. These deficiencies are caused mostly by the lack of specific naming

conventions documentation and independent development process. Luckily, mod-

ern integrated development environments offer comfortable refactoring tools that

feature variable and function renaming.

4.1.2 Source files structure

The most important functional entity is EPS_Main. It defines start-up & main

loop procedures and thus gathers all the functionality and behavior of EPS. EPS_Main

resides in the source directory root. The main loop is seen on Figure 3

25

4.1 Structure 4 IMPLEMENTATION OVERVIEW

Figure 3: Main program loop

All other source files are divided into three general categories based on their pur-

pose and placed inside different directories under the root directory. Low level de-

vice drivers reside in drivers, frontend tools using these drivers in frontend,

and different higher level utilities in util directories. All these directories host

include directory, which holds all interface files.

4.1.3 Drivers

EPS_SPI and EPS_TWI are complete interfaces to SPI and I2C protocols, expos-

ing AVR corresponding features. Both drivers are generic and assume knowledge

26

4.1 Structure 4 IMPLEMENTATION OVERVIEW

of protocol and device specifics. SPI and I2C are used by other drivers and many

higher level tools.

Serial communication functionality is implemented by EPS_UART. It has all of

the necessary functions to send and receive data through two USART lines which

are connected to COM and CDHS subsystem. ESTCube-1 uses its own commu-

nication protocol called ICP which utilizes USART as a physical medium inside

satellite. During flight other usage of USART is discarded as noise by every other

subsystem.

Software UART has been implemented in EPS_UARTSoft as a backup commu-

nication route. Using two general I/O pins and two interrupts, low-speed serial

communication can be initiated. The only purpose of software UART is to as-

sist in debugging and maintenance before the flight. It was designed to serve as

subsystem independent redundancy measure.

Complete list of drivers are given in Table 4.

File Main function, comments
EPS_ADC_AVR Telemetry ADC readings, internal ADC channels

accessed through AVR Analog Comparator Multi-

plexed Input

EPS_ADC_MAX1119 Telemetry ADC readings, accessed over SPI

EPS_ADC_MAX1230 Telemetry ADC readings, accessed over SPI

EPS_RTC_DS3234 RTC initialization, getting and setting the time

EPS_SPI SPI driver implementation

EPS_Timers Initializes AVR 16-bit timers Timer3, Timer4, and

Timer5

EPS_TWI I2C driver implementation

EPS_TWI_COM_AD7417 COM subsystem AD7417 analog digital converter

interface

EPS_TWI_COM_Si57x COM subsystem Si570 downlink radio oscillator

initialization

27

4.1 Structure 4 IMPLEMENTATION OVERVIEW

File Main function, comments
EPS_TWI_TCA6408A General purpose I/O expander TCA6408A inter-

face for accessing RBF, reel and launch lock

EPS_UART USART driver implementation

EPS_UARTSoft Software UART driver implementation

Table 4: drivers components

4.1.4 Frontend

EPS_Burners and EPS_Coils are two mission-critical components. EPS_Bur-

ners is used to open antennas and reel lock by applying current into wires to burn

specific cords. EPS_Coils is used to control magnetotorquers that administer

satellites attitude in respect to Earth and give satellite correct spin to roll out pay-

load tether.

EPS_SS_FM1105 is a central interface to control all regulator, CTL, and battery

protection switches. Reading a switch status is also possible.

Many smaller components are also held in frontend. List of these files and

their functions are listed in Tabel 5.

File Main function, comments
EPS_ADC Gives access to all different AD converters from

single place

EPS_Beacon Beacon keyer and decoder. See Section 4.2.5

EPS_Burners Antenna and reel lock opening routines

EPS_Coils Magnetotorquers controlling

EPS_Drivers_Frontend Initializes UART, SPI, and I2C

EPS_DAC_LTC2630 Used in mission experiment for controlling pay-

load and charging tether

EPS_FRAM_FM18W08 Initializes FM18W08 as AVR External Memory

Interface [12]

28

4.1 Structure 4 IMPLEMENTATION OVERVIEW

File Main function, comments
EPS_FRAM_FM25V20 Initializes 2 FM25V20 memories and has func-

tions for reading and writing

EPS_RBF Returns three RBF pin states

EPS_SS_FM1105 Switch control

EPS_Watchdog Toggles external watchdog timer

Table 5: frontend components

4.1.5 Utils

One of the key components in communication is EPS_Commander. It is the

command-handling center and it defines the externally exposed list of commands

and responses. Command handling is explained in Section 4.2.4.

Since powering up and down various subsystems requires switching different reg-

ulator and CTL switches, higher level logic is a requisite and it is implemented

in EPS_SubPower. It also hosts functions for testing COM and CDHS statuses

and, if needed, it can reset the corresponding subsystem. Testing status relies on

ICP ping-pong commands.

Other util components are listed in Table 6.

File Main functions, comments
EPS_Bytebox Static mapping of parallel FRAM memory

EPS_Commander Central command handling. See Section 4.2.4.

EPS_DataComposer Beacon data composition. See Section 4.2.5

EPS_Debugger Debug data composition

EPS_Guardian Guardian routine. See Section 4.2.3

EPS_ICP Configuration and bindings for ICP. See Section

4.2.1

EPS_Logger Ring-buffer based logging framework

29

4.2 Software components 4 IMPLEMENTATION OVERVIEW

File Main functions, comments
EPS_Macros Collection of general bit & pin manipulation

macros

EPS_Pins I/O pin definitions and initialization

EPS_Secrets Secret mission-critical constants

EPS_SubPower Higher level logic for turning subsystems on, off,

and resetting.

EPS_Telegrapher Beacon composition, send initiating and stopping.

PA management. See Section 4.2.5

EPS_Timekeeper RTC initialization

EPS_Unsorted Small collection of different purpose utils

Table 6: utils components

4.2 Software components

4.2.1 ICP

Internal Communication Protocol (ICP) is the main data format used in commu-

nication between all the subsystems. During the flight operation all the data is in

ICP format and the bytes that do not follow ICP, are discarded as noise. Since not

all subsystems are directly connected to each other, ICP supports routing to send

data to every subsystem. In terms of the OSI model, ICP is a level-2 (data link)

and level-3 (network) protocol.

ICP defines the data packet format. Packets are atomic entities that have a start,

metadata, payload, checksum and end parts. ICP uses SYNC byte (0x7E) that

cannot appear anywhere between the start and end parts. If metadata, payload or

checksum parts have byte 0x7E, the byte is escaped in ICP packet construction.

Packet start is defined as a single SYNC (SYN) byte and packet end is defined as

double SYNC bytes. Payload (PL) size can range from 0 to 256 bytes. Packet

format is seen in Table 7.

30

4.2 Software components 4 IMPLEMENTATION OVERVIEW

Byte 0 1 2 3 4 5..N N+1 N+2 N+3 N+4

Field SYN SRC DST PRI SEQ PL CHK1 CHK2 SYN SYN

Table 7: ICP packet format

Metadata has Source (SRC), Destination (DST), Priority (PRI), and Sequence

bytes (SEQ). Source and Destination are single byte subsystem addresses. Se-

quence byte is used in ICP for Go-Back-N automatic repeat request protocol. Pri-

ority byte is currently not used by ICP.

Table 8 lists all possible subsystem addresses.

Address Name Location
0x00 EPS Satellite

0x01 COM Satellite

0x02 CDHS Satellite

0x03 ADCS Satellite

0x04 Payload Satellite

0x05 CAM Satellite

0x06 Ground Station Ground

0x07 PC (debugging) Ground

0x08 PC2 (Software UART) Ground

Table 8: ICP endpoints

Checksum (bytes CHK1 and CHK2) is 16 bit Fletcher checksum computed from

Metadata and Payload.

ICP source files are located in util/icp as external component. ICP is written

mainly by Martin Valgur.

31

4.2 Software components 4 IMPLEMENTATION OVERVIEW

4.2.2 Bootloader

Bootloader is a component which is responsible for maintaining software up-

grades. It uses AVR Boot Loader Support for updating program code by MCU

itself. It consists of two major parts: a runtime application and a programmer.

The runtime application deals with receiving, saving, and validating image files.

The runtime application is executed in normal operations by commands received

from Ground Station. For every command received, response is generated and

Ground Station operator can validate if the image is being correctly uploaded.

Image files are written into FM25V20 memory into dedicated areas called slots.

Three 64kb slots are reserved for the image files. The third slot is specially re-

served for fallback fail-safe image and can be overwritten only on special condi-

tions. Each slot is divided into 256-byte pages. Image file validity is checked with

32-byte pagemap which holds one bit for every page – "0" for missing or not valid

and "1" for correct page.

AVR programmable memory is divided into application and Boot Loader Sec-

tion (BLS). For configuring each section size, BOOTSZ fuse (2 bits) is used.

In EPS BOOTZ is programmed to 0x00, which means that the main application

resides in flash 0x0000 - 0xEFFF and BLS in 0xF000 - 0xFFFF. Programming

BOOTRST fuse configures program counter to the start from BLS (0xF000) on

reset. Once the operator is sure that everything is in order, apply command may

be executed, which leads the program into an endless cycle without watchdog

toggling. Watchdog resets EPS main program and bootloader programmer starts.

Programmable flash is write-protected for the main program and only the pro-

grammer residing in BLS is able to change the content of flash memory. Pro-

grammer performs additional checksumming to validate the image and the main

application can be overwritten only if everything is in order.

Besides main application upgrading, the programmer is able to detect easier faults

in the main program and perform software downgrade to fail-safe version if needed.

32

4.2 Software components 4 IMPLEMENTATION OVERVIEW

Bootloader source files are located in util/bootloader as external compo-

nent. Bootloader is written mainly by Mihkel Veske.

4.2.3 Guardian

A Guardian is an umbrella term for different power management related func-

tions and routines. The name is derived from a goal to have a software which is

able to protect batteries, EPS and other subsystems from various electrical faults.

Guardian uses ADCs readings to make decisions about the status of different parts

of the system and react when these readings are out of the normal range. All flight

hardware ADCs were previously calibrated and these results are used to determine

exact values from ADC readings. [6].

Battery protection was the first part of Guardian that was implemented. Battery

protection is needed to protect Li-Ion batteries from overcharging and harmful de-

pletion. It consists of two functions tttBatChargeOFF and tttBatChargeON.

Both functions check battery voltage and temperature; and turn battery charging

off or on, if any value is not between normal limits. tttBatChargeON also

checks MPB voltage and if it is too high (more than 4.5 V) charging is turned on

to lower MPB voltage.

Guardian provides a central interface for powering subsystems. The main argu-

ment for not switching directly is to have higher level logic detect faulty regulators

and CTLs by measuring voltage and current for each switch independently. These

functions use FRAM to hold health status of every regulator and CTL.

The most ambitious task for Guardian is to have background routines for detecting

and isolating electrical faults and, in case of temporary faults, trying to heal them.

These routines are in development and testing at the time of writing.

33

4.2 Software components 4 IMPLEMENTATION OVERVIEW

4.2.4 Command handling

Command handling is done in EPS_Commander, which is the incoming com-

mand parsing and replying center. All commands are received over UART and are

formatted as ICP packets. ICP routines extract payload from the packet and call

EPS_Commander_parseCommand. ICP payload follows general command

structure which originates from CDHS command handler. The command struc-

ture consists of a 4-byte header and a variable number of arguments. Command

header is shown in figure 4. Upper row is first two bytes and lower row is last two

bytes.

Figure 4: Command header structure

EPS uses "Dst", "Command ID" and "Data length" fields from the header. Com-

mand header was designed mainly for CDHS needs and since EPS command han-

dling is less complex, other fields are ignored. Command is determined by "Dst"

+ "Command ID" fields, where "Dst" (4 bits) are used for command grouping

and "Command ID" (10 bits) is a command identifier. "Data length" (8 bits) de-

fine arguments size in bytes. Arguments are unformatted byte array and parsing

is left for commands. Some commands are subsystem-specific and need special

handling.

Commands which result in a reply packet, are formatted similarly as incoming

packets. EPS uses the highest bit in "Dst" field to make distinction between in-

coming ("Dst" = 1) and reply packets ("Dst" = 0).

34

4.2 Software components 4 IMPLEMENTATION OVERVIEW

Command handling work-flow from the incoming ICP packet to executed com-

mand is shown in figure 5. Appendix D lists all EPS commands which are handled

in the current firmware version.

Figure 5: Command handling

35

4.2 Software components 4 IMPLEMENTATION OVERVIEW

4.2.5 Beacon

ESTCube-1 beacon has an essential role in communicating and debugging satellite

status in orbit. EPS role is to operate beacon sending. According to the require-

ments, EPS must send in safe mode beacon every three minutes; normal mode

beacon is initiated by CDHS.

To start beacon sending, Radio Power Amplifier (PA) resource must be free. Hard-

ware setup phase ends with a three seconds wait to allow the beacon radio chip to

start-up properly. Prepare phase is illustrated on figure 6.

After the preparation phase, Timer 3 generated interrupts start the beacon sending

state-machine which decodes characters into Morse code and sends out a message

out about 18 WPM.

Figure 6: Beacon prepare phase

Beacon uses different interfaces for its operations:

1. EPS_Beacon is Viljo Allik’s beacon keyer state machine which adapted

36

4.3 Running modes 4 IMPLEMENTATION OVERVIEW

to work for EPS. Its main purpose is to decode human-readable character

array into Morse code and toggle beacon keyer pin by using Timer3.

2. EPS_DataComposer’s function is to gather data for the beacon. Gath-

ered data is defined by beacon specification.

3. EPS_Telegrapher is the main interface for initiating and stopping the

beacon. It is also responsible for PA management.

4. EPS_TWI_COM_Si57x and EPS_Timers are the drivers used for send-

ing out the beacon.

Beacon data has been previously proposed[27], but has seen many revisions since

then. The current safe mode beacon is 52 characters and normal mode beacon 43

characters. [28]

4.3 Running modes

4.3.1 Access Port mode

The Access Port mode is a pre-flight requirement for enabling satellite and EPS

maintenance works in laboratory conditions. The Access Port mode is started

when EPS receives power from the Access Port Device (APD) and when at least

one Remove Before Flight (RBF) pin has not been removed. Different RBF pin

combinations enabled different sub-modes. Table 9 lists all possible combina-

tions. X is "do not care" RBF state.

The Access Port mode provides control over all regulators and CTLs (except

COM5V). It is used for gathering debugging data, updating software and charging

batteries.

The Access Port mode became obsolete after the launch and was removed from

the operation software in version 0x08. Different software upgrades for EPS are

outlined in Appendix B.

37

4.3 Running modes 4 IMPLEMENTATION OVERVIEW

RBF1 RBF2 RBF3 Sub-mode
X X 1 Power EPS with S-UART

X 1 0 Power EPS and COM

1 0 0 Power EPS and CDHS

0 0 0 Flight

Table 9: Access port mode sub-modes

4.3.2 Safe mode

Safe mode is the initial operation mode in ESTCube-1. In safe mode, EPS controls

the whole satellite and the safe mode beacon is being broadcasted. Safe mode is

also a fallback mode in case of critical hardware errors.

The satellite has been in safe mode since the initial start-up.

4.3.3 Normal mode

Normal mode is reserved for the main mission. In normal mode, CDHS controls

the satellite and EPS sends out the normal mode beacon upon CDHS request.

The satellite will run in normal mode when operational software for all of the

subsystems is mature enough.

38

5 DEVELOPMENT AND TESTING

5 Development and testing

An independent EPS table model is used in the development and testing process.

The table model is portable and lacks batteries. The development kit contains

AVR Dragon, USB-to-UART dongle devices, and wires. The AVR Dragon is

used to upload firmware images to Atmega1280 via JTAG interface. A USB to

UART dongle is used to test the behavior of the EPS operation software. The table

model is powered by USB.

The integration with other subsystems is tested on the stack model. It is a station-

ary testing platform that contains all of the subsystems (besides payload motor);

radio communication is also available. Firmware images can be uploaded with

AVR Dragon or radio, using the ICP terminal. The ICP terminal is a testing soft-

ware developed by ESTCube-1 team members for testing the subsystems. Stack

model is powered by a separate power supply unit. Images of the table and stack

models are included in Appendix C

One part of EPS development process consisted of writing dedicated testing soft-

ware. The EPS Debug Console is an interface for monitoring all the voltage and

current measure points. It features a graphical user interface for observing mea-

surements; it also gives direct control over every regulator and CTL. In addition

to that, it provides an option to log all measurements into CVS file. The early

versions of the console and graphical user interface were created by Erik Ilbis.

The Java implementation of the ICP protocol is a backend library which allows

decoding and composition of ICP packets on the Java platform. The Java platform

is the main testing platform for the EPS operation software and many smaller

testing programs were created during process. The EPS Debug Console also uses

ICP Java implementation to communicate with EPS via UART.

All testing software is included in CD Appendix A.

39

6 RESULTS

6 Results

The main goal of this thesis was to build a working operation software for EPS,

which was successfully completed. The resulting software is maintainable and

upgradeable. The successful initial start-up and operation in orbit was confirmed

by the first radio beacon that was detected 07.05.2012 and first data packets that

were received from EPS 09.05.2012 09:56 EEST.

Effective software upgrades that delivered smaller fixes and new features for the

EPS software have already been completed. Hundreds of debug data packages

have been received and they prove us that the software upgrades have been effec-

tive and that they have fixed the issues that were targeted. Appendix B lists all

upgrades that have been performed to date.

The build system and compilation parameters that were compiled during the work

have proven to produce reliable firmware images. Dedicated software has been

created to support development and the testing process (Appendix A).

As the mission progresses, the next step is to continue software development,

especially regarding the advanced Guardian routines that are currently missing.

Refactoring and documenting the existing codebase must be completed to make it

more readable and reusable. The development and testing process have revealed

the need for a dedicated sophisticated testing platform. Designing and building

such testing tool would help future projects and speed up their development.

40

7 CONCLUSION

7 Conclusion

ESTCube-1 is a 1U CubeSat [1] built by students. Its main mission is to test E-sail

tether in LEO plasma conditions. [7] The satellite is modular by design and its

modules are semi-independent functional subsystems. One of the subsystems is

Electrical Power System (EPS).

The main goal for this thesis was to build a working and upgradable EPS operation

software. The other goals were to:

• to give an overview of hardware from the software’s perspective;

• list the requirements for building software;

• outline software structure, design, and important components;

• produce a complete and stable build system.

Working radio beacon, established radio link with ESTCube-1 and multiple soft-

ware upgrades have confirmed that the main goal has been fulfilled. The devel-

oped software is maintainable and the documentation in this thesis enables re-use

of the work in similar applications, including satellites.

Functional and non-functional requirements, overview of the hardware, software

structure, and the key components of the operation software were given in thesis.

Code style guidelines were also outlined.

The work presented in this theses was conducted over a half year period and it

is still an ongoing process to support the main mission of ESTCube-1. Advanced

Guardian routines and a data gathering framework will be implemented and prepa-

rations for switching to normal mode will continue.

41

8 ACKNOWLEDGMENTS

8 Acknowledgments

I would like to thank the core EPS team-members who I have had the luck to work

with: Mihkel Pajusalu, Erik Ilbis, Mihkel Veske and Henri Lillmaa. Also Henri

Kuuste, Indrek Sünter, Martin Valgur, Jaanus Kalde, Viljo Allik, Tõnis Eenmäe,

Kaupo Voormantsik, Urmas Kvell, and other ESTCube-1 team members who I

shared the laboratory with. It has been the most educating and memorable expe-

rience.

I would also like to thank Silver Lätt and Mart Noorma for leading the whole

project to success.

I am grateful to my previous and current employers and colleagues at Nortal AS

and Cybernetica AS for the understanding and a flexible work schedule – I would

not have succeeded without that.

I am most grateful to my family and closest friends who have been supporting and

helping me through the most intense period of my life.

42

REFERENCES REFERENCES

References

[1] CubeSat Design Specification Rev. 12 (2009). http://www.cubesat.

org/images/developers/cds_rev12.pdf.

[2] H. Kuuste, “ESTCube-1 tether end mass imaging system design and assem-

bly,” Bachelor’s thesis, Tartu University (2012).

[3] I. Sünter, “Radiation tolerant hardware design for ESTCube-1 Command

and Data Handling System,” Bachelor’s thesis, Tartu University (2011).

[4] R. Rantsus, “Designing, Implementing and Testing the Solar Power Harvest-

ing System for ESTCube-1,” Master’s thesis, Tartu University (2011).

[5] M. Pelakauskas, “ESTCube-1 Satellite Electrical Power System Battery

Subsystem Design and Testing,” Master’s thesis, Tartu University (2011).

[6] E. Ilbis, “ESTCube-1 Electrical Power System – design, implementation and

testing,” Bachelor’s thesis, Tartu University (2013).

[7] P. Janhunen, P. Toivanen, J. Polkko, S. Merikallio, P. Salminen, E. Haeg-

gström, H. Seppänen, R. Kurppa, J. Ukkonen, S. Kiprich, G. Thornell,

H. Kratz, L. Richter, O. Krömer, R. Rosta, M. Noorma, J. Envall, S. Lätt,

G. Mengali, A. Quarta, H. Koivisto, O. Tarvainen, T. Kalvas, J. Kauppinen,

A. Nuottajärvi, and A. Obraztsov, “Electric solar wind sail: Towards test

missions,” American Institute of Physics, Rev. Sci. Instrum., 81, 111301

(2010).

[8] M. Pajusalu, R. Rantsus, M. Pelakauskas, A. Leitu, E. Ilbis, J. Kalde, H. Lill-

maa, R. Reinumägi, K.Voormansik, K. Zalite, V. Allik, M. Noorma, and

S. Lätt, “Design of the Electrical Power System for the ESTCube-1 Satel-

lite,” Latvian Journal of Physics and Technical Sciences 49, 16–24 (2013).

[9] M. Pajusalu, E. Ilbis, T. Ilves, M. Veske, J. Kalde, H. Lillmaa, R. Rantsus,

M. Pelakauskas, A. Leitu, K. Voormansik, V. Allik, M. Noorma, S. Lätt, and

43

http://www.cubesat.org/images/developers/cds_rev12.pdf
http://www.cubesat.org/images/developers/cds_rev12.pdf

REFERENCES REFERENCES

J. Envall, “Design and Testing of the Electrical Power System for ESTCube-

1,” submitted to Acta Astronautica (2013).

[10] M. Pajusalu, E. Ilbis, J. Kalde, H. Lillmaa, R. Reinumägi, R. Rantsus,

M. Pelakauskas, A. Leitu, V. Allik, M. Noorma, S. Lätt, and J. Envall, “Elec-

trical power system for ESTCube-1: a fault-tolerant COTS solution,” Arti-

cle for 63rd International Astronautical Congress, Space Power Symbosium,

IAC-12-C3.4.5 (2012).

[11] J. Finchel, J. Mee, W. Kemp, R. Netzer, D. Elkins, B. Zufelt, and D. Alexan-

der, “Total Dose Test Results for CubeSat Electronics,” Radiation Effects

Data Workshop (REDW), IEEE (2011). http://ieeexplore.ieee.

org/stamp/stamp.jsp?tp=&arnumber=6062504.

[12] ATmega640/1280/1281/2560/2561 Rev. P (2012). http://www.atmel.

com/Images/doc2549.pdf.

[13] DS3234 Extremely Accurate SPI Bus RTC with Integrated Crys-

tal and SRAM; Rev 3; 7/10 (2010). http://datasheets.

maximintegrated.com/en/ds/DS3234.pdf.

[14] FM18W08 256Kb Wide Voltage Bytewide F-RAM, Rev. 2.1 (2012). http:

//www.ramtron.com/files/datasheets/FM18W08_ds.pdf.

[15] FM25V20 2Mb Serial 3V F-RAM Memory, Rev 3.0 (2012). http://www.

ramtron.com/files/datasheets/FM25V20_ds.pdf.

[16] MAX1226/MAX1228/MAX1230 12-Bit 300ksps ADCs with FIFO, Temp Sen-

sor, Internal Reference, Rev 5; 12/10 (2010). http://datasheets.

maximintegrated.com/en/ds/MAX1226-MAX1230.pdf.

[17] MAX1117/MAX1118/MAX1119 Single-Supply, Low-Power, 2-Channel, Se-

rial 8-Bit ADCs, Rev 0; 11/00 (2000). http://datasheets.

maximintegrated.com/en/ds/MAX1117-MAX1119.pdf.

44

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6062504
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6062504
http://www.atmel.com/Images/doc2549.pdf
http://www.atmel.com/Images/doc2549.pdf
http://datasheets.maximintegrated.com/en/ds/DS3234.pdf
http://datasheets.maximintegrated.com/en/ds/DS3234.pdf
http://www.ramtron.com/files/datasheets/FM18W08_ds.pdf
http://www.ramtron.com/files/datasheets/FM18W08_ds.pdf
http://www.ramtron.com/files/datasheets/FM25V20_ds.pdf
http://www.ramtron.com/files/datasheets/FM25V20_ds.pdf
http://datasheets.maximintegrated.com/en/ds/MAX1226-MAX1230.pdf
http://datasheets.maximintegrated.com/en/ds/MAX1226-MAX1230.pdf
http://datasheets.maximintegrated.com/en/ds/MAX1117-MAX1119.pdf
http://datasheets.maximintegrated.com/en/ds/MAX1117-MAX1119.pdf

REFERENCES REFERENCES

[18] E. Schlaepfer, “Comparison of Internal and External Watchdog Timers, Ap-

plication Note 4229,” Tech. rep., Maxim Integrated Products (2008). http:

//pdfserv.maximintegrated.com/en/an/AN4229.pdf.

[19] MAX6369–MAX6374 Pin-Selectable Watchdog Timers, Rev 5 (2011).

http://datasheets.maximintegrated.com/en/ds/

MAX6369-MAX6374.pdf.

[20] Si570/Si571, Rev. 1.4 4/13 (2013). https://www.silabs.com/

Support%20Documents/TechnicalDocs/si570.pdf.

[21] Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Mi-

crocontrollers , 8453A-AVR-11/11 (2011). http://www.atmel.com/

Images/doc8453.pdf.

[22] 8-bit AVR Instruction Set, Rev. 0856I–AVR–07/10 (2010). http://www.

atmel.com/images/doc0856.pdf.

[23] avr-libc 1.7.1 User Manual (2012). http://download.savannah.

gnu.org/releases/avr-libc/avr-libc-user-manual-1.

7.1.pdf.bz2.

[24] “AVRGCC: Monitoring Stack Usage,” (2007, visited 20.05.2013). http:

//www.avrfreaks.net/index.php?name=PNphpBB2&file=

viewtopic&t=52249&postdays=0&postorder=asc.

[25] AVR 8-bit GNU Toolchain: Release 3.3.1.466 (2011). http://www.

atmel.com/tools/studioarchive.aspx.

[26] R. M. Stallman and the GCC Developer Community, Using the GNU

Compiler Collection, For gcc version 4.5.1. http://gcc.gnu.org/

onlinedocs/gcc-4.5.1/gcc.pdf.

[27] U. Kvell, “ESTCube-1 satellite beacon,” Master’s thesis, Tartu University

(2010).

45

http://pdfserv.maximintegrated.com/en/an/AN4229.pdf
http://pdfserv.maximintegrated.com/en/an/AN4229.pdf
http://datasheets.maximintegrated.com/en/ds/MAX6369-MAX6374.pdf
http://datasheets.maximintegrated.com/en/ds/MAX6369-MAX6374.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/si570.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/si570.pdf
http://www.atmel.com/Images/doc8453.pdf
http://www.atmel.com/Images/doc8453.pdf
http://www.atmel.com/images/doc0856.pdf
http://www.atmel.com/images/doc0856.pdf
http://download.savannah.gnu.org/releases/avr-libc/avr-libc-user-manual-1.7.1.pdf.bz2
http://download.savannah.gnu.org/releases/avr-libc/avr-libc-user-manual-1.7.1.pdf.bz2
http://download.savannah.gnu.org/releases/avr-libc/avr-libc-user-manual-1.7.1.pdf.bz2
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=52249&postdays=0&postorder=asc
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=52249&postdays=0&postorder=asc
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=52249&postdays=0&postorder=asc
http://www.atmel.com/tools/studioarchive.aspx
http://www.atmel.com/tools/studioarchive.aspx
http://gcc.gnu.org/onlinedocs/gcc-4.5.1/gcc.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.5.1/gcc.pdf

REFERENCES REFERENCES

[28] “Estcube beacon decoding,” (2013, visited 20.05.2013). http://www.

estcube.eu/en/radio/beacon-decoding.

46

http://www.estcube.eu/en/radio/beacon-decoding
http://www.estcube.eu/en/radio/beacon-decoding

ESTCube-1 elektrienergia alamsüsteemi

operatsiooni tarkvara

Taavi Ilves

Kokkuvõte

ESTCube-1 on CubeSat standardil [1] põhinev Eesti esimene satelliit. ESTCube-1

missiooniks on elektrilise päikesetuulepurje tehnolooglise kontseptsiooni katse-

tamine Maa lähedasel orbiidil. [7, 8, 9] Satelliit on modulaarse disainiga ja koos-

neb erinevatest funktsionaalsetest alamsüsteemidest. Üheks alamsüsteemiks on

elektrienergia alamsüsteem (EPS), mille põhilisteks ülesanneteks on päikesepa-

neelidelt elektrienergia kogumine, selle talletamine pardal olevates akudes ja ole-

masoleva energia jaotamine alamsüsteemide tööks ning missiooni läbiviimiseks.

Elektrienergia juhtimine on vastutusrikas töö, mis peab toimuma riistvara ja tark-

vara koostöös. Lisaks sellele on EPSil ka täiendavaid ülesandeid näiteks missiooni

juhtimine esimesel 48 tunnil kosmoses ja morsemajaka juhtimine. Antud töö on

keskendunud EPSi operatsioonitarkvara loomisele.

Töö põhilisteks eesmärkideks oli:
• ehitada ja testida nõutele vastav EPSi operatsioonitarkvara,

• esitada funktsionaalsed ja mittefunktsionaalsed nõuded tarkvarale,

• anda ülevaade riistvaraplatformist,

• anda ülevaade loodud tarkvara struktuurist, disainist ja põhilistest kompo-

nentidest,

• luua stabiilne tööriistade kogum lähtekoodist masinkoodi saamiseks,

• luua vajalik tarkvara tulemuste testimiseks.

Töö viidi läbi poole aasta jooksul ja peale ESTCube-1 edukat starti 07. mail

2013 selgus, et töö on olnud tulemuslik. Põhiline eesmärk, luua nõuetele vastav

tarkvara, on täielikult saavutatud – 07. mail võeti esimest korda vastu ESTCube-1

raadiomajakas ning 09. mail kell 09:56 saavutati ka raadio teel andmeside.

47

09. mail ja järgnevatel päevadel on loodud satelliidiga regulaarselt kontakte. Töö

üheks nõudeks oli luua võimalus tarkvara uuendusteks üle raadioside. Töö kir-

jutamise hetkeks on EPSi tarkvara uuendatud viiel korral ning satelliidilt saadud

telemeetria põhjal järeldub, et uuendused on olnud edukad.

Töö käigus on loodud ka põhjalik dokumentatsioon, mis võimaldab lisaks elektri-

energiasüsteemi riistvarale [6] taas-kasutada ka tarkvara sarnaste nõudlike projek-

tide juures.

Järgnevateks sammudeks on operatsioonitarkvara täiustamine ja jätkuv arendus

missiooni eduka läbiviimise tagamiseks. Samuti on vajalik ette võtta koodibaasi

ühtlustav refaktoreerimisprotsess, mille käigus tuleb ka täiendada lähtekoodi põh-

jalikemate kommentaaridega.

48

A CD CONTENTS

Appendices

Appendix A CD Contents

Table 10: Contents of appendix CD
build GNU Make configuration files for building image

files

EPS-Java-tests EPS Debug console; Java ICP; various tests

EPS-source-files-0x0D Latest source files for EPS

EPS_operation_software.pdf This theses

49

B VERSION UPGRADE HISTORY

Appendix B Version upgrade history

EPS received multiple software upgrades during the flight preparations. The

preparations ended on March 21 2013 and the flight ready software version 0x07

was installed. After successful radio communications on 9th May 2013, the EPS

software has been upgraded five times to apply multiple improvements and fixes.

Next follows the version history from the first flight version to the current date.

All firmware upgrades were done to the flight hardware over radio. Upgrades

were operated by Henri Kuuste.

B.0.4 Version 0x07

Apply date: 03.21.2013

Notable features:
• Requirement: PA can be forced to shut down upon request. After shutting

down, PA cannot be powered on until requested.

• Requirement: Commit reset of the satellite in seven days if no communica-

tion with the Ground Station has been established in that time.

• Requirement: Detect communication problems with COM and CDHS and

reset those subsystems if needed.

• System maintenance: Force ICP SYN packets every 120 seconds to avoid

ICP sequence number locking.

B.0.5 Version 0x08

Upload period: 09.05.2013 11:50 - 22:58 EEST

Apply date: 10.05.2013 00:19 EEST

Changes:
• Requirement: Support log of software behavior. The logging data must

survive resets.

50

B VERSION UPGRADE HISTORY

• Requirement: Protect Li-Ion batteries from overcharging or depletion. Bat-

teries must be preserved as long as possible.

• System maintenance: Provide CDHS firmware select pin toggling for CDHS

firmware upgrades.

• Feature: Provide CAM and CDHS with time synchronization features.

• Fix: Start preset CDHS processor on start-up.

• Fix: Remove the obsolete Access Port mode and the initial start sequence.

• Fix: Multiple stability fixes to PA management. Power COM 5V CTL off

after PA release.

• Fix: RTC survives EPS resets.

• Fix: Multiple stack overflow avoiding changes.

B.0.6 Version 0x09

Version 0x09 was canceled due to an error in safe mode beacon "firmware version"

and "reset counter" fields. Since 0x09 was already uploaded and not yet applied,

the version got canceled.

All the changes were moved to 0x0A.

B.0.7 Version 0x0A

Upload period: 12.05.2013 00:01 - 10:06 EEST

Apply date: 12.05.2013 11:29 EEST

Changes:

• Fix: Important fixes in the battery protection routine execution conditions.

• Fix: The safe mode beacon now reports the EPS version number and reset

count in correct manner.

• Fix: Unused memory freed.

51

B VERSION UPGRADE HISTORY

B.0.8 Version 0x0B

Upload period: 15.05.2013 11:25 - 13:02 EEST

Apply date: 15.05.2013 13:03 EEST

Changes:

• Fix: Turn on SPB B on start-up.

• Change: Force satellite reset in twelve hours (seven days pre-fix).

B.0.9 Version 0x0C

Upload period: 20.05.2013 12:23 - 14:02 EEST

Apply date: 20.05.2013 14:02 EEST

Notable features:

• Fix: Commander switch case bugs.

• Feature: Command added to force EPS reset.

• Feature: Add RTC time into the debug package.

52

C DEVELOPMENT AND TESTING PLATFORM

Appendix C Development and testing platform

Figure 7: Table model for EPS development. Atmega1280 is seen in the lower

right corner. Hole in the center is absence of batteries.

53

C DEVELOPMENT AND TESTING PLATFORM

Figure 8: Table model with development kit. AVR Dragon on the left. Larger

gray cable is JTAG cable, red & black wire is power lines from USB to MBP. Two

USB-UART dongles are on the right. AVR Dragon is covered with tape to protect

it from static electricity.

54

C DEVELOPMENT AND TESTING PLATFORM

Figure 9: ESTCube-1 stack model in laboratory. Antennas are leaning to the left.

Red and black wires are powering MPB from power supply unit. Orange wires

for different debugging purposes are connected to Satellite System Bus.

55

D EPS COMMANDS

Appendix D EPS Commands

EPS_COMMAND_ID_PING_ID

Ping EPS, returns Pong

EPS_COMMAND_ID_DEBUG_DATA

Return debug package

EPS_COMMAND_ID_GET_GENERAL_TIMER

Return general 32-bit timer

EPS_COMMAND_ID_GET_OPERATING_MODE

Return operating mode

EPS_COMMAND_ID_GET_INITIAL_PARAMETERS

Return initial parameters

EPS_COMMAND_ID_GET_PA_LOCK_TIME

Return PA lock time

EPS_COMMAND_ID_GET_BEACON_LAST_TIME

Return last sent beacon time

EPS_COMMAND_ID_SET_BATTERY_DISCHARGE_STOP_TIME

Set battery discharge timer

EPS_COMMAND_ID_GET_BATTERY_DISCHARGE_STOP_TIME

Get battery discharge timer

EPS_COMMAND_ID_GET_RTC_TIME

Get on-board RTC time

EPS_COMMAND_ID_GET_ZERO_TIME

Get time of first proposed flight

EPS_COMMAND_ID_SET_RTC_TIME

Set on-board RTC time

EPS_COMMAND_ID_GET_SYNC_TIME

Time synchronization for CAM and CDHS

EPS_COMMAND_ID_INIT_LOGGER

Initialize and reset logger

56

D EPS COMMANDS

EPS_COMMAND_ID_GET_LAST_LOG

Get last logger entry

EPS_COMMAND_ID_GET_LOG_RANGE

Get multiple logger entries

EPS_COMMAND_ID_GET_VERSION

Get EPS main version

EPS_COMMAND_ID_FORCE_SAFE_MODE

Force SAFE mode

EPS_COMMAND_ID_FORCE_NORMAL_MODE

Force NORMAL mode

EPS_COMMAND_ID_SET_CDHS_PROCESSOR

Set default CDHS processor

EPS_COMMAND_ID_GET_CDHS_PROCESSOR

Get default CDHS processor

EPS_COMMAND_ID_ADCS_ON

Power on ADCS

EPS_COMMAND_ID_ADCS_OFF

Power off ADCS

EPS_COMMAND_ID_PL3V3_ON

Power on payload 3v3

EPS_COMMAND_ID_PL3V3_OFF

Power off payload 3v3

EPS_COMMAND_ID_PL5V_ON

Power on payload 5v

EPS_COMMAND_ID_PL5V_OFF

Power off payload 5v

EPS_COMMAND_ID_PL12V_ON

Power on payload 12v

EPS_COMMAND_ID_PL12V_OFF

Power off payload 12v

EPS_COMMAND_ID_CDHS_1_ON

57

D EPS COMMANDS

Power on CDHS 1. processor

EPS_COMMAND_ID_CDHS_2_ON

Power on CDHS 2. processor

EPS_COMMAND_ID_CDHS_RESET

Reset CDHS

EPS_COMMAND_ID_CDHS_1_SHUTDOWN

Power off CDHS 1. processor

EPS_COMMAND_ID_CDHS_2_SHUTDOWN

Power off CDHS 2. processor

EPS_COMMAND_ID_COM_RESET

Reset COM processor

EPS_COMMAND_ID_CAM_ON

Power on CAM

EPS_COMMAND_ID_CAM_OFF

Power off CAM

EPS_COMMAND_ID_CAM_RESET

Reset CAM

EPS_COMMAND_ID_COIL_SET_PWM_A

Set 8-bit PWM on coil A

EPS_COMMAND_ID_COIL_SET_PWM_B

Set 8-bit PWM on coil B

EPS_COMMAND_ID_COIL_SET_PWM_C

Set 8-bit PWM on coil C

EPS_COMMAND_ID_COIL_SET_PWMS

Set 8-bit PWM on coil A, B, C

EPS_COMMAND_ID_COIL_SET_PWM_A_DIR

Set direction on coil A

EPS_COMMAND_ID_COIL_SET_PWM_B_DIR

Set direction on coil B

EPS_COMMAND_ID_COIL_SET_PWM_C_DIR

Set direction on coil C

58

D EPS COMMANDS

EPS_COMMAND_ID_COIL_SET_PWMS_DIR

Set direction on coil A, B, C

EPS_COMMAND_ID_COIL_ENABLE

Enable all coils

EPS_COMMAND_ID_COIL_DISABLE

Disable all coils

EPS_COMMAND_ID_CDHS_GET_BEACON_DATA

Return beacon data for CDHS

EPS_COMMAND_ID_CDHS_SEND_NORMAL_BEACON

Send normal mode beacon

EPS_COMMAND_ID_CDHS_SET_FW_PIN

Set FW select pin for CDHS bootloader

EPS_COMMAND_ID_CDHS_UNSET_FW_PIN

Unset FW select pin for CDHS bootloader

EPS_COMMAND_ID_BL_READ_RUNNING_ID

Read running firmware ID.

EPS_COMMAND_ID_BL_APPLY_PROG

Switch EPS firmware

EPS_COMMAND_ID_BL_SAVE_HALFPAGE

EPS firmware packet

EPS_COMMAND_ID_BL_GET_PAGEMAP

Get firmware memorymap

EPS_COMMAND_ID_BL_CALC_PAGEMAP

Calculate firmware memorymap

EPS_COMMAND_ID_BL_ERASE_PAGEMAP

Erase firmware memorymap

EPS_COMMAND_ID_BL_READ_FW_LENGTH

Read firmware length

EPS_COMMAND_ID_BL_READ_FW_ID

Read firmware ID

EPS_COMMAND_ID_BL_READ_TOTAL_CHKSUM

59

D EPS COMMANDS

Read total checksum of firmware.

EPS_COMMAND_ID_BL_START_PROG

Start saving pages to fram.

EPS_COMMAND_ID_BL_END_PROG

End saving pages to fram.

EPS_COMMAND_ID_BL_ERASE_FLASH

Erase first 64kB of flash.

EPS_COMMAND_ID_BL_READ_PAGE_FRAM

Read page from fram.

EPS_COMMAND_ID_BL_ERASE_PAGE_FRAM

Erase page from fram.

EPS_COMMAND_ID_BL_READ_RESET_COUNT

Read reset counter

EPS_COMMAND_ID_BL_READ_BLOADER_OUT

Read bloader out debug variable

EPS_COMMAND_ID_BL_READ_CHKMAP

Read chkmap

60

E -O1 OPTIMIZATION LEVEL EXPLANATION

Appendix E -O1 optimization level explanation

-fauto-inc-dec

Combine increments or decrements of addresses with memory accesses.

This pass is always skipped on architectures that do not have instruc-

tions to support this.

-fcprop-registers

After register allocation and post-register allocation instruction split-

ting, we perform a copy-propagation pass to try to reduce scheduling

dependencies and occasionally eliminate the copy.

-fdce

Perform dead code elimination (DCE) on RTL.

-fdefer-pop

For machines that must pop arguments after a function call, the compiler

normally lets arguments accumulate on the stack for several function

calls and pops them all at once.

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to

exploit instruction slots available after delayed branch instructions.

-fdse

Perform dead store elimination (DSE) on RTL.

61

E -O1 OPTIMIZATION LEVEL EXPLANATION

-fguess-branch-probability

GCC will use heuristics to guess branch probabilities if they are not

provided by profiling feedback (-fprofile-arcs). These heuristics

are based on the control flow graph. If some branch probabilities are

specified by __builtin_expect, then the heuristics will be used to

guess branch probabilities for the rest of the control flow graph, taking

the __builtin_expect info into account. The interactions between

the heuristics and __builtin_expect can be complex, and in some

cases, it may be useful to disable the heuristics so that the effects of

__builtin_expect are easier to understand.

-fif-conversion2

Use conditional execution (where available) to transform conditional

jumps into branch-less equivalents.

-fif-conversion

Attempt to transform conditional jumps into branch-less equivalents.

This include use of conditional moves, min, max, set flags and abs in-

structions, and some tricks doable by standard arithmetics. The use

of conditional execution on chips where it is available is controlled by

if-conversion2.

-fipa-pure-const

Discover which functions are pure or constant. Enabled by default at

’-O’ and higher.

-fipa-reference

Discover which static variables do not escape cannot escape the compi-

lation unit.

-fmerge-constants

Attempt to merge identical constants (string constants and floating point

constants) across compilation units.

62

E -O1 OPTIMIZATION LEVEL EXPLANATION

-fsplit-wide-types

When using a type that occupies multiple registers, such as long long

on a 32-bit system, split the registers apart and allocate them indepen-

dently. This normally generates better code for those types, but may

make debugging more difficult.

-ftree-builtin-call-dce

Perform conditional dead code elimination (DCE) for calls to builtin

functions that may set errno but are otherwise side-effect free.

-ftree-ccp

Perform sparse conditional constant propagation (CCP) on trees.

-ftree-ch

Perform loop header copying on trees. This is beneficial since it in-

creases effectiveness of code motion optimizations. It also saves one

jump.

-ftree-copyrename

Perform copy renaming on trees. This pass attempts to rename compiler

temporaries to other variables at copy locations, usually resulting in

variable names which more closely resemble the original variables.

-ftree-dce

Perform dead code elimination (DCE) on trees.

-ftree-dominator-opts

Perform a variety of simple scalar cleanups (constant/copy propagation,

redundancy elimination, range propagation and expression simplifica-

tion) based on a dominator tree traversal. This also performs jump

threading (to reduce jumps to jumps).

-ftree-dse

Perform dead store elimination (DSE) on trees. A dead store is a store

into a memory location which will later be overwritten by another store

without any intervening loads. In this case the earlier store can be

deleted.

63

E -O1 OPTIMIZATION LEVEL EXPLANATION

-ftree-forwprop

Perform forward propagation on trees.

-ftree-fre

Perform full redundancy elimination (FRE) on trees. The difference

between FRE and PRE is that FRE only considers expressions that are

computed on all paths leading to the redundant computation. This anal-

ysis is faster than PRE, though it exposes fewer redundancies.

-ftree-phiprop

Perform hoisting of loads from conditional pointers on trees.

-ftree-sra

Perform scalar replacement of aggregates. This pass replaces structure

references with scalars to prevent committing structures to memory too

early.

-ftree-pta

Perform function-local points-to analysis on trees.

-ftree-ter

Perform temporary expression replacement during the SSA->normal

phase. Single use/single def temporaries are replaced at their use loca-

tion with their defining expression. This results in non-GIMPLE code,

but gives the expanders much more complex trees to work on resulting

in better RTL generation.

-funit-at-a-time

This option is left for compatibility reasons. -funit-at-a-time

has no effect, while -fno-unit-at-a-time implies

-fno-toplevel-reorder and -fno-section-anchors

64

Non-exclusive license to reproduce thesis and make thesis public

I, Taavi Ilves (date of birth: 31.05.1982),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of

Tartu, including via the DSpace digital archives until expiry of the term of validity

of the copyright, ESTCUBE-1 ELECTRICAL POWER SYSTEM OPERATION

SOFTWARE, supervised by Mart Noorma, Mihkel Pajusalu.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 24.05.2013

	Acronyms and abbreviations
	Introduction
	Electrical Power System
	ESTCube-1 and its subsystems
	EPS
	PDU board
	MCU board
	Microcontroller
	Real time clock
	Data storage
	Measurement systems
	Other external components

	Requirements and platform
	Requirements
	Functional requirements
	Nonfunctional requirements

	AVR platform design
	Memory
	Timers
	Interrupts

	Build toolchain
	avr-gcc optimization

	Implementation overview
	Structure
	Naming conventions
	Source files structure
	Drivers
	Frontend
	Utils

	Software components
	ICP
	Bootloader
	Guardian
	Command handling
	Beacon

	Running modes
	Access Port mode
	Safe mode
	Normal mode

	Development and testing
	Results
	Conclusion
	Acknowledgments
	References
	ESTCube-1 elektrienergia alamsüsteemi operatsiooni tarkvara
	Appendices
	Appendix CD Contents
	Appendix Version upgrade history
	Version 0x07
	Version 0x08
	Version 0x09
	Version 0x0A
	Version 0x0B
	Version 0x0C

	Appendix Development and testing platform
	Appendix EPS Commands
	Appendix -O1 optimization level explanation

