Chapter1 . . . .
Configuring Math and Logic

Math and Logic programs are user designed solutions providing control of the interactions of
the FactoryLink tasks and system activity.

A Math and Logic program is comprised of one or more procedures which can contain
variables and triggers. These variables and triggers are defined within the Math and Logic
editor or in the FactoryLink tables prior to writing the procedures. Variables are tags which can
be global to FactoryLink use or local to the program that contains the procedure. Triggers
define the method to invoke a one or more procedures.

=
)

[
=2
Q

=]

Q.
-
o
Q
(9]

Configuration of procedures includes definition as a Compiled Mode Logic (CML) or
Interpreted Mode Logic (IML) procedure. FactoryLink loads the IML program files (the user
defined .prg file) into memory at startup. Each time the IML procedure (proc) is triggered, the
task interprets the procedure’s instructions and then performs the actions required. With CML,
the original .PRG file remains unaltered. At startup the CML program files are compiled into
executable C source code files and linked with FactoryLink and externally supplied libraries.
When CML procedures are triggered, the CML executable files are invoked. The FactoryLink
designer must determine the type of mode to use.

In addition to defining procedures there are two tasks, the IML and CML tasks, associated with
Math and Logic that must be operational to support the respective modes.

Table 1-1 Comparison of IML and CML Modes

IML CML

Interpreted Mode Compiled mode

No compiler required External compiler application required

Cannot access any C functions C, C++ functions can be accessed

Less efficient More efficient and faster processing (@) gg,

Debug switches can be used No debug switches g =

Validate procedures before running Cannot validate entire procedure specifically g g

program file the data between cbegin and cend E o
8-

A new program, when saved, is automatically stored at: c:\{FLAPP}\SHARED\procs. It is o 8

essential that the file remains in this directory. = o

FactoryLink Task Configuration Reference /1



CONFIGURING MATH AND LOGIC

The number of programs and their respective components is limited only by the amount of
available memory and the operating system. There are additional compiler limitations when
using Compiled Mode Logic (CML). Using CML is optional and requires a compiler program
in addition to the FactoryLink software. There are no additional compiler requirements for
using Interpreted Mode Logic (IML).

The Microsoft® Visual C++ compiler is the recommended compiler to use with the
FactoryLink CML processing. Refer to the documentation supplied with the compiler for
details on the compiler limitations for your system. Refer to the FactoryLink installation
instructions for the compatible version.

This chapter describes how to use the Configuration Explorer program to configure the Math
and Logic tables, variables, triggers and tasks plus the Math and Logic editor functions. The
requirements to accommodate CML procedures are also detailed. A basic comprehension of
how to use the Configuration Explorer program is necessary to use the instructions in this
chapter.

Note: All configuration for FactoryLink 7.0 is in the SHARED domain.
USER domain indicators are provided for upgrades from older
FactoryLink versions.

There are ten sections to describe Math and Logic functionality:

* Locating Math and Logic Functions in Configuration Explorer

* Configure Math and Logic Tasks

* Configure Math and Logic Tables

* Program Files and Procedures

* Modify Makefiles

* Compiled Math and Logic

e CML Utilities Call Sequence

* CML Variables

* Calling C Code

* The Math and Logic Editor Reference Pages

For additional information about other Math and Logic topics, see the FactoryLink 6.6
documentation as indicated below:

Operational concepts FactoryLink Fundamentals Link
to Chapter 12

2 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC

Syntax, tokens, naming conventions, structure, FactoryLink Configuration 1
declarations, data types and data conversions,  Reference Link to Chapter 7
expressions, operators, precedence, statements

and directives

Procedures, functions, arguments FactoryLink Configuration
Reference Link to Chapter 8

Makefiles, CML process and CML executables FactoryLink Configuration
Reference Link to Chapter 9

Error code list FactoryLink Reference Guide
Link to Chapter 11

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

uoneinbiyuon
21607 pue yjep

FactoryLink Task Configuration Reference /3



CONFIGURING MATH AND LOGIC
Locating Math and Logic Functions in Configuration Explorer

LOCATING MATH AND LOGIC FUNCTIONS IN CONFIGURATION EXPLORER

The FactoryLink Server and the FactoryLink Application directory (FLAPP) must be defined
before configuring the Math and Logic variables, triggers, procedures, and programs. Ensure
that these functions are completed before proceeding with the following instructions. Your
FactoryLink configuration may differ from the configuration used to generate the figure
examples provided in this section.

The FactoryLink server and the FactoryLink application are set up using the Configuration
Explorer program. For a complete description on how to use the Configuration Explorer
program and all of its features, see the Configuration Explorer manual.

Note: It is not advisable to have FactoryLink in the run-time mode to
configure Math and Logic tasks, tables and programs.

This section explains how to use the Configuration Explorer program to locate the Math and
Logic functions:
* Launch Configuration Explorer

* Locate Math and Logic Tasks, Tables and Editor

4 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Locating Math and Logic Functions in Configuration Explorer

Launch Configuration Explorer

To launch Configuration Explorer: click the Configuration Explorer icon displayed on the
desktop. The Configuration Explorer window appears with the workspace list expanded (see

Figure 1-1). =
. - )
Figure 1-1 The Workspace and the Application Tree 5_-
B configuration Explorer M= E3 )
File “iew ‘Window Help =
ez mE® B we | ‘ Q.
EEN | 5
S @
- FactoryLink Servers Eile  Miew window Help a-
=t a MyFactoryLinkServer R -
- My StarterApp JJ Q = ||E B @ | | " ? ‘
—35 4§} Flapp _lx
OPC Servers ﬁ My Starter App =

-] Application Ohject Instances

ﬁ Application Object Classes

_| Application Constants

_| Alarms

_| Drata Logging

_| Device Interfaces

_| Graphics

+ -1 Historians

124 Math and Lagic

;| Math and Logic Varisbles

;| Math and Logic Trigoers
FLAPP Tables, {1 Mtath and Logic Procedures
Tasks and {1 Math and Logic System Makedils
functions B Math and Logic Domain Makefile
/-1 Metwvorking

t-__| Recipe

t-__| Reports

t-__| Scaling and Deadbanding

1] SPC

=\ System

=/ System Configuration

Ed System Configuration Information
% Fun-Time Manager FR

3 Feal-Time Database Monitor FR
rterval and Event Timer FR
% Programmable Counter F

E Enterprize Wiew |

| Ready

Application
with user-defined
name

- - -

.nterpreted Math and Loglc FR - = O g

E Enterpnse Yiew MyStartertpp | FlappNew (o) ?_’.‘

| Ready [12/17/99 [ ?n =

@ e

c =)

Click FactoryLink Servers to display one or more servers. Expand the server you will use to =2
configure Math and Logic programs. One or more of the applications available on this server g. g
appear. Right-click the application you will use to configure Math and Logic programs. From 0 «©
the menu that appears, select Open in new Tab. The expanded application appears in a new = o

workspace window.

FactoryLink Task Configuration Reference /5



CONFIGURING MATH AND LOGIC
Locating Math and Logic Functions in Configuration Explorer

The Math and Logic item in the application tree provides access to configure all properties and
requirements of Math and Logic programs.

Locate Math and Logic Tasks, Tables and Editor

Math and Logic Tasks

There is one task preconfigured in FactoryLink to accommodate IML processing. If your
installation is using CML processing, the CML task must be added.

To view the Math and Logic tasks, expand the System item in the application tree. Then

expand the System Configuration and the System Configuration Information items

respectively. Double-click the Interpreted Math and Logic item. The System Configuration
Information dialog box displays. See Figure 1-2 for an example of the expanded application

tree.

Figure 1-2 Locate Tasks in Configuration Explorer

.Conﬁguration Explorer

Tasks

File “iew ‘Window Help

EEEECET

=l
_| Historians ;I
Math andd Logic
Metworking
Recipe
Reports
Scaling and Deadbanding
- sPC
= A System
B3 System Canfiguration
E---gj System Configuration Information
¥ Run-Time Manager FSR

Persistence F

inear Scaling and Deadbanding FR
Interval and Evert Timer FR
Interpreted Math and Logic F

e Alarm Lot
eport LogaeriGenerator F
Recipe Save and Losd F
Programmable Counter F
External Device Interface F
RAPD Translator F
Histarian for dBASE IV (R) FR =
B _ | ;l_l

4]

| Ready

[1217/39

2

6 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Locating Math and Logic Functions in Configuration Explorer

Math and Logic Tables and Editor

To view the Math and Logic tables and text editor functions, expand the Math and Logic item
in the application tree. Figure 1-3 shows an example of a Math and Logic tree with predefined
variables, triggers and editor files.

=

Figure 1-3 Expanded Math and Logic Tree Items 0
B configuration Explorer M= E3 [
File Wiew Window Help -
- o

JJ 0 = -
=l (o)

=/ Math and Lagic =] Lg

(g}

=1y Math and Logic Yariables
E---gj Math and Logic Yariables Information
Gy SHARED_MSG
TEST_DIG
TEST_ANA
TEST_LAN
TEST_FLT1
TEST_FLTZ2
TEST_MSG
TEST_LSP_ W
TEST_LMM_vy
TEST_LM_ W
TEST_LSP
TEST_LPY
TEST_LMN
TEST_LM
TEST_LPYH

@ TEST_LPYL

Math and Logic Trigoers
j‘d Math and Logic Trigaers Information
Math and Logic Procedures

h and Logic System Makefile
cml.mak
= _‘] hath and Logic Domain Makefile

@] cml.mak
-] Metworking

0 B _I

E USDATANS  MNewflapps

[Feady [12/7/53 [11:1594M A

Five items are listed under Math and Logic in the application tree:

* Math and Logic Variables Information

=
o
-
>
o
S
o
r

* Math and Logic Triggers

* Math and Logic Procedures

* Math and Logic System Makefile
* Math and Logic Domain Makefile

uoneinbiyuon

o160

FactoryLink Task Configuration Reference /7



CONFIGURING MATH AND LOGIC
Locating Math and Logic Functions in Configuration Explorer

The first two items contain configuration tables and the remaining three items launch the Math
and Logic editor to enable creation or modification of executable files.

The default Configuration Explorer settings only display the Share domain options. To view
both the user and share domain items, right-click the FLAPP name and select Shared+User
from the menu.

Names supporting the Math and Logic functions, for example: constants, variables (tags),
procedures and files, must be unique. They are also case sensitive. Not all special characters
are supported. For CML procedures the unique naming is also limited by the effects of the
compiled C code. For example, special characters ($.*) become by the parsing routine.
Therefore, the declarations:

declare short lu$lu
declare short lu@lu
declare short lu_lu

all become declare short lu_lu with potentially confusing result such as duplicate definition
errors or changes in one variable are reflected in another.

The variables, triggers, and procedures can be configured and managed from the Math and
Logic editor as the program is developed. However, the variables and triggers can be defined
before developing the procedures. The following section describes setting up tasks,
configuring the tables and using the editor. The view illustrated for each section , either form
view or grid view, is the default view for the item.

8 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Configure Math and Logic Tasks

CONFIGURE MATH AND LoGic TASKS

The preconfigured IML task is located in the System Configuration Information dialog box.

To view the Interpreted Math and Logic task dialog box, double-click the task in the System
Configuration Information list (see Figure 1-4). The dialog box displays.

Figure 1-4 IML System Configuration Task Dialog Box

.Conﬁguration Explorer
File “iew ‘Window Help

IS[=1 E3

EEEECET

+ _| Historians

{1 htath and Logic

;| Metworking

;| Recipe

;| Reports

;| Scaling and Deadbanding

- SPC

-3 System

EI_‘I System Configuration

E---gj System Configuration Information
Run-Time Manager FSR
Persistence F

Linear Scaling and Deadbanding FR
Interval and Event Timer FR
Interpreted Math and Logic
Distributed Alarm Logger FR
Report LoggeriGenerator F
Recipe Save and Losd F
Programmable Counter F
External Device Interface F
RAPD Translator F

Histarian for dBASE IV (R) FR

Syztemn Configuration Information - SHARED [ \\Diilew!YFlappMew |

~ Task Information

Task Mame IlML

Task Dezcription

Ilnterpreted Math and Logic

— Tazk Flag:
™ Run &t Startup

™ Create Session window

™ Suppress Online Configuration

™ Suppress Tazsk Hibemation

Flag String ' alue

—

™ Edit Flags Directy

- Taszk Option:
Start Order

Start Priority 20

— Task Executable

Executable File Ibina’iml

-

—— 21 Program Arguments f
E Enterprize Wiew E\..EJ.@PP.NEW | MyStarterAppI \
| Ready \

\

<<|<| 3 >|>>| *lgf 26

Lppli | Qeletel [E[ear, | Qancell

To enable CML processing, the CML task must be added to the task item list. The IML task
does not need to be removed. Both tasks can be enabled and run at the same time.

The CML task can be added anywhere in the task list. Adding a task requires displaying an
existing task to use the dialog box as a template. The new task is added to the list below the

task displayed to create it. The position of the task in the list does not determine its rank in the

run-time process. Run-time rank is determined by the Start Order field.

To add a task: double-click an existing task in the list, for example, the Interpreted Math and
Logic task, to display the System Configuration Task dialog box. Click the Asterisk button in

the lower left portion of the dialog box. Complete the fields using the information from Table

FactoryLink Task Configuration Reference /9

=
Q
-,
=2
Q
=)
=
—
)
=l
o

uoneinbiyuon
7 pue yjepy

o160



CONFIGURING MATH AND LOGIC

Configure Math and Logic Tasks

1-2. Click the Apply button and the new task is completed. Refresh the application tree to
display the new task in the list.

Table 1-2 shows the optional and required entries to run both the IML and the CML tasks.

Table 1-2 IML and CML Task Dialog Box Fields (Sheet 1 of 2)

10 / FactoryLink Task Configuration Reference

Field . Default Field Data
Definition
Name IML CML
Domain For new FactoryLink 7.0 users, with no application | Shared Shared
conversion requirements from previous
FactoryLink versions, shared is the recommended
option. See the FactoryLink 6.6 system
documentation for legacy USER domain
requirements.
Task Task Name | Predefined name for the task which |IML CML
Information cannot be changed.
Task Optional alphanumeric description. | Interpreted Compiled Math
Description Math and Logic |and Logic
Task Flags |Run at R: Invokes task at FactoryLink No No
Startup startup. This must be set to use
IML or CLM.
Create S: Provides the process with its Optional Optional
Session own tab window. Output prints to
Window the Configuration Explorer Output
window.
Suppress O: Suppress online updates for this | Optional Optional
Online | process.
Configuration
Suppress H: Not applicable for Math and Not applicable | Not applicable
Task Logic functions.
Hibernation
Flag String | Input box Displays value code of selected Yes No
Value Task Flags.
F: Foreground Flag. Puts this task
in the foreground at startup.
Edit Flags If selected, allows user input of
Directly string values to input box.




CONFIGURING MATH AND LOGIC
Configure Math and Logic Tasks

Table 1-2 IML and CML Task Dialog Box Fields (Sheet 2 of 2)

Field

Default Field Data

Definition
Name IML CcML
Task Start Order | Specifies the runtime rank for 3 3
Options invoking the task when
FactoryLink is started.!
Start Priority |Processing priority. 201 (default) 201 (default)
Task Executable | Path and name of the file which bin/iml {FLAPP}/share
Executable |File executes this task. CML: See the d/eml/c{FLDO
FactoryLink 6.6 system MAIN} .exe
documentation for legacy USER NOTE: Above
domain requirements. path is typed in
the field
exactly as it
appears.
Program Codes which add customization to |-L: log error None
Arguments | the functions of the task. messages to a

file

-L-V#: log error
messages with
more
information
(increased

verbose level) to
a file

1. Start order is coordinated with the function requirements in the procedures. It Math and Logic
procedures use the information from another process, that process must start first.

For more information about creating and modifying tasks, see the Configuration Explorer
Manual.

FactoryLink Task Configuration Reference / 11

=
)

[
=2
Q

=]

Q.
-
o
Q
(9]

uoneinbiyuon
21607 pue yjep



CONFIGURING MATH AND LOGIC
Configure Math and Logic Tables

CONFIGURE MATH AND LoGIC TABLES

There are two types of tables used to configure the variables and triggers in Math and Logic
program and procedures:

* Math and Logic Variables
e Math and Logic Triggers

Math and Logic Variables

Variables in Math and Logic are known as tags in other FactoryLink functions. All variables
can be defined using the Math and Logic Information table or defined during the editing
process while creating procedures in a program file. Any tags defined in this table are globally
available to any FactoryLink process. Defined variables automatically appear in the
FactoryLink global Tag Browser, the Object Table and the Xref Table. However, when
deleted from the Math and Logic Variables Information table, variables are not deleted from
the global Tag Browser or the Object Table.

Local variables, specific to a file, can be defined within the program and cannot be used or
referenced outside of the program.

The Math and Logic Variables Information Table

The Math and Logic Variables Information table stores the definitions of all of the variables
defined for use in the Math and Logic programs associated with the current FLAPP.

Expand the Math and Logic Variables item in the application tree to display the Math and
Logic Variables Information item (see Figure 1-5). Double-click this item and the grid view of
the table appears. One field is required for the definition of each variable (tag) name.

12 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Configure Math and Logic Tables

Figure 1-5 Math and Logic Variables Information Table

B configuration Explorer M= E3 1
File “iew ‘Window Help

oz oEa w7

B Math and Logic Variables Information - SHARED ( =] [MI=] E3

=N ew Hil e e e e
D-EAziI:Iicaﬁon Ohject Classes b ||E||><| !I ﬂlﬁl EI E‘l?l ﬁ’l@l@l EI
Application Object Instances J ﬂI 3I

Application Constants
Data Logging Tag Mame

Alarms

Device Interfaces

Graphics

Historians

Math andd Logic

- Math and Logic Variables

j‘d Math and Logic Varisbles Information
Math and Logic Trigoers

Math and Logic Procedures

Math and Logic System Makefile

[#-_| Math and Logic Domain Makefile =
(= 5 |_I

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

<]
E Enterprize Wiew | o] Math and ... |
[Ready [12/28/9 [218PM 4

Define variables (tags) using the default grid, the record generation box or application objects.
See the Configuration Explorer Manual for a complete explanation and attributes of each
method.

There is one field for each tag definition in the table:

Tag Name Name of the tag to be used in a Math and Logic procedure. Do not use a
Math and Logic reserved keyword as an element name. If the tag is to be
defined as an array, specify 0 for each array dimension when entering its
name here, for example, batch[0][0].

Valid Entry: standard tag name, 1 through 16 characters
Valid Data Type: digital, analog, longana, message, float

Enter one or more tag names to the grid and click the Save button. The Tag dialog box

displays for each tag in succession to enable complete definition of each tag. If the tag is o gg,
defined as an array, specify the number of elements for each array dimension in the Dimension g =1
field of the Tag Definition dialog. =+
Qs
Once defined, the tag name appears in the Xref Table, the Tag Browser Table and the Object E Q
Table in addition to the Math and Logic Variables table. a8 g
(©)
Click the Save | button to save the information after configuring this table in the grid or = %

form views.

FactoryLink Task Configuration Reference /13



CONFIGURING MATH AND LOGIC
Configure Math and Logic Tables

The Math and Logic Variables Information Table Example

Once variables are defined, each variable is listed below the Math and Logic Variables
Information item in the application tree and in the grid view of the table. See Figure 1-6 for an
example showing an application with defined Math and Logic variables.

After a variable has been defined it can be displayed in form view as an individual item:
Double-click any of the listed variables in the application tree and the form view of the
variable appears.

Figure 1-6 Example of Defined Math and Logic Variables

.Conﬁguration Explorer
File “iew ‘Window Help
o=
i x|
EI_‘I Math and Logic Varisbles =l B Math and Logic Variables Information - SHARED ( C:iStarterfpp )
(=0 | vsth and Logic Yariables Information -\
B> SHARED_MSG 3 Bel X F -5 5B FlF 222 -l 2]
TEST.ple Toghore |
TEST_ANA,
TEST_LAN 2 ¥ Math and Logic Variables Information - SHARED (|
TEST_FLTY 3 E
TEST_FLT2 4 EST_LEN |Ea|@] %] s
TEST MSS I} EST_FLT1
TEST LSP W g Eg _'sng . .
TEST LI {TesT Lo W Math and Logic Varial
TEST_LM_W EST LMN W -
TESTLSP T |TEST MW Information
TEST_LPY 1 EST LSP
TEST_LMN 2 EST_LPY
TEST Lo i g LHN Tag Name |sHARED_msG
TEST_LPWH £2 L
- I} EST_LPWH
TEST_LPWL = 5 EST LRVL
TEST_LKC 7 EST_LKC g 1 >|>I|>ﬂ of 13 Apply
TEST_LTI ) EST LT
- TEST_LTD 9 EST_LTD
-] Math and Logic Triggers :
-] Math and Logic Procedures
L] Math and Logic System Makefile =l __<| |
B3 Enterprise View  MyStarterépp [] Math and ... [[] Math and...
| Ready [12/15/99 | 2:24 P

Math and Logic Triggers

Math and Logic Triggers are used to invoke the Math and Logic procedures in both IML and
CML programs. Triggers can be defined before or during the procedure design process.

All procedures must be listed in the Math and Logic Trigger Information table to identify the
procedure for FactoryLink. Procedures that do not require triggers are listed with no entry to
the Trigger field.

14 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Configure Math and Logic Tables

A trigger can be defined and never appear in the body of a procedure. The procedure is
invoked when the value changes in the trigger tag. Digital tags are the most common trigger 1
type but any tag type can be specified except the mailbox type. Digital tags only trigger a
procedure when the value is true. Other tag types trigger procedures whenever their value
changes.

Not all procedures require a trigger. An alternative method is to call a procedure from another
procedure. However, a procedure can contain a defined trigger to invoke another procedure.
Also a single trigger can be used to invoke multiple procedures. Triggers which appear in
procedures must also be defined in the Math and Logic Variables table.

The Math and Logic Triggers Information Table

=
)
[
=2
Q
=]
Q.
=
o
Q
(9]

Expand the Math and Logic Triggers item in the application tree to display the Math and Logic
Triggers Information item (see Figure 1-7). Double-click this item and the grid view of the
table appears. Define triggers using this Math and Logic Triggers Information table grid, the
record generation box, or application objects. See the Configuration Explorer Manual for a
complete explanation and attributes of each method.

Figure 1-7 Math and Logic Trigger Information Table

File “iew ‘Window Help

[EFET

@ FLAPPNow — B Math and Logic Triggers Information - SHARED ( "Driley1'FlappNew )

B oo ot G b [Eol@| x| M| WIF] B =% B(@|@] o i
_1 Application Constants Trigger Ta Frocedure  |Mode Descﬂ:tion

;| Alarms

;| Drata Logging

;| Device Interfaces
;| Graphics

- Math and Logic

_| Math and Logic Varisbles

= £ Math and Logic Triggers

;-‘J Math and Logic Trigaers Information
_| Math and Logic Procedures

+ _| Math and Logic System Makefile

_| hath and Logic Domain Makefile

-] Metworking

-__] Recipe
[
-

1| Reports
H.[ 1 Sraline and Neadhandino I

Enterprise View  FLAPPNew ] Math and ..
[Fieady [12/21/39 122

1 pue yepw

uoneinbiyuon

o160

FactoryLink Task Configuration Reference /15



CONFIGURING MATH AND LOGIC
Configure Math and Logic Tables

Four fields are provided for the definition of each trigger:
Trigger Tag Name of the tag whose value can trigger a Math and Logic procedure.

Valid Entry: standard tag name, 1 through 16 characters
Valid Data Type: digital, analog, longana, message

Procedure Unique name of the Math and Logic procedure exactly as entered in the
procedures (proc) statement within the program file.

Valid Entry: Alphanumeric string: 1 to 16 characters, case sensitive,
cannot be the same as a defined tag name and must begin
with an alphabetic character.

Mode Determines how the Math and Logic procedure instructions are executed.

Valid Entry: INTERPRETED
or COMPILED

Description Indicates the intended use of the tag specified in the Trigger Tag field.
Valid Entry: Alphanumeric string; 1 to 80 characters

The Math and Logic Triggers Information Table Example

An example of the grid view of a Math and Logic table with defined triggers is provided in
Figure 1-8.

16 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Configure Math and Logic Tables

Figure 1-8 Math and Logic Triggers Information Table Example
B configuration Explorer M= E3 1

File “iew ‘Window Help

[EFET

B Math and Logic Triggers Information - SHARED ( "DRILEY1Starter Apje] =] [E3

B Alarms B -—

23 osta Losgng b [El@|x| W BiFE| B == 2|22 o b 2]

—l Device Interfaces Trigger Tag Procedure |Mode Diescription

#-_] Graphics 1 TEST_ML_TRIG [loops INTERPRETED

_| Histarians 2 STARTSCAN po_IT COMPILED This trigger always starts the observer

= Math snd Logic 3 CLIP_CODE READ_LINE |COMPILED Reads a text line and edits it for reporti

= Math and Logic Yariables : 2

[&®] Math and Logic Varisbles |

A Math and Logic Triggers

= Math and Logic Triggers In

TEST_ML_TRIG

STARTSCAN

H CLIP_CODE

E| A Math and Logic Procedures

H E|_‘j Math and Logic Procedure
-] toop= pra

1 hdath and | anie Suecpam hiakafi
4 3

B3 Enterprise View  MyStarterépp | o] Math and ... |

[Feady [12/22/38 [257 FM A

=
o
-,
=2
o
=)
o
r

o160

The Trigger Tag is not automatically added to the Math and Logic Variables Information table.
It is, however, added to the global Tag browser table after definition in the Math and Logic
Triggers Information table.

To save the table entries at any time click the save icon | at the top of the edit window or
use the keycode.

uoneinbiyuon
7 pue yjepy

o160

FactoryLink Task Configuration Reference /17



CONFIGURING MATH AND LOGIC
Program Files and Procedures

PROGRAM FILES AND PROCEDURES

Program files consist of one or more procedures. Procedures within a program file can be
totally unrelated in functionality as they are individually invoked by the predefined trigger or a
function call embedded in another procedure. All procedures within a program must be defined
as either IML or CML procedures.

The Math and Logic editor, located within the Configuration Explorer environment, is used to
create and modify the program files and associated procedures using the C-type programming
language standards. If you use another editor, validate the procedures you write with the Math
and Logic editor.

Program files provide the FactoryLink user the ability to control the interactions FactoryLink
tasks. The convention for program file naming is the name must be in lower case and have the
.prg extension. Program file names are not referenced in any tables.

Note: In FactoryLink versions before the 7.0 release, the program file
name matched the eight-character name of a procedure within the
program file. This restriction is no longer applicable.

All procedures must be listed in the Math and Logic Triggers Information table. If a procedure
is not listed in the Math and Logic Triggers table it will never be invoked regardless of the
method used to invoke it. The IML task uses this table to locate and load IML procedures. The
CML compiling process at startup also uses this table. Procedure names are case sensitive.
Ensure that the naming of the procedures is always consistent to avoid errors.

As global variables (tags) and triggers are defined they are added to FactoryLink reference lists
(see Figure 1-9.) These variables are available to all FactoryLink tasks. Local variables are
defined in the procedure, not in any of the tables, are only available to the procedures or
program files dependent on the type of declaration.

18 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Program Files and Procedures

Figure 1-9 Data Locations for a Global Shared Tag

AN

ChStarterApp'SHARED'procsiloops.prg

Tag name defined in the:

» Math and Logic program file

» Math and Logic Variable Information table
« Xref Table

» Tag browser

7

# Purpose: Loop simulator
#

proc loopsi()
hbegin
declare float _lpv, A Trigger Tag is also found
in every location that any other
global tag is found.

# loop mode
if (JFEST LM W) then

# setpoint bumpless transfer tp

=
o
-,
=
o
S
o
-

if [TEST LM W = AUTO) then ﬁ Math and Logic Triggers Information - SHARED { UDRILEY1'Sta 8
TEST LI B3| %mlalXx| «|B| Fl 25 slelel =
Trigger Ta Frocedure Mod_e DescriEtion
= | =T = T R _ loops INTERPRETED [z
els ag N ame
g EST_LSF_w
EST_LMN_w K|
enc |10 E Lbhd_w | “
AT — 1 EST_LSF ,
2 EST_LPY t
3 EST_LMN !
4 EST LI IMyF ctorLinkServer/tyStartertpp j
5 EST_LPVH = -
5 E LAy Al |Analog| Dlgltall Float I Long Analogl Mallboxl Messagel
7 ES LKC [omain |Descﬂ:tion |Type |
& EST AT LESTEET (M EARED  Loop mode test tag BIGITAL
ST_LMM SHARED  Loop output test tag FLOAT
iz Xref Ta DR A i ST_LMMN_w SHARED  Loop output write test tag FLOAT
] ] ] TEST_LM_W' SHARED  Loop mode write test tag DIGITAL
Tag Mame TAa Dimension | CT Domain | Task N | LeSTEST | Py SHARED  Loop process variable test tag FLOAT
A L EPTEST_LPYH SHARED  Loop P High Alam testtag ~ FLOAT
SHA L P TEST_LPVL SHARED  Loop PV Low Alarm test tag  FLOAT
SHA L TEST_LSP SHARED  Loop setpoint best tag FLO&AT
g:i L PTEST_LSP W SHARED  Loop setpoint wiite testtag ~ FLOAT
ha = EPTEST_LTD SHARED  Loop Rate test tag FLOAT
SHA L TEST_LTI SHARED  Loop Rest test tag FLOAT
SHA L TEST_ML_TRIG SHARED  Math and logic test tigger DIGITAL
SHA| L TEST_MSG SHARED  Message test tag MESSAGE
g:i L TIME SHARED  Time [HH:MM:S5) MESSAGE
SHA MER TIMED SHARED  Time [HH:MM:S5) MESSAGE
SHA| L
SHA AL |_Tags_|
LISE RUMMEH  [GLOBAL | [ g
LISE DATASRYD |DS_WRTAG [VIEW_ONLY |00 Q)
= | | = Q
4] 3 o -
3. >
Q3
It is recommended that definition of new programs and procedures be accomplished in an ca
off-line mode (without FactoryLink running). o —
-k
=0
There are many methods to perform file functions, for example: Save, Redo, Find, and g Q
Validate, using the Math and Logic editor. For a complete reference of these options see the o

section The Math and Logic Editor Reference Pages at the end of this chapter.

FactoryLink Task Configuration Reference /19



CONFIGURING MATH AND LOGIC
Program Files and Procedures

Defining a New Program File

Program files are defined and created in Configuration Explorer. Locate the FLAPP in the
Configuration Explorer Workspace window, expand the FLAPP and expand the Math and
Logic item.

To open a new program file, right-click the Math and Logic Procedure - Shared item. Select
the only option: New Prg file. See Figure 1-10.

Figure 1-10 New Program File Selection

.Conﬁguration Explorer [_|
File “iew ‘Window Help

=]

IEE =R

=l

E@ MyStarter App =]

ooy Application Object Classes

+ _| Application Object Instances
;| Application Constants

;| Alarms

;| Drata Logging

;| Device Interfaces

;| Graphics

+ 1 Historians

124 Math and Lagic

;| Math and Logic Varisbles
;| Math and Logic Trigoers
__‘] Math and Logic Procedures

[ | 111zth and Logic Procedure - S :
- New PrgFik |
{1 Math and Lagic System Makefile oo (8 1 |

_| hath and Logic Domain Makefile

-1 Metwarking
-] Recipe
-_] Reparts
-] Scaling and Deadbanding |
E Enterprize Wiew |
| Ready [ 146400 [12:32 PM

A New Math and Logic Program File dialog box appears (see Figure 1-11).

20 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Program Files and Procedures

Figure 1-11 New Math and Logic Program File

Mew Math and Logic Program File E

Mame of File to Create:

Existing Files:

[k | Lancel |

Type the program file name in the Name of File to Create field. The .prg extension will be
added automatically. If there are any previously created files they display in the Existing Files
field also. Click the OK button and then click the Yes button of the Confirm Creation of New
File dialog box.

In the Configuration Explorer tree, expand the Math and Logic Procedure - Shared item and
then expand the program name. A new procedure appears under the program name with the
same name minus the extension. The program and the procedures have unique icons (see

Figure 1-12).
Figure 1-12 New Program and Procedures Items in Configuration Explorer
=4 Math and Logic Procedure - Shared

=i neswfile pro

Double-click the program name to open the program. The File Download dialog box appears
(see Figure 1-13).

FactoryLink Task Configuration Reference /21

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

uoneinbiyuon
21607 pue yjep



CONFIGURING MATH AND LOGIC
Program Files and Procedures

Figure 1-13 File Download Dialog Box

File Download E

“r'ou have chosen to download a file from this location.

LiztFinder. prg from $A\DRILEY14Startertypphsharedprocs

" Save this file to disk

¥ &lways ask before opening this type of fils

QK I Cancel | More Infa |

Select the radio button: Open this file from its Current Location. Click the OK button. The
program file displays. See Figure 1-14 for an example of a new program file.

Figure 1-14 The New Program File in Configuration Explorer

B configuration Explorer M= E3

File “iew ‘Window Help

IEE =R

=l
— i IDRILEY1'Starter App'SHARED procs newfile.prg
-] Alarms ;I e ——————————————————————————————
{1 Data Logging == E ENE @| alc| || |5] Aﬁl ?x2
—| Device Interfaces # File: newfile.prg B
"] Craphics # USDATA FactorylLink 7.0
* Historians
=3 Math and Logic
_‘| Math and Log!c Vérlables proc newfile
' Math and Logic Triggers begin
E| _‘] Math and Logic Procedures
end
NN — ;l_l
;| Math and Logic System Makefile
_| hath and Logic Domain Makefile _|_'|
L] ol | L | 2l
E Enterprise Yiew | WORILEY ... |
| Ready [ 146400 [ 1:54 PM g

You can add code to the new procedure that was created when the program file was defined.
Regardless, the procedure must remain in the program to enable FactoryLink to locate the

program file.

22 | FactoryLink Task Configuration Reference




CONFIGURING MATH AND LOGIC
Program Files and Procedures

To save the program file at any time click the save icon at the top of the edit window.

The program information must be listed in the Math and Logic Triggers table (see Figure
1-15). Type the procedure name in the Procedure field and select the mode from the Mode
drop-down field. A Trigger Tag is not necessary but can be added later if code is added to the

procedure. See Math and Logic Triggers in this chapter for more information about the Math ng,
and Logic Triggers Information table. =
Figure 1-15 Updated Math and Logic Trigger Information Table g
.Conﬁguration Explorer _[E Q.
Eile Wiew ‘window Help 5
|aw mE@ w o Q
;lfl C:Program Files\USDATA Factorylink'SHARED procs'starcheck.pro = [E =] B3 o
:_I@ Blank_&pp = = -
- Application Object Instances |§| éé|| | plel EI QlQl ~/|l>|>'|~47>| ﬁl 3”
Application Constants # File: starcheck.prgy —
-ia Application Object Classes # USDATA FactoryLink 7.0
Alarms
Drata Logging
Device Interfaces proc starcheck
Graphics bhegin
Histarianz
Math and Logic end =
1 Mt and Logic Yariables 14l 1 0 I_I
2= E“\jth and Logic Triggers B Math and Logic Triggers Information - SHARED ( UiDriley1'FactoryLink ) =] B [=]
@] Math and Logic Triggers Information r———
_‘| Math and Logic Procedures nl@] é{: ||ﬁ| XI nlﬁl !I EE|EE| ﬁ’l@l@l EI ﬂl il
i —I Math and LOQ!C Syste.m Makef.ne Trigqsr Tag Procedure I\"Iode—lDescﬂjtim—
‘] Wath and Logic Domain Makefile — 1 staicheck | COMPILED
I:I---;I Metworking 5
-__] Recipe
-_] Reparts
-] Scaling and Deadbanding =
Kl i | "_I | | 2
_EF Enterprise View | CAProgr. ] Math and ... |
[Fready [1A0/00 [310PM

To save the table entries at any time click the save icon | at the top of the edit window or
use the keycode.

One or many additional procedures can be added to the program file. g) 5

s 5

Add New Procedures =)
Qs

With the program file displayed in Configuration Explorer, position the cursor at the beginning o o

. . r

of the line where you will add the new procedure. o

°«@

To add a procedure: click the insert procedure icon E | The Insert Procedure dialog box 55

displays (see Figure 1-16).

FactoryLink Task Configuration Reference /23



CONFIGURING MATH AND LOGIC
Program Files and Procedures

Figure 1-16 Insert Procedure Dialog Box

Insert Procedure E

Procedure Name: || (] 8 I
Trigger: I Cancel |

Mode: IEDMPILED vl

Use the guidelines in Table 1-3 to type the Procedure Name, the Trigger tag name (if
applicable) and select the Mode. Click the OK button. A template is inserted in the file to assist
you to write the procedure.

Table 1-3 Procedure Definitions

Field Name Description

Procedure Name Procedure names are case sensitive. Use a consistent naming
convention, for example, all caps.

Trigger A Trigger tag name is required if the procedure is invoked by the
change in the value of a tag. If the procedure is to be invoked by a
call statement or used as a function to return values, leave this
field blank. Tag names are case sensitive.

Mode The choices are Interpreted or Compiled. All procedures in a
program file must be the same.

Procedure definitions contain a minimum of three statements: proc, begin, and end. These

statements are inserted into the program file (see Figure 1-17). For more information on the
Math and Logic features, for example, text color, see The Math and Logic Editor Reference
Pages at the end of this chapter.

Figure 1-17 New Procedures Template Inserted in Program File

[ C:'Program Files! Factorylink ‘procsistarcheck.prg
C:p FilesWSDATAFactoryLink'SHARED tarcheck.prg =] =] E3

@la| o|ulm = || 2] ]| v[v]]7] 2 2]
B File: starcheck.prog
# TIDATA FactorylLink 7.0

proc starcheck
hbegin

end

TE— o

24 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Program Files and Procedures

Add code to the template information to create the new procedure. Keywords are not
case-sensitive, but tag names are. Use the FactoryLink Configuration Guide as a reference for
syntax, keywords, structure and CML requirements.

A local variable (tag) can be declared in the program. If it is added to the top of the file above
the initial BEGIN keyword, it is available to all procedures in all program files. Or, the local
variables can be added at the procedure level.

Global variables (tags) are added to a procedure by typing the tag name in the procedure,
highlighting the name. Right-click the tag name select Add to Tag List from the menu. The
FactoryLink Tag Editor dialog box appears to enable definition of the tag. See Figure 1-18. For
more information regarding tag definitions see the Configuration Explorer Manual.The tag
color changes to blue when definition is completed.

Figure 1-18 Adding a Global Tag to a Procedure

C:iProgram Files'USDATA FactoryLink!'SHARED procs'starcheck.prif) B [=] E3
23| s|=@ = | 2| Qx| v|v]»|a] 2 2]
=
end FactorylLink TagEditor - "Driley1'Factorylink
General Page |><-F|ef |
HMarne Tag:
#Date: ag Array Subscript:
#Function: Inlght =
# Drescription: Domair:
PROC STELLAR
BEGIN | [sHARED |
if COMET th
_ ,,t Ef: Tupe: Armay Dimengions: Meszage Length: Drefault 4 alue:
sl = TS
print  Cut |oIGITAL k| l
endif  [Copy
END Paste Persistence
Unda [T Use Domain Settings
Eeda Save ‘when Restoring
Find... ™ OnTime " Set Change Status On
[+] Feplace...
1 Refresh Chiomacading " On Ezxception & Set Change Status O
Dizplay Tag
Add Tag to List
2
0k I Cancel | [E[ear, | Apply | Help |

3

Once defined, the tag name appears in the Xref Table, the Tag browser, Table and the Object
Table in addition to the Math and Logic Variables table. Global variables (tags) can also be
added at any time to the Math and Logic Variables Information table and then typed into the
procedure. Type the variable (tag) name and the variable text color changes from black to blue
indicating it has already been defined.

FactoryLink Task Configuration Reference /25

=
Q
-,
=2
Q
=)
=
—
)
=l
o

uoneinbiyuon
7 pue yjepy

o160



CONFIGURING MATH AND LOGIC
Program Files and Procedures

After you have typed the procedure, you must validate it to check for syntax errors. Click the

validate icon il to verify the syntax, for example, matching braces, parens and brackets and
correct use of operators. The correct definition of local and global variables (tags) is checked

plus the essential keywords are present (begin, end, proc).

If there are no errors, the system reports nothing. If there are errors, red triangle markers
display in the left hand margin for each line with an error (see Figure 1-19). Correct the errors
and revalidate the program.

Figure 1-19 Errors Indicated in the Math and Logic Editor

ChStarterApp'SHARED 'procs'newtile.prg

@8l =@ ol 2] Q] Av]»|a] & 2]

# File: newfile.prg =
# TIDATA FactorylLink 7.0 f

Erase all markers

proc newfile

begin Find next error in file

end Find first error in file
Validate file

Hame : Jane L. Programmer —

#ilate: 1/30/00

#Function: Verifies new sections
#
FPROC TESTLINES

= DECLARE SHORT flowmeter

BEGIN
# Add your code here Marker
» flowmeter = 10

- END :Id

User inserted markers and error markers appear the same as error markers. Markers can be
toggled with the keycode <Ctrl + F2> on a specific line or added to one to many lines using the
find function. All previously set markers are erased when the validate function is performed.

For more information on the edit icons and keycodes, see The Math and Logic Editor
Reference Pages in this chapter.

Click the save icon after the editing session is complete.

26 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Modify Makefiles

MoODIFY MAKEFILES

A makefile is a file containing all the information needed by the CCCML utility to compile the
.C files produced by PARSECML and create an executable for the current domain. The name of
the makefile used by CCCML is cml.mak, and is unique for each operating system.

The cml.mak file, located in the {FLINK}/CML directory, typically contains the following
information to create the final executable file:

* Name of the C compiler to use for a given operating system

* Command-line switches to be used when compiling

* Name of the operating system’s object linker

=
)

[
=2
Q

=]

Q.
.
o
Q
(9]

¢ Linker command-line switches

» References to the FactoryLink libraries to be linked
» References to the developer-supplied libraries to be linked

As an aid for advanced users, CML provides a method for editing the cml.mak file. You can
change the compiler and linker options, specify command-line switches, and specify which
object files and libraries to link, giving you the flexibility to create a makefile unique to an
application for a given domain.

A domain-specific makefile does not exist until you create one. When the Math and Logic
System Makefile item is expanded, this item contains placeholder for a system makefile
named cml.mak. This file opens in the Math and Logic editor and can be used to set the
defaults to control the compile job instructions for CML procedures.

CML provides two file options:
* Math and Logic System Makefile
* Math and Logic Domain Makefile

Configuration Explorer provides access and the Math and Logic editing tools for the makefiles
(see Figure 1-20).

uoneinbiyuon
21607 pue yjep

FactoryLink Task Configuration Reference / 27



. CONFIGURING MATH AND LOGIC
. Modify Makefiles

Figure 1-20 Access to the Makefiles

B configuration Explorer M= E3
File “iew ‘Window Help

|[aw mE®|w?]

=l

_| Alarms =l

_| Drata Logoing

+ 1 Dewice Interfaces

_| Graphics

_| Historians

124 Math and Lagic

_| Math and Logic Varisbles

_| Math and Logic Trigoers

_Hfth and Logic Proce

- A Math and Logic System Makefile
: m cml.mak

-] Recipe -
-_] Reparts
-] Scaling and Deadbanding
- SPC [~
E Enterprize Wiew |
| Ready [ 1414400 [12:07 P v

Math and Logic System Makefile

Any changes made to this file are global; they apply to all applications on the system.

Copy the cml.mak file from the {FLINK}/CML directory to the {FLAPP}/SHARED/CML
directory for the SHARED domain.

To edit cml.mak: Expand the Math and Logic System Makefile item to display cml.mak.
Double-click cml.mak to open the file. The file opens in the Math and Logic editor containing
the cml.mak file from the {FLINK}/CML directory. Edit the file as required.

Any definitions in the system-specific makefile in the application directory override the
definitions in the master makefile in /FLINK/CML directory.

Click the save icon after the editing session is complete.
Math and Logic Domain Makefile

This option is provided for previous versions of FactoryLink installations that have been
converted and still retain the user domain configurations. New installations and installations
without user definitions should use the system makefile options.

28 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Modify Makefiles

Copy the cml.mak file from the {FLINK}/CML directory to the {FLAPP}/USER/CML directory
for the USER domain. 1

To edit cml.mak: Expand the Math and Logic System Makefile item to display cml.mak.
Double-click cml.mak to open the file. The file opens in the Math and Logic editor containing
the cml.mak file from the {FLINK}/CML directory. Edit the file as required.

Any definitions in the domain-specific makefile in the application directory override the
definitions in the master makefile in {FLINK}/CML directory.

Click the save icon after the editing session is complete.

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

uoneinbiyuon
21607 pue yjep

FactoryLink Task Configuration Reference /29



CONFIGURING MATH AND LOGIC
Compiled Math and Logic (CML)

COMPILED MATH AND LoGic (CML)

A W DN

CML is a combination of utilities and libraries that, at run time, create binary executable files
from the program files you specified to run in the compiled mode.

The compile process begins at run time:

Translates the program (.prg) files into C source code

Puts the C code into files with an extension of .c

Compiles the .c files to produce object (.obj) files

Links the object files to the appropriate libraries to create binary executable (.exe) files
Runs the executable file as each program’s associated trigger(s) are set.

Because FactoryLink applications can be configured in both the SHARED and USER
domains, CML creates one executable file for each domain if it contains .prg files.

The file name of each executable is unique. The filename begins with a C and is followed by
the domain name:

* {FLAPP}/SHARED/CML/CSHARED.EXE for the SHARED domain

* {FLAPP}/USER/CML/CUSER.EXE for the USER domain

CML Requirements

CML requires the following software and hardware:

» FactoryLink software version 4.1.3 or later

* Option bits:
* Run-time-only systems—CML run-time option
* Development systems—CML run-time and development options

¢ An ANSI-compatible C-language compiler for the development and run-time systems.
Refer to the user manual for the particular compiler in use for information about compiler
switches and setup options.

Option bits:

* Development Systems---the CML run-time and development options.

* Run-Time only Systems--the CML run-time option.

30 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Compiled Math and Logic (CML)

Compiled Math and Logic for Windows NT requires the environment variable FLCOMPILE
to be set. This environment variable points to the directory of the compiler you are using. Set 1
the FLCOMPILE variable from the Control Panel, System, Environment, and System Variable
panels.

For example:

For Microsoft C++ 4,
FLCOMPILE=c:\MSDEV

For Microsoft C++ 5,
FLCOMPILE=c:\DEVSTUDIO\VC

=
)
[
=2
Q
=]
Q.
.
o
Q
(9]

Installing to c:\DEVSTUDIO directory is recommended.

Windows NT:
FLCOMPILE=DRIVE:\COMPILER_DIRECTORY

Running CML
CML compiles and runs on both development systems and run-time systems.
CML on a Development System

Before starting the Run-Time Manager, FLRUN invokes several utilities to compile programs
into a single executable file. The compiled programs will have COMPILED entered in the
Mode field of the Math and Logic Triggers Information table.

CML on a Run-Time-Only System

The CML development system executables must be transferred from the development system
to the run-time system to run CML on a run-time-only system. How you do this depends on
whether the development and run-time systems run on the same operating system:

Perform the following steps to run CML on a run-time-only system if the operating system for
the development and run-time system is the same:

1 Use either of the following methods to transfer the CML executables to the run-time system:

e Use the FLSAVE and FLREST utilities to perform a save and restore of the application
from the development system to the run-time system. This saves and restores the compiled
CML task along with the rest of the application.

* Copy the executables from {FLAPP}/USER/CML or {FLAPP}/SHARED/CML on the
development system to the same path on the run-time system.

uoneinbiyuon
21607 pue yjep

FactoryLink Task Configuration Reference / 31



CONFIGURING MATH AND LOGIC
Compiled Math and Logic (CML)

2 Start CML. Depending on whether the R flag was set in the System Configuration Information
panel, do one of the following. If the R flag was:

e Set, enter FLRUN.
* Not set, start CML from the Run-Time Manager.

The compile process begins and CML creates the executables. Because the development and
run-time operating systems are the same, CML runs as is.

Different Development and Run-time Operating Systems

Perform the following steps to run CML on a run-time-only system if the operating systems
for the development and run-time systems are different:

1 Use the FLSAVE utility to perform a save of the application from the development system.

Because of the different operating systems, CML will not run as originally compiled and must
be recompiled either on the run-time system or on a system with the same operating system as
the run-time system. A compiler is required for the system you will recompile CML on.

2 Use the FLREST utility to perform a restore of the application to the system you will
recompile CML on.

3 Enter FLRUN to begin the compile process CML creates the executables during.

4 Copy the CML executables from /FLAPP/USER/CML and/or /FLAPP/SHARED/CML to the
same path on the run-time system if you recompiled on a system other than the run-time
system.

CML does not recompile every time you enter FLRUN. Once CML has compiled the program
files into executable files, it recompiles only if you change a program file.

32 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
CML Utilities Call Sequence

CML UTILITIES CALL SEQUENCE ’

CML includes three utilities that create the executables CML uses at run time:
¢ MKCML

« PARSECML

e CCCML

At run time FLRUN is executed and starts a specific utilities call sequence (see Figure 1-21):

1 FLRUN calls the MKCML utility. The FLRUN command sets the FactoryLink path, the
application directory path, the user name, and the domain name to the environment variables
and turns off the verbose-level and clean-build parameters.

=
)
[
=2
Q
=]
Q.
.
o
Q
(9]

Note: CTGEN (and GENDEF) run normally as part of FLRUN. If you
are debugging and need to run the items separately, you should always
run CTGEN and GENDEF before running MKCML.

What does gendef do??
2 MKCML calls CTGEN, which ensures the Math and Logic .ct file is up to date.

3 MKCML calls PARSECML to produce .c files from the program files.

4 MKCML then calls CCCML to compile the .c files into object files using an external compiler.
Using an object linker, the object files are linked with library files into binary executable files.

Figure 1-21 CML Utilities Call Hierarchy

FLRUN

/

\
( MKCML )
Y -
( CTGEN ) ( PARSECIML > < ccMIL >—

Compiler

Linker

uoneinbiyuon
21607 pue yjep

FactoryLink Task Configuration Reference /33



CONFIGURING MATH AND LOGIC
CML Utilities Call Sequence

MKCML

The MKCML utility is a shell that calls the PARSECML and CCCML utilities as needed for
the current application. For each domain, MKCML checks the dependencies between the
configuration tables (named iml.ct for both IML and CML) and the program files. MKCML
performs these tasks:

* Calls CTGEN which compares iml.ct against the database files. If the database files have a
later time/date stamp than iml.ct, CTGEN rebuilds iml.ct to bring it up to date.

* Determines whether the time/date of iml.ct has changed. If so, MKCML reproduces and
recompiles all of the .C files by calling PARSECML and CCCML.

When you redirect the output of MKCML to a file, the messages displayed in the dump seem
to be out of order because of the method used by the operating system to buffer and output
messages. If you do not redirect the output of MKCML, the messages are reported to the
standard output in the correct order.

PARSECML

CCCML

The PARSECML utility parses the application program files and produces .c files for each
domain. It produces a .c file for each program file if the program Mode field is set to
COMPILED in the Math and Logic Triggers Information table.

This utility also checks the dependencies between the program files and the .c files to see if any
procedures have been updated since the .c files were last produced.

PARSECML has various levels of debugging via the -Vx parameter that can generate more
detailed output or even add debugging statements to the C code.

The CCCML utility compiles each .c file produced by PARSECML into an object file using an
external compiler. It then links the object files with the FactoryLink and developer-supplied
libraries into a binary executable. To determine the name of the compiler to use for a specific
operating system, CCCML uses a special file called a makefile that is named:
{FLINK}/CML/CML.MAK.

Its debugging levels provide minimal information, for example, the exact command line used
to compile and link the code.

{FLINK}/CML/CML.MAK is platform dependent and is the heart of the portability of
FactoryLink. {an oxymoron????] The following command lines are an example from OS/2:

SRCSUFFIX - ¢

34 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
CML Utilities Call Sequence

OBJSUFFIX - obj 1

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

uoneinbiyuon
21607 pue yjep

FactoryLink Task Configuration Reference / 35



CONFIGURING MATH AND LOGIC
CML Variables

CML Variables
CML variables provide manipulation of the CML environment (see Table 1-4).

Table 1-4 Miscellaneous CML Commands

Command Definition Example

CC Designates the command line CcC
compiler.

CCFLAGS Specifies all of the command line | CCFLAGS - -dos2 -AL -Au -Od -Zp -G2s -nologo -¢
options for compiling the .C files. |-I{FLINK}\inc

CMLOBIJS The stock CML files that are not | CMLOBIJS glvars.obj

application dependent. They are CMLOBIS cmlprocs.obj
liable to change as versions change

USEROBIJS USEROBIS allows for the USEROBIJS
inclusion of user-defined object
module at link time.

LINK Designates the command line LKFLAGS - /NOE/ST:16384/se:512
linker

CMLLKOBIJS | These variables also allow for the |CMLLKOBIJS

USERLKOBJS |inclusion of object modules that | USERLKOBJS
are not usually part of CML.

CMLLIBS These variables also allow for the |CMLLIBS {FLINK}\LIB\FLIB.LIB\
USERLIBS |inclusion of libraries not usually | cMLLIBS {FLINK}\LIB\CML.LIB
part of CML. USERLIBS

DEFFILE This specifies the link definition DEFFILE - {FLINK}\CML\CML.DEF
file. It contains special information
about window attributes, resources,
or compiled output options. If this
is altered, your customer support
representative no longer supports
it.

TARGET This is the destination executable. | TARGET {FLAPP}\ {FLDOMAIN}\
cm,\c{FLDOMAIN} .exe

User-defined C language includes files that use quotes; for example, #include “sample.h”
should be placed in the {FLAPP}{DOMAIN}/CML directory. Include files of the form #include
<sample.h> should be placed in the path searched by the compiler. You may want to place
them in the {FLINK}/INC directory. However, the include files are not saved with the

36 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
CML Variables

application during a multi-platform save (MPS). The best place to put the include files is in the
{FLAPP}{DOMAIN}/CML to ensure the fields are saved with the application when an MPS is 1
performed. If you place the include files in the latter directory, you should add the following to
the cml.mak file on the line CFLAGS:

-dos2 -AL -Au -Od -Zp -G2s -nologo -c¢ -{FLINK}Ninc -{FLAPP} {FLDOMAIN\CML
Running the Utilities from the Command Prompt Window

CML is designed so each of the CML utilities can be started from the command prompt
window. This is useful when only a portion of the compile process needs to be processed.

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

The command line parameters used by all CML utilities are described in the Table 1-5.

Table 1-5 CML Command Line Parameters

Parameter Description
-P Sets the path to the FactoryLink program files.
-A Sets the path to the application directory.
-U Sets the user name.
-N Sets the domain name.
-Vx Sets the verbose (debug) level to x.
-C Performs a clean build, reproducing all files from scratch.

uoneinbiyuon
21607 pue yjep

FactoryLink Task Configuration Reference / 37



CONFIGURING MATH AND LOGIC
CML Variables

Verbose-Level Parameters

When you use a verbose-level parameter, the utility displays messages about its progress as it
performs its part of the compile process. This serves as a debugging aid.

Table 1-6 shows the messages produced by each utility at the verbose level indicated.

Table 1-6 Verbose Setting Messages by Level

T - Run-time
Utility Verbose Level Result Displayed Effects
MKCML 1 or higher Application name and domains as they |None
are processed.
CCCML 1 or higher —Message, “Not authorized to run None
Math and Logic” if the system cannot
find the run-time bit.
— Current application and domain
being processed.
—Message, “No .PRG files are
configured as COMPILED”.
—Message echoing the command line
that calls the compiler or linker before
making the call.
—Names of each file as it is compiled.
—Message indicating all files are up to
date.

PARSCML |1 Name of each .c file name as it is None

produced.

PARSCML |2 Verbose level 1 message, plus: None

—The comments, containing the
original source lines of the Math and
Logic program, placed by the utility at
the start of the generated C code.
—All programs as they are parsed.

PARSCML |3 or higher Verbose level 1 and 2 messages. Print a
statement upon
entry and exit of
procedure.

PARSCML |4 Verbose Level 1, 2. Print each line
as it executes.

38 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Calling C Code

CALLING C CODE ’

Use the following CML-specific keywords to call C code in a Math and Logic program:
* cfunc

e cbegin

* cend

Using cfunc

Use the keyword cfunc to declare standard C functions and user-defined C functions as
callable in-line functions within a CML program. In-line C functions allow a CML program
to call a C function directly without opening a C code block. The function must be declared
before it is called.

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

The C code generated by CML provides prototypes for standard library functions; however, it
does not include prototypes for user-defined C functions. You must provide function
prototypes for all user-defined functions. Including a function without a prototype may result
in compiler warnings regarding the missing functions.

Use only C functions that use the Math and Logic data types of SHORT, LONG, FLOAT, and
STRING with cfunc. Although a C function may use any data type internally, its interface to
Math and Logic must use only these types.

In the following example, testfunc is declared to use four arguments whose values are SHORT,
LONG, FLOAT, and STRING data types and to return a value with a SHORT data type:

DECLARE cfunc SHORT testfunc(SHORT,LONGFLOAT,STRING)

You may declare C functions to return the following data types:
Function: Value returned:
SHORT Short-integer
LONG Long-integer
FLOAT Floating-point
STRING  String
VOID None

The VOID data type is unique to CML. Use VOID when declaring a function not required to
return a value.

uoneinbiyuon
21607 pue yjep

Do not use VOID in programs designed to run in interpreted mode.

FactoryLink Task Configuration Reference /39



CONFIGURING MATH AND LOGIC
Calling C Code

cfunc Examples
The following examples show how to use cfunc:

Example 1—uses cfunc to declare the standard C function strcmp( ) for use within a CML
program:
DECLARE cfunc SHORT stremp(STRING, STRING)

PROC TEST(STRING s1)
BEGIN

IF stremp(s1,"QUIT")=0 THEN
PRINT “QUITTING\n”
ENDIF

END

The function strcmp( ) compares two strings and returns a value that indicates their
relationship. In this program, strcmp compares the input string s1 to the string QUIT and is
declared to have a return value of the data type SHORT.

 Ifthe return value equals 0, then s1 is identical to QUIT and the program prints the message
QUITTING.

 If the return value is less than or greater than 0, the program prints nothing.

C functions declared using cfunc have full data conversion wrapped around them, meaning
any data type can be passed to and returned from them.

Given the previous sample code, the following program is legal within CML:

PROC MYPROC
BEGIN

DECLARE FLOAT f
DECLARE LONG k
DECLARE STRING buff

buff=stremp(fk)
END

In this program, strcmp converts the FLOAT value f and the LONG value k to strings,
compares the two strings, and then returns a number (buff) that indicates whether the
comparison was less than, greater than, or equal to zero. This comparison is

If f <k, then buffis a number less than 0.

40 / FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Calling C Code

If f=k, then buffis equal to 0.

If £> k, then buff is a number greater than 0.

Example 2—uses cfunc to declare the function testfunc which has a return data type of VOID:
DECLARE cfunc VOID testfunc(FLOAT)

PROC MYPROC
BEGIN

DECLARE FLOAT flp
flp=100.0
testfunc(flp)

END

=
)
[
=2
Q
=]
Q.
.
o
Q
(9]

In this program, the declared floating-point variable flp is set to 100.0 and this value is passed
to the function testfunc. Note that VOID is entered in place of the data type for the function’s
return value. This is because the program is only passing a value to testfunc and the function is
not required to return a value.

Using cbegin and cend

You can use the keywords cbegin and cend to embed C code directly into a CML procedure.
Between these keywords, you can call external library functions and manipulate structures and
pointers Math and Logic does not support; however, you cannot declare C variables inside a
cbegin/cend block already within the scope of a procedure. When you declare a C variable, the
declaration block from cbegin to cend must be displayed outside the procedure, above the
PROC statement. Refer to the declaration of static FILE *Fp=stderr; in Example 2.

The cbegin and cend statement must each be on a line by itself with no preceding tabs or
spaces. All lines between these two keywords (the C code block) are passed directly to the .C
file PARSECML produces for this program.

The following examples show how to use the cbegin and cend keywords.

# Example 1: 9 §
PROC TEST(STRING message) g‘ :
BEGIN @ a
DECLARE STRING buff 8 C

IF message="QUIT" THEN 9 %.

PRINT “FINISHED.\n”
ENDIF

FactoryLink Task Configuration Reference /41



CONFIGURING MATH AND LOGIC
Calling C Code

cbegin
sprintf(buff,"The message was %s\n",message);
fprintf(stderr,buff);

cend

END
In this program, the sprintf and fprintf functions, called between cbegin and cend, are passed

directly to the .C file PARSECML generates for TEST. Note that local variables are within the
scope of the C code block and can be accessed during calls to external functions.

Any C code blocks outside the body of a CML program are collected and moved to the top of
the generated .C file, as shown in Example 2:

# Example 2:

cbegin
#include “mylib.h”
cend

PROC TEST(STRING s1)
BEGIN

PRINT “The message is ”,s1
END

cbegin
static FILE *Fp=stderr;
cend

PROC SOMETHING (FLOAT f1)
BEGIN

cbegin
fprintf(Fp,"%6.2g\n",1);
cend

END

In this program file, the statement:

static FILE *Fp=stderr;

is moved to the top of the program file just after the line

include “mylib.h”

42 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Calling C Code

The following example shows how to access real-time database elements from within

embedded C code blocks. It increments the values of two analog elements, Tagl and Tag2[5], 1
by 10.
cbegin
int fl_tagname to id(TAG¥*, int, ...); /* function gg;
prototype missing from CML.H*/ 5
cend [
=}
PROC example —
BEGIN 5
cbegin Q
{ (2]
TAG tag[2];
ANA value[2];

fl tagname to id(tag,2, “TAG1”,“TAG2[5]);
fl read(Task id,tag,2,value);

value[0] += 10;

value[1] += 10;

fl write(Task id,tag,2,value);

}

cend
END

Note: The variable task idis a predefined global CML variable and does
not need to be declared.

The following example shows how to manipulate message tags within embedded C code
(cbegin/cend code blocks). This example reads from TAG1, adds X to the string, then writes

the result to TAG2.

PROC ADD X
BEGIN
cbegin

{

#define MAX LEN 80 /* default maximum
message length */

int fl tagname to id(TAG*, /* function prototype

int,...); missing from CML.H */

o5
O
3.:-
@5
BQ
=L [
= O
gu:
(g}

FactoryLink Task Configuration Reference /43



CONFIGURING MATH AND LOGIC
Calling C Code

TAG tags[2];

MSG tagl, tag2;

char string bufff MAX LEN+1]; /* max length plus
terminating 0 */

tagl.m ptr=tag2.m ptr=string_buf;
tagl.m max=tag2.m max=MAX LEN;

fl tagname to id(tags,2,”TAG1”,"TAG2");
fl read(Task id,&tags[0],1,&tagl);

strcat(string_buf,”X”);
tag2.m_len=strien(string_buf);
fl write(Task id,&tags[1],1,&tag2);

}

cend
END

When values are assigned to and read from MESSAGE tags in the normal syntax for the
procedure files the MAX LEN field is limited to 1023 characters. All message values are
truncated at 1023 characters. The function f1_write () must be called directly to store values
longer than 1023 characters into a MESSAGE tag. The following example shows how to use a
C macro to call the procedure msgtest to store a 90-character constant into the MESSAGE tag
msgtag:

MSGTEST.PRG:

cbegin
void fl tagname to id(TAG*,int,...);
#define assign msg(tagname, value) {\
TAG tag; \
MSG msg; \
char buf[] = value; \
fl tagname to id(&tag,1,tagname);\
msg.m_ptr = buf;\
msg.m_len = strlen(buf); \
msg.m_max = strlen(buf)+100; /* leave plenty of room */
fl_write(Task id,&tag,1,&msg); \

}

cend

PROC msgtest
BEGIN

44 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
Calling C Code

cbegin ’
assign_msg(“msgtag”,”’1234567890123456789012345678901234567890123456789012345678901
23456789012345678901234567890)

cend

END

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

uoneinbiyuon
21607 pue yjep

FactoryLink Task Configuration Reference /45



CONFIGURING MATH AND LOGIC
The Math and Logic Editor Reference Pages

THE MATH AND LoGIC EDITOR REFERENCE PAGES

The Math and Logic editor is a Single Document Interface (SDI) application that allows
multiple concurrent instances to run within the FactoryLink environment. The editor is
accessed using the Configuration Explorer program and acts as an in-place active server.

Chromocoding, color assigned according to syntax, is provided by the editor to assist the user
in identifying keywords, operators, declarations, global tags, commented lines and strings. See
the example Math and Logic Editor file in Figure 1-22. Find the definitions of the screen icons
in Table 1-7.

Figure 1-22 Math and Logic Editor Screen Example

ChStarterApp'SHARED'procsiloops.prg

Left margin - . .
~—__[@lsl el slof o alaf vvlola] # 3oy,
m .
N

# Source:  loops.prg Horizontal splitter
# Domain: Shared
# huthor: usd
# Original: 10-27-99
H

# procedure declarations

N
# glohal variable declarations K\\\\\\\
declare float LFPVprewv

Vertical scrollbar
# constants declarations
CCON3T AUTO 1

CCON3T PVMAX 0.0

PWHMAE
Trigger: TEST ML _TRIG
Purpose: Loop simulator

H
#
#
H

proc leggs()

hbegin
Bookmark declare float _lpv, _lsp, _lwn, _err
\ # loop mode change

. . B it (TESTLE U) then Edit buffer view
Verhcalsphﬂer # zetpoint bumpless transfer to Auto mode

if (TEST LM W = AUTO) then _Id
‘ “k\\\\;

Horizontal scrollbar

Other features supported by the Math and Logic Editor are:
* Keystroke macros
* Split views of the same edit buffer which can be scrolled separately

* Column selection and manipulation to provide editing across columns

46 /| FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
The Math and Logic Editor Reference Pages

* Configurable window properties for customizable views

* Numerous edit commands with keystroke functions enabling, for example, quick
copy-paste, drag and drop, find-replace, tab-to-space/space-to-tab conversion.

* Microsoft IntelliMouse® support for quick scrolling.

=

The syntax and keywords for the simplified language supported by the Math and Logic Editor =4
are described in the FactoryLink Configuration Guide. This language is supported for all IML =)
programs. For CML programs, non compliant code is translated by FactoryLink to ANSI C g
and C++ standards by an interpreter during the FactoryLink start-up process. rof
-

Table 1-7 Math and Logic Editor Icons (Sheet 1 of 2) 8
Icon Function Description o

Save Saves the changes in the selected (active) file

Print Prints the selected (active) file

Cut Copies the selected text

Copy Copies the selected text

Paste Pastes the information that has been saved in the
clipboard

Undo Remove the last edit(s) in reverse sequence they were
made. The undo function buffers the last XX edits to
undo.

Redo Read last edit(s) in reverse sequence they were removed.
The redo function buffers the last XX undo functions.

Insert procedure Inserts the text and initiates a new procedure.

Find Search for whole word, fragment and match case. This

standard find function provides the addition of setting
bookmarks at each find location to facilitate editing.

Repeat last find with same properties.

Q Find next

o5
O
3.:-
@5
BQ.
=L [
= O
g«:
(g}

FactoryLink Task Configuration Reference / 47



CONFIGURING MATH AND LOGIC
The Math and Logic Editor Reference Pages

Table 1-7 Math and Logic Editor Icons (Sheet 2 of 2)
Icon Function Description

Validate Checks the file for:
N

matching braces, parens and brackets

definition of local and global variables (tags)

basic syntax such as correct use of operators
essential keywords are preset (BEGIN, END, PROC)

Go to first error Advances the cursor to the first line with an error in the
1 file.
Go to next error Advances the cursor to the next line containing an error.

Wraps to the top of the file if cursor is on or below the
last error line.

Clear all marks Clears all bookmarks and error marks from the file.

Font Displays the Font dialog box to enable selection of font
type, style and size

Display the About | Shows current Math and Logic software version plus the
information box. location of the FLAPP and FLINK directories

= % |8 |5

Mouse Functions
Custom mouse functions are described in Table 1-8.

Table 1-8 Mouse Actions in the Math and Logic Editor

Mouse Action Result

Left-button click over text Inserts the cursor in the text at the position the
mouse is clicked

Right-button click Displays the Math and Logic context menu

Left-button down over selection, and drag | Moves the selected text

Control + Left-button down over selection, | Copies the selected text

and drag

Left-Button click over left margin Selects line

Left-Button click over left margin, and Selects multiple lines
drag

Alt + Left-Button down, and drag Select columns of text
Left-Button double click over text Select word under cursor

48 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC
The Math and Logic Editor Reference Pages

Table 1-8 Mouse Actions in the Math and Logic Editor
Mouse Action

Result

Spin IntelliMouse mouse wheel Scroll the window vertically

Single click IntelliMouse mouse wheel Select the word under the cursor

Double click IntelliMouse mouse wheel Select the line under the cursor

Split the window into multiple views or adjust
the current splitter position

Click and drag splitter bar

Split the window in half into multiple views or
combine the window if already split

Double click splitter bar

Keyboard Shortcuts

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

For users who prefer keyboard commands, the Math and Logic editor provides an abundance
of keyboard shortcuts. See Table 1-9 for a complete list of the actions and keycodes arranged

alphabetically by keyword.

Table 1-9 Keyboard Shortcuts (Sheet 1 of 4)

Keyword Action Keycode
BookmarkNext Go to next bookmark F2
BookmarkPrev Previous bookmark Shift + F2
BookmarkToggle Set/delete bookmark on current Control + F2
line
CharLeftExtend Select character(s) left and extend | Shift + Left Arrow
CharRightExtend Select character(s) right and extend | Shift + Right Arrow
Copy Copy Control + C
Copy Control + Insert
Cut Cut selection Shift + Delete o E
Control + x o=
Control + Alt + w g g
Delete Delete forward Delete Sao
Delete back Backspace gr g
DocumentEnd Go to end of document Control + End 8 %

FactoryLink Task Configuration Reference /49



CONFIGURING MATH AND LOGIC
The Math and Logic Editor Reference Pages

Table 1-9 Keyboard Shortcuts (Sheet 2 of 4)

Keyword Action Keycode
DocumentEndExtend Select from cursor location to end | Control + Shift + End
of document
DocumentStart Go to start of document Control + Home
DocumentStartExtend Select from cursor location to start | Control + Shift + Home
of document
Find Open find dialog box Alt+F3
Find Control + F
FindNext Find next match F3
FindPrev Find previous word Shift + F3
FindReplace Open find and replace dialog box | Control + Alt + F3
GoToLine Open go-to-line dialog box Control + G
GoToMatchBrace Go to matching brace Control + ]
Home Go to start of line Home
HomeExtend Select from cursor back to start of | Shift + Home
line
LineCut Cut current line Control +Y
LineDowNextend Select from cursor to line below Shift + Down
cursor
LineEnd Go to end of line End
LineEndExtend Select from cursor to end of line Shift + End
LineOpenAbove Add line above current line Control + Shift + N
LineUpExtend Select from cursor to line below Shift + Up
cursor
LowercaseSelection Change selection to lower case Control + U
PageDownExtend Select from cursor to top of next Shift + Page Down
page
PageUpExtend Select from cursor to bottom of Shift + Page Up
previous page
Paste Paste Control +V
Shift + Insert
Properties Display Window Properties dialog | Alt + Enter

box

50 / FactoryLink Task Configuration Reference




CONFIGURING MATH AND LOGIC
The Math and Logic Editor Reference Pages

Table 1-9 Keyboard Shortcuts (Sheet 3 of 4)

Keyword Action Keycode
RecordMacro Record a new macro Control + Shift + R
SelectLine Select line Control + Alt + F8
SentenceCut Cut current sentence and all Control + Alt + K
sentences above up to first
occurring blank line

SentenceLeft Go to beginning of previous line Control + Alt + Left
after line break (previous sentence)

SentenceRight Go to beginning of next blank line |Control + Alt + Right
(next sentence)

SetRepeatCount Set repeat counter (use this in Control + R
conjunction with macros to repeat
the macro)

TablnsertSelection Change every four spaces in Control + Shift+ T
selection to tabs

TabRemoveSelection Change tabs in selection to four Control + Shift + Space
spaces per tab

ToggleOvertype Toggle between overtype and insert | Insert

ToggleWhitespaceDisplay

Toggle between white space and no
white space display

Control + Alt+T

window scrolls up

Undo Undo last edit(s) in reverse Control + Z
sequence they were made. The Alt + Back
undo function buffers the last XX ackspace
edits to undo.

UnindentSelection Unindent Selection (doesn’t work - | Shift + Tab
only moves tab to right)

UppercaseSelection Change selection to uppercase Control + Shift + U

WindowScrollDown Cursor remains in current line but | Control + Up Arrow
file scrolls down

WindowScrollLeft Window scrolls to the left one Control + Page Up
character at a time

WindowScrollRight Window scrolls to the right one Control + Page Down
character at a time

WindowScrollUp Cursor remains in current line but | Control + Down Arrow

FactoryLink Task Configuration Reference /51

=
)
[
=2
Q
=]
Q.
-
o
Q
(9]

uoneinbiyuon
21607 pue yjep



CONFIGURING MATH AND LOGIC
The Math and Logic Editor Reference Pages

Table 1-9 Keyboard Shortcuts (Sheet 4 of 4)

Keyword Action Keycode
WordDeleteToEnd Delete the word or symbol to the | Control + Delete
right
WordDeleteToStart Delete the word or symbol to the | Control + Backspace
left
WordLeft Move the cursor one word to the | Control + Left Arrow
left
WordLeftExtend Select word(s) to the left Control + Shift + Left
Arrow
WordRight Move the cursor one word to the | Control + Right Arrow
left
WordRightExtend Select word(s) to the right Control + Shift + Right
Arrow

Chromocoding

Color helps to define the purpose of the text at a glance. See Table 1-10 for a description of the
colors and the functions they describe.

Table 1-10 Color Codes for the Math and Logic Editor

Color Function
Red Punctuation symbols
Blue Reserved words and globally defined variables
Purple Strings
Black Text not globally defined
Green Comments
Aquamarine Numerics

Menu Commands

Right-click the mouse with the cursor positioned in the edit buffer to display a context menu
(see Figure 1-23).

52 | FactoryLink Task Configuration Reference



CONFIGURING MATH AND LOGIC

The Math and Logic Editor Reference Pages

Figure 1-23 Math and Logic Context Menu

# loop mode change

Cut
Copy
Paste

ransfer to Luto mode
then

Unda
Bedo

Find...
Feplace...

FRiefrezh Chromacoding

Dizplay Tag
Add Tag to List

See Table 1-11. for a list of menu commands and their corresponding actions.

Table 1-11 Right Click Menu Commands

Command Action Comment

Cut Remove selected test Standard cut function

Copy Copy selected text Standard copy function

Paste Paste test from the Standard paste function

clipboard

Undo Remove last edit Remove the last edit(s) in reverse
sequence they were made. The undo
function buffers the last XX edits to
undo.

Redo Read last removed edit | Read last edit(s) in reverse sequence they
were removed. The redo function buffers
the last XX undo functions.

Find Search for whole word, |Standard find function which provides

fragment and match case |the addition of setting bookmarks at each
find location to facilitate editing.

Replace Search for above and Standard replace function providing the

substitute new text ability to find and replace the entire
document or just the selected text.
Refresh Chromocoding | Check syntax/function | Standard window refresh function
color settings

Display Tag Displays the Use this box to configure or modify the
FactoryLink TagEditor |global tag and add it automatically to the
dialog box if the tag is | Tag list and the Math and Logic
not previously defined | Variables table.

FactoryLink Task Configuration Reference /53

=
)

[
=2
Q

=]

Q.
-
o
Q
(9]

uoneinbiyuon
21607 pue yjep



CONFIGURING MATH AND LOGIC
The Math and Logic Editor Reference Pages

Table 1-11 Right Click Menu Commands

dialog box if the tag is
not previously defined

Command Action Comment
Add to Tag List Displays the Use this box to configure or modify the
FactoryLink TagEditor | global tag and add it automatically to the

Tag list and the Math and Logic
Variables table.

54 | FactoryLink Task Configuration Reference




	Configuring Math�and�Logic
	Locating Math and Logic Functions in Configuration Explorer
	Launch Configuration Explorer
	Locate Math and Logic Tasks, Tables and Editor
	Math and Logic Tasks
	Math and Logic Tables and Editor


	Configure Math and Logic Tasks
	Configure Math and Logic Tables
	Math and Logic Variables
	The Math and Logic Variables Information Table
	The Math and Logic Variables Information Table Example

	Math and Logic Triggers
	The Math and Logic Triggers Information Table
	The Math and Logic Triggers Information Table Example


	Program Files and Procedures
	Defining a New Program File
	Add New Procedures

	Modify Makefiles
	Math and Logic System Makefile
	Math and Logic Domain Makefile

	Compiled Math and Logic (CML)
	CML Requirements
	Running CML
	CML on a Development System
	CML on a Run-Time-Only System
	Different Development and Run-time Operating Systems


	CML Utilities Call Sequence
	MKCML
	PARSECML
	CCCML

	CML Variables
	Running the Utilities from the Command Prompt Window
	Verbose-Level Parameters

	Calling C Code
	Using cfunc
	cfunc Examples
	Using cbegin and cend

	The Math and Logic Editor Reference Pages
	Mouse Functions
	Keyboard Shortcuts
	Chromocoding
	Menu Commands



