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Reading: 

Wells & Wells       Entire Book on LabView. 
Horowitz & Hill      Chapter 15 
Press, Teukolsky, Vetterling and Flannery  
 Numerical Recipes1     Chapters 12, 13 and 15.5 
LabVIEW Analysis Concepts Manual Chapters 3 and 4. ( Located in the BSC Share) 
LabVIEW PID Control Toolset User Manual Chapters 1-4. ( Located in the BSC Share) 

 
In this lab you will learn how to extract signals from noise, and how to use a PID controller. 
  
Several LabVIEW programs are mentioned in this lab writeup.  Many of these programs can be 
downloaded from  http://socrates.berkeley.edu/~phylabs/bsc/LV_Programs/   and can also be found on 
your lab computers in \\Atlas2\D$\111 Lab\BSC Share\   Two versions of the programs are 
typically available for download: an executable version that should run without LabVIEW (but re-
quires a large download from National Instruments, which should occur automatically, and only 
needs to be done once) and should run on PC’s, Mac’s and Linux boxes; and the original LabVIEW 
source code which requires LabVIEW.  The LabVIEW Analysis Concepts Manual can be downloaded 
from \\Atlas2\D$\111 Lab\BSC Share\LAB_11  
 
 
Pre-lab questions:  
 
1. You seek to detect a signal of intrinsic frequency spread 10fΔ = Hz with a room temperature de-

tector that has an impedance of 1000ohms.  You sample for 10mS.  What is the smallest signal 
that you can detect? 

 
Background  
Signal Processing Overview 
 
Most real world signals are contaminated by noise.  A frequently used figure-of-merit is the signal-

to-noise ratio, Signal

Noise
n

V
S

V
= .  The  for clean signals is much larger than one; as  approaches one the 

signal fades into the noise, as shown in the figure below: 

nS nS
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1 This book (available in several versions for different computer languages), is the standard refer-
ences on numerical algorithms.  Like Horowitz & Hill, it is informative, chatty, opinionated and 
funny.  Almost all physicists own a copy.  Chapters of the book can be downloaded free from 
http://library.lanl.gov/numerical/index.html  This book is listed as a supplement; read it if you want 
to learn more about the numerical techniques. 
 

http://socrates.berkeley.edu/%7Ephylabs/bsc/LV_Programs/
http://library.lanl.gov/numerical/index.html
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Fortunately, we can often extract the signal from the noise.  There are three primary techniques for 
recovering the signal: 

1. Bandwidth narrowing. 
2. Averaging. 
3. Pattern matching. 

There are many ways to implement each of these techniques; we will explore the most important. 
 
Bandwidth Narrowing 
Generally, signals are narrow band, while noise is either wide band (like Johnson noise) or narrow 
band (like 60Hz hum), but of a different frequency than the signal frequency.  By narrowing the 
bandwidth of the signal we can diminish the noise, thereby improving the signal-to-noise ratio.   For 
example, it is not uncommon to detect a sine wave of frequency f and amplitude A that has been con-
taminated by Johnson noise.  The signal-to-noise ratio will be  
 

,
4n

B

AS
k RTB

=  

where B is the bandwidth that we accept.  Making  small will increase the signal-to-noise ratio; if 
we could make arbitrarily small, we could recover any size signal.  Unfortunately, we cannot make 

 arbitrarily small as there are at least two limits on the size of : 

B
B

B B
1. All signals have some intrinsic frequency spread, ,fΔ  and the bandwidth cannot be made 

smaller than this spread. 
2. The accuracy to which a signal frequency can be determined is inversely proportional to the 

length of time that you measure the signal, or, alternately, to the number of waveform cycles 
N that are contained in your sample.  For example, assume you anticipate measuring a sig-
nal near 1kHz, and you sample the signal for 100mS.  You would collect approximately 100 
cycles in this time.  Thus, you cannot determine the frequency of what you measure to better 
than about 1 1%N =  of 1kHz, or 10Hz, nor can you make the bandwidth any smaller.  (The 
derivation of this uncertainty relation is given below.) 

 
The two most important Bandwidth narrowing techniques are filtering and Fourier Transforming.  
Filtering narrows the bandwidth directly, attenuating the out-of-band noise.  Fourier Transforming 
also narrows the bandwidth, but by a more subtle method.  While it does not attenuate the noise, it 
allows you to concentrate on the narrow portion of the spectrum that contains your signal, thereby 
ignoring the majority of the noise which is spread through the entire spectrum. 
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Filtering 
Filtering is best used for real-time signals2 and can be implemented  in analog or digital (software).  
Analog filters can be quite simple, can work quite well, and are often sufficient.  But sharp analog 
filters are very complicated, and most analog filters cannot be tuned; i.e. their rolloff frequencies 
cannot be changed without physically replacing components.3  There are some applications that de-
mand analog filters, for instance: 

• Anti-aliasing.  You must attenuate the frequencies above the Nyquist frequency be-
fore the signal has been digitized. 

• Amplifier chains.  It is not uncommon for noise to swamp the later amplifiers in the a 
high gain amplifier chain.4  If, for instance, you have a 1 Vμ signal masked by 
100 Vμ noise, and you use an amplifier chain with a gain of one million, the noise 
would be amplified to 100V , saturating the final amplifier which is unlikely to be 
able to output much more than 10V± .  You would not be able to detect your now 
1V signal.  However, if you use a filter early in your amplifier chain, you can get rid 
of most of the noise, and prevent it from saturating the chain. 

 
In applications where analog filtering is not required,  digital filtering is often superior.   Digital fil-
ters are far more flexible, can be made arbitrarily sharp, are trivially tunable, and their topology 
(RC, Butterworth, Chebyshev, Bessel, etc.) is easily changeable.  However digital filters are compu-
tationally intensive, and their use is limited to relatively low frequencies.  Moreover, digital filters 
necessarily operate on digitized waveforms, and are subject to all of the limitations (Nyquist theo-
rem, quantization) of the digitization process.   

 
Digital filters are difficult to design.  Fortunately, there are many canned routines available, includ-
ing an extensive suite in LabVIEW.  We need not worry too much about the differences between the 
types of digital filters; refer to Chapter 3 of the LabVIEW Analysis Concepts manual for more infor-
mation.  In particular, Figure 3.25 of this reference shows a handy flowchart for picking the correct 
filter type. 

 
Fourier Transforms 

Fourier transforms find the spectral content of a signal: the amplitude and phase of the signal as a 
function of frequency.  You are all familiar with Fourier series from your math and physics classes; 
Fourier transforms are quite similar.  In a Fourier series, you consider only the harmonics of the pe-
riodic wave of period T  that you are analyzing: 

 
0

2( )sin
T

n
nA f t t dt

T
π⎛ ⎞= ⎜ ⎟

⎝ ⎠∫  

In taking the Fourier transform, you analyze all times and all frequencies: 

 ( ) ( ) j tF f t e dtωω
∞

−

−∞

= ∫  

The Fourier transform of a sinusoid is a delta function centered at the frequency of the sinusoid.   
 

                                                      
2 Real-time signals are those which you receive as in infinite train of  periodic samples, and which 
you wish to analyze as your receive each sample.  Other techniques, like Fourier Transforms, can be 
better when you receive your entire sample before you begin processing. 
3 Tunable filtering can be achieved by multiplying an incoming signal, at frequency f , by a variable 
frequency sine wave at frequency 0f .  The beat frequency at 0f f− is then passed through a sharp, 
fixed frequency filter.  The filter is tuned by changing 0f .  This common technique is called super-
heterodyning, and is used in most radios and TVs.  See  http://en.wikipedia.org/wiki/Superhet 
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4 A series of amplifiers in which each amplifier is fed by the output by the previous amplifier in the 
chain. 
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In the real world, any sample has a finite length; consequently, the Fourier transform becomes 

 ( )
0

1 ( )
T

j tF f t e dt
T

ωω −= ∫  

Here  is the length of the sample, not the period of the wave as it was for a Fourier series.  The 
sample may include many wave periods.  The transform of a sinusoid with frequency 

T
0ω  is 
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The magnitude of this transform for a wave with frequency 0 2ω =  and 8T = is: 

 
Instead of the delta function at 0 2ω = that we would get from an infinitely long sample, the trans-
form is a finite-width pulse centered at 0 2ω = .  The width of the pulse (to the first zeroes) is easy to 
find if we assume that 0ω ω= + Δω .  Then  

 ( ) ( )1 1j TF e
j T

ωω
ω

− Δ−
= −

Δ
. 

The first zeroes of this function occur at 2Tω πΔ = , or 0 01 1f Tω ωΔ = = Ν , where 0 02 fω π=  and is 
the number of cycles of the wave in one sample.  Because the pulse width is finite, we cannot readily 
determine the precise frequency of the original signal. Consider a signal that is actually the sum of 
two equal amplitude sine waves of frequency 0

Ν

ω ω−Δ  and 0ω ω+Δ .  The plots below show this sig-
nal, in green, compared to a pure signal of frequency 0ω , in red, for various values of ωΔ . 
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The spectra are indistinguishable for 0 0.025ω ωΔ = , and nearly so for 0 0.05ω ωΔ = .  Aside from an 
unimportant change in the amplitude, the spectra for 0 0.1ω ωΔ =  are distinguishable only by the 
details of the secondary peaks surrounding the main peak; the width of the main peak is very close 
to that of the pure signal.  Only when 0 0.2ω ωΔ =  are the spectra easily distinguishable.  Yet the 
untransformed original signals are readily distinguishable.  Thus, given only the spectrum, we can-
not determine the frequency to better than about 0 0.1ω ωΔ = : one quarter of the width to the first 
zero calculated above.  In essence, we have an uncertainty principle: the longer we sample a signal 
(the greater the time uncertainty), the better we know the frequency of the signal. 
 
Discrete Fourier Transforms  
The expression given above assumes that the signal, ( ),f t  is continuous.  Since our signals are ac-
quired by an ADC, they are actually sets of discrete samples.  Thus, we must use a summation 
rather than an integral to calculate the Fourier Transform:5 
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N
jnk N

n
F k f n e π
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where  is the number of samples, taken over some time T ;  each sample N ( )f n  is taken at time 
nT N .  By analogy to the argument of the exponential in the continuous transforms, each  corre-
sponds to a frequency 

k
2f k Tω π= = .  Thus, discretizing the time discretizes the frequency into 

steps of 1 T ; the longer the sample, the better resolved the frequency.  (This is just a restatement of 
the uncertainty principle discussed above.)   
 
From Lab 11, we know that a signal sampled at frequency sf N T=  cannot represent a frequency 
higher than the Nyquist frequency, 2sf .  The Nyquist frequency corresponds to 2k N= .  No higher 
k has any physical meaning.  (The Nyquist Theorem is actually derived via Discrete Fourier Trans-
forms.)     
 
Discrete Fourier Transformers would have little practical value if they could not be evaluated 
quickly.  Casually, one might think that the evaluating the transform would require evaluating 

2 2N exponentials: 2N  for each of the  samples.  Thus, the transform of a signal represented by a 
100,000 samples would appear to take 10,000 times longer to evaluate than a signal represented by 
1000 samples.  As the accuracy of the transform increases with the sample length, this would be 
very unfortunate.  Fortunately, there are clever algorithms which reduce the evaluation time scaling 
to : a 100,000 sample representation takes only 665 times longer than a 1000 sample repre-
sentation.  These algorithms are called Fast Fourier Transforms, or FFTs.  They are generally at-
tributed to J. W. Cooley and J. W. Tukey, who published an implementation in 1965, but many oth-
ers, including Gauss, had discovered similar algorithms. 

N

2lnN N

 
The FFT algorithm works most naturally on samples lengths which are powers of 2.  However sam-
ple lengths which are factorable into the products of powers of small primes, such as  can 
also be transformed efficiently; stick to sample lengths which can be so represented.  If necessary, 
pad your sample with zeros to extend it to one of these lengths. 

2 3 5 ,m k jN =

 
In practice, sample lengths below one million can be converted remarkably quickly.  Longer sample 
are slower than would be predicted by scaling because of cache misses.  Once the sample gets 
large enough to require virtual memory disk accesses, conversion is painfully slow. 

2lnN N
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5 The convention used here has no overall multiplying constant; other conventions are used that 
multiply this expression by some factor related to pi. 
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Averaging 
Experiments frequently produce multiple instances of the same signal.   Averaging the instances can 
improve the signal-to-noise ratio if the signal itself is repetitive, and the noise uncorrelated from in-
stance to instance. Then the noise will diminish as 1 N , where is the number of instances.  Note 
that the signal must be truly repetitive, otherwise it will average away just like the noise.  Also note 
that because of the square root dependence, successive factor of two noise reductions becomes in-
creasingly painful. 

N

 
Pattern Matching 
As you saw in Exercise 10.2, humans are remarkably good at recognizing some sorts of signals in the 
presence of noise.  Computer algorithms exist that can sometimes do the same.  The simplest is the 
well-known linear least squares algorithm.  If you know your data lies on a line, why retain the indi-
vidual data points?  By fitting the data to a line you can average most of the noise away.  The linear 
least squares algorithm is easily generalized to fit polynomial coefficients to data, or even linear 
combinations of nonlinear functions.  More powerful methods are needed to fit nonlinear equations.  
One of the most common is the Levenberg-Marquardt algorithm, which will fit one or more unknown 
coefficients in a nonlinear expression to a data set.  Given a reasonable guess for the unknown coef-
ficients, it can work remarkably well. The algorithm is quite difficult to program; fortunately, Lab-
VIEW comes with an implementation. 

 
“Improving” your ADC 
The techniques discussed above all assume that the data from your ADC is near perfect: that the 
sample rate is high and that quantization is unimportant.  It is sometimes possible to improve your 
sample data when these conditions are not met. 

Increasing the Effective Sample Rate: Equivalent Time Sampling 
A technique called equivalent time sampling (ETS) can sometimes be used to increase the ef-
fective sampling rate of your ADC.  For ETS to work, your system must: 

1. Be sampling a rigidly periodic waveform. 
2. Use an ADC whose bandwidth exceeds the bandwidth of the signal that you wish to 

recover. 
3. Use an ADC that acquires samples by: 

a. First, obtaining an analog sample of the instantaneous signal level. 
b. Second, presenting this analog sample to the analog to digital converter.  

Note that the actual signal may change during the conversion time, but this 
will not affect the conversion since the signal being converted is the previ-
ously obtained analog sample, not the current signal. 

 Acquiring and storing an analog sample may seem difficult, but, in fact, is easy to do 
with a common circuit called a sample and hold.  On command, the sample remem-
bers the analog value at its input, typically by storing the value in a capacitor. 

If your system does meet these requirements, you can acquire an accurate sample of a wave-
form by following these steps. 

1. After receiving a trigger indicating the beginning of your waveform, acquire one 
sample set.  Note that the sample rate can be well less than twice the signal fre-
quency. 

2. After receiving a second trigger, wait for a  delay interval less than the time between 
samples, and then acquire a second sample set.  Interleave this second set with the 
first set, offsetting each point by the initial interval. 

3. After receiving a third and successive triggers, acquire and interleave more data 
sets, each offset by a different amount. 

The offsets can be evenly and incrementally spaced, or can be random. 
Increasing the resolution: Dithering  
ADCs add quantization noise to low level signals.  For example, the near-zero levels of a 10 
bit ADC, with a range of are -59, -39, -20, 0, 20, and 59mV.  The ADC cannot represent 
signals in between these levels.  This is particularly problematic for signals that are less 
than 10mV; the ADC will convert the signal to the constant 0mV, and the signal will disap-

10V,±
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pear entirely.  Paradoxically, adding random noise will improve the conversions.   If the 
noise is sufficiently large, it will cause the signal to fluctuate between the ADC quantization 
levels.  The average of the levels reported by the ADC will be the signal level.  This tech-
nique is called dithering, and is quite commonly used.  Noise adding circuitry may be incor-
porated in the ADC, or you may have to add noise yourself.  Often, the natural noise in your 
system is often enough to dither. 
 
As and example, consider a steady 9mV signal.  Without noise, the aforementioned ADC will 
always convert this signal to 0mV.  Add 10mV noise however, and the signal will range be-
tween -1mV and 19mV, with occasional larger excursions.  Roughly eleven times out of 
twenty, the signal will be between -1 and 10mV and will be converted to zero, while nine 
times out of twenty the signal will be between 10 and 19mV and will be converted to 20mV  
Thus, the average of the converted signals will be 9mV, thereby recovering the original sig-
nal level. 
 
If the sample rate is much higher than the desired signal frequency, the averaging can be 
done by passing the converted signal through a digital low pass or smoothing6 filter.  If the 
signal is periodic, and multiple instances of the signal are available, the signal can be fur-
ther improved by averaging the instances. 
 
The ideal noise level is about half a quantization step.  Below this noise level the signal will 
not fluctuate between steps, and above this level the noise itself introduces error. 

 
 

Control 
Most modern experiments are controlled by computers: computers set magnetic field levels, regulate 
temperatures, move probes, control timing, open valves, turn on sources, etc.   Control functionality 
can be simple or complicated; the list below describes some of the most common control methodolo-
gies: 

• On/Off Controllers.  Epitomized by a light switch, a typical experimental function would be 
controlling the state of a vacuum valve.  On/off controls are trivial to program;  they are usu-
ally implemented by controlling the state of a digital bit, which in turn, controls an electronic 
switch.  
 
On/Off controls are all or nothing; you cannot use them to reach a particular level or state. 

• Continuous Controllers.  A stovetop burner valve exemplifies of a continuous control;  a 
control that lets us set the state of the driven object to a continuous set of levels. A typical 
experimental function would be controlling the strength of a magnetic field.  Continuous con-
trols are commonly implemented by using the voltage from a DAC to control the target de-
vice: a power supply, for instance to control the current through a magnet.  
 
A continuous control allows some systems, like a magnet, to reach a well defined state.  Most 
systems, however, are not so strictly controlled.  Sometimes a system will appear to be stably 
set to some level, but a perturbation or change in system can run it out of control.  For in-
stance, a stove top burner cannot be programmed to reach and hold a particular tempera-
ture.   Temporary control can be achieved by setting a pot of water on stove burner.  The wa-
ter and pot will get no hotter than 100C.  But once the water boils away, the temperature 
will rise uncontrollably.    Having once melted through an aluminum pot, which requires a 
temperature of 660C, I am all too familiar with this scenario.   

• Feedback Controllers.  A feedback control adds feedback to a On/Off control;  a thermostat 
is a familiar feedback control.  The control turns on some device (a heater in the case of a 

 
6 A smoothing filter outputs a running average of its inputs.  Its action is similar to that of a low 
pass filter. 
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thermostat) until some setpoint7 is reached.  Then the control turns off the device until the 
process variable7 falls below the setpoint, at which point the device is turned back on.    
 
Most feedback controls incorporate hysteresis; they turn on only after the process variable 
has fallen slightly below the setpoint, and remain on until the process variable rises slightly 
above the setpoint.  Without hysteresis, the device under control may stutter on and off.  
Stuttering can be inefficient and may damage the device.  (The hysteretic range on a house 
thermostat is typically one or two degrees; on a water heater it can be as large as 15 de-
grees.)    
 
Feedback controls are common in experiments and are used to accomplish tasks like keeping 
a process at a specified temperature, or a fluid level at a specified height.  But feedback con-
trols are too crude for many applications. 

• Proportional Controllers.  When you merge onto a highway, you gun your engine in the 
acceleration lane until your speed approaches the traffic speed, and then ease off as you 
match your speed to the traffic speed.  If you were to accelerate at low power, you would 
reach the end of the acceleration lane before you attained sufficient speed, and if you did not 
ease off toward the end, your attempt to match the traffic speed would be very jerky.  This 
control methodology is an example of proportional control; the strength of the drive is pro-
portional to the difference between the setpoint and the process variable.  Proportional con-
trol is appropriate when you wish to quickly approach a setpoint, and then asymptote to it 
smoothly.    
 
Consider a mass m  hanging on a spring k of natural length 0y , driven by a proportional con-
trol to a setpoint sy .  The constant of proportionality for the control is C .  The equation of 
motion for the system is: 

  

 
2

02 ( ) ( )s
d ym mg k y y C y
dt

= − − − − − y  (1.1) 

In steady state, the solution of this equation is 
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1
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=

+
 (1.2) 

 As C gets large, the process variable will approach the setpointy sy . 
• Proportional-Differential Controllers. While Eq. 1.2 correctly predicts the equilibrium 

state of the spring-mass system, the system, as modeled by Eq. 1.1, will never reach equilib-
rium.  Because the system possesses inertia (the 2 2m d y dt  term in the equation of motion), 
it will oscillate around the equilibrium.  To satisfactorily control the system, we need to add 
damping: 

 (
2

02 ( ) ( ) 2s d
d y dm mg k y y C y y CT y y

dtdt
= − − − − − − − ).s  (1.3) 

Note the damping constant,  has units of time.   The system is critically damped when  ,dT

 2 ,d
k CT m
C
+

=  (1.4) 

and the system will converge to the setpoint quickly if it is near critical damping.  However, 
critical damping is not always the best choice;  if some ringing can be tolerated, the system 
will react more quickly if it is underdamped: 
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7 Two definitions will clarify this discussion:  A process variable is some measured value that charac-
terizes the system; the setpoint is the desired level of the process variable. 

©2007 Copyrighted  by the Regents of the University of California. All rights reserved. 



Physics 111 BSC Laboratory Lab 11 Signal Processing and Control 

 
If the system has some initial momentum, critical damping can lead to overshooting.  If over-
shooting cannot be tolerated, the system must be overdamped: 

 
 

The inertia in mechanical systems is explicit, but even non-mechanical systems exhibit iner-
tia-like phenomena. For instance, thermostatically controlled heating systems have a form of 
inertia.  Typically, the thermostat is not immediately adjacent to the heater.  When the tem-
perature at the thermostat exceeds the setpoint, the thermostat will turn the heater off, but 
the area near the heater will be warmer than the area near the thermostat.  Heat will 
spread away from the heater, and the temperature at the thermostat will continue to rise, 
until the temperature equalizes everywhere.  Thus, the system has inertia just like the 
spring-mass system.   

 
In general, any system with time delays will have inertia-like properties.  Adding damping 
through a differential term is frequently beneficial.   

 
• Proportional-Integral-Differential Controllers.  From Eq. 1.2, we see that for any finite 

,C  the equilibrium is shifted away from the setpoint.  If we need to hit the setpoint precisely, 
we can add an integral term:  

 ( )
2

02
0

( ) ( ) 2 ( )
t

s d s s
i

d y d Cm mg k y y C y y CT y y y y
dt Tdt

= − − − − − − − − −∫ .dt  (1.5) 

The integral term integrates the difference between the process variable and the set point, 
and drives this error to zero.  Like  the integral constant  has units of time.   ,dT iT
 
The proportional-integral-differential controller, or PID controller, generally works very 
well, and is used in many systems.  It is not limited to systems modeled by linear second or-

Last Revision: August 2007  Page 9 of 17 
©2007 Copyrighted  by the Regents of the University of California. All rights reserved. 



Physics 111 BSC Laboratory Lab 11 Signal Processing and Control 

der differential equations like Eq. 1.5.  For instance, the linear error, se y y= − used in Eq. 1.5 
can be replaced by any odd function of  .e
 
The most difficult step in deploying a PID controller is determining the constants   and 

  There is no foolproof method that always gives the best values. For that matter, there is 
no single set of “best values;” the best values depend on the desired response time, and your 
ring and overshoot tolerances.  If the system is very simple you may be able to calculate the 
values, otherwise you will have to guess them or find them by trial and error.  Once you get 
values that keep the system stable, you may be able to use various algorithms

,C ,dT
.iT

8 to optimize 
them.  Some of these optimization algorithms are available in LabVIEW.  Finding the ap-
propriate constants is called tuning the PID. 
 
Practical PID controllers work by calculating the error, ,se y y= −  between the process vari-
able  and the setpoint, integrating and differentiating the error, scaling by the appropriate 
constants, and summing to get a drive signal. PIDs can be implemented in analog or digital.  
Analog PIDs output a continuous voltage.  Digital PIDs operate in a loop: they measure the 
process variable, compute the drive and output it with a DAC, and loop back to measuring 
the process variable.  Consequently, the drive from a digital PID is a series of steps. 

y

 
Whether implemented in analog or digital, the system has a finite response time.  If analog, 
the response time is set by the bandwidth of the circuitry.  If digital, the response time is set 
by the speed of the ADC and DAC, the computation time of the calculation, and by any other 
tasks that might be running on the processor that distract the processor’s attention.  The 
sum of all these times is called the service interval. 
 
As a rule of thumb, PID controllers work well if their bandwidth is a factor of ten higher 
than the frequency with which changes occur in the process. 
 
Software implementations are easier to tune, and can be easier to integrate into a bigger sys-
tem.  On dedicated hardware, software PID loops can run quite fast.  But in the Windows 
environment, operating system distractions limit the PID loop speed to about 1kHz.  Hard-
ware implementations can be much faster.   

 
 
In the lab 
(A) Bandwidth Narrowing: Filters 
11.1 Use the program Filter.vi to generate a sine wave with the Signal Amplitude set to 1, the 
Signal Frequency set to 75, and the Modulation Frequency set to 0.1.  Turn of all noise.  Pass 
the signal through a Butterworth filter of Filter Order 3, with a High Pass Cutoff  of 80 and a 
Low Pass Cutoff  of 70.  Study the synchronicity of the filtered signal; do the modulation minima of 
the filter signal occur at the same time as the minima of the unfiltered signal?  Decrease the band-
pass; how does the synchronicity behave? 
 
Now study the amplitude of the filtered signal.  How narrow can you make the bandpass before the 
amplitude of the signal decreases?  Change the Modulation Frequency to 1.  Now how narrow can 
you make the bandpass?  How does the minimum acceptable bandpass scale with the modulation 
frequency? Can you explain this scaling?  Record your answers in your lab book. 
 
11.2 Restore the original (default) parameters.  Turn on the 60Hz Comb Noise, which adds noise at 
60Hz harmonics.  What happens to the unfiltered signal?  What about the filtered signal?  How low 
can you make the signal amplitude and still recover the original signal?  Decrease the bandpass to 
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the minimum values that you found in 11.1.   How small a signal can you recover?  How well does 
the filter remove the 60Hz noise?  Record your answers in your lab book. 
 
11.3 " Restore the original (default) parameters.  Turn off the 60Hz Comb Noise and turn on 
the White Noise, which adds 0.045V Hz  noise.  For bandwidths of 10, 1 and 0.1Hz, how much 
noise should get through the filter?   What is the smallest signal you should be able to observe?  Con-
firm your predictions by running the program. 
 
(B) Bandwidth Narrowing: FFTs 
11.4 Use the program FFT Analyzer to explore Fourier Transforms.  With a Signal Frequency of 
75, Signal Amplitude of 1, Noise Amplitude and 60Hz Comb Amplitude of 0, Sampling Rate 
of 1000, and # of Samples of 10000, turn off autoscaling on the FFT Frequency axis and expand the 
axis to view the peak at 75.  Use the “Common Plots” option on the FFT graph to turn on the display 
of the individual data points.  How wide is the peak in Frequency?  How wide is the peak in points?  
How wide would you predict it to be?  Change the Signal Frequency in increments of 0.01Hz.  How 
does the peak width change?  Now change the # of Samples.  How does the width change?  Does it 
conform to your predictions?   Record your answers in you lab book. 
 
11.5 Using the same program, turn the FFT frequency axis autoscaling back on.  Restore the com-
mon plots to plotting a simple line.   What is the highest frequency plotted?  What would you expect?  
How does the highest frequency scale with the sampling rate?  Record your answers in your lab 
book. 
 
11.6 Now set the 60Hz Comb Amplitude to 1.  Turn off autoscaling, and expand the FFT frequency 
axis to view the 75Hz signal.  Change the Signal Frequency; how close can you bring it to 60Hz 
and still differentiate your signal from the 60Hz Comb Signal?  How does this depend on the # of 
Samples? 
 
11.7 Turn the 60Hz Comb off, set the White Noise Amplitude to 1, and change One Shot to Cycle 
Repetitively .  How small a signal can you pick out of the noise? 

 
(C) Averaging  
11.8 " The routine Repetitive Source.vi outputs a 1000sample, unit amplitude triangular wave 
with superimposed noise.  If the boolean Phase Coherent is true, the waveform is truly repetitive; 
if it is false, the waveform drifts in time.  Program a routine that will call this vi # to Average 
times, and average the resulting instances.  The front panel of your routines should resemble: 
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Explore the effects of varying the number of instances on recovering the signal from various 
amounts of noise.  Show that threshold for successfully recovering the signal scales appropriately.  
Report the results in you lab notebook.   
 
(D) Pattern Matching 
11.8 " The routine Fit Source.vi produces a wave modeled by 

 
( )sin 0.5

( 0.5)

b x
a

b x

⎡ ⎤−⎣ ⎦
−

 

with superimposed noise.  Write a routine that uses the Curve Fitting Express vi to fit data to this 
equation.  Your routine’s front panel should resemble: 
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Exercise the routine with different combinations of the noise and parameters a and b.  How well 
does it work? 
  
(E) Equivalent Time Sampling 
11.9 " Duplicate the functionality of the Equivalent Time Analyzer.vi.  Run the program several 
times until you understand its behavior.  The routine calls a subroutine, Equivalent Time Source.vi, 
which outputs a sample of sine wave offset by a known Time Delay.  You will need to accumulate x 
and y data into arrays, which you can do with shift registers and the Build Array operator .  
You will also need to sort the arrays, which can be done with the following code sample: 
 

 
 The middle block is the Sort 1D Array operator, and the remaining operators pack and unpack the 
arrays into arrays of clusters.  While demonstrating your routine to the TA’s, explain how this code 
sample works. 
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(F) Dithering 
11.9 " The routine Dither.vi demonstrates the virtues of dithering.  The routine generates a 
sine wave with sample rate 10kHz, superimposes noise, and quantizes the total signal to integer lev-
els.  It then passes the signal through a 20mS smoothing filter, and finally averages multiple in-
stance of the signal. 
 
Starting with a Signal Amplitude of 0.75 and a Noise Amplitude of 0, run the routine to see the 
quantized, smoothed, and smoothed and averaged signal.  Then increase the noise until you get a 
reasonable facsimile of the sine wave.  How much noise do you need?  Now decrease the Signal Am-
plitude to 0.1 and again find the minimum noise level that extracts the signal.  What happens when 
you make the noise large?  Does the signal degrade? 
 
Now set the # to Average to 1000.  Approximately how small a signal can you detect?  How would 
you predict this value?  (Hint-Remember that even before the instances are averaged, the smoothing 
operation average samples for 20mS.)  Explain your reasoning to the TAs. 
 
(F) Control  
The following exercises use a computer controlled PID loop to control a magnetic levitator.  The levi-
tator suspends a steel ball underneath an electromagnet.  The magnet field is controlled by the com-
puter based on feedback from a position sensor.  The sensor measures the position of the ball by 
shining an infrared light beam between the ball and the magnet.  The ball partially occludes the 
light beam; from the amount of light that passes by, the sensor can determine the ball’s position.  
 
The computer ADC cannot put out enough current to drive the electromagnet directly.  We provide a 
small circuit that amplifies the ADC output.  The circuit also drives the infrared source and ampli-
fies the signal from the light sensor.  The circuit needs 0, +12 and +24V power from the breadboard 
power supplies.  Make sure you ground the 0V.  Hook up the appropriately labeled leads (black is 
ground) to AI7 and AO0.  The switch on the magnet holder can be used to disconnect the electro-
magnet. 
 
11.10 Before using the Levitator, calibrate the light sensor by building up a chart of ball position vs 
light level.  Write a routine, Position Calibrator.vi to build the table.  The routine, Position Calibra-
tor Template.vi has most of the code prewritten.  Finish the routine by following the comments in its 
block diagram. 
 
Use the Calibrator as follows: 

1. Use the switch to turn the magnet off. 
2. Place the 0.405in ball on the brass screw, and turn the screw until the ball hits the magnet. 
3. Record the light signal and position by pushing the Save Measurement button. The vi will 

ask for the position: enter the number of turns by which you have lowered the ball. (Zero for 
the first measurement.) 

4. Lower the ball by turning the screw through a fixed angle. (Use 45degree increments for the 
first 360degrees, and 90 degrees thereafter.)  You can eyeball the angles.  The screw pitch is 
24 turns per inch; subsequent programs convert the number of turns to mm. 

5. Go back to step 2, and repeat until light signal saturates at 10V. 
6. When asked, save the calibration data in a file.  If necessary, you may use an editor to cor-

rect any mistakes you may have made entering the number of turns. 
As you turn the screw, be aware of backlash; when you reverse directions on any screw or gear posi-
tioner, the first 10 to 20 degrees may not result in any lateral movement.  You can feel the backlash 
when you reverse directions; the screw will be easy to turn at first, and becomes significantly harder 
when the threads re-engage.  If you watch the light signal, you can will observe that the screw does 
not move laterally at first.   
 
Because of backlash, you should take your measurements while turning the screw in one direction 
only.  In fact, after you touch the ball to the magnet at the beginning of the calibration, and reverse 
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direction, you should turn the screw until it engages before recording any measurements.  It may 
take a little practice to find the engagement point. 
Backlash occurs because the threads and gears do not mesh perfectly.  This is deliberate; if they did 
mesh perfectly, friction would make them very hard to turn. 
 
11.11 Turn the magnet switch back on.  The levitator requires your computer’s concentrated atten-
tion.  Exit out of all extraneous programs, especially programs that require periodic servicing like 
email browsers, music players, etc. 
 
Turn the screw several turns out of the way  Run the Basic Controller.vi  The first time  you run the 
vi, it will ask you for the location of the your calibration data.  Place the ball on the brass screw, and 
then gingerly lift the ball into place with two fingers, being careful not to block the light beam with 
your fingers. The ball should levitate.  While watching the ball, change the Setpoint in 0.1mm 
steps.  You should be able to see the ball move up and down.  Find the range over which the Levita-
tor can hold the ball.  Now watch the Chart on the vi.  The white curve shows the position of the ball.  
The green curve shows the drive signal, and is proportional to the magnetic field.  The red curve 
plots the service interval.  Three indicators display the Short Term Maximum Service Interval, 
the Long Term Maximum Service Interval, and the Average Service Interval.  The average 
service interval should be slightly greater than 1ms.  If it is much greater, the ball will drop.  Use 
your mouse to move the Basic Controller.vi front panel window.  This will distract your computer, 
and the ball will drop.   
 
Open the block diagram.  Every iteration through the while loop adjusts the magnet current once.  

Add a time delay   that slows the loop down, thereby increasing the service time.  How much 
time can you add to the service interval before the ball drops?  Now add code that inserts a delay 
every time you push a front panel Boolean control.  How long a time delay can the Levitator now tol-
erate?  Why is the maximum tolerable continuous delay different from the maximum tolerable in-
termittent delay?  Calculate how long is takes the ball to freefall an appropriate distance.  How does 
this time compare to the times you observe? 
 
11.12 Look at the DAC output on the scope.  How large are the excursions?  Change the size of the 
proportional gain.  What happens to the size of the excursions?  How large and small can you 
make the gain?  Restore the proportional gain back to -10.  Now change the derivative time Td. 
Over what limits does the ball stay under control?  Restore Td back to 100u.  Change the integral 
time Ti to zero.  Does the ball levitate? How far is it from the setpoint position?   
 
11.13 Now run the program Impulse Response.vi.  This vi briefly changes the setpoint, and plots the 
response.  Scan the derivative time Td over the range that the ball stays levitated.  How does the 
response vary?  When does the ball oscillate? How does the stabilization time change with Td? 
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Picture of levitator with feedback control 
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Physics 111 ~ BSC Student Evaluation of Lab Write-Up 
 
Now that you have completed this lab, we would appreciate your comments. Please take a few moments to 
answer the questions below, and feel free to add any other comments. Since you have just finished the lab it 
is your critique that will be the most helpful. Your thoughts and suggestions will help to change the lab and 
improve the experiments. 
 
Please be as specific as possible, using both sides of the paper as needed, and turn this in with your lab re-
port. Thank you! 
 
Lab Number:    Lab Title:        Date:     
 
Which text(s) did you use? 
 
 
 
How was the write-up for this lab? How could it be improved? 
 
 
 
 
 
How easily did you get started with the lab? What sources of information were most/least helpful in getting 
started? Did the pre-lab questions help? Did you need to go outside the course materials for assistance?  
What additional materials could you have used? 
 
 
 
 
 
 
What did you like and/or dislike about this lab? 
 
 
 
 
 
What advice would you give to a friend just starting this lab? 
 
 
 
 
 
The course materials are available over the Internet. Do you (a) have access to them and (b) prefer to use 
them this way? What additional materials would you like to see on the web? 
 
 


