
Android Kernel Builder

Student Research Paper

submitted: February 2012

by: Tobias Brentrop

Advisor: Michael Spreitzenbarth

Department of Computer Science

Friedrich-Alexander-University Erlangen-Nuremberg

D – 91058 Erlangen

Internet: http://www1.informatik.uni-erlangen.de

http://www1.informatik.uni-erlangen.de

Contents

List of Figures . iv

Listings . v

1. Introduction . 1

2. Kernel Builder . 2

2.1. Samsung Galaxy S2 Partition Layout 2

2.2. Kernel Image . 2

2.3. Initial Ram File-System . 3

2.4. Kernel Builder Python Script . 4

3. Modules . 8

3.1. Android Debug Bridge . 8

3.2. SU . 9

3.3. Superuser . 10

3.4. ClockworkMod . 11

3.5. BusyBox . 12

4. Summary, Limitations, and Related Work 15

4.1. Summary . 15

4.2. Limitations . 15

4.3. Related Work . 16

Bibliography . 17

Appendix . 19

A. User Manual . 20

A.1. Dumping The Kernel . 20

ii

Contents iii

A.2. Prerequisites . 20

A.3. Configuration . 21

A.4. Running The Script . 21

A.5. Flashing . 22

B. Content Of The CD . 27

List of Figures

2.1. Layout: Samsung Galaxy S2 Partitions 3

2.2. Layout: Initial Ram File-System 4

2.3. Layout: Kernel Builder . 5

3.1. App: Superuser . 11

3.2. Stock Recovery vs. ClockworkMod 13

A.1. Heimdall: Utilities Tab . 23

A.2. Heimdall: Zadig Options . 23

A.3. Heimdall: Zadig Main Screen . 24

A.4. Heimdall: Flash Tab . 25

iv

Listings

2.1. Source: settings.py, getPath . 4

2.2. Source: sgs2.py, prepare . 5

2.3. Source: sgs2.py, finalize, repack 6

3.1. Source: default.prop . 9

3.2. Source: sgs2.py, addADB . 9

3.3. Source: installsu . 10

3.4. Source: installsuperuser . 11

3.5. Source: installcwm . 12

3.6. Source: sgs2.py, addCWM . 12

3.7. Source: installbusybox . 13

3.8. Source: sgs2.py, addBB . 14

A.1. Source: settings.py . 21

A.2. Output: kernel builder.py –help 21

A.3. Output: kernel builder.py . 24

v

1. Introduction

Computer forensics focus on gathering as much evidence as possible from any

kind of memory. Usually that includes internal or external hard-disks, RAM,

USB sticks or optical mediums like DVDs. While those are obvious targets for

law enforcement agencies, memory cards with huge capacities became so small

that they fit in almost every appliance, even pocket knives (1). Of course it

doesn’t make sense for every device to hold personal and sensitive data, but in

recent years there has been a trend resulting in the spread of a device that is rich

on traces of the owners activities: Smartphones.

2011 of all sold cell phones about 30% were smartphones and it’s estimated that

they reach over 50% in 2015 and Android, the open-source operating system de-

veloped by Google, currently has a 50% market share (2, 3). On older phones the

only relevant data stored was the contact list and SMS messages. Smartphones,

however, are basically as powerful as desktop computers and are used as such.

This leads to many different sources of traces (e.g. web-browsing, social networks,

email and more). Another benefit is that disk encryption, specifically pre-boot

encryption, isn’t as widespread as on computers and that Android stores a lot of

data unencrypted (4).

Generally in forensics, when you get your hands on any kind of storage device, the

first step is to make a complete image of the system. When you work exclusively

on a copy of the image the integrity of the data can be maintained, even when

data is accidentally overwritten or deleted.

For this paper we wrote a python script that modifies an Android kernel to

include tools that allow basic forensic operations like ‘md5sum’ and system image

creation. In Chapter 2 we describe the general layouts of Android phones, kernels

and our Python script. In Chapter 3 we introduce you to the tools the script is

able to add to a stock kernel. After we present our conclusions in Chapter 4 we

provide a step-by-step tutorial in the appendix.

1

2. Kernel Builder

We give an overview of the basic layout of the Samsung Galaxy S2 in Section 2.1.

We will also take a quick look at the kernel image in Section 2.2 and it’s Initial

Ram File-system (InitRamFS) in Section 2.3. Then, in Section 2.4, we show a

few details of our Python script.

2.1. Samsung Galaxy S2 Partition Layout

The Samsung Galaxy S2 has 13 different partitions on it’s internal memory,

including the internal SD-card. The information about size and location of these

partitions is stored in the Partition Information Table (PIT), depicted in Figure

2.1, and is needed when you flash an image to the phone. The size of the individual

partitions may vary through different devices, but the general layout stays the

same. The PIT is easily obtainable with the software used for flashing (see Figure

A.1). We concentrate in the following on the kernel partition.

2.2. Kernel Image

The kernel image consists of two major parts. One is the kernel itself. The

kernel can be compiled from the publicly available source (5), but we use already

compiled stock kernels, which you can either download from the web (6), extract

yourself (Appendix A.1) or take from the few provided with the enclosed CD

(Appendix B). The configuration Samsung includes with the source uses different

flags (mostly debug related) compared to the production build, but while this may

affect the phone’s performance the functionality of the kernel is the same (7).

The second part is the Initial RAM File-system. It’s a basic file-system that is

loaded into the RAM by the boot-loader and includes the critical ‘init’ process as

well as ‘init.rc’ and some manufacturer dependent drivers (e.g. Wi-Fi, Vibrator)

2

2.3. Initial Ram File-System 3

Figure 2.1.: Layout: Samsung Galaxy S2 Partitions

that are not compiled into the kernel (8). The InitRamFS is the only interesting

part for us, because all our modifications are made there.

2.3. Initial Ram File-System

Figure 2.2 shows the general directory structure of the InitRamFS. As you can

see, even though the Galaxy S2 has a recovery partition, Samsung decided to in-

clude the recovery on the kernel partition. This has to be considered, if we want

switch the stock recovery for a custom one later on. To add new modules we need

to include the designated binaries and a small shell script that handles the in-

stallation process. To avoid any confusion we put all our files in the ‘/res/misc/’

directory. We edit the ‘init.rc’ file, which provides the generic initialization in-

structions, to execute the shell-script at boot-time. The InitRamFS is extracted

from the kernel image every time the device boots, so any modifications to it

will be reverted once the phone is turned off. We copy the files to the ‘/system’

partition, so the tools are still available after flashing a different kernel again.

2.4. Kernel Builder Python Script 4

Figure 2.2.: Layout: Initial Ram File-System

2.4. Kernel Builder Python Script

The purpose of our script is to automatically add the desired modules and gen-

erate the shell installer script accordingly. The basic layout is depicted in Figure

2.3. The main script is only responsible for generating the command-line help

and calling the methods that are adding the respective module. These methods

are implemented in a device specific file. Although Android devices are similar,

as they are all based on Linux, we already mentioned the recovery as one of the

distinctions.

We implemented a helper method that makes the command line interface simpler

to use. It returns the newest directory for a binary, if no explicit path is given

(Listing 2.1). First it checks, if the path given is valid and returns it or, if not,

looks for the newest path in the respective directory (e.g. ‘binaries/Superuser’).

It then creates a dictionary with directories and their timestamps and returns

the maximum through a lambda (line 11-15).

Listing 2.1: Source: settings.py, getPath

1 def getPath(module, thisfile) :

2 if not thisfile :

3 return False

4 if os.path. isdir (str (thisfile)) :

5 log(thisfile +’ seems valid’)

6 return thisfile

7 else:

2.4. Kernel Builder Python Script 5

Figure 2.3.: Layout: Kernel Builder

8 log(’no (valid) path: \’ ’+str(thisfile)+’\’ for ’+module+’. using latest binary’)

9 if not os.path. isdir (BINPATH+module):

10 exit(’path to module \’’+module+’\’ does not exist. this should not happen’)

11 files = os. listdir (BINPATH+module+’/’)

12 dirlist = dict([(x, os. stat(BINPATH+module+’/’+x).st mtime) for x in files])

13 log(BINPATH+module+’/’+max(dirlist, key=lambda k: dirlist.get(k)))

14 return BINPATH+module+’/’+max(dirlist, key=lambda k: dirlist.get(k))

When the actual script is started it first prepares the InitRamFS for our mod-

ifications. In Listing 2.2 you can see it first checks for the cross-compiler and

extracts the InitRamFS from the kernel image (line 2-7). The tool unpack is

freely available on the web and also comes with a kernel repacker (9). Then we

include our own service, the shell script, in ‘init.rc’ (line 15-19) and copy the

unfinished ‘kernelpatch.sh’ (line 25). The process for the individual modules is

covered later in Chapter 3.

Listing 2.2: Source: sgs2.py, prepare

1 def prepare(kernel):

2 if not os.path. isdir (s .CROSSCPATH):

3 exit(’ cross compiler binary directory does not exist : ’+s.CROSSCPATH)

4 if not os.path. isdir (s .CROSSLPATH):

5 exit(’ cross compiler lib directory does not exist : ’+s.CROSSLPATH)

6 s . lsh(’mkdir −p ’+s.INITDIR)

2.4. Kernel Builder Python Script 6

7 s . lsh(DEVPATH+’unpack ’+s.getPath(’kernel’, kernel)+’/zImage ’+s.INITDIR)

8 s . log(’add kernelpatch.sh to init . rc ’)

9 myfile = s.INITDIR+’init.rc’

10 shutil .move(myfile, myfile+”˜”)

11 destination = open(myfile, ”w”)

12 source = open(myfile+”˜”, ”r”)

13 for line in source:

14 if ’ class start ’ in line :

15 destination .write(’ # kernel patch\n start kernelpatch\n\n’)

16 destination .write(line)

17 destination .write(’\n\n# kernel patch\n’+

18 ’ service kernelpatch /res/misc/kernelpatch.sh\n’+

19 ’ user root\n oneshot\n disabled\n\n’)

20 continue

21 destination .write(line)

22 source. close ()

23 destination . close ()

24 s . lsh(’mkdir −p ’+s.INITDIR+’res/misc/’)

25 s . lsh(’cp −f ’+DEVPATH+’kernelpatch.sh ’+s.INITDIR+’res/misc/kernelpatch.sh’)

After everything is added the method finalize in Listing 2.3 finishes the process.

It adds the final line to ‘kernelpatch.sh’ and then executes the kernel repacker.

The tool repack generates a CPIO file from the InitRamFS and runs the final

steps from a kernel compilation. This is the reason the kernel source and cross-

compiler are needed at all. The individual parts of the kernel image need to be

linked properly, so that the phone will boot when the kernel is flashed.

Listing 2.3: Source: sgs2.py, finalize, repack

1 def finalize (path):

2 s . log(’ finalize kernelpatch.sh’)

3 dest = open(s.INITDIR+’res/misc/kernelpatch.sh’, ’a’)

4 dest.write(’ toolbox mount −o remount,ro /system /system’)

5 dest. close ()

6 repackKernel(path)

7 s . lsh(’mkdir −p ’+s.OUTPATH)

8 s . lsh(’cp −f ’+s.TEMPDIR+’zImage ’+s.OUTPATH)

9

10 def repackKernel(path):

11 s . lsh(DEVPATH+’gen initramfs.sh −o ’+s.TEMPDIR+

12 ’ initram.cpio −u 0 −g 0 ’+s.INITDIR)

13 if debug :

2.4. Kernel Builder Python Script 7

14 result = s.lsh(DEVPATH+’repack ’+str(path)+’/zImage ’+

15 s .TEMPDIR+’initram.cpio’+’ ’+s.CROSSCPATH+’ ’+

16 s .CROSSLPATH+’ true’)

17 else:

18 result = s.lsh(DEVPATH+’repack ’+str(path)+’/zImage ’+

19 s .TEMPDIR+’initram.cpio’+’ ’+s.CROSSCPATH+’ ’+

20 s .CROSSLPATH)

21 s . log(’repack exit code: ’+str(result))

22 if result != 0:

23 exit(’try to use different flags (e.g. don\’t install superuser.apk’)

3. Modules

There are different tools that help to perform common forensic operations. This

chapter gives an overview on Android Debug Bridge in Section 3.1, su in Section

3.2, Superuser in Section 3.3, ClockworkMod in Section 3.4 and finally BusyBox

in Section 3.5.

3.1. Android Debug Bridge

Android Debug Bridge (ADB) is a tool that comes with the Android Software

Development Kit (SDK) (10) and allows to interact with an Android device.

It provides various commands to interact with the phone, including push, pull,

logcat and shell. Push/pull allows you to move files to/from your phone’s internal

storage as well as the SD card without mounting it as a mass storage device.

Logcat provides a way to look at real-time Android debug messages.

The most useful part of ADB is the shell. It’s a stripped down version of a Linux

shell and provides only basic commands. Some commands which are important

for forensics, e.g. ‘md5sum’ to calculate hashes directly on the device, are missing,

but can be added through BusyBox (Section 3.5). For security reasons the shell

won’t run as root if the phone is on a stock ROM. Without root the shell is

only on user privilege level and thus some commands that modify the system are

prohibited from being executed.

To gain root access there are different approaches. Temporary root can be

achieved with an exploit. ZergRush for example works on various phones that

are running on Android versions prior to Honeycomb (Android 3.0) (11). After

pushing it on the phone and executing the binary the shell has root privileges

until the phone is rebooted.

8

3.2. SU 9

For a permanent solution the kernel image needs to be modified. The InitRamFS

contains a file called ‘default.prop’. It holds only a few lines of code, which you

can see in Figure 3.1.

Listing 3.1: Source: default.prop

1 ro.secure=0

2 ro.allow.mock.location=0

3 ro.debuggable=1

4 persist . service .adb.enable=1

The first line determines if the kernel runs in secure mode. Permanent root is

only possible, if the kernel is insecure. Additionally it’s necessary that the ADB

daemon is running (line 4). Our script only needs to edit those two lines.

Listing 3.2: Source: sgs2.py, addADB

1 def addADB(add):

2 for line in fileinput .FileInput(s .INITDIR+’default.prop’, inplace=1):

3 line = line. replace(’ro.secure=1’, ’ro.secure=0’)

4 line = line. replace(’ persist . service .adb.enable=0’,

5 ’ persist . service .adb.enable=1’)

6 sys.stdout.write(line)

You can test for root, if you connect to the shell. It should display # rather than

$. Also the command ‘adb remount’ should now work. It remounts the ‘/system’

partition read-write instead of read-only.

3.2. SU

The standard Linux binary ‘su’ is not included within stock Android ROMs

(12). In an Android environment every process is only allowed to access it’s own

application directory. With this Android tries to protect the user from malware

collecting private data from other applications. The root-user has read-write

access to everything (provided that the partition is not mounted read-only), so

when an application like ROOT-Explorer (a file manager) (13) wants to provide

access to protected directories it calls ‘su’, which in turn switches the context of

the process to root. Now it’s possible to browse and modify other applications

files.

3.3. Superuser 10

The binary is small enough to be included in the InitRamFS without any prob-

lems. We put ‘su’ in ‘/res/misc’ and add the installation instructions to ‘kernel-

patch.sh’.

Listing 3.3: Source: installsu

1 mkdir /system/xbin

2 chmod 755 /system/xbin

3 rm /system/bin/su

4 rm /system/xbin/su

5 cat /res/misc/su > /system/xbin/su

6 chown 0.0 /system/xbin/su

7 chmod 6755 /system/xbin/su

In Listing 3.3 you can see that first it’s ensured ‘/system/xbin’ exists, is set to the

proper access rights and possible older versions of ‘su’ are deleted (line 2-5). Since

the command ‘cp’ is not included with Android we use ‘cat’ instead and direct

the output to ‘su’. Afterwards the owner of the file is changed to root and the file

is also set executable. ‘su’ needs the Superuser application to work properly with

Android applications. It would be possible to keep ‘su’ in the ‘/sbin’ directory,

but ‘/sbin’ is part of the kernel image and only mounted as RAM-disk, so if you

flash a different kernel you would lose the binary.

3.3. Superuser

While ‘su’ is a Linux binary, there is no built-in way to see what application

requests root or even deny those requests. Superuser is the corresponding Android

application (Figure 3.1)(12). It prompts the user every time a process wants

to have root access and also provides a way to block specific applications. It

maintains a database to remember the user’s decisions, logs all requests and

additionally gives the option to update the ‘su’ binary.

Including Superuser in the installer script is similar to ‘su’ and shown in Listing

3.4. First old versions of Superuser are removed (line 3-4). However, Superuser

is an Android application so it has to be put in the ‘/system/app’ directory (line

4). Android applications (.apk) in this directory are automatically installed and

displayed in the application drawer. Then again the script sets the proper rights

for the file (line 5-6).

3.4. ClockworkMod 11

Figure 3.1.: App: Superuser

Listing 3.4: Source: installsuperuser

1 rm /system/app/Superuser.apk

2 rm /data/app/Superuser.apk

3 cat /res/misc/Superuser.apk > /system/app/Superuser.apk

4 chown 0.0 /system/app/Superuser.apk

5 chmod 644 /system/app/Superuser.apk

3.4. ClockworkMod

ClockworkMod (CWM)is an improved recovery available for many Android phones

(14). It’s being developed by Koushik Dutta and provides more functionality

than the stock Samsung recovery. The main improvements over stock recovery

are the ability to install unsigned ‘.zip’ files, which prevents you from installing

custom ROMs on stock recovery, and the option to make a full system image via

NANDroid-backup. NANDroid will backup (and restore) ‘/system’, ‘/data’,

‘/cache’, and ‘/boot’ partitions. Usually this is used to make ROM testing eas-

ier, since you can just restore your image, if something is not working correctly.

Obviously you can also use these images to examine them for any traces without

using the actual phone.

3.5. BusyBox 12

Because ClockworkMod is replacing the stock recovery we don’t need to add much

to our installer script, as you can see in Listing 3.5. The script only needs to

overwrite the stock ‘recovery.fstab’, which holds information about how partitions

are mounted, with the one from CWM. Our Python script then extracts the files

from ‘cwm.zip’ to the InitRamFS (Listing 3.6). We decided to use a ‘.zip’ in this

case, because CWM consists of a lot of files and it makes handling them simpler.

Also, since the recovery is on the kernel partition and all files from ClockworkMod

depend on it, there is no need to copy them over to ‘/system’.

Listing 3.5: Source: installcwm

1 rm /etc/recovery.fstab

2 cat /res/misc/recovery.fstab > /etc/recovery.fstab

ClockworkMod includes a stripped-down version of BusyBox as well, so if you

add CWM you will rarely need to add BusyBox. The appropriate symlinks are

already included in ‘cwm.zip’. If you include both, CWM and BusyBox, be sure

to invoke the right version. The ClockworkMod symlinks are in ‘/sbin’ and,

depending on the ‘PATH’ environment variable, usually called first.

Listing 3.6: Source: sgs2.py, addCWM

1 def addCWM(path):

2 s . lsh(’unzip −qo ’+path+’/cwm.zip −d ’+s.INITDIR)

3 source = open(DEVPATH+’installcwm’, ’r’)

4 dest = open(s.INITDIR+’res/misc/kernelpatch.sh’, ’a’)

5 data = source.read()

6 source. close ()

7 dest.write(data)

8 dest. close ()

3.5. BusyBox

BusyBox is a multi-call binary that combines many common Unix utilities into

a single executable. Most people will create a link to ‘busybox’ for each function

they wish to use and BusyBox will act like whatever it was invoked as (15). If you

build it from source it’s individually configurable so size and functionality can

vary. You can get a list of commands that are included in your phones version

3.5. BusyBox 13

Figure 3.2.: Stock Recovery vs. ClockworkMod

by typing ‘busybox –list’ in a terminal. This feature is also used to generate the

symbolic links, as you can see in Listing 3.7 (line 8-11), after we copied the binary

to ‘/system/xbin’.

Listing 3.7: Source: installbusybox

1 mkdir /system/xbin

2 chmod 755 /system/xbin

3 rm /system/bin/busybox

4 rm /system/xbin/busybox

5 cat /res/misc/busybox > /system/xbin/busybox

6 chown 0.0 /system/xbin/busybox

7 chmod 6755 /system/xbin/busybox

8 for i in $(busybox −−list)

9 do

10 ln −s busybox /system/xbin/$i

11 done

As expected, the method handling BusyBox is basically identical to the previ-

ous ones. Copy the binary and add the installation process to ‘kernelpatch.sh’

(Listing 3.8). As stated above, ClockworkMod needs some of BusyBox’ tools to

3.5. BusyBox 14

work properly, so a limited version of BusyBox is included in CWM. If you need

additional commands you need to compile your own version from source or get a

pre-compiled version that supports them.

Listing 3.8: Source: sgs2.py, addBB

1 def addBB(path):

2 s . lsh(’cp −f ’+path+’/busybox ’+s.INITDIR+’res/misc/’)

3 source = open(DEVPATH+’installbusybox’, ’r’)

4 dest = open(s.INITDIR+’res/misc/kernelpatch.sh’, ’a’)

5 data = source.read()

6 source. close ()

7 dest.write(data)

8 dest. close ()

4. Summary, Limitations, and Related Work

The purpose of this work is to help with forensic investigation of smartphones

running Android, specifically the Galaxy S2 from Samsung. Devices with a stock

kernel lack important commands and functionality, which are required to perform

certain operations, e.g. ‘md5sum’, system image creation and a root terminal.

4.1. Summary

After a short introduction in Chapter 1 we described our script and the involved

parts of the phone in Chapter 2. Afterwards we introduced the different modules

in Chapter 3 and provide a step-by-step guide for our script in Appendix A.

4.2. Limitations

While Android requires the manufacturers to have similar internal layouts for

their phones to some extent they can still change things. One example would

be the recovery binary that Samsung choose to include on the kernel partition

instead on the existing recovery partition. This and other differences make it

unlikely for our script, as it is, to work with something else than a Samsung

Galaxy S2.

Also this script is only intended to work with stock kernels without any modifi-

cations. Our kernel builder might still work on custom kernels, but usually they

already include all of the modules our script would add, so you wouldn’t get any

additional functionality, but, by chance break the kernel.

15

4.3. Related Work 16

4.3. Related Work

There are a some specialized forums for phones, most notably XDA developers

(16). Most of the site is dedicated to custom ROMs, i.e. altered versions of

Android, which are not relevant for forensic purposes. Some threads provide

close-to-stock kernels with some or all the modules added that you can find in

this paper. Most of the time there is no documentation or source of what exactly

has been added to the kernels, so while it is often the only source to get a modified

kernel, we leave it in your discretion to decide if these files are suited for forensic

investigations.

Bibliography

1 Softpedia, “Ces 2012: Victorinox pocket knife doubles as 1tb usb

3.0/esata ssd.” [Online]. Available: http://news.softpedia.com/news/

CES-2012-Victorinox-Pocket-Knife-Doubles-as-1TB-USB-3-0-eSATA-SSD-245455.

shtml

2 iSuppli, “Smartphones to account for majority of cell-

phone shipments by 2015.” [Online]. Available: http:

//www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages/

Smartphones-to-Account-for-Majority-of-Cellphone-Shipments-by-2015.

aspx

3 Business Insider, “Android’s market share collapses as apple surges thanks

to the iphone 4s.” [Online]. Available: http://articles.businessinsider.com/

2012-01-09/tech/30606530 1 new-iphone-android-sales-verizon-customers

4 XDA developers, “Howto: Backup sms database.” [Online]. Available:

http://forum.xda-developers.com/showthread.php?t=448361

5 Samsung, “Samsung open source release center.” [Online]. Available:

http://androidsu.com/superuser

6 XDA developers, “Official i9100 firmwares.” [Online]. Available: http:

//forum.xda-developers.com/showthread.php?t=1075278

7 ——, “Compile modules for stock kernels.” [Online]. Available: http:

//forum.xda-developers.com/showthread.php?t=1123643

8 eLinux, “Android boot.” [Online]. Available: http://elinux.org/Android

Booting

9 XDA developers, “Unpack/repack initramfs in zimage (i9100).” [Online].

Available: http://forum.xda-developers.com/showthread.php?t=1294436

17

http://news.softpedia.com/news/CES-2012-Victorinox-Pocket-Knife-Doubles-as-1TB-USB-3-0-eSATA-SSD-245455.shtml
http://news.softpedia.com/news/CES-2012-Victorinox-Pocket-Knife-Doubles-as-1TB-USB-3-0-eSATA-SSD-245455.shtml
http://news.softpedia.com/news/CES-2012-Victorinox-Pocket-Knife-Doubles-as-1TB-USB-3-0-eSATA-SSD-245455.shtml
http://www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages/Smartphones-to-Account-for-Majority-of-Cellphone-Shipments-by-2015.aspx
http://www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages/Smartphones-to-Account-for-Majority-of-Cellphone-Shipments-by-2015.aspx
http://www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages/Smartphones-to-Account-for-Majority-of-Cellphone-Shipments-by-2015.aspx
http://www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages/Smartphones-to-Account-for-Majority-of-Cellphone-Shipments-by-2015.aspx
http://articles.businessinsider.com/2012-01-09/tech/30606530_1_new-iphone-android-sales-verizon-customers
http://articles.businessinsider.com/2012-01-09/tech/30606530_1_new-iphone-android-sales-verizon-customers
http://forum.xda-developers.com/showthread.php?t=448361
http://androidsu.com/superuser
http://forum.xda-developers.com/showthread.php?t=1075278
http://forum.xda-developers.com/showthread.php?t=1075278
http://forum.xda-developers.com/showthread.php?t=1123643
http://forum.xda-developers.com/showthread.php?t=1123643
http://elinux.org/Android_Booting
http://elinux.org/Android_Booting
http://forum.xda-developers.com/showthread.php?t=1294436

Bibliography 18

10 Google Inc., “Android debug bridge - android developers.” [Online].

Available: http://developer.android.com/guide/developing/tools/adb.html

11 XDA developers, “zergrush local root 2.2/2.3.” [Online]. Available:

http://forum.xda-developers.com/showthread.php?t=1296916

12 ChainsDD, “Superuser.” [Online]. Available: http://androidsu.com/

superuser/

13 Android Market, “Root explorer (file manager).” [Online]. Available:

https://market.android.com/details?id=com.speedsoftware.rootexplorer

14 Koushik Dutta, “Clockworkmod.” [Online]. Available: http://www.

clockworkmod.com/

15 BusyBox, “Busybox.” [Online]. Available: http://busybox.net/

16 XDA developers, “Xda developers.” [Online]. Available: http://forum.

xda-developers.com/

http://developer.android.com/guide/developing/tools/adb.html
http://forum.xda-developers.com/showthread.php?t=1296916
http://androidsu.com/superuser/
http://androidsu.com/superuser/
https://market.android.com/details?id=com.speedsoftware.rootexplorer
http://www.clockworkmod.com/
http://www.clockworkmod.com/
http://busybox.net/
http://forum.xda-developers.com/
http://forum.xda-developers.com/

Appendix

19

A. User Manual

If you are new to the topic or just don’t know what to do here is a step-by-step

guide.

A.1. Dumping The Kernel

For forensic investigations it’s important to alter as few data as possible and be

able to return to the original state of the device you are investigating. So before

you flash a modified kernel, backup the original kernel from the phone. If you

don’t have root on the shell the system will prevent you from reading the block

devices, so try to get temporary root with ZergRush or similar methods. Then

type ‘dd if=/dev/block/mmcblk0p5 of=/data/zImage bs=512’ in a terminal to

obtain the kernel. This image can then be flashed to the phone after you are

finished with your operation.

A.2. Prerequisites

1. Python kernel builder script

What this paper is about. Get it from the enclosed CD.

2. ARM cross-compiler

For example: Sourcery G++ Lite 2009q3-68 toolchain for ARM EABI. Download

from:

http://sourcery.mentor.com/sgpp/lite/arm/portal/release1033

20

A.3. Configuration 21

3. Flashing software

We used Heimdall, because it is cross-platform compatible.

http://www.glassechidna.com.au/products/heimdall/

A.3. Configuration

After you set everything up edit the paths to the cross-compiler in ‘settings.py’:

Listing A.1: Source: settings.py

21 # paths to cross compiler

22 CROSSCPATH = ’/opt/toolchains/arm−2009q3/bin/’

23 CROSSLPATH = ’/opt/toolchains/arm−2009q3/lib/gcc/arm−none−eabi/4.4.1’

If, for any reason, you want to change the default directories you will find them

in the ‘settings.py’ as well.

A.4. Running The Script

First start the script with the ‘–help’ argument. It will show you the options.

device shows a list of supported devices. As of now only the Samsung Galaxy S2

is supported. The SGS2 is also the default target, if device is not specified.

Listing A.2: Output: kernel builder.py –help

1 positional arguments:

2 device sgs2

3

4 optional arguments:

5 −h, −−help show this help message and exit

6 −k [path], −−kernel [path]

7 path to the kernel image

8 −r, −−root give adb root permissions

9 −c [path], −−cwm [path]

10 install ClockWorkMod

11 −b [path], −−busybox [path]

12 install BusyBox

13 −s [path], −−su [path]

A.5. Flashing 22

14 install SU

15 −S [path], −−superuser [path]

16 install SuperUser.apk

17 −o [path], −−output [path]

18 output path

Now every other argument is also optional, but it wouldn’t make much sense

to run it without adding any modules. When giving an option, ‘path’ is not

necessary. The script will default to the newest (sorted by date) directory in the

binary folder. You can specify a directory of your choice as well. I decided to

make paths relative to the scripts root directory so that the shell auto-completion

will work. Be sure to give the path only (e.g. use ‘-k /myzimage/’ instead of ‘-k

/myzimage/zImage’).

Superuser and BusyBox are bigger applications and with the limited space they

might not fit in the InitRamFS together. Remember that ClockworkMod has

a custom version of BusyBox included, so unless you are missing specific shell

commands, there is no need to install both, BusyBox and ClockworkMod.

Finally, if you’re having problems or just want to see some debug output start the

script with ‘python kernel builder.py’, because per default it is run with the ‘-O’

Python flag. For demonstration purposes you can find a terminal output from

a successful run with debugging enabled in listing A.3. After the script exits

you can find your ‘zImage’ in the script’s root directory, if you didn’t specify a

different output path.

A.5. Flashing

We prefer an application called Heimdall to flash images on the Samsung Galaxy.

Heimdall is a cross-platform, open-source tool and runs under Linux as opposed

to Odin, the leaked proprietary Samsung software. Heimdall comes with a GUI

that simplifies the flashing process.

Before you can use Heimdall make sure your device is in Download mode. Turn

it off and hold Home + Volume Down while turning it on again. Now plug it in

and start Heimdall. On the Utilities tab detect your device. If your device is not

recognized start zadig (Windows only) and follow the following steps.

A.5. Flashing 23

Figure A.1.: Heimdall: Utilities Tab

If your phone is now detected first download the PIT. That’s the partition table

for the device and tells Heimdall where to flash the boot image. In the next step

switch to the Flash tab and select your PIT file. Then add a new partition file

on the right side of the window, change the partition name to KERNEL and add

a ‘zImage’ of your choice. Now press Start and the flashing should be finished

in a few seconds. Congratulations, the phone will reboot automatically and run

with your modified kernel.

Figure A.2.: Heimdall: Zadig Options

A.5. Flashing 24

Figure A.3.: Heimdall: Zadig Main Screen

Listing A.3: Output: kernel builder.py

1 python buildkern.py −k binaries/kernel/I9100XWKF3 Kernel/ −r −s −c

2 DEBUG:root:rm −rf ./tmp/

3 DEBUG:root:binaries/kernel/I9100XWKF3 Kernel/ seems valid

4 DEBUG:root:mkdir −p ./tmp/initram/

5 DEBUG:root:binaries/kernel/I9100XWKF3 Kernel/ seems valid

6 DEBUG:root:./devices/sgs2/unpack binaries/kernel/I9100XWKF3 Kernel//zImage ./tmp

/initram/

7 DEBUG:root:add kernelpatch.sh to init.rc

8 DEBUG:root:mkdir −p ./tmp/initram/res/misc/

9 DEBUG:root:cp −f ./devices/sgs2/kernelpatch.sh ./tmp/initram/res/misc/kernelpatch.sh

10 DEBUG:root:modifying default.prop

11 DEBUG:root:no (valid) path: ’True’ for cwm. using latest binary

12 DEBUG:root:./binaries/cwm/5.0.2.3

13 DEBUG:root:unzip −qo ./binaries/cwm/5.0.2.3/cwm.zip −d ./tmp/initram/

14 DEBUG:root:add cwm install script to kernelpatch.sh

15 DEBUG:root:no (valid) path: ’True’ for su. using latest binary

16 DEBUG:root:./binaries/su/3.0.3

17 DEBUG:root:cp −f ./binaries/su/3.0.3/su ./tmp/initram/res/misc/

18 DEBUG:root:add su install script to kernelpatch.sh

19 DEBUG:root:binaries/kernel/I9100XWKF3 Kernel/ seems valid

20 DEBUG:root:finalize kernelpatch.sh

21 DEBUG:root:./devices/sgs2/gen initramfs.sh −o ./tmp/initram.cpio −u 0 −g 0 ./tmp/

initram/

22 DEBUG:root:./devices/sgs2/repack binaries/kernel/I9100XWKF3 Kernel//zImage ./tmp

/initram.cpio /opt/toolchains/arm−2009q3/bin/ /opt/toolchains/arm−2009q3/lib/

gcc/arm−none−eabi/4.4.1 true

23 [I] −−−−−−−−−−−−−−−−−−−−−−−−−−−kernel repacker for i9100

A.5. Flashing 25

Figure A.4.: Heimdall: Flash Tab

−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 [I] Extracting gzip’d kernel from binaries/kernel/I9100XWKF3 Kernel//zImage (start

= 16621)

25 [I] Non−compressed CPIO image from kernel image (offset = 163840)

26 [I] CPIO image MAX size:2982912

27 [I] Head count:3146752

28 [I] Making head.img (from 0 ˜ 163840)

29 [I] Making a tail.img (from 3146752 ˜ 10554720)

30 [I] Current ramdsize using cat : 4602880 with required size : 2982912 bytes

31 [I] Current ramdsize using gzip −f9 : 2731390 with required size : 2982912 bytes

32 [I] gzip −f9 accepted!

33 [I] Merging [head+ramdisk] + padding + tail

34 [I] Now we are rebuilding the zImage

35 [I] Image −−−> piggy.gzip

36 [I] piggy.gzip −−−> piggy.gzip.o

37 [I] Compiling head.o

38 [I] Compiling misc.o

39 [I] Compiling decompress.o

40 [I] Compiling lib1funcs.o

41 [I] Create vmlinux.lds

42 [I] head.o + misc.o + piggy.gzip.o + decompress.o + lib1funcs.o−−−> vmlinux

43 [I] vmlinux −−−> zImage

44 [I] New zImage size:6072140

A.5. Flashing 26

45 [I] zImage has been created

46 [I] Cleaning up...

47 [I] finished ...

48 DEBUG:root:repack exit code: 0

49 DEBUG:root:mkdir −p ./

50 DEBUG:root:cp −f ./tmp/zImage ./

B. Content Of The CD

• binaries/: External files used in the build process

– busybox/: BusyBox binary

– cwm/: ClockworkMod files stored in a .zip

– kernel/: Collection of stock kernel

– su/: Su binary

– superuser/: Superuser Android application

• devices/: Device-specific files

– sgs2/: Files for the Samsung Galaxy S2

• LaTeX/: LaTeX source for this document

• prerequisites/: Prerequisites for the script

– Heimdall

– SourceForgery cross-compiler

• kernel builder.py: Main entry point for the script

• settings.py: Settings for the script

27

Eidesstattliche Erklärung

Hiermit versichere ich, dass diese Abschlussarbeit von mir persönlich verfasst

ist und dass ich keinerlei fremde Hilfe in Anspruch genommen habe. Ebenso

versichere ich, dass diese Arbeit oder Teile daraus weder von mir selbst noch

von anderen als Leistungsnachweise andernorts eingereicht wurden. Wörtliche

oder sinngemäße Übernahmen aus anderen Schriften und Veröffentlichungen in

gedruckter oder elektronischer Form sind gekennzeichnet. Sämtliche Sekundärlit-

eratur und sonstige Quellen sind nachgewiesen und in der Bibliographie aufgeführt.

Das Gleiche gilt für graphische Darstellungen und Bilder sowie für alle Internet-

Quellen.

Ich bin ferner damit einverstanden, dass meine Arbeit zum Zwecke eines Pla-

giatsabgleichs in elektronischer Form anonymisiert versendet und gespeichert wer-

den kann. Mir ist bekannt, dass von der Korrektur der Arbeit abgesehen werden

kann, wenn die Erklärung nicht erteilt wird.

Erlangen, den 08.02.2012

Tobias Brentrop

	List of Figures
	Listings
	Introduction
	Kernel Builder
	Samsung Galaxy S2 Partition Layout
	Kernel Image
	Initial Ram File-System
	Kernel Builder Python Script

	Modules
	Android Debug Bridge
	SU
	Superuser
	ClockworkMod
	BusyBox

	Summary, Limitations, and Related Work
	Summary
	Limitations
	Related Work

	Bibliography
	Appendix
	User Manual
	Dumping The Kernel
	Prerequisites
	Configuration
	Running The Script
	Flashing

	Content Of The CD

