
QuickTest Professional Unplugged

 All powers within you, you can do it

1

Kanakarajan kandasamy

About the author

 ”The best way to start achieving a thing is to drea m for it”
 -Dr.A.P.J.Abdual kalam

QuickTest Professional Unplugged

 All powers within you, you can do it

2

Preface

 ”This moment is not permanent in
life”

QuickTest Professional is a Test Automation tool and uses VBScript as its scripting
language. QTP is a record and playback tool which can record events we perform on an
application and replay them back.QTP is an object based tool which recognizes each
element of the application as an object and provides various methods to work on them. All
this makes look QTP an easy to use test tool. The myth about Record & Playback is that it
makes people think that they do not need development skills for QTP, but to create
effective Automation Frameworks one needs to view QTP as a development tool and not
as a testing tool.

This book presents QTP as a development tool rather than a mere test tool. One of

my problems while evaluating the tool led to me to join automation excerpts community in
orkut, without knowing that I will specialize in the use of this tool in future. For sharing my
articles on QTP with the larger group. Dealing with day to day automation problems faced
by people on the QTP forums, I tried solving those problems for them and learnt a few new
things on my own. Observing the patterns of queries being asked on the QTP forums, I
thought what the QTP community was missing is a book which can guide the amateur
automation engineers in becoming a professional in the use of this tool. I took up this
responsibility and started writing this book in May 2009. I spent a less then 6 month.

Being a first time author, I had a very hard time getting this project completed. It was an
additional responsibility, over and above my office work, QTP forum support, writing
articles on Automation Anywhere, creating tools for the community. It required a lot of
motivation to keep myself on the project.

QuickTest Professional Unplugged

 All powers within you, you can do it

3

Who This Book Is For

This book is for Test engineers, Test Analysts, Test Consultants and anyone who
is interested in learning advanced techniques of problem solving in QTP. This book is also
for beginners who have just started with QTP and want to be experts in its use. The book
assumes that one has the basic knowledge of QTP and VBScript, if not than it is advised
that one should go through the basic help first. As the main focus of this book is to view
the tool from a developer’s eye, the book does not teach how to record and replay script in
QTP. Also the book does not discuss about the Keyword view of QTP, which is for non-
technical people who don’t want to code in QTP.

QuickTest Professional Unplugged

 All powers within you, you can do it

4

Contents

Introduction 6
Recording Modes in QTP 11
Data Tables 15
Actions 23
Environment Variables 29
Utility Objects 32
Checkpoints 34
Output Values 41
Descriptive Programming 42
Debugging in QTP 48
Recovery Scenario 49
Regular Expression 60
Synchronization 67
Test Results 68
Automation Object Model 72
Working with MS Excel 78
Working with XML 83
Designing Framework 87
QTP Methods and Properties 96
Working with Test Objects 102
Working with Filesystem Objects 107
Dictionary Object 113
Virtual Object 118
Object Repository 120
Working with Databas es 126
What’s New in QTP 9.2 131
VB Script Basics 143
Advanced and Most useful things 149
Sample script for web based application 175
About QTP Certification 184

Automation Tool ...8

QuickTest Professional Unplugged

 All powers within you, you can do it

5

Recording and Running ..13
Recording Modes ..13

1) Normal recording ..13
Keyboard View ...16
3. Data Table ...17

Export Method ..28
GetSheetCount Method ...29
Import Method ..29
ImportSheet Method ...29
SetCurrentRow Method ..29
SetNextRow Method ...29
SetPrevRow Method ...29
GlobalSheet Property ..29
LocalSheet Property ..29
RawValue Property ...29
Value Property ..30
Creating New Actions ...31
Inserting Existing Actions...32

Inserting Call to Actions ...32
Nesting Actions ...32
Splitting Actions ...32

Miscellaneous ...33
Setting Action Properties ..33
Exiting an Action ..33
Removing Actions from a Test ...33
Renaming Actions ...33
ReportEvent Method ...40
Filter Property ...40
ReportPath Property ..40
To add checkpoints while recording: ..42
From Menu bar ...42

From Test Tree ..42
From the Active Screen ..42

Check Point Syntax:- ..44
Automation Program:- ..46

Example: Logo Testing ...47
Introduction: ..50
Descriptive Programming: ..50

Some places where we can use AOM ...86
How to write AOM scripts? ..88

What is Document object Model? ...98
When can we use DOM? ..98
Description ..124
Syntax ...124
Remarks ..124
Description ..125

QuickTest Professional Unplugged

 All powers within you, you can do it

6

Description ..126
Examples ...126
Description ..127
Creating Text Files ..127
Description ..127
Syntax ...128
Examples ...128
Opening Text Files ..128
Description ..128
Syntax ...128
Examples ...128
Syntax ...130
Remarks ..130
Description ..173
Syntax ...173
Description ..173
Syntax ...173
Description ..173
Syntax ...174
Description ..174
Syntax ...174
Description ..174
Syntax ...174
Description ..175
Syntax ...175
Description ..176
Syntax ...176
Description ..176
Syntax ...176
Description ..176
Syntax ...176
Settings ..177
Return Values..177
Description ..177
Syntax ...177

QuickTest Professional Unplugged

 All powers within you, you can do it

7

Recording modes in QTP
Data Tables
Actions
Environment Variables
Utility Objects
Checkpoints
Output Values
Descriptive Programming
Debugging in QTP
Recovery Scenario
Regular Expression
Synchronization
Test Results
Automation Object Model
Working with MS Excel
Working with XML
Designing Framework
QTP Methods and Properties
Working with Test Objects
Working with Filesystem Objects
Dictionary Object
Virtual Object
Object Repository
Working with Databases
What’s New in QTP 9.2
VB Script Basics
Advanced and Most useful things
Sample script for web based application
About QTP Certification

QuickTest Professional Unplugged

 All powers within you, you can do it

8

1

Introduction

What is test Automation?

It is a process in which all the drawbacks of manual testing are addressed (over
come) properly and provides speed and accuracy to the existing testing phase.

Note:
Automation Testing is not a replacement for manual testing it is just a continuation
for a manual testing in order to provide speed and accuracy.

 Drawbacks of Automation Testing

1. Too cost.
2. Cannot automat all the areas.
3. Lake of experience.
4.

AUTOMATION TOOL
Automated Tool is an Assistance of test engineers, which works based on the
instructions and information.

General foam work to learn any automated tool.

 A test engineer should learn the following to work with any automated tool.

1. How to give the instruction.
2. How to give the information.
3. How to use its recording facility.
4. How to use its play back facility.
5. How to analysis the Result.

When should test Automation be used?

U think it is tedious to apply the test manually.
U think it will be reasonably feasible to automate the test case.
U think it is better we execute the test case manually rather than breaking our head trying
to automate it.
Lack of WILL POWER has caused more failure than Lack of INTELLIGENCE or ABILITY.
Basically we can start with Manual Testing; the situations to move to automate will be
1) when we need to test the same functionality with more set of input data.
2) Difficult to do manual testing (time wise, resources wise)
3) Where users work mostly on that particular page or section of that application
4) Pages/ sections very important to the users
5) where More no of mathematical calculations will be done

QuickTest Professional Unplugged

 All powers within you, you can do it

9

What is HP Quick Test Professional (QTP?)

• QTP – Quick Test Professional
• QTP is a Mercury Interactive Automated Testing Tool which provides the industry’s

best solution for Functional test and Regression test automation.
• Quick Test Professional enables you to test standard Windows applications, Web

applications, ActiveX controls, and Visual Basic applications.
• You can also acquire additional Quick Test add-ins for a number of special

environments (such as Java, Oracle, SAP Solutions, .NET Windows and Web
Forms, Siebel, PeopleSoft, Web services, and Terminal Emulator applications).

•
Benefits of using QTP

Fast - Quick Test runs tests significantly faster than human users.

• Reliable - Tests perform precisely the same operations each time they are run,

thereby eliminating human error.
• Repeatable - You can test how the Web site or application reacts after repeated

execution of the same operations.
• Programmable - You can program sophisticated tests that bring out hidden

information.
• Comprehensive - You can build a suite of tests that covers every feature in your

Web site or application.
• Reusable - You can reuse tests on different versions of a Web site or application,

even if the user interfaces changes.
• Quick Test Professional satisfies the needs of both Technical and Non-Technical

(Business Analysts, Subject Matter Experts) users. It enables you to deploy high
quality applications faster, cheaper, and with less risk.

• Empower the entire team to create sophisticated test suites with minimal training.
• Ensure correct functionality across all environments, data sets, and business

processes.
• Fully document and replicate defects for developers, enabling them to fix defects

faster and meet production deadlines.
• Easily regression-test ever-changing applications and environments.

Become a key player in enabling the organization to deliver quality products and services,
and improve revenues and profitability.

QuickTest Professional Unplugged

 All powers within you, you can do it

10

QTP Testing Process

Create your test plan

Prior to automating there should be a detailed description of the test including the exact
steps to follow data to be input and all items to be verified by the test. The verification
information should include both data validations and existence or state verifications of
objects in the application.

Recording a session on your application

As you navigate through your application QuickTest graphically displays each step you
perform in the form of a collapsible icon-based test tree. A step is any user action that
causes or makes a change in your site such as clicking a link or image or entering data in
a form.

Enhancing your test

o Inserting checkpoints into your test lets you search for a specific value of a
page object or text string which helps you identify whether or not your
application is functioning correctly.

NOTE: Checkpoints can be added to a test as you record it or after the fact via the Active
Screen. It is much easier and faster to add the checkpoints during the recording process.

QuickTest Professional Unplugged

 All powers within you, you can do it

11

o Broadening the scope of your test by replacing fixed values with
parameters lets you check how your application performs the same
operations with multiple sets of data.

o Adding logic and conditional statements to your test enables you to add
sophisticated checks to your test.

Debugging your test

If changes were made to the script you need to debug it to check that it operates smoothly
and without interruption.

Running your test on a new version of your applicat ion

You run a test to check the behavior of your application. While running QuickTest
connects to your application and performs each step in your test.

Analyzing the test results

You examine the test results to pinpoint defects in your application.

Reporting defects

As you encounter failures in the application when analyzing test results you will create
defect reports in Defect Reporting Tool.

QuickTest Professional Unplugged

 All powers within you, you can do it

12

Setting up the Environment

� Setting up the QTP environment for Record and Playback
� Select the correct Add-ins to load from the Add-in Manager
� Select the appropriate Active Screen capture level (Tools � Options)
� Configure the Record and Run settings (Test � Record and Run Settings)
� Configure the Editor options (Tools � Editor Options)

� Record a basic test from a manual test case.
� Play Back a test.
� Debug and Enhance the Test.
� Set the Initial and End conditions for a test.
� Save the test.
Ad-in Manager : - It is a feature provided by qtp used for making the qtp compatible
with a specified environment by default the qtp provides 3 add-ins

1. Visual basic
2. Java
3. Multimedia
4. Visual Basis
5. Web

QuickTest Professional Unplugged

 All powers within you, you can do it

13

2

Recording modes in QTP

Recording and Running

Recording and Run Settings:

Recording and Run Setting is a feature provided by Q.T.P, which is used for
making the Q.T.P understand on which applications will need to concentrate while
Recording and Running. This setting has to be done at least once for every new
test.

Operational Overview of Recording.
 During recording Q.T.P will be during us following

1. It will generate the corresponding test script statement for every user action.
2. It will also store the required related information in the object repository.

Operational Overview of Running.

 Q.T.P will be doing the following will be running

1. It will be read the script statement.
2. It will understand what action to be performed on which object.
3. When it is realizes it needs to identify that object for that it requires some

information for that information it will go to the object repository and search.
4. Once the information is identified using that information it will try to identify the

object.
5. Once the object is identify it will perform the action

Recording Modes

 There are 3 types of recording modes.

1. Contact sensitive recording mode / normal recording mode.

2. Analog recording mode.

3. Low-level recording mode.

1) Normal recording

It is used for recording the operations perform at different contacts on the standard
GUI objects.

QuickTest Professional Unplugged

 All powers within you, you can do it

14

2) Analog Recording (Ctrl+Shift+F4)

It is used for recording the continuous operations. This mode is useful for the
operation you can record at object level such as drawing a picture, recording
signature. The steps recorded using analog mode is saved in separated data file.
Analog recording divided into two types.

1. Relative to screen

Quicktest inserts the Run Analog step under desktop parent item. For example
 Desktop, runAnalog “Track1”

2. Relative to window

Quicktest inserts the Run Analog steps under a window parent item. For
example
Window (“Microsoft internet”).Run Analog “track1”

The track file called by the run analog method contains all your data and is stored
with action.
Note: track0 –Fast
 Track1-Normal

3) Low-level Recording

It is special recording mode provided by Q.T.P, which is used for recording the
minimum operations on the Non-Supported environments also. Low-level-recording
for when you need to record the exact location of the operation on your application
screen-L-R supports the following

Winobject -Click, doubleclick, drag, drop, type
Window -Click, double-clicks, drag, drop, type, activate, minimize, and restore,
maxmize.

Normal Recording code for Agent name in flight reservation application.
Browser (“mercury”).page (“mercury”).webedit (Agent name).set “mercury”

Low-Level-Recording code
Wnd (“mercury”).page (“mercury”).click 564,263
Wnd (“mercury”).page (“mercury”).type “mercury”
Wnd (“mercury”).page (“mercury”).type MicTab

QuickTest Professional Unplugged

 All powers within you, you can do it

15

Anatomy or QTP

Apart from these 3 add-ins qtp is always compatible with standard windows
environment QTP serene is divided in to 5 parts

1. Test Pane

2. Active Screen

3. Data Table

4. Debug Viewer Pane

5. Tool Options

]1). Test Pane
Test pane is an area provided by Q.T.P, which is used for developing, viewing and
modifying the test script.

It represents the Test script in 2 views.

1. Expert view
2. Keyboard view

QTP Main Window

QuickTest Professional Unplugged

 All powers within you, you can do it

16

Expert view

Expert view represents the script in VB script format.

Keyboard View
It represents the scripts using a graphical user interface, which is further divided,
into 4 parts.

1. Item
2. Operation
3. Value
4. Documentation

2) Active Screen
Active Screen is a feature provided by Q.T.P which holds the snap shots related to

each and every script statement and used for understanding the script easily as well as
enhancing the script easily.

Features:-
It is used for understand the script easily.
It is used for enhancing the script easily.

QuickTest Professional Unplugged

 All powers within you, you can do it

17

Active Screen capture level settings

Write a program to disable active screen programmatically?

Dim x
Set x=createobject (“quicktest.application”)
x.launch
x.showpanescreen “activatescreen”, false
Wait 3
x.windowstate=”maximized”
x.visible=true
Set x=nothing

3. Data Table
A Data Table provides a way to create data driven test cases. Data table is also called as
formula1 sheet, which is developed by the third party and integrated with the Q.T.P. Each
test case has one global data sheet which is accessible to all actions inside that test case
and each action has its own private data table also known as local data table. The name
local data table is somewhat misleading because it is in fact possible to access any
action’s local data table from any other action, but the way of accessing the data becomes
a bit different.

QuickTest Professional Unplugged

 All powers within you, you can do it

18

Figure 3.1 shows a sample DataTable with 2 parameters, Username and Password

We can use most of the formulas that work inside a typical Excel spreadsheet. But there
are some
differences between a DataTable and an Excel spreadsheet. In fact a DataTable is
wrapped around an Excel spreadsheet—which provides access functionality to the values
but does not expose the Excel spreadsheet object model.

‘Gives the value of Parameter1 stored in
‘The Global data table.
Data Table (“Parameter1” , dtGlobalSheet)
‘Gives the value of Parameter1 stored in
‘The current’s action local data table.
Data Table (“Parameter1” , dtLocalSheet)

QuickTest Professional Unplugged

 All powers within you, you can do it

19

The same Data Table cannot have duplicate parameter names but we can use the
same name Parameters in different sheets (Global Data Table and Local Data Table).
Each Data Table has only 1row enabled even when it is blank and the other rows get
enabled when data is entered into a new row. A Data Table is stored as “Default.xls” file in
the test folder

When viewed in Excel, the first row of the sheet contains the parameter names,

while QTP displays the parameter as the column titles. Therefore, when viewed using
Excel, the 2nd row starts the 1st row of data in the DataTable. The DataTable shown
above has only 2 data rows enabled. Note that QTP makes a data row enabled by marking
the borders of the row in the actual spreadsheet. A row with no data but with marked
borders is still considered as an enabled row by QTP. To delete an enabled row we must
select the row and delete it from the context menu which appears on right clicking the row.

Design and run-time data table
Design time data table

As the name suggest the data table during the script design time is known as design time
data table.
Any changes to this are saved when the script is saved.

QuickTest Professional Unplugged

 All powers within you, you can do it

20

Run-time data table

The run-time data table contains a copy of the design time data table when a script is
executed. It may contain values that are changed during script execution and are
presented in the test result summary. The changes made to the data table during run-time
are not saved to design time data table. Figure 4-3 shows a run-time data table from the
test results summary

When to use the global or a local data table
It is important to understand in what situations the global or a local data table should be

used.
Consider the following two scenarios

Scenario 1 - Log into the application, book 1 ticket, log out. Repeat the scenario for
many users

Scenario 2 - Log into the application, book 3 tickets, and log out

Scenario 1

The Global data table is better suited for this scenario where we have the user name,
password
and tickets details as the parameters and we execute the scenario using a single action
(which does
everything) or multiple actions (Login, booking and logout).
NOTE: We can use an external spreadsheet as a Data table by

QuickTest Professional Unplugged

 All powers within you, you can do it

21

Specifying the location of the file in the Resource (Tab) as shown in the

Figure 4-4
Scenario 2

A Local data table is better suited for this scenario. Here a good approach would be to split
the test
into three actions: login, booking and logout. Login and logout can use the username and
password
parameters from the global data table and booking can use ticket detail parameters from
its local data table and the action will be executed for all rows in its local data table.

Setting data table iterations
To run a test case for some number of iterations we need to set the iterations of global

data table in
the Test Settings dialog, which is invoked using Test→Settings…→Run (Tab) Figure
shows the
iteration settings for the global table. These settings are specific to script.

QuickTest Professional Unplugged

 All powers within you, you can do it

22

The Action call properties dialog can be used to set the iterations as shown in the Figure 4-6
We can set the iteration settings for an Action call by going into the keyword view and then
right
clicking on the Action and selecting Action Call Properties…as shown in the below figure

QuickTest Professional Unplugged

 All powers within you, you can do it

23

Data table object model
QTP provides an object model to access various properties and methods in a data

table:

There are three types of objects

o DataTable - Represents all the global and local data tables in the test

o DTSheet - Represents a single sheet in the test

o DTParameter - Represents a single column in a sheet.

Each object has certain functions available and certain properties associated with
it. These are explained in detail in the QTP user manual.

Data table formatting
When data is entered into the data table it automatically formats the value using

the best possible matching format. For example, if "12345678901" is entered into a cell

then it would be auto formatted to "1.23456789E+010". In situations where the formats are

important the data should be entered with care. If data entered in the cell start with a single

quote (‘) then it is always treated as a text and no format conversion is performed. We can

also define a specific format by right clicking the cell or an entire column and then picking

a specific format from the popup context menu.

Problem 3.1 How to access a parameter from the glob al data sheet

There are a variety of ways to access a parameter from the global data table, most
of which are

presented in the following code snippet:

'Methods of getting a Data Table value
Val = DataTable.Value ("ParamName" , dtGlobalSheet)
Val = DataTable.Value ("ParamName" ,"Global")

'By giving the sheet index starting from 1 for the global sheet
Val = DataTable.Value ("ParamName" , 1)

' Sheet name or id is a optional parameter and is assumed
' to be as for global data sheet in case not provided
Val = DataTable.Value ("ParamName")

' Value property is the default property of the DataTable object

QuickTest Professional Unplugged

 All powers within you, you can do it

24

' So DataTable ("ParamName", dtGlobalSheet) is
' Equivalent to DataTable.Value ("ParamName", dtGlobalSheet)
Val = DataTable ("ParamName" , dtGlobalSheet)
Val = DataTable ("ParamName")

'Using the data table object model
Val = DataTable.GlobalSheet.GetParameter ("ParamName").Value

'Using the data table object model
Val = DataTable.GlobalSheet.GetParameter ("ParamName").ValueByRow

(1)

Problem 3-2. How to access a parameter from a Local data sheet

'Various methods to get data table value
Val = DataTable.Value ("ParamName" , dtLocalSheet)
Val = DataTable.Value ("ParamName" ,"<LocalActionName>")
Val = DataTable ("ParamName" , dtLocalSheet)
Val = DataTable ("ParamName" ,"<LocalActionName>")

'The local sheet of the action which is executing this statement
Val = DataTable.LocalSheet.GetParameter ("ParamName").value

Problem 3-3. How to check if a Sheet exists

'Function to check if DataTable sheet exists
Function isSheetExists (sheetName)

On error resume next
isSheetExists = TRUE
Err. Clear
Set objSheet= DataTable.GetSheet (sheetName)
'In case error occurred sheet does not exist
If err. number<>0 then

isSheetExists = FALSE
End if

End Function

Problem 3-4. How to preserve format of data output to a data table

'This would be modified to 1.23456789E+010 due to auto formatting
DataTable ("ParamName") = "12345678901"
'This will not be auto formatted and will be treated as text
DataTable ("ParamName") = "'" & "12345678901"

Problem 3-5. How to check if a parameter exists in a specific sheet

'Check if a parameter exists in data table
Function isParameterExists (sheetName, paramName)

On error resume next
isParameterExists = TRUE
Err. Clear
ParamTotal = DataTable.GetSheet (sheetName).GetParameter (paramName)
'In case of error the parameter does not exist

QuickTest Professional Unplugged

 All powers within you, you can do it

25

If err. number<>0 then
isParameterExists = False

End if
End Function

Problem 3-6. Current iteration number of QTP script :

STR = "Current QTP iteration: " & Environment ("TestIteration") & vbNewLine & _
‘DataTable ("Param1", dtGlobalSheet) & vbNewLine & _
DataTable ("Param2", dtGlobalSheet)
MsgBox STR

Problem 3-7.How to export contents of a WebTable to a data sheet. Let’s assume
that the first row of the data table contains the c olumns heading. We then add those
as parameters of the data table:

‘Variable declaration
Dim i, j
Dim rowCount, colCount
Dim cellText, objTable

 ‘Get table object
Set objTable = Browser (“”).Page (“” _________________).WebTable (“”)
‘Get the row count of the webtable
rowCount = objTable.RowCount
‘Get the column count of the webtable header row
ColCount = objTable.ColumnCount (1)
‘Create an output sheet
Set outSheet = DataTable.AddSheet (“Output”)
‘Create Parameters based on the 1st row of the web table
For i = 2 to colCount
cellText = objTable.GetCellData (1,i)
‘Note in case the CellText contains space in between
‘then QTP will automatically convert it to a “_” character
outSheet.AddParameter cellText,””
Next
‘Skip first row as we assumed it to be a header row
For i = 2 to rowCount
outSheet.SetCurrentRow i-1
‘Re-calculate the column count as some rows
‘Have different column sizes
colCount = objTable.ColumnCount (i)
For j = 2 to colCount
cellText = objTable.GetCellData (i, j)
‘We are using index here to avoid the problem of
‘the “_” issue if cell text has spaces or new line chars
‘then we will get an error. to overcome that we can also use
‘outSheet.GetParameter (Replace (cellText,” “,”_”)).Value

QuickTest Professional Unplugged

 All powers within you, you can do it

26

outSheet.GetParameter (j-1).value = cellText
Next
Next

Problem 3-8. How to get value of a parameter from a ny specific row in the data table

We use the ValueByRow method to get value for any row
‘Get a value by row
DataTable.GetSheet (“SheetName”).GetParameter (“ParameterName”).
ValueByRow (RowNumber)

Problem 3-9 . How to execute a script for all Global Data Table i terations, when the
script is set to run for only one iteration:

In case we want to manually repeat the code for each iteration, we need to write a bit
code.
‘Declare variable
Dim i, iCount
‘Get the global sheet object
Set oGlobal = DataTable.GlobalSheet
‘Get # of rows
iCount = oGlobal.GetRowCount
For i = 1 to iCount
‘Set the current row
oGlobal.SetCurrentRow i
‘Execute the code to be repeated here
Msgbox DataTable (“UserName”)
Next

Problem 3-10. How to get the number of columns that contain data:

To solve this problem we need to utilize the excel formula COUNTA. We add a parameter
to the data table with the formula and then read its value:

‘Add a new parameter with the formula
‘For Columns 1 of data table use A1:A65536
‘For column 2 of data table use B1:B65536 and so on
DataTable.GlobalSheet.AddParameter “New” ,”=COUNTA(A1:A65536)”
‘Get the new value
Msgbox DataTable (“New”)

Note: The above code won’t work when there are no columns in the data table or all the
columns have been used

QuickTest Professional Unplugged

 All powers within you, you can do it

27

Data table Parameterization

1. Record new script “www.mail.yahoo.com”
2. Start recording and provide user name and password
3. Stop recording
4. Now create 2 column in Global data table named “user name” and

“password”
5. provide values for both column
6. With help of data table associated method properties the most popular is

value which is the default data table property. Now let us see how we
access values stored in data table.

Dim Uid, Pw
Uid =datatable.value (”user name”, dtGlobalSheet)
Pw =datatable.value (”password”, dtGlobalSheet)
‘After that changes it into
Browser (“mail yahoo”).page (“mail yahoo”).webebit (“username“).set “Uid”
Browser (“mail yahoo“).page (“mail yahoo”).webebit (“password”).set “Pw”
‘In order to move your pointer to next row, if we want to use second row just use the
bellow code

 Datatable.SetNextRox

Working with the data table objects

Adds the specified sheet to the run-time Data Table

AddSheet Method

Syntax: DataTable.AddSheet (Sheet Name)
Example:
Variable=DataTable.AddSheet ("MySheet").Add Parameter ("Time", "8:00")

DeleteSheet Method

Deletes the specified sheet from the run-time Data Table.

Syntax: DataTable.DeleteSheet SheetID
Example : DataTable.DeleteSheet "MySheet“

QuickTest Professional Unplugged

 All powers within you, you can do it

28

Export Method

 Saves a copy of the run-time Data Table in the specified location.

Syntax:
DataTable.Export (FileName)
Example:

DataTable.Export ("C:\flights.xls")

Uname=datatable.value (“uname”, dtGlobalSheet)

Pw=datatable.value (“pw”, dtGlobalSheet)

Name=”Agentname”

Dialog (“login”).winedit (name).set Uname

Dialog (“login”).winedit (“password”).set Pw

Datatable.export (“c:\login.xls”)

ExportSheet Method

Exports a specified sheet of the run-time Data Table to the specified file.

Syntax: DataTable.ExportSheet (FileName, DTSheet)
Example: DataTable.ExportSheet "C:\name.xls”, 1

GetRowCount Method

Returns the total number of rows in the longest column in the global data sheet or in the
specified data sheet of the run-time Data Table.

Example:
Rowcount = DataTable.GetSheet ("MySheet").GetRowCount

GetSheet Method

Returns the specified sheet from the run-time Data Table.

Example: MyParam=DataTable.GetSheet ("MySheet").Add Parameter ("Time", "8:00")

QuickTest Professional Unplugged

 All powers within you, you can do it

29

GetSheetCount Method
Returns the total number of sheets in the run-time Data Table.

Import Method
Imports the specified Microsoft Excel file to the run-time Data Table.

Syntax: DataTable.Import (FileName)
Example: DataTable.Import ("C:\flights.xls")

ImportSheet Method
Imports a sheet of a specified file to a specified sheet in the run-time Data Table.

Syntax: DataTable.ImportSheet (FileName, SheetSource,SheetDest)

Example: DataTable.ImportSheet "C:\name.xls”, 1,"name"

SetCurrentRow Method

Sets the specified row as the current (active) row in the run-time Data Table.
Example: DataTable.SetCurrentRow (2)

SetNextRow Method
Sets the row after the current (active) row as the new current row in the run-time Data
Table.

SetPrevRow Method
Sets the row above the current (active) row as the new current (active) row in the run-time
Data Table.

GlobalSheet Property
Returns the Global sheet of the run-time Data Table.
Example:
DataTable.GlobalSheet.AddParameter "Time", "5:45"

LocalSheet Property
Returns the current (active) local sheet of the run-time Data Table.
Example:
MyParam=DataTable.LocalSheet.AddParameter("Time", "5:45")

RawValue Property
Retrieves the raw value of the cell in the specified parameter and the current row of the
run-time
Data Table.

Syntax : DataTable.RawValue ParameterID [, SheetID]
SheetID can be the sheet name, index or dtLocalSheet, or
DtGlobalSheet.

QuickTest Professional Unplugged

 All powers within you, you can do it

30

Value Property
Retrieves or sets the value of the cell in the specified parameter and the current row of the
run-time Data Table.
Syntax:
DataTable.Value(ParameterID [, SheetID])

1. .

Creating Tests with Multiple Actions

Actions divide your test into logical sections. When you create a new test, it
contains a
call to one action. By dividing your tests into calls to multiple actions, you can design more
modular and efficient tests. Use one of the following menu options or toolbar buttons to
add actions to your test:

• Step � Split Action (or) use the Split Action button.
• Insert � Call to New Action (or) use the Insert Call to New Action button.
• Insert � Call to Copy of Action (or) right-click an action and choose Insert

Call to Copy of Action.
• Insert � Call to Existing Action (or) right-click an action and choose Insert

Call to Existing Action.
Steps to divide the Test into multiple Actions

• Save the Recorded application with an appropriate name.
• Select the page where you want the second action to begin.
• Choose Step � Split Action (or) click the Split Action button.
• Enter Names, Descriptions for the two actions and click ‘OK’ button.
• The two Actions are displayed in the Keyword View.

Different Types of Actions

QuickTest Professional Unplugged

 All powers within you, you can do it

31

Actions are classified into three types.

• Non-Reusable Action – An action that can be used within the test in which it is
created.

• Reusable Action – An action that can be called multiples times by the test in which

it was created as well as by other tests.

• External Action – Similar to Reusable action created in another test. These are in
Read-Only format. The actions can be modified from its Original Test.

Creating New Actions

You can add new actions to your test during a recording session or while designing your
test.
You can add the action as a top-level action, or you can add the action as a sub-action (or
nested action) of an existing action in your test.

To create a new action in your test:
If you want to insert the action within an existing action, click the step after which you want
to insert the new action.

• Choose Insert > New Action or click the New Action button. The Insert New Action
dialog box opens.

• Type a new action name or accept the default name.

• If you wish, add a description of the action. You can also add an action description
at a later time in the Action Properties dialog box.

• Select Reusable Action if you want to make the action reusable. You can also set
or modify this setting at a later time in the Action Properties dialog box.

• Decide where to insert the action and select At the end of the test or After the
current step.

• Click OK.
A new action is added to your test and is displayed at the bottom of the test tree or after
the current step. You can move your action to another location in your test by dragging it
to the desired location.

QuickTest Professional Unplugged

 All powers within you, you can do it

32

Inserting Existing Actions
You can insert an existing action by inserting a copy of the action into your test, or by
inserting a call to the original action.

Inserting Copies Actions
When you insert a copy of an action into a test, the action is copied in its entirety, including
checkpoints, parameterization, and the corresponding action tab in the Data Table. The
action is inserted into the test as an independent, non-reusable action
Once the action is copied into your test, you can add to, delete from, or modify the action
just as you would with any other recorded action. Any changes you make to this action
after you insert it affect only this action, and changes you make to the original action do
not affect the inserted action. You can insert copies of both reusable and non-reusable
actions.

Steps to insert a copy of an action:

• Choose Insert > Copy of Action, right-click the action and select Insert Copy of
Action, or right-click any step and select Action > Insert Copy. The Insert Copy of
Action dialog box opens.

• Type a meaningful name for the action in the New action name box and give action
description

• Specify where to insert the action: At the end of the test or after the current step.

• Click OK. The action is inserted into the test as an independent, non reusable
action.

Inserting Call to Actions

You can insert a call (link) to a reusable action that resides in your current test (local
action), or in any other test (external action).When you insert a call to an external action,
the action is inserted in read-only format. You can view the components of the action in
the action tree, but you cannot modify them.
Steps to insert a call to an action:

• Choose Insert > Call to Action, right-click the action and select Insert Call to Action,
or right-click any step and select Action > Insert Call. The Insert Call to Action
dialog box opens.

• In the Select an action box, select the action you want to insert from the list.

• Specify where to insert the action : At the end of the test or After the current step.

• Click OK. The action is inserted into the test as a call to the original action

Nesting Actions
Sometimes you may want to run an action within an action. This is called nesting.
Nesting actions Help you maintain the modularity of your test. Enable you to run one
action or another based on the results of a conditional statement.

Splitting Actions
You can split an existing action into two sibling actions or into parent-child nested actions.
You cannot split an action and the option is disabled

QuickTest Professional Unplugged

 All powers within you, you can do it

33

• When an external action is selected

• When the first line of the action is selected

• While recording a test

• While running a test

• When you are working with a read-only test

Miscellaneous

Setting Action Properties
The Action Properties dialog box enables you to modify an action name, add or modify an
action description, and set an action as reusable.

Sharing Action Information
There are several ways to share or pass values from one action to other actions:

• Store values from one action in the global Data Table and use these values as
Data Table parameters in other actions.

• Set a value from one action as a user-defined environment variable and then use
the environment variable in other actions.

• Add values to a Dictionary object in one action and retrieve the values in other
actions.

Exiting an Action
You can add a line in your script in the Expert View to exit an action before it runs in its
entirety.
There are four types of exit action statements you can use:

• ExitAction - Exits the current action, regardless of its iteration attributes.

• ExitActionIteration - Exits the current iteration of the action.

• ExitRun - Exits the test, regardless of its iteration attributes.

• ExitGlobalIteration - Exits the current global iteration.

Removing Actions from a Test
We can remove Non-reusable actions, External Actions, Reusable Actions, or Calls to
External or Reusable actions.

Renaming Actions
You can rename actions from the Tree View or from the Expert View.

Action Template

QuickTest Professional Unplugged

 All powers within you, you can do it

34

If you want to include one or more statements in every new action in your test, you can
create an action template.
Steps to create an action template:

• Create a text file containing the comments, function calls, and other statements
that you want to include in your action template.

Save the text file as ActionTemplate.mst in your <QuickTest Installation Folder>\dat folder

Call to copy of Action

Pre-conditions to use Multiple / Re-usable Actions

* Actions can be called or copied.
* Run settings have to be set per Action.
* Each action in a test with multiple actions has its own Object Repository.
* Parameters and data should reflect into the Calling test.
* Each action has its own local data sheet.
* The Global data sheet iterates data on all actions.
* The Local data sheet iterates data only within the corresponding action

The Step Generator dialog box helps you quickly and easily add steps that use test object
methods, utility object methods, and function calls, so that you do not need to memorize syntax or

QuickTest Professional Unplugged

 All powers within you, you can do it

35

to be proficient in high-level VBScript. You can use the Step Generator from the Keyword View and
also from the Expert View.

Choose Insert� Function definition Generator, from the menu bar

Function Definition

The Function definition Generator which enables to generate definitions for new
user defined functions & adds header information to them. You can register these
functions to a test object if needed. You fill in the required information and function
definition.

Choose Insert� Function definition Generator, from the menu bar

QuickTest Professional Unplugged

 All powers within you, you can do it

36

Pass the values from one action to another action?

**
‘Action 1
Environment .Value (“strname”) =inputbox (“enter the name”)
‘Action 2
Set a = Environment. Value (“strname’)
Msgbox a
‘Web application
‘Action 1 code
Browser (“Premium Tropicals”).Page (“Premium Tropicals”).WebEdit (“Cname”).Set
DataTable (“username”, dtGlobaSheet)
‘Username name through DataTable
Environment. Value (Agent Name).DataTable.Value (“Cname”dtGlobalSheet)
‘Another action
Username = Environment. Value (Agent Name).
Msgbox Username
**

QTP Environment Variables

 The variables that are commonly used across the environment in many tests by
different resources are known as Environment Variables. There are two types of Environment
variables

1. Built-in-variables
2. User Defined Variables

1. Built-in-variables:
 These variables will be by default available in every test and can be directly used in
any test with help of following syntax.

 Syntax: Environment. Value (“Built-in-variables”)

 Example:

Var=environment. Value ("OS")
 ‘To display the Operating System
Msgbox var

QuickTest Professional Unplugged

 All powers within you, you can do it

37

2. User Defined Variables:

 The variables which are required commonly in number of test apart from the Built-
in-variables need to be created by the user which is known as User Defined Variables
.User Defined Variables are created in environment file, any body in that environment can
Associate this file and use the variables in it.

 There are two types of User Defined Variables

1. Internal User Defined Variables: - which are used in the same file

Example:

� Open the Cal application
� Put the tool under recording mode
� Capture the objects properties of Cal application to Object Repository
� Stop recording

• Declaring the Environment Variables
� Activate the menu item Test
� Go to Settings
� Select the Environment tab
� Select variable type as User-defined
� Click on New button
� Add new Environment window will appear
� Give the details of Name and value (type will be Internal)
� Click on OK
� Again Click on New button to add one more variable
� Add new Environment window will appear
� Give the details of Name and value (type will be Internal)
� Click on OK
� Click on Apply
� Click on OK
� If you want you can Export these data to a a file with .xml extention file in the

Environment folder
• Associating the Environment Variables (by parameterizing

)
� Develop the script in test pane as below

‘Setting the declared environment value (a) to value1 edit button
VbWindow ("Form1").VbEdit ("val1").Set environment.Value ("a")
‘Setting the declared environment value (b) to value2 edit button
VbWindow ("Form1").VbEdit ("val2").Set environment. Value ("b")
‘Clicking on ADD button
VbWindow ("Form1").VbButton ("ADD").Click

1. Run the test
2. Analyze the results

QuickTest Professional Unplugged

 All powers within you, you can do it

38

2. External User Defined Variables:-

 Which are imported from other file:
Example:

• Open the Cal application
• Put the tool under recording mode
• Capture the objects properties of Cal application to Object Repository
• Stop recording
Declaring the Environment Variables
• Activate the menu item Test
• Go to Settings
• Select the Environment tab
• Select variable type as User-defined
• Select the check box of ‘load variables and values from an external file’

If you want you can make use of Exported data or you can create your own data in a file
with .xml extension file in the Environment folder

• Browse that file
• Click on Apply
• Click on OK

Associating the Environment Variables (by parameter izing)
• Develop the script in test pane as below

Setting the declared environment value (a) to value1 edit button
VbWindow ("Form1").VbEdit ("val1").Set environment.Value ("a")
‘Setting the declared environment value (b) to value2 edit button
VbWindow ("Form1").VbEdit ("val2").Set environment. Value ("b")
‘Clicking on ADD button
VbWindow ("Form1").VbButton ("ADD").Click
**

• Run the test
• Analyze the results

QuickTest Professional Unplugged

 All powers within you, you can do it

39

Environment object:

 We have three types of environment object in QTP.The types are

1. LoadFromFile

Example:

If environment.loadfromfile (“C:\book.xml“).exist then

Msgbox “xml file exists”

Else

Msgbox “xml file does not exist”

2. Value

Example 1:

Environment. Value (“StrUserName”).inputbox (“enter the agent name”)

Username= Environment. Value (“StrUserName”)

Msgbox Username

Example 2:

Environment. Value (“my variable”) =10

My value= Environment. Value (“osversion”)

Msgbox My value

QuickTest Professional Unplugged

 All powers within you, you can do it

40

Utility Objects

1. TextUtil Object

GetText Method

Returns the text from the specified window handle area.
Syntax
TextUtil.GetText (hWnd [, Left, Top, Right, Bottom])

GetTextLocation Method

Checks whether a specified text string is contained in a specified window area.
Syntax
TextUtil.GetTextLocation (TextToFind, hWnd, Left, Top, Right, Bottom [,
MatchWholeWordOnly])

2. Reporter Objects

 ReportEvent Method
Reports an event to the Test Report.

Syntax

Reporter.ReportEvent EventStatus, ReportStepName, Details [, in]
EventStatus – micPass, micFail, micDone, micWarning

Filter Property
Retrieves or sets the current mode for displaying events in the Test Results.
Syntax

To retrieve mode setting: CurrentMode = Reporter.Filter
To set the mode: Reporter.Filter = NewMode
Mode - 0 or rfEnableAll, 1 or rfEnableErrorsAndWarnings,
2 or rfEnableErrorsOnly, 3 or rfDisableAll

ReportPath Property
Retrieves the folder path in which the current test’s Test Results are stored.

Syntax
Path = Reporter.ReportPath

QuickTest Professional Unplugged

 All powers within you, you can do it

41

3. Crypt
**
Set a = Inputbox (“enter the password”)
Dialog (“Login”).WinEdit (“Password”).SetSecure a
Set password = Crypt. Encrypt (a)
Msgbox password

**

4. Pathfinder

**
Set a = CreateObject (“Scripting.FileSystemObject”)
Set b = Pathfinder. Locate (“kanak.txt”)
Set c=a.OpentextFile (b)
Do while not c.AtEndofStream
Set d = readline ()
Browser (“name = G.*”).Page (“title = G.*”).WebEdit (“index = 2”).SetSecure d
Loop
**

5. SystemUtil

SystemUtil has the following methods that can be used to close processes, including
browsers:

1.CloseProcessByName

SystemUtil.CloseProcessByName "iexplore.exe"

2.CloseProcessByHWND: Uses windows handle to close a window.

Dim HWND: HWND = Browser (“title: =Google”).GetROProperty (“HWND”)
 SystemUtil.CloseProcessByHWND HWND

 CloseProcessByWndTitle: Uses window title to close it.

 SystemUtil.CloseProcessByWndTitle "Google", True

3. TSKill with SystemUtil

SystemUtil.Run "tskill", "iexplore"

4. Process ID with SystemUtil

QuickTest Professional Unplugged

 All powers within you, you can do it

42

PID = Browser ("title: =Google").GetROProperty ("process id")
SystemUtil.CloseProcessByID PID

Checkpoints

A checkpoint is a verification point that compares a current value for a specified property with
the expected value for that property. This enables you to identify whether you’re Web site or application
is functioning correctly.

Adding Checkpoints to a test

There are several ways to add checkpoints to your tests.

To add checkpoints while recording:
We can add checkpoints while recording the test. Use the commands on the Insert menu,
or click the arrow beside the Insert Checkpoint button on the Test toolbar. This displays a
menu of checkpoint options that are relevant to the selected step in the test tree.

From Menu bar
Use the commands on the Insert menu, or click the arrow beside the Insert Checkpoint
button on the Test toolbar. This displays a menu of checkpoint options that are relevant to
the selected step in the test tree.

To add a checkpoint while editing your test

From Test Tree
 Right-click the step in the test tree where you want to add the checkpoint and choose
Insert Standard Checkpoint.

From the Active Screen

 Right-click any object in the Active Screen and choose Insert Standard Checkpoint. This
option can be used to create checkpoints for any object in the Active Screen (even if the
object is not part of any step in your test tree).

QuickTest Professional Unplugged

 All powers within you, you can do it

43

Types of Checkpoints

A checkpoint is a verification point that compares a current value for a specified property with the

expected value for that property. This enables you to identify whether you’re Web site or application is
functioning correctly.

Checkpoint Type Description
Standard Checkpoint Checks values of an object’s properties
Image Checkpoint Checks the property values of an image
Table Checkpoint Checks information in a table
Page checkpoint Checks the characteristics of a Web page
Text / Text Area
Checkpoint

Checks that a text string is displayed in the appropriate place in
a Web page or application window

Bitmap Checkpoint Checks an area of a Web page or application after capturing it
as a bitmap

Database Checkpoint Checks the contents of databases accessed by an application
or Web site

Accessibility
Checkpoint

Identifies areas of a Web site to check for Section 508
compliancy

XML Checkpoint Checks the data content of XML documents

1. Standard Checkpoint: -
 We can use this Checkpoint to verify Properties of Objects
like as GUI check point in Winrunner.
Example: - Manual test case.
Test case id: TC-id
Test case Name: Verify delete button
Feature to be test: Flight Reservation
Test suite Id: TS-FR
Priority: Po
Pre-condition: Existing records to be deleted.
Test procedure:

Step
No

Action

I/P required

Expected

QuickTest Professional Unplugged

 All powers within you, you can do it

44

1

2

Focus to Flight reservation
window

Open Existing record

ValidOrder No

Delete button Disabled

Delete button enabled

Automation Program:-
Window (“Flight Reservation”).Activate
Window (“Flight Reservation”).Winbutton (“Delete order). Check Checkpoint (“Delete
order”).
Window (“Flight Reservation”).WinMenu (“Menu”). Select “File; open order….”
Window (“Flight Reservation”).Dialog (“Open order”).WincheckBox (“Order No”). Set “ON”
Window (“Flight Reservation”).Dialog (“Open order”).WinEdit (“Edit”).Set “1”
Window (“Flight Reservation”).Dialog (“Open order”).WinButton (“ok”).Click.
Window (“Flight Reservation”).Winbutton (“Delete order”).Check Checkpoint (“Delete
Order-2”)

Check Point Syntax:-
Window (“WindowName”).Winobject (“ObjectName”).CheckCheckpoint

(“CheckpointName”)

Check Point Insertion Navigation:-

 Select Position in Script � Insert menu�

checkpoint

� Standard check point� select testable object � click “ok” after confirmation � Select

required properties with expected values � click “OK”.

NOTE:-

 (a) One check point allows one object at a time unlike WinRunner.

(b) Check point insertion is possible before click stop recording except database

Checkpoint and XMI check point.

 (c) Object selection is mandatory before insert any type of checkpoint.

(d) Whenever check point is pass (or) fail, but QTP continues test execution up to

end.

QuickTest Professional Unplugged

 All powers within you, you can do it

45

 (e) If any type of Checkpoint inserted into VB Script QTP is showing a common

Syntax as above.

Example 2:- Manual test Case:-

 Test Case id : Tc-2

 Test case Name: verify “OK” button

 Feature to be tested: verify employee recruitment

 Test suite ID: Ts_ER

 Priority: Po

 Pre – condition I/P objects are taking values

 Test Procedure

Step no

Action

I/P required

Expected

1

2

3

Focus to Employee

window

Enter Employee Name

Select department No

Valid value

“OK” button disabled.

“OK” button disabled.

“OK” button enabled.

QuickTest Professional Unplugged

 All powers within you, you can do it

46

Build :-

Automation Program:-
Window (“Employee”).Activate

Window (“Employee”).Winbutton (“ok).check checkpoint (“ok”)

Window (“Employee”).Winedit (“Empname”).Set “xxx”

Window (“Employee”).Winbutton (“ok).check checkpoint (“ok.2”)

Window (“Employee”).Winbutton (“Department no”).select “xxx”

Window (“Employee”).Wincombobox (“ok).check checkpoint (“ok.3”)

Note1: -

 Unlike WinRunner every QTP checkpoint is taking two types of expected values

form test engineer’s, such as constant value and parameters (excel sheet column name).

Note2 : -

 Our checkpoint is executing one tire when our checkpoint expected is constant.

Our checkpoint is executing more than one time. Depending on no of rows in excel sheet.

(2) BITMAP CHEKPOINT :-

Emp. Name

Dept no

QuickTest Professional Unplugged

 All powers within you, you can do it

47

 To compare images, we can use this check point. Unlike

use QTP is supporting static and dynamic images for comparison. But test Engineers have

to select multimedia option in adding manager to compare dynamic images. QTP supports

10 sec. As maximum play time of images.

Example: Logo Testing

 Old Version New Version

 Expected Actual

 = = Pass
 ! = Fail
Navigation:-

 Open old Version of build � starting recording � open expected image

in old version of build� Insert menu � Check point � Bit map Checkpoint � show

Expected image in old version in build -� click “OK” after confirmation -� Select area of

image if required � Click “OK” � Close old build version � Open new build version �

click run-� Analyze result manually.

(3) Database Check Point :-

 We can use this checkpoint to verify the impact front-end

operation on backend tables content in terms data validation and data integrate. This

checkpoint option is exactly equal to default checkpoint in database checkpoint of Win

Runner.

Example:

• Create database check point (Current content of database tables selected as
expected) Valid differences

• Perform front-end operation
• Run database check point (Current content of database tables selected Actual).

To apply data base testing, Test Engineer’s are collecting below information from

development team.� Connectivity name in between front-end and backend in our

application build � Names of tables and their column.� Screens vs. Tables.

$ $

QuickTest Professional Unplugged

 All powers within you, you can do it

48

Above information is available Database design document development Team.

Navigation :-

 Insert menu � Check point � DB checkpoint � Specified connect to DB

using ODBC or Data Junction -� Select SQL statement manually � click “Next”� click

create to select connectivity (Ex.Flight32)� write select statement � click finish� click

“OK” after conformation of Database Table content � Perform Front-end Operation � run

Database checkpoint � analysis results manually.

(4) Text Check Point : -

 To verify content of an object in terms of match upper case,

lower case ignore spaces exact match and text not displayed, we can use these check

points.

Navigation: -

 Select position Script� Insert menu� checkpoint � Text checkpoint �

select Testable object-� click configure if we have to apply testing on selected part object

value (using text before and text after)-� Select Test (match case, Ignore spaces, exact

match , Text not displayed)-� click “OK”.

(5) Text Area Check point : -

 To Verify content of screen area value in terms of match

case, ignore spaces, Exact match, Text not displayed, we can use these check point.

Navigation :-

 Select position script� Insert menu � checkpoint �Text area check

point � select value region � click “OK” after conformation � click configure if we have to

apply testing on selected part � Select test to be applied � click “OK”.

Updating Checkpoints at run-time

GetRoProperty:

Example:

QuickTest Professional Unplugged

 All powers within you, you can do it

49

Uname=Window (“flightReservation”).Winedit (“Agent Name”).GetRoProperty (“text”)
If Uname=exist then
Msgbox “Agent name exists”
Else
Msgbox “does not exists”

Counting and displaying the content of weblist
a=browser (“makemytrip’).page (“makemytrip”).weblist (“city”).GetRoProperty (“itemscount”)
Msgbox a
For i=1 to 10
b=browser (“makemytrip’).page (“makemytrip”).weblist (“city”).select (i)
Msgbox i
Cname= browser (“makemytrip’).page (“makemytrip”).weblist (“city”).GetItem (i)
Msgbox Cname
Next

Output value
An output value is a step in which one or more values are captured at a specific point in your

test or component and store for the duration of the run session (runtime data table). The value can later be
used as input at a different point in the run session.

Types of output value
• Standard output value.
• Text area output value
• Database output value
• Xml output value

Text area output value:
Retrieve the order number and price and give input to the open order by using text area output

value?
• Put the tool into the recording mode.
• Open the flight reservation application.
• Records the script for create order.
• Stop recording.
• Go to insert menu and select text area output value and capture the order number

and price.

QuickTest Professional Unplugged

 All powers within you, you can do it

50

Code:

Window (“flight reservation”).WinEdit (“Order No”).Output Checkpoint (“140”)
Set o_no=Datatable.Value (“order_no”, dtGlobaSheet)
Window (“Flight reservation”).WinButton (“Button”).Click
Window (“Flight reservation”).Dialog (“Open Order”).WinCheckBox (“order no”).Set “ON”
Wait 2
Window (“Flight reservation”).Dialog (“Open Order”).WinEdit (“Edit’).Set (o_no)

Descriptive Programming (DP)

Introduction:
This document demonstrates the usage of Descriptive programming in QTP 8.20. It also
discusses situations where Descriptive programming can be used. Using Descriptive
Programming automation scripts can be created even if the application has not been
developed.

Descriptive Programming:
Whenever QTP records any action on any object of an application, it adds some
description on how to recognize that object to a repository of objects called object
repository. QTP cannot take action on an object until unless its object description is in the
Object Repository. But descriptive programming provides a way to perform action on
objects which are not in Object repository

Object Identification:

QuickTest Professional Unplugged

 All powers within you, you can do it

51

To identify an object during the play back of the scripts QTP stores some
properties which helps QTP to uniquely identify the object on a page. Below screen shots
shows an example Object repository:

Now to recognize a radio button on a page QTP had added 2 properties the name of the
radio button and the html tag for it. The name the left tree view is the logical name given
by QTP for the object. This can be changed as per the convenience of the person writing
the test case. QTP only allows UNIQUE logical name under same level of hierarchy. As
we see in the snapshot the two objects in Browser->Page node are “WebTable” and
“testPath”, they cannot have the same logical name. But an object under some other node
can have the same name. Now with the current repository that we have, we can only write
operation on objects which are in the repository. Some of the example operations are
given below

Browser ("Browser").Page ("Page").WebRadioGroup ("testPath").Select "2"
CellData = Browser ("Browser").Page ("Page").WebTable ("WebTable").GetCellData (1, 1)
Browser ("Example2").Page ("Page").WebEdit ("testPath").Set "Test text"

When to use Descriptive Programming?
Here there are some situations

1. If the application is having Dynamic Objects
 OR: - Difficult to handle Dynamic Objects using Object Repository

QuickTest Professional Unplugged

 All powers within you, you can do it

52

2. When we have more objects to perform operations
 OR: - The performance will decrease if object repository is having huge number of
objects.

3. If the application is having objects that are adding in the Run Time
 OR: - We can’t add objects to Object Repository in run time.

4. If we need to start Automation before Build Release
 OR: - There is no application to create Object Repository.

5. If Application is having similar type of objects or similar name objects
 OR: - Object Repository will create multiple objects with same description
unnecessarily.

6. Big Team Size
 OR: - Shared Object Repository is not changeable by multiple persons at a time.
 Maintenance becomes harder if all the team members have created their own
object repositories.

Types of Programmatic Descriptions

1. Static: -

You list the set of properties and values that describe the object directly in a VBScript
statement.
 a. Direct specification of description in script
 Browser(“micclass:=Browser”).Page(micclass:=page”).Link(“name:=Login”).Click

 b. Assigning description to the variables and use that variables in script
 g_MainBrowser = “micclass:=Browser”
 g_MainPage =“micclass:=Page”
 g_Lnk_Login = “name:=Login”

 Browser(g_MainBrowser).Page(g_MainPage).Link(g_Lnk_Login).Click

2. Dynamic: -

You add a collection of properties and values to a Description object, and then enter the
Description object name in the statement.
 Set oBrowser = Description. create
 oBrowser (“micclass”).value=”Browser”
 oBrowser (“name”).value= “Google”

 Set oPage = Description. create
 oPage (“micclass”).value=”Page”

QuickTest Professional Unplugged

 All powers within you, you can do it

53

 oPage (“name”).value= “Google”

 Set oLink = Description. Create
 oLink (“name”).value= “Login”
 oLink (“index”).value= 1

 Browser (oBrowser).Page (oPage).Link (oLink).click
Using the Static type to enter programmatic descriptions directly into your statements may
be easier for basic object description needs. However, in most cases, using the Dynamic
type provides more power, efficiency, and flexibility.

How to use Descriptive programming?
There are two ways in which descriptive programming can be used
By creating properties collection object for the description.
By giving the description in form of the string arguments.

By creating properties collection object for the description.

To use this method you need first to create an empty description
Dim obj_Desc ‘Not necessary to declare
Set obj_Desc = Description. Create
Now we have a blank description in “obj_Desc”. Each description has 3 properties “Name”,
“Value” and “Regular Expression”.
obj_Desc (“html tag”).value= “INPUT”
When you use a property name for the first time the property is added to the collection and
when you use it again the property is modified. By default each property that is defined is a
regular expression. Suppose if we have the following description
obj_Desc (“html tag”).value= “INPUT”
obj_Desc (“name”).value= “txt.*”

This would mean an object with html tag as INPUT and name starting with txt. Now
actually that “.*” was considered as regular expression. So, if you want the property
“name” not to be recognized as a regular expression then you need to set the “regular
expression” property as FALSE

obj_Desc (“html tag”).value= “INPUT”

obj_Desc (“name”).value= “txt.*”

obj_Desc (“name”).regular expression= “txt.*”

This is how of we create a description. Now below is the way we can use it

Browser (“Browser”).Page (“Page”).WebEdit (obj_Desc).set “Test”

When we say .WebEdit(obj_Desc) we define one more property for our description that
was not earlier defined that is it’s a text box (because QTPs WebEdit boxes map to
text boxes in a web page).

If we know that we have more than 1 element with same description on the page then
we must define “index” property for the that description

Consider the HTML code given below

<INPUT type=”textbox” name=”txt_Name”>

QuickTest Professional Unplugged

 All powers within you, you can do it

54

<INPUT type=”textbox” name=”txt_Name”>

Now the html code has two objects with same description. So distinguish between
these 2 objects we will use the “index” property. Here is the description for both the
object

For 1st textbox:

 obj_Desc (“html tag”).value= “INPUT”

obj_Desc (“name”).value= “txt_Name”

obj_Desc (“index”).value= “0”

For 2nd textbox:

 obj_Desc (“html tag”).value= “INPUT”

obj_Desc (“name”).value= “txt_Name”

obj_Desc (“index”).value= “1”

Consider the HTML Code given below:

<INPUT type=”textbox” name=”txt_Name”>

<INPUT type=”radio” name=”txt_Name”>

We can use the same description for both the objects and still distinguish between
both of them

obj_Desc (“html tag”).value= “INPUT”

obj_Desc (“name”).value= “txt_Name”

When I want to refer to the textbox then I will use the inside a WebEdit object and to
refer to the radio button I will use the description object with the WebRadioGroup
object.

Browser (“Browser”).Page (“Page”).WebEdit (obj_Desc).set “Test” ‘Refers to the text
box

Browser (“Browser”).Page (“Page”).WebRadioGroup (obj_Desc).set “Test” ‘Refers to
the radio button

But if we use WebElement object for the description then we must define the “index”
property because for a webelement the current description would return two objects.

Hierarchy of test description:

When using programmatic descriptions from a specific point within a test object
hierarchy, you must continue to use programmatic descriptions from that point onward
within the same statement. If you specify a test object by its object repository name
after other objects in the hierarchy have been described using programmatic

QuickTest Professional Unplugged

 All powers within you, you can do it

55

descriptions, QuickTest cannot identify the object. For example, you can use Browser
(Desc1).Page (Desc1).Link (desc3), since it uses programmatic descriptions
throughout the entire test object hierarchy. You can also use Browser ("Index").Page
(Desc1).Link (desc3), since it uses programmatic descriptions from a certain point in
the description (starting from the Page object description).

However, you cannot use Browser (Desc1).Page (Desc1).Link ("Example1"), since it
uses programmatic descriptions for the Browser and Page objects but

Then attempts to use an object repository name for the Link test object (QuickTest
tries to locate the Link object based on its name, but cannot

Locate it in the repository because the parent objects were specified using
programmatic descriptions).

Different ways to write a statement
Example on how to click a button in 7 ways

'1st method
Window("Flight Reservation").WinButton("Update Order").Click 'Common Method

'2nd method
Set wndObject=Window("Flight Reservation") ' Assigning window object to an object
variable
wndObject.WinButton("Update Order").Click ' Following normal syntax (click on a
button)

' OR

Set btnObject=Window("Flight Reservation").WinButton("Update Order") ' Assigning
Button object to an object variable
btnObject.Click ' Clicking on button using button object variable

'3rd method
With Window("Flight Reservation") ' Using With statement
 .WinButton("Update Order").click
End with

'4th method
Window("text:=Flight Reservation").WinButton("text:=&Update Order").Click ' Descriptive
programming

'5th method
Set oDes=Description.Create ' creating a description object
oDes("nativeclass").value="Button" ' assigning description to the description object
oDes("text").value="&Update Order"
Window("text:=Flight Reservation").winbutton(oDes).click ' clicking on button using the
created description object

'6th method
Set oDes=Description.Create ' creating a description object

QuickTest Professional Unplugged

 All powers within you, you can do it

56

set btnObjList=Window("text:=Flight Reservation").ChildObjects(oDes) ' Filtering the
objects
For objIndex=0 to btnObjList.count-1
 propVal=btnObjList(objIndex).getroproperty("text") ' Get property value from object
 If propVal="&Update Order" Then ' Compare property value
 btnObjList(objIndex).click ' Click on identified object
 Exit for ' Exit For loop after clicking on the button
 End If
Next

'7th method
Public const wndFlight="text:=Flight Reservation" ' Assigning window object description
to a constant
Public const btnUpdate="text:=&Update Order" ' Assigning Button object description to
a constant
Window(wndFlight).winbutton(btnUpdate).click ' Click on a button using description
constants

Getting Child Object:

We can use description object to get all the objects on the page that matches that
specific description. Suppose we have to check all the checkboxes present on a web
page. So we will first create an object description for a checkboxes and then get all the
checkboxes from the page

Dim obj_ChkDesc

Set obj_ChkDesc=Description.Create

obj_ChkDesc (“html tag”).value = “INPUT”

obj_ChkDesc (“type”).value = “checkbox”

Dim allCheckboxes, single Checkbox

Set allCheckboxes = Browse (“Browser”).Page (“Page”).ChildObjects (obj_ChkDesc)

For each single Checkbox in allCheckboxes

 singleCheckBox.Set “ON”

Next

The above code will check all the check boxes present on the page. To get all the child
objects we need to specify an object description i.e. we can’t use the string arguments that
will be discussed later in the 2nd way of using the programming description.

QuickTest Professional Unplugged

 All powers within you, you can do it

57

Debugging in QTP
Establishing our Debugging Configuration

Using Breakpoints

To instruct Quicktest to pause a run session at a predetermined place in a test or function
library.Quicktest pause the run when it reaches the breakpoint before executing the step. You can use
breakpoint to suspend a run session and inspect the state of your site or application.

Navigation

Debug viewer pane

 The debug viewer pane contains three tabs to assist you in debugging a test .the panes are

1. Watch

To view the current value of any variable or vbscript expression that you added to the watch tab

2. Variable

 During a run session, the variable tab displays the current value of all variable that you have
recognized up to the last step performed in the run session

3. Command

 To run a line of script to set or modify the current value of a variable or vbscript object in your test
of function library which you continue the run session Quicktest uses the new value that was set in the
command

Information pane

 The information pane provides a list of syntax errors in your test. When you switch from expert
view to keyword view quick test automatically checks the syntax error in your script and shows them in the
information pane. It the information pane is not currently disabled quick test automatically opens it when a
syntax error is detected

QuickTest Professional Unplugged

 All powers within you, you can do it

58

Recovery Scenarios
Unexpected events, errors, and application crashes during a run session can disrupt your run

session and distort results. This is a problem particularly when running tests or components unattended -
the test or component is suspended until you perform the operation needed to recover. You can instruct
QuickTest to recover from unexpected events and errors that occur in your testing environment during a
run session.

Handling Unexpected Events and Errors
* Unexpected events and errors during a test run can disturb testing

* Unattended tests require an action to recover.
* QTP Recovery scenario Manager can…

* Detect and Handle the appearance of a specific error dialog.
* Recover from an error and continue to the next step.
* Guide you through creating a recovery scenario using the
scenario Wizard.

Recovery Scenario Components

Choose, Tools ���� Recovery Scenario Manager from the Menu bar. The
Recovery Scenario Manager Dialog box will be opened; click on the New

Scenario icon, the Recovery Scenario Wizard will appear.

QuickTest Professional Unplugged

 All powers within you, you can do it

59

� Pop-up window —QuickTest detects a pop-up window and identifies it according

to the window title and textual content. For example, a message box may open
during a run session, indicating that the printer is out of paper. QuickTest can
detect this window and activate a defined recovery scenario in order to continue
the run session. Select this option and click next to continue to the Specify Pop-up
Window Conditions screen.

� Object state —QuickTest detects a specific test object state and identifies it

according to its property values and the property values of all its ancestors. Part III
• Creating Tests 418 Note that an object is identified only by its property values,
and not by its class. For example, a specific button in a dialog box may be disabled
when a specific process is open. QuickTest can detect the object property state of
the button that occurs when this problematic process is open and activate a
defined recovery scenario to close the process and continue the run session.
Select this option and click next to continue to the Select Object screen.

� Test run error —QuickTest detects a run error and identifies it by a failed return

value from a method. For example, QuickTest may not be able to identify a menu
item specified in the method argument, due to the fact that the menu item is not
available at a specific point during the run session. QuickTest can detect this run
error and activate a defined recovery scenario in order to continue the run session.
Select this option and click next to continue to the Select Test Run Error screen.

� Application crash —QuickTest detects an application crash and identifies it

according to a predefined list of applications. For example, a secondary application
may crash when a certain step is performed in the run session. You want to be
sure that the run session does not fail because of this crash, which may indicate a

Trigger Event

Select the appropriate Trigger Event from the dialog box.

QuickTest Professional Unplugged

 All powers within you, you can do it

60

different problem with your application. QuickTest can detect this application crash
and activate a defined recovery scenario to continue the run session. Select this
option and click next to continue to the Recovery Operations screen.

Notes: The set of recovery operations is performed for each occurrence of the trigger
event criteria. For example, suppose you define a specific object state, and two objects
match this state, the set of replay operations is performed two times, once for each object
that matches the specified state. The recovery mechanism does not handle triggers that
occur in the last step
of a test or component. If you need to recover from an unexpected event or error that may
occur in the last step of a test or component, you can do this by adding an extra step to
the end of your test or component.

You can define the following types of recovery operations:

� Keyboard or mouse operation —QuickTest simulates a click on a button in a
window or a press of a keyboard key. Select this option and click next to continue
to the Recovery Operation – Click Button or Press Key screen.

� Close application process —QuickTest closes specified processes. Select this
option and click next to continue to the Recovery Operation – Close Processes
screen.

� Function call —QuickTest calls a VBScript function. Select this option and click
Next to continue to the Recovery Operation – Function screen.

� Restart Microsoft Windows —QuickTest restarts Microsoft Windows. Select this
option and click next to continue to the Recovery Operations screen.

Note: If you use the Restart Microsoft Windows recovery operation, you must ensure that
any test or component associated with this recovery scenario is saved before you run it.

Recovery Operation

Select the appropriate Recovery Operation from the dialog box.

QuickTest Professional Unplugged

 All powers within you, you can do it

61

You must also configure the computer on which the test or component is run to auto login
on restart.

Post-Recovery Test Run Option

Select the appropriate Post-Recovery Operation from the dialog box.

QuickTest Professional Unplugged

 All powers within you, you can do it

62

When you want to recover from any problem, first, f ace the problem manually, Find
the solution manually, and Recover from that proble m manually.
And in the same way you implement for Automation (i n QTP)

Recovery Scenario with Pop-Up window
(When a pop-window appears either thru +ve testing or –Ve testing of the
application)

I. Pop-Up window (Manual)

• Put tool in Recording mode
• open the AUT (say flight Application)
• Enter User name (kanakadri)
• *Click on OK (wontedly for getting an error): see the relevant script and

copy that line only.
• You will get a “pop-up” window saying with some message
• Enter OK on that pop-up window
• Enter password (mercury)
• Click OK
• Stop Recoding

Save the Recovery Scenario file

Save the recovery scenario file in the specified location with an appropriate
name and description (Recovery Scenario files will be saved with .qrs
extension). And use this Recovery Scenario file wherever required.

QuickTest Professional Unplugged

 All powers within you, you can do it

63

 Open a new test , Type Function () , you will get
 Function
 End Function
 Modify the above code as below

 Function popup recovery ()

 * Copy that line here
 End Function
Copy it and open a new Notepad and past it.
Save it with .vbs (VBSctipt) Extension as library file

2. Pop-Up window (thru QTP)

• Put tool under recording mode
• open the AUT (say same flight Application)
• Enter User name (kanak)
• Click on OK
• *A pop-up will appear , click on OK (see this script code, which should be

removed later)
• Enter password
• Click on OK
• Stop recording

 * Remove that code and keep cursor here it self.

 Now Actual Recovery scenario for pop-up window starts …..

• open the AUT (say same flight Application)
• Enter User name (kanak)
• Click on OK
• *the same pop-up will appear, DON’T’ click on it.
• Open tools -> Recovery Scenario Manager
• Select the new scenario (wizard will appear)
• Click NEXT
• Select trigger event option as pop-up window
• Click NEXT
• With help of HAND Button select * that pop-up’s object (OK) of AUT
• Click NEXT
• Click NEXT to specify the recovery operation
• Select Function Call option
• Browse the library file which u has saved as with .vbs extension in the

beginning.
• Click NEXT
• De-select the check box (of add an other recovery operation)
• Click NEXT
• Choose Post-Recovery operation as Repeat Current Step and Continue.
• Click NEXT
• Give the name and description

QuickTest Professional Unplugged

 All powers within you, you can do it

64

• Click NEXT
• Check the check-box of Add Scenario to Current test
• Click FINISH
• Save it as with .qrs (Quick Recovery Scenario) extension
• Click CLOSE

Run the Test which will pass the results of course with Warnings (may ignore it)

Recovery Scenario with Object State

(When the object is disabled)

I. Object State (Manual)

• Put tool in Recording mode
• open the AUT (say flight Application)
• Click on Open order icon
• A open order Dialog box will appear
• In which check the Order number check box
• See OK button is Disabled now
• Enter order number (say 9)
• *See the relevant script and copy that line only ie. where u entered 9
• Now OK button will be enabled
• Click on OK
• An order with that number (say 9) will be opened
• Stop recording

--
-
 Open a new test, Type Function (), you will get
 Function
 End Function
 Modify the above code as below

 Function popup recovery ()

 * Copy that line here

 End Function
Copy it and open a new Notepad and past it.
Save it with .vbs (VBSctipt) Extension as library file

]

QuickTest Professional Unplugged

 All powers within you, you can do it

65

2. Object State (thru QTP)

• Put tool in Recording mode
• open the AUT (say flight Application)
• Click on Open order icon
• A open order *Dialog box will appear
• In which check the Order number check box
• DON’T enter order number
• Stop recording

 Now Actual Recovery scenario for Object state starts …..

o Open tools -> Recovery Scenario Manager
o Select the new scenario (wizard will appear)
o Click NEXT
o Select trigger event option as Object state
o Click NEXT
o With help of HAND Button select * that disabled object (OK) in the

*Dialog box of AUT
o Click NEXT
o Set object properties and values
o Click on Add/Remove button
o Edit properties window will appear

� Check property name as Enabled and value as false
� Check property name as Text and value as OK
� Check property name as window Id and value as 1

o Click on OK
o Click NEXT to specify the recovery operation
o Select Function Call option
o Browse the library file which u have saved as with .vbs extension

in the beginning.
o Click NEXT
o De-select the check box (of add an other recovery operation)
o Click NEXT
o Choose Post-Recovery operation as Repeat Current Step and

Continue.
o Click NEXT
o Give the name and description
o Click NEXT
o Check the check-box of Add Scenario to Current test
o Click FINISH
o Save it as with .qrs (Quick Recovery Scenario) extension
o Click CLOSE

Run the Test which will pass the results of course with Warnings (may ignore it)

===

QuickTest Professional Unplugged

 All powers within you, you can do it

66

Recovery Scenario with Test Run Error

 During execution one step may not execute properly , QTP will ignore it run next
step on words.
 For that we just need to call an empty function ().

 Version 1.0 is released and came for testing
 V1.0

• Open the version 1.0 application
• put tool in recording mode
• Select all the cities names, so that *script will be generated.
• Stop recoding

 After some time Version 2.0 is released with some changes
 V2.0

• Open the version 2.0 application
• Use the *same generated script only

But when u runs this program,
It execute fist city name (Chennai)
When it comes to second city name (Hyderabad)
Tests will Stops and FAIL.
Though it’s missed, in order to continue the execution from next step onwards

We just call an empty function which is stored in a library file

• Keep the cursor where the city name seems to be mi ssed
• Activate tool menu item Tools
• Open recovery scenario manager wizard
• select trigger event as Test Run error
• choose the error type from drop-down box as Item in list or menu not

fund
• Click NEXT
• Click NEXT to specify the recovery operation
• select operation type as Function call
• Click NEXT
• choose library file path where an empty function was stored
• Click NEXT
• De-select check box (of add an other recovery scenario)
• Click NEXT
• Select post-recovery as Proceed to Next Step
• Give name and description for this scenario
• Click NEXT
• Select add scenario to current test
• click on Finish
• Save it with .qrs extension

Chennai
Hyderabad
Delhi

Chennai
Delhi

QuickTest Professional Unplugged

 All powers within you, you can do it

67

Run the Test

When you Run it, it execute normally till it finds an error, when it found an error, It
stops a while (means calling an empty function) and continue.

The test will pass with warning (which u can ignore)

Recovery Scenario with Application error

 This error may come when the application is missed.

Working with Recovery Scenarios using Scripting

Precondition:-
To understand this topic you need to have knowledge on creating and using recovery
scenarios.
In this document I am discussing about how to add, remove recovery scenario files (.QRS)
to a test and after adding how to activate, deactivate and renumbering the order to
execute recovery scenarios. For example I have a recovery scenario file with the name of
“sample .qrs”. Assume that in this recovery file I have two recoveries with the names login
Pop, RunErr. (All of you know that one file can have multiple recoveries). Now if I want to
use that file in my test then I have to use following script.

'***
' Create the Application object
Set qtApp = CreateObject ("QuickTest.Application")

‘Return the Recovery object for the current test
Set qtTestRecovery = qtApp.Test.Settings.Recovery

' Add the " loginPop " scenario as the first scenario
qtTestRecovery.Add "E:\kanak\Recoveryfiles\sample.qrs", " loginPop ", 1

‘Add the “RunErr” scenario as the second scenario
qtTestRecovery.Add "E:\kanak\Recoveryfiles\sample.qrs", “RunErr ", 2

‘Iterate the scenarios
for intIndex = 1 to qtTestRecovery.Count

‘Enable each Recovery Scenario (Note: the 'Item' property is default and can be omitted)
qtTestRecovery.Item(intIndex).Enabled = True
Next

‘Enable the recovery mechanism (with default, on errors, setting)
qtTestRecovery.Enabled = true

'Ensure that the recovery mechanism is set to be activated only after errors
qtTestRecovery.SetActivationMode "OnError"
Set qtApp = Nothing ' Release the Application object
Set qtTestRecovery = Nothing ' Release the Recovery object

QuickTest Professional Unplugged

 All powers within you, you can do it

68

'***
 with the above code automatically the recovery scenarios will be added to the specified
test. After adding the scenarios if you want to control the scenario like changing the
scenario status, to get the scenario name, to activate or deactivate we have to use
recovery object (one of the Utility object).

Recovery Object
it is a utility object to control the recovery scenario mechanism programmatically during the
run session. It’s having some properties and methods to control the scenarios.

Associated Methods

1. Activate Method:
Explicitly activates the recovery scenario mechanism at a specific point in the run.
Note: The Activate method only works if the recovery mechanism is enabled, and only
activates those recovery scenarios that are currently enabled.
If the recovery mechanism is currently disabled, the Activate method does not activate any
recovery scenarios. You can use the Recovery object's Enabled property to change the
status of the recovery mechanism.
Ex: - Recovery. Activate

2. GetScenarioName Method:
Retrieves the name and source file of a recovery scenario, according to the specified
position in the list of recovery scenarios associated with the test.
Ex: - Recovery.GetScenarioName Position, out_ScenarioFile, out_ScenarioName
Msgbox (out_ScenarioFile)
Msgbox(out_ScenarioName)

3. GetScenarioPosition Method
Returns the index position of a recovery scenario in the list of recovery scenarios
associated with the test, according to the specified name and source file.
Ex: - Recovery.GetScenarioPosition (ScenarioFile, ScenarioName)

4. GetScenarioStatus Method
Returns the status of a recovery scenario (True = enabled or False = disabled), according
to the specified index position in the list of recovery scenarios associated with the test.
Ex: - Recovery.GetScenarioStatus Position

SetScenarioStatus Method
Enables or disables the specified recovery scenario, according to its index position in the
list of recovery scenarios associated with the test.
Ex: - Recovery.SetScenarioStatus Position, Status

Associated Properties

Count Property
Returns the number of recovery scenarios associated with the current test.
Ex: - msgbox Recovery. Count

QuickTest Professional Unplugged

 All powers within you, you can do it

69

Enabled Property
Recovery default property. Retrieves or sets the status of the recovery scenario
mechanism for the current test.
Ex: - Recovery. Enabled =Status

Sample Script

For Iter = 1 to Recovery. Count
Recovery.GetScenarioName Iter, ScenarioFile, ScenarioName
Position = Recovery.GetScenarioPosition (ScenarioFile, ScenarioName)
Status = Recovery.GetScenarioStatus (Position)
Scenario=scenario& ScenarioFile&”:=”& ScenarioName&”,”&position&”, Status
Next
Msgbox Scenario

This code will show total scenarios in the QRS file, position and status of those scenarios.

QuickTest Professional Unplugged

 All powers within you, you can do it

70

Regular Expressions

Introduction

You have created a document and saved it to your hard disk. After few days again you
want to update that document, but you forgot where you saved. Now you started searching
for that document. Do you go to every folder in hard disk to search for it? … No. You will
just use search window to search the document by using name. Unfortunately you didn’t
find any document on that name. So what will you do?

Here exactly the concept of Regular Expression will come in to the picture.

A Regular Expression is a string that provides a co mplex search phrase.

 If you create a word document then you will search for *.doc. Here the * indicates any
name which are there in specified disk.

As per the definition, “*” is a regular expression which provides a phrase to match any
name of the document.

Phrase is an expression consisting of one or more words.

I have used above concept to tell you that “Regular Expressions are not new to us
(Testers)”. Some how we used it in regular activities but we don’t know that these are
Regular Expressions.

Use of Regular Expressions in Scripting

• Test for a pattern within a string.
o To check for existence of substring in a string. For example, you can test an

input string to see if a telephone number pattern or a credit card number
pattern occurs within the string. This is called data validation.

• Replace text.
o To find and replace a string with another string. You can use a regular

expression to identify specific text in a document and either remove it
completely or replace it with other text.

• Extract a substring from a string based upon a pattern match.

QuickTest Professional Unplugged

 All powers within you, you can do it

71

o To get a string based on pattern match. You want all the words starting with
“A” from a document, In this case you will use regular expression which will
create pattern match and will return all words starting with “A”.

Regular Expression Characters

The below table contains the complete list of regular expression characters and behavior
of them.

Character Description
\ Marks the next character as either a special character or a literal. For

example, "n" matches the character "n". "\n" matches a newline
character. The sequence "\\" matches "\" and "\(" matches "(".

^ Matches the beginning of input.
$ Matches the end of input.
* Matches the preceding character zero or more times. For example, "zo*"

matches either "z" or "zoo".
+ Matches the preceding character one or more times. For example, "zo+"

matches "zoo" but not "z".
? Matches the preceding character zero or one time. For example, "a?ve?"

matches the "ve" in "never".
. Matches any single character except a newline character.

(pattern) Matches pattern and remembers the match. The matched substring can
be retrieved from the resulting Matches collection, using Item [0]...[n] . To
match parentheses characters (), use "\(" or "\)".

x|y Matches either x or y. For example, "z|wood" matches "z" or "wood".
"(z|w)oo" matches "zoo" or "wood".

{n} n is a nonnegative integer. Matches exactly n times. For example, "o{2}"
does not match the "o" in "Bob," but matches the first two o's in
"foooood".

{n,} n is a nonnegative integer. Matches at least n times. For example, "o{2,}"
does not match the "o" in "Bob" and matches all the o's in "foooood."
"o{1,}" is equivalent to "o+". "o{0,}" is equivalent to "o*".

{n,m} m and n are nonnegative integers. Matches at least n and at most m
times. For example, "o{1,3}" matches the first three o's in "fooooood."
"o{0,1}" is equivalent to "o?".

[xyz] A character set. Matches any one of the enclosed characters. For
example, "[abc]" matches the "a" in "plain".

[^ xyz] A negative character set. Matches any character not enclosed. For
example, "[^abc]" matches the "p" in "plain".

[a-z] A range of characters. Matches any character in the specified range. For
example, "[a-z]" matches any lowercase alphabetic character in the
range "a" through "z".

QuickTest Professional Unplugged

 All powers within you, you can do it

72

[^ m-z] A negative range characters. Matches any character not in the specified
range. For example, "[m-z]" matches any character not in the range "m"
through "z".

\b Matches a word boundary, that is, the position between a word and a
space. For example, "er\b" matches the "er" in "never" but not the "er" in
"verb".

\B Matches a non-word boundary. "ea*r\B" matches the "ear" in "never
early".

\d Matches a digit character. Equivalent to [0-9].
\D Matches a non-digit character. Equivalent to [^0-9].
\f Matches a form-feed character.
\n Matches a newline character.
\r Matches a carriage return character.
\s Matches any white space including space, tab, form-feed, etc. Equivalent

to "[\f\n\r\t\v]".
\S Matches any nonwhite space character. Equivalent to "[^ \f\n\r\t\v]".
\t Matches a tab character.
\v Matches a vertical tab character.
\w Matches any word character including underscore. Equivalent to "[A-Za-

z0-9_]".
\W Matches any non-word character. Equivalent to "[^A-Za-z0-9_]".

\num Matches num, where num is a positive integer. A reference back to
remembered matches. For example, "(.)\1" matches two consecutive
identical characters.

\n Matches n, where n is an octal escape value. Octal escape values must
be 1, 2, or 3 digits long. For example, "\11" and "\011" both match a tab
character. "\0011" is the equivalent of "\001" & "1". Octal escape values
must not exceed 256. If they do, only the first two digits comprise the
expression. Allows ASCII codes to be used in regular expressions.

\xn Matches n, where n is a hexadecimal escape value. Hexadecimal escape
values must be exactly two digits long. For example, "\x41" matches "A".
"\x041" is equivalent to "\x04" & "1". Allows ASCII codes to be used in
regular expressions.

We can extend a regular expression by combining or grouping multiple regular expression
operators. In this case we should follow the order of precedence.

Order of Precedence

 Regular expressions are interpreted from left to right. The order of precedence when
building a Regular Expressions is

Order Operator(s) Description
1 \ Escape
2 (), (?:), (?=), [] Parentheses and Brackets
3 *, +, ?, {n}, {n,}, {n,m} Quantifiers

QuickTest Professional Unplugged

 All powers within you, you can do it

73

4 ^, $, \anymetacharacter Anchors and Sequences
5 | Alternation

Escape (\)

There are so many special characters in regular expressions. I have to verify “2*2=4” is
available in the main text. For that I have to specify regular expression pattern as “2*2=4”.
But “*” will work like a regular expression and the verification will get fail. In this case the
“*” should be considered as a literal character instead regular expression.

Back Slash (\) character is useful to treat a special character as a literal character. Provide
the Back Slash (\) character in precede of special characters which you want to treat as
literal character.

In the above situation we should use “2*2=4” in the pattern.

List of Special Characters in Regular Expressions

“ $ ”, “ (” , “) ” , “ * ”, “ + ” , “ . ”, “ [” , “] ”, “ ? ”, “ \ ”, “ ^ ”, “ { ”, “ | ”

Parentheses (())

Parentheses used to group the matches.

 Brackets ([])

You can create a list of matching characters by placing one or more individual characters
within square brackets ([]). When characters are enclosed in brackets, the list is called a
bracket expression. Within brackets, as anywhere else, ordinary characters represent
themselves, that is, they match an occurrence of themselves in the input text. Most special
characters lose their meaning when they occur inside a bracket expression.

Parentheses and Brackets will be explained detailed in Alternation .

Quantifiers

Quantifiers are used to specify the number of occurrences to match against or when we
don’t have the quantity of the characters are there to match.

Ex:

QuickTest Professional Unplugged

 All powers within you, you can do it

74

If we need to match a word “Zoooo” then we should write regular expression like Zo{4}. 4
indicate the number of o’s in the word “Zoooo”.

Suppose we don’t know how many times “o” exist in the word, but we expect at least two
o’s should available in the word. Then the regular expression will be like this Zo{2,}

Here {2,} tells that at least two times the character should exist.

List of Quantifiers

“ *”, “ + ” , “ ? ”, “ {n} ”, “ {n,} ”, “ {n,m} ”

Anchors

Anchors do not match any characters. They match a position. These are used to specify
which part of the string should be matched. The part is either beginning or end of a line or
word.

Ex:

If we are verifying the word “QTP” is starting with Q or not then we use regular expression
like “^Q ”.
Here carot (^) is not matching the character “Q” but it is matching the position of “Q”.
That’s what Anchors do.

List of Anchors

“ ^ ”, “ $ ”, “ \b ”, “ \B ”

Alternation (|)

Alternation allows us to use a choice between two or more matches. It can be used to
match a single regular expression out of several possible regular expressions.

Ex:

The below Regular Expression is to match a Date.

Format: MM/DD/YYYY

MM: (0[1-9] |1[0-2])

Min month number is 1 and Max Month number is 12

DD: (0[1-9] |1[0-9] |2[0-9] |3[0-1])

Min Date number is 1 and Max Month number is 31

YYYY: ([0-9][0-9][0-9][1-9] |[1-9]000|[1-9][1-9]00 |[1-9][1-9][1-9]0)

QuickTest Professional Unplugged

 All powers within you, you can do it

75

 Min Year number is 1 and Max Year number is 9999 (Assume)

In the above regular expression we have used Parentheses , Brackets and Alternation .

Brackets used to match values between the specified ranges. 0[1-9] means, this
expression should match numbers from 01 to 09.

Alternation used to match a single regular expression from the specified regular
expression matches. 0[1-9] |1[0-2] means, use any one of the regular expression to match.

Parentheses used to group all regular expression matches. (0[1-9] |1[0-2]) means, use
any one of the regular expression to match from this Group.
 Scripting Regular Expressions
 From VBScript 5.0 Microsoft provided facility to use Regular Expressions in Scripting
Techniques.

By using this we can write scripts to Test for a pattern within a string, to replace text and to
extract a substring from a string based upon a pattern match.

Using Regular Expressions in Scripting Techniques

1. To use Regular Expressions in scripting first we should create Instance of Regular
Expression Class.

Set SampleRegExP = New RegExp

2. Set the Search Pattern (Regular Expression)

SampleRegExP.Pattern= “H.*”

3. Specify the Case Sensitivity is true or false

SampleRegExP.IgnoreCase= False

4. Specify required search results (True is for all search Results, False is for only
one)

SampleRegExP.Global=True

5. Execute Search conditions on a main string

Set Matches = SampleRegExP.Execute(“Hi How Are You”)

6. Get the results by using a For Loop

For Each Match in Matches

 Msgbox Match.FirstIndex

QuickTest Professional Unplugged

 All powers within you, you can do it

76

 Msgbox Match.Value

Next

‘Script to extract a substring from a string based upon a pattern match.
‘**

rExpression="H."
MainString="Hi How Are You"

Set SampleRegExP = New RegExp
SampleRegExP.Pattern= rExpression
SampleRegExP.IgnoreCase= False
SampleRegExP.Global=True

Set Matches = SampleRegExP.Execute(MainString)

For Each Match in Matches

 Msgbox Match.FirstIndex
 Msgbox Match.Value

Next

‘**
‘Script to Replace string
‘**

rExpression="H."
MainString="Hi How Are You"
ReplacedString= "Hello"

Set SampleRegExP = New RegExp
SampleRegExP.Pattern= rExpression
SampleRegExP.IgnoreCase= False
SampleRegExP.Global=True

Msgbox SampleRegExP.Replace (MainString,ReplacedString)

QuickTest Professional Unplugged

 All powers within you, you can do it

77

‘**
‘Script to Test a string existence
‘**

rExpression="H."
MainString="Hi How Are You"

Set SampleRegExP = New RegExp
SampleRegExP.Pattern= rExpression
SampleRegExP.IgnoreCase= False
SampleRegExP.Global=True

retVal = SampleRegExP.Test(MainString)
 If retVal Then
 Msgbox "One or more matches were found."
 Else
 Msgbox "No match was found."
 End If

‘**

QuickTest Professional Unplugged

 All powers within you, you can do it

78

Synchronization

When you run tests, your application may not always respond with the same speed. For
example, it might take a few seconds:

• For a progress bar to reach 100%
• For a status message to appear
• For a button to become enabled
• For a window or pop-up message to open

You can handle these anticipated timing problems by synchronizing your test to ensure
that QuickTest waits until your application is ready before performing a certain step.

There are several options that you can use to synchronize your test:

• You can insert a synchronization point, which instructs QuickTest to pause the test
until an object property achieves the value you specify. When you insert a
synchronization point into your test, QuickTest generates a WaitProperty
statement in the Expert View.

• You can insert Exist or Wait statements that instruct QuickTest to wait until an
object exists or to wait a specified amount of time before continuing the test.

• You can also increase the default timeout settings in the Test Settings and Options
dialog boxes in order

Inserting synchronization point

First find where you want to insert synchronization point and click on record insert
synchronization point a select the object a select the property and value an OK.

Syntax: -

 Object.waitproperty “ property name ”, “ property value ”, time out

Ex: If you’re inserting a synchronization point on insert order in flight reservation
application then the statement will be like this.

QuickTest Professional Unplugged

 All powers within you, you can do it

79

Window ("Flight Reservation").Winbutton ("Insert Or der").WaitProperty " enabled ",
1, 10000

Difference between wait and synchronization point

Wait (20) a waits for 20 seconds. It’s mandatory to wait for 20 seconds.

At same place if you’re giving synchronization point and mention 20 seconds to wait and
that wait is not mandatory. When ever the given condition becomes true below 20 seconds
then QTP immediately goes to the next step without wait for 20 seconds.

'**

'Writing own synchronization Point

oTimeout=100

For oTime=1 to oTimeout

 oPropval=window ("Flight Reservation").WinButton ("Delete Order").GetROProperty
("enabled")

 If oPropval=true Then

 Exit for

 else

 Wait (1)

 End If

Next

'**

QuickTest Professional Unplugged

 All powers within you, you can do it

80

Test Results

Test Results provides a summary of a Quicktest run session. The results are stored in an
XML file
format. QTP provides a Test Results viewer tool used to review and print these results.
Test Results
Optionally contain image snapshots, based on QTP configuration settings. Below Figure
shows a typical Test result summary

QuickTest Professional Unplugged

 All powers within you, you can do it

81

The left hand pane provides summary information about each step performed
during the test run. Icons to the left of each step provide the following information as well:

• A Cross (X) icon denotes a failed step
• An Exclamation (!) icon denotes a warning step
• A Tick (�) icon denotes a passed step
• A step without any of these symbols denotes an information step

QTP assigns status to a step based on one of the fo llow situations:

• Checkpoint: Checkpoint can cause a step to pass or fail
• Smart Identification: If Smart identification is used to identify an object then that

step is assigned the warning icon
• Error: If a step encounters any error, it will be assigned the failed icon
• Custom events: Custom events are used to directly assign a step an explicit status

Filtering Steps in a Report

It is possible to control what types of steps are written to the test results using the following
Statement:

Reporter. Filter = <Filter Value>

The <Filter Value> must use one of the following QTP built-in variables:

• rfEnableAll – Report all steps. This is the default setting
• rfEnableErrorsAndWarnings – Only report error (failed) and warning steps
• rfEnableErrorsOnly – Only report error steps
• rfDisableAll – Does not report any steps
•

The following code shows how to suppress a single checkpoint’s pass/fail status:

‘Store the old filter value
oldFilter = Reporter.Filter
‘Disable reporting of all events
Reporter.Filter = rfDisableAll
Set oPg = Browser (“Browser”).Page (“Page”)

QuickTest Professional Unplugged

 All powers within you, you can do it

82

chkStatus = oPg.WebEdit (“username”).Check (Checkpoint (“username”))
If chkStatus Then
MsgBox “Passed”
Else
MsgBox “Failed”
End If
‘Restrore the old filter value
Reporter.Filter = oldFilter

Reporting Custom Steps

We can insert our own steps in the Test Results usi ng the following statement:

Reporter.ReportEvent <EventStatus>, <ReportStepName>, <Details>

The <EventStatus> should use one of the following QTP built-in variables:

• micPass – Reports a step with passed status
• micFail – Reports a step with failed status
• micWarning – Reports a step with warning status
• micDone – Reports a step with no status

‘Get the actual link href
actualLink = Browser (“Browser”).Page (“Page”).Link(“Login”).
GetROProperty (“href”)

If actualLink = “http://mywebsite.com/login.do” Then
Reporter.ReportEvent micPass, “Validate Link - Login” , “Correct Link”
Else
Reporter.ReportEvent micFail, “Validate Login” , “Wrong Link - “& actualLink
End if

While the <ReportStepName> and <Details> parameters are plain text strings, it is
possible to embed

HTML tags into these strings as follows:

‘HTML text to be entered
sHTML = “<Click
Me>”

‘Add to reporter
Reporter.ReportEvent micDone, “Link” , sHTML

QTP also supports one more undocumented EventStatus, micInfo. Using micInfo creates
a step with an “i” icon for the step. This is useful to report just information in the report,
which we may want to visually segregate from the similar micDone entries.

QuickTest Professional Unplugged

 All powers within you, you can do it

83

Inserting Files in Test Results

Consider the following code:

‘Create the html file path
‘Store it in a Test Results folder
sFile = Reporter.ReportPath & “\ StepsToRecreate.html”

‘Create the HTML file
Set FSO = CreateObject (“Scripting.FileSystemObject”)
Set file = FSO.CreateTextFile (sFile, True)
file.Write “<I>Step 1</I>. Launch www.mywebsite.com”
file.Write “<P>Step 2. Click on the Login link”
file.Write “<P>Step 3. Enter the username kanak”
file.Write “<P>Step 4. Enter password as kanak”
file.Write “<P>Step 5. Click on the Login button”
file.Write “<P><I>Step 6</I>. Close the browser”
file.close

‘Insert the above file as a IFRAME in the report
sHTML = “<<IFRAME width=””100%”” height=250 src=””file:///” &
sFile & “””></ IFRAME>>”
Reporter.ReportEvent micPass, “ Steps To Recreate”, sHTML

‘Clean up
Set file = Nothing
Set FSO = Nothing

QuickTest Professional Unplugged

 All powers within you, you can do it

84

Running the above code will display the file as shown below:

Inserting Snapshots in Test Results

This section describes various ways of inserting screen snapshots into the Test Results.
Method 1
Configure QTP to save a screen snapshot for every step. Go to Tools→Options…→Run
(Tab) and set the option for “Save step screen capture to results:” to “Always” as shown in
the Figure

Test Results >> Inserting Snapshots in Test Results

These techniques have the following advantages over the ReportEvent method:

• Support for relative paths
• Inserts HTML step information without having to use “<” and “>” etc. HTML

tags.

QuickTest Professional Unplugged

 All powers within you, you can do it

85

Accessing Test Results at the end

QTP creates the results in the test results folder. We may want to access these results at
the end of the test script to save them to another location or to send them through email.
Let’s say we want to copy the Results.xml file which is created in the Report folder. We
can write the following code to perform this task in a QTP script:

‘Report a pass event
Reporter.ReportEvent micPass, “Testing Report” , “Testing Exporting of Report”

‘Get the result directory
sResultDir = Environment (“ResultDir”)

‘Copy the file to destination
Set fso = CreateObject (“Scripting.FileSystemObject”)
fso.CopyFile sResultDir & “\Report\Results.xml”, “C:\Copy_Results.xml” , True
Set fso = Nothing

QuickTest Professional Unplugged

 All powers within you, you can do it

86

QTP Automation Object Model

What is the QuickTest Automation Object Model?

An object model is a structural representation of software objects (classes) that comprise the
implementation of a system or application. An object model defines a set of classes and
interfaces, together with their properties, methods and events, and their relationships.

Essentially all configuration and run functionality provided via the QuickTest interface is in some
way represented in the QuickTest automation object model via objects, methods, and properties.
Although a one-on-one comparison cannot always be made, most dialog boxes in QuickTest have
a corresponding automation object, most options in dialog boxes can be set and/or retrieved using
the corresponding object property, and most menu commands and other operations have
corresponding automation methods.

You can use the objects, methods, and properties exposed by the QuickTest automation object
model, along with standard programming elements such as loops and conditional statements to
design your script.

Automation scripts are especially useful for performing the same tasks multiple times or on
multiple tests or components, or quickly configuring QuickTest according to your needs for a
particular environment or application.

The QuickTest automation object model exposes the objects shown in the diagram below.
You can use these objects, and their associated methods and properties, to write
programs that automatically configure QuickTest options and run tests.

Some places where we can use AOM
This is a small list of places (but not limited to) where we can use AOM. Thumb Rule -

Use it at any place where you find yourself doing repetitive tasks while using QTP.

• AOM can come handy when you have a large no of scripts to be uploaded to QC.
A simple script can save you hours of manual work!

• Use AOM to initialize QTP options and settings like add-ins etc.
• You can use AOM to call QTP from other application: For ex: You can write a

macro for calling QTP from excel.

Caution: AOM should be used outside of QTP and not within the script (during playback).
Though there is no harm using it inside but some of the AOM statements might fail.

QuickTest Professional Unplugged

 All powers within you, you can do it

87

Creating automation programs:

 The Properties tab of the Test Settings dialog box, the General tab of the
Options dialog box, and the Object Identification dialog box each contain a “Generate
Script” button. Clicking this button generates a automation script file (.vbs) containing the
current settings from the corresponding dialog box.

You can run the generated script as is to open QuickTest with the exact
configuration of the QuickTest application that generated the script, or you can copy and
paste selected lines from the generated files into your own automation script.

Generating an automation script for QuickTest Profe ssional options:

1. Go to Tools -> Options.
2. Select the General tab.
3. Click <Generate Script>.
4. Save the script to the desired location.
5. Click <OK> to close the Options dialog.

Generating an automation script for test settings:

1. Go to Test -> Settings.
2. Select the Properties tab.
3. Click <Generate Script>.
4. Save the script to the desired location.
5. Click <OK> to close the Test Settings dialog.

Generating an automation script for object identifi cation settings:

1. Go to Tools -> Object Identification.
2. Click <Generate Script>.
3. Save the script to the desired location.
4. Click <OK> to close the Object Identification dialog.

The QuickTest Automation Object Model Reference file is a help file that provides
detailed descriptions, syntax information, and examples for the objects, methods, and
properties in the QuickTest Automation Object Model.

QuickTest Professional Unplugged

 All powers within you, you can do it

88

How to write AOM scripts?
You need to understand that the very root of QT AOM is Application Object. Every

automation script begins with the creation of the QuickTest "Application" object. Creating
this object does not start QuickTest. It simply provides an object from which you can
access all other objects, methods and properties of the QuickTest automation object
model. You can create only one instance of the Application object. You do not need to
recreate the QuickTest Application object even if you start and exit QuickTest several
times during your script.

 Once you have defined this object you can then successfully work and perform
operations on other objects given in Quick Test Pro > Documentation > QuickTest
Automation Reference.

For ex: Let us connect to TD QC using AOM and open a script "qtp_demo"

Dim qt_obj 'Define a Quick Test object
qt_obj = CreateObject ("Quick Test. Application") ' Instantiate a QT Object. It does not
start QTP.
qt_obj.launch ' Launch QT
qt_obj.visible ' Make QT visible
qt_obj.TDConnection.Connect "http://tdserver/tdbin", _ 'Referencing TDConnection Object
"TEST_DOMAIN", "TEST_Project", "kanak", "Testing", False ' Connect to Quality Center
If qt_obj.TDConnection.IsConnected Then ' If connection is successful
 qt_obj.Open "[QualityCenter] Subject\tests\qtp_demo", False ' Open the test
Else
 MsgBox "Cannot connect to Quality Center" ' If connection is not successful, display an
error message.
End If

To quickly generate an AOM script with the current QTP settings. Use the
Properties tab of the Test Settings dialog box (File > Settings) OR the General tab of the
Options dialog box (Tools > Options) OR the Object Identification dialog box (Tools >
Object Identification). Each contains a "Generate Script" button. Clicking this button
generates a automation script file (.vbs) containing the current settings from the
corresponding dialog box. You can run the generated script as is to open QuickTest with
the exact configuration of the QuickTest application that generated the script, or you can
copy and paste selected lines from the generated files into your own automation script.

AOM Examples

**
'Open QTP and Connect to Quality Center
'***
Dim qtApp ' Declare the Application object variable
Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Start QuickTest
qtApp.Visible = True ' Make the QuickTest application visible
' Make changes in a test on Quality Center with version control
qtApp.TDConnection.Connect "QC URL", "DOMAIN Name", "Project Name", "User
Name", "Password", False ' Connect to Quality Center

QuickTest Professional Unplugged

 All powers within you, you can do it

89

If qtApp.TDConnection.IsConnected Then ' If connection is successful
 MsgBox "Succesfully connected to Quality Center"
Else
 MsgBox "Cannot connect to Quality Center"
End If

qtApp.Quit ' Exit QuickTest
Set qtApp = Nothing ' Release the Application object

'***
'Start QTP and open New test
'***
Dim qtApp ' Declare the application object variable
Set qtApp = CreateObject("QuickTest.Application") ' Create the application object
qtApp.Launch ' Start QuickTest
qtApp.Visible = True ' Make the QuickTest application visible
qtApp.New ' Open a new test
Set qtApp = Nothing ' Release the Application object
'***
'Start QTP, open an existing test and Run the Test
'***

Dim qtApp
Dim qtTest
Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Start QuickTest
qtApp.Visible = True ' Make the QuickTest application visible
' Set QuickTest run options
qtApp.Options.Run.ImageCaptureForTestResults = "OnError"
qtApp.Options.Run.RunMode = "Fast"
qtApp.Options.Run.ViewResults = False
qtApp.Open "C:\Tests\Test1", True ' Open the test in read-only mode
' set run settings for the test
Set qtTest = qtApp.Test
qtTest.Settings.Run.OnError = "NextStep" ' Instruct QuickTest to perform next step when
error occurs
qtTest.Run ' Run the test
MsgBox qtTest.LastRunResults.Status ' Check the results of the test run
qtTest.Close ' Close the test
Set qtTest = Nothing ' Release the Test object
Set qtApp = Nothing ' Release the Application object

'***
'Start QTP, open an existing test and Run the Test with configured Run options
' And Store Run Results in Specified Folder

'***
Dim qtApp

QuickTest Professional Unplugged

 All powers within you, you can do it

90

Dim qtTest
Dim qtResultsOpt
Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Start QuickTest
qtApp.Visible = True ' Make the QuickTest application visible
' Set QuickTest run options
qtApp.Options.Run.ImageCaptureForTestResults = "OnError"
qtApp.Options.Run.RunMode = "Fast"
qtApp.Options.Run.ViewResults = False
qtApp.Open "C:\Tests\Test1", True ' Open the test in read-only mode
' set run settings for the test
Set qtTest = qtApp.Test
qtTest.Settings.Run.IterationMode = "rngIterations" ' Run only iterations 2 to 4
qtTest.Settings.Run.StartIteration = 2
qtTest.Settings.Run.EndIteration = 4
qtTest.Settings.Run.OnError = "NextStep" ' Instruct QuickTest to perform next step when
error occurs
Set qtResultsOpt = CreateObject("QuickTest.RunResultsOptions") ' Create the Run
Results Options object
qtResultsOpt.ResultsLocation = "C:\Tests\Test1\Res1" ' Set the results location
qtTest.Run qtResultsOpt ' Run the test
MsgBox qtTest.LastRunResults.Status ' Check the results of the test run
qtTest.Close ' Close the test
Set qtResultsOpt = Nothing ' Release the Run Results Options object
Set qtTest = Nothing ' Release the Test object
Set qtApp = Nothing ' Release the Application object
'***

'Start QTP, open an existing test, associate libra ries and save the test
'***

Dim qtApp
Dim qtLibraries
Dim lngPosition
' Open QuickTest
Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Launch QuickTest
qtApp.Visible = True ' Set QuickTest to be visible
' Open a test and get its libraries collection
qtApp.Open "C:\Tests\Test1", False, False ' Open a test
Set qtLibraries = qtApp.Test.Settings.Resources.Libraries ' Get the libraries collection
object
' Add Utilities.vbs if it's not in the collection
If qtLibraries.Find("C:\Utilities.vbs") = -1 Then ' If the library cannot be found in the
collection
 qtLibraries.Add "C:\Utilities.vbs", 1 ' Add the library to the collection
End If
'Save the test and close QuickTest
qtApp.Test.Save ' Save the test
qtApp.Quit ' Quit QuickTest

QuickTest Professional Unplugged

 All powers within you, you can do it

91

Set qtLibraries = Nothing ' Release the test's libraries collection
Set qtApp = Nothing ' Release the Application object
'***

'Start QTP, open an existing test, associate Objec t Repositories and save the test
'***

Dim qtApp
Dim qtRepositories
Dim lngPosition
' Open QuickTest
Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Launch QuickTest
qtApp.Visible = True ' Set QuickTest to be visible
' Open a test and get the "Login" action's object repositories collection
qtApp.Open "C:\Tests\Test1", False, False ' Open a test
Set qtRepositories = qtApp.Test.Actions("Login").ObjectRepositories ' Get the object
repositories collection object of the "Login" action
' Add MainApp.tsr if it's not already in the collection
If qtRepositories.Find("C:\MainApp.tsr") = -1 Then ' If the repository cannot be found in the
collection
 qtRepositories.Add "C:\MainApp.tsr", 1 ' Add the repository to the collection
End If
'Save the test and close QuickTest
qtApp.Test.Save ' Save the test
qtApp.Quit ' Quit QuickTest
Set qtRepositories = Nothing ' Release the action's shared repositories collection
Set qtApp = Nothing ' Release the Application object
'***

'Open and minimize QTP Window
'***

Dim qtApp
Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Start QuickTest
qtApp.Visible = True ' Make the QuickTest window visible
qtApp.WindowState = "Minimized" ' Maximize the QuickTest window
Set qtApp = Nothing ' Release the Application object
'***

'Start QTP, Open an Existing Test and Define Enviro nment Variables
'***

Dim qtApp

QuickTest Professional Unplugged

 All powers within you, you can do it

92

Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Start QuickTest
qtApp.Visible = True ' Make the QuickTest application visible
' Open the test
qtApp.Open "C:\Tests\Test1", False ' Open a test named "Test1"
' Set some environment variables
qtApp.Test.Environment.Value("Root") = "C:\"
qtApp.Test.Environment.Value("Password") = "QuickTest"
qtApp.Test.Environment.Value("Days") = 14
qtApp.Test.Save ' Save the test
qtApp.Quit ' Exit QuickTest
Set qtApp = Nothing ' Release the Application object
'***

'Start QTP, Open an Existing Test and Get All Avail able Action Names From the Test
'***

Dim qtApp
' Open QuickTest
Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Launch QuickTest
qtApp.Visible = True ' Set QuickTest to be visible
qtApp.Open "C:\Tests\Test1", False, False ' Open a test
oActCount=qtApp.Test.Actions.Count
For iCounter=1 to oActCount
 ' Get the first action in the test by index (start from 1)
 MsgBox qtApp.Test.Actions(iCounter).Name
Next
'Close QuickTest
qtApp.Quit ' Quit QuickTest
Set qtApp = Nothing ' Release the Application object
'***

'Start QTP with specified views

'***
Dim qtApp
Set qtApp = CreateObject("QuickTest.Application") ' Create the Application object
qtApp.Launch ' Start QuickTest
qtApp.ActivateView "ExpertView" ' Display the Expert View
qtApp.ShowPaneScreen "ActiveScreen", True ' Display the Active Screen pane
qtApp.ShowPaneScreen "DataTable", False ' Hide the Data Table pane
qtApp.ShowPaneScreen "DebugViewer", True ' Display the Debug Viewer pane
qtApp.WindowState = "Maximized" ' Maximize the QuickTest window
qtApp.Visible = True ' Make the QuickTest window visible
Set qtApp = Nothing ' Release the Application object

'***

QuickTest Professional Unplugged

 All powers within you, you can do it

93

Working with Microsoft Excel
Introduction

We create framework for automating the application. For this we used the independent structure for
reporting and data. Excel plays a very important role in this approach.

QTP has its own test result displaying mechanism in the predefined format. Once the test is run, the

result sheet is generated which gives you insight of the script-stating the point of failures, warnings and
passes

We create customized in the script and it is possible to customize the result file also depending upon

the checkpoint created will be passed or failed.

In most of the cases we want to create summarized or detailed report of the entire test in excels. The

reason to create customized report is that one is able to keep the file in central location and to create the
report in our format

Now we are going to learn the interaction of Excel with VBScript.the whole mechanism goes in the

following steps.
1. Understanding the hierarchy of Excel Application
2. Creating the Excel Object
3. Opening an existing workbook or creating new one
4. Setting the objects for various sheets in workbook
5. Writing and fetching the data values in the result
6. Saving the and closing the workbook
7. Closing the application and releasing the memory

We will go through each of the above stated steps with a suitable example to understand the
approach properly

Understanding the hierarchy of Excel Application

We will not go into the details of the complete hierarchy of the Excel Application but to the extend

what is required

Excel Application
 Workbooks
 Sheets
 Cells

QuickTest Professional Unplugged

 All powers within you, you can do it

94

Creating the Excel Object

The first step onwards the processes of reporting via excel is to create object of Excel. Reporting in

Excel can either be done in backend, without making the application visible or you can make it appear to
user once the process of writing or fetching the data is going. In either way creating of the Excel Application
object is required. it goes as

Dim XL
Set XL=CreateObject (“Excel. Application”)

Opening an existing workbook or creating the new on e

Once the excel object has been created, it means the excel application has been invoked but is not

visible. So either one can perform the operation like that or make the application visible and then perform the
operations.

‘To make the application visible
XL.visible=true

‘To open a new book
XL.workbooks.Add

‘To open an existing Workbook
XL.workbooks.Open (“file name of the complete path”)

Setting and accessing the objects of sheets in work book

Once the workbook has been opened, either existing or new one, we need to write some data in

various cells in various sheets of that workbook.
By default there are 3 sheets in a workbook and various operations can be performed on. So one

need create the object to reference these sheets as it becomes easy to access them and you don’t have to
mention the complete hierarchy over and over again.

‘Say one has to create a reference for sheet with index I, which starts from 1
Set sht1=XL.activeworkbook.sheet (1)

‘One can add or delete n number of sheets from the activeworkbook
‘To add a sheet in workbook-
XL.activeworkbook.sheets.add

‘To delete a particular sheet where I represent the index which starts from 1-
Xl.activeworkbook.sheets (1).delete

‘To change the name of the sheet-
XL.activeworkbook.sheets (1).name=” Name of your choice ”

QuickTest Professional Unplugged

 All powers within you, you can do it

95

‘To count the total number of sheets in the workbook
Cnt= XL.activeworkbook.sheets.count

Writing and deleting the data value in the cells

To write the data in Excel sheet, one should know the cell address in which the data has to be written.

Same thing goes for accessing the data from the cells
To write the data in sheet1 cell as D8, we write the following command.Cell address here is

represented by row number followed by column number-

XL.activeworkbook.sheets (2).cells (8, 4) =”hemajothi”

‘To fetch the data from sheet3 cell address A7-
Val= XL.activeworkbook.sheets (3).cells (7, 1)
Msgbox Val

If one has already created the object of the particular sheet, you don’t have to write the complete

hierarchy but simply-

Object. cells (row, col) =value

Saving and closing the workbook

Once the work completed you can save the newly created workbook to a specified location or save
the changes made to already existing opened workbook.

‘To save as if case of new workbook
XL.activeworkbook.saveas “path with file name.xls”

‘To save in case of existing workbook
XL.activeworkbook.save

‘To close the workbook
XL.activeworkbook.close

Closing the application and releasing the memory

‘To close the application
XL.quit

‘To release the memory of all the objects
Set XL=nothing

Searching word in excel sheet

QuickTest Professional Unplugged

 All powers within you, you can do it

96

 Set appExcel = CreateObject("Excel.Application")
appExcel.visible=true
 Set objWorkBook = appExcel.Workbooks.Open ("E:\exe.xls")
 'opens the sheet
 Set objSheet = appExcel.Sheets("Sheet1")
 'To select particular sheet
With objSheet.UsedRange
' select the used range in particular sheet
 Set c = .Find ("Denver")
 ' data to find
For each c in objSheet.UsedRange
 ' Loop through the used range
 If c="Denver" then
 ' compare with the expected data
 c.Interior.ColorIndex = 20
 ' make the gary color if it finds the data
End If
 Set c = .FindNext(c)
 ' next search
next
End With
objWorkBook.save
objWorkBook.close
set appExcel=nothing

 Copy an excel sheet to another excel

Set objExcel = CreateObject ("Excel.Application")
objExcel.Visible = True
Set objWorkbook1= objExcel.Workbooks.Open ("E:\exe.xls")
Set objWorkbook2= objExcel.Workbooks.Open("E:\exe2.xls")
objWorkbook1.Worksheets("Sheet1").UsedRange.Copy
objWorkbook2.Worksheets("Sheet1").Range("A1").PasteSpecial Paste =xlValues
objWorkbook1.save
objWorkbook2.save
objWorkbook1.close
objWorkbook2.close
set objExcel=nothing

Compare two excel sheet:

Set objExcel = CreateObject ("Excel.Application")
objExcel.Visible = True
Set objWorkbook1= objExcel.Workbooks.Open ("E:\exe.xls")
Set objWorkbook2= objExcel.Workbooks.Open ("E:\exe1.xls")

Set objWorksheet1= objWorkbook1.Worksheets (1)

Set objWorksheet2= objWorkbook2.Worksheets (1)

QuickTest Professional Unplugged

 All powers within you, you can do it

97

 For Each cell in objWorksheet1.UsedRange
 If cell. Value <> objWorksheet2.Range (cell. Address).Value Then
 cell.Interior.ColorIndex = 3
 '′Highlights in red color if any changes in cells
 Else
 cell.Interior.ColorIndex = 0
 End If
 Next

Set objExcel=nothing

Display result in different excel sheet

Dialog ("Login").WinEdit ("Agent Name :") .Set
DataTable ("Agent Name", dtGlobalSheet)
Dialog ("Login").WinEdit ("Password :") .Set
DataTable ("Pword", dtGlobalSheet)
Dialog ("Login").WinButton ("OK").Click

If Window ("Flight Reservation").Exist then
Window ("Flight Reservation").WinMenu ("Menu").Select "File; Exit"
DataTable.Value ("Act_Res") ="Pass"
Reporter.ReportEvent 0,"Login Details”, “Valid Values"
Else
Dialog ("Login").Activate
Dialog ("Login").WinButton ("Cancel").Click
DataTable.Value ("Act_Res") ="Fail"
Reporter.ReportEvent 1,"Login Details”, “Invalid Values"
End If

Er=DataTable ("Exp_Res", dtGlobalSheet)
Ar=DataTable ("Act_Res", dtGlobalSheet)
If Strcomp(Er, Ar) =0 Then
 DataTable.Value ("Remarks") ="OK"
 Else
 DataTable.Value ("Remarks") ="Defect"
End If
DataTable.Export ("e:\\Results.xls")

Working with XML

QuickTest Professional Unplugged

 All powers within you, you can do it

98

What is Document object Model?

A platform- and language-independent standard object model for representing HTML or XML and
related formats. DOM is a method for QTP engineers to access the source (IE –> View –> Source) of any
webpage direct through VB Scripting.

When can we use DOM?

 One of the very important places you can use it is when a QTP web table checkpoint doesn’t
show you the desired content in a cell. I mean the content in the cell is in a format that is not supported by
the web table checkpoint. Another use can be when you want to access all the HTML tags used in a
webpage. You can get the names, the innertext, and innerHTML property of all these tags. The possibilities
are endless.

How can we use DOM to access the source page?

We can access the source page of any webpage using .object notation.

Example:

Set img = Browser (”Browser”).Page (”Page”).WebTable (”Happy”).Object.all.tags (”img”)
Msgbox img.length
For i=0 to img.length-1
Msgbox img (i).src
Next

The loading of XML file in QTP is simple enough:

Const XMLDataFile = "C:\TestData.xml"
Set xmlDoc = CreateObject ("Microsoft.XMLDOM")
xmlDoc.Async = False
xmlDoc.Load(XMLDataFile)

Note:

1. Microsoft.XMLDOM is a name of COM object of Microsoft's XML parser
2. Async is a property of Microsoft.XMLDOM.

The property specifies whether asynchronous download of the document is
permitted.
Processing of asynchronous operations is more complex, that's why I've disabled it
(xmlDoc.Async = False).

3. Load method loads an XML document from the specified file.
Also, you can use LoadXML method, which loads an XML document using the
supplied string.

After that we can use SelectSingleNode or SelectNodes of Microsoft's XML parser to
execute XPath query. You can use this approach in QTP to get data from XML file.

How to get number of books in a bookstore?

QuickTest Professional Unplugged

 All powers within you, you can do it

99

Set nodes = xmlDoc.SelectNodes ("/bookstore/book")
MsgBox "Total books: " & nodes. Length

How to get titles of all books in a bookstore?

‘Get all titles
Set nodes = xmlDoc.SelectNodes ("/bookstore/book/title/text ()")
‘Get their values
for i = 0 to (nodes. Length - 1)
 Title = nodes (i).Node Value
MsgBox "Title #" & (i + 1) & ": " & Title
Next

How to get title of the first book?

Set node = xmlDoc.SelectSingleNode ("/bookstore/book [0]/title/text ()")
MsgBox "Title of 1st book: " & node.NodeValue
How to get titles of all John Smith's books?
‘Get all titles
Set nodes = xmlDoc.SelectNodes ("/bookstore/book/title/text ()")
' get their values
for i = 0 to (nodes. Length - 1)
 Title = nodes (i).Node Value
 MsgBox "Title #" & (i + 1) & ": " & Title
Next

How to get title of the first book?

Set node = xmlDoc.SelectSingleNode ("/bookstore/book [0]/title/text ()")
MsgBox "Title of 1st book: " & node.NodeValue

How to get titles of all John Smith's books?

‘Get list of John Smith's
Set nodes = xmlDoc.SelectNodes ("/bookstore/book/title [. /author = 'John Smith']/text ()")
' get their titles
for i = 0 to (nodes. Length - 1)
 Title = nodes (i).NodeValue
 MsgBox "Title #" & (i + 1) & ": " & Title
Next

Note: We use square brackets to apply a filter. So, [.../author = 'John Smith'] means 'to get
only those books whose author is John Smith'.

How to get titles of all books published after 2003 ?

QuickTest Professional Unplugged

 All powers within you, you can do it

100

‘get list of books published after 2003
Set nodes = xmlDoc.SelectNodes ("/bookstore/book/title [@published > 2003]/text ()")
' get their titles
for i = 0 to (nodes. Length - 1)
 Title = nodes (i).NodeValue
 MsgBox "Title #" & (i + 1) & ": " & Title
Next

How to rename the title of first book?

Const XMLDataFile = "C:\TestData.xml"
Const XMLNewFile = "C:\TestData2.xml"

Set xmlDoc = CreateObject ("Microsoft.XMLDOM")
xmlDoc.Async = False
xmlDoc.Load(XMLDataFile)

' update the title of the first book
Set node = xmlDoc.SelectSingleNode("/bookstore/book[0]/title")
node. Text = "Romeo and Juliet - Salvation"

' save changes
xmlDoc.Save (XMLNewFile)

How to change the year of second book?

Update the attribute of the second book
Set node = xmlDoc.SelectSingleNode ("/bookstore/book [1]/title/@published")
node. Text = "2009"

How to add new author add its new attribute?

Select a parent node
Set parent Node = xmlDoc.SelectSingleNode ("/bookstore/book [2]")

' add a new author
Set newNode = xmlDoc.CreateElement ("author")
newNode.Text = "Mr. Noname"
parentNode.AppendChild (newNode)

How to add new attribute for author (XML node)?

‘select a parent node
Set parentNode = xmlDoc.SelectSingleNode ("/bookstore/book [2]")
' add its attribute
Set newAttrib = xmlDoc.CreateAttribute ("bestseller")
newAttrib.Text = "yes"
parentNode.Attributes.SetNamedItem(newAttrib)

QuickTest Professional Unplugged

 All powers within you, you can do it

101

How to rename the title of first book?

Const XMLDataFile = "C:\TestData.xml"
Const XMLNewFile = "C:\TestData2.xml"
Set xmlDoc = CreateObject ("Microsoft.XMLDOM")
xmlDoc.Async = False
xmlDoc.Load(XMLDataFile)
' update the title of the first book
Set node = xmlDoc.SelectSingleNode("/bookstore/book[0]/title")
node. Text = "Romeo and Juliet - Salvation"
' save changes
xmlDoc.Save (XMLNewFile)

Note: The numeration begins from zero. That's why I use book [0] to access first item.

How to change the year of second book?

I skip the opening and saving of XML file (see above QTP script). I show only the essence:

‘Update the attribute of the second book
Set node = xmlDoc.SelectSingleNode ("/bookstore/book [1]/title/@published")
node. Text = "2009"

Note : Use @ to access an attribute of XML node.

How to add new author add its new attribute?

‘select a parent node
Set parentNode = xmlDoc.SelectSingleNode ("/bookstore/book [2]")
' add a new author
Set newNode = xmlDoc.CreateElement ("author")
newNode.Text = "Mr. Noname"
parentNode.AppendChild (newNode)

How to add new attribute for author (XML node)?

‘select a parent node
Set parentNode = xmlDoc.SelectSingleNode ("/bookstore/book [2]")
' add its attribute
Set newAttrib = xmlDoc.CreateAttribute ("bestseller")
newAttrib.Text = "yes"
parentNode.Attributes.SetNamedItem(newAttrib)

Designing framework

QuickTest Professional Unplugged

 All powers within you, you can do it

102

Frame Work:

Frame work is a Generic work designed by an expert and followed by many people
to perform a particular task in an effective, efficient and optimized way.

Test Settings for Keyword-driven Scripting

In the keyword-driven approach the entire script is developed with keywords. The
script is developed in a spreadsheet that is interpreted by the main driver script, which
then uses the function
Library to execute the complete script.

 The QTP Settings.vbs file can be used to easily perform the test settings that are
needed before proceeding with the Keyword-driven Scripting. This file associates the
Function libraries, recovery scenarios, Environment Variables and the Object Repository
files that are needed for a script.

The QTP Settings file needs to be customized before usage. Edit the .vbs file in
notepad and make the necessary changes (mentioned below)
in the ‘Input Data’ section of the file.

1. Function Libraries

Specify the path where the Framework Files, Common Functions and the User
Defined Functions are Stored.
2. Recovery Scenario File

 Specify the path of the file where the Recovery scenarios are placed.
3. Recovery Scenarios Name

Specify the names of the Recovery scenarios that need to be associated to the test
script.

4. Environment File

Specify the path of the xml file for the Global Environment Variables.

5. Object Repository files
 Specify the path of the Object Repository

.Open the test script in QTP for which the settings are needed and double click on the
QTP Settings.vbs file. This file will perform the preferred settings automatically.

Note

If there are multiple items of libraries, object repositories or global variables file,
they can be specified as an array separated by ‘,’

Set the Flag envi_flag, recover_flag, repos_flag, library flag to "Yes" if the
corresponding files need to be associated to test, else set it to "no"

Given below is a sample “QTP Settings”.

libraries= array ("C:\WebFramework.vbs","C:\common functions.vbs")
recovery_file= "C:\recover.qrs"
recovery_name=array ("Scenario1","Scenario2")

QuickTest Professional Unplugged

 All powers within you, you can do it

103

environment_file= "C:\Environment.xml"
repository_name= array ("C:\repository1.tsr","C:\repository2.tsr")

'NOTE: Please set the Flag to "Yes" if the files are to be associated to
Test, otherwise set it to "no"

envi_flag="yes"
recover_flag=" yes"
repos_flag=" yes"
library_flag=" yes"

There should be just one Recovery file which holds all the Recovery scenarios.
Multiple
Recovery files cannot be used.

There should be no unsaved tests currently open in QTP. The test script for which
the test
settings need to be done should be open in QTP.

Run Settings

In the Run tab of the Test Settings dialog,
1. The Run one iteration only radio button will be selected.
2. The Disable Smart Identification during the run session check box will be checked.
3. The Object Synchronization timeout value will be set as 20 seconds.

Resources Settings
After the run settings are completed, the QTP Settings file associates the framework with
the test script. Here, the path and the names of the framework files need to be specified in
the QTP Settings
file. The framework will be taken from the location specified and associated with the test
as shown below.
Figure 2: Associating Framework File

NOTE: The Common functions file and the User defined functions file should be
associated with the test only if needed by the test script.

Environment Tab Settings

QTP can insert a value from the environment variable list, which is a list of
variables and corresponding values that can be accessed from the test. Throughout the
test run, the value of an environment variable remains the same, regardless of the number
of iterations, unless the value of the variable is changed programmatically in the script.

Associating the user-defined Environment Variables file with the test is also
handled by the QTP Settings file. The Environment Variables file with an .xml file type will
be taken from the path specified in the QTP Settings file and associated with the test.

Managing Object Repository

QuickTest Professional Unplugged

 All powers within you, you can do it

104

After the test settings are completed, the QTP Settings file continues to associate the
specified shared object repositories with the test. The objects from the shared repository
will be uploaded and
made available for the tests.

Figure 4: Associate Repositories Dialog

Call to Framework
The call to Keyword_Driver () needs to be specified in the Expert View as shown below.
This will call the Framework file associated with the test and perform the actions by
interpreting the keywords specified in the data table.

Figure 5: Call to Framework

Usage of Keywords
The keywords should be entered in the global sheet of the data table of the test according
to the syntax. To access the data table, choose View > Data Table or click on the toolbar
button. Below is an example of Keyword-driven Scripting.

Figure 6: Using the keyword in a Data Table

Types of Frame work:-

• Linear / Sequential Frame work
• Modular frame work
• Keyword Driven frame work
• Hybrid frame work

Linear Frame work :

This is a general and old frame work that can be used by many people. Steps to
follow ….

 a). Generate the Basic Test
 b). Enhance the test
 c). Debug the test
 d). Execute the test
 e). Analyze the result

 AUT

Example:

 Tasks: Login
 Insert order
 Open existing order
 Logout
Note : Here all the tasks are put together in one test pane and done the job

Login
………
……..
Insert order
………
……..
Open order
………
………
Logout

QuickTest Professional Unplugged

 All powers within you, you can do it

105

� Put the tool under recoding mode
� Open flight application
� Login with username and password
� Click on OK
� Insert an order by keying all the required info therein
� Click on insert order button
� That order will be inserted successfully. After inserting the order
� Open existing order by clicking on open folder icon
� A open order window will appear, check the order number check box
� Input the existing order number (say 9)
� Click on OK
� The order will open, if necessary you may update / delete the opened order
� Logout will be done by going to menu bar of the application and select file , select

exit.
� The application will close
� Stop recording
� Run the test
� Analyze the result

Modular Frame work:

 This is also a general frame work that can be used by some people.Steps to follow
….

 a). Prepare the Individual Components for different tasks
 b). Make the require Components as Re-Usable
 c). Prepare the desired Driver based on end-to-end scenario
 d). Execute the Driver
 e). Analyze the results

! A script file can be called as a Driver
! Test : means a script file
! An action: Is a set of instructions to perform a task
! Component can be called as an Action
!! Ways of action:

• Prepare complete action and Split it to each action or
• Prepare a single action and Insert each action into it.

 * One action can be spited into two actions a time only and so on.

Example:

 Tasks : Login
 Insert order
 Open existing order
 Logout
 Note 1 : After preparing complete action, split it into different individual actions and call
them in a driver.
 Note 2 : Other words in this frame work, we are calling the action/s (Ex. Call
login)

QuickTest Professional Unplugged

 All powers within you, you can do it

106

AUT
 Driver

 Login insert open logout

 Components

� Put the tool under recoding mode
� Open flight application
� Login with username and password
� Click on OK
� Insert Order by keying all the required info therein
� Click on insert order button
� That order will be inserted successfully. After inserting the order
� Open order by clicking on open folder icon
� A open order window will appear, check the order number check box
� Input the existing order number (say 9)
� Click on OK
� The order will open, if necessary you may update / delete the opened order
� Logout will be done by closing the window/application
� Stop recording
� Save the Script (say fl_application , No extention is required)
� Split the script into 4 tasks (login, insert order, open order and logout) Keep the

cursor at the beginning of 1st line of 2nd part (i.e. starting of insert order line)
� Go to menu bar, click on Step , select Split Action
� The split action window will appear
� choose action type as independent of each other, give the 1st action name (say

login) and leave the 2 nd action name as it is (because, again we are going to
split the 2nd part)

� Click OK
� Save the changes. Next,

� Keep the cursor at the beginning of 1st line of existing 2nd part (i.e. starting of insert

order line)
� Go to menu bar, click on Step , and select Split Action
� The split action window will appear
� choose action type as independent of each other, give the 1st action name (say

insert order) and leave the 2 nd action name as it is (because, again we are
going to split the 2nd part)

� Click OK
� Save the changes. Next,

Login
………
………

Open order
…….
……

Login
………
……..
Insert order
………
……..
Open order
………
………
Logout

Insert order
……..
……

Logout
………
………

Call login

Call insert

Call open

Call logout

QuickTest Professional Unplugged

 All powers within you, you can do it

107

� Keep the cursor at the beginning of 1st line of existing 2nd part (i.e. starting of
open order line)

� Go to menu bar, click on Step , select Split Action
� The split action window will appear
� choose action type as independent of each other, give the 1st action name (say

open_order) and give the 2 nd action name as logout (because, its end of splits
)

� Click OK
� Save the changes.
� So, we have splited all 4 tasks/actions successfully.
� Now make them as re-usable components
� Open the just created action i.e. login from drop-down box on the tool
� Go to menu bar , click on Step , select Action Properties
� Action properties window will appear
� Select General tab
� Check the Reusable action check box
� Click on OK
� Do the same for other actions too i.e. insert order , open order and logout .

Next
� Open new Test
� Re-name the action as Driver, Go to menu bar, click on Step , and select Action

Properties. Action properties window will appear, Select General tab, change the
action name as Driver.

� Click on OK
� Here we can call any or all those re-usable actions
� Go to menu bar, click on Insert , select Call to Existing Action
� Select action window will appear ,
� Browse the saved application (i.e. fl_application)
� Select the one reusable action (say login)
� Select the Location option as After the current step
� Click on OK
� An existing action related to that login action will be added to this test
� Do the same for other actions too i.e. insert order , open order and logout .
� Now the Driver script is ready for login, inserting the order, open the order and

logout.
� Run the test
� Analyze the results.

Note: in Driver test we can call any existing actions as we wish.

Type of actions: There are two types of actions
 i). Normal actions
 ii). Re-usable actions
Re-usable actions called in the other test are called External Actions
External actions are Non-Editable

Batch Testing :
 Batch testing is a process of executing a group of tests at a time.
 To do the same QTP has provided a separate tool by name “Test Batch Runner”
and we have to configure the tool settings as below…..

QuickTest Professional Unplugged

 All powers within you, you can do it

108

QTP -> Tools -> Options -> Run -> Check Allow other mercury products to run tests and
components.

Add the desired testAdd different script files each at a time to it
Save it as .mtb (Mercury Test Batch file) extension
Whenever require open the batch file, execute and analyze the results.

* We go for batch testing when we do Regression testing.

 Regression testing: Testing the functionalities of function and all its related
functionalities at a time is called Regression testing. Or it is the process of executing
number of test a time.

3. Keyword Driven frame work: This is also a general frame work that can be used by
most of people .
Steps to follow ….

 1. First of all create the folder stricture as follows short form: TRL RET
L

ProjectName_Automation

 Associating required files only

Test

 Key
word

1. Create the required Test Data files and save them in the corresponding folder (
Test Data folder).

2. Create the required Shared Repository files and save them in corresponding folder
(Repository folder)

3. Create the required Library files and save them in corresponding folder (Library
folder)

Repository

Test Data

Library

Recovery

Environment

Test

Log

 Script
…………….
…………….
…… ………
……………..

L1
L2
L4

QuickTest Professional Unplugged

 All powers within you, you can do it

109

4. Create the required Recovery files and save them in corresponding folder
(Recovery folder)

5. Create the required Environment files and save them in corresponding folder
(Environment folder)

6. Open the Main Test and associate all the required r esources like Test Data
files, Repository files, library files, recovery files and environment files.

7. Develop the script in such way that it executes based on the keyword given in
the data table .

8. Save the Test in the corresponding folder (Test folder)
9. Whenever require Open it and execute and analyze the results.

Example:

 Tasks : Login
 Insert order
 Open existing order
 Logout
 Note : Here, after preparing complete action, split it into different individual
Function s and call them in a Test .
 Note 2 : Other words in this frame work, we are calling the Function/s (Ex.
Call login ())

AUT
Test

 Login () insert () open ()
logout ()

 Functions stored in Library folder

� Create a folder by any name like ProjectName_Automation (say fl_automation)
� Create all those 7 sub-folders in it (i.e. Test Data, Repository, Library, Recovery,

Environment, Test and Log)
� Open the tool
� Open the flight application to do the following tasks
� Login
� Insert order
� Open order
� Logout

Login
………
………

Open order
…….
……

Login
………
……..
Insert order
………
……..
Open order
………
………
Logout

Insert order
……..
……

Logout
………
………

Case “l1”
 login()
Case “l2”
 insert()
Case “l3”
 open()
Case “l4”
 logout()

QuickTest Professional Unplugged

 All powers within you, you can do it

110

So, for above 4 tasks, we need to create 4 functions and store them in a library life
under library folder. For that …
Open a new notepad and write down the below script in it
Function login ()
 * Here, Paste the login code from Test script
 End function
Function inserts order ()
 * Here, Paste the insert order code from Test script
 End function
Function open order ()
 * Here, Paste the open order code from Test script
 End function
Function logout ()
 * Here, Paste the logout code from Test script
 End function

Recording properties into object repository

� Put the tool under recoding mode
� Activate flight application
� Login with username and password
� Click on OK
� Insert Order by keying all the required info therein
� Click on insert order button
� That order will be inserted successfully. After inserting the order
� Open order by clicking on open folder icon
� A open order window will appear, check the order number check box
� Input the existing order number (say 9)
� Click on OK
� The order will open, if necessary you may update / delete the opened order
� Logout will be done by closing the window/application
� Stop recording

Creating Shared Repository
� Open Object Repository , where in which you can see all the properties of objects
� Click on Export
� Browse to Repository folder and save it with .tsr (Test Script Repository)

extension.
� Click on OK

Copying and Pasting the corresponding scripts to li brary file from a Test Script
� Copy only login script from Test Script and past into opened notepad under
Function login () ……*…. End Function.

Do the same for other functions too (i.e. Insert o rder, open order, and logout)
� Now save that file with .vbs extension under Library folder
� With this your currently open test area will be empty.
� Now , open a new Test
� Associate the required files to new test (into Repository) as below
� Menu -> Test -> settings -> Resource Tab -> select object repository type as

Shared
� Browse the saved repository file from Repository folder
� Click on Apply and OK
� In the same manner associate the required library files to new test
� Associate the required files to new test (into Repository) as below

QuickTest Professional Unplugged

 All powers within you, you can do it

111

� Menu -> Test -> settings -> Resource Tab -> click on + (add) button
� Browse the saved library file from Library folder
� Click on Apply and OK

Creating data in data table
� Activate data table of the test
� Rename the 1st column name as “keys ” (by double clicking on it and type keys).
� Enter data like l1, l2, and l3 for each row in the table (specifying the key value in

the script so as to pick-up the relevant keyword from the data table).
� Now Develop / write the script in test area in such way that it uses some or all

resources and execute based on key values given in the data table.
� For example : to login- insert order – open order and logout

var =datatable ("keys", 1) :pick-up 1st value in data table and
 Assigned to var
Select Case var
Case “l1"
 Login ()
Case “l2"
 Open ()
Case “l4"
 Logout ()
End Select

� Open the flight application
� Run the test
� Analyze the results.

4. Hybrid Frame work:

Hybrid frame work is a mixer of two or more frame works.

* Library file is a collection of one or more functions

QuickTest Professional Unplugged

 All powers within you, you can do it

112

QTP Methods and Properties
1. CaptureBitmap

Saves the screen capture of the objects as a .png or .bmp image using the
specified filename
Syntax
Object.CaptureBitmap FullName,[Override Existing]
Example
The following example uses the capturebitmap method to capture a screen shot of the
internet options dialog box. The file is automatically saved to a different folder (the test
results folder) in each run
Browser (“Mercury Tours”).page (“Mercury Tours”).CaptureBitmap “internet_options.bmp”

2. ChildObjects

Return the collection of child objects contained within the object. This method
accepts the Description object as input and returns a Collection object. The collection
object includes both static and dynamic objects that satisfy the description of the object
Syntax

Object.ChildObjects (pDescription)
Example

The following examples uses the ChildObjects method to retrieve a set of child
objects matching the description listed in the function call and uses the method to display
a message indicating how many objects are found with the specified
description:non,one(unique)or several (not unique)

Set a=description. Create
a ("html tag").value="A"
Set cnt=browser ("Yellow Pages").Page ("Yellow Pages").ChildObjects (a)
‘Use the count method to retrieve the number of child objects
Msgbox cnt.count

QuickTest Professional Unplugged

 All powers within you, you can do it

113

For i=0 to cnt.count-1
 c=cnt (i).getroproperty ("name")
Print c
Next

The above examples to display all links in the web page
‘Get all child objects with the given description
Set children=parent.ChildObjects (oDesc)
If children. Count=1 then
checkObjectDescription=”Object Unique”
Elseif children. Count=0 then
checkObjectDescription=”Object not found”
Else
checkObjectDescription=”Object not found”
End if

3. Close
Close the dialog box
Syntax
Object. Close
Example

The following examples use the close method to close the internet options dialog boxes.

Browser (“Mercury Tours”).Dialog (“internet options”).Close

4. Exists

Checks the object exists
Syntax

Object. Exist ([Timeout])
Example

The following examples use Exist method to determine the existence of the internet
options dialog box. If the dialog box exists a message box appears conforming its
appearance
If Browser (“Mercury Tours”). Dialog (“internet options”).Exists then
Msgbox (“the object exists”)
End if

5. GetRoProperty

Returns the current value of the runtime object property from the object in the
application

RO (Runtime Object): Runtime object is the original object that was presented in
the application (AUT).

Syntax

Objects.GetRoProperty (property, [PropData])
Example

The following examples print the URL name of web page
a=browser ("Yellow Pages").WinEdit ("Edit").GetROProperty ("text")
Print a

OR
a=browser ("Yellow Pages").page ("Yellow Pages").GetROProperty ("url")

QuickTest Professional Unplugged

 All powers within you, you can do it

114

Print a

6. GetTextLocation
 Checks whether the specified text string is contained in the specified window area.
Syntax
Object. GetTextLocation (TextToFind, To, Top, Right, Bottom, [MatchWholeWordOnly])
Example
The following example uses the GetTextLocation method to retrieve all of the text within
the object.

l = -1
t = -1
r = -1
b = -1
Result = Dialog ("text: =Login").Winedit ("attached text: =Agent Name :") .GetTextLocation
("2002", l, t, r, b)
If result Then
 MsgBox "Text found. Coordinates:" & l & "," & t & "," & r & "," & b
End If

7. GetToProperty

Returns the collection of properties and values used to identify the object.
TO (Test Object): Test object the Reference of original object stored in the object

repository and used for identifying the original object in the AUT during the execution

Syntax
Object.GetToProperties
Example
Dim a
'Dim b
For i=0 to 6
a=dialog ("Login").Winedit ("Agent Name :") .GetToProperties (i)
Msgbox a
Next

8. GetToProperty

Returns the value of specified property from the test object description.
Syntax
Object. GetToProperty (property)
Example
The following example uses the GetToProperty method to retrieve the RegExpWndClass
property from the Object Repository

Dim objectname
RegExpWndClass=Window (“Text”).GetToProperty (“RegExpWndClass”)
Msgbox RegExpWndClass

QuickTest Professional Unplugged

 All powers within you, you can do it

115

9. GetVisibleText
Returns the text from specified area
Syntax
Object.GetVisibleText ([Left], [To], [Right], [Bottom])
Example
The following example uses the GetVisibleText method to retrieve the from the telnet
window. If the returned string contains in the sun-string, the type method is used to type
the guest string in the window
Telnettext=Window (“Telnet”).GetVisibleText
If instr (1, Telnettext,”login:” 1)>then
Window (“Telnet”).Type “guest”
End if

10. WaitProperty
 This method is used for make the tool to wait based on the object property’s value or up
to maximum time.
Syntax
Object Hierarchy. Waitproperty “propertyName”, Property value, extra time in milliseconds
Example

� Open the flight application and put tool in recoding mode
� Open the order by clicking on open order, it will displays the open order window
� Enter an existing order number and click on Ok. That order will be opened.
� Stop recording.

Now, if you want to wait the tool even after clicki ng on OK button

� Take the property name (as text), value (as OK) from object repository and put

extra time in milliseconds.

OH.WaitProperty "text", OK, 10000

� And put the above code after the OK button clicked statement in the script
� Run the test
� Analyze the results

10. Wait
This method is used for making the tool to wait till the maximum time is elapsed
Syntax
 Object Hierarchy. Wait (Time in seconds)

 Example

� Open the flight application and put tool in recoding mode
� Open the order by clicking on open order, it will displays the open order window
� Enter an existing order number and click on Ok. That order will be opened.
� Stop recording.

Now, if you want to wait the tool at any point of t ime
� Put the code any where in between the script

 Wait (10)
� Run the test
� Analyze the results

QuickTest Professional Unplugged

 All powers within you, you can do it

116

11. Check Property
Contains whether the specified object property achieves the specified value

within the specified area
 Syntax
 Example

 The following examples use the check property method to check whether
the “check box1” check box is selected after setting it to “ON”
Dialog (“ac”).Activate (“ac windowarea”).ActiveCheckbox (B1).set “on”
Dialog (“ac”).Activate (“ac windowarea”).ActiveCheckbox (B1).CheckProperty “value”,
true

12. GetContent
 Returns all of the item in the combo box list
Syntax
 Object.GetContent
Example
Set city=window (“Flight Reservation”).wincombobox (“fly from”).GetContent
Msgbox city

13. GetItem
 Returns the value of the item specified by the index
Syntax
Object.GetItem (variable)

14. GetItermsCount
 Returns the number of items in the combo box list
Syntax
Object.GetItemsCount
Example

Set city=window (“Flight Reservation”).wincombobox (“fly from”).GetItemsCount
Msgbox city
For I =0 to city-1
Set fcity=window (“Flight Reservation”).wincombobox (“fly from”).GetContent (I)
Msgbox fcity

15. GetSelection
 Returns all of the selected items in the combo box list
Syntax

Object.GetSelection

Example
Set city=window (“Flight Reservation”).wincombobox (“fly from”).GetSelection
Msgbox city

QuickTest Professional Unplugged

 All powers within you, you can do it

117

Simple and Regular used Methods

1. Click Method: This is used for clicking on a specified object

Syntax: Object Hierarchy. Click [x, y [button]]

0 for Left Click
1 for Right Click
2 for Middle Click

Example: VbWindow (“Emp”).VbButton (Submit).Click

2. dbl Click : which is used for double clicking on a specified object

Syntax: Object Hierarchy. Click [x, y [button]]
0 for Left Click
1 for Right Click
2 for Middle Click

Example: VbWindow (“Emp”).VbButton (Submit).dblClick

3. Set Method : Set method is used mainly to perform on 3 objects i.e.
 a). Edit box
 b). Check Box
 Emp
 c). Radio Button

a) Edit Box : Set method is used for entering any value into an edit box
Syntax: Object Hierarchy. Set “value”

Example: VbWindow (“Emp”).VbEdit (Ename).Set “ak”

b) Check Box : Set method is used for Selecting/de-selecting the check box

Syntax: Object Hierarchy. Set “ON/OFF”

Example: VbWindow (“Emp”).VbCheckBox (Mstatus).Set “ON”

c) Radio Button : Set method is used for selecting a Radio Button in a group

Syntax: Object Hierarchy. Set

Example: VbWindow (“Emp”).VbRadioButton (Location).Set

4. Select Method: This is used for selecting an item in a ComboBox or List

Syntax: Object Hierarchy. Select “item”

 Example:

Ename :

Mstatus: Married

 Un Married
Location:
 Hyderabad

 Delhi

 Chennai

 Submit

 dblClick

QuickTest Professional Unplugged

 All powers within you, you can do it

118

5. Set Secure Method: This is used for setting the encrypted data into the edit box.
 * Encrypted string can be generated with help of a tool
“password encoder”.
 Navigation for password encoder: Start -> Programs -> QTP -> Tools ->
Password encoder

Syntax: Object Hierarchy. SetSecure “encrypted String”

Example:

6. Activate Method: Which is used for activating a window or a dialog box

Syntax : Object Hierarchy. Activate

Example:

7. Close Method: This is used for Closing a window or browser

Syntax: Object Hierarchy. Close

Example:

8. Type Method: This is used for performing any kind of keyboard related operations.

Syntax: Object Hierarchy. Type keyvalue

Example:

 X
XXX

ggggg

QuickTest Professional Unplugged

 All powers within you, you can do it

119

Working with test objects

ListBox
The default method for List box is "Select".
Ex:-
Browser ("Mercury Tours").Page ("Find Flights").WebList ("depart").Select "London"

Can we do anything more with ListBox?
1. Selecting more items in a list
2. Get all items from a list

'Selecting more items in a list

Browser("Mercury Tours").Page("Find Flights").WebList("depart").Select "London"
Browser("Mercury Tours").Page("Find Flights").WebList("depart"). ExtendSelect "Paris"
'Select is to select single item in a list box
'ExtendSelect is to select more than one item after selecting an item in list box using select
method

'Get all items from a list

QuickTest Professional Unplugged

 All powers within you, you can do it

120

Dim iCount
Dim iIndex

iCount=Browser("Countrywide").Page("Countrywide").WebList("LoanType").GetROPropert
y("items count")
For iIndex=1 to iCount
 msgbox
Browser("Countrywide").Page("Countrywide").WebList("LoanType").GetItem(iIndex)
Next

Menu Object
Menu object applies only window based applications. Default Method for Menu is "Select"
Example:
Window ("Notepad").WinMenu ("Menu").Select "File; New Ctrl+N"

Can we do anything more with menu's?
 1. Get Menu list from Application
 2. Get Menu Items from Menu

'Get menu list from application
Dim cnt
Dim n
Dim iPath
cnt = Window("Notepad").WinMenu("Menu").GetItemProperty("", "SubMenuCount") 'Get
total Menus count From application
For n = 1 To cnt
 iPath = Window("Notepad").WinMenu("Menu").BuildMenuPath(itemPath, n)
 msgbox Window("Notepad").WinMenu("Menu").GetItemProperty(iPath, "Label")
Next

'Get menu Items from menu
Dim cnt
Dim n
Dim iPath
Cnt = Window ("Notepad").WinMenu ("Menu").GetItemProperty ("File", "SubMenuCount")
'Get menu items count in "File" Menu
For n = 1 To Cnt
 iPath = Window ("Notepad").WinMenu ("Menu").BuildMenuPath ("File", n)
 msgbox Window ("Notepad").WinMenu ("Menu").GetItemProperty (iPath, "Label")
Next

'Get submenu count from application

Window ("Flight Reservation").Activate
Cnt=window ("Flight Reservation").WinMenu ("Menu").GetItemProperty
("File","submenucount")

QuickTest Professional Unplugged

 All powers within you, you can do it

121

Print ("submenucount:"&Cnt)
For i=1 to cnt
 path1=window ("Flight Reservation").WinMenu ("Menu").BuildMenuPath ("File",i)
 b=window ("Flight Reservation").WinMenu ("Menu").GetItemProperty (path1,"Label")
 Print b
Next

Working with Webtable Object

What is a web table object?
Tables are one of the primary design tools for HTML documents. Tables allow for greater
control over page layout, allowing creation of more visually interesting pages. Tables are
also used to set apart sections of documents, such as in sidebars, navigation bars, or
framing images and their titles and captions. Tables have literally changed the look of the
Web page. Originally, tables let people present data in a column format. Designers quickly
figured out ways to improve the layout of their pages using tables.

A Sample Web Table Object

 Every web table contains data (text data) and child objects in specified cells. When we
are working with descriptive programming using QTP, web table object is very useful to
get data or to get object information for further activities.

Retrieving data from web table

'**
RCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .RowCount

QuickTest Professional Unplugged

 All powers within you, you can do it

122

For r=1 to RCount
CCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ColumnCount(r)
For c=1 to CCount
CData=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .GetCellData(r, c)
Msgbox cData
Next
 Next

'**

Step1 :- Get row count from table
Step2 :-Using “For Loop ” Get column count for every row.
 Using this row number and column number we can able to identify the cells in a table. To
get data from a cell we have to provide row and column numbers of a cell.
Step3 :-Get cell data from every cell by providing row and column.

Accessing child objects from web table
'**
Description object- to return a property collection objects containing a set of property
object. A property object consists of a property name and value. The Description object
enables you to specify multiple properties to uniquely identify a dynamic object.

1. Creating a Description object by using the following syntax:
 Dim objDescription
 Set objDescription = Description. Create ()
Note – Use the Dim statement to declare a variable. Use the Create method to create a
new and empty Description object. Use the Set statement to set the value of a variable
and then assign the variable to an object.

2. Set property and value pairs in the Description object by using the following syntax:
<description_object>. (<property1>).value=<value1>….
<description_object>. (<PropertyX>).value=<valueX>

3. Refer to the dynamic object with the following syntax:
<object_hierarchy>.<object_class> (<description_object >)

'**
Set oWebEdit=Description. Create
oWebEdit("micclass").value="WebEdit"
Set objList=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ChildObjects (oWebEdit)
For objIndex=0 to objlist.count-1
 Msgbox objlist (objIndex).getroproperty ("html id")
Next
'**

QuickTest Professional Unplugged

 All powers within you, you can do it

123

This example is to access web table child objects using description object. This is a
common method to get child objects from any parent level object. Not like other objects
web table object is having a special method to get child items from web table cell without
using description object.

Accessing child objects from web table cell
'**

RCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .RowCount
For r=1 to RCount
CCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ColumnCount(r)
For c=1 to CCount
OCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ChildItemCount(r, c,"WebEdit")
For obj=0 to OCount -1
Set cObject=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ChildItem(r, c,"WebEdit", obj)
 Msgbox cObject.getROproperty ("html id")
Next
Next
Next

'**

This example to access child objects from web table cell. This method doesn’t require
description object support to access child objects from web table. For this we are using
Childitem method.

Difference between childobject, childitem and Getce lldata methods

ChildObjects method is to access total child objects from web table object using
description object.
Syntax : - object.ChildObjects ([Description])

ChildItem method is to access child objects from a web table cell in web table object
without using description object.
Syntax:-object.ChildItem (Row, Column, MicClass, Index)

Getcelldata method is to retrieve data from a web table cell in web table object.
Syntax:-object.GetCellData (Row, Column)

QuickTest Professional Unplugged

 All powers within you, you can do it

124

Working with File System Object

VB Script does not recognize or read the flat files like notepad, etc.We create an
object which is called filesystemobject ,which contains flat files from that file system
objective you can retrieve value and can apply on text. And we can retrieve, write, add the
data’s from the external environment to apply those value into the application

Description

Provides access to a computer's file system.

Syntax

Scripting.FileSystemObject

Remarks

The following code illustrates how the FileSystemObject is used to return a TextStream
object that can be read from or written to:

QuickTest Professional Unplugged

 All powers within you, you can do it

125

**
Set fso = CreateObject ("Scripting.FileSystemObject")
Set a = fso.CreateTextFile ("c:\testfile.txt", True)
a.WriteLine ("This is a test.")
a. Close

**

In the preceding code, the CreateObject function returns the FileSystemObject (fso). The
CreateTextFile method then creates the file as a TextStream object (a) and the WriteLine
method writes a line of text to the created text file. The Close method flushes the buffer
and closes the file.

Working with drives

Description

Provides access to the properties of a particular disk drive or network share.

**
Dim fso, d
Set fso = CreateObject ("Scripting.FileSystemObject")
Set d = fso.GetDrive(fso.GetDriveName(drvPath))
 **

'Volume Name
msgbox d.VolumeName

'The total size of the drive in bytes (TotalSize pr operty)
msgbox "Total Space: " & FormatNumber (drv.TotalSize / 1024, 0)

'How much space is available on the drive in bytes (Available Space or FreeSpace
properties)
msgbox "Available Space: " & FormatNumber (d.AvailableSpace/1024, 0)

'What letter is assigned to the drive (DriveLetter property)
msgbox "Drive” & d.DriveLetter

'What type of drive it is, such as removable, fixed , network, CD-ROM, or RAM disk
(DriveType property)

'0:"Unknown"
'1:"Removable"

QuickTest Professional Unplugged

 All powers within you, you can do it

126

'2:"Fixed"
'3:"Network"
'4:"CD-ROM"
'5:"RAM Disk"
msgbox d.DriveType

'The drive's serial number (SerialNumber property)
msgbox d.SerialNumber

Working with folders

Description

Provides access to all the properties of a folder.

Examples

The following code illustrates how to obtain a Folder object and how to return one of its
properties:
Function ShowDateCreated (folderspec)

**

 Dim fso, f
 Set fso = CreateObject ("Scripting.FileSystemObject")
 Set f = fso.GetFolder (folderspec)
 ShowDateCreated = f.DateCreated
End Function

**

'Create Folder
CreateObject ("scripting.filesystemobject").CreateFolder (FolderPath)

'Delete Folder
CreateObject ("scripting.filesystemobject").DeleteFolder (FolderPath)

'Move Folder
CreateObject ("scripting.filesystemobject").MoveFolder SourceFolderPath,
DestinationFolderPath

'Copy Folder
CreateObject ("scripting.filesystemobject").CopyFolder
SourceFolderPath,DestinationFolderPath

'Get Name of a Folder
msgbox CreateObject("scripting.filesystemobject").GetFolder(FolderPath).Name

QuickTest Professional Unplugged

 All powers within you, you can do it

127

'Check for Folder Existence
msgbox CreateObject("scripting.filesystemobject").FolderExists(FolderPath)

'Get Parent Folder Name
Msgbox CreateObject ("scripting.filesystemobject").GetFolder
(FolderPath).ParentFolder.Name

'Get Sub Folders from a Folder
Dim fso, fld, sfolders, sFld
Set fso = CreateObject ("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)
Set sfolders = fld.SubFolders
For Each sFld in sfolders
 msgbox sFld.name
Next

'Get Files From a Folder
Dim fso, fld, sFiles, sFile
Set fso = CreateObject ("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)
Set sFiles = fld.Files
For Each sFile in sFiles
 msgbox sFile.name
Next

Working with files

Description

Provides access to all the properties of a file

Creating Text Files

Description

Creates a specified file name and returns a TextStream object that can be used to read
from or write to the file.

QuickTest Professional Unplugged

 All powers within you, you can do it

128

Syntax

object.CreateTextFile (filename [, overwrite [, unicode]])

Examples

The following code illustrates how to use the CreateTextFile method to create and open a
text file:

**

 Set fso = CreateObject ("Scripting.FileSystemObject")
 Set a = fso.CreateTextFile ("c:\testfile.txt", True)
 a.WriteLine ("This is a test.")
 a. Close

**
If the overwrite argument is False , or is not provided, for a filename that already exists, an
error occurs.

Opening Text Files

Description

Opens a specified file and returns a TextStream object that can be used to read from,
write to, or append to the file.

 Syntax

object.OpenTextFile (filename [, iomode [, create [, format]]])

Examples

The following code illustrates the use of the OpenTextFile method to open a file for writing
text:

For reading
**

 Dim fso, f
 Set fso = CreateObject ("Scripting.FileSystemObject")
 Set f = fso.OpenTextFile ("c:\kanak.txt", 1, True)

**

Note

The iomode argument can have either of the following settings:

Constant Value Description

ForReading 1 Open a file for reading only. You can't write to this file.

ForWriting 2 Open a file for writing only. You can't read from this file.

QuickTest Professional Unplugged

 All powers within you, you can do it

129

ForAppendin
g

8 Open a file and write to the end of the file.

'Reading Specified number of Characters
 MsgBox f.Read (5)

 'Reading Complete Data from File
 MsgBox f.ReadAll

 'Read Data Line by Line
 While Not f.AtEndOfStream
 MsgBox f.ReadLine
 Wend

For writing
**
 Dim fso, fl
 Set fso = CreateObject ("Scripting.FileSystemObject")
 Set fl = fso.OpenTextFile ("c:\kanak.txt", 1, True)

**

'Write characters
 fl.Write ("hello")

 'Write blank lines
 fl.WriteBlankLines (2)

 'Write data line by line
 fl.WriteLine ("A New Line")

Update/Append Data to a Text File
**

Set fso=CreateObject ("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,8)

**

 'Write characters
 fl.Write ("hello")

 'Write blank lines
 fl.WriteBlankLines (2)

 'Write data line by line
 fl.WriteLine ("A New Line")

QuickTest Professional Unplugged

 All powers within you, you can do it

130

'Remove Data from a text File

**

Set fso=CreateObject ("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,2)
 'Write nothing
 fl.Write("")
**

Copy file

Description
Copies one or more files from one location to another.

Syntax

Object.CopyFile source, destination [, overwrite]

Remarks

Wildcard characters can only be used in the last path component of the source argument.
For example, you can use:
**

FileSystemObject.CopyFile "c:\mydocuments\letters*.doc", "c:\tempfolder\"
‘But you can't use:
FileSystemObject.CopyFile "c:\mydocuments*\R1???97. xls", "c:\tempfolder"

**

If source contains wildcard characters or destination ends with a path separator (\), it is
assumed that destination is an existing folder in which to copy matching files. Otherwise,
destination is assumed to be the name of a file to create. In either case, three things can
happen when an individual file is copied.

• If destination does not exist, source gets copied. This is the usual case.
• If destination is an existing file, an error occurs if overwrite is False . Otherwise, an

attempt is made to copy source over the existing file.
• If destination is a directory, an error occurs.

An error also occurs if a source using wildcard characters doesn't match any files. The
CopyFile method stops on the first error it encounters. No attempt is made to roll back or
undo any changes made before an error occurs

'Moving a File
CreateObject ("scripting.filesystemobject").MoveFile SourceFilePath, DestinationFilePath

QuickTest Professional Unplugged

 All powers within you, you can do it

131

'**
'Modify a Specific Line in a TextFile
'**

Dim txtFilePath, txtRowNumber, TextToModify
Dim fso, f, txtData, strTxtData,cnt
txtFilePath= "C:\abc.txt"
txtRowNumber=3
TextToModify="three"
Set fso= CreateObject (“scripting. FilesystemObject ")
Set f=fso.OpenTextFile(txtFilePath, 1)
txtData=f.readall
f.close
Set f=fso.OpenTextFile (txtFilePath, 2)
strTxtData=split (txtData, vbnewline)
For cnt=0 to ubound (strTxtData)
 If cnt<>txtRowNumber- 1 Then
 f.writeline (strTxtData (cnt))
 else
 f.writeline (TextToModify)
 End If
Next
f.close
'**
'**

.

Dictionary Object

Arrays are the first construct that VBScript instructors introduce when they discuss
how to group data. With arrays, you can store columns of data in one place, and then
access the data later through one variable. However, years of real-world use have
revealed that arrays aren't always the most desirable solution to gather and maintain

QuickTest Professional Unplugged

 All powers within you, you can do it

132

related data. Fortunately, a new type of array has emerged: the dictionary. Here's a look at
what dictionaries are and how you manipulate them with the methods and properties.

The Dictionary Object's Methods and Properties

Method or Property Description
Methods

Add Adds a new item to the dictionary
Exists Verifies whether a given key exists in the

dictionary
Items Returns an array with all the values in a dictionary
Keys Returns an array with all the keys in a dictionary

Remove Removes the item identified by the specified key
RemoveAll Removes all the items in the dictionary

Properties
Count Returns the number of items in a dictionary
Item Sets and returns an item for the specified key
Key Changes an item's key

Comparing Dictionaries and Arrays
A dictionary is a general-purpose data structure that looks like a linked list but acts like a
"super array." Like VBScript arrays, dictionaries store data and make that data available
through one variable. However, dictionaries differ from arrays in many ways, including

· A dictionary has additional methods to add new items and check for existing
items.

· You don't need to call ReDim to extend the dictionary's size.
· When you delete a particular item from a dictionary, all the subsequent items

automatically shift up. For example, if you delete the second item in a three-item
dictionary, the original third item automatically shifts up into the second-item slot.

· You use keys to identify dictionary items. Keys can be any data subtype, except
an array or dictionary.

· A dictionary can't be multidimensional.

· You can store an array or another dictionary object in to a dictionary object.

The most important reason for using a dictionary instead of an array is that a dictionary is
more flexible and is richer in terms of built-in functionality. Dictionaries work better than
arrays when you need to access random elements frequently. Dictionaries also work
better when you want to locate items by their content rather than their position.

 Use this object to support the creation, storage, and retrieval of name/value pairs in
memory. Every value in a Dictionary object is a Variant, which means you can create a
Dictionary object that consists of almost any kind of value (including other Dictionary
objects and arrays), and that you can store any combination of Variant types in the same
Dictionary object.

QuickTest Professional Unplugged

 All powers within you, you can do it

133

 '***

'Creation of a Dictionary Object

Dim d ' Create a variable.

Set d = CreateObject("Scripting.Dictionary")

Here 'd' is a variable which is converted into a dictionary object.

'***
'***

'Adding items to Dictionary Object

 Syntax:

Object.Add Item,Value

 Dim d ' Create a variable.

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens" ' Add some keys and items.

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

'***
'***

'To check for Key Exist or not

 Dim d ' Create a variable.

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens" ' Add some keys and items.

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

 If d.Exists("c") Then

msgbox "key exists"

QuickTest Professional Unplugged

 All powers within you, you can do it

134

Else

msgbox "key doesn't exist"

End If

 '***
'***

'To get values of Items

Dim a, d, i, iList

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens"

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

iList = d.Items

For i = 0 To d.Count -1

 msgbox iList(i)

Next

'***

'***

'To get names of the Keys

Dim a, d, i, iList

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens"

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

iList = d.Keys

For i = 0 To d.Count -1

QuickTest Professional Unplugged

 All powers within you, you can do it

135

 msgbox iList(i)

Next

'***
'***

'To Remove a key from Dictionary Object

Dim a, d

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens"

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

d.Remove("b") ' Remove second pair.

'***
'***

'To Remove all keys from Dictionary

Dim d

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens"

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

d.RemoveAll ' Clear the dictionary.

'***
'***

'To get value of Single Key

Dim d

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens"

QuickTest Professional Unplugged

 All powers within you, you can do it

136

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

msgbox d("a") or msgbox d.Item("a")

'***
'***

Using Dictionary object in functions

Set UDetails=CreateObject("Scripting.Dictionary")

UDetails.add "UserName","Sudhakar"

UDetails.add "Password","qtp"

Here is a dictionary object with user name and password. To use these details in a
function we should develop functions in this format.

 Function Login(UserDetails)

Browser(bName).Page(pName).webedit(uName).set UserDetails("UserName")

Browser(bName).Page(pName).webedit(pwd).set UserDetails("Password")

Browser(bName).Page(pName).webbutton(bName).click

 End Function

 Calling the created function

 call Login (Udetails)

'***
'***

Virtual Objects

 What is Virtual Object?

 A virtual object is defined by user in QuickTest to recognize any area of your application
as an object. Virtual objects enable you to record and run tests on objects that are not
normally recognized by QuickTest.

QuickTest Professional Unplugged

 All powers within you, you can do it

137

 What is virtual Object Collection?

 A virtual object collection is a group of virtual objects that is stored in the Virtual Object
Manager under a descriptive name.

 How to disable virtual Objects while recording?

 Go to Tools-->Options--> General Tab--> Disable Recogniti on of virtual objects
while recording

Check and uncheck this option to disable or enable virtual objects while recording.

 What is the storage location of Virtual Objects?

 If you create any virtual objects automatically those objects will be stored in

<QuickTest installation folder>\ dat \ VoTemplate

 What is extension of virtual objects file?

 .VOT

 How to use virtual objects on different machines?

 After creation of virtual objects copy <QuickTest installation folder>\ dat \ VoTemplate
Folder to other machines on which you want to use virtual objects.

 What are the limitations and drawbacks of Virtual Objects?

• QuickTest does not support virtual objects for analog or low-level recording.
• Not possible to apply a checkpoint on a virtual object
• Only by recording we can add virtual objects
• Not possible to add virtual objects using Object Repository
• Not possible to spy on a virtual object using object spy
• Virtual Objects doesn’t support all objects and methods.
• May not run perfectly on different screen resolutions if a test using Virtual Objects.
• Virtual object uses the properties Name, Height, Width, X, Y which the properties

are having maximum possibilities for frequent change.

Object Repository

• Object Repository is a place where QTP stores learned objects
• QTP uses default Object Identification properties: mandatory and assistive to learn

objects into OR

Script playback using OR

QuickTest Professional Unplugged

 All powers within you, you can do it

138

• QTP finds the Object in Object Repository using object Logical Name and Object
Hierarchy

• QTP retrieves Test Object properties from OR
• QTP searches actual application for the Object with the same properties as the OR

Test Object and performs user action

Object Repository Types

Test objects can be stored in two types of object repositories—a shared object repository
and a local object repository.

A shared object repository stores test objects in a file that can be accessed by multiple
tests (in read-only mode).

A local object repository stores objects in a file that is associated with one specific
action, so that only that action can access the stored objects.

Local Object Repository

When you use a local object repository, QuickTest uses a separate object repository for
each action.

• QuickTest creates a new (empty) object repository for each action.
• As you record operations on objects in your application, QuickTest automatically

stores the information about those objects in the corresponding local object
repository (if the objects do not already exist in an associated shared object
repository).
QuickTest adds all new objects to the local object repository even if one or more
shared object repositories are already associated with the action. (This assumes
that an object with the same description does not already exist in one of the
associated shared object repositories).

• If a child object is added to a local object repository, and its parents are in a shared
object repository, its parents are automatically moved to the local object repository.

• Every time you create a new action, QuickTest creates a new, corresponding local
object repository and begins adding test objects to the local object repository as
you record or learn objects.

• If you learn or record on the same object in your application in two different actions,
the object is stored as a separate test object in each of the local object
repositories.

• When you save your test, all of the local object repositories are automatically
saved with the test (as part of each action within the test). The local object
repository is not accessible as a separate file (unlike the shared object repository).

Shared Object Repository

When you use shared object repositories, QuickTest uses the shared object repositories
you specify for the selected action. You can use one or more shared object repositories.

QuickTest Professional Unplugged

 All powers within you, you can do it

139

• If you record operations on an object that already exists in either the shared or
local object repository, QuickTest uses the existing information and does not add
the object to the object repository.

• If a child object is added to a local object repository, and its parents are in a shared
object repository, its parents are automatically moved to the local object repository.

• QuickTest does not add an object to the shared object repository as you record
operations on it. Instead, it adds new objects to the local object repository (not the
shared object repository) as you learn objects or record steps on them (unless
those same objects already exist in an associated shared object repository).

• You can export the local objects to a shared object repository.

You can also merge the local objects directly to a shared object repository that is
associated with the same action. This can reduce maintenance since you can maintain the
objects in a single shared location, instead of multiple locations.

Creating and managing shared object repositories will do using Object Repository
Manager. This concept will come in Managing object repositories.

When to use Local object repository

• You have only one, or very few, tests that correspond to a given application
interface, or set of objects.

• You do not expect to frequently modify test object properties.
• You generally create single-action tests.

When to use shared object Repository

• You are creating tests using keyword-driven methodologies (not using record).
• You have several tests that test elements of the same application, interface, or set

of objects.
• You expect the object properties in your application to change from time to time

and/or you regularly need to update or modify test object properties.
• You often work with multi-action tests and regularly use the Insert Copy of Action

and Insert Call to Action options.

Managing Object Repositories Using Object Repository Manager

The Object Repository Manager enables you to manage all of the shared object
repositories used in your organization from a single, central location, including adding and
defining objects, modifying objects and their descriptions, parameterizing repositories to
make them more generic, maintaining and organizing repositories, merging repositories,
and importing and exporting repositories in XML format.

QuickTest Professional Unplugged

 All powers within you, you can do it

140

Navigation: - Resources-->>Object Repository Manager

 Using Object Repository Manager we can

1. Creating Shared Object Repositories
2. Managing objects in Shared object repositories
3. Modifying Test Object Details
4. Comparing object repositories
5. Merging Object Repositories

Creating Shared object repositories we can do in two ways

1. From object repository dialog box directly we can export local objects to shared
2. From Object repository Manager

But modifying, deleting or changing objects in shared object repositories is possible only
with Object repository manager.

Creating Shared object Repositories

In the Object Repository Manager, choose File --> new or click the new button. A new
object repository opens. You can now add objects to it, modify it, and save it.

QuickTest Professional Unplugged

 All powers within you, you can do it

141

Editing Shared object Repositories

Navigation: - In object repository manager select an Object Repository and then File--
>Enable Editing

When you open an object repository, it is opened in read-only mode by default. You can
open it in editable format by clearing the Open in read-only mode check box in the Open
Shared Object Repository dialog box when you open it.

If you opened the object repository in read-only mode, you must enable editing for the
object repository before you can modify it. You do not need to enable editing for an object
repository if you only want to view it or copy objects from it to another object repository.
When you enable editing for an object repository, it locks the object repository so that it
cannot be modified by other users. To enable other users to modify the object repository,
you must first unlock it (by disabling edit mode, or by closing it). If an object repository is
already locked by another user, if it is saved in read-only format, or if you do not have the
permissions required to open it, you cannot enable editing for it.

Object Repository comparison Tool

Navigation: - Tools-->Object Repository Comparison Tool

Object repository comparison tool enables you to compare two shared object repositories
and to view the differences in their objects, such as different object names, different object
descriptions, and so on.

QuickTest Professional Unplugged

 All powers within you, you can do it

142

After opening the comparison tool, to compare the object repositories you need to
provide two object repositories file paths and click on OK . Then the Comparison Tool
provides a graphic presentation of the objects in the object repositories, which are shown
as nodes in a hierarchy. Objects that have differences, as well as unique objects that are
included in one object repository only, can be identified according to a color configuration
that you can select. Objects that are included in one object repository only are identified in
the other object repository by the text "Does not exist". You can also view the properties
and values of each object that you select in either object repository.

Object Repository Merge Tool

Navigation: - Tools  ����Object Repository Merge Tool

Object repository merge tool enables you to merge two object repositories into a single
shared object repository. You can also use this tool to merge objects from the local object
repository of one or more actions into a shared object repository.

QuickTest Professional Unplugged

 All powers within you, you can do it

143

 This tool enables you to merge two shared object repositories (called the primary
object repository and the secondary object repository), into a new third object repository,
called the target object repository. Objects in the primary and secondary object
repositories are automatically compared and then added to the target object repository
according to preconfigured rules that define how conflicts between objects are resolved.

After opening the merge tool, to merge the object repositories you need to provide
two object repositories file paths and click on OK . After the merge process, the Object
Repository Merge Tool provides a graphic presentation of the original objects in the
primary and secondary object repositories, which remain unchanged, as well as the
objects in the merged target object repository. Objects that had conflicts are highlighted.
The conflict of each object that you select in the target object repository is described in
detail. The Object Repository Merge Tool provides specific options that enable you to keep
the suggested resolution for each conflict, or modify each conflict resolution individually,
according to your requirements.

The Object Repository Merge Tool also enables you to merge objects from the local object
repository of one or more actions into a shared object repository. For example, if
QuickTest learned objects locally in a specific action in your test, you may want to add the
objects to the shared object repository, so that they are available to all actions in different
tests that use that object repository.

QuickTest Professional Unplugged

 All powers within you, you can do it

144

Working with Databases

Test data may be in Database, so that we should connect our test to database and
retrieve the data and use the same in test. We should know 3 things while us dealing
with database connections viz.

1. How to Connect
2. How to establish connection
3. How to Retrieve and use the data

Connecting to a Database:

For connection, we need to provide two things

1. Driver / Provider : A third party software used for establishing the connection
between front end and back end of the application.

2. Location : Location of database

Record Set: It is a temporarily location where we can store the retrieve data from data
base at time.
 From that temporarily location we can use the data one by one or as per
requirement in our testing.

Connection: Connects the application and database.

• We need to create Object Instances for both Record Set and Connection.

Connecting to a database

 To connect a database from a Quicktest Professional script.

1. Create a connection object
2. Call the open method of the connection object

You use the connection string property of a connection object provide information
about a database. Using this connection string property, the open method connects
to a database

**
‘Create a connection object
Set objDB=CreateObject (“ADODB.Connection”)

‘Open a session to a db
objDB.ConnectionString =”DSN=Flight32_testdata”
objDB.Open

**

QuickTest Professional Unplugged

 All powers within you, you can do it

145

Executing a SQL Query

 After the database connection is established, run an SQL query against the
database. Use the execute method of the connection object to retrieve data from a
database
The execute method accepts an SQL statements as an input and returns a RecordSet
object when the run completes.

**
‘Create a connection object
Set objDB=CreateObject (“ADODB.Connection”)

‘Open a session to a db
objDB.ConnectionString =”DSN=Flight32_testdata”
objDB.Open

**

Examining the Query Result

 After executing an SQL query, use the RecordSet object to examine the query
results. Use the following properties and methods to examine the query results

� BOF(Beginning of file) and EOF(End of file)- These properties determine if you are
at the boundaries of the RecordSet object

� MoveNext, MovePrevious and Move - The MoveNext methods moves one record

forward and Move Previous method moves one record backward in the RecordSet
object. The Move method moves multiple records forwards or backward at a time

� Fields. Count – This method indicates the number of columns of data returned by

the SQL query

� Fields (“MyColumn”) or Fields. Item (“MyColumn”). value – These methods
return the value saved in the specified column of the current record of the
RecordSet object.

**
‘Execute a query
StrQuery=”select * from flights where departure= San Francisco”
Set objResults=objDB.Execute (StrQuery)
‘Examine query results
Do Until objResults.Fields (“flight_Number”)
strDestination= objResults.fields (“Arrival”)
‘Do something with data
objResults.MoveNext
Loop

**

QuickTest Professional Unplugged

 All powers within you, you can do it

146

In the above example, the code steps through all the flights rows with SAN FRANCISCO
as the departure city .The code retrieve the flight number and arrival information from each
row.

Closing the database session

 After examining the output of an SQL query, close the database session by using
the Close method. Close methods are provided in the RecordSet and Connection objects

Note –Closing the Connection object will automatically close any active RecordSet object
associated with the connection object.

After the RecordSet or Connection objects is closed, you can set their variables to
Nothing.
**
‘Clean up
objResults.Close
objDB.Close
Set objResults=Nothing
Set objDB=Nothing

**

Print data from oracle database
**
Set db=createobject ("ADODB.connection")
db.open ("DSN=QT_Flight32; UID=scott; FWD=tiger; SERVER=oracle")
If db.state=1 Then
 Msgbox "connection is opened"
 Else
 Msgbox "connection is not opened"
 End If
Set rs=db.execute ("select * from orders")
While not rs.eof
 Print rs (0) &vbtab&rs (1) &vbtab&rs (2)
 rs.movenext
Wend
**
In the above example, the code steps through all the data are from the order table.

Insert the new rows into the database
**
Set db=createobject ("ADODB.connection")
db.open ("DSN=QT_Flight32; UID=scott; FWD=tiger; SERVER=oracle")
If db.state=1 Then
Msgbox "connection is opened"
Else
Msgbox "connection is not opened"

QuickTest Professional Unplugged

 All powers within you, you can do it

147

End If
rs=db.execute ("insert into pbcatvld values ('kanak','Ness')")

**

Update the specific field in the database
**
Set db=createobject ("ADODB.connection")
db.open ("DSN=QT_Flight32; UID=scott; FWD=tiger; SERVER=oracle")
If db.state=1 Then
 Msgbox "connection is opened"
 Else
 Msgbox "connection is not opened"
End If
rs=db.execute ("update orders set customer_name=kanak where order_no=20")

**
Delete the specific field in the database
**
Set db=createobject ("ADODB.connection")
db.open ("DSN=QT_Flight32; UID=scott; FWD=tiger; SERVER=oracle")
If db.stste=1 Then
 Msgbox "connection is opened"
 Else
 Msgbox "connection is not opened"
End If
db.execute ("delete from orders where username like ‘demo %’")

**

Example: For example, test data is stored as below; do write the database connection
script.
 Testdata.mdb
v1 v2 res
10 20 30
30 30 60
30 20 50
90 90 180
2 8 10

For MSACCESS :

‘Dimensioning connection (con) and recordset (rs)

QuickTest Professional Unplugged

 All powers within you, you can do it

148

 Dim con, rs
‘Creating object instanced for both above con and rs
‘Adodb = ActiveX Data Object Database
Set con = CreateObject (“adodb.connection”)
Set rs = CreateObject (“adodb.recordset”) these two
lines never changed

Establishing
the Connection ‘Assigning the connection with 3rd party provider i.e. with Microsoft

con.provider = “Microsoft.jet.oledb.4.0”
‘Opening the database by specifying the location
*

 con.open “d:/automation/testdat.mdb”

‘Retrieving the data from data table
Retrieving the data rs.open “select * from info”, on

 ‘By using the retrieved data, checking all the rows
 ‘Eof: eng of file
 ‘Not = if the record is not end of file then go into the loop
 ‘Else come out from the loop
 Do while not rs.eof
 ‘Inserting the retrieved data (v1) into val1 edit field
 Vbwindow (“form1”).vbEdit (“val1”).set rs.field (“v1”)
Using the Data ‘Inserting the retrieved data (v2) into val1 edit field
 Vbwindow (“form1”).vbEdit (“val2”).set rs.field (“v2”)
 ‘Clicking on ADD button
 Vbwindow (“form1”).vbButton (“ADD”).click
 ‘Changing the focus to next row
 rs.moveNext
 ‘Continuing the loop till eof
 Loop

 =============================

* For Oracle and SQL we will write both Provider name and Connection in one line
and rest is same.

For Oracle
con.open “provider=oraoledb.1; server=locahost; uid=userID; pwd=password;
database=database name”

For SQL
con.open “provider=sqloledb.1; server=locahost; uid=userID; pwd=password;
database=database name”

QuickTest Professional Unplugged

 All powers within you, you can do it

149

Word Object Model Overview

To develop solutions that use Microsoft Office Word, you can interact with the
objects provided by the Word object model. Word objects are arranged in a hierarchical
order, and the two main classes at the top of the hierarchy are the Application and
Document classes. These two classes are important because most of the time you either
work with the Word application itself, or manipulate Word documents in some way.

The Word object model closely follows the user interface. The Application object
represents the entire application, each Document object represents a single Word
document, the Paragraph object corresponds to a single paragraph, and so on. Each of
these objects has many methods and properties that allow you to manipulate and interact
with it.

Microsoft Visual Studio 2005 Tools for the Microsoft Office System (VSTO 2005)
extends many of these native objects into host items and host controls that can be used in
document-level customizations. These controls have additional functionality such as data-
binding capabilities and events. For example, a native Word
Microsoft.Office.Interop.Word.Bookmark object is extended into a
Microsoft.Office.Tools.Word.Bookmark control, which can be bound to data and exposes
events. For more information about host items and host controls, see Host Items and Host
Controls Overview.

Accessing Objects in a Word Project

When you create a new application-level project for Word by using Microsoft Visual
Studio 2005 Tools for the 2007 Microsoft Office System (VSTO 2005 SE), Visual Studio
automatically creates a ThisAddIn.vb or ThisAddIn.cs code file. You can access the
Application object by using Me.Application or this. Application.

When you create a new document-level project for Word by using VSTO 2005, you
have the option of creating a new Word Application or Word Template project. VSTO 2005
automatically creates a ThisDocument.vb or ThisDocument.cs code file in your new Word
project for both Document and Template projects. You can access the Application and
Document objects by using the Me or this object reference.

At first glance, there appears to be a lot of overlap in the Word object model. For
example, the Document and Selection objects are both members of the Application object,
but the Document object is also a member of the Selection object. Both the Document and
Selection objects contain Bookmark and Range objects. The overlap exists because there

QuickTest Professional Unplugged

 All powers within you, you can do it

150

are multiple ways you can access the same type of object. For example, you apply
formatting to a Range object; but you may want to access the range of the current
selection, a particular paragraph, section or the entire document.

Word Object Model Abstract

The Application object contains the Document, Selection, Bookmark, and Range objects.

Word provides hundreds of objects with which you can interact. The following sections
briefly describe the top-level objects and how they interact with each other. These include:

Application object

Document object

Selection object

Range object

Bookmark object

Application Object

The Application object represents the Word application, and is the parent of all of
the other objects. Its members usually apply to Word as a whole. You can use its
properties and methods to control the Word environment.

Document Object

The Microsoft.Office.Interop.Word.Document object is central to programming
Word. When you open a document or create a new document, you create a new
Microsoft.Office.Interop.Word.Document object, which is added to the Documents
collection in Word. The document that has the focus is called the active document and is
represented by the Active Document property of the Application object.

Visual Studio Tools for Office extends the Microsoft.Office.Interop.Word.Document object
by providing the Microsoft.Office.Tools.Word.Document object, which gives you access to
all members of the Documents collection, as well as data-binding capabilities and
additional events. For more information, see Host Items and Host Controls Overview.
Since the majority of your code will be written in the This Document class, you can access
members of This Document with the me or this object reference.

QuickTest Professional Unplugged

 All powers within you, you can do it

151

Selection Object

The Selection object represents the area that is currently selected. When you
perform an operation in the Word user interface, such as bolding text, you select, or
highlight the text and then apply the formatting. The Selection object is always present in a
document. If nothing is selected, then it represents the insertion point. In addition, it can
also be multiple blocks of text that are not contiguous.

Range Object

The Range object represents a contiguous area in a document, and is defined by a
starting character position and an ending character position. You are not limited to a single
Range object. You can define multiple Range objects in the same document. A Range
object has the following characteristics:

• It can consist of the insertion point alone, a range of text, or the entire document.
• It includes non-printing characters such as spaces, tab characters, and paragraph

marks.
• It can be the area represented by the current selection, or it can represent a

different area than the current selection.
• It is not visible in a document, unlike a selection which is always visible.
• It is not saved with a document and exists only while the code is running.
• When you insert text at the end of a range, Word automatically expands the range

to include the inserted text.

Bookmark Object

A Microsoft.Office.Interop.Word.Bookmark in a document is similar to a text box
control on a Windows Form in that it is the easiest way to control text within a document.
The Microsoft.Office.Interop.Word.Bookmark object represents a contiguous area in a
document, with both a starting position and an ending position. You can use bookmarks to
mark a location in a document, or as a container for text in a document. A
Microsoft.Office.Interop.Word.Bookmark object can consist of the insertion point, or be as
large as the entire document. A Microsoft.Office.Interop.Word.Bookmark has the following
characteristics that set it apart from the Range object:

• You can name the bookmark at design-time.
• Microsoft.Office.Interop.Word.Bookmark objects are saved with the document, and

thus do not get deleted when the code stops running or your document is closed.
• Bookmarks can be hidden or made visible by setting the Show Bookmarks property

of the View object to True or False.

Visual Studio Tools for Office extends the Bookmark object into a host control. The
Microsoft.Office.Tools.Word.Bookmark control behaves like a native
Microsoft.Office.Interop.Word.Bookmark, but has additional events and data-binding

QuickTest Professional Unplugged

 All powers within you, you can do it

152

capabilities. You can now bind data to a bookmark control on a document in the same way
that you bind data to a text box control on a Windows Form. For more information, see
Host Items and Host Controls Overview.

Note

Microsoft.Office.Tools.Word.Bookmark controls that are added to a document
programmatically at run time do not get persisted with the document. Only the underlying
Microsoft.Office.Interop.Word.Bookmark object is saved. For more information, see Adding
Controls to Office Documents at Run Time.

Extended Objects in Document-Level Projects

It is important to understand the differences between the native objects provided by
the Word object model and the extended objects (host items and host controls) provided
by VSTO 2005, because both types of objects are available to document-level projects.
For more information, see Host Items and Host Controls Overview.

Design time. When you add any of the extended Word objects at design time, they
are automatically created as host items and host controls. For example, if you add a
bookmark to a document in the Designer, code is automatically generated to extend the
bookmark into a Microsoft.Office.Tools.Word.Bookmark control.

Run time. Host items are not automatically created at run time. If you add
documents at run time using the Add method, they are
Microsoft.Office.Interop.Word.Document objects and do not have the additional
capabilities that Microsoft.Office.Tools.Word.Document host items provide. You can
programmatically add Microsoft.Office.Tools.Word.Bookmark controls to your document
using the helper methods provided by VSTO 2005. For more information, see Host Items
and Host Controls Overview.

Data binding and events. Host items and host controls have data-binding capabilities and
events, which are not available to the native objects. Types. The native Word objects use
the types defined in the Microsoft.Office.Interop.Word namespace, whereas host items
and host controls use the aggregated types defined in the Microsoft.Office.Tools.Word
namespace.

Creating a Microsoft Word document

Dim objWD

‘Create the Word Object
Set objWD = CreateObject (”Word.Application”)

QuickTest Professional Unplugged

 All powers within you, you can do it

153

‘Create a new document
objWD.Documents.Add

‘Add text to the document
objWD.Selection.TypeText “This is some text.” & Chr (13) & “This is some more text”

‘Save the document
objWD.ActiveDocument.SaveAs “c:\temp\mydoc.doc”

‘Quit Word
objWD.Quit

How to search for a specific string

The following example uses Word object methods to open a Microsoft Word Document
and to use the Find object (the Find and Replace functionality) to search for the word
“apple.

Dim wrdApp
Dim wrdDoc
Dim tString, tRange
Dim p, startRange, endRange
Dim searchString

‘Create the Word Object
Set wrdApp = CreateObject (”Word.Application”)
Set wrdDoc = wrdApp.Documents.Open (”C:\Temp\SampleWord.doc”) ‘replace the file
with your MSDoc
searchString = “apple” ‘replace this with the text you’re searching for

With wrdDoc
for p = 1 to .Paragraphs. Count
startRange = .Paragraphs (p).Range. Start
endRange = .Paragraphs (p).Range. End
Set tRange = .Range (startRange, endRange)
‘tString = tRange.Text
tRange.Find.Text = searchString
tRange.Find.Execute

If tRange.Find.Found Then
msgbox “Yes!” & searchString &” is present”
End If

QuickTest Professional Unplugged

 All powers within you, you can do it

154

Next‘close the document
Close
End With
wrdApp.Quit ‘close the Word application
Set wrdDoc = Nothing
Set wrdApp = Nothing

The following example uses Word object methods to open a Microsoft Word Document
and retrieve paragraphs from it. Then the InStr VBScript method is used to check for the
word “apple.”

Dim wrdApp
Dim wrdDoc
Dim tString, tRange
Dim p, startRange, endRange
Dim searchString

Create the Word Object
Set wrdApp = CreateObject (”Word.Application”)
Set wrdDoc = wrdApp.Documents.Open(”C:\Temp\Text.doc”) ‘replace the file with your
MSDoc
searchString = “apple” ‘replace this with the text you’re searching for

With wrdDoc
for p = 1 to .Paragraphs. Count
startRange = .Paragraphs (p).Range. Start
endRange = .Paragraphs (p).Range. End
Set tRange = .Range (startRange, endRange)
tString = tRange.Text
tString = Left (tString, Len (tString) - 1) ‘exclude the paragraph-mark
If InStr (1, tString, searchString) > 0 Then ‘check if the text has the content you want
‘some other processing here
msgbox “Yes!” & searchString &” is present”
End If
Next
.Close ‘close the document
End With

QuickTest Professional Unplugged

 All powers within you, you can do it

155

wrdApp.Quit ‘close the Word application
Set wrdDoc = Nothing

What’s New in QTP 9.2

Object Identification

This concept is tells about how QTP is identifying objects while running and recording
session.

Object Identification in running session

If you record in Normal or Low level recording, object information will store in object
repository. In script you can see class, object name, operations, and values.

After starting running first QTP will see the class, object name in script and it
searches for the same object name in object repository. If that name exists in object
repository then QTP will identify the object in application using recorded properties in
object repository.

Object repository

It is the place where the Recorded object information will store. In this you can see all
objects properties and you can edit, modify and delete properties of the objects.

QuickTest Professional Unplugged

 All powers within you, you can do it

156

The objects and properties stored in object repository are called as Test Objects and
TOproperties .

Object Repository Dialog box

Adding objects

In the Object Repository window, choose Object--> Add Objects to Local. Click the
object you want to add to your object repository.

If the object is associated to any other object then you will this dialog box.

QuickTest Professional Unplugged

 All powers within you, you can do it

157

Selected object only: - Adds to the object repository the previously selected object's
properties and values, without its descendant objects.

Default object types: - Adds to the object repository the previously selected object's
properties and values, with the properties and values of its descendant objects according
to the object types specified by the default filter. You can see which objects are in the
default filter by clicking the Select button and then clicking the Default button.

All object types: - Adds to the object repository the previously selected object's
properties and values, together with the properties and values of all of its descendant
objects.

Selected object types: - Adds to the object repository the previously selected object's
properties and values, as well as the properties and values of its descendant objects
according to the object types and classes you specify in the object filter. You specify the
objects and classes in the filter by clicking the Select button and selecting the required
items in the Select Object Types dialog box.

Click on the select button to select the objects. After clicking on select this dialog box will
open.

Select the filter type and add the objects to the repository.

Modifying properties of the objects

QuickTest Professional Unplugged

 All powers within you, you can do it

158

Select the object which you want to modify properties and go to description properties
there select the property value. Automatically the property value will be edit; you can
change that value to any value.

Changing name of the object

Select object in repository, right click-->Rename and change the name.

Deleting objects from repository

Select object in repository, right click-->Delete.

Highlighting Object

Select object in repository View --> Highlight in Application . This will highlight object in
application.

Locate in Repository

Go to View --> Locate in Repository and select object in application if object is there in
repository then that object will be selected.

Object Spy

Navigation: - Tools-->object spy

Using the Object Spy, you can view the run-time or test object properties and methods of
any object in an open application. You use the Object Spy pointer to point to an object.
The Object Spy dialog box displays the selected object's hierarchy tree. It displays the run-
time or test object properties and values of the selected object in the Properties tab. It
displays the run-time or test object methods associated with the selected object in the
Methods tab.

QuickTest Professional Unplugged

 All powers within you, you can do it

159

To use object spy Click on the hand button showing in up side and show the object to that
hand button Quicktest will automatically displays properties of that object.

Tip: - Hold Left ctrl key for navigating on the application after clicking on the hand button.

By default object spy will show the runtime object properties for web application but not for
window applications.

Object Identification Dialog box

Navigation: - Tools--> Object Identification

It is mainly deals with how QTP is recording objects and properties to object repository.

Using Object Identification dialog box we can

• Configure the properties for each class
• Selecting the Ordinal Identifier
• Configuring smart identification
• Creating user defined classes

QuickTest Professional Unplugged

 All powers within you, you can do it

160

In object Identification Dialog box you can find list of classes, for every class you can find
pre-configured Mandatory and assistive properties.

Mandatory properties are properties that QuickTest always learns for a particular test
object class.

Assistive properties are properties that QuickTest learns only if the mandatory properties
that QuickTest learns for a particular object in your application are not sufficient to create a
unique description. If several assistive properties are defined for an object class, then
QuickTest learns one assistive property at a time and stops as soon as it creates a unique
description for the object. If QuickTest does learn assistive properties, those properties are
added to the test object description.

If the combination of all defined mandatory and assistive properties is not sufficient to
create a unique test object description, QuickTest also records the value for the selected
ordinal identifier .

Ordinal Identifier

In general, there are two types of ordinal identifiers:

Index —indicates the order in which the object appears in the application code relative to
other objects with an otherwise identical description.

Location —indicates the order in which the object appears within the parent window,
frame, or dialog box relative to other objects with an otherwise identical description.
Values are assigned from top to bottom, and then left to right.

The Web Browser object has a third ordinal identifier type:

CreationTime —indicates the order in which the browser was opened relative to other
open browsers with an otherwise identical description. Each test object class has a default
ordinal identifier selected.

QuickTest Professional Unplugged

 All powers within you, you can do it

161

Configuring Mandatory properties

In object identification dialog box select the object class from test object classes list and go
to Mandatory properties for that class.

Click on Add/Remove button and select or deselect the properties you want to configure.

Configuring Assistive Properties

In object identification dialog box select the object class from test object classes list and go
to Assistive properties for that class.

Click on Add/Remove button and select or deselect the properties you want to configure.

Configuring Ordinal Identifiers

To modify the selected ordinal identifier, select the desired type from the Ordinal
identifier box.

QuickTest Professional Unplugged

 All powers within you, you can do it

162

Smart Identification

When QuickTest uses the recorded description to identify an object, it searches for an
object that matches every one of the property values in the description. In most cases, this
description is the simplest way to identify the object and unless the main properties of the
object change, this method will work.

If QuickTest is unable to find any object that matches the recorded object description, or if
it finds more than one object that fits the description, then QuickTest ignores the recorded
description, and uses the Smart Identification mechanism to try to identify the object.

The Smart Identification mechanism uses two types of properties:

Base filter properties —The most fundamental properties of a particular test object class;
those whose values cannot be changed without changing the essence of the original
object

Optional filter properties —Other properties that can help identify objects of a particular
class as they are unlikely to change on a regular

Understanding the Smart Identification Process

1. QuickTest “forgets” the recorded test object description and creates a new object
candidate list containing the objects (within the object’s parent object) that match all of the
properties defined in the base filter property list.

2. From that list of objects, QuickTest filters out any object that does not match the first
property listed in the Optional Filter Properties list. The remaining objects become the new
object candidate list.

3. QuickTest evaluates the new object candidate list:

If the new object candidate list still has more than one object, QuickTest uses the new
(smaller) object candidate list to repeat step 2 for the next optional filter property in the list.

If the new object candidate list is empty, QuickTest ignores this optional filter property,
returns to the previous object candidate list, and repeats step 2 for the next optional filter
property in the list.

If the object candidate list contains exactly one object, then QuickTest concludes that it
has identified the object and performs the statement containing the object.

4. QuickTest continues the process described in steps 2 and 3 until it either identifies one
object, or runs out of optional filter properties to use.

If, after completing the Smart Identification elimination process, QuickTest still cannot
identify the object, then QuickTest uses the recorded description plus the ordinal identifier
to identify the object.

QuickTest Professional Unplugged

 All powers within you, you can do it

163

If the combined recorded description and ordinal identifier are not sufficient to identify the
object, then QuickTest stops the test run and displays a Run Error message.

If QuickTest successfully uses Smart Identification to find an object after no object
matches the recorded description, the test results receive a warning status and include the
following information:

Normal Identification fails to finds the object so that the warning message is showing.

If Quicktest uses Smart identification to find an object, a cap symbol will be appear in
results where ever it is using.
And some description will show in results saying that how Quicktest identifies the object
using smart identification.

QuickTest Professional Unplugged

 All powers within you, you can do it

164

In this example, Base filter properties prepares an objects list. (17 objects)

And optional filter properties filtered those object list using available properties.

If one property fails it’s using another property to find an object. If any property is finding
one object QTP is ignoring other properties.

Where as in Normal Identification process all properties in object description should
satisfied. If one property fails all object identification process will fail.

Configuring Smart Identification

In object identification window select a class in test object class list--> select option
“Enable Smart Identification”--> Click on Configure

Then “Smart Identification Properties – class name” will be appearing…

Click Add/Remove to add or remove properties in Base and optional filter properties.

Note: - By default smart identification is configur ed and activated for web
environment.

Mapping user defined test object classes

QuickTest Professional Unplugged

 All powers within you, you can do it

165

If your application has a button that cannot be identified, this button is recorded as a
generic WinObject. You can teach QuickTest to identify your object as if it belonged to a
standard Windows button class. Then, when you click the button while recording a test,
QuickTest records the operation in the same way as a click on a standard Windows
button. When you map an unidentified or custom object to a standard object, your object is
added to the list of Standard Windows test object classes as a user-defined test object.
You can configure the object identification settings for a user defined object class just as
you would any other object class.

Note that an object that cannot be identified should be mapped only to a standard
Windows class with comparable behavior.

For example, do not map an object that behaves like a button to the edit class.

Note: You can define user-defined classes only when Standard Windows is selected in
the Environment box.

The Object Mapping dialog box enables you to map an object of an unidentified or custom
class to a Standard Windows class.

To map an unidentified or custom class to a standar d Windows class:

1. Choose Tools > Object Identification . The Object Identification dialog box opens.
2. Select Standard Windows in the Environment box.
3. The User-Defined button becomes enabled. Click on User-Defined button. The

Object Mapping dialog box opens.

QuickTest Professional Unplugged

 All powers within you, you can do it

166

4. Click the pointing hand and then click the object whose class you want to add as a
user-defined class. The name of the user-defined object is displayed in the Class
Name box.

5. In the Map to box, select the standard object class to which you want to map your
user-defined object class and click Add . The class name and mapping is added to
the object mapping list.

6. If you want to map additional objects to standard classes, repeat steps 4-5 for each
object.

7. Click OK. The Object Mapping dialog box closes and your object is added to the
list of Standard Windows test object classes as a user-defined test object.

8. Note that your object has an icon with a red U in the corner, identifying it as a user-
defined class.

9. Configure the object identification settings for your user defined object class just as
you would any other object class.

From here after that mapped user defined class objects records like standard class
objects.

Object Identification - Conclusion

When you start recording on the application, QuickTest "looks" at the object on which you
are recording and stores it as a test object , determining in which test object class it fits.
QuickTest might classify the test object as a standard Windows dialog box (Dialog), a Web
button (WebButton), or a Visual Basic scroll bar object (VbScrollBar), for example.

Then, for each test object class, QuickTest has a list of mandatory properties that it
always learns. When you record on an object, QuickTest always learns these default
property values, and then "looks" at the rest of the objects on the page, dialog box, or
other parent object to check whether this description is enough to uniquely identify the
object. If it is not, QuickTest adds assistive properties, one by one, to the description, until
it has compiled a unique description. If no assistive properties are available, or if those
available are not sufficient to create a unique description, QuickTest adds a special
ordinal identifier , such as the object's location on the page or in the source code, to
create a unique description.

Similarly, during a run session, QuickTest searches for a run-time object that exactly
matches the description of the test object it learned while recording. It expects to find a
perfect match for both the mandatory and any assistive properties it used to create a
unique description while recording. As long as the object in the application does not
change significantly, the description learned during recording is almost always sufficient
for QuickTest to uniquely identify the object.

If QuickTest is unable to find any object that matches the learned object description, or if it
finds more than one object that fits the description, then QuickTest ignores the learned
description, and uses the Smart Identification mechanism to try to identify the object.

If QuickTest is unable to find any object using smart identification then QuickTest uses
Combination of Learned description and ordinal identifiers to find the object uniquely.

QuickTest Professional Unplugged

 All powers within you, you can do it

167

.

VBScript Basics

VBScript has only one data type called a Variant. A Variant is a special kind of data
type that can contain different kinds of information, depending on how it is used.
If you use a variable for assigning a numeric value, that variable behaves like a numeric
data type. If you assign string value, that variable behaves like a string. However
VBSCRIPT is having sub data types in Variant.

1. Empty
2. Null
3. Boolean
4. Byte
5. Integer
6. Currency
7. Long
8. Single
9. Double
10. Date (Time)
11. String
12. Object
13. Error.

We can use conversion functions to convert data from one subdatatype to another type.
To find subdatatype of a variant we need to use vartype function.

Variables

A variable is a convenient placeholder to store program information. You can
change variable value in script running time. In VBScript variables are always of one
fundamental data type Variant.

Use of variables in script:

Variable is very useful for carrying a value. For example if your script is using a
value 10 in five places (3rd, 7th, 12th, 17th, 20th lines). Suppose if that value is changed
from 10 to 20 then you need to change that value in all the places where ever it is used.
But if you have used variable in place of value (x=10) you need to change in only one
place if that value is changed from 10 to 20(x=20). Variables are having flexibility to
change value in run time.

QuickTest Professional Unplugged

 All powers within you, you can do it

168

Declaring Variables:

Because of vbscript is having only one data type no need to declare any variable in
the script. By default all variables are comes under variant datatype. But it is not the good
practice because you could misspell the variable name in one or more places, causing
unexpected results when your script is run.

For that reason, the Option Explicit statement is available to require explicit
declaration of all variables. Option Explicit statement will enforce you to declare all the
variables.

We can declare the variables using Dim statement.

**

Dim x

 X=10 'Normal Declaration

Optional Explicit

Dim x

X=10 'When working with optional explicit

**

Naming Restrictions to Variables:

Variable names follow the standard rules for naming anything in VBScript.

A variable name:

• Must begin with an alphabetic character.
• Cannot contain an embedded period.
• Must not exceed 255 characters.
• Must be unique in the scope in which it is declared.

Scope of a Variable:

If you declare a variable with in a Function then it is local to that function only. You
can access that variable only with in that function. Now It has local scope and is a
procedure-level variable.

If you declare a variable with in a Script then it can be used by entire script and can
be accessed by all functions. Now It has local scope and is a procedure-level variable.
This is a script-level variable, and it has script-level scope.

QuickTest Professional Unplugged

 All powers within you, you can do it

169

Array Variables

 A variable containing a single value is a scalar variable. You can create a variable
that can contain a series of values using an index number. This is called an array variable.
Arrays are useful when you're storing sets of similar data. You can store any kind of data
in an array. The array can hold a combination of data types.

Creating Arrays:

Using Dim Statement we can create an array. We can convert a variable in to an array
using array function.

Types of Arrays:

1. Fixed Length Arrays
2. Dynamic Arrays

Fixed arrays have a specific number of elements in them, whereas dynamic arrays can
vary in the number of elements depending on how many are stored in the array.

Creating Fixed Length Arrays:

Dim a(10)

Here 'a' is an array and is having 11 elements (Array count starts from 0). Here it's a fixed
size array with size 10.

Creating Dynamic Arrays:

A dynamic array is created in the same way as a fixed array, but you don't put any bounds
in the declaration.

Dim x ()

Here 'x' is the dynamic array and we can store n number of elements in it. The benefit of a
dynamic array is that if you don't know how large the array will be when you write the
code, you can create code that sets or changes the size while the VBScript code is
running.

We can store more values in dynamic array by redeclaring the array using Redim
statement.

ReDim Statement:

Using Redim we can redeclare an array size. ReDim tells VBScript to "re-dimension" the
array for how many elements you specify. If you use redim statement in your script it will
clear all existing data which is stored in that array and declares that array as fresh array.

Redim with Preserve Keyword:

QuickTest Professional Unplugged

 All powers within you, you can do it

170

When your working redim it will clear all the existing data in an array. The preserve
keyword is useful to overcome this problem. Preserve keyword will preserve the existing
data and resize the array with the specified size.

Ex: Redim preserve a (20)

Using Fixed arrays:
**

Dim x(2)

x(0)="how"
x(1)="are"
x(2)="you"

for i=lbound(x) to ubound (x)
msgbox x(i)
Next

**

Here we cann't store more than 3 elements. Because this is a fixed length array..

Using Dynamic Arrays:
**Dim x()
Redim preserve x(2)
x(0)="how"
x(1)="are"
x(2)="you"
Redim preserve x(3)
x(3)=123
**

Here 'x' is a dynamic array and by redeclaring x it can able to store more values into it.

Converting a variable into an array:
 We can convert a variable in to array variable using array function.

Example
** Dim v
v=array("how","are","you")
for i=lbound(v) to ubound (v)
msgbox v(i)
Next
**

Here 'v' is a dynamic array. We can store some more elements by redeclaring the array.

QuickTest Professional Unplugged

 All powers within you, you can do it

171

Constants

 A constant is a meaningful name that takes the place of a number or string and
never changes. The difference between variable and constant is we can change the
variable value in run time but for constants it’s not possible.

Creating constants:

const str="QTP".here str is a constant and the value will never change. We have public
and private constants. By default all are public. If you want specify the type then

Public const str="QTP"
 or
Private const str="QTP"

VB Script Procedures

There are two types of procedures

1. Function Procedure
2. Sub Procedure

Function Procedure

A Function procedure is a series of VBScript statements enclosed by the Function and
End Function statements. Function Procedure can able to return the value.

Example:
** Function
demo_add (a, b)
 demo_add=a+b
End Function
oVal=demo_add (2, 3)
msgbox oVal 'Returns 5
**

In this example demo_add function returns a value to oVal. In Function procedures we can
use function name to assign a value.

Sub Procedure

A Sub procedure is a series of VBScript statements enclosed by the Sub and End Sub
statements. Sub Procedure cannot return any value.

Example:

QuickTest Professional Unplugged

 All powers within you, you can do it

172

** Sub demo_sub (a,
b, c)
 c=a+b
End sub
demo_sub 2, 3, x
msgbox x 'Returns 5

**

This example will do the same as what function procedure is doing above. But in sub
Procedure we need to use one more parameter to get values from the sub procedure.

Types of arguments in procedures

1. ByVal
2. ByRef

ByVal:
Indicates that the argument is passed by value.

ByRef:
Indicates that the argument is passed by reference.

By default all arguments are 'ByRef'.

Syntax
** Function
demo_add(a,b)
 demo_add=a+b
End Function

**

Here a,b are the arguments. By default these are 'ByRef'.

 In simple words ByRef Means the value which is assigned to the variable with in the
function is permanent and we can use that value out side of that function also.

ByVal means the value which is assigned to the variable with in the function is temporary
and we can use that value only with in that function.

Example:
** Function
demo_parameters (byref x, byval y)
 x=20
 y=50
 demo_parameters=x+y
End Function

a=10
b=20

QuickTest Professional Unplugged

 All powers within you, you can do it

173

msgbox demo_parameters (a, b)
msgbox a
msgbox b
**
In the above function x and y are the arguments, declared as byref and byval.
With in that function i assigned values to x and y.

Outside of the function i assigned values to two variables and passing those variables in to
the function.’ a' is passing reference to x and b is passing value to y. With in that function i
am changing the value for x. This value is permanent for 'a'. Because 'a' is passed as
'ByRef'.But the value of 'b' will not be changed because it is passed as 'ByVal'.

Advanced and Most useful VBScript functions

Input box

Description

Displays a prompt in a dialog box, waits for the user to input text or click a button,
and returns the contents of the text box.

Syntax

InputBox (prompt [, title][, default][, xpos][, ypos][, helpfile, context])

Examples
** Dim Input
Input = InputBox ("Enter your name")
MsgBox ("You entered: " & Input)
**

Msgbox

Description

Displays a message in a dialog box, waits for the user to click a button, and returns a
value indicating which button the user clicked.

Syntax

MsgBox (prompt [, buttons][, title][, helpfile, context])

Examples
**
Dim MyVar
MyVar = MsgBox ("Hello World!", 65, "MsgBox Example")
**

InStr

Description

Returns the position of the first occurrence of one string within another.

QuickTest Professional Unplugged

 All powers within you, you can do it

174

Syntax

InStr ([start,] string1, string2 [, compare])

Examples
**
Dim SearchString, SearchChar, MyPos
SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "P" ' Search for "P".
‘A textual comparison starting at position 4. Returns 6.
MyPos = Instr (4, SearchString, SearchChar, 1)

‘A binary comparison starting at position 1. Returns 9.
MyPos = Instr (1, SearchString, SearchChar, 0)

‘Comparison is binary by default (last argument is omitted).
MyPos = Instr (SearchString, SearchChar) ' Returns 9.

‘A binary comparison starting at position 1. Returns 0 ("W" is not found).
MyPos = Instr (1, SearchString, "W")
**

Join

Description

Returns a string created by joining a number of substrings contained in an array.

Syntax

Join (list [, delimiter])

**
Dim MyString
Dim MyArray (2)
MyArray (0) = "Mr."
MyArray (1) = "kanakrajan”
MyString = Join (MyArray)
Msgbox MyString 'MyString contains "Mr. Kanakarajan"
**

LTrim, RTrim, and Trim

Description

Returns a copy of a string without leading spaces (LTrim), trailing spaces (RTrim), or both
leading and trailing spaces (Trim).

Syntax

LTrim (string)

RTrim (string)

QuickTest Professional Unplugged

 All powers within you, you can do it

175

Trim (string)

**
Dim MyVar
MyVar = LTrim (" vbscript ") ‘MyVar contains "vbscript ".
MyVar = RTrim (" vbscript ") ‘MyVar contains " vbscript".
MyVar = Trim (" vbscript ") 'MyVar contains "vbscript".
**

Left
**
Dim MyString, LeftString
MyString = "VBSCript"
LeftString = Left (MyString, 3) 'LeftString contains "VBS".

**

Right
**
Dim AnyString, MyStr
AnyString = "Hello World" 'Define string.
MyStr = Right (AnyString, 1) ' Returns "d".
MyStr = Right (AnyString, 6) ' Returns “World".
MyStr = Right (AnyString, 20) ' Returns "Hello World".

**

Len
**
Dim oStr
Dim oLength
oStr="kanakarajan"
oLength=len (oStr)
print oLength ‘it display 11
**

Mid

Description

Returns a specified number of characters from a string.

Syntax

Mid (string, start [, and length])

**
Dim MyVar
MyVar = Mid ("VB Script is fun!", 4, 6) 'MyVar contains "Script".
**

QuickTest Professional Unplugged

 All powers within you, you can do it

176

Replace

Description

Returns a string in which a specified substring has been replaced with another substring a
specified number of times.

Syntax

Replace (expression, find, replacewith [, start [, count [, compare]]])

**
Dim MyString

'A binary comparison starting at the beginning of the string. Returns "XXYXXPXXY".
MyString = Replace ("XXpXXPXXp", "p", "Y")
Msgbox MyString

'A textual comparison starting at position 3. Returns "YXXYXXY".
MyString = Replace ("XXpXXPXXp", "p", "Y", 3, -1, 1)
Msgbox MyString

**

Split

Description

Returns a zero-based, one-dimensional array containing a specified number of substrings.

Syntax

Split (expression [, delimiter [, count [, compare]]])

**
Dim MyString, MyArray, msg
MyString=”Nisha Kanakarajan”
Msgbox MyString

MyArray= Split (MyString,” ”,-1, 1)
Msg=b (1) & “” &b (0)
Msgbox Msg ‘Kanakarajan Nisha

**

StrComp

Description

Returns a value indicating the result of a string comparison.

Syntax

StrComp (string1, string2 [, compare])

QuickTest Professional Unplugged

 All powers within you, you can do it

177

Settings

The compare argument can have the following values:

Constant Value Description

vbBinaryCompa
re

0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Return Values

The StrComp function has the following return values:

If StrComp returns

string1 is less than string2 -1

string1 is equal to string2 0

string1 is greater than string2 1

string1 or string2 is Null Null

**
Dim MyStr1, MyStr2, MyComp
MyStr1 = "NISHA": MyStr2 = "nisha" ' Define variables.
MyComp = StrComp (MyStr1, MyStr2, 1) ' Returns 0.
MyComp = StrComp (MyStr1, MyStr2, 0) ' Returns -1.
MyComp = StrComp (MyStr2, MyStr1) ' Returns 1.
**

StrReverse

Description

Returns a string in which the character order of a specified string is reversed.

Syntax

StrReverse(string1)

**
Dim MyStr
MyStr = StrReverse ("kanakrajan") 'MyStr contains "najarakanak".
**

VBScript samples

‘**
'1 Print Hello World
Print "Hello World"
‘**
‘**

QuickTest Professional Unplugged

 All powers within you, you can do it

178

'2 Find whether given number is a odd number
Dim oNumber

oNumber=4
If oNumber mod 2 <>0 Then
 Print "The Number "& oNumber &" is an Odd Number"
else
 Print "The Number "& oNumber &" is not an Odd Number"
End If
‘**
‘**
'3 Print odd numbers between given range of numb ers

Dim RangeStart
Dim RangeEnd
Dim iCounter
RangeStart=10
RangeEnd=20

For iCounter=RangeStart to RangeEnd

 If iCounter mod 2 <>0 Then
 Print oNumber
 End If

Next

‘**
‘**
'4 Find the factorial of a given number
Dim oNumber
Dim iCounter
Dim fValue

oNumber=6
fValue=1

For iCounter=oNumber to 1 step-1
 fValue=fValue*iCounter
Next
print fValue

‘**
‘**
'5 Find the factors of a given number
Dim oNumber
Dim iCounter

oNumber=10

For iCounter=1 to oNumber/2

QuickTest Professional Unplugged

 All powers within you, you can do it

179

 If oNumber mod iCounter=0 Then
 print iCounter
 End If
Next
print oNumber
‘**
‘**
'6 Print prime numbers between given range of nu mbers

Dim RangeStart
Dim RangeEnd
Dim iCounter
RangeStart=1
RangeEnd=30

For iCounter=RangeStart to RangeEnd

 For iCount=2 to round(iCounter/2)
 If iCounter mod iCount=0 Then
 Exit for
 End If
 Next

 If iCount=round(iCounter/2)+1 or iCounter=1 Then
 print iCounter
 End If
Next

‘**
‘**
'7 Swap 2 numbers with out a temporary variable

Dim oNum1
Dim oNum2

oNum1=1055
oNum2=155

oNum1=oNum1-oNum2
oNum2=oNum1+oNum2
oNum1=oNum2-oNum1
print oNum1
print oNum2
‘**
‘**
'8 Write a program to Perform specified Arithmet ic Operation on two given
numbers
Dim oNum1
Dim oNum2
Dim oValue

QuickTest Professional Unplugged

 All powers within you, you can do it

180

oNum1=10
oNum2=20

OperationtoPerform="div"

Select Case lcase(OperationtoPerform)

 Case "add"
 oValue=oNum1+oNum2
 Case "sub"
 oValue=oNum1-oNum2
 Case "mul"
 oValue=oNum1*oNum2
 Case "div"
 oValue=oNum1/ oNum2
End Select
print oValue
‘**
‘**
'9 Find the length of a given string
Dim oStr
Dim oLength
oStr="sudhakar"
oLength=len(oStr)
print oLength
‘**
‘**
'10 Reverse given string
Dim oStr
Dim oLength
Dim oChar
Dim iCounter

oStr="sudhakar"
oLength=len(oStr)

For iCounter=oLength to 1 step-1
 oChar=oChar&mid(oStr,iCounter,1)
Next
print oChar
‘**
‘**
'11 Find how many alpha characters present in a string.
Dim oStr
Dim oLength
Dim oChar
Dim iCounter

oStr="su1h2kar"
oLength=len(oStr)

QuickTest Professional Unplugged

 All powers within you, you can do it

181

oAlphacounter=0

For iCounter=1 to oLength

 If not isnumeric (mid(oStr,iCounter,1)) then
 oAlphacounter=oAlphacounter+1
 End if

Next
print oAlphacounter

‘**
‘**
'12 Find occurrences of a specific character in a string

Dim oStr
Dim oArray
Dim ochr
oStr="sudhakar"
ochr="a"

oArray=split(oStr,ochr)
print ubound(oArray)
‘**
‘**
'13 Replace space with tab in between the words of a string.

Dim oStr
Dim fStr

oStr="Quick Test Professional"

fStr=replace(oStr," ",vbtab)
print fStr

‘**
‘**
'14 Write a program to return ASCII value of a g iven character

Dim ochr
Dim aVal

ochr="A"

aVal=asc(ochr)
print aVal

‘**
‘**
'15 Write a program to return character correspo nding to the given ASCII value

QuickTest Professional Unplugged

 All powers within you, you can do it

182

Dim ochr
Dim aVal

aVal=65

oChr=chr(aVal)
print oChr

‘**
‘**
'16 Convert string to Upper Case
Dim oStr
Dim uStr

oStr="QuickTest Professional"

uStr=ucase(oStr)
print uStr
‘**
‘**
'17 Convert string to lower case
Dim oStr
Dim lStr

oStr="QuickTest Professional"
lStr=lcase(oStr)
print lStr

‘**
‘**
'18 Write a program to Replace a word in a strin g with another word

Dim oStr
Dim oWord1
Dim oWord2
Dim fStr

oStr="Mercury Quick Test Professional"
oWord1="Mercury"
oWord2="HP"

fStr=replace(oStr,oWord1,oWord2)
print fStr

‘**
‘**
'19 Check whether the string is a POLYNDROM

Dim oStr

oStr="bob"

QuickTest Professional Unplugged

 All powers within you, you can do it

183

fStr=StrReverse(oStr)
If oStr=fStr Then
 Print "The Given String "&oStr&" is a Palindrome"
 else
 Print "The Given String "&oStr&" is not a Palindrome"
End If
‘**
‘**
'20 Verify whether given two strings are equal
Dim oStr1
Dim ostr2

oStr1="qtp"
oStr2="qtp"
If oStr1=oStr2 Then
 Print "The Given Strings are Equal"
 else
 Print "The Given Strings are not Equal"
End If
‘**
‘**
'21 Print all values from an Array
Dim oArray
Dim oCounter
oArray=array(1,2,3,4,"qtp","Testing")

For oCounter=lbound(oArray) to ubound(oArray)
 print oArray(oCounter)
Next

‘**
‘**
'22 Sort Array elements
Dim oArray
Dim oCounter1
Dim oCounter2
Dim tmp

oArray=array(8,3,4,2,7,1,6,9,5,0)

For oCounter1=lbound(oArray) to ubound(oArray)

 For oCounter2=lbound(oArray) to ubound(oArray)-1

 If oArray(oCounter2)>oArray(oCounter2+1) Then
 tmp=oArray(oCounter2)
 oArray(oCounter2)=oArray(oCounter2+1)
 oArray(oCounter2+1)=tmp
 End If

 Next

QuickTest Professional Unplugged

 All powers within you, you can do it

184

Next

For oCounter1=lbound(oArray) to ubound(oArray)
 print oArray(oCounter1)
Next

‘**
‘**
'23 Add two 2X2 matrices
Dim oArray1(1,1)
Dim oArray2(1,1)
Dim tArray(1,1)

oArray1(0,0)=8
oArray1(0,1)=9
oArray1(1,0)=5
oArray1(1,1)=-1

oArray2(0,0)=-2
oArray2(0,1)=3
oArray2(1,0)=4
oArray2(1,1)=0

tArray(0,0)=oArray1(0,0)+ oArray2(0,0)
tArray(0,1)=oArray1(0,1)+oArray2(0,1)
tArray(1,0)=oArray1(1,0)+oArray2(1,0)
tArray(1,1)=oArray1(1,1)+oArray2(1,1)
‘**
‘**

'24 Multiply Two Matrices of size 2X2

Dim oArray1(1,1)
Dim oArray2(1,1)
Dim tArray(1,1)

oArray1(0,0)=8
oArray1(0,1)=9
oArray1(1,0)=5
oArray1(1,1)=-1

oArray2(0,0)=-2
oArray2(0,1)=3
oArray2(1,0)=4
oArray2(1,1)=0

tArray(0,0)=oArray1(0,0)* oArray2(0,0)+ oArray1(0,1)* oArray2(1,0)
tArray(0,1)=oArray1(0,0)* oArray2(0,1)+ oArray1(0,1)* oArray2(1,1)
tArray(1,0)=oArray1(1,0)* oArray2(0,0)+ oArray1(1,1)* oArray2(1,0)
tArray(1,1)=oArray1(1,0)* oArray2(0,1)+ oArray1(1,1)* oArray2(1,1)

QuickTest Professional Unplugged

 All powers within you, you can do it

185

‘**
‘**
'25 Convert a String in to an array

Dim oStr
Dim iCounter
oStr="Quick Test Professional"
StrArray=split(oStr)

For iCounter=0 to ubound(StrArray)
 print StrArray(iCounter)
Next

‘**
‘**
'26 Convert a String in to an array using ‘i‘ as delimiter

Dim oStr
Dim iCounter
oStr="Quick Test Professional"
StrArray=split(oStr,"i")

For iCounter=0 to ubound(StrArray)
 print StrArray(iCounter)
Next

‘**
‘**
'27 Find number of words in string

Dim oStr
Dim iCounter
oStr="Quick Test Professional"
StrArray=split(oStr," ")
print "Theere are "&ubound(StrArray)+1&" words in the string"

‘**
‘**
'28 Write a program to reverse the words of a gi ven string.

Dim oStr
Dim iCounter
oStr="Quick Test Professional"
StrArray=split(oStr," ")

For iCounter=0 to ubound(StrArray)
 print strreverse(StrArray(iCounter))
Next

QuickTest Professional Unplugged

 All powers within you, you can do it

186

‘**
‘**
'29 Print the data as a Pascal triangle
'The formulae for pascal triangle is nCr=n!/(n-r)!*r!

Dim PascalTriangleRows
Dim nCr
Dim NumCount
Dim RowCount

PascalTriangleRows = 10
For NumCount = 0 To PascalTriangleRows
 toPrint= Space(PascalTriangleRows - NumCount)
 For RowCount = 0 To NumCount
 If (NumCount = RowCount) Then
 nCr = 1
 Else
 nCr = Factorial(NumCount) / (Factorial(NumCount - RowCount) *
Factorial(RowCount))
 End If
 toPrint=toPrint&nCr&" "
 Next
 print toPrint
Next

Function Factorial(num)
 Dim iCounter
 Factorial = 1
 If num <> 0 Then
 For iCounter = 2 To num
 Factorial = Factorial * iCounter
 Next
 End If
End Function
‘**
‘**
'30 Join elements of an array as a string

Dim oStr
Dim iCounter
oStr="Quick Test Professional"
StrArray=split(oStr," ")

print join(StrArray," ")

‘**
‘**
'31 Trim a given string from both sides

Dim oStr

QuickTest Professional Unplugged

 All powers within you, you can do it

187

oStr=" QTP "
print trim(oStr)

‘**
‘**
'32 Write a program to insert 100values and to d elete 50 values from an array

Dim oArray()
Dim iCounter

ReDim oArray(100)

For iCounter=0 to ubound(oArray)
 oArray(iCounter)=iCounter
 'Print total 100 Values
 print(oArray(iCounter))
Next
print "******************************"
print "******************************"
ReDim preserve oArray(50)

For iCounter=0 to ubound(oArray)
 'Print Values after deleting 50 values
 print(oArray(iCounter))
Next
‘**
‘**
'33 Write a program to force the declaration of variables

Option explicit ' this keyword will enforce us to declare variables

Dim x
x=10
'Here we get an error because i have not declared y,z
y=20
z=x+y
print z
‘**
‘**
'34 Write a program to raise an error and print the error number.

On Error Resume Next
Err.Raise 6 ' Raise an overflow error.
print ("Error # " & CStr(Err.Number) & " " & Err.Description)

‘**
‘**
'35 Finding whether a variable is an Array

Dim oArray()

QuickTest Professional Unplugged

 All powers within you, you can do it

188

if isarray(oArray) then
 print "the given variable is an array"
 else
 print "the given variable is not an array"
End if
‘**
‘**
'36 Write a program to list the Timezone offset from GMT
Dim objWMIService
Dim colTimeZone
Dim objTimeZone

Set objWMIService = GetObject("winmgmts:" &
"{impersonationLevel=impersonate}!\\.\root\cimv2")
Set colTimeZone = objWMIService.ExecQuery("Select * from Win32_TimeZone")

For Each objTimeZone in colTimeZone
 print "Offset: "& objTimeZone.Bias
Next
‘**
‘**
'37 Retrieving Time Zone Information for a Computer
Dim objWMIService
Dim colTimeZone
Dim objTimeZone

Set objWMIService = GetObject("winmgmts:" &
"{impersonationLevel=impersonate}!\\.\root\cimv2")
Set colTimeZone = objWMIService.ExecQuery("Select * from Win32_TimeZone")

For Each objItem in colTimeZone

 print "Bias: " & objItem.Bias
 print "Caption: " & objItem.Caption
 print "Daylight Bias: " & objItem.DaylightBias
 print "Daylight Day: " & objItem.DaylightDay
 print "Daylight Day Of Week: " & objItem.DaylightDayOfWeek
 print "Daylight Hour: " & objItem.DaylightHour
 print "Daylight Millisecond: " & objItem.DaylightMillisecond
 print "Daylight Minute: " & objItem.DaylightMinute
 print "Daylight Month: " & objItem.DaylightMonth
 print "Daylight Name: " & objItem.DaylightName
 print "Daylight Second: " & objItem.DaylightSecond
 print "Daylight Year: " & objItem.DaylightYear
 print "Description: " & objItem.Description
 print "Setting ID: " & objItem.SettingID
 print "Standard Bias: " & objItem.StandardBias
 print "Standard Day: " & objItem.StandardDay
 print "Standard Day Of Week: " & objItem.StandardDayOfWeek
 print "Standard Hour: " & objItem.StandardHour

QuickTest Professional Unplugged

 All powers within you, you can do it

189

 print "Standard Millisecond: " & objItem.StandardMillisecond
 print "Standard Minute: " & objItem.StandardMinute
 print "Standard Month: " & objItem.StandardMonth
 print "Standard Name: " & objItem.StandardName
 print "Standard Second: " & objItem.StandardSecond
 print "Standard Year: " & objItem.StandardYear

Next

‘**
‘**
'38 Write a program to Convert an expression to a date
Dim StrDate
Dim actualDate
Dim StrTime
Dim actualTime

StrDate = "October 19, 1962" ' Define date.
actualDate = CDate(StrDate) ' Convert to Date data type.
print actualDate
StrTime = "4:35:47 PM" ' Define time.
actualTime = CDate(StrTime) ' Convert to Date data type.
print actualTime

‘**
‘**
'39 Display current date and Time

print now
‘**
‘**
'40 Find difference between two dates.

'Date difference in Years
print DateDiff("yyyy","12/31/2002",Date)

'Date difference in Months
print DateDiff("m","12/31/2002",Date)

'Date difference in Days
print DateDiff("d","12/31/2002",Date)

‘**
‘**
'41 Add time interval to a date

print DateAdd("m", 1, "31-Jan-95")

‘**
‘**
'42 Print current day of the week

QuickTest Professional Unplugged

 All powers within you, you can do it

190

Print day(date)
‘**
‘**
'43 Find whether current month is a long month
Dim oCurrentMonth
Dim ocurrentYear
Dim oDaysinMonths

oCurrentMonth = Month(date)
ocurrentYear = Year(date)
oDaysinMonths=Day(DateSerial(ocurrentYear, oCurrentMonth + 1, 0))
print oDaysinMonths&" Days in Current Month"
If oDaysinMonths=31 Then
 print "Current Month is a long month"
else
 print "Current Month is not a long month"
End If
‘**
‘**
'44 Find whether given year is a leap year

'1st Method

'The rules for leap year:
'1. Leap Year is divisible by 4 (This is mandotory Rule)
'2. Leap Year is not divisible by 100 (Optional)
'3. Leap Year divisble by 400 (Optional)

Dim oYear

oYear=1996

If ((oYear Mod 4 = 0) And (oYear Mod 100 <> 0) Or (oYear Mod 400 = 0)) then
 print "Year "&oYear&" is a Leap Year"
else
 print "Year "&oYear&" is not a Leap Year"
End If

'45. 2nd Method
' Checking 29 days for February month in specified year
Dim oYear
Dim tmpDate

oYear=1996
tmpDate = "1/31/" & oYear
DaysinFebMonth = DateAdd("m", 1, tmpDate)

If day(DaysinFebMonth)=29 then
 print "Year "&oYear&" is a Leap Year"

QuickTest Professional Unplugged

 All powers within you, you can do it

191

else
 print "Year "&oYear&" is not a Leap Year"
End If

‘**
‘**
'46 Format Number to specified decimal places

Dim oNum
Dim DecimaPlacestobeFormat
oNum = 3.14159
DecimaPlacestobeFormat=2
print Round(oNum , DecimaPlacestobeFormat)

‘**
‘**
'47 Write a program to Generate a Random Numbers
'This script will generate random numbers between 10 and 20
Dim rStartRange
Dim rEndRange

rStartRange=10
rEndRange=20

For iCounter=1 to 10
 print Int((rEndRange - rStartRange + 1) * Rnd + rStartRange)
Next
‘**
‘**
'48 Write a program to show difference between F ix and Int

'Both Int and Fix remove the fractional part of number and return the resulting integer
value.
'The difference between Int and Fix is that if number is negative, Int returns the first
negative integer less than or equal to number,
'whereas Fix returns the first negative integer greater than or equal to number.
'For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8.

print Int(99.8) ' Returns 99.
print Fix(99.2) ' Returns 99.
print Int(-99.8) ' Returns -100.
print Fix(-99.8) ' Returns -99.
print Int(-99.2) ' Returns -100.
print Fix(-99.2) ' Returns -99.

‘**
‘**
'49 Write a program to find subtype of a variab le

Dim oVar
Dim oDatatypes

QuickTest Professional Unplugged

 All powers within you, you can do it

192

oVar="QTP"
oVartype=Typename(oVar)
print oVartype

‘**
‘**
'50 Write a program to print the decimal part of a given number
Dim oNum
oNum=3.123
oDecNum=oNum- int(oNum)
print oDecNum
‘**
‘**

How to take screenshot using VBScript

** 'Taking Screenshot
using word object
Set oWordBasic = CreateObject ("Word. Basic")
oWordBasic.SendKeys "{prtsc}"
oWordBasic.AppClose "Microsoft Word"
Set oWordBasic = Nothing
WScript.Sleep 2000

'Opening Paint Application
set WshShell = CreateObject("WScript.Shell")
WshShell.Run "mspaint"
WScript.Sleep 2000

'Some times Paint Application is not activating properly
'To activate MS Paint properly i have minimized and restored the opened windows
set shl=createobject("shell. application")
shl.MinimizeAll
WScript.Sleep 1000
shl.UndoMinimizeAll
Set shl=Nothing
WScript.Sleep 1000

'Activating Paint Application
WshShell.AppActivate "untitled - Paint"
WScript.Sleep 1000

'Paste the captured Screenshot
WshShell.SendKeys "^v"
WScript.Sleep 500

'Save Screenshot
WshShell.SendKeys "^s"
WScript.Sleep 500

QuickTest Professional Unplugged

 All powers within you, you can do it

193

WshShell.SendKeys "c:\test.bmp"
WScript.Sleep 500
WshShell.SendKeys "{ENTER}"

'Release Objects
Set WshShell=Nothing
WScript.Quit
**

Advanced VBScript examples

'***
'Write a program to read data from a text file
'***

'Read Text File
Set fso=CreateObject("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,1)
 'Reading Complete Data from File
 MsgBox fl.ReadAll

'***
'Write a program to write data into a text file
'***

Set fso=CreateObject("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,2)

 'Write characters
 fl.Write("hello")

 'Write blank lines
 fl.WriteBlankLines(2)

 'Write data line by line
 fl.WriteLine("A New Line")

'***
'Write a program to print all lines that contains a word either “testing” or “qtp”
'***

Set fso=CreateObject("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,1)
 'Read Data Line by Line
 While Not fl.AtEndOfStream
 If instr(1,fl.ReadLine,"testing")<>0 or instr(1,fl.ReadLine,"qtp")<>0 then
 print fl.ReadLine
 End if
 Wend

QuickTest Professional Unplugged

 All powers within you, you can do it

194

'***
'Write a program to print the current foldername
'***

Set fso=CreateObject("scripting.filesystemobject")
msgbox fso.GetAbsolutePathName("")

'***
'Write a program to print files in a given folder
'***

Dim fso,fld,sFiles,sFile
Set fso = CreateObject("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)
Set sFiles = fld.Files
For Each sFile in sFiles
 print sFile.name
Next

'***
'Write a program to print subfolders in a given folder
'***

Dim fso,fld,sfolders,sFld
Set fso = CreateObject("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)
Set sfolders = fld.SubFolders
For Each sFld in sfolders
 msgbox sFld.name
Next

'***
'Write a program to print all drives in the file system
'***
Set fso = CreateObject("Scripting.FileSystemObject")
Set drvs = fso.Drives

For Each drv in drvs
 print drv.DriveLetter
Next

'***
'Write a program to print current drive name
'***

Set fso = CreateObject("Scripting.FileSystemObject")
msgbox fso.GetDriveName(fso.GetAbsolutePathName(""))

'***
'Print the last modified and creation date of a given file

QuickTest Professional Unplugged

 All powers within you, you can do it

195

'***

Set fso = CreateObject("Scripting.FileSystemObject")
Set fl = fso.GetFile(FilePath)
print fl.DateLastModified
print fl.DateCreated

'***
'Print the size of the file
'***

Set fso = CreateObject("Scripting.FileSystemObject")
Set fl = fso.GetFile(FilePath)
msgbox fl.Size

'***
'Write a program to display files of a specific type
'***

Function DisplaySpecificFileTypes(FolderPath,FileType)

 Set fso = CreateObject("Scripting.FileSystemObject")
 Set fld = fso.GetFolder(FolderPath)
 Set sFiles = fld.files

 For Each sFl in sFiles
 If lcase(sFl.type)=lcase(FileType) then
 print sFl.name
 End if
 Next

End Function

'Calling the Function
DisplaySpecificFileTypes "C:\","Text Document"

'***
'Write a program to print the free space in a given drive
'***

Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(drvPath)
print "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)

'***
'Write a program to find whether a given folder is a special folder
'***

fldPath="C:\WINDOWS"
Const WindowsFolder =0
Const SystemFolder = 1

QuickTest Professional Unplugged

 All powers within you, you can do it

196

Const TemporaryFolder = 2

Set fso = CreateObject("Scripting.FileSystemObject")
If lcase(fso.GetSpecialFolder(WindowsFolder))=lcase(fldPath) or
lcase(fso.GetSpecialFolder(SystemFolder))=lcase(fldPath) or
lcase(fso.GetSpecialFolder(TemporaryFolder))=lcase(fldPath) then
 print "Given Folder is a special Folder"
Else
 print "Given Folder is not a special Folder"
End if

'***
'Write a program to remove all empty files in the folder
'***

FolderPath="C:\Documents and Settings\sudhakar kakunuri\Desktop\"
Set fso = CreateObject("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)
Set sFiles = fld.Files
For Each sFile in sFiles

 If sFile.size=0 Then
 print sFile.name
 End If

Next

'***
'Write a program to Copy contents of one folder to other folder
'***

Function CopyContentstoOtherFolder(SourceFolder,TargetFolder)

Set fso = CreateObject("Scripting.FileSystemObject")
Set fld = fso.GetFolder(SourceFolder)

Set sFiles = fld.Files

For Each sFile in sFiles
 sFile.copy TargetFolder&"\"&sFile.name
Next

Set sFlds = fld.SubFolders

For Each sFld in sFlds
 sFld.copy TargetFolder&"\"&sFld.name
Next

End Function

'Calling the Function

QuickTest Professional Unplugged

 All powers within you, you can do it

197

CopyContentstoOtherFolder "C:\Documents and Settings\sudhakar
kakunuri\Desktop\Test1","C:\Documents and Settings\sudhakar kakunuri\Desktop\Test2"

'***
'Write a program to check whether a given path represents a file or a folder
'***

Set fso = CreateObject("Scripting.FileSystemObject")
If fso.FileExists(fPath) then
 Print "Path Representing a File"
Elseif fso.FolderExists(fPath) then
 Print "Path Representing a Folder"
End if

'***
'Write a program to compress a folder
'***

strComputer = "."
strFolder = "Folder Path"

set objWMI = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")
set objFolder = objWMI.Get("Win32_Directory='" & strFolder & "'")

fCompress = objFolder.Compress ' To uncompress change this to objFolder.Uncompress

if fCompress <> 0 then
 WScript.Echo "There was an error compressing the folder: " & fCompress
else
 WScript.Echo "Folder compression successful"
end if

'***
'Write a program to rename a folder
'***

CreateObject("Scripting.FileSystemObject").GetFolder("C:\Documents and
Settings\sudhakar\Desktop\Training Session For MF Testers").Name="New Name"

'***
'Write a program to print all lines in a file that ends with “world”
'***

Set fso=CreateObject("Scripting.FileSystemObject")
Set fl=fso.OpenTextFile(FilePath)

Set regEx = New RegExp
regEx.Pattern = "world$"
regEx.Global = True

 While Not fl.AtEndOfStream

QuickTest Professional Unplugged

 All powers within you, you can do it

198

 Set Matches = regEx.Execute(strng)

 If Matches.count<>0 then
 print fl.ReadLine
 End if

 Wend

'***
'Write a program to check whether string starts with “Error”
'***
str="Errorhello"
Set regEx = New RegExp
regEx.Pattern = "^Error"
regEx.Global = True
Set Matches = regEx.Execute(str)

If Matches.count<>0 then
 msgbox "String Started with 'Error'"
 Else
 msgbox "String Not Started with 'Error'"
End if

'***
'Write a program to Replace all words that contains “demo” in a file with the word “QTP”
'***
FilePath="C:\Documents and Settings\sudhakar\Desktop\demo.txt"

Set fso=CreateObject("Scripting.FileSystemObject")
Set fl=fso.OpenTextFile(FilePath)
txtToReplace=replace(fl.ReadAll,"demo","QTP")
fl.Close

Set fl=fso.OpenTextFile(FilePath,2)
fl.Write(txtToReplace)
fl.Close
'***
'Write a program to check whether a string contains only alpha numerics
'***

str="xyz123!!"
Set regEx = New RegExp
regEx.Pattern = "[^A-Za-z0-9]"
regEx.Global = True
Set Matches = regEx.Execute(str)

If Matches.count=0 then
 msgbox "String Contains only alpha numerics"
 Else
 msgbox "String Contains other characters"
End if

QuickTest Professional Unplugged

 All powers within you, you can do it

199

'***
'Write a program to check whether given string is in date format
'***
MyDate = "October 19, 1962"

If isdate(MyDate) Then
 msgbox "Given String is in Date Format"
 else
 msgbox "Given String is not in Date Format"
End If

'***
'Write a program to Invoke command prompt and execute dir command from the shell
'***
Dim oShell
Set oShell = WScript.CreateObject ("WSCript.shell")
oShell.run "cmd /K CD C:\ & Dir"
Set oShell = Nothing
'***

Sample script for Web Based Application

1. Script to enter data in login screen

Browser ("Book Store").Page ("Book Store").WebEdit ("Login").Set "guest"
Browser ("Book Store").Page ("Book Store").WebEdit ("Password").Set "guest"
Browser ("Book Store").Page ("Book Store").WebButton ("Login").Click
'***

2. Find X and Y coordinates of button

x=browser ("Book Store").Page ("Book Store").WebButton ("Search").GetROProperty ("x")
y=browser ("Book Store").Page ("Book Store").WebButton ("Search").GetROProperty ("y")
Msgbox x
Msgbox y
'***

3. Read items in a list box –YP->Admin->Entries ->O racle->Category

a=browser ("Book Store").Page ("Book Store").WebList ("category_id").GetROProperty
("items count")
Msgbox a
For i=1 to a
 Set c= browser ("Book Store").Page ("Book Store").WebList ("category_id").GetItem (i)
Msgbox c
Next
'***

QuickTest Professional Unplugged

 All powers within you, you can do it

200

4. Check whether edit box is focused –YP->Home->Nam e

a=browser ("Yellow Pages").Page ("Yellow Pages").WebEdit ("name").GetROProperty
("visible")
If a=True Then
 Msgbox "edit box is focused"
 Else
 Msgbox "edit box is disabled"
End If
'***

5. Check default selection in list box

a=browser ("Yellow Pages").Page ("Yellow Pages").WebList
("category_id").GetROProperty ("default value")
If a="Software" Then
 Msgbox "default value is present"
 Else
 Msgbox "default value is not showing"
End If

'***

6. List all links in the web page
**
set a=description. Create
a ("html tag").value="A"
Set cnt=browser ("Yellow Pages").Page ("Yellow Pages").ChildObjects (a)
Msgbox cnt.count
For i=0 to cnt.count-1
 c=cnt (i).getroproperty ("name")
Msgbox c
Next
'***

7. Print URL name
**
a=browser ("Yellow Pages").WinEdit ("Edit").GetROProperty ("text")
Msgbox a

OR
a=browser ("Yellow Pages").page ("Yellow Pages").GetROProperty ("url")
Msgbox a

'***

8. Display entire data in the web table

QuickTest Professional Unplugged

 All powers within you, you can do it

201

**
a=browser ("Yellow Pages").Page ("Yellow Pages").WebTable
("Categories").GetROProperty ("text")
 Msgbox a

'***

9. Find the background color of the object
**
a=browser ("Yellow Pages").page ("yellow pages").WebElement ("name").GetROProperty
("outerhtml")
Msgbox a

'***
10. Check whether selected link is having different appearance
**
x=Browser ("Yellow Pages").Page ("Yellow Pages").Image ("CC-YelloPages-
logo").getroproperty ("outer html")
Msgbox x

'***

11. Check whether a link contains image to its left side.
**
Browser ("Yellow Pages").Page ("Yellow Pages").Image ("CC-YelloPages-
logo").getroproperty ("x")

If x<30 Then
Msgbox "logo is in left side"

Else
 Msgbox "logo is not in left side"

End If

'***

12. Clear the cache in the web page
**
browser ("browser").wintoolbar ("toolbarwindow32").Press"&tools"
Browser ("browser").winmenu ("contextmenu").Select"internet options.”
Browser ("browser").dialog ("internet options").winbutton ("delete cookies").Click
Browser ("browser").dialog ("internet options").dialog ("delete cookies").winbutton
("ok").Click
Browser ("browser").dialog ("internet options").winbutton ("ok").Click

'***

13. How to test Slideshow in a page
**
ExpectedImagePath=Environment("ProductDir")&"\Tests\SlideImageExpected.png"
ActualImagePath=Environment("ProductDir")&"\Tests\SlideImageActual.png"

Browser("Hindustan Times: Latest").Page("Hindustan Times:

QuickTest Professional Unplugged

 All powers within you, you can do it

202

Latest").Image("SlideImage").CaptureBitmap ExpectedImagePath,True
wait(1)
Browser("Hindustan Times: Latest").Page("Hindustan Times: Latest").Image("Next").Click
Browser("Hindustan Times: Latest").Page("Hindustan Times:
Latest").Image("SlideImage").CaptureBitmap ActualImagePath,True

If CompareBitmap(ActualImagePath, ExpectedImagePath) then
 Reporter.ReportEvent micFail, "SlideShow Test", "SlideShow is Not Running"
Else
 Reporter.ReportEvent micPass, "SlideShow Test", "SlideShow is Running"
End if

Function CompareBitmap (ActualBmp, ExpectedBmp)
 Set fCompare = CreateObject ("Mercury.FileCompare")

 If fCompare.IsEqualBin (ExpectedBmp, ActualBmp, 0, 1) Then
 CompareBitmap= True
 else
 CompareBitmap= False
 End If

End Function

'***

14. Parameterize links in a web page
**
Dim lnk_array
lnk_array=array ("link1","link2","link3","Link4")

For i= 0 to ubound(lnk_array)
Browser ("Google").Page ("Google").Frame ("body").Link ("Link_1").SetTOProperty "text",
lnk_array (i)
Browser ("Google").Page ("Google").Frame ("body").Link ("Link_1").Click
Next

'***

15. Show all properties without using Object Spy
**
Set oDesc=Description. Create
Set qtApp = CreateObject ("QuickTest.Application")
Set qtIdent = qtApp.Options.ObjectIdentification
qtIdent.ResetAll
Set objList=browser ("micclass: =Browser").page ("micclass: =Page").ChildObjects
(oDesc)
For iCounter=0 to objList.count-1
 objList (iCounter).highlight
 oClassName=objList (iCounter).getroproperty ("micclass")
 Set qtObject = qtIdent.Item (oClassName)
 set PropColl=qtObject.AvailableProperties

QuickTest Professional Unplugged

 All powers within you, you can do it

203

 print "***"
 For oPropCount=1 to PropColl.count
 print PropColl.item (oPropCount) & ":="& objList (iCounter).getroproperty (PropColl.item
(oPropCount))
 Next
 print "***"
Next
'***

16. Deleting Browsing history, Temporary Files and Cookies
**
'To clear temporary Internet files
Set WshShell = CreateObject("WScript.Shell")
WshShell.run "RunDll32.exe InetCpl.cpl,ClearMyTracksByProcess 8"

'To clear browsing cookies
WshShell.run "RunDll32.exe InetCpl.cpl,ClearMyTracksByProcess 2"

'To Clear Browsing History
WshShell.run "RunDll32.exe InetCpl.cpl,ClearMyTracksByProcess 1"

'***

17. How to click on all Google Search Links in all Pages
**
browser("micclass:=Browser").page("micclass:=Page").webedit("name:=q").Set "amit"
browser("micclass:=Browser").page("micclass:=Page").webbutton("name:=Google
Search").Click

NextExist=true

do until NextExist=false

browser("micclass:=Browser").Sync

Set oDesc=Description. Create
oDesc ("micclass").value="Link"
set lnkList=browser ("micclass: =Browser").page ("micclass: =Page").childobjects (oDesc)

Set oDictionary=createobject("scripting. dictionary")
For i=0 to lnkList.count-1
 oDictionary.add i,lnkList(i).getROproperty("name")
Next

QuickTest Professional Unplugged

 All powers within you, you can do it

204

 LnkProperties = oDictionary.Items

For i = 0 To oDictionary.Count -1

 If i=oDictionary.count-1 then
 Exit for
 End if

 If LnkProperties(i+1)="Cached" Then

browser("micclass:=Browser").page("micclass:=Page").Link("name:="&LnkProperties(i)).cli
ck
 browser("micclass:=Browser").Back
 browser("micclass:=Browser").Sync
 End If
Next
NextExist=browser("micclass:=Browser").page("micclass:=Page").Link("name:=Next").Exis
t(1)
If NextExist Then
 browser("micclass:=Browser").page("micclass:=Page").Link("name:=Next").Click
End If
Loop

'***

18. How to click on all Google Search Links in a Pa ge
**
browser("micclass:=Browser").page("micclass:=Page").webedit("name:=q").Set "amit"
browser("micclass:=Browser").page("micclass:=Page").webbutton("name:=Google
Search").Click
browser("micclass:=Browser").Sync

Set oDesc=Description. Create
oDesc ("micclass").value="Link"
set lnkList=browser ("micclass: =Browser").page ("micclass: =Page").childobjects (oDesc)

Set oDictionary=createobject("scripting. dictionary")
For i=0 to lnkList.count-1
 oDictionary.add i,lnkList(i).getROproperty("name")
Next

 LnkProperties = oDictionary.Items

For i = 0 To oDictionary.Count -1

 If i=oDictionary.count-1 then
 Exit for
 End if

 If LnkProperties(i+1)="Cached" Then

QuickTest Professional Unplugged

 All powers within you, you can do it

205

browser("micclass:=Browser").page("micclass:=Page").Link("name:="&LnkProperties(i)).cli
ck
 browser("micclass:=Browser").Back
 browser("micclass:=Browser").Sync
 End If
Next

'***

19. How to get number of controls (Links, Edits, Im ages, etc)
**
Function GetAllSpecificControls (Page, MicClass)
 Set Desc = Description. Create()
 Desc("micclass").Value = MicClass
 Set GetAllSpecificControls = Page.ChildObjects(Desc)
End Function

Function GetAllEdits(Page)
 Set GetAllEdits = GetAllSpecificControls(Page, "WebEdit")
End Function

Function GetAllButtons(Page)
 Set GetAllButtons = GetAllSpecificControls(Page, "WebButton")
End Function

Function GetAllLinks(Page)
 Set GetAllLinks = GetAllSpecificControls(Page, "Link")
End Function

Function GetAllImages(Page)
 Set GetAllImages = GetAllSpecificControls(Page, "Image")
End Function

Set oPage = Browser("Google Sets").Page("Google Sets")

MsgBox "Number of Edits: " & GetAllEdits(oPage).Count
MsgBox "Number of Buttons: " & GetAllButtons(oPage).Count
MsgBox "Number of Links: " & GetAllLinks(oPage).Count
MsgBox "Number of Images: " & GetAllImages(oPage).Count

'***

19. Capturing the tool tip of the image
'***
Set a = Description. Create
a (“html tag”).value=”IMG”
Set b = browser (“name: =Y.*”).page (“Y.*”).childobject (a)
Msgbox “No of images:”&b.count
 For I = 0 to b.count-1
 C = b (I).GetROProperty (“alt”)
 D= b (I).GetROProperty (“SRC”)

QuickTest Professional Unplugged

 All powers within you, you can do it

206

 If C <> “” then
 Msgbox “image SRC” &C
 Msgbox “Tool Tip” &D
 End if
 Loop
'***

20. Launching Browser
'***

'***

21. Launching Browser
'***
Set Browser =Createobject (“InternetExplorer.Application”)
Browser.visible = true
Browser. Navigate “www.google.com”

'***

22. Close all browsers one by one
'***
While Browser (“CreationTime: =0”).exist

Browser (“CreationTime: =0”).Close
Wend

23. Close all browsers one by one
'***
While Browser (“CreationTime: =0”).exist

Browser (“CreationTime: =0”).Close
Wend

24. To close particular Browser
'***
Set mask = “google.com”
CreationTime =”0”
 While Browser (CreationTime: =”&CreationTime).Exist
 Set URL = Browser (CreationTime: =”&CreationTime).GetROProperty (“url”)
 If Instr (URL.mask)>0 then
 Browser (CreationTime: =”&CreationTime).close
 Else

QuickTest Professional Unplugged

 All powers within you, you can do it

207

 CreationTime = CreationTime + 1
 End if
 Wend

25. Get name of all open Browser
'***
Set Browserdesc = Description. Create ()
Browserdesc (“version”).Value=”internet explorer 6”
Set browsercoll = Desktop.Childobject (Browserdesc)
Browsercnt = browsercoll.count
Msgbox Browsercnt
 For I = 0 to (Browsercnt-1)
 Msgbox “Browser” &I& “has title”=& browsercoll (I)
 Next

26. To check extension of the image
'***
Set filename = Browser (“Google”).Page (“Google”).Image (“India”).GetROProperty (“title
name”)
Set ext = Split (filename,”.”)
Msgbox ext (ubound (ext))

26. Find out cookies in web page
'***
Set cke = Browser (“Google”).Page (“Google”).Object. Cookie
Msgbox cke

An overview of the With Statement

 The VBScript with statement enables you to perform a series of operation
on an object. You use the with statement to group related steps together and make a
script easier to read. For example, using with grouping enables you to quickly see all the
activities occurring on the same web page
 The below code snippets that perform the same operations. The second code
snippet uses the with statement to group steps

'***

Browser (“Welcome Mercury Tours”).Page (“Mercury Tours”).WebEdit (“username”).Set
“kanak”

QuickTest Professional Unplugged

 All powers within you, you can do it

208

Browser (“Welcome Mercury Tours”).Page (“Mercury Tours”).WebEdit
(“username”).SetSecure “3980232390181hh121321”
Browser (“Welcome Mercury Tours”).Page (“Mercury Tours”).Image (“Sign-In”).Click
Browser (“Welcome Mercury Tours”).Page (“Mercury Tours”).Sync
Reporter.ReportEvent micDone,”Login”,”Login Completed”

'***

'***
With Browser (“Welcome Mercury Tours”)

With Page (“Welcome Mercury Tours”)
 WebEdit (“username”).Set “kanak”
 WebEdit (“username”).SetSecure
 Image (“Sign-In”).Click

End With
Page (“Mercury Tours”).Sync

End With
Reporter.ReportEvent micDone,”Login”,”Login Completed”

'***

 About HP QTP Certification

Presently HP offers following two types of certification credentials to the individuals.

1) AIS - full form as “Accredited Integration Specialist”.

2) ASE - full form as “Accredited Systems Engineer”.

QTP Certification gets covered under following two parent streams by the broader name HP Quality
Center v9.

1) AIS - HP Quality Center v9 : Accredited Integration Specialist in HP Quality Center v9.

2) ASE - HP Quality Center v9 : Accredited Systems Engineer in HP Quality Center v9.

We need to clear to get AIS - HP Quality Center v9 Certification?

1) Mandatory or Core Exam: Covers – Implementing HP Quality Center Software (Exam Code:
HP0-M81)

2) Elective Exam: One can choose either of the following exams

a) HP QuickTest Professional 9.2 Software (Exam Code: HP0-M16)

Or

B) HP WinRunner 9.2 Software (Exam Code: HP0-M12)

QuickTest Professional Unplugged

 All powers within you, you can do it

209

We need to clear to get ASE - HP Quality Center v9 Certifications?

1) Mandatory or Core Exam: Covers – HP Quality Center 9.2 Software (Exam Code: HP0-M15)

2) Elective Exam: One can choose either of the following exams

a) Test Scripting using HP QuickTest Professional Software (Exam Code: HP0-M80)

Or

b) Test Scripting using HP WinRunner Software (Exam Code: HP0-M82)

HP does not provide any certification for individual exams may be the Mandatory / Core or the
Elective exam. Hence to get the HP Certification, successful clearing of both Core exam as well as
Elective exam is essential. After clearing the elective exams, a Score Card is provided by
Parametric, which also commands great respect in the IT sector.

Exam preparation guides are available for all the certification exams. These guides provide
following basic information like:

1) Objective: Purpose of the concerned exam preparation guide.

2) Audience: Who should appear in this exam.

3) Requirements: Basic requirements for the concerned certification.

4) Prerequisites: If any for appearing in the concerned exam.

5) Exam details: Covering information like

a) Number of questions in the exam - 58

b) Type of Questions - Multiple choices

c) Time commitment in hours - 2 hours

d) Percentage Required Passing the Exam -70%

6) Exam content: specific broad areas covered in the exam.

7) Sample Questions: 2 - 3 sample questions just to present an idea.

QuickTest Professional Unplugged

 All powers within you, you can do it

210

Reader's Note

QuickTest Professional Unplugged

 All powers within you, you can do it

211

QuickTest Professional Unplugged

 All powers within you, you can do it

212

QuickTest Professional Unplugged

 All powers within you, you can do it

213

QuickTest Professional Unplugged

 All powers within you, you can do it

214

QuickTest Professional Unplugged

 All powers within you, you can do it

215

QuickTest Professional Unplugged

 All powers within you, you can do it

216

About the Author

Kanakarajan works as an Senior Test Engineer

and has over 3 years of experience in IT

He has worked on various Automation projects

using QTP, VBScript, VB6, Quality Center,

Outlook Macro, He can be contacted through

 Msgs2kanak@gmail.com

For support & queries please mail msgs2kanak@gmail.com

