QuickTest Professional Unplugged 1

Kanakarajan kandasamy

About the author

"The best way to start achieving a thing is to drea m for it”
-Dr.A.P.J.Abdual kalam

All powers within you, you can do it

QuickTest Professional Unplugged 2

Preface

"This moment is not permanent in
life”

QuickTest Professional is a Test Automation tool and uses VBScript as its scripting
language. QTP is a record and playback tool which can record events we perform on an
application and replay them back.QTP is an object based tool which recognizes each
element of the application as an object and provides various methods to work on them. All
this makes look QTP an easy to use test tool. The myth about Record & Playback is that it
makes people think that they do not need development skills for QTP, but to create
effective Automation Frameworks one needs to view QTP as a development tool and not
as a testing tool.

This book presents QTP as a development tool rather than a mere test tool. One of
my problems while evaluating the tool led to me to join automation excerpts community in
orkut, without knowing that | will specialize in the use of this tool in future. For sharing my
articles on QTP with the larger group. Dealing with day to day automation problems faced
by people on the QTP forums, | tried solving those problems for them and learnt a few new
things on my own. Observing the patterns of queries being asked on the QTP forums, |
thought what the QTP community was missing is a book which can guide the amateur
automation engineers in becoming a professional in the use of this tool. | took up this
responsibility and started writing this book in May 2009. | spent a less then 6 month.

Being a first time author, | had a very hard time getting this project completed. It was an
additional responsibility, over and above my office work, QTP forum support, writing
articles on Automation Anywhere, creating tools for the community. It required a lot of
motivation to keep myself on the project.

All powers within you, you can do it

QuickTest Professional Unplugged 3

Who This Book Is For

This book is for Test engineers, Test Analysts, Test Consultants and anyone who
is interested in learning advanced techniques of problem solving in QTP. This book is also
for beginners who have just started with QTP and want to be experts in its use. The book
assumes that one has the basic knowledge of QTP and VBScript, if not than it is advised
that one should go through the basic help first. As the main focus of this book is to view
the tool from a developer’s eye, the book does not teach how to record and replay script in
QTP. Also the book does not discuss about the Keyword view of QTP, which is for non-
technical people who don't want to code in QTP.

All powers within you, you can do it

QuickTest Professional Unplugged 4

Contents
Introduction 6
Recording Modes in QTP 11
Data Tables 15
Actions 23
Environment Variables 29
Utility Objects 32
Checkpoints 34
Output Values 41
Descriptive Programming 42
Debugging in QTP 48
Recovery Scenario 49
Regular Expression 60
Synchronization 67
Test Results 68
Automation Object Model 72
Working with MS Excel 78
Working with XML 83
Designing Framework 87
QTP Methods and Properties 96
Working with Test Objects 102
Working with Filesystem Objects 107
Dictionary Object 113
Virtual Object 118
Object Repository 120
Working with Databas es 126
What's New in QTP 9.2 131
VB Script Basics 143
Advanced and Most useful things 149
Sample script for web based application 175
About QTP Certification 184
AULOMALION TOO ... e e e e e et e s e e e e e e eaeaan e eeeeees 8

All powers within you, you can do it

QuickTest Professional Unplugged 5

Recording and RUNNINGueuueiieiies e e eeeeeeseeeseeeeseeiesaeseeseenesessmnnmneeseesseees 13
ReCOrding MOES ..o 13
1) NOIM@L FECOTTING ... e e e e s s e s sb e nnnnnnnes 13
KEYDOAIA VIBW ...t 16
3. DALA TADIE ... 17
EXPOrt Methodcoooiiiii e 28
GetSheetCount Method.............ouviiiiiii e 29
T aT oo M1/ 1=3 1 1 To o IR 29
ImportSheet Method ... 29
SetCurrentROW MEthodooiiiiiiiiiicereee e 29
SetNEeXtROW MELhOM.........uiiiiiiiiei e 29
SetPreVROW Methoduiiiiiiiiiiei s memeeme e e 29
GlobalSheet PrOpertYccooooeiiieee e 29
[Tor= 1 NS] gToT] A o] 0 1= TSRS 29
8 Ay £ U e (o] o 1T o PRSPPI 29
V2= UL e (0] 1= 4 Y AP 30
Creating NeW ACHONSooiiiiii oo ettt nebnenaeesnnanneeees 31
INSerting EXIStING ACHONS.uuiiiiiiiii e 32
Inserting Call to ACIONSoooiii e 32
NESTING ACHIONSeeiiiiiiieiieiieiei ettt eememeseeaeeeesebebbebbsbabebebabbbesaeses st nnmnneeeeeeeees 32
SPILLNG ACLIONS ..ttt et e e e e e e e e e e e e e e e e e e et e e e e et e e e e e e e aaaaaaaaaaaens 32
MISCEIIANEOUS ... et e e ettt menneeeeeeeeeeeeeeeees 33
Setting ACtION Propertiesccoooi oo ceeeee e 33
EXItING QN ACHON ... et ne e e 33
Removing Actions from @ TeSt........cooi i 33
ReNaming ACHIONS........ooooi e 33
ReportEvent Method ... 40
FIlter PrOPEITY ..cceeiiiiiieeee ettt 40
RePOItPath ProPertyo 40
To add checkpoints while recording: ..o 42
From Menu Dar ..., 42
From TeSE TIEE....uie e e 42
From the ACHIVE SCreeNccciiiiiiiiiieeeeee s 42
CRECK POINT SYNTAX: - o.iiiiiiiiiiiiiiiieiiiiia s e s e ss e s e e e e e e e e e e s seseens i nns 44
AULOMALION PrOQIaM- c..oiiiiiiiiieiieieeieesmmmmnmss s s e s e e sasssnnnsnnne 46
Example: LOgo TeSHtNG.....ccooieiiiieiee e a7
INEFOAUCTION: ..t ee et e e et e e e e e e e e e e e e e e aaa 50
DesCriptive ProgramiMing:uuecueuriceeeeeeeeeeaeeeaeaeeeeeaeeeaeseseseeeeeseaeseassanaaaaesaens 50
Some places where we can USe AOM........coouveeeeeiiiiiie e 86
HOW tO WIite AOM SCHPIS? .ottt 88
What is Document object Model?..............ceeeemiviviiiiineniiiiiiiiiiininnn. 98
When can We USE DOM?uuiiiiiiiiiiiiiiei e 98
DS ot] o 1o] o SO R 124
SYNTAX ettt et 124
REMAIKS ... 124
DS ot] o] 1o] o OO RR 125

All powers within you, you can do it

QuickTest Professional Unplugged 6

DESCIIPLION ..o 126
EXAMPIES .. 126
DS ot 1] o] o] o SO R 127
Creating TeXt FIl@S.........uvuiiiiiiiiiieii e veiiviiiieeiieaeenneeneennnnes 127
DS ot] o] o] o SRS 127
SYNTAX ettt e 128
EXAMPIES .. 128
OpPeNiNg TEeXE FIlES......cuuiiiiiiiiiiiiiiiit ceeeeeeeeveeieeveeieeiieeeebeeereneeenennnnne 128
DS ot] o] 1o] o SR 128
SYNTAX ettt et 128
EXAMPIES . 128
SYNTAX ettt et 130
REMAIKS ..o 130
DTS ot] o] o] o OSSR 173
SYNTAX ettt et 173
DS ot] o) 1o] o RS OR 173
SYNTAX ettt e 173
DESCIIPLION ...t 173
SYNTAX ettt ettt e e e e 174
DESCIIPLION ...t 174
SYNTAX ettt e e s 174
DESCIIPLION ...ttt 174
SYNTAX ettt e e e e e e 174
DESCIIPLION ..ot 175
SYNTAX ettt e e e et 175
DESCIIPLION ..ot 176
SYNTAX ettt e e e e e 176
DESCIIPLION ..ot 176
SYNTAX ettt e e e 176
DESCIIPLION ..ot 176
SYNTAX ettt e e e e e e 176
SOLINGS .t mmmmmm e 177
RELUIN VAIUES......oiiiiiiiiiii e 177
DS ot] o] 1o] o PO 177
SYNLAX ettt e 177

All powers within you, you can do it

QuickTest Professional Unplugged 7

Recording modes in QTP

Data Tables

Actions

Environment Variables

Utility Objects

Checkpoints

Output Values

Descriptive Programming
Debugging in QTP

Recovery Scenario

Regular Expression
Synchronization

Test Results

Automation Object Model
Working with MS Excel

Working with XML

Designing Framework

QTP Methods and Properties
Working with Test Objects
Working with Filesystem Objects
Dictionary Object

Virtual Object

Object Repository

Working with Databases

What's New in QTP 9.2

VB Script Basics

Advanced and Most useful things
Sample script for web based application
About QTP Certification

All powers within you, you can do it

QuickTest Professional Unplugged 8

1

Introduction

What is test Automation?

It is a process in which all the drawbacks of manual testing are addressed (over

come) properly and provides speed and accuracy to the existing testing phase.
Note:

Automation Testing is not a replacement for manual testing it is just a continuation

for a manual testing in order to provide speed and accuracy.

Drawbacks of Automation Testing
1. Too cost.
2. Cannot automat all the areas.
3. Lake of experience.
4,
AUTOMATION TooL
Automated Tool is an Assistance of test engineers, which works based on the
instructions and information.

General foam work to learn any automated tool.
A test engineer should learn the following to work with any automated tool.

How to give the instruction.
How to give the information.
How to use its recording facility.
How to use its play back facility.
How to analysis the Result.

arwdE

When should test Automation be used?

U think it is tedious to apply the test manually.

U think it will be reasonably feasible to automate the test case.

U think it is better we execute the test case manually rather than breaking our head trying
to automate it.

Lack of WILL POWER has caused more failure than Lack of INTELLIGENCE or ABILITY.
Basically we can start with Manual Testing; the situations to move to automate will be
1) when we need to test the same functionality with more set of input data.

2) Difficult to do manual testing (time wise, resources wise)

3) Where users work mostly on that particular page or section of that application

4) Pages/ sections very important to the users

5) where More no of mathematical calculations will be done

All powers within you, you can do it

QuickTest Professional Unplugged 9

What is HP Quick Test Professional (QTP?)

QTP — Quick Test Professional

QTP is a Mercury Interactive Automated Testing Tool which provides the industry’s
best solution for Functional test and Regression test automation.

Quick Test Professional enables you to test standard Windows applications, Web
applications, ActiveX controls, and Visual Basic applications.

You can also acquire additional Quick Test add-ins for a number of special
environments (such as Java, Oracle, SAP Solutions, .NET Windows and Web
Forms, Siebel, PeopleSoft, Web services, and Terminal Emulator applications).

Benefits of using QTP

Fast - Quick Test runs tests significantly faster than human users.

Reliable - Tests perform precisely the same operations each time they are run,
thereby eliminating human error.
Repeatable - You can test how the Web site or application reacts after repeated
execution of the same operations.
Programmable - You can program sophisticated tests that bring out hidden
information.
Comprehensive - You can build a suite of tests that covers every feature in your
Web site or application.
Reusable - You can reuse tests on different versions of a Web site or application,
even if the user interfaces changes.
Quick Test Professional satisfies the needs of both Technical and Non-Technical
(Business Analysts, Subject Matter Experts) users. It enables you to deploy high
quality applications faster, cheaper, and with less risk.
Empower the entire team to create sophisticated test suites with minimal training.
Ensure correct functionality across all environments, data sets, and business
processes.
Fully document and replicate defects for developers, enabling them to fix defects
faster and meet production deadlines.
- Easily regression-test ever-changing applications and environments.
Become a key player in enabling the organization to deliver quality products and services,
and improve revenues and profitability.

All powers within you, you can do it

QuickTest Professional Unplugged 10

QTP Testing Process

OTP Testing Process

Plan The Sutomated Testing

Bocord User Sclions Lo gemerale Uhe basic Last

Enhamos Uk Automated test for Play Back and Tesling

Yoou debug a Lel bo ensure Lhal il operales smoothly and
withoutl imberrup Ui,

You ron i test Lo chaeck Uhe balavior of your application or Web sjle.

Woou examime Uhe lesl resulls Lo pinpointl delecls invour
application.

Bapod Uk defecl using Excel templates § defect Uracking Lool

Create your test plan

Prior to automating there should be a detailed description of the test including the exact
steps to follow data to be input and all items to be verified by the test. The verification
information should include both data validations and existence or state verifications of
objects in the application.

Recording a session on your application
As you navigate through your application QuickTest graphically displays each step you
perform in the form of a collapsible icon-based test tree. A step is any user action that
causes or makes a change in your site such as clicking a link or image or entering data in
a form.
Enhancing your test
o Inserting checkpoints into your test lets you search for a specific value of a
page object or text string which helps you identify whether or not your
application is functioning correctly.

NOTE: Checkpoints can be added to a test as you record it or after the fact via the Active
Screen. It is much easier and faster to add the checkpoints during the recording process.

All powers within you, you can do it

QuickTest Professional Unplugged 11

o Broadening the scope of your test by replacing fixed values with
parameters lets you check how your application performs the same
operations with multiple sets of data.

o Adding logic and conditional statements to your test enables you to add
sophisticated checks to your test.

Debugging your test

If changes were made to the script you need to debug it to check that it operates smoothly
and without interruption.

Running your test on a new version of your applicat ion

You run a test to check the behavior of your application. While running QuickTest
connects to your application and performs each step in your test.

Analyzing the test results
You examine the test results to pinpoint defects in your application.
Reporting defects

As you encounter failures in the application when analyzing test results you will create
defect reports in Defect Reporting Tool.

All powers within you, you can do it

QuickTest Professional Unplugged 12

Setting up the Environment
» Setting up the QTP environment for Record and Playback
= Select the correct Add-ins to load from the Add-in Manager
= Select the appropriate Active Screen capture level (Tools = Options)
= Configure the Record and Run settings (Test > Record and Run Settings)
= Configure the Editor options (Tools - Editor Options)
» Record a basic test from a manual test case.
» Play Back a test.
» Debug and Enhance the Test.
> Set the Initial and End conditions for a test.
» Save the test.
Ad-in Manager : - It is a feature provided by qtp used for making the qgtp compatible
with a specified environment by default the gtp provides 3 add-ins
Visual basic
Java
Multimedia
Visual Basis
. Web
x|

GENIRENYS

Activer
Java
tultimedia
izual Basic
‘wieb

Descriptian:
, |Tests Activel contrals

=l |
V' Show on startup

ok I Cancel Help

All powers within you, you can do it

QuickTest Professional Unplugged 13

2

Recording modes in QTP

Recording and Running

Recording and Run Settings:
Recording and Run Setting is a feature provided by Q.T.P, which is used for
making the Q.T.P understand on which applications will need to concentrate while
Recording and Running. This setting has to be done at least once for every new
test.

Operational Overview of Recording.
During recording Q.T.P will be during us following

1. It will generate the corresponding test script statement for every user action.
2. It will also store the required related information in the object repository.

Operational Overview of Running.
Q.T.P will be doing the following will be running

It will be read the script statement.

It will understand what action to be performed on which object.

When it is realizes it needs to identify that object for that it requires some

information for that information it will go to the object repository and search.

4. Once the information is identified using that information it will try to identify the
object.

5. Once the object is identify it will perform the action

wh e

Recording Modes

There are 3 types of recording modes.

1. Contact sensitive recording mode / normal recording mode.
2. Analog recording mode.

3. Low-level recording mode.

1) Normal recording

It is used for recording the operations perform at different contacts on the standard
GUI objects.

All powers within you, you can do it

QuickTest Professional Unplugged 14

2) Analog Recording (Ctrl+Shift+F4)

It is used for recording the continuous operations. This mode is useful for the
operation you can record at object level such as drawing a picture, recording
signature. The steps recorded using analog mode is saved in separated data file.
Analog recording divided into two types.

1. Relative to screen
Quicktest inserts the Run Analog step under desktop parent item. For example
Desktop, runAnalog “Trackl”

2. Relative to window
Quicktest inserts the Run Analog steps under a window parent item. For
example
Window (“Microsoft internet”).Run Analog “trackl”

The track file called by the run analog method contains all your data and is stored
with action.
Note: trackO —Fast

Trackl1l-Normal

3) Low-level Recording

It is special recording mode provided by Q.T.P, which is used for recording the
minimum operations on the Non-Supported environments also. Low-level-recording
for when you need to record the exact location of the operation on your application
screen-L-R supports the following

Winobject -Click, doubleclick, drag, drop, type
Window -Click, double-clicks, drag, drop, type, activate, minimize, and restore,
maxmize.

Normal Recording code for Agent name in flight reservation application.
Browser (“mercury”).page (“mercury”).webedit (Agent name).set “mercury”

Low-Level-Recording code

wnd (“mercury”).page (“mercury”).click 564,263
wWnd (“mercury”).page (“mercury”).type “mercury”
wnd (“mercury”).page (“mercury”).type MicTab

All powers within you, you can do it

QuickTest Professional Unplugged 15

Anatomy or QTP
Apart from these 3 add-ins gtp is always compatible with standard windows
environment QTP serene is divided in to 5 parts
1. TestPane

Active Screen
Data Table

Debug Viewer Pane

o > W N

Tool Options

]1). Test Pane
Test pane is an area provided by Q.T.P, which is used for developing, viewing and
modifying the test script.
It represents the Test script in 2 views.

1. Expert view
2. Keyboard view

QTP Main Window

All powers within you, you can do it

QuickTest Professional Unplugged 16

e A

e
=l e B

=l bt
- jw’-n:- Wy loxs
w [0} Wekcsm: Maxsap | mar
TR e e |"IENRTADOE e | heenicipla] A0 g HEERST a0 0hid.
= = L LK [T el 1y B
"D Firvd i Faghl Blmew 1 3
1= pasicinl ol Eedlmcd B “2° darw b e “panlount”
| Beleed i “capuiod" e boan e ToPa”
ot ot e Bty b Bt T

Registared samn: oo sips b
femrm 1o fired 1he Il Fars on
pativiqohng aslne:

Nt:h:ﬂd.i |

Expert view
Expert view represents the script in VB script format.

Keyboard View
It represents the scripts using a graphical user interface, which is further divided,
into 4 parts.

Item

Operation
Value
Documentation

PowbdE

2) Active Screen
Active Screen is a feature provided by Q.T.P which holds the snap shots related to
each and every script statement and used for understanding the script easily as well as
enhancing the script easily.
Features:-
It is used for understand the script easily.
It is used for enhancing the script easily.

All powers within you, you can do it

Active Screen capture level settings

S)
Generall Folders Active Screen | Run | windows .&pplicationsl Java | Wweb I
— Capture level
= I - Partial

- Captures all properties of all abjects in the first step in a windaw ar

- 2 dialog box. Captures only properties related to the recorded object
- for other steps in the same parent object.

- Saves all'Web pages after any dynamic changes
- Saves Active Screen files in a compressed format

Custom Lewvel... [Wefaultleyvel I
—Appearance [web)
Llze these settings to customize the appearance of "web pages in the Active
Screen F:'.E' !
Advanced... |

Ok I Cancel | e 1] | Help |

Writefa program to disable active screen programmatically?
i i rl.'hﬁnrl'\';'a;;li I fnl-"-l—ﬂr T

Dim X limgas | e

Set x=(reatephiaeh FauckiesEappligation’s R o [T i T3 T =

x.laungh L.zl gt

X.showpaneScreen activatescreen’, 1alse

Wait 3| &

x.windgwstate="maximized”

x.visible:irue

Set x=11 oming

il

LEq
B]

i l:"-. ol A ARERT J Fail

3. Data Table

A Data Table provides a way to create data driven test cases. Data table is also called as
formulal sheet, which is developed by the third party and integrated with the Q.T.P. Each
test case has one global data sheet which is accessible to all actions inside that test case
and each action has its own private data table also known as local data table. The name
local data table is somewhat misleading because it is in fact possible to access any

action’s local data table from any other action, but the way of accessing the data becomes
a bit different.

All powers within you, you can do it

|| Microsoft Excel - Default.xls =Jokd
uﬁ File Edit ¥iew Insert Format Tools Data Window Help - & X
13 E:_M:cﬁhelblg =10 B Z U |=2==:8|". §

@ Sl i e sty | 2 3 oo B

C3 X B 5

A | B [e =N
1 [Parameter] |Parameterd Sum =
2 1 2 3 =
3 2 3 3|
4
B
3 ~
i« « » wh\Global { actiont / [Fm—T—— |
Ready « MUM

Figure 3.1 shows a sample DataTable with 2 parameters, Username and Password

We can use most of the formulas that work inside a typical Excel spreadsheet. But there
are some

differences between a DataTable and an Excel spreadsheet. In fact a DataTable is
wrapped around an Excel spreadsheet—which provides access functionality to the values
but does not expose the Excel spreadsheet object model.

‘Gives the value of Parameterl stored in
‘The Global data table.

Data Table (“Parameterl” , dtGlobalSheet)
‘Gives the value of Parameterl stored in
‘The current’s action local data table.

Data Table (“Parameterl” , dtLocalSheet)

All powers within you, you can do it

The same Data Table cannot have duplicate parameter names but we can use the
same name Parameters in different sheets (Global Data Table and Local Data Table).
Each Data Table has only 1row enabled even when it is blank and the other rows get
enabled when data is entered into a new row. A Data Table is stored as “Default.xIs” file in

the test folder

E e Kind Tirat || [ummpllecmstts| - Eoul amos

Bl fem i e
FESTERE A& = =7
B Tl Uil Pl Thamien ——
L. il
||y g e prmaanon | Wpsnrame Pl owon & W] E F ia -
Ll ormriy (st | i ﬁi“ iﬂ |
: ‘
4
]
L]
¢
i
]
LL
11
Ll
11
LE
1%
18
ar
ia
i |
i
| -
1 § 4] bl SASr P w| B
Trm riaky, pren 0 EH

When viewed in Excel, the first row of the sheet contains the parameter names,
while QTP displays the parameter as the column titles. Therefore, when viewed using
Excel, the 2nd row starts the 1st row of data in the DataTable. The DataTable shown
above has only 2 data rows enabled. Note that QTP makes a data row enabled by marking
the borders of the row in the actual spreadsheet. A row with no data but with marked
borders is still considered as an enabled row by QTP. To delete an enabled row we must
select the row and delete it from the context menu which appears on right clicking the row.

Design and run-time data table

Design time data table

As the name suggest the data table during the script design time is known as design time
data table.
Any changes to this are saved when the script is saved.

All powers within you, you can do it

Run-time data table

The run-time data table contains a copy of the design time data table when a script is
executed. It may contain values that are changed during script execution and are
presented in the test result summary. The changes made to the data table during run-time
are not saved to design time data table. Figure 4-3 shows a run-time data table from the
test results summary

Test Setlings m

Propaties AR |IHE~EI:I.I'\DE5| Paramsiars | Erviionment | Web | Reécowvay |
Crsl Toabde ieralions
" Fiun gne deralion onky

(= [o 3 ied

I Fun lism oy | fndoe |1

‘H.'Pmmmd:Manrmlpﬂpmmﬂugebm _"'J
Object sywrchnorizalion lmeout 20000 miliseconds
[T Chsable St | dertication durg the: i seesmn

[T Saes mnage of dhecskhog vibvan ital oecus [Le ok By
Merciay Buismass Piocess: Morsiol

[ok | cuwa | o
When to use the global or a local data table

It is important to und__?and in what situations the global or a local data table should be

used.
Consider the following two scenarios

Scenario 1 - Log into the application, book 1 ticket, log out. Repeat the scenario for
many users

Scenario 2 - Log into the application, book 3 tickets, and log out

Scenario 1

The Global data table is better suited for this scenario where we have the user name,
password

and tickets details as the parameters and we execute the scenario using a single action
(which does

everything) or multiple actions (Login, booking and logout).

NOTE: We can use an external spreadsheet as a Data table by

All powers within you, you can do it

QuickTest Professional Unplugged 21

Specifying the location of the file in the Resource (Tab) as shown in the

Figure 4-4
Scenario 2

A Local data table is better suited for this scenario. Here a good approach would be to split
the test

into three actions: login, booking and logout. Login and logout can use the username and
password

parameters from the global data table and booking can use ticket detail parameters from
its local data table and the action will be executed for all rows in its local data table.

Setting data table iterations

To run a test case for some number of iterations we need to set the iterations of global

data table in

the Test Settings dialog, which is invoked using Test — Settings... —Run (Tab) Figure
shows the

iteration settings for the global table. These settings are specific to script.

.-.f.'i.. Untitked Test - Qmck Test Profecsional
Fie Bt Vew lnsért - Te Se Debig ool bl

DEEdS FLH 0 o@a2d

.H.r.:.d b Fis W e gt l‘ﬁp DI! i L
T Dpevafion Vel
B pat iy Perwm b, | emble
et Mapurdbary
vt Gl o Copry o GTON, .,
ot ol o Lakiting b,
Frepitangss roakpoend]
Pign Py Shap, .,
By Clebis
| ——
[t bl
E
Eogmess Sy Traem |
Collapse Sk Tres | B

Atiun Lall Froperises E3

Bun | P Vs |
Drzta Tobls Ampbons —
1 [Flun gne s ation
™ Pl on ol 106

i Ainlicnies | herea | |

QuickTest Professional Unplugged 22

The Action call properties dialog can be used to set the iterations as shown in the Figure 4-6

We can set the iteration settings for an Action call by going into the keyword view and then
right

clicking on the Action and selecting Action Call Properties...as shown in the below figure

All powers within you, you can do it

QuickTest Professional Unplugged 23

Data table object model
QTP provides an object model to access various properties and methods in a data

table:

There are three types of objects
o DataTable - Represents all the global and local data tables in the test
o0 DTSheet - Represents a single sheet in the test

o DTParameter - Represents a single column in a sheet.

Each object has certain functions available and certain properties associated with
it. These are explained in detail in the QTP user manual.

Data table formatting

When data is entered into the data table it automatically formats the value using
the best possible matching format. For example, if "12345678901" is entered into a cell
then it would be auto formatted to "1.23456789E+010". In situations where the formats are
important the data should be entered with care. If data entered in the cell start with a single
quote (‘) then it is always treated as a text and no format conversion is performed. We can
also define a specific format by right clicking the cell or an entire column and then picking

a specific format from the popup context menu.

Problem 3.1 How to access a parameter from the glob al data sheet

There are a variety of ways to access a parameter from the global data table, most
of which are
presented in the following code snippet:

'‘Methods of getting a Data Table value
Val DataTable.Value ("ParamName" , dtGlobalSheet)
Val DataTable.Value ("ParamName" ,"Global")

'‘By giving the sheet index starting from 1 for the global sheet
Val = DataTable.Value ("ParamName" , 1)

Sheet name or id is a optional parameter and is assumed
' to be as for global data sheet in case not provided
Val = DataTable.Value ("ParamName")

' Value property is the default property of the DataTable object

All powers within you, you can do it

QuickTest Professional Unplugged 24

So DataTable ("ParamName", dtGlobalSheet) is
' Equivalent to DataTable.Value ("ParamName", dtGlobalSheet)
Val DataTable ("ParamName" , dtGlobalSheet)
Val DataTable ("ParamName")

'‘Using the data table object model
Val = DataTable.GlobalSheet.GetParameter ("ParamName").Value

'Using the data table object model
Val = DataTable.GlobalSheet.GetParameter ("ParamName").ValueByRow

(1)

Problem 3-2. How to access a parameter from a Local data sheet

'Various methods to get data table value

Val = DataTable.Value ("ParamName" , dtLocalSheet)

Val = DataTable.Value ("ParamName" ,"<LocalActionName>")
Val = DataTable ("ParamName" , dtLocalSheet)

Val = DataTable ("ParamName" ,"<LocalActionName>")

‘The local sheet of the action which is executing this statement
Val = DataTable.LocalSheet.GetParameter ("ParamName").value

Problem 3-3. How to check if a Sheet exists

'Function to check if DataTable sheet exists
Function isSheetExists (sheetName)
On error resume next
isSheetExists = TRUE
Err. Clear
Set objSheet= DataTable.GetSheet (sheetName)
In case error occurred sheet does not exist
If err. number<>0 then
isSheetExists = FALSE
End if
End Function

Problem 3-4. How to preserve format of data output to a data table

This would be modified to 1.23456789E+010 due to auto formatting
DataTable ("ParamName") = "12345678901"

This will not be auto formatted and will be treated as text
DataTable ("ParamName") = " & "12345678901"

Problem 3-5. How to check if a parameter exists in a specific sheet

'‘Check if a parameter exists in data table
Function isParameterExists (sheetName, paramName)
On error resume next
isParameterExists = TRUE
Err. Clear
ParamTotal = DataTable.GetSheet (sheetName).GetParameter (paramName)
'In case of error the parameter does not exist

All powers within you, you can do it

QuickTest Professional Unplugged 25

If err. number<>0 then
isParameterExists = False
End if
End Function

Problem 3-6. Current iteration number of QTP script

STR ="Current QTP iteration: " & Environment ("Testlteration") & vbNewLine & _
‘DataTable ("Paraml", dtGlobalSheet) & vbNewLine & _

DataTable ("Param2", dtGlobalSheet)

MsgBox STR

Problem 3-7.How to export contents of a WebTable to a data sheet. Let's assume
that the first row of the data table contains the ¢~ olumns heading. We then add those
as parameters of the data table:

‘Variable declaration
Dim i, j

Dim rowCount, colCount
Dim cellText, objTable

‘Get table object

Set objTable = Browser (*").Page (").WebTable (")
‘Get the row count of the webtable

rowCount = objTable.RowCount

‘Get the column count of the webtable header row
ColCount = objTable.ColumnCount (1)

‘Create an output sheet

Set outSheet = DataTable.AddSheet (“Output”)

‘Create Parameters based on the 1st row of the web table
For i =2 to colCount

cellText = objTable.GetCellData (1,i)

‘Note in case the CellText contains space in between
‘then QTP will automatically convert it to a “_” character
outSheet.AddParameter cellText,”

Next

‘Skip first row as we assumed it to be a header row
Fori= 2 to rowCount

outSheet.SetCurrentRow i-1

‘Re-calculate the column count as some rows

‘Have different column sizes

colCount = objTable.ColumnCount (i)

For j = 2 to colCount

cellText = objTable.GetCellData (i, j)

‘We are using index here to avoid the problem of

‘the “_" issue if cell text has spaces or new line chars
‘then we will get an error. to overcome that we can also use
‘outSheet.GetParameter (Replace (cellText,” “,”_")).Value

All powers within you, you can do it

QuickTest Professional Unplugged 26

outSheet.GetParameter (j-1).value = cellText
Next
Next

Problem 3-8. How to get value of a parameter from a ny specific row in the data table

We use the ValueByRow method to get value for any row

‘Get a value by row

DataTable.GetSheet (“SheetName”).GetParameter (“ParameterName”).
ValueByRow (RowNumber)

Problem 3-9 . How to execute a script for all Global Data Table i terations, when the
script is set to run for only one iteration:

In case we want to manually repeat the code for each iteration, we need to write a bit
code.

‘Declare variable

Dim i, iCount

‘Get the global sheet object

Set oGlobal = DataTable.GlobalSheet
‘Get # of rows

iCount = oGlobal.GetRowCount
Fori=1toiCount

‘Set the current row
oGlobal.SetCurrentRow i

‘Execute the code to be repeated here
Msgbox DataTable (“UserName”)
Next

Problem 3-10. How to get the number of columns that contain data:

To solve this problem we need to utilize the excel formula COUNTA. We add a parameter
to the data table with the formula and then read its value:

‘Add a new parameter with the formula

‘For Columns 1 of data table use A1:A65536

‘For column 2 of data table use B1:B65536 and so on
DataTable.GlobalSheet. AddParameter “New” ,"=COUNTA(A1:A65536)"
‘Get the new value

Msgbox DataTable (“New”)

Note: The above code won't work when there are no columns in the data table or all the
columns have been used

All powers within you, you can do it

QuickTest Professional Unplugged 27

Data table Parameterization

Record new script “www.mail.yahoo.com”

Start recording and provide user name and password

Stop recording

Now create 2 column in Global data table named “user name” and
“password”

provide values for both column

With help of data table associated method properties the most popular is
value which is the default data table property. Now let us see how we
access values stored in data table.

e

oo

Dim Uid, Pw
Uid =datatable.value ("user name”, dtGlobalSheet)
Pw =datatable.value ("password”, dtGlobalSheet)
‘After that changes it into
Browser (“mail yahoo").page (“mail yahoo”).webebit (“username*).set “Uid"
Browser (“mail yahoo").page (“mail yahoo”).webebit (“password”).set “Pw”
‘In order to move your pointer to next row, if we want to use second row just use the
bellow code
Datatable.SetNextRox

Working with the data table objects

Adds the specified sheet to the run-time Data Table
AddSheet Method

Syntax: DataTable.AddSheet (Sheet Name)
Example:
Variable=DataTable.AddSheet ("MySheet").Add Parameter ("Time", "8:00")

DeleteSheet Method
Deletes the specified sheet from the run-time Data Table.

Syntax: DataTable.DeleteSheet SheetlD
Example : DataTable.DeleteSheet "MySheet"

All powers within you, you can do it

QuickTest Professional Unplugged 28

Export Method

Saves a copy of the run-time Data Table in the specified location.

Syntax:
DataTable.Export (FileName)
Example:

DataTable.Export ("C:\flights.xIs")
Uname=datatable.value (“uname”, dtGlobalSheet)
Pw=datatable.value (“pw”, dtGlobalSheet)
Name="Agentname”

Dialog (“login”).winedit (name).set Uname

Dialog (“login”).winedit (“password”).set Pw

Datatable.export (“c:\login.xIs™)

ExportSheet Method

Exports a specified sheet of the run-time Data Table to the specified file.

Syntax: DataTable.ExportSheet (FileName, DTSheet)
Example: DataTable.ExportSheet "C:\name.xlIs”, 1

GetRowCount Method

Returns the total number of rows in the longest column in the global data sheet or in the

specified data sheet of the run-time Data Table.

Example:
Rowcount = DataTable.GetSheet ("MySheet").GetRowCount

GetSheet Method

Returns the specified sheet from the run-time Data Table.

Example: MyParam=DataTable.GetSheet ("MySheet").Add Parameter ("Time", "8:00")

All powers within you, you can do it

QuickTest Professional Unplugged 29

GetSheetCount Method
Returns the total number of sheets in the run-time Data Table.

Import Method
Imports the specified Microsoft Excel file to the run-time Data Table.

Syntax: DataTable.Import (FileName)
Example: DataTable.Import ("C:\flights.xIs")

ImportSheet Method
Imports a sheet of a specified file to a specified sheet in the run-time Data Table.

Syntax: DataTable.ImportSheet (FileName, SheetSource,SheetDest)
Example: DataTable.ImportSheet "C:\name.xls”, 1,"name"

SetCurrentRow Method

Sets the specified row as the current (active) row in the run-time Data Table.
Example: DataTable.SetCurrentRow (2)

SetNextRow Method

Sets the row after the current (active) row as the new current row in the run-time Data
Table.

SetPrevRow Method

Sets the row above the current (active) row as the new current (active) row in the run-time
Data Table.

GlobalSheet Property

Returns the Global sheet of the run-time Data Table.
Example:
DataTable.GlobalSheet.AddParameter "Time", "5:45"

LocalSheet Property

Returns the current (active) local sheet of the run-time Data Table.
Example:
MyParam=DataTable.LocalSheet. AddParameter("Time", "5:45")

RawValue Property

Retrieves the raw value of the cell in the specified parameter and the current row of the
run-time

Data Table.

Syntax : DataTable.RawValue ParameterID [, SheetID]

SheetID can be the sheet name, index or dtLocalSheet, or
DtGlobalSheet.

All powers within you, you can do it

QuickTest Professional Unplugged 30

Value Property

Retrieves or sets the value of the cell in the specified parameter and the current row of the
run-time Data Table.

Syntax:

DataTable.Value(ParameterID [, SheetID])

1.

Creating Tests with Multiple Actions

Actions divide your test into logical sections. When you create a new test, it
contains a
call to one action. By dividing your tests into calls to multiple actions, you can design more
modular and efficient tests. Use one of the following menu options or toolbar buttons to
add actions to your test:
» Step = Split Action (or) use the Split Action button.
* Insert & Call to New Action (or) use the Insert Call to New Action button.
« Insert > Call to Copy of Action (or) right-click an action and choose Insert
Call to Copy of Action.
» Insert = Call to Existing Action (or) right-click an action and choose Insert
Call to Existing Action.
Steps to divide the Test into multiple Actions

» Save the Recorded application with an appropriate name.

» Select the page where you want the second action to begin.

» Choose Step = Split Action (or) click the Split Action button.

« Enter Names, Descriptions for the two actions and click ‘OK’ button.
* The two Actions are displayed in the Keyword View.

Different Types of Actions

[EquickTest Professional - [C:,Documents and Settings' 701464 Desktop'\SampleTest3*] o =] 53
= |
}@j File Edit Wiew Insert Automation Resources Debug Tools Window Help =i
| @ rocord B Run: W siop [| H;j‘“;f_‘lr:‘) EH]‘»E - e |l ;IH\ ; |
(| o o = L open - 1] 0 | @ s |Eesn s @R aax
fresta* | i[5
@8, actionz >
[| & Actions =
2 @ actionl v —I
5 | (@ Reusable Actions s
4
cht @rieName JUAZISFOT (EAN release)
B @remanks Ciris necessary o load mgl b vBs, mms_lib vbs, ims_ch Kb vbs java segistervbs and mms_ch Arscie vBs
2 @oreated daie ©M4.O0T2006 By :iGaie
8 @changsd <ODMUYYYYE by <developamames

10 Dim CurrentSetting

11 Dim |sFileMame, IsSheetMame, IsFalderMame

12 Dim internalFrame, acthavigation

13 Local Vanables

14 Dim lzchgEAN _ Idvalidfrom 1. Idvaliduntilll IsAnno . lsArndesc . IsVariant. 155U 1sPUARL 1sBl IsMo lsEAN, IdValidfrom?2. IdvaliduntillZ ls4rnol | IsAndescl | Isve
15

18 internalFrame ="UAZ3EF01" 'EAN refease
‘\7; internalFrameFrame = MMS_Frame_UA335F01
ik acthavigation = array ("MS_Ar_Function”, "MMS_Art_Administration", "MMS_Ar_General", "MMS_Ar_EANrelease")
15
20: Javavindow(MMS_Win_tain).SetTOPropery "oolkit class" MMS_Win_Main_TO
2
22 IsFileMame = parameter("psFileName"
23 IsSheettlame = parameter('psSheetMame")
24: IsFolderName = eval (parameter("psFolderName") Because we dse Public Const forithe fbidernames
25
26: Hmgi_firstiteration (IsFolderbame, IsFileMame, IsSheethlame, ") = "Failed" Then
27. ExitFun(0)
28: End If
29
30 H Environment("ActionError) <> 0 and DataTahle("phClear’, dil ocalSheef) = 0 Then
_3]1 2 ExitActionlteration ¥
{ [

1] 4w m| N Keyword View s Expert View

[== Ready y

oo oo | g st | = BE T S R e

QuickTest Professional Unplugged 31

Actions are classified into three types.
. Non-Reusable Action — An action that can be used within the test in which it is
created.

. Reusable Action — An action that can be called multiples times by the test in which
it was created as well as by other tests.

« External Action — Similar to Reusable action created in another test. These are in
Read-Only format. The actions can be modified from its Original Test.

Creating New Actions

You can add new actions to your test during a recording session or while designing your

test.

You can add the action as a top-level action, or you can add the action as a sub-action (or
nested action) of an existing action in your test.

To create a new action in your test:
If you want to insert the action within an existing action, click the step after which you want
to insert the new action.

Choose Insert > New Action or click the New Action button. The Insert New Action
dialog box opens.

Type a new action name or accept the default name.

If you wish, add a description of the action. You can also add an action description
at a later time in the Action Properties dialog box.

Select Reusable Action if you want to make the action reusable. You can also set
or modify this setting at a later time in the Action Properties dialog box.

Decide where to insert the action and select At the end of the test or After the
current step.

Click OK.

A new action is added to your test and is displayed at the bottom of the test tree or after
the current step. You can move your action to another location in your test by dragging it
to the desired location.

All powers within you, you can do it

QuickTest Professional Unplugged 32

Inserting Existing Actions

You can insert an existing action by inserting a copy of the action into your test, or by
inserting a call to the original action.

Inserting Copies Actions

When you insert a copy of an action into a test, the action is copied in its entirety, including
checkpoints, parameterization, and the corresponding action tab in the Data Table. The
action is inserted into the test as an independent, non-reusable action

Once the action is copied into your test, you can add to, delete from, or modify the action
just as you would with any other recorded action. Any changes you make to this action
after you insert it affect only this action, and changes you make to the original action do
not affect the inserted action. You can insert copies of both reusable and non-reusable
actions.

Steps to insert a copy of an action:

« Choose Insert > Copy of Action, right-click the action and select Insert Copy of
Action, or right-click any step and select Action > Insert Copy. The Insert Copy of
Action dialog box opens.

* Type a meaningful name for the action in the New action name box and give action
description

« Specify where to insert the action: At the end of the test or after the current step.

* Click OK. The action is inserted into the test as an independent, non reusable
action.

Inserting Call to Actions

You can insert a call (link) to a reusable action that resides in your current test (local
action), or in any other test (external action).When you insert a call to an external action,
the action is inserted in read-only format. You can view the components of the action in
the action tree, but you cannot modify them.

Steps to insert a call to an action:

» Choose Insert > Call to Action, right-click the action and select Insert Call to Action,
or right-click any step and select Action > Insert Call. The Insert Call to Action
dialog box opens.

« Inthe Select an action box, select the action you want to insert from the list.
« Specify where to insert the action : At the end of the test or After the current step.
* Click OK. The action is inserted into the test as a call to the original action

Nesting Actions

Sometimes you may want to run an action within an action. This is called nesting.
Nesting actions Help you maintain the modularity of your test. Enable you to run one
action or another based on the results of a conditional statement.

Splitting Actions
You can split an existing action into two sibling actions or into parent-child nested actions.
You cannot split an action and the option is disabled

All powers within you, you can do it

QuickTest Professional Unplugged 33

* When an external action is selected

« When the first line of the action is selected
* While recording a test

e While running a test

e When you are working with a read-only test

Miscellaneous

Setting Action Properties

The Action Properties dialog box enables you to modify an action name, add or modify an
action description, and set an action as reusable.

Sharing Action Information
There are several ways to share or pass values from one action to other actions:

« Store values from one action in the global Data Table and use these values as
Data Table parameters in other actions.

* Set a value from one action as a user-defined environment variable and then use
the environment variable in other actions.

« Add values to a Dictionary object in one action and retrieve the values in other
actions.

Exiting an Action

You can add a line in your script in the Expert View to exit an action before it runs in its
entirety.
There are four types of exit action statements you can use:

« ExitAction - Exits the current action, regardless of its iteration attributes.
» ExitActionlteration - Exits the current iteration of the action.

« ExitRun - Exits the test, regardless of its iteration attributes.

« ExitGloballteration - Exits the current global iteration.

Removing Actions from a Test

We can remove Non-reusable actions, External Actions, Reusable Actions, or Calls to
External or Reusable actions.

Renaming Actions
You can rename actions from the Tree View or from the Expert View.

Action Template

All powers within you, you can do it

QuickTest Professional Unplugged 34

If you want to include one or more statements in every new action in your test, you can
create an action template.

Steps to create an action template:

« Create a text file containing the comments, function calls, and other statements
that you want to include in your action template.

Save the text file as ActionTemplate.mst in your <QuickTest Installation Folder>\dat folder

Call to copy of Action

4 Test Flow v 4= Back Q Show
-8 betion] _1
o o 2 zl
-7 "Flight Resereation From kest

;‘E ﬁﬁlﬁf%m "File:Mew Drder” | |D:\Automationhd TP_Training\GTF_Multiple_4 | [l
b "MaskEdBox' Type *121212"

= "Fly From:" Select "Derwer”
= "Fly T Select “Frankfurt”
-z "FLIGHT" Click.

--E4| "Flights T able"

- gyolBB "Mame:" Set <Name_Text>
-z "Insert Order” Click

g "Menu" Select "File:New Order

Select an action:

Action description:

Pre-cc

e =

r— Location
& At the end of the test
" After the current step

AT Tree View £ Expert View [2pository.

r— Parameter data

jl | B1 I {% | Stared with original action [read-anly |
Name Text B C £ Wse alocal editablz copy
1 |jojo .
2 Jsaltsi ar. | Cancel | Help | g action
3

Insert Call to New Action X Slat e (X
— From test:
Mame : |.t’-‘-.ctic-n2 j
Description : Lt
|@, Actiong ﬂ
Reusable &ction
Action description;
|7 f A
Location:
¢ Atthe end of the test € After the cument step
Rezult: The new action will be added to the end of the test.
Location
0k, | Cancel Help At the gnd of the test
i+ After the cument step
Ok LCancel | Help |

The Step Generator dialog box helps you quickly and easily add steps that use test object
methods, utility object methods, and function calls, so that you do not need to memorize syntax or

All powers within you, you can do it

QuickTest Professional Unplugged 35

to be proficient in high-level VBScript. You can use the Step Generator from the Keyword View and
also from the Expert View.

Choose Insert=> Function definition Generator, from the menu bar

#, Step Generator - Expert Mode

Category: | (¥

Library: |,'.-._|| j
Operation: |Abs j g
Argumnents:

Marme | Type | Walue

number * Ay

indicates a manhdatory argunient.

[Beturn walue

Generated step:

Abs number

[Ingert anather step

Ok | Cancel Help

Function Definition

The Function definition Generator which enables to generate definitions for new
user defined functions & adds header information to them. You can register these
functions to a test object if needed. You fill in the required information and function
definition.

Choose Insert=> Function definition Generator, from the menu bar

@Function Definition Generator 1'

r— Function definition

+|x| 1|3

Name: Il— Arguments:

: Mame Pass Mode
Type: IFunction 'l
Scope: IPuinc 'l

I Register to a test object

Test ohject: I VI [peration: I vI

= | Register az default operation

—&dditional information

Diescription: I 1
Documentation: I j

Preview

Public Function
'TODO: add function body here

End Function thin you, you can do it

[~ Insert ancther function definition

QK I Cancel Help

QuickTest Professional Unplugged 36

Pass the values from one action to another action?

kkkkkkkkkhkkkkhkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

‘Action 1

Environment .Value (“strname”) =inputbox (“enter the name”)
‘Action 2

Set a = Environment. Value (“strname”)

Msgbox a

‘Web application

‘Action 1 code

Browser (“Premium Tropicals”).Page (“Premium Tropicals”).WebEdit (“Chame”).Set
DataTable (“username”, dtGlobaSheet)

‘Username name through DataTable

Environment. Value (Agent Name).DataTable.Value (“Cname”dtGlobalSheet)
‘Another action

Username = Environment. Value (Agent Name).

Msgbox Username

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk

QTP Environment Variables

The variables that are commonly used across the environment in many tests by

different resources are known as Environment Variables. There are two types of Environment

variables

1. Built-in-variables
2. User Defined Variables

1. Built-in-variables:

These variables will be by default available in every test and can be directly used in

any test with help of following syntax.
Syntax: Environment. Value (“Built-in-variables”)
Example:

Var=environment. Value ("OS")

‘To display the Operating System
Msgbox var

All powers within you, you can do it

QuickTest Professional Unplugged 37

2. User Defined Variables:

The variables which are required commonly in number of test apart from the Built-
in-variables need to be created by the user which is known as User Defined Variables
.User Defined Variables are created in environment file, any body in that environment can
Associate this file and use the variables in it.

There are two types of User Defined Variables
1. Internal User Defined Variables: - which are used in the same file
Example:

= Open the Cal application
= Put the tool under recording mode
= Capture the objects properties of Cal application to Object Repository
= Stop recording
e Declaring the Environment Variables
= Activate the menu item Test
= (o to Settings
= Select the Environment tab
= Select variable type as User-defined
= Click on New button
= Add new Environment window will appear
= Give the details of Name and value (type will be Internal)
= Click on OK
= Again Click on New button to add one more variable
= Add new Environment window will appear
= Give the details of Name and value (type will be Internal)

= Click on OK
= Click on Apply
= Click on OK

= If you want you can Export these data to a a file with .xml extention file in the
Environment folder
e Associating the Environment Variables (by parameterizing

)

= Develop the script in test pane as below
kkk
‘Setting the declared environment value (a) to valuel edit button
VbWindow ("Form1").VbEdit ("vall").Set environment.Value ("a")
‘Setting the declared environment value (b) to value2 edit button
VbWindow ("Form1").VbEdit ("val2").Set environment. Value ("b")
‘Clicking on ADD button
VbWindow ("Form1").VbButton ("ADD").Click
kkk
1. Run the test
2. Analyze the results

All powers within you, you can do it

QuickTest Professional Unplugged 38

2. External User Defined Variables:-

Which are imported from other file:
Example:

« Open the Cal application

e Put the tool under recording mode

« Capture the objects properties of Cal application to Object Repository
e Stop recording

Declaring the Environment Variables

» Activate the menu item Test

* Go to Settings

e Select the Environment tab

» Select variable type as User-defined

e Select the check box of ‘load variables and values from an external file’

If you want you can make use of Exported data or you can create your own data in a file
with .xml extension file in the Environment folder

* Browse that file

e Click on Apply

* Click on OK
Associating the Environment Variables (by parameter izing)

« Develop the script in test pane as below

kkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkkkkkkkk

Setting the declared environment value (a) to valuel edit button
VbWindow ("Form1").VbEdit ("vall").Set environment.Value ("a")
‘Setting the declared environment value (b) to value2 edit button
VbWindow ("Form1").VbEdit ("val2").Set environment. Value ("b")
‘Clicking on ADD button

VbWindow ("Form1").VbButton ("ADD").Click

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkk

* Run the test
« Analyze the results

All powers within you, you can do it

QuickTest Professional Unplugged 39

Environment object:
We have three types of environment object in QTP.The types are
1. LoadFromFile
Example:
If environment.loadfromfile (“C:\book.xml").exist then
Msgbox “xml file exists”
Else
Msgbox “xml file does not exist”
2. Value
Example 1.
Environment. Value (“StrUserName”).inputbox (“enter the agent name”)
Username= Environment. Value (“StrUserName”)
Msgbox Username
Example 2:
Environment. Value (“my variable”) =10
My value= Environment. Value (“osversion”)
Msgbox My value

All powers within you, you can do it

QuickTest Professional Unplugged 40

Utility Objects
1. TextUtil Object
GetText Method

Returns the text from the specified window handle area.
Syntax
TextUtil.GetText (hWnd [, Left, Top, Right, Bottom])

GetTextLocation Method

Checks whether a specified text string is contained in a specified window area.
Syntax

TextUtil.GetTextLocation (TextToFind, hWwnd, Left, Top, Right, Bottom [,
MatchWholeWordOnly])

2. Reporter Objects

ReportEvent Method
Reports an event to the Test Report.

Syntax

Reporter.ReportEvent EventStatus, ReportStepName, Details [, in]
EventStatus — micPass, micFail, micDone, micWarning

Filter Property

Retrieves or sets the current mode for displaying events in the Test Results.
Syntax

To retrieve mode setting: CurrentMode = Reporter.Filter
To set the mode: Reporter.Filter = NewMode

Mode - 0 or rfEnableAll, 1 or rfEnableErrorsAndWarnings,
2 or rfEnableErrorsOnly, 3 or rfDisableAll

ReportPath Property

Retrieves the folder path in which the current test's Test Results are stored.
Syntax
Path = Reporter.ReportPath

All powers within you, you can do it

QuickTest Professional Unplugged 41

3. Crypt

kkkkkkkkkhkkkkhkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Set a = Inputbox (“enter the password")

Dialog (“Login”).WinEdit (“Password”).SetSecure a
Set password = Crypt. Encrypt (a)

Msgbox password

kkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk

4. Pathfinder

kkkkkkkkkhkkkhkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Set a = CreateObject (“Scripting.FileSystemObject”)

Set b = Pathfinder. Locate (“kanak.txt")

Set c=a.OpentextFile (b)

Do while not c.AtEndofStream

Set d = readline ()

Browser (“hame = G.*").Page (‘title = G.*").WebEdit (“index = 2").SetSecure d
Loop

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkk

5. SystemuUltil
SystemuUtil has the following methods that can be used to close processes, including
browsers:

1.CloseProcessByName

SystemuUtil.CloseProcessByName "iexplore.exe"

2.CloseProcessByHWND: Uses windows handle to close a window.

Dim HWND: HWND = Browser (“title: =Google”).GetROProperty (“HWND")
SystemUtil.CloseProcessByHWND HWND

CloseProcessByWndTitle: Uses window title to close it.
SystemUtil.CloseProcessByWndTitle "Google", True

3. TSKill with SystemUtil

SystemUtil.Run "tskill", "iexplore"

4. Process ID with SystemUtil

All powers within you, you can do it

QuickTest Professional Unplugged 42

PID = Browser (“title: =Google").GetROProperty ("process id")
SystemUltil.CloseProcessByID PID

Checkpoints

A checkpoint is a verification point that compares a current value for a specified property with
the expected value for that property. This enables you to identify whether you’'re Web site or application
is functioning correctly.

Adding Checkpoints to a test

There are several ways to add checkpoints to your tests.

To add checkpoints while recording:

We can add checkpoints while recording the test. Use the commands on the Insert menu,
or click the arrow beside the Insert Checkpoint button on the Test toolbar. This displays a
menu of checkpoint options that are relevant to the selected step in the test tree.

From Menu bar

Use the commands on the Insert menu, or click the arrow beside the Insert Checkpoint
button on the Test toolbar. This displays a menu of checkpoint options that are relevant to
the selected step in the test tree.

To add a checkpoint while editing your test

From Test Tree

Right-click the step in the test tree where you want to add the checkpoint and choose
Insert Standard Checkpoint.

From the Active Screen

Right-click any object in the Active Screen and choose Insert Standard Checkpoint. This
option can be used to create checkpoints for any object in the Active Screen (even if the
object is not part of any step in your test tree).

All powers within you, you can do it

QuickTest Professional Unplugged 43

Types of Checkpoints

A checkpoint is a verification point that compares a current value for a specified property with the
expected value for that property. This enables you to identify whether you're Web site or application is
functioning correctly.

Checkpoint Type Description

Standard Checkpoint | Checks values of an object’s properties

Image Checkpoint Checks the property values of an image

Table Checkpoint Checks information in a table

Page checkpoint Checks the characteristics of a Web page

Text / Text Area Checks that a text string is displayed in the appropriate place in

Checkpoint a Web page or application window

Bitmap Checkpoint Checks an area of a Web page or application after capturing it
as a bitmap

Database Checkpoint | Checks the contents of databases accessed by an application
or Web site

Accessibility Identifies areas of a Web site to check for Section 508

Checkpoint compliancy

XML Checkpoint Checks the data content of XML documents

1. Standard Checkpoint: -

We can use this Checkpoint to verify Properties of Objects
like as GUI check point in Winrunner.
Example: - Manual test case.

Test case id: TC-id

Test case Name: Verify delete button
Feature to be test: Flight Reservation

Test suite Id: TS-FR

Priority: Po

Pre-condition: Existing records to be deleted.
Test procedure:

Step Action I/P required Expected
No

All powers within you, you can do it

QuickTest Professional Unplugged 44

1 Focus to Flight reservation | ---—--- Delete button Disabled
window
2 Open Existing record ValidOrder No Delete button enabled

Automation Program:-

Window (“Flight Reservation”).Activate

Window (“Flight Reservation”).Winbutton (“Delete order). Check Checkpoint (“Delete
order”).

Window (“Flight Reservation”).WinMenu (“Menu”). Select “File; open order...."

Window (“Flight Reservation”).Dialog (“Open order”).WincheckBox (“Order No”). Set “ON”"
Window (“Flight Reservation”).Dialog (“Open order”).WinEdit (“Edit").Set “1”

Window (“Flight Reservation”).Dialog (“Open order”).WinButton (“ok”).Click.

Window (“Flight Reservation”).Winbutton (“Delete order”).Check Checkpoint (“Delete
Order-2")

Check Point Syntax:-
Window (“WindowName”).Winobject (“ObjectName”).CheckCheckpoint

(“CheckpointName”)

Check Point Insertion Navigation:-

Select Position in Script = Insert menu->
checkpoint
- Standard check point-> select testable object - click “ok” after confirmation = Select

required properties with expected values - click “OK”.

NOTE:-
(a) One check point allows one object at a time unlike WinRunner.
(b) Check point insertion is possible before click stop recording except database
Checkpoint and XMI check point.

(c) Object selection is mandatory before insert any type of checkpoint.

(d) Whenever check point is pass (or) fail, but QTP continues test execution up to
end.

All powers within you, you can do it

QuickTest Professional Unplugged 45

(e) If any type of Checkpoint inserted into VB Script QTP is showing a common
Syntax as above.

Example 2:- Manual test Case:-

Test Caseid Tc-2
Test case Name: verify “OK” button

Feature to be tested: verify employee recruitment

Test suite ID: Ts ER
Priority: Po
Pre — condition I/P objects are taking values

Test Procedure

Step no Action I/P required Expected
1 Focus to Employee | = - “OK” button disabled.
window
2 Valid value “OK” button disabled.

Enter Employee Name

1C 7 “OK” button enabled.

Select department No

All powers within you, you can do it

QuickTest Professional Unplugged 46

Build :-

Emp. Name

Dept no

Automation Program:-
Window (“Employee”).Activate

Window (“Employee”).Winbutton (“ok).check checkpoint (“ok”)
Window (“Employee”).Winedit (“Empname”).Set “xxx”

Window (“Employee”).Winbutton (“ok).check checkpoint (“ok.2")
Window (“Employee”).Winbutton (“Department no”).select “xxx”

Window (“Employee”).Wincombobox (“ok).check checkpoint (“ok.3")

Notel: -

Unlike WinRunner every QTP checkpoint is taking two types of expected values
form test engineer’s, such as constant value and parameters (excel sheet column name).

Note2: -

Our checkpoint is executing one tire when our checkpoint expected is constant.

Our checkpoint is executing more than one time. Depending on no of rows in excel sheet.

(2) BITMAP CHEKPOINT :-

All powers within you, you can do it

QuickTest Professional Unplugged 47

To compare images, we can use this check point. Unlike
use QTP is supporting static and dynamic images for comparison. But test Engineers have
to select multimedia option in adding manager to compare dynamic images. QTP supports

10 sec. As maximum play time of images.

Example: Logo Testing
Old Version New Version

$ $
l l

Expected Actual

= Pass
= Falil

|
Navigation:-

Open old Version of build - starting recording > open expected image
in old version of build-> Insert menu = Check point - Bit map Checkpoint - show
Expected image in old version in build --> click “OK” after confirmation --> Select area of
image if required - Click “OK” - Close old build version - Open new build version >

click run--> Analyze result manually.

(3) Database Check Point :-

We can use this checkpoint to verify the impact front-end
operation on backend tables content in terms data validation and data integrate. This
checkpoint option is exactly equal to default checkpoint in database checkpoint of Win
Runner.

Example:

. Create database check point (Current content of database tables selected as
expected) Valid differences

. Perform front-end operation

* Run database check point (Current content of database tables selected Actual).

To apply data base testing, Test Engineer's are collecting below information from

development team.—> Connectivity name in between front-end and backend in our

application build - Names of tables and their column.-> Screens vs. Tables.

All powers within you, you can do it

Example:

QuickTest Professional Unplugged 48

Above information is available Database design document development Team.
Navigation :-

Insert menu = Check point © DB checkpoint - Specified connect to DB
using ODBC or Data Junction -2 Select SQL statement manually = click “Next"=> click
create to select connectivity (Ex.Flight32)-> write select statement = click finish=> click
“OK" after conformation of Database Table content - Perform Front-end Operation - run

Database checkpoint = analysis results manually.

(4) Text Check Point : -

To verify content of an object in terms of match upper case,
lower case ignore spaces exact match and text not displayed, we can use these check

points.

Navigation: -

Select position Script-> Insert menu-> checkpoint - Text checkpoint >
select Testable object--> click configure if we have to apply testing on selected part object
value (using text before and text after)--> Select Test (match case, Ignore spaces, exact
match , Text not displayed)-=> click “OK”.

(5) Text Area Check point : -

To Verify content of screen area value in terms of match

case, ignore spaces, Exact match, Text not displayed, we can use these check point.

Navigation :-
Select position script=> Insert menu = checkpoint > Text area check
point = select value region - click “OK” after conformation = click configure if we have to

apply testing on selected part = Select test to be applied = click “OK”.

Updating Checkpoints at run-time

GetRoProperty:

All powers within you, you can do it

QuickTest Professional Unplugged 49

Uname=Window (“flightReservation”).Winedit (“Agent Name”).GetRoProperty (“text”)
If Uname=exist then

Msgbox “Agent name exists”

Else

Msgbox “does not exists”

Counting and displaying the content of weblist

a=browser (“makemytrip’).page (“makemytrip”).weblist (“city”).GetRoProperty (“itemscount”)
Msgbox a

Fori=1to 10

b=browser (“makemytrip”).page (“makemytrip”).weblist (“city”).select (i)

Msgbox i

Cname= browser (“makemytrip’).page (“makemytrip”).weblist (“city”).Getltem (i)

Msgbox Cnhame

Next

Output value
An output value is a step in which one or more values are captured at a specific point in your
test or component and store for the duration of the run session (runtime data table). The value can later be
used as input at a different point in the run session.
Types of output value
e Standard output value.
e Text area output value
» Database output value
* Xml output value

Text area output value:
Retrieve the order number and price and give input to the open order by using text area output
value?
e Put the tool into the recording mode.
» Open the flight reservation application.
» Records the script for create order.
e Stop recording.
» Gotoinsert menu and select text area output value and capture the order number
and price.

All powers within you, you can do it

QuickTest Professional Unplugged 50

Code:

kkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Window (“flight reservation”).WinEdit (“Order No").Output Checkpoint (“140")

Set 0_no=Datatable.Value (“order_no", dtGlobaSheet)

Window (“Flight reservation”).WinButton (“Button”).Click

Window (“Flight reservation”).Dialog (“Open Order”).WinCheckBox (“order no”).Set “ON”
Wait 2

Window (“Flight reservation”).Dialog (“Open Order”).WinEdit (“Edit").Set (0_no)

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Descriptive Programming (DP)

Introduction:

This document demonstrates the usage of Descriptive programming in QTP 8.20. It also
discusses situations where Descriptive programming can be used. Using Descriptive
Programming automation scripts can be created even if the application has not been
developed.

Descriptive Programming:

Whenever QTP records any action on any object of an application, it adds some
description on how to recognize that object to a repository of objects called object
repository. QTP cannot take action on an object until unless its object description is in the
Object Repository. But descriptive programming provides a way to perform action on
objects which are not in Object repository

Object Identification:

All powers within you, you can do it

QuickTest Professional Unplugged 51

To identify an object during the play back of the scripts QTP stores some
properties which helps QTP to uniquely identify the object on a page. Below screen shots
shows an example Object repository:

x|

“Action" object repositon ; Mame teztPath Fird...
Elj Example? Clazz: ‘WebRadioGroup E——
- B4 Page Properties | EEEESE
]51“_': testPath Type Property Yalue -
E‘ﬁ Brawser EA name testPath
-] Page M himltag INPUT
ey EH webTable
¥ Ernable Smart |dentification Add/Remove...
— Configure walue
= Constant |testF‘ath |
" Parameter
IDataT able['teztPath_name", diGlobalsheet] Ial

AddObjects | Highlight |

Obiect Spy.. | I Export. |7 ok | Cancel | Help |

Now to recognize a radio button on a page QTP had added 2 properties the name of the
radio button and the html tag for it. The name the left tree view is the logical name given
by QTP for the object. This can be changed as per the convenience of the person writing
the test case. QTP only allows UNIQUE logical name under same level of hierarchy. As
we see in the snapshot the two objects in Browser->Page node are “WebTable” and
“testPath”, they cannot have the same logical name. But an object under some other node
can have the same name. Now with the current repository that we have, we can only write
operation on objects which are in the repository. Some of the example operations are
given below

Browser ("Browser").Page ("Page").WebRadioGroup ("testPath").Select "2"
CellData = Browser ("Browser").Page ("Page").WebTable ("WebTable").GetCellData (1, 1)
Browser ("Example2").Page ("Page").WebEdit ("testPath").Set "Test text"

When to use Descriptive Programming?
Here there are some situations

1. If the application is having Dynamic Objects
OR: - Difficult to handle Dynamic Objects using Object Repository

All powers within you, you can do it

QuickTest Professional Unplugged 52

2. When we have more objects to perform operations
OR: - The performance will decrease if object repository is having huge number of
objects.

3. If the application is having objects that are adding in the Run Time
OR: - We can't add objects to Object Repository in run time.

4. If we need to start Automation before Build Release
OR: - There is no application to create Object Repository.

5. If Application is having similar type of objects or similar name objects
OR: - Object Repository will create multiple objects with same description
unnecessarily.

6. Big Team Size
OR: - Shared Object Repository is not changeable by multiple persons at a time.
Maintenance becomes harder if all the team members have created their own
object repositories.

Types of Programmatic Descriptions

1. Static: -

You list the set of properties and values that describe the object directly in a VBScript
statement.

a. Direct specification of description in script
Browser(“micclass:=Browser”).Page(micclass:=page”).Link(“name:=Login").Click

b. Assigning description to the variables and use that variables in script
g_MainBrowser = “micclass:=Browser”
g_MainPage =“micclass:=Page”
g_Lnk_Login = “name:=Login”

Browser(g_MainBrowser).Page(g_MainPage).Link(g_Lnk_Login).Click

2. Dynamic: -

You add a collection of properties and values to a Description object, and then enter the
Description object name in the statement.

Set oBrowser = Description. create

oBrowser (“micclass”).value="Browser”

oBrowser (“hame”).value= “Google”

Set oPage = Description. create
oPage (“micclass”).value="Page”

All powers within you, you can do it

QuickTest Professional Unplugged 53

oPage (“name”).value= “Google”

Set oLink = Description. Create
oLink (“name”).value= “Login”
oLink (“index”).value= 1

Browser (oBrowser).Page (oPage).Link (oLink).click
Using the Static type to enter programmatic descriptions directly into your statements may
be easier for basic object description needs. However, in most cases, using the Dynamic
type provides more power, efficiency, and flexibility.

How to use Descriptive programming?

There are two ways in which descriptive programming can be used
By creating properties collection object for the description.

By giving the description in form of the string arguments.

By creating properties collection object for the description.

To use this method you need first to create an empty description

Dim obj_Desc ‘Not necessary to declare

Set obj_Desc = Description. Create

Now we have a blank description in “obj_Desc”. Each description has 3 properties “Name”,
“Value” and “Regular Expression”.

obj_Desc (“*html tag”).value= “INPUT”

When you use a property name for the first time the property is added to the collection and
when you use it again the property is modified. By default each property that is defined is a
regular expression. Suppose if we have the following description

obj_Desc (“html tag”).value= “INPUT”"

obj_Desc (“name”).value= “txt.*”

This would mean an object with html tag as INPUT and name starting with txt. Now
actually that “.*” was considered as regular expression. So, if you want the property
“name” not to be recognized as a regular expression then you need to set the “regular
expression” property as FALSE

obj_Desc (“html tag”).value= “INPUT”

obj_Desc (“name”).value= “txt.*”

obj_Desc (“name”).regular expression= “txt.*”

This is how of we create a description. Now below is the way we can use it
Browser (“Browser”).Page (“Page”).WebEdit (obj_Desc).set “Test”

When we say .WebEdit(obj Desc) we define one more property for our description that
was not earlier defined that is it's a text box (because QTPs WebEdit boxes map to
text boxes in a web page).

If we know that we have more than 1 element with same description on the page then
we must define “index” property for the that description

Consider the HTML code given below
<INPUT type="textbox” name="txt_ Name”">

All powers within you, you can do it

QuickTest Professional Unplugged 54

<INPUT type="textbox” name="txt_Name”>

Now the html code has two objects with same description. So distinguish between
these 2 objects we will use the “index” property. Here is the description for both the
object

For 1* textbox:
obj_Desc (“html tag”).value= “INPUT"
obj_Desc (“name”).value= “txt_Name”
obj_Desc (“index”).value= “0"
For 2™ textbox:
obj_Desc (“html tag”).value= “INPUT”"
obj_Desc (“name”).value= “txt_Name”
obj_Desc (“index”).value=“1"
Consider the HTML Code given below:
<INPUT type="textbox” name="txt_ Name">
<INPUT type="radio” name="txt_Name">

We can use the same description for both the objects and still distinguish between
both of them

obj_Desc (“html tag”).value= “INPUT"
obj_Desc (“name”).value= “txt_Name”

When | want to refer to the textbox then | will use the inside a WebEdit object and to
refer to the radio button | will use the description object with the WebRadioGroup
object.

Browser (“Browser”).Page (“Page”).WebEdit (obj_Desc).set “Test” ‘Refers to the text
box

Browser (“Browser”).Page (“Page”).WebRadioGroup (obj_Desc).set “Test” ‘Refers to
the radio button

But if we use WebElement object for the description then we must define the “index”
property because for a webelement the current description would return two objects.

Hierarchy of test description:

When using programmatic descriptions from a specific point within a test object
hierarchy, you must continue to use programmatic descriptions from that point onward
within the same statement. If you specify a test object by its object repository name
after other objects in the hierarchy have been described using programmatic

All powers within you, you can do it

QuickTest Professional Unplugged 55

descriptions, QuickTest cannot identify the object. For example, you can use Browser
(Descl).Page (Descl).Link (desc3), since it uses programmatic descriptions
throughout the entire test object hierarchy. You can also use Browser ("Index").Page
(Descl).Link (desc3), since it uses programmatic descriptions from a certain point in
the description (starting from the Page object description).

However, you cannot use Browser (Descl).Page (Descl).Link ("Examplel"), since it
uses programmatic descriptions for the Browser and Page objects but

Then attempts to use an object repository name for the Link test object (QuickTest
tries to locate the Link object based on its name, but cannot

Locate it in the repository because the parent objects were specified using
programmatic descriptions).

Different ways to write a statement
Example on how to click a button in 7 ways

'1st method
Window("Flight Reservation").WinButton("Update Order").Click 'Common Method

'2nd method

Set wndObject=Window("Flight Reservation") ' Assigning window object to an object
variable

wndObject.WinButton("Update Order").Click ' Following normal syntax (click on a
button)

' OR

Set btnObject=Window("Flight Reservation").WinButton("Update Order") ' Assigning
Button object to an object variable
btnObject.Click ' Clicking on button using button object variable

'3rd method

With Window("Flight Reservation™) " Using With statement
WinButton("Update Order").click

End with

'4th method
Window("text:=Flight Reservation").WinButton("text:=&Update Order").Click ' Descriptive
programming

'5th method

Set oDes=Description.Create ' creating a description object
oDes("nativeclass").value="Button" ' assigning description to the description object
oDes("text").value="&Update Order"

Window("text:=Flight Reservation").winbutton(oDes).click ' clicking on button using the
created description object

'6th method
Set oDes=Description.Create ' creating a description object

All powers within you, you can do it

QuickTest Professional Unplugged 56

set btnObjList=Window("text:=Flight Reservation").ChildObjects(oDes) ' Filtering the
objects
For objlndex=0 to btnObijList.count-1

propVal=btnObijList(objlndex).getroproperty("text") ' Get property value from object

If propVal="&Update Order" Then ' Compare property value
btnObjList(objlndex).click ' Click on identified object
Exit for " Exit For loop after clicking on the button
End If
Next
"7th method

Public const wndFlight="text:=Flight Reservation" ' Assigning window object description
to a constant

Public const btnUpdate="text:=&Update Order" ' Assigning Button object description to
a constant

Window(wndFlight).winbutton(btnUpdate).click ' Click on a button using description
constants

Getting Child Object:

We can use description object to get all the objects on the page that matches that
specific description. Suppose we have to check all the checkboxes present on a web
page. So we will first create an object description for a checkboxes and then get all the
checkboxes from the page

Dim obj_ChkDesc
Set obj_ChkDesc=Description.Create
obj_ChkDesc (“html tag”).value = “INPUT”
obj_ChkDesc (“type”).value = “checkbox”
Dim allCheckboxes, single Checkbox
Set allCheckboxes = Browse (“Browser”).Page (“Page”).ChildObjects (obj_ChkDesc)
For each single Checkbox in allCheckboxes
singleCheckBox.Set “ON”
Next

The above code will check all the check boxes present on the page. To get all the child
objects we need to specify an object description i.e. we can’t use the string arguments that
will be discussed later in the 2nd way of using the programming description.

All powers within you, you can do it

QuickTest Professional Unplugged 57

Debugging in QTP
Establishing our Debugging Configuration
Using Breakpoints

To instruct Quicktest to pause a run session at a predetermined place in a test or function
library.Quicktest pause the run when it reaches the breakpoint before executing the step. You can use
breakpoint to suspend a run session and inspect the state of your site or application.

Navigation
Debug viewer pane
The debug viewer pane contains three tabs to assist you in debugging a test .the panes are
1. Watch
To view the current value of any variable or vbscript expression that you added to the watch tab
2. Variable

During a run session, the variable tab displays the current value of all variable that you have
recognized up to the last step performed in the run session

3. Command

To run a line of script to set or modify the current value of a variable or vbscript object in your test
of function library which you continue the run session Quicktest uses the new value that was set in the
command

Information pane

The information pane provides a list of syntax errors in your test. When you switch from expert
view to keyword view quick test automatically checks the syntax error in your script and shows them in the
information pane. It the information pane is not currently disabled quick test automatically opens it when a
syntax error is detected

All powers within you, you can do it

QuickTest Professional Unplugged 58

Recovery Scenarios

Unexpected events, errors, and application crashes during a run session can disrupt your run
session and distort results. This is a problem particularly when running tests or components unattended -
the test or component is suspended until you perform the operation needed to recover. You can instruct

QuickTest to recover from unexpected events and errors that occur in your testing environment during a
run session.

Handling Unexpected Events and Errors

* Unexpected events and errors during a test run can disturb testing
Unattended tests require an action to recover.

QTP Recovery scenario Manager can...
Detect and Handle the appearance of a specific error dialog.
Recover from an error and continue to the next step.

Guide you through creating a recovery scenario using the
scenario Wizard.

*

*

*

*

Recovery Scenario Components

Recovery Scenario Wizard L ﬂ

YWelcome to the Hecovery Scenario Wizard

® Welcome

o i The Recoverny scenano wizard guides you through the process of

rigger defining a recovery scenano: an unexpected event that interpts your

testand the operation(s] necessany o recover it

. RE:D‘IEW Once you have defined a recovery scenario uging this wizard, you can
choose to apply it to the open test and to the default settings for new

® Postrecovery tests.

& llome | s this wizard ta;

1. Define the frigger event that internipts the test run.

® Finish

2. Specify the recovery operations required to continue,
3. Chooge & post-recovery test iun operatior,

4. Enter descriptive information about the zeenario.

To continue, click Mest.

< Bank

Eirish I Cancel | Help |

Choose, Tools = Recovery Scenario Manager from the Menu bar. The
Recovery Scenario Manager Dialog box will be opened; click on the New
Scenario icon, the Recovery Scenario Wizard will appear.

All powers within you, you can do it

QuickTest Professional Unplugged 59

Trigger Event
%

® Welcoma

@ Trigger

® Recovery

® Pogt-recovery " Object stale ® Postrecovery

® ljome

® Finish

Select Trigger Event Specify Pop-up Window Conditions

Select the rigger event type that wil irgger the recaveny opsation
this reconeny scenario. Yo can use the painting hand to
capture the e and test values of the pop-up window,

o
& window pops upin an opened application during the test run,

® Recoyery

Condtion to identify window:

Specify the conditions to identify & pop-up window for ﬁ |

- 7 e
The property valuss of an object in your application match W Window e |

speciied values. YYou can specity property values for sach ® llome [~ Requlsr expression
obiect in the hisrarchy.

 Test un eircr Finsh [Windlow text contains:

& step in your test did not run successtully,
" Application crash
#n open application fals during the test n,

I™ | Regular sxpression

et | Finiah Cancel

< Back I Hewt > I Eirnsh | Cancel | Help |

Help

Select the appropriate Trigger Event from the dialog box.

Pop-up window —QuickTest detects a pop-up window and identifies it according
to the window title and textual content. For example, a message box may open
during a run session, indicating that the printer is out of paper. QuickTest can
detect this window and activate a defined recovery scenario in order to continue
the run session. Select this option and click next to continue to the Specify Pop-up
Window Conditions screen.

Object state —QuickTest detects a specific test object state and identifies it
according to its property values and the property values of all its ancestors. Part lll
« Creating Tests 418 Note that an object is identified only by its property values,
and not by its class. For example, a specific button in a dialog box may be disabled
when a specific process is open. QuickTest can detect the object property state of
the button that occurs when this problematic process is open and activate a
defined recovery scenario to close the process and continue the run session.
Select this option and click next to continue to the Select Object screen.

Test run error —QuickTest detects a run error and identifies it by a failed return
value from a method. For example, QuickTest may not be able to identify a menu
item specified in the method argument, due to the fact that the menu item is not
available at a specific point during the run session. QuickTest can detect this run
error and activate a defined recovery scenario in order to continue the run session.
Select this option and click next to continue to the Select Test Run Error screen.

Application crash —QuickTest detects an application crash and identifies it
according to a predefined list of applications. For example, a secondary application
may crash when a certain step is performed in the run session. You want to be
sure that the run session does not fail because of this crash, which may indicate a

All powers within you, you can do it

Recovery Scenario Wizard N $3l|Recovery Scenario Wizard x|

® Welcome

® Trigger

® Recovery

® Posi-recovery

Recovery Operation - Click Button or Press Key

Select the button to click or the kevboard key to press. You can use
thi poititifig hand to specify a button label, You can press the key
combination on your keyboard in order to specity the keyls) to use.

Select keyboard or mouse operation:

QuickTest Professional Unplugged 60

different problem with your application. QuickTest can detect this application crash
and activate a defined recovery scenario to continue the run session. Select this
option and click next to continue to the Recovery Operations screen.

Notes: The set of recovery operations is performed for each occurrence of the trigger
event criteria. For example, suppose you define a specific object state, and two objects
match this state, the set of replay operations is performed two times, once for each object
that matches the specified state. The recovery mechanism does not handle triggers that
occur in the last step

of a test or component. If you need to recover from an unexpected event or error that may
occur in the last step of a test or component, you can do this by adding an extra step to
the end of your test or component.

Recovery Operation

Recovery Operation
Select an operation to perform when the tigger event ocours.

Operation type:

® Post-racover
4 ! " Close application process

" Click Default button / Press the ENTER key

® Nome " Click Cancel buttor / Press the ESCAPE key ® Hame € Funclion cal
*® finish & ik bution wih labet, | E ® Finish € Restatt Mictoseft Windows
 Press key or key combination: No'tg: IF youinclude a restart operation, it should be the last in
the list, a3 ho other recovery operations will be performed after
|I'It-n-: {e.g kL EtlstEhlealteDy the computer restarts.
< Back I et | Firish | Cance] | Help | < Back I et > I Firvsty | Cancel Help

Select the appropriate Recovery Operation from the dialog box.

You can define the following types of recovery operations:

» Keyboard or mouse operation —QuickTest simulates a click on a button in a
window or a press of a keyboard key. Select this option and click next to continue
to the Recovery Operation — Click Button or Press Key screen.

» Close application process —QuickTest closes specified processes. Select this
option and click next to continue to the Recovery Operation — Close Processes
screen.

» Function call —QuickTest calls a VBScript function. Select this option and click
Next to continue to the Recovery Operation — Function screen.

» Restart Microsoft Windows —QuickTest restarts Microsoft Windows. Select this
option and click next to continue to the Recovery Operations screen.

Note: If you use the Restart Microsoft Windows recovery operation, you must ensure that
any test or component associated with this recovery scenario is saved before you run it.

All powers within you, you can do it

QuickTest Professional Unplugged 61

You must also configure the computer on which the test or component is run to auto login
on restart.

Post-Recovery Test Run Option
x|

Post-Recovery Test Run Options

® Walcome

Select the test run operation you want to-perform when the recovery
operation is complete.

® Trigger

L] : :
REUW&P-" Test run options:.

®) Post-racovery (+" Repest cunent step and continus

® lome " Proceed to nest step

Finish ™ Proceed to nest action iteration
® Finis .

" Proceed to nest test iteration
£~ Restart curtent test in

£~ Stop the test mn

< Back, I Heut > I Eirigh | Cancel | Help |

Select the appropriate Post-Recovery Operation from the dialog box.

All powers within you, you can do it

QuickTest Professional Unplugged 62

Save the Recovery Scenario file

Recovery Scenario Wizard ﬁl

Name and Description

® Welcome

* Trl'gger Frovide a name and description for your recoverny scenano.

L] Reml.rery Fecovery file: I

® Postracoveny Scenario name: IFEeu:u:uver_l,l

@® Nome Description: _I
a

® Finish
=

< Back I Mest = I Eirizh | Caricel | Help |

Save the recovery scenario file in the specified location with an appropriate
name and description (Recovery Scenario files will be saved with .qrs
extension). And use this Recovery Scenario file wherever required.

When you want to recover from any problem, first, f ace the problem manually, Find
the solution manually, and Recover from that proble m manually.
And in the same way you implement for Automation (i n QTP)

Recovery Scenario with _Pop-Up window
(When a pop-window appears either thru +ve testing or —Ve testing of the
application)

l. Pop-Up window (Manual)

e Put tool in Recording mode

e open the AUT (say flight Application)

e Enter User name (kanakadri)

¢« *Click on OK (wontedly for getting an error): see the relevant script and
copy that line only.

* You will get a “pop-up” window saying with some message

» Enter OK on that pop-up window

« Enter password (mercury)

e Click OK

« Stop Recoding

All powers within you, you can do it

QuickTest Professional Unplugged 63

Open a new test, Type Function () , you will get
Function
End Function
Modify the above code as below

Function popup recovery ()

* Copy that line here
End Function
Copy it and open a new Notepad and past it.
Save it with .vbs (VBSctipt) Extension as library file

2. Pop-Up window (thru QTP)

e Put tool under recording mode

* openthe AUT (say same flight Application)

e Enter User name (kanak)

* Click on OK

e *A pop-up will appear, click on OK (see this script code, which should be
removed later)

« Enter password

» Click on OK

« Stop recording

* Remove that code and keep cursor here it self.

Now Actual Recovery scenario for pop-up window starts
e openthe AUT (say same flight Application)
e Enter User name (kanak)
* Click on OK
¢ *the same pop-up will appear, DON'T’ click on it.
« Open tools -> Recovery Scenario Manager
* Select the new scenario (wizard will appear)

* Click NEXT

» Select trigger event option as pop-up window

* Click NEXT

« With help of HAND Button select * that pop-up’s object (OK) of AUT
* Click NEXT

» Click NEXT to specify the recovery operation
e Select Function Call option
« Browse the library file which u has saved as with .vbs extension in the

beginning.
* Click NEXT
» De-select the check box (of add an other recovery operation)
* Click NEXT
* Choose Post-Recovery operation as Repeat Current Step and Continue.
* Click NEXT

* Give the name and description

All powers within you, you can do it

QuickTest Professional Unplugged 64

* Click NEXT

* Check the check-box of Add Scenario to Current test

* Click FINISH

e Save it as with .grs (Quick Recovery Scenario) extension
* Click CLOSE

Run the Test which will pass the results of course with Warnings (may ignore it)

Recovery Scenario with Object State

(When the obiject is disabled)

l. Object State (Manual)

e Put tool in Recording mode

« open the AUT (say flight Application)

e Click on Open order icon

« A open order Dialog box will appear

* In which check the Order number check box

* See OK button is Disabled now

e Enter order number (say 9)

¢ *See the relevant script and copy that line only ie. where u entered 9
* Now OK button will be enabled

» Click on OK

e An order with that number (say 9) will be opened
« Stop recording

Open a new test, Type Function (), you will get
Function
End Function
Modify the above code as below

Function popup recovery ()
* Copy that line here
End Function

Copy it and open a new Notepad and past it.
Save it with .vbs (VBSctipt) Extension as library file

All powers within you, you can do it

QuickTest Professional Unplugged 65

2. Object State (thru QTP)

e Put tool in Recording mode

« open the AUT (say flight Application)

e Click on Open order icon

« A open order *Dialog box will appear

* In which check the Order number check box
DON'T enter order number

e Stop recording

Now Actual Recovery scenario for Object state starts

0 Open tools -> Recovery Scenario Manager
0 Select the new scenario (wizard will appear)
o Click NEXT
0 Select trigger event option as Obiject state
0 Click NEXT
0 With help of HAND Button select * that disabled object (OK) in the
*Dialog box of AUT
0 Click NEXT
0 Set object properties and values
o Click on Add/Remove button
o Edit properties window will appear
= Check property name as Enabled and value as false
= Check property name as Text and value as OK
= Check property name as window Id and value as 1
o0 Click on OK
0 Click NEXT to specify the recovery operation
0 Select Function Call option
0 Browse the library file which u have saved as with .vbs extension
in the beginning.
o Click NEXT
o0 De-select the check box (of add an other recovery operation)
0 Click NEXT
o0 Choose Post-Recovery operation as Repeat Current Step and
Continue.
0 Click NEXT
0 Give the name and description
o Click NEXT
0 Check the check-box of Add Scenario to Current test
o Click FINISH
0 Saveitas with .grs (Quick Recovery Scenario) extension
o Click CLOSE
Run the Test which will pass the results of course with Warnings (may ignore it)

All powers within you, you can do it

QuickTest Professional Unplugged 66

Recovery Scenario with Test Run Error

During execution one step may not execute properly , QTP will ignore it run next

step on words.

For that we just need to call an empty function ().

Version 1.0 is released and came for__testing

Vvio0 Chennai
. — Hyderabad
e Open the version 1.0 application Delhi
e put tool in recording mode
» Select all the cities names, so that *script will be generated.
» Stop recoding
After some time Version 2.0 is released with some changes
V2.0
* Open the version 2.0 application)
¢ Use the *same generated script only Cher_lnal
But when u runs this program, Delhi

It execute fist city name (Chennai)
When it comes to second city name (Hyderabad)
Tests will Stops and FAIL.

Though it's missed, in order to continue the execution from next step onwards

We just call an empty function which is stored in a library file

Keep the cursor where the city name seems to be mi ssed
Activate tool menu item Tools

Open recovery scenario manager wizard

select trigger event as Test Run error

choose the error type from drop-down box as Item in list or menu not
fund

Click NEXT

Click NEXT to specify the recovery operation

select operation type as Function call

Click NEXT

choose library file path where an empty function was stored
Click NEXT

De-select check box (of add an other recovery scenario)
Click NEXT

Select post-recovery as Proceed to Next Step

Give name and description for this scenario

Click NEXT

Select add scenario to current test

click on Finish

Save it with .grs extension

All powers within you, you can do it

QuickTest Professional Unplugged 67

Run the Test

When you Run it, it execute normally till it finds an error, when it found an error, It
stops a while (means calling an empty function) and continue.

The test will pass with warning (which u can ignore)

Recovery Scenario with Application error

This error may come when the application is missed.
Working with Recovery Scenarios using Scripting

Precondition:-

To understand this topic you need to have knowledge on creating and using recovery
scenarios.

In this document | am discussing about how to add, remove recovery scenario files (.QRS)
to a test and after adding how to activate, deactivate and renumbering the order to
execute recovery scenarios. For example | have a recovery scenario file with the name of
“sample .qrs”. Assume that in this recovery file | have two recoveries with the names login
Pop, RunErr. (All of you know that one file can have multiple recoveries). Now if | want to
use that file in my test then | have to use following script.

Thkkhkkhkkkkkkkhkkhhkkkkkkkkkkkk

' Create the Application object
Set gtApp = CreateObject ("QuickTest.Application™)

‘Return the Recovery object for the current test
Set gtTestRecovery = qtApp.Test.Settings.Recovery

" Add the " loginPop " scenario as the first scenario
gtTestRecovery.Add "E:\kanak\Recoveryfiles\sample.qrs", " loginPop ", 1

‘Add the “RunErr” scenario as the second scenario
gtTestRecovery.Add "E:\kanak\Recoveryfiles\sample.qrs", “RunkErr ", 2

‘Iterate the scenarios
for intindex = 1 to gtTestRecovery.Count

‘Enable each Recovery Scenario (Note: the 'ltem' property is default and can be omitted)
gtTestRecovery.ltem(intindex).Enabled = True
Next

‘Enable the recovery mechanism (with default, on errors, setting)
gtTestRecovery.Enabled = true

‘Ensure that the recovery mechanism is set to be activated only after errors
gtTestRecovery.SetActivationMode "OnError"

Set gtApp = Nothing ' Release the Application object

Set gtTestRecovery = Nothing ' Release the Recovery object

All powers within you, you can do it

QuickTest Professional Unplugged 68

Thkkkhkkkkkhkhkkkkhkhkkkkkhkkkkkhkkkkkkhkkkkkhkkkkkhkhkkkkkhkkkkkkkhkkkkkkkkkkkkkx

with the above code automatically the recovery scenarios will be added to the specified
test. After adding the scenarios if you want to control the scenario like changing the
scenario status, to get the scenario name, to activate or deactivate we have to use
recovery object (one of the Utility object).

Recovery Object
it is a utility object to control the recovery scenario mechanism programmatically during the
run session. It's having some properties and methods to control the scenarios.

Associated Methods

1. Activate Method:

Explicitly activates the recovery scenario mechanism at a specific point in the run.

Note: The Activate method only works if the recovery mechanism is enabled, and only
activates those recovery scenarios that are currently enabled.

If the recovery mechanism is currently disabled, the Activate method does not activate any
recovery scenarios. You can use the Recovery object's Enabled property to change the
status of the recovery mechanism.

Ex: - Recovery. Activate

2. GetScenarioName Method:

Retrieves the name and source file of a recovery scenario, according to the specified
position in the list of recovery scenarios associated with the test.

Ex: - Recovery.GetScenarioName Position, out_ScenarioFile, out_ScenarioName
Msgbox (out_ScenarioFile)

Msgbox(out_ScenarioName)

3. GetScenarioPosition Method

Returns the index position of a recovery scenario in the list of recovery scenarios
associated with the test, according to the specified name and source file.

Ex: - Recovery.GetScenarioPosition (ScenarioFile, ScenarioName)

4. GetScenarioStatus Method

Returns the status of a recovery scenario (True = enabled or False = disabled), according
to the specified index position in the list of recovery scenarios associated with the test.
Ex: - Recovery.GetScenarioStatus Position

SetScenarioStatus Method

Enables or disables the specified recovery scenario, according to its index position in the
list of recovery scenarios associated with the test.

Ex: - Recovery.SetScenarioStatus Position, Status

Associated Properties

Count Property
Returns the number of recovery scenarios associated with the current test.
Ex: - msgbox Recovery. Count

All powers within you, you can do it

QuickTest Professional Unplugged 69

Enabled Property

Recovery default property. Retrieves or sets the status of the recovery scenario
mechanism for the current test.

Ex: - Recovery. Enabled =Status

Sample Script

For Iter = 1 to Recovery. Count

Recovery.GetScenarioName lIter, ScenarioFile, ScenarioName

Position = Recovery.GetScenarioPosition (ScenarioFile, ScenarioName)
Status = Recovery.GetScenarioStatus (Position)

Scenario=scenario& ScenarioFile&”:="& ScenarioNameg&”,"&position&”, Status
Next

Msgbox Scenario

This code will show total scenarios in the QRS file, position and status of those scenarios.

All powers within you, you can do it

QuickTest Professional Unplugged 70

Regular Expressions
Introduction

You have created a document and saved it to your hard disk. After few days again you
want to update that document, but you forgot where you saved. Now you started searching
for that document. Do you go to every folder in hard disk to search for it? ... No. You will
just use search window to search the document by using name. Unfortunately you didn’t
find any document on that name. So what will you do?

Here exactly the concept of Regular Expression will come in to the picture.
A Regular Expression is a string that provides a co mplex search phrase.

If you create a word document then you will search for *.doc. Here the * indicates any
name which are there in specified disk.

As per the definition, “*” is a regular expression which provides a phrase to match any
name of the document.

Phrase is an expression consisting of one or more words.

| have used above concept to tell you that “Regular Expressions are not new to us
(Testers)”. Some how we used it in regular activities but we don’t know that these are
Regular Expressions.

Use of Regular Expressions in Scripting

» Test for a pattern within a string.
o To check for existence of substring in a string. For example, you can test an
input string to see if a telephone number pattern or a credit card number
pattern occurs within the string. This is called data validation.

* Replace text.
o Tofind and replace a string with another string. You can use a regular
expression to identify specific text in a document and either remove it
completely or replace it with other text.

» Extract a substring from a string based upon a pattern match.

All powers within you, you can do it

QuickTest Professional Unplugged 71

(0]

To get a string based on pattern match. You want all the words starting with
“A” from a document, In this case you will use regular expression which will
create pattern match and will return all words starting with “A”.

Regular Expression Characters

The below table contains the complete list of regular expression characters and behavior

of them.

Character

Description

\

Marks the next character as either a special character or a literal. For
example, "n" matches the character "n". "\n" matches a newline

character. The sequence "\\" matches "\" and "\(" matches "(".

Matches the beginning of input.

Matches the end of input.

Matches the preceding character zero or more times. For example, "zo*"

matches either "z" or "zoo".

Matches the preceding character one or more times. For example, "zo+"
matches "zoo" but not "z".

Matches the preceding character zero or one time. For example, "a?ve?"
matches the "ve" in "never".

Matches any single character except a newline character.

(pattern)

Matches pattern and remembers the match. The matched substring can
be retrieved from the resulting Matches collection, using Item [0]...[n] . To
match parentheses characters (), use "\(" or "\)".

x|y

Matches either x or y. For example, "z|wood" matches "z" or "wood".
"(z]w)oo" matches "zoo0" or "wood".

{n}

n is a nonnegative integer. Matches exactly n times. For example, "o{2}"
does not match the "0" in "Bob," but matches the first two 0's in
"foooood".

{n.}

n is a nonnegative integer. Matches at least n times. For example, "o{2,}"
does not match the "0" in "Bob" and matches all the o's in "foooood."
"o{1,}" is equivalent to "o+". "0{0,}" is equivalent to "o0*".

{n,m}

m and n are nonnegative integers. Matches at least n and at most m
times. For example, "0{1,3}" matches the first three o's in "fooooood."
"0{0,1}" is equivalent to "07?".

[xyz]

A character set. Matches any one of the enclosed characters. For
example, "[abc]" matches the "a" in "plain".

[" xyz]

A negative character set. Matches any character not enclosed. For
example, "["abc]" matches the "p" in "plain".

[a-Z]

A range of characters. Matches any character in the specified range. For
example, "[a-z]" matches any lowercase alphabetic character in the
range "a" through "z".

All powers within you, you can do it

QuickTest Professional Unplugged 72

[*m-Z] A negative range characters. Matches any character not in the specified
range. For example, "[m-z]" matches any character not in the range "m"
through "z".

\b Matches a word boundary, that is, the position between a word and a
space. For example, "er\b" matches the "er" in "never" but not the "er" in
"verb".

\B Matches a non-word boundary. "ea*r\B" matches the "ear" in "never
early".

\d Matches a digit character. Equivalent to [0-9].

\D Matches a non-digit character. Equivalent to [*0-9].

\f Matches a form-feed character.

\n Matches a newline character.

\r Matches a carriage return character.

\s Matches any white space including space, tab, form-feed, etc. Equivalent
to " \An\r\t\v]".

\S Matches any nonwhite space character. Equivalent to "[* \\n\r\t\v]".

\t Matches a tab character.

\v Matches a vertical tab character.

\w Matches any word character including underscore. Equivalent to "[A-Za-
z0-9 1"

\W Matches any non-word character. Equivalent to "[*A-Za-z0-9]".

\num Matches num, where num is a positive integer. A reference back to
remembered matches. For example, "()\1" matches two consecutive
identical characters.

\n Matches n, where n is an octal escape value. Octal escape values must
be 1, 2, or 3 digits long. For example, "\11" and "\011" both match a tab
character. "\0011" is the equivalent of "\001" & "1". Octal escape values
must not exceed 256. If they do, only the first two digits comprise the
expression. Allows ASCII codes to be used in regular expressions.

\xn Matches n, where n is a hexadecimal escape value. Hexadecimal escape

values must be exactly two digits long. For example, "\x41" matches "A".
"\x041" is equivalent to "\x04" & "1". Allows ASCII codes to be used in
regular expressions.

We can extend a regular expression by combining or grouping multiple regular expression
operators. In this case we should follow the order of precedence.

Order of Precedence

Regular expressions are interpreted from left to right. The order of precedence when
building a Regular Expressions is

Order | Operator(s) Description

1 \ Escape

2 0, (?2), (?2), 1] Parentheses and Brackets
3 * + ?,{n}, {n}, {n,m} Quantifiers

All powers within you, you can do it

QuickTest Professional Unplugged 73

4 A $, \anymetacharacter Anchors and Sequences
5 | Alternation
Escape (\)

There are so many special characters in regular expressions. | have to verify “2*2=4" is
available in the main text. For that | have to specify regular expression pattern as “2*2=4".
But “*” will work like a regular expression and the verification will get fail. In this case the
“*” should be considered as a literal character instead regular expression.

Back Slash (\) character is useful to treat a special character as a literal character. Provide
the Back Slash (\) character in precede of special characters which you want to treat as
literal character.

In the above situation we should use “2*2=4" in the pattern.

List of Special Characters in Reqular Expressions

Parentheses (())

Parentheses used to group the matches.

Brackets ([1)

You can create a list of matching characters by placing one or more individual characters
within square brackets ([]). When characters are enclosed in brackets, the list is called a
bracket expression. Within brackets, as anywhere else, ordinary characters represent

themselves, that is, they match an occurrence of themselves in the input text. Most special
characters lose their meaning when they occur inside a bracket expression.

Parentheses and Brackets will be explained detailed in Alternation .

Quantifiers

Quantifiers are used to specify the number of occurrences to match against or when we
don’t have the quantity of the characters are there to match.

Ex:

All powers within you, you can do it

QuickTest Professional Unplugged 74

If we need to match a word “Zoooo” then we should write regular expression like Zo{4}. 4
indicate the number of o’s in the word “Zooo0”.

Suppose we don’t know how many times “0” exist in the word, but we expect at least two
0’s should available in the word. Then the regular expression will be like this Zo{2,}

Here {2,} tells that at least two times the character should exist.

List of Quantifiers

SRRy))
Anchors

Anchors do not match any characters. They match a position. These are used to specify
which part of the string should be matched. The part is either beginning or end of a line or
word.

Ex:

If we are verifying the word “QTP” is starting with Q or not then we use regular expression
e

III—Ikcfre (%rbt (™) is not matching the character “Q” but it is matching the position of “Q”.
That’s what Anchors do.

List of Anchors

ATt \b” " \B”

Alternation (|)

Alternation allows us to use a choice between two or more matches. It can be used to
match a single regular expression out of several possible regular expressions.

EX:
The below Regular Expression is to match a Date.
Format: MM/DD/YYYY
MM: (0[1-9]|1[0-2])
Min month number is 1 and Max Month number is 12
DD: (0[1-9]|1[0-9]|2[0-9]|3[0-1])
Min Date number is 1 and Max Month number is 31

YYYY: ([0-9][0-9][0-9][1-9] |[1-9]000 |[1-9][1-9]00 |[1-9][1-9][1-9]0)

All powers within you, you can do it

QuickTest Professional Unplugged 75

Min Year number is 1 and Max Year number is 9999 (Assume)
In the above regular expression we have used Parentheses , Brackets and Alternation .

Brackets used to match values between the specified ranges. 0[1-9] means, this
expression should match numbers from 01 to 09.

Alternation used to match a single regular expression from the specified regular
expression matches. 0[1-9]|1[0-2] means, use any one of the regular expression to match.

Parentheses used to group all regular expression matches. (0[1-9]|1[0-2]) means, use
any one of the regular expression to match from this Group.

Scripting Regular Expressions

From VBScript 5.0 Microsoft provided facility to use Regular Expressions in Scripting
Techniques.

By using this we can write scripts to Test for a pattern within a string, to replace text and to
extract a substring from a string based upon a pattern match.

Using Regular Expressions in Scripting Techniques

1. To use Regular Expressions in scripting first we should create Instance of Regular
Expression Class.

Set SampleRegEXP = New RegExp

2. Set the Search Pattern (Regular Expression)
SampleRegExP.Pattern=“H.*"

3. Specify the Case Sensitivity is true or false
SampleRegEXxP.IgnoreCase= False

4. Specify required search results (True is for all search Results, False is for only
one)

SampleRegEXxP.Global=True
5. Execute Search conditions on a main string

Set Matches = SampleRegExP.Execute(“Hi How Are You”)
6. Get the results by using a For Loop

For Each Match in Matches

Msgbox Match.Firstindex

All powers within you, you can do it

QuickTest Professional Unplugged 76

Msgbox Match.Value

Next

‘Script to extract a substring from a string based upon a pattern match.

Ekkkkkkkkhkhkkkkhkkhkhkhkkhkkhkhkhkhhkhkhhhhkhhhkhkkkiikix

rExpression="H."
MainString="Hi How Are You"

Set SampleRegEXP = New RegEXxp
SampleRegExP.Pattern= rExpression
SampleRegExP.IgnoreCase= False
SampleRegEXxP.Global=True

Set Matches = SampleRegEXxP.Execute(MainString)
For Each Match in Matches

Msgbox Match.Firstindex
Msgbox Match.Value

Next

Ekkkkkkkkhkhkkkhkhkhkkhkkhkhkhhhkhkhhkhkhhhhkhhhhhkkhiikix

‘Script to Replace string

*kkkk

rExpression="H."
MainString="Hi How Are You"
ReplacedString= "Hello"

Set SampleRegEXP = New RegEXxp
SampleRegExP.Pattern= rExpression
SampleRegExP.IgnoreCase= False
SampleRegEXxP.Global=True

Msgbox SampleRegExP.Replace (MainString,ReplacedString)

All powers within you, you can do it

QuickTest Professional Unplugged 77

¢ *kkkk

‘Script to Test a string existence

fkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkk

rExpression="H."
MainString="Hi How Are You"

Set SampleRegExP = New RegExp
SampleRegExP.Pattern= rExpression
SampleRegExP.IgnoreCase= False
SampleRegEXxP.Global=True

retVal = SampleRegEXxP.Test(MainString)
If retval Then
Msgbox "One or more matches were found."
Else
Msgbox "No match was found."
End If

¢ *kkkk

All powers within you, you can do it

QuickTest Professional Unplugged 78

Synchronization

When you run tests, your application may not always respond with the same speed. For
example, it might take a few seconds:

« For a progress bar to reach 100%

« For a status message to appear

» For a button to become enabled

« For a window or pop-up message to open

You can handle these anticipated timing problems by synchronizing your test to ensure
that QuickTest waits until your application is ready before performing a certain step.

There are several options that you can use to synchronize your test:

« You can insert a synchronization point, which instructs QuickTest to pause the test
until an object property achieves the value you specify. When you insert a
synchronization point into your test, QuickTest generates a WaitProperty
statement in the Expert View.

« You can insert Exist or Wait statements that instruct QuickTest to wait until an
object exists or to wait a specified amount of time before continuing the test.

« You can also increase the default timeout settings in the Test Settings and Options
dialog boxes in order

Inserting synchronization point

First find where you want to insert synchronization point and click on record insert
synchronization point a select the object a select the property and value an OK.

Syntax: -

Object.waitproperty “ property name ", “ property value

, time out

Ex: If you're inserting a synchronization point on insert order in flight reservation
application then the statement will be like this.

All powers within you, you can do it

QuickTest Professional Unplugged 79

Window ("Flight Reservation").Winbutton ("Insert Or der").WaitProperty " enabled ",
1, 10000

Difference between wait and synchronization point
Wait (20) a waits for 20 seconds. It's mandatory to wait for 20 seconds.

At same place if you're giving synchronization point and mention 20 seconds to wait and
that wait is not mandatory. When ever the given condition becomes true below 20 seconds
then QTP immediately goes to the next step without wait for 20 seconds.

Tkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkkkhkkkhkkkkhkkkkkkkkkkkk

'‘Writing own synchronization Point
oTimeout=100
For oTime=1 to oTimeout

oPropval=window ("Flight Reservation").WinButton ("Delete Order").GetROProperty
("enabled")

If oPropval=true Then
Exit for

else
Wait (1)

End If

Next

Thkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkkkkhkkkhkkhkkhkkkkkkkkkkkk

All powers within you, you can do it

P imaicd Trmulpsetewm| Bem vl

[l el .)
WATRE AR - = 7
Wt Untifisc Test Results Summar
o L Ol el B | e L A L) L i & "'
il e,
] ke Rl § ind B
. :E:"u:“-:::‘.-.- i sl i b yd oo
.q“":r_." s Wiiow Niiledr Fin W i wl i) Tavon
will i Wi vimld TTEIEOM L AL
w0] e T ool T LlER A
[] H] M W o e e P B
mP o e e § i == i
§ N Farirs demrpien | = ——— .
will e o ¥ |
Ir—sm
. HU
[T Ry e e i
fdduad Bl Temsii
£t uckt i mrwve e Fa]
W i Vise n]
1
L [
Fim by i # ruw

Test Results

Test Results provides a summary of a Quicktest run session. The results are stored in an
XML file

format. QTP provides a Test Results viewer tool used to review and print these results.
Test Results

Optionally contain image snapshots, based on QTP configuration settings. Below Figure
shows a typical Test result summary

All powers within you, you can do it

QuickTest Professional Unplugged 81

The left hand pane provides summary information about each step performed
during the test run. Icons to the left of each step provide the following information as well:

* A Cross (X) icon denotes a failed step

e An Exclamation (!) icon denotes a warning step

e ATick (1) icon denotes a passed step

« A step without any of these symbols denotes an information step

QTP assigns status to a step based on one of the fo llow situations:

» Checkpoint: Checkpoint can cause a step to pass or fail

« Smart ldentification: If Smart identification is used to identify an object then that
step is assigned the warning icon

« Error: If a step encounters any error, it will be assigned the failed icon

« Custom events: Custom events are used to directly assign a step an explicit status

Filtering Steps in a Report

It is possible to control what types of steps are written to the test results using the following
Statement:

Reporter. Filter = <Filter Value>
The <Filter Value> must use one of the following QTP built-in variables:

« rfEnableAll — Report all steps. This is the default setting

« rfEnableErrorsAndWarnings — Only report error (failed) and warning steps
« rfEnableErrorsOnly — Only report error steps

» rfDisableAll — Does not report any steps

The following code shows how to suppress a single checkpoint’'s pass/fail status:

‘Store the old filter value

oldFilter = Reporter.Filter

‘Disable reporting of all events

Reporter.Filter = rfDisableAll

Set oPg = Browser (“Browser”).Page (“Page”)

All powers within you, you can do it

QuickTest Professional Unplugged 82

chkStatus = oPg.WebEdit (“‘username”).Check (Checkpoint (“username”))
If chkStatus Then

MsgBox “Passed”

Else

MsgBox “Failed”

End If

‘Restrore the old filter value

Reporter.Filter = oldFilter

Reporting Custom Steps

We can insert our own steps in the Test Results usi ng the following statement:
Reporter.ReportEvent <EventStatus>, <ReportStepName>, <Details>

The <EventStatus> should use one of the following QTP built-in variables:

* micPass — Reports a step with passed status

« micFail — Reports a step with failed status

* micWarning — Reports a step with warning status
+ micDone — Reports a step with no status

‘Get the actual link href
actualLink = Browser (“Browser”).Page (“Page”).Link(“Login”).
GetROProperty (“href”)

If actualLink = “http://mywebsite.com/login.do” Then

Reporter.ReportEvent micPass, “Validate Link - Login” , “Correct Link”

Else

Reporter.ReportEvent micFail, “Validate Login” , “Wrong Link - “& actualLink
End if

While the <ReportStepName> and <Details> parameters are plain text strings, it is
possible to embed

HTML tags into these strings as follows:

‘HTML text to be entered

SHTML = “<Click
Me>”

‘Add to reporter
Reporter.ReportEvent micDone, “Link” , sHTML

QTP also supports one more undocumented EventStatus, miclnfo. Using miclnfo creates

a step with an “i” icon for the step. This is useful to report just information in the report,
which we may want to visually segregate from the similar micDone entries.

All powers within you, you can do it

B L&l el [Tanpitonp®y] - Tevl | il
Pl e T il
FETRRA LW -~ 7

_..i Fart dddbed lag T s

= e T ued
_..II:'. Lt Tt Mrawradon (| (Fces 1)1

Step Name: Steps To Recreals

A Glug Paninid
-
P
S T
Flimirs-Sh

|For ey, poems i

Inserting Files in Test Results

Consider the following code:

‘Create the html file path

‘Store it in a Test Results folder

Ll

e I Lo b wewnes imaniorsats ¢ =m
Soep I Chck onthe Lopn i
Ntwp 3. Ender Bhe yaenaind ai Luis
Yrep 4. Enter passwesrd as tann
Sorp 5 Chck on the Lopm butfon
Krep 6 Clair the browier

3

sFile = Reporter.ReportPath & “\ StepsToRecreate.html”

‘Create the HTML file

Set FSO = CreateObject (“Scripting.FileSystemObject”)
Set file = FSO.CreateTextFile (sFile, True)

file.Write “<I>Step 1</I>. Launch www.mywebsite.com”
file.Write “<P>Step 2. Click on the Login link”

file.Write “<P>Step 3. Enter the username kanak”

file. Write “<P>Step 4. Enter password as kanak”
file.Write “<P>Step 5. Click on the Login button”
file.Write “<P><|>Step 6</I>. Close the browser”

file.close

‘Insert the above file as a IFRAME in the report
SHTML = “<<IFRAME width=""100%"" height=250 src=""file://[" &

sFile & “"></ IFRAME>>”

Flwpnali

Reporter.ReportEvent micPass, “ Steps To Recreate”, SHTML

‘Clean up
Set file = Nothing
Set FSO = Nothing

All powers within you, you can do it

[§=_5

TR
rm

QuickTest Professional Unplugged

84

Running the above code will display the file as shown below:

Inserting Snapshots in Test Results

This section describes various ways of inserting screen snapshots into the Test Results.

Method 1

Configure QTP to save a screen snapshot for every step. Go to Tools—Options...—Run
(Tab) and set the option for “Save step screen capture to results:” to “Always” as shown in

the Figure

Test Results >> Inserting Snapshots in Test Results

These techniques have the following advantages over the ReportEvent method:

e Support for relative paths

* Inserts HTML step information without having to use “<” and “>” etc. HTML

tags.

B Untith] Dol [lengfmadii] - Tl sl

P e Dem ey

FETER AR < ¢

€

B i, i ¥

.i" Tani Lrihig Tt Lewar

Soao-Trw Deie
= | J F el ik] O
= il s

o o e

1 DT

S Cmm I

Slep Name: Deskiop Image

Mhop ™

et bt s

e latiia]

Emct

Lhrailn

Test

Flaaumn

Fasaed

T v

i Uk - Ok i sl Prsl esslons

L 4

iy 0K - Fiw Tl Sy DeEwsy Tiess chwid
Dol AN VO mE"Q
B e | bk Ry B A0 LS
]
0 =, B g . A T T | e
Al iDedit e St urellthbs GEprlEs ingerEPaes i Rt a T LT I
=34 -
*
L=]

QuickTest Professional Unplugged 85

Accessing Test Results at the end

QTP creates the results in the test results folder. We may want to access these results at
the end of the test script to save them to another location or to send them through email.
Let's say we want to copy the Results.xml file which is created in the Report folder. We
can write the following code to perform this task in a QTP script:

‘Report a pass event
Reporter.ReportEvent micPass, “Testing Report” , “Testing Exporting of Report”

‘Get the result directory
sResultDir = Environment (“ResultDir”)

‘Copy the file to destination

Set fso = CreateObject (“Scripting.FileSystemObject”)

fso.CopyFile sResultDir & “\Report\Results.xml”, “C:\Copy_Results.xml” , True
Set fso = Nothing

All powers within you, you can do it

QuickTest Professional Unplugged 86

QTP Automation Object Model

What is the QuickTest Automation Object Model?

An object model is a structural representation of software objects (classes) that comprise the
implementation of a system or application. An object model defines a set of classes and
interfaces, together with their properties, methods and events, and their relationships.

Essentially all configuration and run functionality provided via the QuickTest interface is in some
way represented in the QuickTest automation object model via objects, methods, and properties.
Although a one-on-one comparison cannot always be made, most dialog boxes in QuickTest have
a corresponding automation object, most options in dialog boxes can be set and/or retrieved using
the corresponding object property, and most menu commands and other operations have
corresponding automation methods.

You can use the objects, methods, and properties exposed by the QuickTest automation object
model, along with standard programming elements such as loops and conditional statements to
design your script.

Automation scripts are especially useful for performing the same tasks multiple times or on
multiple tests or components, or quickly configuring QuickTest according to your needs for a
particular environment or application.

The QuickTest automation object model exposes the objects shown in the diagram below.
You can use these objects, and their associated methods and properties, to write
programs that automatically configure QuickTest options and run tests.

Some places where we can use AOM

This is a small list of places (but not limited to) where we can use AOM. Thumb Rule -
Use it at any place where you find yourself doing repetitive tasks while using QTP.

« AOM can come handy when you have a large no of scripts to be uploaded to QC.
A simple script can save you hours of manual work!

+ Use AOM to initialize QTP options and settings like add-ins etc.

« You can use AOM to call QTP from other application: For ex: You can write a
macro for calling QTP from excel.

Caution: AOM should be used outside of QTP and not within the script (during playback).
Though there is no harm using it inside but some of the AOM statements might fail.

All powers within you, you can do it

QuickTest Professional Unplugged 87

Creating automation programs:

The Properties tab of the Test Settings dialog box, the General tab of the
Options dialog box, and the Object Identification dialog box each contain a “Generate
Script” button. Clicking this button generates a automation script file (.vbs) containing the
current settings from the corresponding dialog box.

You can run the generated script as is to open QuickTest with the exact
configuration of the QuickTest application that generated the script, or you can copy and
paste selected lines from the generated files into your own automation script.

Generating an automation script for QuickTest Profe ssional options:

1. Go to Tools -> Options.

2. Select the General tab.

3. Click <Generate Script>.

4. Save the script to the desired location.
5. Click <OK> to close the Options dialog.

Generating an automation script for test settings:

1. Go to Test -> Settings.

2. Select the Properties tab.

3. Click <Generate Script>.

4. Save the script to the desired location.

5. Click <OK> to close the Test Settings dialog.

Generating an automation script for object identifi cation settings:

1. Go to Tools -> Obiject Identification.

2. Click <Generate Script>.

3. Save the script to the desired location.

4. Click <OK> to close the Object Identification dialog.

The QuickTest Automation Object Model Reference file is a help file that provides

detailed descriptions, syntax information, and examples for the objects, methods, and
properties in the QuickTest Automation Object Model.

All powers within you, you can do it

QuickTest Professional Unplugged 88

How to write AOM scripts?

You need to understand that the very root of QT AOM is Application Object. Every
automation script begins with the creation of the QuickTest "Application" object. Creating
this object does not start QuickTest. It simply provides an object from which you can
access all other objects, methods and properties of the QuickTest automation object
model. You can create only one instance of the Application object. You do not need to
recreate the QuickTest Application object even if you start and exit QuickTest several
times during your script.

Once you have defined this object you can then successfully work and perform
operations on other objects given in Quick Test Pro > Documentation > QuickTest
Automation Reference.

For ex: Let us connect to TD QC using AOM and open a script "gtp_demo”

Dim gt_obj 'Define a Quick Test object
gt_obj = CreateObject ("Quick Test. Application") ' Instantiate a QT Object. It does not
start QTP.
gt_obj.launch ' Launch QT
gt_obj.visible ' Make QT visible
gt_obj. TDConnection.Connect "http://tdserver/tdbin", _ 'Referencing TDConnection Object
"TEST_DOMAIN", "TEST_Project”, "kanak", "Testing", False ' Connect to Quality Center
If gt_obj. TDConnection.IsConnected Then ' If connection is successful

gt_obj.Open "[QualityCenter] Subject\tests\qtp_demo", False ' Open the test
Else

MsgBox "Cannot connect to Quality Center" ' If connection is not successful, display an
error message.
End If

To quickly generate an AOM script with the current QTP settings. Use the
Properties tab of the Test Settings dialog box (File > Settings) OR the General tab of the
Options dialog box (Tools > Options) OR the Object Identification dialog box (Tools >
Object Identification). Each contains a "Generate Script" button. Clicking this button
generates a automation script file (.vbs) containing the current settings from the
corresponding dialog box. You can run the generated script as is to open QuickTest with
the exact configuration of the QuickTest application that generated the script, or you can
copy and paste selected lines from the generated files into your own automation script.

AOM Examples

kkkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkx

'‘Open QTP and Connect to Quality Center
Tkkkkkkkkkhkkkhkkhkkkhkkkhkkhkkhkkkhkkkhkkkhkkhkkkhkkhkkhkhkkkkkhkkkhkkkkkhkkkhkkkkhkkkhkkhkkkkhkkkhkkkhkkhkkkkkkk

Dim qgtApp ' Declare the Application object variable

Set gtApp = CreateObject("QuickTest.Application") ' Create the Application object
gtApp.Launch ' Start QuickTest

gtApp.Visible = True ' Make the QuickTest application visible

' Make changes in a test on Quality Center with version control
gtApp.TDConnection.Connect "QC URL", "DOMAIN Name", "Project Name", "User
Name", "Password", False ' Connect to Quality Center

All powers within you, you can do it

QuickTest Professional Unplugged 89

If qtApp.TDConnection.IsConnected Then ' If connection is successful
MsgBox "Succesfully connected to Quality Center"
Else
MsgBox "Cannot connect to Quality Center"
End If

qtApp.Quit ' Exit QuickTest
Set gtApp = Nothing ' Release the Application object

Thkkkkkkkkhkhkkkkkhkkkkkkhkkkkkkhkkkkkkkhkkkkkkkkkkkhkkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkk

'Start QTP and open New test
Tkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkx

Dim qtApp ' Declare the application object variable

Set gtApp = CreateObject("QuickTest.Application") ' Create the application object
gtApp.Launch ' Start QuickTest

gtApp.Visible = True ' Make the QuickTest application visible

qtApp.New ' Open a new test

Set gtApp = Nothing ' Release the Application object

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkkhkkkkkhkkkkkhkkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

'Start QTP, open an existing test and Run the Test

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkhhkhkkkkhkhkkkkkkkkkkkkkkkkk

Dim qtApp

Dim gtTest

Set gtApp = CreateObject("QuickTest.Application”) ' Create the Application object
gtApp.Launch ' Start QuickTest

gtApp.Visible = True ' Make the QuickTest application visible

' Set QuickTest run options

gtApp.Options.Run.ImageCaptureForTestResults = "OnError"
gtApp.Options.Run.RunMode = "Fast"

gtApp.Options.Run.ViewResults = False

qtApp.Open "C:\Tests\Test1", True ' Open the test in read-only mode

' set run settings for the test

Set qtTest = qtApp.Test

gtTest.Settings.Run.OnError = "NextStep" ' Instruct QuickTest to perform next step when
error occurs

gtTest.Run ' Run the test

MsgBox gtTest.LastRunResults.Status ' Check the results of the test run
gtTest.Close ' Close the test

Set gtTest = Nothing ' Release the Test object

Set gtApp = Nothing ' Release the Application object

Thkkkkkkkkhkhkkkkkhkkkkkkhkkkkhkkkkkkkkkkkkkkkkkhkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

‘Start QTP, open an existing test and Run the Test with configured Run options
" And Store Run Results in Specified Folder

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkkkhkkkhkkkkhkhkkkkkkkkkkkkkkkkk

Dim gtApp

All powers within you, you can do it

QuickTest Professional Unplugged 90

Dim gtTest

Dim gtResultsOpt

Set gtApp = CreateObject("QuickTest.Application") ' Create the Application object
gtApp.Launch ' Start QuickTest

gtApp.Visible = True ' Make the QuickTest application visible

' Set QuickTest run options

gtApp.Options.Run.ImageCaptureForTestResults = "OnError"
gqtApp.Options.Run.RunMode = "Fast"

gtApp.Options.Run.ViewResults = False

gtApp.Open "C:\Tests\Test1", True ' Open the test in read-only mode

' set run settings for the test

Set qtTest = qtApp.Test
gtTest.Settings.Run.lterationMode = "rnglterations
gtTest.Settings.Run.Startlteration = 2
gtTest.Settings.Run.Endlteration = 4
gtTest.Settings.Run.OnError = "NextStep" ' Instruct QuickTest to perform next step when
error occurs

Set gtResultsOpt = CreateObject("QuickTest.RunResultsOptions") ' Create the Run
Results Options object

gtResultsOpt.ResultsLocation = "C:\Tests\Test1\Res1" ' Set the results location
gtTest.Run gtResultsOpt ' Run the test

MsgBox gtTest.LastRunResults.Status ' Check the results of the test run

gtTest.Close ' Close the test

Set gtResultsOpt = Nothing ' Release the Run Results Options object

Set gtTest = Nothing ' Release the Test object

Set gtApp = Nothing ' Release the Application object

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkkhkhkkkkkkkhkkkkhkkkkkhkhkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkkkkkkkx

Run only iterations 2 to 4

‘Start QTP, open an existing test, associate libra ries and save the test
Vkkkkkkkkkhkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Dim gtApp
Dim qgtLibraries
Dim IngPosition
" Open QuickTest
Set gtApp = CreateObject("QuickTest.Application”) ' Create the Application object
gtApp.Launch ' Launch QuickTest
qtApp.Visible = True ' Set QuickTest to be visible
" Open a test and get its libraries collection
qtApp.Open "C:\Tests\Testl", False, False ' Open a test
Set gtLibraries = qtApp.Test.Settings.Resources.Libraries ' Get the libraries collection
object
" Add Utilities.vbs if it's not in the collection
If gtLibraries.Find("C:\Utilities.vbs™) = -1 Then ' If the library cannot be found in the
collection
gtLibraries.Add "C:\Utilities.vbs", 1 ' Add the library to the collection
End If
'Save the test and close QuickTest
gtApp.Test.Save ' Save the test
qtApp.Quit ' Quit QuickTest

All powers within you, you can do it

QuickTest Professional Unplugged 91

Set gtLibraries = Nothing ' Release the test's libraries collection
Set gtApp = Nothing ' Release the Application object

Thkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkkkk

‘Start QTP, open an existing test, associate Objec t Repositories and save the test

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkhkkkkhkhkkkkkkkkkkkkkkkkk

Dim qtApp
Dim gtRepositories
Dim IngPosition
" Open QuickTest
Set gtApp = CreateObject("QuickTest.Application") ' Create the Application object
gtApp.Launch ' Launch QuickTest
gqtApp.Visible = True ' Set QuickTest to be visible
' Open a test and get the "Login" action's object repositories collection
gtApp.Open "C:\Tests\Test1", False, False ' Open a test
Set gtRepositories = qtApp.Test.Actions("Login").ObjectRepositories ' Get the object
repositories collection object of the "Login" action
" Add MainApp.tsr if it's not already in the collection
If gtRepositories.Find("C:\MainApp.tsr*) = -1 Then ' If the repository cannot be found in the
collection
gtRepositories.Add "C:\MainApp.tsr", 1 ' Add the repository to the collection
End If
'Save the test and close QuickTest
gtApp.Test.Save ' Save the test
gtApp.Quit ' Quit QuickTest
Set gtRepositories = Nothing ' Release the action's shared repositories collection
Set gtApp = Nothing ' Release the Application object

Thkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkkkk

'‘Open and minimize QTP Window

Vhkkkkkkkkhkhkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkhkkkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

Dim qtApp

Set gtApp = CreateObject("QuickTest.Application”) ' Create the Application object
gtApp.Launch ' Start QuickTest

gtApp.Visible = True ' Make the QuickTest window visible

gtApp.WindowState = "Minimized" ' Maximize the QuickTest window

Set gtApp = Nothing ' Release the Application object

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkkkkkkkkkkx

‘Start QTP, Open an Existing Test and Define Enviro nment Variables

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkhkkk

Dim gtApp

All powers within you, you can do it

QuickTest Professional Unplugged 92

Set gtApp = CreateObject("QuickTest.Application”) ' Create the Application object
gtApp.Launch ' Start QuickTest

gtApp.Visible = True ' Make the QuickTest application visible

' Open the test

gtApp.Open "C:\Tests\Test1", False ' Open a test named "Test1"
' Set some environment variables
gtApp.Test.Environment.Value("Root") = "C:\"
gtApp.Test.Environment.Value("Password") = "QuickTest"
gtApp.Test.Environment.Value("Days") = 14

gtApp.Test.Save ' Save the test

qtApp.Quit ' Exit QuickTest

Set gtApp = Nothing ' Release the Application object

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkhkkk

‘Start QTP, Open an Existing Test and Get All Avail able Action Names From the Test

Thkkkhkkkkkkkhkhkkkkkkkkkkkkhkkkkk

Dim qtApp

" Open QuickTest

Set gtApp = CreateObject("QuickTest.Application") ' Create the Application object
gtApp.Launch ' Launch QuickTest

gtApp.Visible = True ' Set QuickTest to be visible
qtApp.Open "C:\Tests\Testl", False, False ' Open a test
0ActCount=qtApp.Test.Actions.Count

For iCounter=1 to oActCount

' Get the first action in the test by index (start from 1)
MsgBox qtApp.Test.Actions(iCounter).Name

Next

'‘Close QuickTest

qtApp.Quit ' Quit QuickTest

Set gtApp = Nothing ' Release the Application object

Tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkhkkkkkhkhhkhkkkkhkhkkkkkkkkkkkkhkkhkkk

'Start QTP with specified views

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkkhkkkkkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkk

Dim qtApp

Set gtApp = CreateObject("QuickTest.Application”) ' Create the Application object
gtApp.Launch ' Start QuickTest

gtApp.ActivateView "ExpertView" ' Display the Expert View
gtApp.ShowPaneScreen "ActiveScreen”, True ' Display the Active Screen pane
gtApp.ShowPaneScreen "DataTable", False ' Hide the Data Table pane
gtApp.ShowPaneScreen "DebugViewer", True ' Display the Debug Viewer pane
gtApp.WindowsState = "Maximized" ' Maximize the QuickTest window
gtApp.Visible = True ' Make the QuickTest window visible

Set gtApp = Nothing ' Release the Application object

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkhkkkkkkkhkkkkkkkkkkhkkkkkhkkkkkkhkhkkkkkkhkhkkkkkhkkkkkkhkkkkkkkkkx

All powers within you, you can do it

QuickTest Professional Unplugged 93

Working with Microsoft Excel
Introduction

We create framework for automating the application. For this we used the independent structure for
reporting and data. Excel plays a very important role in this approach.

QTP has its own test result displaying mechanism in the predefined format. Once the test is run, the
result sheet is generated which gives you insight of the script-stating the point of failures, warnings and
passes

We create customized in the script and it is possible to customize the result file also depending upon
the checkpoint created will be passed or failed.

In most of the cases we want to create summarized or detailed report of the entire test in excels. The
reason to create customized report is that one is able to keep the file in central location and to create the
report in our format

Now we are going to learn the interaction of Excel with VBScript.the whole mechanism goes in the
following steps.
Understanding the hierarchy of Excel Application
Creating the Excel Object
Opening an existing workbook or creating new one
Setting the objects for various sheets in workbook
Writing and fetching the data values in the result
Saving the and closing the workbook
Closing the application and releasing the memory
We will go through each of the above stated steps with a suitable example to understand the
approach properly

\‘.C”.U"P.‘*’!\’!—‘

Understanding the hierarchy of Excel Application

We will not go into the details of the complete hierarchy of the Excel Application but to the extend
what is required

Excel Application
Workbooks
Sheets
Cells

All powers within you, you can do it

QuickTest Professional Unplugged 94

Creating the Excel Object

The first step onwards the processes of reporting via excel is to create object of Excel. Reporting in
Excel can either be done in backend, without making the application visible or you can make it appear to
user once the process of writing or fetching the data is going. In either way creating of the Excel Application
object is required. it goes as

Dim XL
Set XL=CreateObject (“Excel. Application”)

Opening an existing workbook or creating the new on e

Once the excel object has been created, it means the excel application has been invoked but is not
visible. So either one can perform the operation like that or make the application visible and then perform the
operations.

‘To make the application visible

XL.visible=true

‘To open a new book
XL.workbooks.Add

‘To open an existing Workbook
XL.workbooks.Open (“file name of the complete path”)

Setting and accessing the objects of sheets in work book

Once the workbook has been opened, either existing or new one, we need to write some data in
various cells in various sheets of that workbook.

By default there are 3 sheets in a workbook and various operations can be performed on. So one
need create the object to reference these sheets as it becomes easy to access them and you don't have to
mention the complete hierarchy over and over again.

‘Say one has to create a reference for sheet with index I, which starts from 1
Set shtl=XL.activeworkbook.sheet (1)

‘One can add or delete n number of sheets from the activeworkbook

‘To add a sheet in workbook-

XL.activeworkbook.sheets.add

‘To delete a particular sheet where | represent the index which starts from 1-
Xl.activeworkbook.sheets (1).delete

‘To change the name of the sheet-
XL.activeworkbook.sheets (1).name=" Name of your choice ”

All powers within you, you can do it

QuickTest Professional Unplugged o5

‘To count the total number of sheets in the workbook
Cnt= XL.activeworkbook.sheets.count

Writing and deleting the data value in the cells

To write the data in Excel sheet, one should know the cell address in which the data has to be written.
Same thing goes for accessing the data from the cells

To write the data in sheetl cell as D8, we write the following command.Cell address here is
represented by row number followed by column number-

XL.activeworkbook.sheets (2).cells (8, 4) ="hemajothi”

‘To fetch the data from sheet3 cell address A7-

Val= XL.activeworkbook.sheets (3).cells (7, 1)
Msgbox Val

If one has already created the object of the particular sheet, you don’t have to write the complete
hierarchy but simply-

Object. cells (row, col) =value

Saving and closing the workbook

Once the work completed you can save the newly created workbook to a specified location or save
the changes made to already existing opened workbook.

‘To save as if case of new workbook
XL.activeworkbook.saveas “path with file name.xIs”

‘To save in case of existing workbook
XL.activeworkbook.save

‘To close the workbook
XL.activeworkbook.close

Closing the application and releasing the memory

‘To close the application
XL.quit

‘To release the memory of all the objects

Set XL=nothing

Searching word in excel sheet

All powers within you, you can do it

QuickTest Professional Unplugged 96

Set appExcel = CreateObject("Excel.Application”)
appExcel.visible=true
Set objWorkBook = appExcel. Workbooks.Open ("E:\exe.xIs")
‘opens the sheet
Set objSheet = appExcel.Sheets("Sheetl")
"To select particular sheet
With objSheet.UsedRange
" select the used range in particular sheet

Set ¢ = .Find ("Denver")
' data to find
For each c in objSheet.UsedRange
' Loop through the used range

If c="Denver" then

' compare with the expected data

c.Interior.Colorindex = 20

' make the gary color if it finds the data

End If
Set ¢ = .FindNext(c)

' next search
next
End With
objWorkBook.save
objWorkBook.close
set appExcel=nothing

Copy an excel sheet to another excel

Set objExcel = CreateObject ("Excel.Application")
objExcel.Visible = True

Set objWorkbook1= objExcel.Workbooks.Open ("E:\exe.xlIs")
Set objWorkbook2= objExcel.Workbooks.Open("E:\exe2.xIs")
objWorkbook1.Worksheets("Sheetl").UsedRange.Copy
objWorkbook2.Worksheets("Sheetl").Range("Al").PasteSpecial Paste =xIValues
objWorkbook1.save

objWorkbook2.save

objWorkbook1.close

objWorkbook2.close

set objExcel=nothing

Compare two excel sheet:

Set objExcel = CreateObject ("Excel.Application")
objExcel.Visible = True

Set objWorkbook1= objExcel.Workbooks.Open ("E:\exe.xlIs")
Set objWorkbook2= objExcel.Workbooks.Open ("E:\exel.xIs")

Set objWorksheet1= objWorkbookl.Worksheets (1)

Set objWorksheet2= objWorkbook2.Worksheets (1)

All powers within you, you can do it

QuickTest Professional Unplugged 97

For Each cell in objWorksheetl.UsedRange
If cell. Value <> objWorksheet2.Range (cell. Address).Value Then
cell.Interior.Colorindex = 3
"Highlights in red color if any changes in cells
Else
cell.Interior.Colorindex = 0
End If
Next

Set objExcel=nothing

Display result in different excel sheet

Dialog ("Login").WinEdit ("Agent Name :") .Set
DataTable ("Agent Name", dtGlobalSheet)
Dialog ("Login").WinEdit ("Password :") .Set
DataTable ("Pword", dtGlobalSheet)

Dialog ("Login").WinButton ("OK").Click

If Window ("Flight Reservation").Exist then

Window ("Flight Reservation").WinMenu ("Menu").Select "File; Exit"
DataTable.Value ("Act_Res") ="Pass"

Reporter.ReportEvent 0,"Login Details”, “Valid Values"

Else

Dialog ("Login").Activate

Dialog ("Login").WinButton ("Cancel").Click

DataTable.Value ("Act_Res") ="Fail"

Reporter.ReportEvent 1,"Login Details”, “Invalid Values"

End If

Er=DataTable ("Exp_Res", dtGlobalSheet)
Ar=DataTable ("Act_Res", dtGlobalSheet)
If Strcomp(Er, Ar) =0 Then
DataTable.Value ("Remarks") ="OK"
Else
DataTable.Value ("Remarks") ="Defect"
End If
DataTable.Export ("e:\\Results.xIs")

Working with XML

All powers within you, you can do it

QuickTest Professional Unplugged o8

What is Document object Model?

A platform- and language-independent standard object model for representing HTML or XML and
related formats. DOM is a method for QTP engineers to access the source (IE —> View —> Source) of any
webpage direct through VB Scripting.

When can we use DOM?

One of the very important places you can use it is when a QTP web table checkpoint doesn't
show you the desired content in a cell. | mean the content in the cell is in a format that is not supported by
the web table checkpoint. Another use can be when you want to access all the HTML tags used in a
webpage. You can get the names, the innertext, and innerHTML property of all these tags. The possibilities
are endless.

How can we use DOM to access the source page?
We can access the source page of any webpage using .object notation.
Example:

Set img = Browser ("Browser”).Page ("Page”).WebTable ("Happy"”).Object.all.tags ("img”)
Msgbox img.length

For i=0 to img.length-1

Msgbox img (i).src

Next

The loading of XML file in QTP is simple enough:

Const XMLDataFile = "C:\TestData.xml"

Set xmIDoc = CreateObject ("Microsoft. XMLDOM")
xmIDoc.Async = False
xmlIDoc.Load(XMLDataFile)

Note:

1. Microsoft XMLDOM is a name of COM object of Microsoft's XML parser
2. Async is a property of Microsoft. XMLDOM.

The property specifies whether asynchronous download of the document is
permitted.
Processing of asynchronous operations is more complex, that's why I've disabled it
(xmlIDoc.Async = False).

3. Load method loads an XML document from the specified file.
Also, you can use LoadXML method, which loads an XML document using the
supplied string.

After that we can use SelectSingleNode or SelectNodes of Microsoft's XML parser to
execute XPath query. You can use this approach in QTP to get data from XML file.

How to get number of books in a bookstore?

All powers within you, you can do it

QuickTest Professional Unplugged 99

Set nodes = xmIDoc.SelectNodes ("/bookstore/book™)
MsgBox "Total books: " & nodes. Length

How to get titles of all books in a bookstore?

‘Get all titles
Set nodes = xmIDoc.SelectNodes ("/bookstore/book/title/text ()"
‘Get their values
fori = 0to (nodes. Length - 1)
Title = nodes (i).Node Value
MsgBox "Title #' & (i+ 1) & ": " & Title
Next

How to get title of the first book?

Set node = xmIDoc.SelectSingleNode ("/bookstore/book [O]/title/text ()")
MsgBox "Title of 1st book: " & node.NodeValue
How to get titles of all John Smith's books?
‘Get all titles
Set nodes = xmIDoc.SelectNodes ("/bookstore/book/title/text ()")
' get their values
fori=0 to (nodes. Length - 1)
Title = nodes (i).Node Value
MsgBox "Title #' & (i+ 1) & ": " & Title
Next

How to get title of the first book?

Set node = xmIDoc.SelectSingleNode ("/bookstore/book [O]/title/text ()")
MsgBox "Title of 1st book: " & node.NodeValue

How to get titles of all John Smith's books?

‘Get list of John Smith's
Set nodes = xmIDoc.SelectNodes ("/bookstore/book/title [. /author = 'John Smith')/text ()")
' get their titles
fori =0 to (nodes. Length - 1)
Title = nodes (i).NodeValue
MsgBox "Title #' & (i+ 1) & ": " & Title
Next

Note: We use square brackets to apply a filter. So, [.../author = 'John Smith'] means 'to get
only those books whose author is John Smith'.

How to get titles of all books published after 2003 ?

All powers within you, you can do it

QuickTest Professional Unplugged 100

‘get list of books published after 2003
Set nodes = xmIDoc.SelectNodes ("/bookstore/book/title [@published > 2003]/text ()")
' get their titles
fori=0to (nodes. Length - 1)
Title = nodes (i).NodeValue
MsgBox "Title #' & (i+ 1) & ": " & Title
Next

How to rename the title of first book?

Const XMLDataFile = "C:\TestData.xml"
Const XMLNewFile = "C:\TestData2.xml"

Set xmIDoc = CreateObject ("Microsoft. XMLDOM")
xmlDoc.Async = False
xmlDoc.Load(XMLDataFile)

" update the title of the first book
Set node = xmIDoc.SelectSingleNode("/bookstore/book[0]/title")
node. Text = "Romeo and Juliet - Salvation"

' save changes
xmlIDoc.Save (XMLNewFile)

How to change the year of second book?

Update the attribute of the second book
Set node = xmIDoc.SelectSingleNode ("/bookstore/book [1]/title/@published™)
node. Text = "2009"

How to add new author add its new attribute?

Select a parent node
Set parent Node = xmlIDoc.SelectSingleNode (“/bookstore/book [2])

" add a new author

Set newNode = xmIDoc.CreateElement ("author")
newNode.Text = "Mr. Noname"
parentNode.AppendChild (newNode)

How to add new attribute for author (XML node)?

‘select a parent node
Set parentNode = xmIDoc.SelectSingleNode ("/bookstore/book [2]")
"add its attribute
Set newAttrib = xmlDoc.CreateAttribute ("bestseller")
newAttrib. Text = "yes"
parentNode.Attributes.SetNamedItem(newAttrib)

All powers within you, you can do it

QuickTest Professional Unplugged 101

How to rename the title of first book?

Const XMLDataFile = "C:\TestData.xml"

Const XMLNewtFile = "C:\TestData2.xml"

Set xmIDoc = CreateObject ("Microsoft. XMLDOM")
xmlDoc.Async = False

xmlIDoc.Load(XMLDataFile)

" update the title of the first book

Set node = xmIDoc.SelectSingleNode("/bookstore/book[0]/title")
node. Text = "Romeo and Juliet - Salvation"

' save changes

xmlDoc.Save (XMLNewFile)

Note: The numeration begins from zero. That's why | use book [0] to access first item.
How to change the year of second book?
| skip the opening and saving of XML file (see above QTP script). | show only the essence:

‘Update the attribute of the second book
Set node = xmIDoc.SelectSingleNode ("/bookstore/book [1]/title/@published")
node. Text = "2009"

Note: Use @ to access an attribute of XML node.
How to add new author add its new attribute?

‘select a parent node

Set parentNode = xmlDoc.SelectSingleNode ("/bookstore/book [2]")
"add a new author

Set newNode = xmIDoc.CreateElement ("author")

newNode.Text = "Mr. Noname"

parentNode.AppendChild (newNode)

How to add new attribute for author (XML node)?

‘select a parent node

Set parentNode = xmIDoc.SelectSingleNode ("/bookstore/book [2]")
"add its attribute

Set newAttrib = xmlDoc.CreateAttribute ("bestseller")

newAttrib. Text = "yes"
parentNode.Attributes.SetNamedItem(newAttrib)

Designing framework

All powers within you, you can do it

QuickTest Professional Unplugged 102

Frame Work:
Frame work is a Generic work designed by an expert and followed by many people
to perform a particular task in an effective, efficient and optimized way.

Test Settings for Keyword-driven Scripting

In the keyword-driven approach the entire script is developed with keywords. The
script is developed in a spreadsheet that is interpreted by the main driver script, which
then uses the function
Library to execute the complete script.

The QTP Settings.vbs file can be used to easily perform the test settings that are
needed before proceeding with the Keyword-driven Scripting. This file associates the
Function libraries, recovery scenarios, Environment Variables and the Object Repository
files that are needed for a script.

The QTP Settings file needs to be customized before usage. Edit the .vbs file in
notepad and make the necessary changes (mentioned below)
in the ‘Input Data’ section of the file.

1. Function Libraries

Specify the path where the Framework Files, Common Functions and the User
Defined Functions are Stored.
2. Recovery Scenario File

Specify the path of the file where the Recovery scenarios are placed.
3. Recovery Scenarios Name

Specify the names of the Recovery scenarios that need to be associated to the test
script.

4. Environment File
Specify the path of the xml file for the Global Environment Variables.

5. Object Repository files
Specify the path of the Object Repository

.Open the test script in QTP for which the settings are needed and double click on the
QTP Settings.vbs file. This file will perform the preferred settings automatically.

Note
If there are multiple items of libraries, object repositories or global variables file,
they can be specified as an array separated by *,’

Set the Flag envi_flag, recover_flag, repos_flag, library flag to "Yes" if the
corresponding files need to be associated to test, else set it to "no"

Given below is a sample “QTP Settings”.
libraries= array ("C:\WebFramework.vbs","C:\common functions.vbs")

recovery_file= "C:\recover.qrs"
recovery _name=array ("Scenariol","Scenario2")

All powers within you, you can do it

QuickTest Professional Unplugged 103

environment_file= "C:\Environment.xml"
repository_name= array ("C:\repositoryl.tsr","C:\repository2.tsr")

‘NOTE: Please set the Flag to "Yes" if the files are to be associated to
Test, otherwise set it to "no"

envi_flag="yes"
recover_flag=" yes"
repos_flag=" yes"
library_flag="yes"

There should be just one Recovery file which holds all the Recovery scenarios.
Multiple
Recovery files cannot be used.

There should be no unsaved tests currently open in QTP. The test script for which
the test
settings need to be done should be open in QTP.

Run Settings

In the Run tab of the Test Settings dialog,

1. The Run one iteration only radio button will be selected.

2. The Disable Smart Identification during the run session check box will be checked.
3. The Object Synchronization timeout value will be set as 20 seconds.

Resources Settings

After the run settings are completed, the QTP Settings file associates the framework with
the test script. Here, the path and the names of the framework files need to be specified in
the QTP Settings

file. The framework will be taken from the location specified and associated with the test
as shown below.

Figure 2: Associating Framework File

NOTE: The Common functions file and the User defined functions file should be
associated with the test only if needed by the test script.

Environment Tab Settings

QTP can insert a value from the environment variable list, which is a list of
variables and corresponding values that can be accessed from the test. Throughout the
test run, the value of an environment variable remains the same, regardless of the number
of iterations, unless the value of the variable is changed programmatically in the script.

Associating the user-defined Environment Variables file with the test is also
handled by the QTP Settings file. The Environment Variables file with an .xml file type will
be taken from the path specified in the QTP Settings file and associated with the test.

Managing Object Repository

All powers within you, you can do it

QuickTest Professional Unplugged 104

After the test settings are completed, the QTP Settings file continues to associate the
specified shared object repositories with the test. The objects from the shared repository
will be uploaded and

made available for the tests.

Figure 4: Associate Repositories Dialog

Call to Framework

The call to Keyword_Driver () needs to be specified in the Expert View as shown below.
This will call the Framework file associated with the test and perform the actions by
interpreting the keywords specified in the data table.

Figure 5: Call to Framework

Usage of Keywords

The keywords should be entered in the global sheet of the data table of the test according
to the syntax. To access the data table, choose View > Data Table or click on the toolbar
button. Below is an example of Keyword-driven Scripting.

Figure 6: Using the keyword in a Data Table

Types of Frame work:-

» Linear/ Sequential Frame work
* Modular frame work

« Keyword Driven frame work

e Hybrid frame work

Linear Frame work :

This is a general and old frame work that can be used by many people. Steps to
follow

a). Generate the Basic Test
b). Enhance the test

c). Debug the test

d). Execute the test

e). Analyze the result

AUT

Example:

Tasks: Login] e
Insert order Insert order

Open existing order | L
Logout
Note: Here all the tasks are put together in one test pane and done the job Open order

All powers within you, you can do it Logout

QuickTest Professional Unplugged 105

v' Put the tool under recoding mode

v" Open flight application

v' Login with username and password

v" Click on OK

v' Insert an order by keying all the required info therein

v Click on insert order button

v' That order will be inserted successfully. After inserting the order

v" Open existing order by clicking on open folder icon

v" A open order window will appear, check the order number check box

v"Input the existing order number (say 9)

v" Click on OK

v" The order will open, if necessary you may update / delete the opened order

v" Logout will be done by going to menu bar of the application and select file,, select
exit.

v" The application will close

v’ Stop recording

v" Run the test

v' Analyze the result

Modular Frame work:

This is also a general frame work that can be used by some people.Steps to follow

a). Prepare the Individual Components for different tasks
b). Make the require Components as Re-Usable

c). Prepare the desired Driver based on end-to-end scenario
d). Execute the Driver

e). Analyze the results

I A script file can be called as a Driver

I Test: means a script file

I An action: Is a set of instructions to perform a task

I Component can be called as an Action

I Ways of action:
» Prepare complete action and Split it to each action or
» Prepare a single action and Insert each action into it.

* One action can be spited into two actions a time only and so on.

Example:

Tasks : Login
Insert order
Open existing order
Logout

Note 1: After preparing complete action, split it into different individual actions and call

them in a driver.
Note 2: Other words in this frame work, we are calling the action/s (Ex. Call
login)

All powers within you, you can do it

QuickTest Professional Unplugged 106
AUT
Driver
Login Login insert open logout \4
......... Call login
Insert order Login Insert order Open order | | Logout \Call insert
...................................... \all open
Open order \t
......... NG - all logou
......... COI’MHS
Logout
v' Put the tool under recoding mode
v" Open flight application
v" Login with username and password
v" Click on OK
v" Insert Order by keying all the required info therein
v Click on insert order button
v' That order will be inserted successfully. After inserting the order
v" Open order by clicking on open folder icon
v" A open order window will appear, check the order number check box
v'Input the existing order number (say 9)
v" Click on OK
v' The order will open, if necessary you may update / delete the opened order
v" Logout will be done by closing the window/application
v' Stop recording
v' Save the Script (say , No extention is required)
v' Split the script into 4 tasks (login, insert order, open order and logout) Keep the

cursor at the beginning of 1% line of 2™ part (i.e. starting of insert order line)

v' Go to menu bar, click on Step , select Split Action

v" The split action window will appear

v choose action type as independent of each other, give the 1% action name (say
login) and leave the 2™ action name as it is (because, again we are going to
split the 2" part)

v" Click OK

v' Save the changes. Next,

v Keep the cursor at the beginning of 1% line of existing 2nd part (i.e. starting of insert
order line)

v" Go to menu bar, click on Step, and select Split Action

v' The split action window will appear

v choose action type as independent of each other, give the 1* action name (say
insert order) and leave the 2" action name as it is (because, again we are
going to split the 2" part)

v" Click OK

v' Save the changes. Next,

All powers within you, you can do it

QuickTest Professional Unplugged 107

Keep the cursor at the beginning of 1% line of existing 2" part (i.e. starting of
open order line)

Go to menu bar, click on Step , select Split Action

The split action window will appear

choose action type as independent of each other, give the 1% action name (say
open_order) and give the 2 ™ action name as logout (because, its end of splits
)

Click OK

Save the changes.

So, we have splited all 4 tasks/actions successfully.

Now make them as re-usable components

Open the just created action i.e. login from drop-down box on the tool

Go to menu bar, click on Step , select Action Properties

Action properties window will appear

Select General tab

Check the Reusable action check box

Click on OK

Do the same for other actions too i.e. insert order , open order and logout .
Next

Open new Test

Re-name the action as Driver, Go to menu bar, click on Step, and select Action
Properties. Action properties window will appear, Select General tab, change the
action name as Driver.

Click on OK

Here we can call any or all those re-usable actions

Go to menu bar, click on Insert, select Call to Existing Action

Select action window will appear ,

Browse the saved application (i.e.)

Select the one reusable action (say login)

Select the Location option as After the current step

Click on OK

An existing action related to that login action will be added to this test

Do the same for other actions too i.e. insert order , open order and logout .
Now the Driver script is ready for login, inserting the order, open the order and
logout.

Run the test

Analyze the results.

AN N N N N N N N ANANENEEEN

NN N N NN

AN

Note: in Driver test we can call any existing actions as we wish.

Type of actions: There are two types of actions

i). Normal actions

ii). Re-usable actions
Re-usable actions called in the other test are called External Actions
External actions are Non-Editable

Batch Testing :

Batch testing is a process of executing a group of tests at a time.

To do the same QTP has provided a separate tool by name “Test Batch Runner”
and we have to configure the tool settings as below.....

All powers within you, you can do it

QuickTest Professional Unplugged 108

QTP -> Tools -> Options -> Run -> Check Allow other mercury products to run tests and
components.

Add the desired testAdd different script files each at a time to it
Save it as .mtb (Mercury Test Batch file) extension
Whenever require open the batch file, execute and analyze the results.

* We go for batch testing when we do Regression testing.

Regression testing: Testing the functionalities of function and all its related
functionalities at a time is called Regression testing. Or it is the process of executing
number of test a time.

3. Keyword Driven frame work: This is also a general frame work that can be used by
most of people .
Steps to follow

1. First of all create the folder stricture as follows short form: TRL RET
L
ProjectName_Automation
» [est Data Associating required files only
Script
» Repository e ST
/V
g . /
"| Library //'
» Recovery
= L1
N . L2
"1 Environment L
/ L4
Test Tedt /
Key
word Log

—>

1. Create the required Test Data files and save them in the corresponding folder (
Test Data folder).

2. Create the required Shared Repository files and save them in corresponding folder
(Repository folder)

3. Create the required Library files and save them in corresponding folder (Library
folder)

All powers within you, you can do it

QuickTest Professional Unplugged 109

4. Create the required Recovery files and save them in corresponding folder
(Recovery folder)

5. Create the required Environment files and save them in corresponding folder
(Environment folder)

6. Open the Main Test and associate all the required r esources like Test Data
files, Repository files, library files, recovery files and environment files.

7. Develop the script in such way that it executes based on the keyword given in
the data table .

8. Save the Test in the corresponding folder (Test folder)

9. Whenever require Open it and execute and analyze the results.

Example:

Tasks : Login
Insert order
Open existing order
Logout
Note : Here, after preparing complete action, split it into different individual
Function s and call them in a Test.
Note 2 : Other words in this frame work, we are calling the Function/s (Ex
Call login ())

AUT
Test
Login Login () insert|() open () -
lo|
Insert order Login Insert order Open order | | Logout
_________ R S ERTISISLE
Open order
......... N -
......... '
Logout Functions stored in Library folder
v' Create a folder by any name like ProjectName_Automation (say fl_automation)
v' Create all those 7 sub-folders in it (i.e. Test Data, Repository, Library, Recovery,

Environment, Test and Log)

Open the tool

Open the flight application to do the following tasks
Login

Insert order

Open order

Logout

ANANENENENEN

All powers within you, you can do it

Ease “1”

login()
\Case “2”
insert()
Case “13”

open()
ase “14”
logout()

QuickTest Professional Unplugged 110

So, for above 4 tasks, we need to create 4 functions and store them in a library life
under library folder. For that ...
Open a new notepad and write down the below script in it
Function login ()
* Here, Paste the login code from Test script
End function
Function inserts order ()
* Here, Paste the insert order code from Test script
End function
Function open order ()
* Here, Paste the open order code from Test script
End function
Function logout ()
* Here, Paste the logout code from Test script
End function

Recording properties into object repository
Put the tool under recoding mode
Activate flight application
Login with username and password
Click on OK
Insert Order by keying all the required info therein
Click on insert order button
That order will be inserted successfully. After inserting the order
Open order by clicking on open folder icon
A open order window will appear, check the order number check box
Input the existing order number (say 9)
Click on OK
The order will open, if necessary you may update / delete the opened order
Logout will be done by closing the window/application
Stop recording
Creating Shared Repository
v' Open Object Repository , where in which you can see all the properties of objects
v" Click on Export
v' Browse to Repository folder and save it with .tsr (Test Script Repository)

AN N N N N N N

extension.
v" Click on OK
Copying and Pasting the corresponding scripts to li brary file from a Test Script
v' Copy only login script from Test Script and past into opened notepad under
Function login () *.... End Function.

Do the same for other functions too (i.e. Inserto rder, open order, and logout)
Now save that file with .vbs extension under Library folder

With this your currently open test area will be empty.

Now , open a new Test

Associate the required files to new test (into Repository) as below

Menu -> Test -> settings -> Resource Tab -> select object repository type as
Shared

Browse the saved repository file from Repository folder

Click on Apply and OK

In the same manner associate the required library files to new test
Associate the required files to new test (into Repository) as below

ANANENENEN

ANENENEN

All powers within you, you can do it

QuickTest Professional Unplugged 111

v Menu -> Test -> settings -> Resource Tab -> click on + (add) button

v' Browse the saved library file from Library folder

v" Click on Apply and OK

Creating data in data table

v Activate data table of the test

v Rename the 1% column name as “keys” (by double clicking on it and type keys).

v' Enter data like I1, 12, and I3 for each row in the table (specifying the key value in
the script so asto pick-up the relevant keyword from the data table).

v" Now Develop / write the script in test area in such way that it uses some or all
resources and execute based on key values given in the data table.

v" For example : to login- insert order — open order and logout

var =datatable ("keys", 1) :pick-up 1st value in data table and
Assigned to var
Select Case var

Case “I1"

Login ()
Case “12"

Open ()
Case “14"

Logout ()
End Select

v" Open the flight application
v" Run the test
v' Analyze the results.

4. Hybrid Frame work:

Hybrid frame work is a mixer of two or more frame works.

* Library file is a collection of one or more functions

All powers within you, you can do it

QuickTest Professional Unplugged 112

QTP Methods and Properties
1. CaptureBitmap

Saves the screen capture of the objects as a .png or .bmp image using the
specified filename
Syntax
Object.CaptureBitmap FullName,[Override Existing]
Example
The following example uses the capturebitmap method to capture a screen shot of the
internet options dialog box. The file is automatically saved to a different folder (the test
results folder) in each run
Browser (“Mercury Tours”).page (“Mercury Tours”).CaptureBitmap “internet_options.bmp”

2. ChildObjects

Return the collection of child objects contained within the object. This method
accepts the Description object as input and returns a Collection object. The collection
object includes both static and dynamic objects that satisfy the description of the object
Syntax

Object.ChildObjects (pDescription)
Example

The following examples uses the ChildObjects method to retrieve a set of child
objects matching the description listed in the function call and uses the method to display
a message indicating how many objects are found with the specified
description:non,one(unique)or several (not unique)

Set a=description. Create

a ("html tag").value="A"

Set cnt=browser ("Yellow Pages").Page ("Yellow Pages").ChildObjects (a)
‘Use the count method to retrieve the number of child objects

Msgbox cnt.count

All powers within you, you can do it

QuickTest Professional Unplugged 113

For i=0 to cnt.count-1
c=cnt (i).getroproperty ("name")
Print ¢
Next
The above examples to display all links in the web page
‘Get all child objects with the given description
Set children=parent.ChildObjects (oDesc)
If children. Count=1 then
checkObjectDescription="0Object Unique”
Elseif children. Count=0 then
checkObjectDescription="0Object not found”
Else
checkObjectDescription="0Object not found
End if

3. Close

Close the dialog box
Syntax

Object. Close
Example

The following examples use the close method to close the internet options dialog boxes.
Browser (“Mercury Tours”).Dialog (“internet options”).Close

4. Exists
Checks the object exists
Syntax
Object. Exist ([Timeout])
Example
The following examples use Exist method to determine the existence of the internet
options dialog box. If the dialog box exists a message box appears conforming its
appearance
If Browser (“Mercury Tours”). Dialog (“internet options”).Exists then
Msgbox (“the object exists”)
End if

5. GetRoProperty

Returns the current value of the runtime object property from the object in the
application

RO (Runtime Object): Runtime object is the original object that was presented in
the application (AUT).

Syntax

Objects.GetRoProperty (property, [PropDatal)
Example

The following examples print the URL name of web page
a=browser ("Yellow Pages").WinEdit ("Edit"). GetROProperty ("text")
Print a

OR

a=browser ("Yellow Pages").page ("Yellow Pages").GetROProperty (“url")

All powers within you, you can do it

QuickTest Professional Unplugged 114

Print a

6. GetTextLocation

Checks whether the specified text string is contained in the specified window area.
Syntax
Object. GetTextLocation (TextToFind, To, Top, Right, Bottom, [MatchWholeWordOnly])
Example
The following example uses the GetTextLocation method to retrieve all of the text within
the object.

I=-1

t=-1

r=-1

b=-1

Result = Dialog ("text: =Login").Winedit ("attached text: =Agent Name :") .GetTextLocation
("2002" 1, t, 1, b)

If result Then
MsgBox "Text found. Coordinates:" & 1 & "," &t & """ &r&"" &b
End If

7. GetToProperty

Returns the collection of properties and values used to identify the object.

TO (Test Object): Test object the Reference of original object stored in the object
repository and used for identifying the original object in the AUT during the execution

Syntax

Object.GetToProperties

Example

Dim a

'Dim b

Fori=0to 6

a=dialog ("Login").Winedit ("Agent Name :") .GetToProperties (i)
Msgbox a

Next

8. GetToProperty
Returns the value of specified property from the test object description.
Syntax
Object. GetToProperty (property)
Example
The following example uses the GetToProperty method to retrieve the RegExpWndClass
property from the Object Repository

Dim objectname

RegExpWndClass=Window (“Text").GetToProperty (“RegExpWndClass”)
Msgbox RegExpWndClass

All powers within you, you can do it

QuickTest Professional Unplugged 115

9. GetVisibleText

Returns the text from specified area

Syntax

Object.GetVisibleText ([Left], [To], [Right], [Bottom])

Example

The following example uses the GetVisibleText method to retrieve the from the telnet
window. If the returned string contains in the sun-string, the type method is used to type
the guest string in the window

Telnettext=Window (“Telnet”).GetVisibleText

If instr (1, Telnettext,”login:” 1)>then

Window (“Telnet”).Type “guest”

End if

10. WaitProperty

This method is used for make the tool to wait based on the object property’s value or up
to maximum time.

Syntax

Object Hierarchy. Waitproperty “propertyName”, Property value, extra time in milliseconds
Example

v" Open the flight application and put tool in recoding mode

v" Open the order by clicking on open order, it will displays the open order window
v' Enter an existing order number and click on Ok. That order will be opened.

v' Stop recording.

Now, if you want to wait the tool even after clicki ng on OK button

v' Take the property name (as text), value (as OK) from object repository and put
extra time in milliseconds.

OH.WaitProperty "text", OK, 10000

v" And put the above code after the OK button clicked statement in the script
v" Run the test
v' Analyze the results

10. Wait
This method is used for making the tool to wait till the maximum time is elapsed
Syntax

Object Hierarchy. Wait (Time in seconds)

Example

v" Open the flight application and put tool in recoding mode
v" Open the order by clicking on open order, it will displays the open order window
v' Enter an existing order number and click on Ok. That order will be opened.
v' Stop recording.
Now, if you want to wait the tool at any point of t ime
v' Put the code any where in between the script
Wait (10)
v" Run the test
v' Analyze the results

All powers within you, you can do it

QuickTest Professional Unplugged 116

11. Check Property
Contains whether the specified object property achieves the specified value
within the specified area
Syntax
Example
The following examples use the check property method to check whether
the “check box1” check box is selected after setting it to “ON”
Dialog (“ac”).Activate (“ac windowarea”).ActiveCheckbox (B1).set “on”
Dialog (“ac”).Activate (“ac windowarea”).ActiveCheckbox (B1).CheckProperty “value”,
true

12. GetContent
Returns all of the item in the combo box list
Syntax
Object.GetContent
Example
Set city=window (“Flight Reservation”).wincombobox (“fly from”).GetContent
Msgbox city

13. Getltem

Returns the value of the item specified by the index
Syntax
Object.Getltem (variable)

14. GetltermsCount
Returns the number of items in the combo box list
Syntax
Object.GetltemsCount
Example

Set city=window (“Flight Reservation”).wincombobox (“fly from”).GetltemsCount
Msgbox city

For 1 =0 to city-1

Set fcity=window (“Flight Reservation”).wincombobox (“fly from”).GetContent (I)
Msgbox fcity

15. GetSelection
Returns all of the selected items in the combo box list
Syntax
Object.GetSelection
Example

Set city=window (“Flight Reservation”).wincombobox (“fly from”).GetSelection
Msgbox city

All powers within you, you can do it

QuickTest Professional Unplugged 117

Simple and Regular used Methods

1. Click Method: This is used for clicking on a specified object

Syntax: Object Hierarchy. Click [x, y [button]]
0 for Left Click
1 for Right Click
2 for Middle Click

Example: VbWindow (“Emp”).VbButton (Submit).Click

2. dbl Click : which is used for double clicking on a specified object

Syntax: Object Hierarchy. Click [x, y [button]]
0 for Left Click
1 for Right Click
2 for Middle Click

Example: VbWindow (“Emp”).VbButton (Submit).dblClick
3. Set Method ;. Set method is used mainly to perform on 3 objects i.e.

a). Edit box
b). Check Box

Emp
¢). Radio Button

a) Edit Box : Set method is used for entering any value into an edit box
Syntax: Object Hierarchy. Set “value”

Example: VbWindow (“Emp”).VbEdit (Ename).Set “ak”

b) Check Box : Set method is used for Selecting/de-selecting the check box
Syntax: Object Hierarchy. Set “ON/OFF”

Example: VbWindow (“Emp”).VbCheckBox (Mstatus).Set “ON”"

¢) Radio Button : Set method is used for selecting a Radio Button in a group
Syntax: Object Hierarchy. Set

Example: VbWindow (“Emp”).VbRadioButton (Location).Set

4. Select Method: This is used for selecting an item in a ComboBox or List
Syntax: Object Hierarchy. Select “item”

Example: I NA

All powers within you, you can do it

Siihmi

dbiClick

Ename : L

Mstatus: L Marr

O Un Marri
Lo<ation:
Hyderabad

Delhi
O

Chennai

QuickTest Professional Unplugged 118

5. Set Secure Method: This is used for setting the encrypted data into the edit box.
* Encrypted string can be generated with help of a tool

“password encoder”.
Navigation for password encoder: Start -> Programs -> QTP -> Tools ->
Password encoder

Syntax: Object Hierarchy. SetSecure “encrypted String”

Exam ple: *hkkkkkKhk

6. Activate Method: _ Which is used for activating a window or a dialog box
Syntax : Object Hierarchy. Activate

Example:

7. Close Method: This is used for Closing a window or browser

Syntax: Object Hierarchy. Close

Example:

8. Type Method: This is used for performing any kind of keyboard related operations.
Syntax: Object Hierarchy. Type keyvalue

Example: anaac

All powers within you, you can do it

QuickTest Professional Unplugged 119

Working with test objects

ListBox

The default method for List box is "Select".

Ex:-

Browser ("Mercury Tours").Page ("Find Flights").WeblList ("depart").Select "London"

Can we do anything more with ListBox?
1. Selecting more items in a list
2. Get all items from a list

‘Selecting more items in a list

Browser("Mercury Tours").Page("Find Flights").WebList("depart").Select "London"
Browser("Mercury Tours").Page("Find Flights").WebList("depart"). ExtendSelect "Paris"
'Select is to select single item in a list box

'‘ExtendSelect is to select more than one item after selecting an item in list box using select
method

'‘Get all items from a list

All powers within you, you can do it

QuickTest Professional Unplugged 120

Dim iCount
Dim ilndex

iCount=Browser("Countrywide").Page("Countrywide").WebList("LoanType").GetROPropert
y("items count")

For ilndex=1 to iCount

msgbox
Browser("Countrywide").Page("Countrywide").WebList("LoanType").Getltem(ilndex)

Next

Menu Object

Menu object applies only window based applications. Default Method for Menu is "Select"
Example:

Window ("Notepad").WinMenu ("Menu").Select "File; New Ctrl+N"

Can we do anything more with menu's?
1. Get Menu list from Application
2. Get Menu Items from Menu

‘Get menu list from application
Dim cnt

Dim n

Dim iPath

total Menus count From application
Forn=1Tocnt
iPath = Window("Notepad").WinMenu("Menu").BuildMenuPath(itemPath, n)
msgbox Window("Notepad").WinMenu("Menu").GetltemProperty(iPath, "Label")
Next

'‘Get menu Items from menu
Dim cnt
Dim n
Dim iPath
Cnt = Window ("Notepad").WinMenu ("Menu").GetltemProperty (“File", "SubMenuCount")
'‘Get menu items count in "File" Menu
Forn=1To Cnt
iPath = Window ("Notepad").WinMenu ("Menu").BuildMenuPath ("File", n)
msgbox Window ("Notepad").WinMenu ("Menu").GetltemProperty (iPath, "Label")
Next

‘Get submenu count from application

Window ("Flight Reservation").Activate
Cnt=window ("Flight Reservation").WinMenu ("Menu").GetltemProperty
("File","submenucount")

All powers within you, you can do it

QuickTest Professional Unplugged 121

Print ("submenucount:"&Cnt)

Fori=1to cnt
pathl=window ("Flight Reservation").WinMenu ("Menu").BuildMenuPath ("File",i)
b=window ("Flight Reservation").WinMenu ("Menu").GetltemProperty (pathl,"Label")
Print b

Next

Working with Webtable Object

What is a web table object?

Tables are one of the primary design tools for HTML documents. Tables allow for greater
control over page layout, allowing creation of more visually interesting pages. Tables are
also used to set apart sections of documents, such as in sidebars, navigation bars, or
framing images and their titles and captions. Tables have literally changed the look of the
Web page. Originally, tables let people present data in a column format. Designers quickly
figured out ways to improve the layout of their pages using tables.

A Sample Web Table Object

A Table is o Simple Grid

row{ cell cell
FowW tf

row cell

rcw{ cell cell

Also referred to as column |

Every web table contains data (text data) and child objects in specified cells. When we
are working with descriptive programming using QTP, web table object is very useful to
get data or to get object information for further activities.

Retrieving data from web table

Thkkkhkkkkkhkhkkkkhkhkkkkhkkkkkkhkkkhkhkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkkkkkkkk

RCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .RowCount

All powers within you, you can do it

QuickTest Professional Unplugged 122

For r=1 to RCount

CCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ColumnCount(r)

For c=1 to CCount

CData=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .GetCellData(r, c)

Msgbox cData

Next

Next

Thkkkhkkkkkhkhkkkkhkhkkkkhkkkkkkhkkkhkhkkkkkkhkkkkkhkkkkkhkkkhkkkkhkkkkkkkkkkkkkkkkk

Stepl:- Get row count from table

Step2:-Using “For Loop ” Get column count for every row.

Using this row number and column number we can able to identify the cells in a table. To
get data from a cell we have to provide row and column numbers of a cell.

Step3:-Get cell data from every cell by providing row and column.

Accessing child objects from web table

Thkkkhkkkkkhkhkkkkhkhkkkkhkkkkkkhkkkhkhkkkkkkhkkkkkhkkkkkhkkkkhkkkkkkkkkkkkkkkkkkk

Description object- to return a property collection objects containing a set of property
object. A property object consists of a property name and value. The Description object
enables you to specify multiple properties to uniquely identify a dynamic object.

1. Creating a Description object by using the following syntax:

Dim objDescription

Set objDescription = Description. Create ()
Note — Use the Dim statement to declare a variable. Use the Create method to create a
new and empty Description object. Use the Set statement to set the value of a variable
and then assign the variable to an object.

2. Set property and value pairs in the Description object by using the following syntax:
<description_object>. (<propertyl>).value=<valuel>....
<description_object>. (<PropertyX>).value=<valueX>

3. Refer to the dynamic object with the following syntax:
<object_hierarchy>.<object_class> (<description_object >)

Thkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkhkkkhkkkkkkkkkkkkkhkkkkkhkkhkkkkkkkk

Set oWebEdit=Description. Create
oWebEdit("micclass").value="WebEdit"
Set objList=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ChildObjects (oWebEdit)
For objindex=0 to objlist.count-1
Msgbox obijlist (objindex).getroproperty ("html id")
Next

Thkkkkkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkhkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkk

All powers within you, you can do it

QuickTest Professional Unplugged 123

This example is to access web table child objects using description object. This is a
common method to get child objects from any parent level object. Not like other objects
web table object is having a special method to get child items from web table cell without
using description object.

Accessing child objects from web table cell

Tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkhkkkkkkkkkkkhkkkkkkkhkkkkkkkk

RCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .RowCount

For r=1 to RCount

CCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ColumnCount(r)

For c=1 to CCount

OCount=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .ChilditemCount(r, c,"WebEdit")

For obj=0 to OCount -1

Set cObject=Browser ("Yahoo! Mail: The best").Page ("Yahoo! Mail: The best").WebTable
("Yahoo! ID :") .Childitem(r, c,"WebEdit", obj)

Msgbox cObject.getROproperty ("html id")

Next

Next

Next

Thkkkhkkkkkhkhkkkkkhkhkkkkkkkkkkhkkkhkhkkkkkkhkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkk

This example to access child objects from web table cell. This method doesn’t require
description object support to access child objects from web table. For this we are using
Childitem method.

Difference between childobject, childitem and Getce lldata methods

ChildObjects method is to access total child objects from web table object using
description object.
Syntax : - object.ChildObjects ([Description])

Childitem method is to access child objects from a web table cell in web table object
without using description object.
Syntax:-object.Childltem (Row, Column, MicClass, Index)

Getcelldata method is to retrieve data from a web table cell in web table object.
Syntax:-object.GetCellData (Row, Column)

All powers within you, you can do it

QuickTest Professional Unplugged 124

Working with File System Object

VB Script does not recognize or read the flat files like notepad, etc.We create an
object which is called filesystemobject ,which contains flat files from that file system
objective you can retrieve value and can apply on text. And we can retrieve, write, add the
data’s from the external environment to apply those value into the application

Description
Provides access to a computer's file system.

Syntax
Scripting.FileSystemObject

Remarks

The following code illustrates how the FileSystemObject is used to return a TextStream
object that can be read from or written to:

All powers within you, you can do it

QuickTest Professional Unplugged 125

kkkkkkkkkhkkkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Set fso = CreateObject ("Scripting.FileSystemObject™)
Set a = fso.CreateTextFile ("c:\testfile.txt", True)
a.WriteLine ("This is a test.")

a. Close

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkhhkkkkkkkkkkkkhkkhkkkkkkk

In the preceding code, the CreateObject function returns the FileSystemObiject (fso). The
CreateTextFile method then creates the file as a TextStream object (a) and the WriteLine
method writes a line of text to the created text file. The Close method flushes the buffer
and closes the file.

Working with drives

Description
Provides access to the properties of a particular disk drive or network share.

kkkkkkkkkhkkkkhkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Dim fso, d
Set fso = CreateObject ("Scripting.FileSystemObject")
Set d = fso.GetDrive(fso.GetDriveName(drvPath))

kkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkk

‘Volume Name
msgbox d.VolumeName

‘The total size of the drive in bytes (TotalSize pr operty)
msgbox "Total Space: " & FormatNumber (drv.TotalSize / 1024, 0)

'How much space is available on the drive in bytes (Available Space or FreeSpace
properties)
msgbox "Available Space: " & FormatNumber (d.AvailableSpace/1024, 0)

‘What letter is assigned to the drive (DriveLetter property)
msgbox "Drive” & d.DrivelLetter

‘What type of drive it is, such as removable, fixed , hetwork, CD-ROM, or RAM disk
(DriveType property)

'0:"Unknown"
'1:"Removable"

All powers within you, you can do it

QuickTest Professional Unplugged 126

'2:"Fixed"
'3:"Network"
'4:"CD-ROM"
'5:"RAM Disk"
msgbox d.DriveType

‘The drive's serial number (SerialNumber property)
msgbox d.SerialNumber

Working with folders

Description
Provides access to all the properties of a folder.

Examples

The following code illustrates how to obtain a Folder object and how to return one of its
properties:
Function ShowDateCreated (folderspec)

kkkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Dim fso, f
Set fso = CreateObject ("Scripting.FileSystemObject”)
Set f = fso.GetFolder (folderspec)
ShowDateCreated = f.DateCreated
End Function

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkhkkkkkkk

‘Create Folder
CreateObject ("scripting.filesystemobject").CreateFolder (FolderPath)

'‘Delete Folder
CreateObject ("scripting.filesystemobject”).DeleteFolder (FolderPath)

‘Move Folder
CreateObiject ("scripting.filesystemobject").MoveFolder SourceFolderPath,
DestinationFolderPath

'‘Copy Folder
CreateObject ("scripting.filesystemobject").CopyFolder
SourceFolderPath,DestinationFolderPath

'‘Get Name of a Folder
msgbox CreateObject("scripting.filesystemobject").GetFolder(FolderPath).Name

All powers within you, you can do it

QuickTest Professional Unplugged 127

'‘Check for Folder Existence
msgbox CreateObject("scripting.filesystemobject").FolderExists(FolderPath)

'‘Get Parent Folder Name
Msgbox CreateObiject ("scripting.filesystemobject").GetFolder
(FolderPath).ParentFolder.Name

'Get Sub Folders from a Folder

Dim fso, fld, sfolders, sFid

Set fso = CreateObject ("Scripting.FileSystemObject™)
Set fld = fso.GetFolder(FolderPath)

Set sfolders = fld.SubFolders

For Each sFld in sfolders

msgbox sFld.name

Next

‘Get Files From a Folder

Dim fso, fld, sFiles, sFile

Set fso = CreateObject ("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)

Set sFiles = fld.Files

For Each sFile in sFiles

msgbox sFile.name

Next

Working with files

Description
Provides access to all the properties of a file

Creating Text Files

Description

Creates a specified file name and returns a TextStream object that can be used to read
from or write to the file.

All powers within you, you can do it

QuickTest Professional Unplugged 128

Syntax
object.CreateTextFile (filename [, overwrite [, unicode]])

Examples
The following code illustrates how to use the CreateTextFile method to create and open a
text file:

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkkhkkhkkkkkkk

Set fso = CreateObject ("Scripting.FileSystemObject")
Set a = fso.CreateTextFile ("c:\testfile.txt", True)
a.WriteLine ("This is a test.")

a. Close

kkkkkkkkkhkkkhkkkkkkhkkkkkkhkkkkkkkkkkhkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

If the overwrite argument is False, or is not provided, for a filename that already exists, an
error occurs.

Opening Text Files

Description

Opens a specified file and returns a TextStream object that can be used to read from,
write to, or append to the file.

Syntax
object.OpenTextFile (filename [, iomode [, create [, format]]])

Examples

The following code illustrates the use of the OpenTextFile method to open a file for writing
text:

For reading

kkkkkkkkkhkkkhkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Dim fso, f
Set fso = CreateObject ("Scripting.FileSystemObject”)
Set f = fso.OpenTextFile ("c:\kanak.txt", 1, True)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkhhkkkkkkkkkkkkhkkhkkkkkkk

Note

The iomode argument can have either of the following settings:

Constant Value | Description
ForReading 1 Open a file for reading only. You can't write to this file.
ForWriting 2 Open a file for writing only. You can't read from this file.

All powers within you, you can do it

QuickTest Professional Unplugged 129

ForAppendin 8 Open a file and write to the end of the file.
g

'Reading Specified number of Characters
MsgBox f.Read (5)

'Reading Complete Data from File
MsgBox f.ReadAll

'‘Read Data Line by Line

While Not f. AtEndOfStream
MsgBox f.ReadLine

Wend

For writing

kkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Dim fso, fl
Set fso = CreateObject ("Scripting.FileSystemObject")
Set fl = fso.OpenTextFile ("c:\kanak.txt", 1, True)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkhkkkkkkkkkkkkhkkhkkkkkkk

‘Write characters
fl.Write ("hello™)

'‘Write blank lines
fl. WriteBlankLines (2)

'‘Write data line by line
fl. WriteLine ("A New Line")

Update/Append Data to a Text File

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkhkkkkkkk

Set fso=CreateObject ("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,8)

kkkkkkkkkhkkkhkkkkkhkkkkkkhkkkkkkkkkkhkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

'‘Write characters
fl.Write ("hello™)

'Write blank lines
fl. WriteBlankLines (2)

'‘Write data line by line
fl. WriteLine ("A New Line")

All powers within you, you can do it

QuickTest Professional Unplugged 130

'Remove Data from a text File

kkkkkkkkkhkkkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Set fso=CreateObject ("scripting.filesystemobject")
Set flI=fso.OpenTextFile(FilePath,2)

"Write nothing

fl.Write(")

kkkkkkkkkhkkkhkkkkkhkkkkkkhkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Copy file

Description
Copies one or more files from one location to another.

Syntax
Object.CopyFile source, destination [, overwrite]

Remarks

Wildcard characters can only be used in the last path component of the source argument.
For example, you can use:

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkhkkhkkkkkkkkkkkkkhkkhkkkkkkk

FileSystemObject.CopyFile "c:\mydocuments\letters*.doc", "c:\tempfolder\"
‘But you can't use:
FileSystemObiject.CopyFile "c:\mydocuments*\R1???797. xIs", "c:\tempfolder"

kkkkkkkkkhkkkkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

If source contains wildcard characters or destination ends with a path separator (Y), it is
assumed that destination is an existing folder in which to copy matching files. Otherwise,
destination is assumed to be the name of a file to create. In either case, three things can
happen when an individual file is copied.

« If destination does not exist, source gets copied. This is the usual case.

- If destination is an existing file, an error occurs if overwrite is False . Otherwise, an
attempt is made to copy source over the existing file.

« If destination is a directory, an error occurs.

An error also occurs if a source using wildcard characters doesn't match any files. The
CopyFile method stops on the first error it encounters. No attempt is made to roll back or
undo any changes made before an error occurs

'‘Moving a File
CreateObiject ("scripting.filesystemobject").MoveFile SourceFilePath, DestinationFilePath

All powers within you, you can do it

QuickTest Professional Unplugged 131

'‘Modify a Specific Line in a TextFile

Dim txtFilePath, txtRowNumber, TextToModify
Dim fso, f, txtData, strTxtData,cnt
txtFilePath= "C:\abc.txt"
txtRowNumber=3
TextToModify="three"
Set fso= CreateObject (“scripting. FilesystemObject ")
Set f=fso.OpenTextFile(txtFilePath, 1)
txtData=f.readall
f.close
Set f=fso.OpenTextFile (txtFilePath, 2)
strTxtData=split (txtData, vbnewline)
For cnt=0 to ubound (strTxtData)
If cnt<>txtRowNumber- 1 Then
f.writeline (strTxtData (cnt))
else
f.writeline (TextToModify)
End If
Next
f.close

Dictionary Object

Arrays are the first construct that VBScript instructors introduce when they discuss
how to group data. With arrays, you can store columns of data in one place, and then
access the data later through one variable. However, years of real-world use have
revealed that arrays aren't always the most desirable solution to gather and maintain

All powers within you, you can do it

QuickTest Professional Unplugged 132

related data. Fortunately, a new type of array has emerged: the dictionary. Here's a look at
what dictionaries are and how you manipulate them with the methods and properties.

The Dictionary Object's Methods and Properties

Method or Property Description

Methods
Add Adds a new item to the dictionary
Exists Verifies whether a given key exists in the
dictionary
Items Returns an array with all the values in a dictionary
Keys Returns an array with all the keys in a dictionary
Remove Removes the item identified by the specified key
RemoveAll Removes all the items in the dictionary
Properties
Count Returns the number of items in a dictionary
Item Sets and returns an item for the specified key
Key Changes an item's key

Comparing Dictionaries and Arrays

A dictionary is a general-purpose data structure that looks like a linked list but acts like a
"super array." Like VBScript arrays, dictionaries store data and make that data available
through one variable. However, dictionaries differ from arrays in many ways, including

A dictionary has additional methods to add new items and check for existing
items.

You don't need to call ReDim to extend the dictionary's size.

When you delete a particular item from a dictionary, all the subsequent items
automatically shift up. For example, if you delete the second item in a three-item
dictionary, the original third item automatically shifts up into the second-item slot.

You use keys to identify dictionary items. Keys can be any data subtype, except
an array or dictionary.

A dictionary can't be multidimensional.
You can store an array or another dictionary object in to a dictionary object.

The most important reason for using a dictionary instead of an array is that a dictionary is
more flexible and is richer in terms of built-in functionality. Dictionaries work better than
arrays when you need to access random elements frequently. Dictionaries also work
better when you want to locate items by their content rather than their position.

Use this object to support the creation, storage, and retrieval of name/value pairs in
memory. Every value in a Dictionary object is a Variant, which means you can create a
Dictionary object that consists of almost any kind of value (including other Dictionary
objects and arrays), and that you can store any combination of Variant types in the same
Dictionary object.

All powers within you, you can do it

QuickTest Professional Unplugged 133

Tkkkkkkkkkhkkkkkhkhkkkkhkhkkkkkhkkkkkkhkhkkkkhkkkkkkhkkkkhkkhkkkkkhkhkkkkhkkkkk

‘Creation of a Dictionary Object
Dimd 'Create a variable.
Set d = CreateObject("Scripting.Dictionary")

Here 'd' is a variable which is converted into a dictionary object.

Thkkkkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkkhkhkkkkhkhkhkkkkkhkkkkhkkkkkkkhkhkkkkkhkkkx

Tkkkkkkhkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkkhkkkkkkkk

'‘Adding items to Dictionary Object

Syntax:

Object.Add Item,Value

Dimd 'Create a variable.

Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and items.
d.Add "b", "Belgrade”

d.Add "c¢", "Cairo"

Thkkkkkkkkhkhkkkkhkhkkkhkhkkkkkhkkkkkkhkhkkkkhkkhkkkkkhkkkkhkkkkkkkhkhkkkkkhkkkx

Tkkkkkkhkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkk

"To check for Key Exist or not

Dimd 'Create a variable.

Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and items.
d.Add "b", "Belgrade”

d.Add "c", "Cairo"

If d.Exists("c") Then

msgbox "key exists"

All powers within you, you can do it

QuickTest Professional Unplugged 134

Else
msgbox "key doesn't exist"

End If

Tkkkkkkkkkhkkkkkhkkkkkhkhkkkkkhkkkkkkhkhkkkkhkkkkkkhkkkkkkhkkkkkkhkhkkkkhkkkkk

Tkkkkhkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkk

"To get values of Items
Dim a, d, i, iList
Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens"
d.Add "b", "Belgrade”
d.Add "c", "Cairo"
iList = d.ltems
Fori=0Tod.Count-1
msgbox iList(i)

Next

Thkkkkkkkkhkhkkkkhkhkkkhkhkkkkkhkkkkkkhkhkkkkhkkhkkkkkhkkkkhkkkkkkkhkhkkkkkhkkkx

Tkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkk

"To get names of the Keys

Dim a, d, i, iList

Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens"

d.Add "b", "Belgrade”

d.Add "c", "Cairo"

iList = d.Keys

Fori=0Tod.Count -1

All powers within you, you can do it

QuickTest Professional Unplugged 135

msgbox iList(i)

Next

Thkkkkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkkhkhkkkkkhkkkx

Thkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkk

"To Remove a key from Dictionary Object
Dim a, d

Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens"

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

d.Remove("b") 'Remove second pair.

Thkkkkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkhkhkkkkkhkhkkkkkhkkkkhkkkkkkkhkhkkkkkkkk

Thkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkk

"To Remove all keys from Dictionary

Dimd

Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens"

d.Add "b", "Belgrade"

d.Add "c¢", "Cairo"

d.RemoveAll 'Clear the dictionary.

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkkhkhkkkkhkkhkkkkkhkkkkhkkkkkkkhkhkkkkkhkkkx

Tkkkkkkkkkhkkx
"To get value of Single Key

Dim d

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens"

All powers within you, you can do it

QuickTest Professional Unplugged 136

d.Add "b", "Belgrade”
d.Add "c", "Cairo"

msgbox d("a") or msgbox d.ltem("a")

Thkkkkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkhkhkkkkkkhkkkkkhkkkkhkkkkkkkhkhkkkkkhkkkx

Tkkkkkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkk

Using Dictionary object in functions

Set UDetails=CreateObject("Scripting.Dictionary")
UDetails.add "UserName","Sudhakar"
UDetails.add "Password","qtp"

Here is a dictionary object with user name and password. To use these details in a
function we should develop functions in this format.

Function Login(UserDetails)
Browser(bName).Page(pName).webedit(uName).set UserDetails("UserName")
Browser(bName).Page(pName).webedit(pwd).set UserDetails("Password")
Browser(bName).Page(pName).webbutton(bName).click
End Function
Calling the created function

call Login (Udetails)

Thkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkhkkkkkkkk

Thkkkkkkkkhkhkkkkhkhkkkkkhkkkkkhkkkkkkhkhkkkkhkkhkkkkkhkkkkhkkkkkkkhkkkkkkhkkk

Virtual Objects
What is Virtual Object?

A virtual object is defined by user in QuickTest to recognize any area of your application
as an object. Virtual objects enable you to record and run tests on objects that are not
normally recognized by QuickTest.

All powers within you, you can do it

QuickTest Professional Unplugged 137

What is virtual Object Collection?

A virtual object collection is a group of virtual objects that is stored in the Virtual Object
Manager under a descriptive name.

How to disable virtual Objects while recording?

Go to Tools-->Options--> General Tab--> Disable Recogniti on of virtual objects
while recording

Check and uncheck this option to disable or enable virtual objects while recording.
What is the storage location of Virtual Objects?

If you create any virtual objects automatically those objects will be stored in
<QuickTest installation folder>\ dat \ VoTemplate

What is extension of virtual objects file?

VOT

How to use virtual objects on different machines?

After creation of virtual objects copy <QuickTest installation folder>\ dat \ VoTemplate
Folder to other machines on which you want to use virtual objects.

What are the limitations and drawbacks of Virtual Objects?

« QuickTest does not support virtual objects for analog or low-level recording.

« Not possible to apply a checkpoint on a virtual object

« Only by recording we can add virtual objects

« Not possible to add virtual objects using Object Repository

» Not possible to spy on a virtual object using object spy

« Virtual Objects doesn't support all objects and methods.

« May not run perfectly on different screen resolutions if a test using Virtual Objects.

« Virtual object uses the properties Name, Height, Width, X, Y which the properties
are having maximum possibilities for frequent change.

Object Repository

» Object Repository is a place where QTP stores learned objects

+ QTP uses default Object Identification properties: mandatory and assistive to learn

objects into OR

Script playback using OR

All powers within you, you can do it

QuickTest Professional Unplugged 138

- QTP finds the Object in Object Repository using object Logical Name and Object
Hierarchy

« QTP retrieves Test Object properties from OR

« QTP searches actual application for the Object with the same properties as the OR
Test Object and performs user action

Object Repository Types

Test objects can be stored in two types of object repositories—a shared object repository
and a local object repository.

A shared object repository stores test objects in a file that can be accessed by multiple
tests (in read-only mode).

A local object repository stores objects in a file that is associated with one specific
action, so that only that action can access the stored objects.

Local Object Repository

When you use a local object repository, QuickTest uses a separate object repository for
each action.

» QuickTest creates a new (empty) object repository for each action.

« As you record operations on objects in your application, QuickTest automatically
stores the information about those objects in the corresponding local object
repository (if the objects do not already exist in an associated shared object
repository).

QuickTest adds all new objects to the local object repository even if one or more
shared object repositories are already associated with the action. (This assumes
that an object with the same description does not already exist in one of the
associated shared object repositories).

« If a child object is added to a local object repository, and its parents are in a shared
object repository, its parents are automatically moved to the local object repository.

« Every time you create a new action, QuickTest creates a new, corresponding local
object repository and begins adding test objects to the local object repository as
you record or learn objects.

« If you learn or record on the same object in your application in two different actions,
the object is stored as a separate test object in each of the local object
repositories.

« When you save your test, all of the local object repositories are automatically
saved with the test (as part of each action within the test). The local object
repository is not accessible as a separate file (unlike the shared object repository).

Shared Object Repository

When you use shared object repositories, QuickTest uses the shared object repositories
you specify for the selected action. You can use one or more shared object repositories.

All powers within you, you can do it

QuickTest Professional Unplugged 139

- If you record operations on an object that already exists in either the shared or
local object repository, QuickTest uses the existing information and does not add
the object to the object repository.

« If a child object is added to a local object repository, and its parents are in a shared
object repository, its parents are automatically moved to the local object repository.

« QuickTest does not add an object to the shared object repository as you record
operations on it. Instead, it adds new objects to the local object repository (not the
shared object repository) as you learn objects or record steps on them (unless
those same objects already exist in an associated shared object repository).

« You can export the local objects to a shared object repository.

You can also merge the local objects directly to a shared object repository that is
associated with the same action. This can reduce maintenance since you can maintain the
objects in a single shared location, instead of multiple locations.

Creating and managing shared object repositories will do using Object Repository
Manager. This concept will come in Managing object repositories.

When to use Local object repository

« You have only one, or very few, tests that correspond to a given application
interface, or set of objects.

« You do not expect to frequently modify test object properties.

« You generally create single-action tests.

When to use shared object Repository

« You are creating tests using keyword-driven methodologies (not using record).

» You have several tests that test elements of the same application, interface, or set
of objects.

» You expect the object properties in your application to change from time to time
and/or you regularly need to update or modify test object properties.

« You often work with multi-action tests and regularly use the Insert Copy of Action
and Insert Call to Action options.

Managing Object Repositories Using Object Repository Manager

The Object Repository Manager enables you to manage all of the shared object
repositories used in your organization from a single, central location, including adding and
defining objects, modifying objects and their descriptions, parameterizing repositories to
make them more generic, maintaining and organizing repositories, merging repositories,
and importing and exporting repositories in XML format.

All powers within you, you can do it

QuickTest Professional Unplugged 140

Navigation: - Resources-->>Object Repository Manager

eahMeiciay it sctiva | eteiniebein s fer LGS i) 111-"%
Diigesi:t A eposilog] T = e
& P a Fight Mermap

4 Find = Fligat Meecuay

| = W Dbject Reposilony
S-iF VWekoms: Meciny Touws

Etg Honk aFight hercum

| B busFighes

| .E‘

B Ciedirumbes

i pagsFnzil

pzslagl

2 peset maal %] :
Fral Fred & Flight. Mercuy . checkbax
543 Fight Confimation: Mescuy ket exs
i h Selec a Fight Mescum IMPUT
Fg N Welcome Meicury Tows

Ires
¢ N
Enshle Smat Ideniihza. Tius
Cosmenl

Using Object Repository Manager we can

Creating Shared Object Repositories
Managing objects in Shared object repositories
Modifying Test Object Details

Comparing object repositories

Merging Object Repositories

arLOdE

Creating Shared object repositories we can do in two ways

1. From object repository dialog box directly we can export local objects to shared
2. From Object repository Manager

But modifying, deleting or changing objects in shared object repositories is possible only
with Object repository manager.

Creating Shared object Repositories

In the Object Repository Manager, choose File --> new or click the new button. A new
object repository opens. You can now add objects to it, modify it, and save it.

All powers within you, you can do it

QuickTest Professional Unplugged 141

Editing Shared object Repositories

Navigation: - In object repository manager select an Object Repository and then File--
>Enable Editing

When you open an object repository, it is opened in read-only mode by default. You can
open it in editable format by clearing the Open in read-only mode check box in the Open
Shared Object Repository dialog box when you open it.

If you opened the object repository in read-only mode, you must enable editing for the
object repository before you can modify it. You do not need to enable editing for an object
repository if you only want to view it or copy objects from it to another object repository.
When you enable editing for an object repository, it locks the object repository so that it
cannot be modified by other users. To enable other users to modify the object repository,
you must first unlock it (by disabling edit mode, or by closing it). If an object repository is
already locked by another user, if it is saved in read-only format, or if you do not have the
permissions required to open it, you cannot enable editing for it.

Object Repository comparison Tool
Navigation: - Tools-->Object Repository Comparison Tool

Object repository comparison tool enables you to compare two shared object repositories
and to view the differences in their objects, such as different object names, different object
descriptions, and so on.

All powers within you, you can do it

QuickTest Professional Unplugged 142

Test Object
Details
Areas

Status Bar

After opening the comparison tool, to compare the object repositories you need to
provide two object repositories file paths and click on OK . Then the Comparison Tool
provides a graphic presentation of the objects in the object repositories, which are shown
as nodes in a hierarchy. Objects that have differences, as well as unique objects that are
included in one object repository only, can be identified according to a color configuration
that you can select. Objects that are included in one object repository only are identified in
the other object repository by the text "Does not exist". You can also view the properties
and values of each object that you select in either object repository.

Object Repository Merge Tool
Navigation: - Tools~ - Object Repository Merge Tool
Object repository merge tool enables you to merge two object repositories into a single

shared object repository. You can also use this tool to merge objects from the local object
repository of one or more actions into a shared object repository.

All powers within you, you can do it

QuickTest Professional Unplugged 143

Menu Bar
Toolbar

Primary
Hepasitory
Pane

Secondary
Repasitory
Pane

Target
Repository
Pane

Ot |
Tope Vil LTEE
fdtoned detols |
Erabds SrrwtId . Thae
Cirerend

Resoluticn
Options
Pane

Status Bar

This tool enables you to merge two shared object repositories (called the primary
object repository and the secondary object repository), into a new third object repository,
called the target object repository. Objects in the primary and secondary object
repositories are automatically compared and then added to the target object repository
according to preconfigured rules that define how conflicts between objects are resolved.

After opening the merge tool, to merge the object repositories you need to provide
two object repositories file paths and click on OK . After the merge process, the Object
Repository Merge Tool provides a graphic presentation of the original objects in the
primary and secondary object repositories, which remain unchanged, as well as the
objects in the merged target object repository. Objects that had conflicts are highlighted.
The conflict of each object that you select in the target object repository is described in
detail. The Object Repository Merge Tool provides specific options that enable you to keep
the suggested resolution for each conflict, or modify each conflict resolution individually,
according to your requirements.

The Object Repository Merge Tool also enables you to merge objects from the local object
repository of one or more actions into a shared object repository. For example, if
QuickTest learned objects locally in a specific action in your test, you may want to add the
objects to the shared object repository, so that they are available to all actions in different
tests that use that object repository.

All powers within you, you can do it

QuickTest Professional Unplugged 144

Working with Databases

Test data may be in Database, so that we should connect our test to database and
retrieve the data and use the same in test. We should know 3 things while us dealing
with database connections viz.

1. How to Connect

2. How to establish connection

3. How to Retrieve and use the data

Connecting to a Database:

For connection, we need to provide two things

1. Driver/ Provider : A third party software used for establishing the connection
between front end and back end of the application.

2. Location : Location of database
Record Set: It is a temporarily location where we can store the retrieve data from data
base at time.
From that temporarily location we can use the data one by one or as per
requirement in our testing.
Connection: Connects the application and database.

« We need to create Object Instances for both Record Set and Connection.

Connecting to a database

To connect a database from a Quicktest Professional script.
1. Create a connection object
2. Call the open method of the connection object

You use the connection string property of a connection object provide information
about a database. Using this connection string property, the open method connects
to a database

kkkkkkkkkhkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

‘Create a connection object
Set objDB=CreateObject (“ADODB.Connection”)

‘Open a session to a db

objDB.ConnectionString ="DSN=Flight32_testdata”
0bjDB.Open

kkkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

All powers within you, you can do it

QuickTest Professional Unplugged 145

Executing a SQL Query

After the database connection is established, run an SQL query against the
database. Use the execute method of the connection object to retrieve data from a
database
The execute method accepts an SQL statements as an input and returns a RecordSet
object when the run completes.

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkhkkhkkkkkkkkkkkkkkkkk

‘Create a connection object
Set objDB=CreateObject (“ADODB.Connection”)

‘Open a session to a db

objDB.ConnectionString ="DSN=Flight32_testdata”
0bjDB.Open

kkkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkkkkkkhkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Examining the Query Result

After executing an SQL query, use the RecordSet object to examine the query
results. Use the following properties and methods to examine the query results

BOF(Beginning of file) and EOF(End of file)- These properties determine if you are
at the boundaries of the RecordSet object

MoveNext, MovePrevious and Move - The MoveNext methods moves one record
forward and Move Previous method moves one record backward in the RecordSet
object. The Move method moves multiple records forwards or backward at a time

Fields. Count — This method indicates the number of columns of data returned by
the SQL query

Fields (“MyColumn”) or Fields. Item (“MyColumn”). value — These methods
return the value saved in the specified column of the current record of the
RecordSet object.

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhkkkkkhkhkhkkkkkkkkkkkkkkkkk

‘Execute a query

StrQuery="select * from flights where departure= San Francisco”
Set objResults=0bjDB.Execute (StrQuery)

‘Examine query results

Do Until objResults.Fields (“flight_Number”)

strDestination= objResults.fields (“Arrival”)

‘Do something with data

objResults.MoveNext

Loop

kkkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

All powers within you, you can do it

QuickTest Professional Unplugged 146

In the above example, the code steps through all the flights rows with SAN FRANCISCO
as the departure city .The code retrieve the flight number and arrival information from each
row.

Closing the database session

After examining the output of an SQL query, close the database session by using
the Close method. Close methods are provided in the RecordSet and Connection objects

Note —Closing the Connection object will automatically close any active RecordSet object
associated with the connection object.

After the RecordSet or Connection objects is closed, you can set their variables to
Nothing.
kkhkkkkkkkkkkkkkkkkhkkkkkkhkkkhkkkkkkkkhkkhkkkhkkkhkkkhkkhkkkkkkkhkkkhkkkkkhkkkhkkkhkkkkkkhkkkhkkkkkhkkkkkkkkk
‘Clean up
objResults.Close
objDB.Close
Set objResults=Nothing
Set objDB=Nothing

kkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Print data from oracle database
*khkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkkhkkkhkkkhkkhkkkhkkkhkkkhkkhkkkkkkkkkhkkkkkhkkkhkkkhkkkkkkkhkkkkkhkkkkkkkkk
Set db=createobject ("ADODB.connection")
db.open ("DSN=QT_Flight32; UlD=scott; FWD=tiger; SERVER=oracle")
If db.state=1 Then

Msgbox "connection is opened"

Else

Msgbox "connection is not opened”

End If
Set rs=db.execute ("select * from orders")
While not rs.eof

Print rs (0) &vbtab&rs (1) &vbtabé&rs (2)

rs.movenext
Wend

kkhkkkkkkkkhkkkkkkkkkkhkkkkkkkkkkkkkk

In the above example, the code steps through all the data are from the order table.

Insert the new rows into the database
*khkkkkkkkkkkkkkkkkhkkhkkkkhkkkhkkkkkkhkkkhkkhkkkhkkkhkkkhkkkhkkkkkkkhkkkhkkkkkhkkkhkkkhkkkkkkhkkkhkkkkkhkkkkkkkhkk
Set db=createobject ("ADODB.connection")

db.open ("DSN=QT_Flight32; UlD=scott; FWD=tiger; SERVER=o0racle")
If db.state=1 Then

Msgbox "connection is opened"

Else

Msgbox "connection is not opened"

All powers within you, you can do it

QuickTest Professional Unplugged 147

End If
rs=db.execute ("insert into pbcatvld values (‘kanak’,'Ness')")

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkhkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Update the specific field in the database
kkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Set db=createobject ("ADODB.connection")
db.open ("DSN=QT _Flight32; UlD=scott; FWD=tiger; SERVER=o0racle")
If db.state=1 Then
Msgbox "connection is opened"
Else
Msgbox "connection is not opened”
End If
rs=db.execute ("update orders set customer_name=kanak where order_no=20")

kkkkkkkkkhkkkhkhkkkkkhkkkkkkkkkkkhkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Delete the specific field in the database
kk
Set db=createobject ("ADODB.connection")
db.open ("DSN=QT _Flight32; UlD=scott; FWD=tiger; SERVER=oracle")
If db.stste=1 Then

Msgbox "connection is opened"

Else

Msgbox "connection is not opened”
End If
db.execute ("delete from orders where username like ‘demo %™)

kkkkkkkkkhkkkkhkkkkkhkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkk

Example: For example, test data is stored as below; do write the database connection
script.
Testdata.mdb

vl V2 res
10 20 30
30 30 60
30 20 50
90 90 180
2 8 10

For MSACCESS:

‘Dimensioning connection (con) and recordset (rs)

All powers within you, you can do it

QuickTest Professional Unplugged 148

¢ Dimcon,rs
‘Creating object instanced for both above con and rs
‘Adodb = ActiveX Data Object Database
Set con = CreateObject (“adodb.connection”)
Set rs = CreateObiject (“adodb.recordset”) } these two
lines never changed
Establishing <
the Connection ‘Assigning the connection with 3" party provider i.e. with Microsoft
con.provider = “Microsoft.jet.oledb.4.0”
‘Opening the database by specifying the location
*

\. con.open “d:/automation/testdat.mdb”

‘Retrieving the data from data table
Retrieving the data rs.open “select * from info”, on

[‘By using the retrieved data, checking all the rows
‘Eof: eng of file
‘Not = if the record is not end of file then go into the loop
‘Else come out from the loop
Do while not rs.eof
‘Inserting the retrieved data (v1) into vall edit field
Vbwindow (“form1”).vbEdit (“vall”).set rs.field (“v1")
Using the Data ‘Inserting the retrieved data (v2) into vall edit field
< Vbwindow (“form1”).vbEdit (“val2").set rs.field (“v2")
‘Clicking on ADD button
Vbwindow (“form1”).vbButton (“ADD").click
‘Changing the focus to next row
rs.moveNext
‘Continuing the loop till eof
Loop

* For Oracle and SQL we will write both Provider name and Connection in one line
and rest is same.

For Oracle
con.open “provider=oraoledb.l; server=locahost; uid=userID; pwd=password;
database=database name”

For SOL
con.open “provider=sqloledb.1; server=locahost; uid=userID; pwd=password,;
database=database name”

All powers within you, you can do it

QuickTest Professional Unplugged 149

Word Object Model Overview

To develop solutions that use Microsoft Office Word, you can interact with the
objects provided by the Word object model. Word objects are arranged in a hierarchical
order, and the two main classes at the top of the hierarchy are the Application and
Document classes. These two classes are important because most of the time you either
work with the Word application itself, or manipulate Word documents in some way.

The Word object model closely follows the user interface. The Application object
represents the entire application, each Document object represents a single Word
document, the Paragraph object corresponds to a single paragraph, and so on. Each of
these objects has many methods and properties that allow you to manipulate and interact
with it.

Microsoft Visual Studio 2005 Tools for the Microsoft Office System (VSTO 2005)
extends many of these native objects into host items and host controls that can be used in
document-level customizations. These controls have additional functionality such as data-
binding capabilities and events. For example, a native Word
Microsoft.Office.Interop.Word.Bookmark object is extended into a
Microsoft.Office.Tools.Word.Bookmark control, which can be bound to data and exposes
events. For more information about host items and host controls, see Host Items and Host
Controls Overview.

Accessing Objects in a Word Project

When you create a new application-level project for Word by using Microsoft Visual
Studio 2005 Tools for the 2007 Microsoft Office System (VSTO 2005 SE), Visual Studio
automatically creates a ThisAddIn.vb or ThisAddIn.cs code file. You can access the
Application object by using Me.Application or this. Application.

When you create a new document-level project for Word by using VSTO 2005, you
have the option of creating a new Word Application or Word Template project. VSTO 2005
automatically creates a ThisDocument.vb or ThisDocument.cs code file in your new Word
project for both Document and Template projects. You can access the Application and
Document objects by using the Me or this object reference.

At first glance, there appears to be a lot of overlap in the Word object model. For
example, the Document and Selection objects are both members of the Application object,
but the Document object is also a member of the Selection object. Both the Document and
Selection objects contain Bookmark and Range objects. The overlap exists because there

All powers within you, you can do it

QuickTest Professional Unplugged 150

are multiple ways you can access the same type of object. For example, you apply
formatting to a Range object; but you may want to access the range of the current
selection, a particular paragraph, section or the entire document.

Word Object Model Abstract
The Application object contains the Document, Selection, Bookmark, and Range objects.

Word provides hundreds of objects with which you can interact. The following sections
briefly describe the top-level objects and how they interact with each other. These include:

Application object
Document object
Selection object
Range object
Bookmark object
Application Object

The Application object represents the Word application, and is the parent of all of
the other objects. Its members usually apply to Word as a whole. You can use its
properties and methods to control the Word environment.
Document Object

The Microsoft.Office.Interop.Word.Document object is central to programming
Word. When you open a document or create a new document, you create a new
Microsoft.Office.Interop.Word.Document object, which is added to the Documents
collection in Word. The document that has the focus is called the active document and is
represented by the Active Document property of the Application object.
Visual Studio Tools for Office extends the Microsoft.Office.Interop.Word.Document object
by providing the Microsoft.Office.Tools.Word.Document object, which gives you access to
all members of the Documents collection, as well as data-binding capabilities and
additional events. For more information, see Host Items and Host Controls Overview.

Since the majority of your code will be written in the This Document class, you can access
members of This Document with the me or this object reference.

All powers within you, you can do it

QuickTest Professional Unplugged 151

Selection Object

The Selection object represents the area that is currently selected. When you
perform an operation in the Word user interface, such as bolding text, you select, or
highlight the text and then apply the formatting. The Selection object is always present in a
document. If nothing is selected, then it represents the insertion point. In addition, it can
also be multiple blocks of text that are not contiguous.

Range Object

The Range object represents a contiguous area in a document, and is defined by a
starting character position and an ending character position. You are not limited to a single
Range object. You can define multiple Range objects in the same document. A Range
object has the following characteristics:

< It can consist of the insertion point alone, a range of text, or the entire document.

« ltincludes non-printing characters such as spaces, tab characters, and paragraph
marks.

« It can be the area represented by the current selection, or it can represent a
different area than the current selection.

e ltis not visible in a document, unlike a selection which is always visible.

« Itis not saved with a document and exists only while the code is running.

* When you insert text at the end of a range, Word automatically expands the range
to include the inserted text.

Bookmark Object

A Microsoft.Office.Interop.Word.Bookmark in a document is similar to a text box
control on a Windows Form in that it is the easiest way to control text within a document.
The Microsoft.Office.Interop.Word.Bookmark object represents a contiguous area in a
document, with both a starting position and an ending position. You can use bookmarks to
mark a location in a document, or as a container for text in a document. A
Microsoft.Office.Interop.Word.Bookmark object can consist of the insertion point, or be as
large as the entire document. A Microsoft.Office.Interop.Word.Bookmark has the following
characteristics that set it apart from the Range object:

¢ You can name the bookmark at design-time.

» Microsoft.Office.Interop.Word.Bookmark objects are saved with the document, and
thus do not get deleted when the code stops running or your document is closed.

* Bookmarks can be hidden or made visible by setting the Show Bookmarks property
of the View object to True or False.

Visual Studio Tools for Office extends the Bookmark object into a host control. The

Microsoft.Office.Tools.Word.Bookmark control behaves like a native
Microsoft.Office.Interop.Word.Bookmark, but has additional events and data-binding

All powers within you, you can do it

QuickTest Professional Unplugged 152

capabilities. You can now bind data to a bookmark control on a document in the same way
that you bind data to a text box control on a Windows Form. For more information, see
Host Items and Host Controls Overview.

Note

Microsoft.Office.Tools.Word.Bookmark controls that are added to a document
programmatically at run time do not get persisted with the document. Only the underlying
Microsoft.Office.Interop.Word.Bookmark object is saved. For more information, see Adding
Controls to Office Documents at Run Time.

Extended Objects in Document-Level Projects

It is important to understand the differences between the native objects provided by
the Word object model and the extended objects (host items and host controls) provided
by VSTO 2005, because both types of objects are available to document-level projects.
For more information, see Host Items and Host Controls Overview.

Design time. When you add any of the extended Word objects at design time, they
are automatically created as host items and host controls. For example, if you add a
bookmark to a document in the Designer, code is automatically generated to extend the
bookmark into a Microsoft.Office.Tools.Word.Bookmark control.

Run time. Host items are not automatically created at run time. If you add
documents at run time using the Add method, they are
Microsoft.Office.Interop.Word.Document objects and do not have the additional
capabilities that Microsoft.Office.Tools.Word.Document host items provide. You can
programmatically add Microsoft.Office.Tools.Word.Bookmark controls to your document
using the helper methods provided by VSTO 2005. For more information, see Host ltems
and Host Controls Overview.

Data binding and events. Host items and host controls have data-binding capabilities and
events, which are not available to the native objects. Types. The native Word objects use
the types defined in the Microsoft.Office.Interop.Word namespace, whereas host items
and host controls use the aggregated types defined in the Microsoft.Office.Tools.Word
namespace.

Creating a Microsoft Word document

Dim objwD

‘Create the Word Object
Set 0bjWD = CreateObject ("Word.Application”)

All powers within you, you can do it

QuickTest Professional Unplugged 153

‘Create a new document
objwD.Documents.Add

‘Add text to the document
objWD.Selection.TypeText “This is some text.” & Chr (13) & “This is some more text”

‘Save the document
0bjWD.ActiveDocument.SaveAs “c:\temp\mydoc.doc”

‘Quit Word
objwD.Quit

How to search for a specific string

The following example uses Word object methods to open a Microsoft Word Document
and to use the Find object (the Find and Replace functionality) to search for the word

“apple.

Dim wrdApp

Dim wrdDoc

Dim tString, tRange

Dim p, startRange, endRange
Dim searchString

‘Create the Word Object

Set wrdApp = CreateObject ("Word.Application”)

Set wrdDoc = wrdApp.Documents.Open ("C:\Temp\SampleWord.doc") ‘replace the file
with your MSDoc
searchString = “apple

replace this with the text you're searching for

With wrdDoc

for p = 1 to .Paragraphs. Count

startRange = .Paragraphs (p).Range. Start
endRange = .Paragraphs (p).Range. End

Set tRange = .Range (startRange, endRange)
‘tString = tRange.Text

tRange.Find.Text = searchString
tRange.Find.Execute

If tRange.Find.Found Then

msgbox “Yes!” & searchString &” is present”
End If

All powers within you, you can do it

QuickTest Professional Unplugged 154

Next'close the document

Close

End With

wrdApp.Quit ‘close the Word application
Set wrdDoc = Nothing

Set wrdApp = Nothing

The following example uses Word object methods to open a Microsoft Word Document
and retrieve paragraphs from it. Then the InStr VBScript method is used to check for the
word “apple.”

Dim wrdApp

Dim wrdDoc

Dim tString, tRange

Dim p, startRange, endRange
Dim searchString

Create the Word Object

Set wrdApp = CreateObject ("Word.Application”)

Set wrdDoc = wrdApp.Documents.Open("C:\Temp\Text.doc”) ‘replace the file with your
MSDoc

searchString = “apple” ‘replace this with the text you're searching for

With wrdDoc

for p = 1 to .Paragraphs. Count

startRange = .Paragraphs (p).Range. Start

endRange = .Paragraphs (p).Range. End

Set tRange = .Range (startRange, endRange)

tString = tRange.Text

tString = Left (tString, Len (tString) - 1) ‘exclude the paragraph-mark
If InStr (1, tString, searchString) > 0 Then ‘check if the text has the content you want
‘some other processing here

msgbox “Yes!” & searchString &” is present”

End If

Next

.Close ‘close the document

End With

All powers within you, you can do it

QuickTest Professional Unplugged 155

wrdApp.Quit ‘close the Word application
Set wrdDoc = Nothing

What's New in QTP 9.2

Obiject Identification

This concept is tells about how QTP is identifying objects while running and recording
session.

Obiject Identification in running session

If you record in Normal or Low level recording, object information will store in object
repository. In script you can see class, object name, operations, and values.

After starting running first QTP will see the class, object name in script and it
searches for the same object name in object repository. If that name exists in object

repository then QTP will identify the object in application using recorded properties in
object repository.

Object repository

It is the place where the Recorded object information will store. In this you can see all
objects properties and you can edit, modify and delete properties of the objects.

All powers within you, you can do it

QuickTest Professional Unplugged 156

The objects and properties stored in object repository are called as Test Objects and
TOproperties .

Object Repository Dialog box

E- ﬁ Object B epositony
Ej Wwielcome: Mercun Tours
El-",_j Book a Flight, bercuny
R 1R Lo Flights
: 5 ticketLess
- creditnumber
o pazsFirstd

B pazzlastl [:
Ee i |:|E|331 |TIEEI| '_] ||TIEIQE Buth:ln
+ .;',_j Flnd a Flight: Mercury S . !
HIMPUT
+1-4 3 Flight Corifirnation: Mercu ;
-4 Select a Flight Mercury
-4 welcomne: Mercury Tours

Mone
Sakdioral detals
Enable Smart Ident_ifir::atiu:un True
Comment ;

Adding objects

In the Object Repository window, choose Object--> Add Objects to Local. Click the
object you want to add to your object repository.

If the object is associated to any other object then you will this dialog box.

All powers within you, you can do it

QuickTest Professional Unplugged 157

Selected object only: - Adds to the object repository the previously selected object's
properties and values, without its descendant objects.

Default object types: - Adds to the object repository the previously selected object's
properties and values, with the properties and values of its descendant objects according
to the object types specified by the default filter. You can see which objects are in the
default filter by clicking the Select button and then clicking the Default button.

All object types: - Adds to the object repository the previously selected object's
properties and values, together with the properties and values of all of its descendant
objects.

Selected object types: - Adds to the object repository the previously selected object's
properties and values, as well as the properties and values of its descendant objects
according to the object types and classes you specify in the object filter. You specify the
objects and classes in the filter by clicking the Select button and selecting the required
items in the Select Object Types dialog box.

Click on the select button to select the objects. After clicking on select this dialog box will
open.

¥l Browser
! Buttan

B- [l Calendar

- ! Check Box

- W Dialog Box

- ! Edit Box

- ! Frame

- W Image

H- ¥ Image Map rea

- Link

G- W List

- [# Mizcellansous
V! Badio Buttan
¥ Radio Button Group

Select the filter type and add the objects to the repository.

Modifying properties of the objects

All powers within you, you can do it

QuickTest Professional Unplugged 158

Select the object which you want to modify properties and go to description properties
there select the property value. Automatically the property value will be edit; you can
change that value to any value.

Changing name of the object

Select object in repository, right click-->Rename and change the name.
Deleting objects from repository

Select object in repository, right click-->Delete.

Highlighting Object

Select object in repository View --> Highlight in Application . This will highlight object in
application.

Locate in Repository

Go to View --> Locate in Repository and select object in application if object is there in
repository then that object will be selected.

Object Spy
Navigation: - Tools-->object spy

Using the Object Spy, you can view the run-time or test object properties and methods of
any object in an open application. You use the Object Spy pointer to point to an object.
The Object Spy dialog box displays the selected object's hierarchy tree. It displays the run-
time or test object properties and values of the selected object in the Properties tab. It
displays the run-time or test object methods associated with the selected object in the
Methods tab.

All powers within you, you can do it

QuickTest Professional Unplugged 159

5! Object Spy

))) Page ‘Welcome Mercur Tows
object hierarchy ree &5 wabTabls: Home
= ﬁ ‘WebTable : SIGN-OFF
B gH webTable | Atlanta bo Las Vegss |
£ WebTatle; Atlanta to Laz Vage™ |

object type filter
object details tab

ohject properties

selecled property/valus
or mathod synlax box

To use object spy Click on the hand button showing in up side and show the object to that
hand button Quicktest will automatically displays properties of that object.

Tip: - Hold Left ctrl key for navigating on the application after clicking on the hand button.

By default object spy will show the runtime object properties for web application but not for
window applications.

Object Identification Dialog box

Navigation: - Tools--> Object Identification

It is mainly deals with how QTP is recording objects and properties to object repository.
Using Object Identification dialog box we can

» Configure the properties for each class
» Selecting the Ordinal Identifier

» Configuring smart identification

» Creating user defined classes

All powers within you, you can do it

QuickTest Professional Unplugged 160

In object Identification Dialog box you can find list of classes, for every class you can find
pre-configured Mandatory and assistive properties.

Mandatory properties are properties that QuickTest always learns for a particular test
object class.

Assistive properties are properties that QuickTest learns only if the mandatory properties
that QuickTest learns for a particular object in your application are not sufficient to create a
unique description. If several assistive properties are defined for an object class, then
QuickTest learns one assistive property at a time and stops as soon as it creates a unique
description for the object. If QuickTest does learn assistive properties, those properties are
added to the test object description.

If the combination of all defined mandatory and assistive properties is not sufficient to
create a unique test object description, QuickTest also records the value for the selected
ordinal identifier

Ordinal Identifier
In general, there are two types of ordinal identifiers:

Index —indicates the order in which the object appears in the application code relative to
other objects with an otherwise identical description.

Location —indicates the order in which the object appears within the parent window,
frame, or dialog box relative to other objects with an otherwise identical description.
Values are assigned from top to bottom, and then left to right.

The Web Browser object has a third ordinal identifier type:

CreationTime —indicates the order in which the browser was opened relative to other
open browsers with an otherwise identical description. Each test object class has a default
ordinal identifier selected.

All powers within you, you can do it

QuickTest Professional Unplugged 161

Object Identification @

Select the default identifiers used to identify obsects of each Test Object class.
Erwironment;] Standard \Windows :J
Test Object clazses:

E [lialog A = WnButtore
P

__I Static Mandatory Properties -~ Assistive Properties &
- m nativecksss 1 wwindow id

@W!nﬁalendaf i : '

¥ \WinCheckBox

B winComboBox
"B winContextheny
IW0E i dit

at “w
BEE "WinE ditor
% ‘et Add/Remove... | ;I Add/Remove...

E winListiew

"B WinMenu [Enable St Idontificatior: | Sonfiour

&8 WinObject
& wWinfadioB uthon Ordinal identifier | Locaton _v_J

[U T L —

LzerDefined ..
Resel Test Objsct :‘FI Geneate Sonpt. ‘ I QK | Cancel Help

Configuring Mandatory properties

In object identification dialog box select the object class from test object classes list and go
to Mandatory properties for that class.

Click on Add/Remove button and select or deselect the properties you want to configure.
Configuring Assistive Properties

In object identification dialog box select the object class from test object classes list and go
to Assistive properties for that class.

Click on Add/Remove button and select or deselect the properties you want to configure.
Configuring Ordinal Identifiers

To modify the selected ordinal identifier, select the desired type from the Ordinal
identifier box.

All powers within you, you can do it

QuickTest Professional Unplugged 162

Smart Identification

When QuickTest uses the recorded description to identify an object, it searches for an
object that matches every one of the property values in the description. In most cases, this
description is the simplest way to identify the object and unless the main properties of the
object change, this method will work.

If QuickTest is unable to find any object that matches the recorded object description, or if
it finds more than one object that fits the description, then QuickTest ignores the recorded
description, and uses the Smart Identification mechanism to try to identify the object.

The Smart Identification mechanism uses two types of properties:

Base filter properties —The most fundamental properties of a particular test object class;
those whose values cannot be changed without changing the essence of the original
object

Optional filter properties —Other properties that can help identify objects of a particular
class as they are unlikely to change on a regular

Understanding the Smart Identification Process

1. QuickTest “forgets” the recorded test object description and creates a new object
candidate list containing the objects (within the object’s parent object) that match all of the
properties defined in the base filter property list.

2. From that list of objects, QuickTest filters out any object that does not match the first
property listed in the Optional Filter Properties list. The remaining objects become the new
object candidate list.

3. QuickTest evaluates the new object candidate list:

If the new object candidate list still has more than one object, QuickTest uses the new
(smaller) object candidate list to repeat step 2 for the next optional filter property in the list.

If the new object candidate list is empty, QuickTest ignores this optional filter property,
returns to the previous object candidate list, and repeats step 2 for the next optional filter
property in the list.

If the object candidate list contains exactly one object, then QuickTest concludes that it
has identified the object and performs the statement containing the object.

4. QuickTest continues the process described in steps 2 and 3 until it either identifies one
object, or runs out of optional filter properties to use.

If, after completing the Smart Identification elimination process, QuickTest still cannot
identify the object, then QuickTest uses the recorded description plus the ordinal identifier
to identify the object.

All powers within you, you can do it

QuickTest Professional Unplugged 163

If the combined recorded description and ordinal identifier are not sufficient to identify the
object, then QuickTest stops the test run and displays a Run Error message.

If QuickTest successfully uses Smart Identification to find an object after no object
matches the recorded description, the test results receive a warning status and include the
following information:

=l 1P Test Test Summary
EH Run-Time Data Table
=k 1 [Test Iteration 1 (Raw 1)
=i~ 1 g Actionl Summary
= 1 7] Flight Reseryvation
: 1) "Update Order'- Descripkion mismatch
"Update Grder’= Smark Tdentification
2| Update Qrder, Click,

Normal Identification fails to finds the object so that the warning message is showing.

If Quicktest uses Smart identification to find an object, a cap symbol will be appear in
results where ever it is using.

And some description will show in results saying that how Quicktest identifies the object
using smart identification.

-Sl;Name: "Up_date Order™- Smart Identification

CHtam 1Y r
B2 Lraone

Object Dietails Hesult lime

The smart identfication mechanizm was
irvvolked,

Reason abjact not found

Original description:
text=8& Lindate
nativeciass=Buton

Smart Identification Alternative
Descrption:

"Update Order"- Smart Don Bf28,/2007 -
|clentification Base fiiter propertios (17 objects T 16:41:05

found}

nativeciass=Button

Optional filter properties
height=23 {Used, 3 molches)
text=8.pdate (Skipped)

width=18 (Used, 2 matches)
=360 (Used, 2 matches)
¥=26 (Used, 1 matches)
window id=1006

All powers within you, you can do it

QuickTest Professional Unplugged 164

In this example, Base filter properties prepares an objects list. (17 objects)
And optional filter properties filtered those object list using available properties.

If one property fails it's using another property to find an object. If any property is finding
one object QTP is ignoring other properties.

Where as in Normal Identification process all properties in object description should
satisfied. If one property fails all object identification process will fail.

Configuring Smart Identification

In object identification window select a class in test object class list--> select option
“Enable Smart Identification™-> Click on Configure

Then “Smart Identification Properties — class name” will be appearing...

Object Identification

Select the default identifiers uzed to identify objects of each Test Object clazs.

Ermvironment: tﬁiandard WwWindows :J

L I_:Ibl Smart Identification Properties - Dialog

2 Dialg

#E| Statif Select the base and optional properties to be used for identifying the Dialog Test Object using the Smart f—
|dentification Menng process.

Base Filter Properties o | Optional Filter Properties -

L=

b e

AddRemove.| 1 [3 | Add/Rencia..

ok | Concel ‘ Help |
Ll zer-ier—]
Reset TestObject | (Generate Scit.. ok | Cancel | Heb ‘

Click Add/Remove to add or remove properties in Base and optional filter properties.

Note: - By default smart identification is configur ed and activated for web
environment.

Mapping user defined test object classes

All powers within you, you can do it

QuickTest Professional Unplugged 165

If your application has a button that cannot be identified, this button is recorded as a
generic WinObject. You can teach QuickTest to identify your object as if it belonged to a
standard Windows button class. Then, when you click the button while recording a test,
QuickTest records the operation in the same way as a click on a standard Windows
button. When you map an unidentified or custom object to a standard object, your object is
added to the list of Standard Windows test object classes as a user-defined test object.
You can configure the object identification settings for a user defined object class just as
you would any other object class.

Note that an object that cannot be identified should be mapped only to a standard
Windows class with comparable behavior.

For example, do not map an object that behaves like a button to the edit class.

Note: You can define user-defined classes only when Standard Windows s selected in
the Environment box.

The Object Mapping dialog box enables you to map an object of an unidentified or custom
class to a Standard Windows class.

To map an unidentified or custom class to a standar d Windows class:

1. Choose Tools > Object Identification . The Object Identification dialog box opens.

2. Select Standard Windows in the Environment box.

3. The User-Defined button becomes enabled. Click on User-Defined button. The
Object Mapping dialog box opens.

] i]hiec:t Happing

E Listview20windClass Liztiesw
E ListviewwndClass LiztWigw
58l mavh_lib_taaolbar Toolbar
[Eu TreeWiew2wndClass Tree\iew
'['E.:;J TreeViewwndClazs Treeifiew

All powers within you, you can do it

QuickTest Professional Unplugged 166

4. Click the pointing hand and then click the object whose class you want to add as a
user-defined class. The name of the user-defined object is displayed in the Class
Name box.

5. Inthe Map to box, select the standard object class to which you want to map your
user-defined object class and click Add . The class hame and mapping is added to
the object mapping list.

6. If you want to map additional objects to standard classes, repeat steps 4-5 for each
object.

7. Click OK. The Object Mapping dialog box closes and your object is added to the
list of Standard Windows test object classes as a user-defined test object.

8. Note that your object has an icon with a red U in the corner, identifying it as a user-
defined class.

9. Configure the object identification settings for your user defined object class just as
you would any other object class.

From here after that mapped user defined class objects records like standard class
objects.

Obiject Identification - Conclusion

When you start recording on the application, QuickTest "looks" at the object on which you
are recording and stores it as a test object , determining in which test object class it fits.
QuickTest might classify the test object as a standard Windows dialog box (Dialog), a Web
button (WebButton), or a Visual Basic scroll bar object (VbScrollBar), for example.

Then, for each test object class, QuickTest has a list of mandatory properties that it
always learns. When you record on an object, QuickTest always learns these default
property values, and then "looks" at the rest of the objects on the page, dialog box, or
other parent object to check whether this description is enough to uniquely identify the
object. If it is not, QuickTest adds assistive properties, one by one, to the description, until
it has compiled a unique description. If no assistive properties are available, or if those
available are not sufficient to create a unique description, QuickTest adds a special

ordinal identifier , such as the object's location on the page or in the source code, to
create a unique description.

Similarly, during a run session, QuickTest searches for a run-time object that exactly
matches the description of the test object it learned while recording. It expects to find a
perfect match for both the mandatory and any assistive properties it used to create a
unique description while recording. As long as the object in the application does not
change significantly, the description learned during recording is almost always sufficient
for QuickTest to uniquely identify the object.

If QuickTest is unable to find any object that matches the learned object description, or if it
finds more than one object that fits the description, then QuickTest ignores the learned
description, and uses the Smart Identification mechanism to try to identify the object.

If QuickTest is unable to find any object using smart identification then QuickTest uses
Combination of Learned description and ordinal identifiers to find the object uniquely.

All powers within you, you can do it

QuickTest Professional Unplugged 167

VBScript Basics

VBScript has only one data type called a Variant. A Variant is a special kind of data
type that can contain different kinds of information, depending on how it is used.
If you use a variable for assigning a numeric value, that variable behaves like a numeric
data type. If you assign string value, that variable behaves like a string. However
VBSCRIPT is having sub data types in Variant.

Empty
Null

. Boolean
Byte
Integer

. Currency
Long

. Single

. Double
10. Date (Time)
11. String
12. Object
13. Error.

©ONDU A WNE

We can use conversion functions to convert data from one subdatatype to another type.
To find subdatatype of a variant we need to use vartype function.

Variables

A variable is a convenient placeholder to store program information. You can
change variable value in script running time. In VBScript variables are always of one
fundamental data type Variant.

Use of variables in script:

Variable is very useful for carrying a value. For example if your script is using a
value 10 in five places (3rd, 7th, 12th, 17th, 20th lines). Suppose if that value is changed
from 10 to 20 then you need to change that value in all the places where ever it is used.
But if you have used variable in place of value (x=10) you need to change in only one
place if that value is changed from 10 to 20(x=20). Variables are having flexibility to
change value in run time.

All powers within you, you can do it

QuickTest Professional Unplugged 168

Declaring Variables:

Because of vbscript is having only one data type no need to declare any variable in
the script. By default all variables are comes under variant datatype. But it is not the good
practice because you could misspell the variable name in one or more places, causing
unexpected results when your script is run.

For that reason, the Option Explicit statement is available to require explicit
declaration of all variables. Option Explicit statement will enforce you to declare all the
variables.

We can declare the variables using Dim statement.
kk
Dim x

X=10 'Normal Declaration
Optional Explicit
Dim x
X=10 'When working with optional explicit
*khkkkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkhkkkkkkkhkkkhkkkkkhkkkhkkhkkkkkhkkkhkkkhkkkhkkkhkkkkkhkk
Naming Restrictions to Variables:
Variable names follow the standard rules for naming anything in VBScript.
A variable name:

« Must begin with an alphabetic character.

« Cannot contain an embedded period.

» Must not exceed 255 characters.

« Must be unique in the scope in which it is declared.

Scope of a Variable:
If you declare a variable with in a Function then it is local to that function only. You
can access that variable only with in that function. Now It has local scope and is a

procedure-level variable.

If you declare a variable with in a Script then it can be used by entire script and can
be accessed by all functions. Now It has local scope and is a procedure-level variable.
This is a script-level variable, and it has script-level scope.

All powers within you, you can do it

QuickTest Professional Unplugged 169

Array Variables

A variable containing a single value is a scalar variable. You can create a variable
that can contain a series of values using an index number. This is called an array variable.
Arrays are useful when you're storing sets of similar data. You can store any kind of data
in an array. The array can hold a combination of data types.

Creating Arrays:

Using Dim Statement we can create an array. We can convert a variable in to an array
using array function.

Types of Arrays:

1. Fixed Length Arrays
2. Dynamic Arrays

Fixed arrays have a specific number of elements in them, whereas dynamic arrays can
vary in the number of elements depending on how many are stored in the array.

Creating Fixed Length Arrays:
Dim a(10)

Here 'a' is an array and is having 11 elements (Array count starts from 0). Here it's a fixed
size array with size 10.

Creating Dynamic Arrays:

A dynamic array is created in the same way as a fixed array, but you don't put any bounds
in the declaration.

Dim x ()

Here 'X' is the dynamic array and we can store n number of elements in it. The benefit of a
dynamic array is that if you don't know how large the array will be when you write the
code, you can create code that sets or changes the size while the VBScript code is
running.

We can store more values in dynamic array by redeclaring the array using Redim
statement.

ReDim Statement:
Using Redim we can redeclare an array size. ReDim tells VBScript to "re-dimension" the
array for how many elements you specify. If you use redim statement in your script it will

clear all existing data which is stored in that array and declares that array as fresh array.

Redim with Preserve Keyword:

All powers within you, you can do it

QuickTest Professional Unplugged 170

When your working redim it will clear all the existing data in an array. The preserve
keyword is useful to overcome this problem. Preserve keyword will preserve the existing
data and resize the array with the specified size.

Ex: Redim preserve a (20)

Using Fixed arrays:

kkkkkkkkkhkkkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Dim x(2)

x(0)="how"
x(1)="are"
X(2)="you"

for i=lbound(x) to ubound (x)
msgbox x(i)
Next

kkkkkkkkkhkkkkkhkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Here we cann't store more than 3 elements. Because this is a fixed length array..

Using Dynamic Arrays:
**[)in1 X()
Redim preserve x(2)

x(0)="how"

X(1)="are"

X(2)="you"

Redim preserve x(3)

X(3)=123

kkkkkkkkkhkkkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkx

Here 'X' is a dynamic array and by redeclaring x it can able to store more values into it.

Converting a variable into an array:
We can convert a variable in to array variable using array function.

Example
kk [)inq \Y;
v=array("how","are","you")

for i=lbound(v) to ubound (v)

msgbox v(i)

Next

kkkkkkkkkhkkkkhkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkx

Here 'v' is a dynamic array. We can store some more elements by redeclaring the array.

All powers within you, you can do it

QuickTest Professional Unplugged 171

Constants
A constant is a meaningful name that takes the place of a number or string and

never changes. The difference between variable and constant is we can change the
variable value in run time but for constants it's not possible.

Creating constants:

const str="QTP".here str is a constant and the value will never change. We have public
and private constants. By default all are public. If you want specify the type then

Public const str="QTP"
or
Private const str="QTP"

VB Script Procedures

There are two types of procedures

1. Function Procedure
2. Sub Procedure

Function Procedure

A Function procedure is a series of VBScript statements enclosed by the Function and
End Function statements. Function Procedure can able to return the value.

Example:

kkkkkkkkkkkkkkkkhkkkkkkhkhkkhkkkhkkkkhkkkhkkkhkkkkkkkkhkkhkkkhkkkkhkkhkkkhkkkhkkhkkkkhkkkkhkkkx FLH1Ctk)n
demo_add (a, b)
demo_add=a+b
End Function
oVal=demo_add (2, 3)

1
msgbox oVal 'Returns 5
kk

In this example demo_add function returns a value to oVal. In Function procedures we can
use function name to assign a value.

Sub Procedure

A Sub procedure is a series of VBScript statements enclosed by the Sub and End Sub
statements. Sub Procedure cannot return any value.

Example:

All powers within you, you can do it

QuickTest Professional Unplugged 172

kkkkkkkkkkkkkkkkhkkkhkkhkkhkhkkhkhkkkhkkkkhhkkkhkkkhkkkhkhkkkhkkhkkkhkkkkhkkkhkkkhkkkkhkkkkkkkkkkhkkkx Sub demo_sub (a’
b,)
c=a+b
End sub
demo_sub 2, 3, x
msgbox x 'Returns 5

kkkkkkkkkhkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

This example will do the same as what function procedure is doing above. But in sub
Procedure we need to use one more parameter to get values from the sub procedure.

Types of arguments in procedures

1. Byval
2. ByRef

ByVal:
Indicates that the argument is passed by value.

ByRef:
Indicates that the argument is passed by reference.

By default all arguments are 'ByRef".

Syntax

kkkkkkkkkkkkkkkhkkkkhkkhkhkkhkkkhkkkkhkkkhkkkhkkkhkhkkkhkkhkkkhkkkhkkkhkkkhkkkkhkkhkkkkkkkkkkkkx F u n Ctl 0 n
demo_add(a,b)

demo_add=a+b
End Function

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkk

Here a,b are the arguments. By default these are '‘ByRef".

In simple words ByRef Means the value which is assigned to the variable with in the
function is permanent and we can use that value out side of that function also.

ByVal means the value which is assigned to the variable with in the function is temporary
and we can use that value only with in that function.

Example:
kk FUI’]CtIOI’]
demo_parameters (byref x, byval y)

x=20

y=50

demo_parameters=x+y
End Function

a=10
b=20

All powers within you, you can do it

QuickTest Professional Unplugged 173

msgbox demo_parameters (a, b)
msgbox a
msgbox b

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkk

In the above function x and y are the arguments, declared as byref and byval.
With in that function i assigned values to x and y.

Outside of the function i assigned values to two variables and passing those variables in to
the function.’” a' is passing reference to x and b is passing value to y. With in that function i
am changing the value for x. This value is permanent for 'a’. Because 'a' is passed as
'‘ByRef'.But the value of 'b' will not be changed because it is passed as 'ByVal'.

Advanced and Most useful VBScript functions

Input box

Description

Displays a prompt in a dialog box, waits for the user to input text or click a button,
and returns the contents of the text box.

Syntax
InputBox (prompt [, title][, default][, xpos][, ypos][, helpfile, context])

Examples

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk [)inq hqun

Input = InputBox ("Enter your hame")
MsgBox ("You entered: " & Input)

kkkkkkkkkhkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Msgbox

Description

Displays a message in a dialog box, waits for the user to click a button, and returns a
value indicating which button the user clicked.

Syntax
MsgBox (prompt [, buttons][, title][, helpfile, context])

Examples

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkk

Dim MyVar
MyVar = MsgBox ("Hello World!", 65, "MsgBox Example")

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

InStr

Description

Returns the position of the first occurrence of one string within another.

All powers within you, you can do it

QuickTest Professional Unplugged 174

Syntax
InStr ([start,] stringl, string2 [, compare])

Examples

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkk

Dim SearchString, SearchChar, MyPos

SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "P" ' Search for "P".
‘A textual comparison starting at position 4. Returns 6.
MyPos = Instr (4, SearchString, SearchChar, 1)

‘A binary comparison starting at position 1. Returns 9.
MyPos = Instr (1, SearchString, SearchChar, 0)

‘Comparison is binary by default (last argument is omitted).
MyPos = Instr (SearchString, SearchChar) ' Returns 9.

‘A binary comparison starting at position 1. Returns 0 ("W" is not found).
MyPos = Instr (1, SearchString, "W")

kkkkkkkkkhkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhhhkhhhkhhhkhhhhhhhhhhhhhhhhhkhhhkhhhkhhkhkhhhkhhhhhkhkxk
Join
Description

Returns a string created by joining a number of substrings contained in an array.
Syntax
Join (list [, delimiter])

kkkkkkkkkhkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Dim MyString

Dim MyArray (2)

MyArray (0) = "Mr."

MyArray (1) = "kanakrajan”

MyString = Join (MyArray)

Msgbox MyString 'MyString contains "Mr. Kanakarajan"

kkkkkkkkkhkkhkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkk

LTrim, RTrim, and Trim

Description

Returns a copy of a string without leading spaces (LTrim), trailing spaces (RTrim), or both
leading and trailing spaces (Trim).

Syntax
LTrim (string)

RTrim (string)

All powers within you, you can do it

QuickTest Professional Unplugged 175

Trim (string)

kkkkkkkkkhkkkkkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Dim MyVar

MyVar = LTrim (* vbscript ") ‘MyVar contains "vbscript ".
MyVar = RTrim (" vbscript ") ‘MyVar contains " vbscript".
MyVar = Trim (* vbscript") 'MyVar contains "vbscript".

kkkkkkkkkhkkkkkkhkkkkkkkkkkkkhkkkkhkkkkkkkkkhkkkkkhkhkhkkkhkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkk

Left
*khkkkkkkkkkkkkkkkkhkkkhkkkkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkhkkkkkkkhkkkhkkkkkhkkkhkkkhkkkkkkkkhkkkkkhkkkhkkkkkhkk
Dim MyString, LeftString

MyString = "VBSCript"

LeftString = Left (MyString, 3) 'LeftString contains "VBS".

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Eﬂfﬂli**
Dim AnyString, MyStr

AnyString = "Hello World" 'Define string.

MyStr = Right (AnyString, 1) ' Returns "d".

MyStr = Right (AnyString, 6) ' Returns “World".

MyStr = Right (AnyString, 20) ' Returns "Hello World".

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Len

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk

Dim oStr

Dim oLength
oStr="kanakarajan"
oLength=len (oStr)

print oLength ‘it display 11

*khkkkkkkkkkkkkkkkkhkkkkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkhkkkkkhkkkhkkkhkkkkkhkkkhkkkhkkkkkkhkkkhkkkkkkkhkkkhkkkhkk
Mid

Description

Returns a specified number of characters from a string.

Syntax

Mid (string, start [, and length])

kkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Dim MyVar
MyVar = Mid ("VB Script is fun!”, 4, 6) 'MyVar contains "Script".

kkkkkkkkkhkkkhkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

All powers within you, you can do it

QuickTest Professional Unplugged 176

Replace

Description

Returns a string in which a specified substring has been replaced with another substring a
specified number of times.

Syntax
Replace (expression, find, replacewith [, start [, count [, compare]]])
kkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Dim MyString

‘A binary comparison starting at the beginning of the string. Returns "XXYXXPXXY".
MyString = Replace ("XXpXXPXXp", "p", "Y")
Msgbox MyString

‘A textual comparison starting at position 3. Returns "YXXYXXY".
MyString = Replace ("XXpXXPXXp", "p", "Y", 3, -1, 1)
Msgbox MyString

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkk

Split
Description

Returns a zero-based, one-dimensional array containing a specified number of substrings.

Syntax
Split (expression [, delimiter [, count [, compare]]])

kkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkk

Dim MyString, MyArray, msg
MyString="Nisha Kanakarajan”
Msgbox MyString

MyArray= Split (MyString,” ”,-1, 1)
Msg=b (1) & “" &b (0)
Msgbox Msg ‘Kanakarajan Nisha

kkkkkkkkkkkkkhkkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk

StrComp

Description
Returns a value indicating the result of a string comparison.

Syntax
StrComp (stringl, string2 [, compare])

All powers within you, you can do it

QuickTest Professional Unplugged 177

Settings

The compare argument can have the following values:
Constant Value | Description

vbBinaryCompa 0 Perform a binary comparison.
re

vbTextCompare 1 Perform a textual comparison.

Return Values

The StrComp function has the following return values:

If StrComp returns
stringl is less than string2 -1

stringl is equal to string2 0

stringl is greater than string2 1

stringl or string2 is Null Null

kkkhkkkkkkkkkkkkkkkkk

Dim MyStrl, MyStr2, MyComp

MyStrl = "NISHA": MyStr2 = "nisha" ' Define variables.
MyComp = StrComp (MyStrl, MyStr2, 1) ' Returns O.
MyComp = StrComp (MyStrl, MyStr2, 0) ' Returns -1.
MyComp = StrComp (MyStr2, MyStrl) 'Returns 1.

kkkkkkkkkhkkkkhkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

StrReverse

Description

Returns a string in which the character order of a specified string is reversed.

Syntax
StrReverse(stringl)

kkkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Dim MyStr

MyStr = StrReverse ("kanakrajan") 'MyStr contains "najarakanak”.
kk

VBScript samples

bhkkkkkkkkkkkhkhkhkkkkkhkhkkkhkhkkhkhkkhkkhkkhkkkkhkkhkkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkhkkkkkkkkx

'l Print Hello World
Print "Hello World"

bkkkkkkkkkkkhkhkkkkhkhkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

Ekkkkkkkkkkkkkkhkkkkkkhkhkhkkhkkkkkhkhkhkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

All powers within you, you can do it

QuickTest Professional Unplugged 178

'2 Find whether given number is a odd number
Dim oNumber

oNumber=4
If oNumber mod 2 <>0 Then

Print "The Number "& oNumber &" is an Odd Number"
else

Print "The Number "& oNumber &" is not an Odd Number"
End If

Ekkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkhkhkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkhkkkkx

bkkkkkkkhkkkkkkkkkkhkhkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'3 Print odd numbers between given range of numb ers

Dim RangeStart
Dim RangeEnd
Dim iCounter
RangeStart=10
RangeEnd=20

For iCounter=RangeStart to RangeEnd

If iCounter mod 2 <>0 Then
Print oNumber
End If

Next

bkkkkkkkkkkkhkhkhkkhkhkhkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkkkhkkkkhkkkkkkkkhkhkkkkkkhkkkkhkkkkkkkkx

bkkkkkkkkkkkkhkhkkkkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkkkhkhkkkhkkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

‘4 Find the factorial of a given number
Dim oNumber

Dim iCounter

Dim fValue

oNumber=6
fValue=1

For iCounter=oNumber to 1 step-1
fValue=fValue*iCounter

Next

print fValue

tkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkhkhkhkkhkkkkkkhkkkkkkkkhkhkkkkkkkkkkkkkkkkkhkkhkkkkx

bkkkkkkkkkkkkkhkkkhkhkkhkhkkkhkkkkhkkkhkkhkkhkkkhkkhkkkhkkkhkkkhkkkkhkkkhkkkhkkkkhkkkkkkkkk
'5 Find the factors of a given number

Dim oNumber

Dim iCounter

oNumber=10

For iCounter=1 to oNumber/2

All powers within you, you can do it

QuickTest Professional Unplugged 179

If oNumber mod iCounter=0 Then
print iCounter
End If
Next
print oNumber

kkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkkhkhkhkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkhkkkkx

Ekkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkhkhkhkhkkkhkkkkkkkkkhkkkkkhkhkkkkkkkkkkkhkkkkkkkhkkhkkkkx

'6 Print prime numbers between given range of nu mbers

Dim RangeStart
Dim RangeEnd
Dim iCounter
RangeStart=1
RangeEnd=30

For iCounter=RangeStart to RangeEnd

For iCount=2 to round(iCounter/2)
If iCounter mod iCount=0 Then
Exit for
End If
Next

If iCount=round(iCounter/2)+1 or iCounter=1 Then
print iCounter
End If
Next

bhkkkkkkkhkkkkhkhkhkkkhkhkhkkkhkhkkhkhkhkkhkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

tkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkhkhkkkhkkkkkkhkkkkkkkkhkkkkkkkhkkkkkhkkhkkkkkhkkhkkkkx

'7 Swap 2 numbers with out a temporary variable

Dim oNum1
Dim oNum2

oNum1=1055
oNum2=155

oNuml=oNuml-oNum?2
oNum2=oNum1+oNum?2
oNuml=0oNum2-oNum1l
print oNum1
print oNum2

bkkkkkkkhkkkkkhkhkkkhhkhkkkhkhkkhkhkhkkhkkhkkkkhkkhkkkhkkkkkhkkkkkkkkkkkkkkhkkkkhkkkkkkkkx

bkkkkkkkhkkkkkhkkkhkhkkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkkhkhkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'8 Write a program to Perform specified Arithmet ic Operation on two given
numbers

Dim oNum1

Dim oNum2

Dim oValue

All powers within you, you can do it

QuickTest Professional Unplugged 180

oNum1=10
oNum2=20

OperationtoPerform="div"
Select Case Icase(OperationtoPerform)

Case "add"
oValue=oNuml1+oNum?2
Case "sub"
oValue=oNum21-oNum2
Case "mul"
oValue=oNum1*oNum?2
Case "div"
oValue=oNum21/ oNum2
End Select
print oValue

bkkkkkkkhkkkkkkhkkkkkhkhkkkkkhkkhkhkhkkkkkhkkkkhkkhkkkhkhkkkkhkkkkkkkkkkkkkkhkkkkhkkkkkkkkx

bkkkkkkkkkkkhkhkhkkkhkhkhkkkhkhkkhkhkhkkkhkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'9 Find the length of a given string
Dim oStr

Dim oLength

oStr="sudhakar"

oLength=len(oStr)

print oLength

bkkkkkkkkkkkkhkkkkkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

bkkkkkkkhkkkkkkhkkkkkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkhkkkkkkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'1l0 Reverse given string
Dim oStr

Dim oLength

Dim oChar

Dim iCounter

oStr="sudhakar"
oLength=len(oStr)

For iCounter=oLength to 1 step-1
oChar=oChar&mid(oStr,iCounter,1)

Next

print oChar

thkkkkkkkkkkkkkkkkkhkkk
thkkkkkkkkkkkkkkkkhkkkkhkkkkhkhkkk
11 Find how many alpha characters presentina string.

Dim oStr

Dim oLength

Dim oChar

Dim iCounter

oStr="sulh2kar"
oLength=len(oStr)

All powers within you, you can do it

QuickTest Professional Unplugged 181

oAlphacounter=0
For iCounter=1 to oLength

If not isnumeric (mid(oStr,iCounter,1)) then
oAlphacounter=oAlphacounter+1
End if

Next
print oAlphacounter

bkkkkkkkkkkkkkhkkkkkhkhkhkkkhkhkkhkhkkhkkhkkhkkkkhkkhkkkhkkkkkkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

Ekkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkhkhkhkkhkkkkkkhkkkhkkkkkhkkkkkkkkkkkkkkkkkkhkkhkkkkx

12 Find occurrences of a specific character in a string

Dim oStr

Dim oArray

Dim ochr
oStr="sudhakar"
ochr="a"

oArray=split(oStr,ochr)
print ubound(oArray)

tkkkkkkkkkkkkkkhkkhkkkkkkkhkkkkkhkkhkhhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

bhkkkkkkkkkkkkhkhkkkkkhkhkkkhkhkkhkhkhkkhkkhkkkkhkkhkkkhkkkkkkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'13 Replace space with tab in between the words of a string.

Dim oStr
Dim fStr

oStr="Quick Test Professional"

fStr=replace(oStr," ",vbtab)
print fStr

bkkkkkkkhkkkkhkhkkkkkhkhkkkhkhkkhkhkhkkhkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

bkkkkkkkhkkkkhkhkhkkhkhkhkkkhkhkkhkhkhkkkkhkhkkkkhkkhkkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'14 Write a program to return ASCIl value ofag iven character

Dim ochr
Dim aVal

ochr="A"

aVal=asc(ochr)
print aval

bkkkkkkkhkkkkkkkkkkhkhkkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkkkkkkhkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

Ekkkkkkkkkkkkkkhkkkkkkkkhkkhkkkkkhkkhkkkkhkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkhkkhkkkkx

'l5 Write a program to return character correspo nding to the given ASCII value

All powers within you, you can do it

QuickTest Professional Unplugged 182

Dim ochr
Dim aVal

aVal=65

oChr=chr(aval)
print oChr

bkkkkkkkkkkkhkkhkkkhkhkhkkkhkhkkhkhkhkhkkkkkhkkkkhkkhkkkkkkkkhkkkkkkkkhkkkkkkhkkkkhkkkkkkkkx

Ekkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkhkhkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkhkkkkx

'16 Convert string to Upper Case
Dim oStr
Dim uStr

oStr="QuickTest Professional"

uStr=ucase(oStr)
print uStr

bkkkkkhkkkkkhkkhkkhkkkhkkkhkkkhkkhkhkkkhkkhkkhkhkkhkkkhkkhkhkkkhkkkhkkkhkkhkkkkkhkkkkkhkkkhkkhkkkkkkkhkkkhkkk
thkkkkkkkkkkkkkkkkhkkk
. .

17 Convert string to lower case

Dim oStr
Dim IStr

oStr="QuickTest Professional"
IStr=Icase(oStr)
print IStr

bkkkkkkkkkkkkkhkkkkkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

kkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkhkhkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

'18 Write a program to Replace aword in a strin g with another word

Dim oStr
Dim oWord1
Dim oWord?2
Dim fStr

oStr="Mercury Quick Test Professional”
oWord1="Mercury"
oWord2="HP"

fStr=replace(oStr,oWord1,0Word2)
print fStr

bkkkkkkkkkkkhkkhkkkkkhkhkkhkkkhkhkkhkhkhkkhkkhkkkkhkkhkkkhkhkhkkkkhkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

bhkkkkkkkkkkkhkkhkkkkhkhkkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'19 Check whether the string is a POLYNDROM
Dim oStr

oStr="bob"

All powers within you, you can do it

QuickTest Professional Unplugged 183

fStr=StrReverse(oStr)
If oStr=fStr Then
Print "The Given String "&oStr&" is a Palindrome"
else
Print "The Given String "&oStr&" is not a Palindrome"
End If

Ekkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkhkhkhkhkkkhkkkkkkkkkhkkkkkhkhkkkkkkkkkkkhkkkkkkkhkkhkkkkx

bkkkkkkkkkkkhkkhkkkkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

'20 Verify whether given two strings are equal
Dim oStrl
Dim ostr2

oStrl="gtp"
oStr2="qtp"
If oStrl=0Str2 Then
Print "The Given Strings are Equal”
else
Print "The Given Strings are not Equal”
End If

Ekkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkkhkhkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

bkkkkkkkhkkkkkhkhkkkkkhkhkkkhkhkkhkhkhkhkkhkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkkkkkhkkkkkkkkx

'21 Print all values from an Array

Dim oArray

Dim oCounter

oArray=array(1,2,3,4,"qtp", " Testing")

For oCounter=lbound(oArray) to ubound(oArray)
print oArray(oCounter)

Next

tkkkkkkkkkkkkkkkkhkkkkkkhkhkkkhkhkhkhkhkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

tkkkkkkkkkkkkkkhkkkhkkkkkkkhkkkkhkkhkhkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

'22 Sort Array elements
Dim oArray

Dim oCounterl

Dim oCounter2

Dim tmp

oArray=array(8,3,4,2,7,1,6,9,5,0)
For oCounterl=Ibound(oArray) to ubound(oArray)
For oCounter2=Ibound(oArray) to ubound(oArray)-1
If oArray(oCounter2)>o0Array(oCounter2+1) Then
tmp=oArray(oCounter2)
oArray(oCounter2)=oArray(oCounter2+1)
oArray(oCounter2+1)=tmp
End If

Next

All powers within you, you can do it

QuickTest Professional Unplugged 184

Next

For oCounterl=Ibound(oArray) to ubound(oArray)
print oArray(oCounterl)
Next

bkkkkkkkkkkkkkhkkkkkhkhkkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkkhkkhkkkkhkkkkkkkkhkhkkkkkkhkkkkhkkkkkkkkx

bkkkkkkkkkkkhkkhkkkhkhkhkkkhkhkkhkhkhkhkkkkkhkkkkhkkhkkkkkkkkhkkkkkkkkhkkkkkkhkkkkhkkkkkkkkx

'23 Add two 2X2 matrices
Dim oArray1(1,1)

Dim oArray2(1,1)

Dim tArray(1,1)

0Array1(0,0)=8
0Array1(0,1)=9
OArrayl1(1,0)=5
OArrayl1(1,1)=-1

0Array2(0,0)=-2
0Array2(0,1)=3
0Array2(1,0)=4
oArray2(1,1)=0

tArray(0,0)=0Array1(0,0)+ oArray2(0,0)
tArray(0,1)=0Array1(0,1)+oArray2(0,1)
tArray(1,0)=0Arrayl1(1,0)+oArray2(1,0)
tArray(1,1)=0Arrayl(1,1)+oArray2(1,1)

bkkkkkkkkkkkkhkhkkkkhkhkkkkkkhkkhkhkhkkkkkhkkkkhkkhkkkhkkhkkkkhkkkkkkkkkkkkkkhkkkkkhkkkkkkkkx

tkkkkkkkkkkkkkkhkkkhkkkkkkkhkkkkhkkhkhkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

‘24 Multiply Two Matrices of size 2X2

Dim oArray1(1,1)
Dim oArray2(1,1)
Dim tArray(1,1)

0Array1(0,0)=8
0Array1(0,1)=9
oArrayl1(1,0)=5
oArrayl(1,1)=-1

0Array2(0,0)=-2
0Array2(0,1)=3
OArray2(1,0)=4
OArray2(1,1)=0

tArray(0,0)=0Array1(0,0)* oArray2(0,0)+ oArray1(0,1)* oArray2(1,0)
tArray(0,1)=0Array1(0,0)* oArray2(0,1)+ oArray1(0,1)* oArray2(1,1)
tArray(1,0)=0Array1(1,0)* oArray2(0,0)+ oArrayl(1,1)* oArray2(1,0)
tArray(1,1)=0Array1(1,0)* oArray2(0,1)+ oArrayl(1,1)* oArray2(1,1)

All powers within you, you can do it

QuickTest Professional Unplugged 185

kkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkhkkkkx

kkkkkkkkkkkkkkhkkhkkkkkkkhkkkkkhkhkhkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

'25 Convert a String in to an array

Dim oStr

Dim iCounter

oStr="Quick Test Professional"
StrArray=split(oStr)

For iCounter=0 to ubound(StrArray)
print StrArray(iCounter)
Next

Ekkkkkkkkkkkkkkhkkkkkkkkhkkhkkkkkhkkhkhkkhkkkkkkhkkkhkkkkkkhkkkkkkhkkkkkkkkkkkhkkhkkkkx

bkkkkkkkkkkkkkkkkkhkkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkkhkkkkkhkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

'26 Convert a String in to an array using ‘i‘ as delimiter

Dim oStr

Dim iCounter

oStr="Quick Test Professional"
StrArray=split(oStr,"i")

For iCounter=0 to ubound(StrArray)
print StrArray(iCounter)
Next

bhkkkkkkkhkkkkhkhkhkkkhkkhkhkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkhkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkkkkx

tkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkhkhkhkkkhkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkhkkhkkkkx

'27 Find number of words in string

Dim oStr

Dim iCounter

oStr="Quick Test Professional"

StrArray=split(oStr," ")

print "Theere are "&ubound(StrArray)+1&" words in the string"

bkkkkkkkhkkkkhkhkhkkhkhkhkkkkkhkkkkhkhkhkkkkkhkkkkhkkhkkkhkkhkkkhkhkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

tkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

'28 Write a program to reverse the words of agi ven string.

Dim oStr

Dim iCounter

oStr="Quick Test Professional"
StrArray=split(oStr," ")

For iCounter=0 to ubound(StrArray)

print strreverse(StrArray(iCounter))
Next

All powers within you, you can do it

QuickTest Professional Unplugged 186

bkkkkkkkkkkkhkhkhkkkkkhkhkkkhkhkkhkhkhkkkhkhkkkkhkkhkkkkhkkkkkhkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

bkkkkkkkkkkkkhkkkhhkhkkkkhkhkkhkhkhkhkkkkkhkkkkhkkhkkkkhkkhkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkkx

'29 Print the data as a Pascal triangle
"The formulae for pascal triangle is nCr=n!/(n-r)!*r!

Dim PascalTriangleRows
Dim nCr

Dim NumCount

Dim RowCount

PascalTriangleRows = 10
For NumCount = 0 To PascalTriangleRows
toPrint= Space(PascalTriangleRows - NumCount)
For RowCount = 0 To NumCount
If (NumCount = RowCount) Then
nCr=1
Else
nCr = Factorial(NumCount) / (Factorial(NumCount - RowCount) *
Factorial(RowCount))
End If
toPrint=toPrint&nCr&" "
Next
print toPrint
Next

Function Factorial(hum)
Dim iCounter
Factorial = 1
If num <> 0 Then
For iCounter = 2 To num
Factorial = Factorial * iCounter
Next
End If
End Function

bkkkkkkkkkkkkhkhkkkkhkhkkkhkhkkhkhkhkkhkkhkkkkhkkhkkkhkkhkkkhkkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkkx

bkkkkkkkhkkkkkhkhkkkkkhkhkkkhkhkkhkhkhkhkkkhkkhkkkkhkkhkkkkkkkkhkkkkkkkkkkkkkkhkkkkkhkkkkkkkkx

'30 Join elements of an array as a string

Dim oStr

Dim iCounter

oStr="Quick Test Professional"
StrArray=split(oStr," ")

print join(StrArray," ")

kkkkkkkkkkkkkkhkkhkkkkkkkhkkkkkhkkhkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

bkkkkkkkkkkkkhkhkkkhkhkhkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

‘31 Trim a given string from both sides

Dim oStr

All powers within you, you can do it

QuickTest Professional Unplugged 187

oStr=" QTP "
print trim(oStr)

kkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkhkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkhkkkkx

kkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkkhkhkhkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkhkkkkx

'32 Write a program to insert 100values andtod elete 50 values from an array

Dim oArray()
Dim iCounter

ReDim oArray(100)

For iCounter=0 to ubound(oArray)
oArray(iCounter)=iCounter
'Print total 100 Values
print(oArray(iCounter))
Next

print Wkkkkhkkkkkkhkkkkkkhkkhkhkkkkkkkkkx!

print Whkkkkkkkkkkkkkkkhkkkhkkkkhkkkkkkkkx!

ReDim preserve oArray(50)

For iCounter=0 to ubound(oArray)
'Print Values after deleting 50 values
print(oArray(iCounter))
Next

bkkkkkkkkkkkkhkhkkkkhkhkkkhkhkkhkhkhkkhkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

bkkkkkkkkkkkkhkhkkkhkhkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkhkhkhkkkkhkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkx

'33 Write a program to force the declaration of variables
Option explicit ' this keyword will enforce us to declare variables

Dim x
x=10
'Here we get an error because i have not declared y,z
y=20
Z=x+y
print z

bkkkkkkkkkkkkhkhkkkkhkhkkkhkhkkhkhkhkhkkkhkkhkkkkhkkhkkkhkhkhkkkkhkkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkx

kkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkhkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

‘34 Write a program to raise an error and print the error number.

On Error Resume Next
Err.Raise 6 'Raise an overflow error.
print ("Error # " & CStr(Err.Number) & " " & Err.Description)

kkkkkkkkkkkkkkhkkhkkkkkhkhkhkkkkkhkkhkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkhkkkkx

bkkkkkkkkkkkkhkhkkkkhkhkkkhkhkkhkhkkhkkkhkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'35 Finding whether a variable is an Array

Dim oArray()

All powers within you, you can do it

QuickTest Professional Unplugged 188

if isarray(oArray) then

print "the given variable is an array"
else

print "the given variable is not an array"
End if

Ekkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkhkhkhkhkkkhkkkkkkkkkhkkkkkhkhkkkkkkkkkkkhkkkkkkkhkkhkkkkx

bkkkkkkkkkkkkkhkkkkkhkhkkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkhkkkkkkkkkkkkkhkkkkkkhkkkkhkkkkkkkkx

'36 Write a program to list the Timezone offset from GMT
Dim objWMIService

Dim colTimeZone

Dim objTimeZone

Set objWMIService = GetObject("winmgmts:" &
“{impersonationLevel=impersonate}\\.\root\cimv2")
Set colTimeZone = objWMIService.ExecQuery("Select * from Win32_TimeZone")

For Each objTimeZone in colTimeZone
print "Offset: "& objTimeZone.Bias
Next

bkkkkkkkhkkkkhkhkhkkkhkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkhkkkkkhkkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

tkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkhkhkkhkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkhkkkkk

'37 Retrieving Time Zone Information for a Computer
Dim objWMIService

Dim colTimeZone

Dim objTimeZone

Set objWMIService = GetObject("winmgmts:" &
“{impersonationLevel=impersonate}\\.\root\cimv2")
Set colTimeZone = objWMIService.ExecQuery("Select * from Win32_TimeZone")

For Each obijltem in colTimeZone

print "Bias: " & objltem.Bias

print "Caption: " & objltem.Caption

print "Daylight Bias: " & objltem.DaylightBias

print "Daylight Day: " & objltem.DaylightDay

print "Daylight Day Of Week: " & objltem.DaylightDayOfWeek
print "Daylight Hour: " & objltem.DaylightHour

print "Daylight Millisecond: " & objltem.DaylightMillisecond
print "Daylight Minute: " & objltem.DaylightMinute

print "Daylight Month: " & objltem.DaylightMonth

print "Daylight Name: " & objltem.DaylightName

print "Daylight Second: " & objltem.DaylightSecond

print "Daylight Year: " & objltem.DaylightYear

print "Description: " & objltem.Description

print "Setting ID: " & objltem.SettingID

print "Standard Bias: " & objltem.StandardBias

print "Standard Day: " & objltem.StandardDay

print "Standard Day Of Week: " & objltem.StandardDayOfWeek
print "Standard Hour: " & objltem.StandardHour

All powers within you, you can do it

QuickTest Professional Unplugged 189

print "Standard Millisecond: " & objltem.StandardMillisecond
print "Standard Minute: " & objltem.StandardMinute

print "Standard Month: " & objltem.StandardMonth

print "Standard Name: " & objltem.StandardName

print "Standard Second: " & objltem.StandardSecond

print "Standard Year: " & objltem.StandardYear

Next

thkkkkkkkkkkkkkkkkhkkx
bkkkkkhkkkkkhkkhkkhkhkkhkkkhkkkhkkhkhkkkhkkkhkkhkkkhkkkhkkkhkkhkhkkhkhkkkhkkhkkkkkhkkkkkhkkhkkhkkhkkkkkhkkkhkkk
'38 Write a program to Convert an expression to a date

Dim StrDate

Dim actualDate

Dim StrTime

Dim actualTime

StrDate = "October 19, 1962" ' Define date.

actualDate = CDate(StrDate) ' Convert to Date data type.
print actualDate

StrTime = "4:35:47 PM" ' Define time.

actualTime = CDate(StrTime) ' Convert to Date data type.
print actualTime

bkkkkkkkkkkkkhkhkkkhkhkkkhkhkkhkhkhkkhkkhkkkkhkkhkkkhkkkkkkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

bkkkkkkkkkkkkhkhkkkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkhkhkhkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

‘39 Display current date and Time

print now

Ekkkkkkkkkkkkkkhkkkkkkkkhkkhkkkkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkx

Ekkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkhkhkhkhkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

‘40 Find difference between two dates.

'‘Date difference in Years
print DateDiff("yyyy","12/31/2002",Date)

'‘Date difference in Months
print DateDiff("m","12/31/2002",Date)

'‘Date difference in Days
print DateDiff("d","12/31/2002",Date)

Ekkkkkkkkkkkkkkhkkhkkkkkkkkhkkkkkhkkhkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

bkkkkkkkkkkkkhkhkkhkhkhkkkhkhkkhkhkhkkkhkkhkkkkhkkhkkkkhkkkkkhkkkkkkkkhkkkkkkkkkkhkkkkkkkkx

'A1 Add time interval to a date

print DateAdd("m", 1, "31-Jan-95")

Ekkkkkkkkkkkkkkhkkhkkkhkkkkhkkkkkhkhkhkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

Ekkkkkkkkkkkkkkhkkhkkkkkkkhkkkkkhkkhkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

‘42 Print current day of the week

All powers within you, you can do it

QuickTest Professional Unplugged 190

Print day(date)

kkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkhkkkkx

Ekkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkx

'43 Find whether current month is a long month
Dim oCurrentMonth

Dim ocurrentYear

Dim oDaysinMonths

oCurrentMonth = Month(date)
ocurrentYear = Year(date)
oDaysinMonths=Day(DateSerial(ocurrentYear, oCurrentMonth + 1, 0))
print oDaysinMonths&" Days in Current Month"
If oDaysinMonths=31 Then
print "Current Month is a long month"
else
print "Current Month is not a long month"
End If

bkkkkkkkkkkkhkhkhkkkhkhkhkkkhkhkkhkhkhkkkhkkhkkkkhkkhkkkhkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

tkkkkkkkkkkkkkkhkkkhkkkkkkkhkkkkkhkkhkhkkkhkkkkkkhkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkhkkkkx

'44 Find whether given year is a leap year
'1st Method

‘The rules for leap year:

1. Leap Year is divisible by 4 (This is mandotory Rule)
'2. Leap Year is not divisible by 100 (Optional)

‘3. Leap Year divisble by 400 (Optional)

Dim oYear
oYear=1996

If ((oYear Mod 4 = 0) And (oYear Mod 100 <> 0) Or (oYear Mod 400 = 0)) then
print "Year "&oYear&" is a Leap Year"

else
print "Year "&oYear&" is not a Leap Year"

End If

'45. 2nd Method

' Checking 29 days for February month in specified year
Dim oYear

Dim tmpDate

oYear=1996
tmpDate = "1/31/" & oYear
DaysinFebMonth = DateAdd("m", 1, tmpDate)

If day(DaysinFebMonth)=29 then
print "Year "&oYear&" is a Leap Year"

All powers within you, you can do it

QuickTest Professional Unplugged 191

else
print "Year "&oYear&" is not a Leap Year"
End If

Ekkkkkkkkkkkkkkhkkkkkkhkkhkhkhkkkkkhkkhkhkkkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkhkkkkx

kkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkkhkhkhkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkhkkkkx

'46 Format Number to specified decimal places

Dim oNum

Dim DecimaPlacestobeFormat

oNum = 3.14159

DecimaPlacestobeFormat=2

print Round(oNum , DecimaPlacestobeFormat)

bkkkkkkkhkkkkkkhkkkkkhkhkkkhkhkkhkhkhkhkkhkkhkkkkhkkhkkkkhkkkkkhkkkkkkkkkkkkkkhkkkkhkkkkkkkkx

Ekkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkhkkhkhkkhkkkkhkkhkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkhkkkkx

'‘47 Write a program to Generate a Random Numbers

‘This script will generate random numbers between 10 and 20
Dim rStartRange

Dim rEndRange

rStartRange=10
rEndRange=20

For iCounter=1to 10
print Int((rEndRange - rStartRange + 1) * Rnd + rStartRange)
Next

bkkkkkkkkkkkhkhkhkkkhkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkhkkhkkkkhkkkkkkkkkhkkkkkkhkkkkhkkkkkkkkx

bkkkkkkkkkkkkhkhkkkkkhkhkkkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkkkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

'48 Write a program to show difference between F ix and Int

‘Both Int and Fix remove the fractional part of number and return the resulting integer
value.

‘The difference between Int and Fix is that if number is negative, Int returns the first
negative integer less than or equal to number,

‘whereas Fix returns the first negative integer greater than or equal to number.

'For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8.

print Int(99.8) ' Returns 99.
print Fix(99.2) ' Returns 99.
print Int(-99.8) ' Returns -100.
print Fix(-99.8) ' Returns -99.
print Int(-99.2) ' Returns -100.
print Fix(-99.2) ' Returns -99.

bkkkkkkkkkkkkhkhkkkkkhkhkkkkhkhkkhkhkkhkkkkkhkkkkhkkhkkkhkhkhkkkkhkkkkkkkkhkkkkkkhkkkkkhkkkkkkkkx

kkkkkkkkkkkkkkhkkkhkkkkkkkhkkkkhkhkhkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkhkkkkkkx

'‘49 Write a program to find subtype of a variab le

Dim oVar
Dim oDatatypes

All powers within you, you can do it

QuickTest Professional Unplugged 192

oVar="QTP"
oVartype=Typename(oVar)
print oVartype

kkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkhkhkhkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkhkkkkkkkhkkhkkkkx

kkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkkhkhkhkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkhkkkkx

'50 Write a program to print the decimal part of a given number
Dim oNum

oNum=3.123

oDecNum=0oNum- int(oNum)

print oDecNum

bkkkkkkhkhkkkkhkhkhkkkkhkhkkkhkhkkhkhkhkkkkkhkkkkhkkhkkkkkkkkhkkkkkkkkhkkkkkkhkkkkhkkkkkkkkx

kkkkkkkkkkkkkkhkkhkkkkkkkhkkkkhkkkhhkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkhkkhkkkkk

How to take screenshot using VBScript

kkkkkkkkkhkkkkhkhkkkkkhkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx 'Takl n g S creens h Ot

using word object

Set oWordBasic = CreateObject ("Word. Basic")
oWordBasic.SendKeys "{prtsc}"
oWordBasic.AppClose "Microsoft Word"

Set oWordBasic = Nothing

WScript.Sleep 2000

'‘Opening Paint Application

set WshShell = CreateObject("WScript.Shell")
WshShell.Run "mspaint”

WScript.Sleep 2000

‘Some times Paint Application is not activating properly

‘To activate MS Paint properly i have minimized and restored the opened windows
set shl=createobject("shell. application™)

shl.MinimizeAll

WScript.Sleep 1000

shl.UndoMinimizeAll

Set shi=Nothing

WScript.Sleep 1000

‘Activating Paint Application
WshShell.AppActivate "untitled - Paint"
WScript.Sleep 1000

'Paste the captured Screenshot
WshShell.SendKeys "Mv"
WScript.Sleep 500

'Save Screenshot

WshShell.SendKeys ""s"
WScript.Sleep 500

All powers within you, you can do it

QuickTest Professional Unplugged 193

WshShell.SendKeys "c:\test.bomp"
WScript.Sleep 500
WshShell.SendKeys "{ENTER}"

'Release Objects
Set WshShell=Nothing
WScript.Quit

kkkkkkkkkhkkkkhkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Advanced VBScript examples

*khkkhkkhkk *kkkkhkkk *kk*k *kkkkkkhkkhkkhkkk *kk*k kkhkkkkkkkkhkkkkkhkkhkkhkhkkhkkhkkhkkk

‘Write a program to read data from a text file

Thkkkkkkkkkkkkkkkkkkkkkkhkhkkhkkkkkkkkkkkhkhkhkkhkkkkkkhkkhkhkhkkkkhkhkhkkkkkkkkkkkhkkkkkx

'Read Text File
Set fso=CreateObject("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,1)

'Reading Complete Data from File

MsgBox fl.ReadAll

Thkkkkkkkkkkkkkkkkkkhkkkkhkhhkhkkkkkkkkkkkhkhkhkkhkkkhkkhkkhkhkhkkkkhkrhkhkkkkkkkkkkkhkkkkkx

"‘Write a program to write data into a text file

Thkkkkkkkkkkkkkkkkkkhkkkkhkhkkhkkkkkkkkkhkkhhhkhkkhkkkhkkhkkhkhhkkkkhkhkhkkkkkkkkkkkhkkhkkkx

Set fso=CreateObject("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,2)

'Write characters
fl. Write("hello™)

'‘Write blank lines
fl. WriteBlankLines(2)

‘Write data line by line
fl. WriteLine("A New Line")

*khkkhkkhkk *kkkkhkkk *kk*k *kkkkkkkhkkhkkhkkk *kk*k kkhkkkkkkkkhkkkkkhkkhkkhkhkkhkkhkkhkkk

'Write a program to print all lines that contains a word either “testing” or “qtp

Thkkkkkkkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkkhkkhkkhkhkkhkkrkhkkhkkhkhkhkkkkkhkrhkhkkrkkkkhkkkkhkkhkkk

Set fso=CreateObject("scripting.filesystemobject")
Set fl=fso.OpenTextFile(FilePath,1)
'Read Data Line by Line
While Not fl.AtEndOfStream
If instr(1,fl.ReadLine,"testing")<>0 or instr(1,fl.ReadLine,"qtp")<>0 then
print fl.LReadLine
End if
Wend

All powers within you, you can do it

QuickTest Professional Unplugged 194

Thkkkhkkkkkhkhkkkkhkhkkkkkkkkkkhkkkkkhkhkhkkkkkhkhkkkkkhkkkkhkhkkkkkkhkhkkkkkkhkkkkkhkkkkkkhkkkkhkkkk

‘Write a program to print the current foldername

*hkkk *kkkk *kk*k *khkkkkkhkkhkkhkkk * kkkkkkkhkkkkkkkx

Set fso=CreateObject("scripting.filesystemobject")
msgbox fso.GetAbsolutePathName(™)

Thkkkhkkkkkhkhkkkkhkhkkkkhkkkkkkhkkkkkhkkhkkkkhkhkkkkkhkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkhkkkkkkhkkkkhkkkkx

‘Write a program to print files in a given folder

Thkkkhkkkkkhkhkkkkkhkhkkkkhkhkkkkkkhkkkkkhkkhkkkkhkhkkkkkhkkkkhkhkkkkkkhkhkkkkkkhkkkkkhkkkkkkhkkkkkkkk

Dim fso,fld,sFiles,sFile

Set fso = CreateObject("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)

Set sFiles = fld.Files

For Each sFile in sFiles

print sFile.name

Next

Thkkkhkkkkkhkhkkkkkhkhkkkkhkkkkkkhkkkkkhkhkhkkkkhkhkkkkkhkkkkhkkkkkkhkkkkkkhkhkkkkkhkkkkkkhkkkkhkkkkx

‘Write a program to print subfolders in a given folder

*hkkk *kkkk *kk*k *khkkkkkhkkhkkhkkk * kkkkkkkhkkkkhkkkk

Dim fso,fld,sfolders,sFId

Set fso = CreateObject("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)

Set sfolders = fld.SubFolders

For Each sFId in sfolders

msgbox sFld.name

Next

*hkkhk *kkkk *kk*k *khkkkkkhkkhkkhkkk * kkkkkkkhkkkkkkkhx

‘Write a program to print all drives in the file system
Thkkkkkhkkhkhkkkhkkkhkkkhhkkkkhkhkkkhkhkhhkkkhkhkkkhhkkkhhkkkhkhkkkhhkkhkkhkkkhkkkhkkkhkkhkkkhkkkhkhkkhkkhkkkkkkk
Set fso = CreateObject("Scripting.FileSystemObject")

Set drvs = fso.Drives

For Each drv in drvs
print drv.Driveletter
Next

*hkkk *kkkk *kk*k *khkkkkkhkkhkkhkkk * kkkkkkkhkkkkkkkx

'Write a program to print current drive name

Thkkkhkkkkkhkhkkkkkhkhkkkkhkkkkkkhkkkkkhkhkhkkkkhkhkkkkkhkkkkhkhkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkhkkk

Set fso = CreateObject("Scripting.FileSystemObject")
msgbox fso.GetDriveName(fso.GetAbsolutePathName("))

*hkkk *kkkk *kk*k *khkkkkkhkkhkkhkkk * kkkkkkkhkkkkhkkkx

'Print the last modified and creation date of a given file

All powers within you, you can do it

QuickTest Professional Unplugged 195

Set fso = CreateObject("Scripting.FileSystemObject")
Set fl = fso.GetFile(FilePath)

print fl. DateLastModified

print fl. DateCreated

*kkhkkkhkkkhkkkhkkkkkhkkhkkkk *kk*k *kkkkkkhkkhkkhkkk *kk*k *kkhkkkkkkkkhkkkkkhkhkkhkhkkkhkkhkkhkkk

'Print the size of the file

Tkkkkkkkkkkkkkkkkkkkhkhkkkhkhkkhkkkkkkkkkkkhkhkhkkhkkkhkkkhkkhkhhkkkkhkrhkhkkkkkkkkkkkhkkhkkk

Set fso = CreateObject("Scripting.FileSystemObject")
Set fl = fso.GetFile(FilePath)
msgbox fl.Size

Thkkkkkkkkkkkkkkkkkkkkkkhkhkkhkkkkkkkkkkkhkhkhkkhkkrkhkhhkkhkhhkkkkhkrhkhkkkkkkkkkkkhkkhkkk

‘Write a program to display files of a specific type

*khkkhkkkhkkkhkkkkkhkkhkkkk *kk*k *kkkkkkkhkkhkkhkkk *kk*k *kkhkkkkkkkkhkkkkkhkhkkhkhkkhkkhkkhkkk

Function DisplaySpecificFileTypes(FolderPath,FileType)

Set fso = CreateObject("Scripting.FileSystemObject")
Set fld = fso.GetFolder(FolderPath)
Set sFiles = fld.files

For Each sFl in sFiles
If Icase(sFl.type)=Icase(FileType) then
print sFl.name
End if
Next

End Function

‘Calling the Function
DisplaySpecificFileTypes "C:\","Text Document”

*khkkkhkkkhkkkhkkkkkhkkhkkkk *kk*k *kkkkkkkhkkhkkhkkk *kk*k kkhkkkkkkkkhkkkkkhkkhkkkhkkhkkhkkhkkk

'Write a program to print the free space in a given drive

*khkkkhkkkhkkkhkkkkkhkkhkkkk *kk*k *kkkkkkhkkhkkhkkk *kk*k *kkhkkkkkkkkhkkkkkhkkhkkkhkkhkkhkkhkkk

Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(drvPath)
print "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)

*kkhkkkhkkkhkkkhkhkkkkhkkhkkkk *kk*k *kkkkkkhkkhkkhkkk *kk*k kkhkkkkkkkkhkkkkkhkkhkkhkhkkhkkhkkhkkk

'Write a program to find whether a given folder is a special folder

Thkkkkkkkkkkkkkkkkkkkhkkkhkhkkhkkkkkhkkkhkkhkhkhkkhkkkkkkhkkhkhkhkkkkhkhkhkkkkkkkkkkkhkkhkkk

fldPath="C:\WINDOWS"
Const WindowsFolder =0
Const SystemFolder = 1

All powers within you, you can do it

QuickTest Professional Unplugged 196

Const TemporaryFolder = 2

Set fso = CreateObject("Scripting.FileSystemObject")
If Icase(fso.GetSpecialFolder(WindowsFolder))=Icase(fldPath) or
Icase(fso.GetSpecialFolder(SystemFolder))=lcase(fldPath) or
Icase(fso.GetSpecialFolder(TemporaryFolder))=lcase(fldPath) then
print "Given Folder is a special Folder"
Else
print "Given Folder is not a special Folder"
End if

*k%k ** * * *kkkkkkkhkkhkkhkkk *kk*k * * * *kkkkk

‘Write a program to remove all empty files in the folder

Tkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkhkkkkkhkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkhkkkkx

FolderPath="C:\Documents and Settings\sudhakar kakunuri\Desktop\"
Set fso = CreateObject("Scripting.FileSystemObject")

Set fld = fso.GetFolder(FolderPath)

Set sFiles = fld.Files

For Each sFile in sFiles

If sFile.size=0 Then
print sFile.name
End If

Next

*k%k ** * * *kkkkkkkhkkhkkhkkk *kk*k * * * *kkkkk

'Write a program to Copy contents of one folder to other folder

Tkkkkkkkkkhkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkk

Function CopyContentstoOtherFolder(SourceFolder,TargetFolder)

Set fso = CreateObject("Scripting.FileSystemObject")
Set fld = fso.GetFolder(SourceFolder)

Set sFiles = fld.Files
For Each sFile in sFiles

sFile.copy TargetFolder&"\"&sFile.name
Next
Set sFlds = fld.SubFolders
For Each sFld in sFlds

sFld.copy TargetFolder&"\"&sFld.name
Next

End Function

'Calling the Function

All powers within you, you can do it

QuickTest Professional Unplugged 197

CopyContentstoOtherFolder "C:\Documents and Settings\sudhakar
kakunuri\Desktop\Test1","C:\Documents and Settings\sudhakar kakunuri\Desktop\Test2"

*hkkk *kkkkkk *kk*k *khkkkkkhkkhkkhkkk ** *khkkk kkkkkkkhkkkkkhkkhkkhkk

‘Write a program to check whether a given path represents a file or a folder

*hkkk *kkkkkk *kk*k *khkkkkkhkkhkkhkkk ** *hkkk kkkkkkkhkkkkkhkkhkkhkk

Set fso = CreateObject("Scripting.FileSystemObject")
If fso.FileExists(fPath) then
Print "Path Representing a File"
Elseif fso.FolderExists(fPath) then
Print "Path Representing a Folder"
End if

Thkkkhkkkkkhkhkkkkkhkhkkkkhkkkkkkhkkkkhkhkhkkkkhkkhkkkkhkkkkhkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkx

‘Write a program to compress a folder

Thkkkhkkkkkhkhkkkkkhkhkkkkkkkkkkhkkkkkhkkhkkkkkhkkkkkhkkkkhkhkkkkkhkhkkkkkhkhkkkkkhkkkkhkkhkkkkhkkkkx

strComputer ="."
strFolder = "Folder Path"

set 0bjWMI = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")
set objFolder = objWMI.Get("Win32_Directory="" & strFolder & ")

fCompress = objFolder.Compress ' To uncompress change this to objFolder.Uncompress

if fCompress <> 0 then

WScript.Echo "There was an error compressing the folder: " & fCompress
else

WScript.Echo "Folder compression successful”
end if

*hkkhk *kkkkkk *kk*k *khkkkkkhkkhkkhkkk ** *hkkk kkkkkkkhkkkkkhkkhkkhkk

‘Write a program to rename a folder

Thkkkhkkkkkhkhkkkkkhkhkkkkhkkkkkkhkkkkkhkhkhkkkkhkhkhkkkkkhkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkhkkkkkkhkkkkhkkkkx

CreateObject("Scripting.FileSystemObject").GetFolder("C:\Documents and
Settings\sudhakar\Desktop\Training Session For MF Testers").Name="New Name"

*hkkk *kkkkkk *kk*k *khkkkkkhkkhkkhkkk ** *khkkk kkkkkkkhkkkkkhkkhkkhkk

‘Write a program to print all lines in a file that ends with “world”

*hkkk *kkkkkk *kk*k *khkkkkkhkkhkkhkkk * *hkkk kkkkkkkhkkkkkhkkhkkhkk

Set fso=CreateObject("Scripting.FileSystemObject")
Set fl=fso.OpenTextFile(FilePath)

Set regEx = New RegExp
regEx.Pattern = "world$"
regex.Global = True

While Not fl.AtEndOfStream

All powers within you, you can do it

QuickTest Professional Unplugged 198

Set Matches = regEx.Execute(strng)

If Matches.count<>0 then
print fl.LReadLine
End if

Wend

Thkkkhkkkkkhkhkkkkkhkhkkkkkkkkkkhkkkkkhkkhkkkkhkhkkkkkhkkkkhkhkkkkkhkkkkkkhkkkkkhkkkkkkkkkkhkkkkx

‘Write a program to check whether string starts with “Error”
Tkkkkhkkhkkkkkhkhkhkhhkkhkkhhhkhkhhkhkhkhkhhhkhkhhkhhhkhhkhhkhkhhkhkhkhhhhhhhkhkhkhhhkhkhhhixkx
str="Errorhello"

Set regEx = New RegEXxp

regEx.Pattern = "*Error"

regex.Global = True

Set Matches = regEx.Execute(str)

If Matches.count<>0 then
msgbox "String Started with 'Error
Else
msgbox "String Not Started with 'Error
End if

n

*hkkk *hkkkkkkkhkkhk * * *khkkkkkhkkhkkhkkk *kk*k *khkkkkkkkk * * * *kkkkk

‘Write a program to Replace all words that contains “demo” in a file with the word “QTP”

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkhkhkhkkkkhkhkhkkkkhkhkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkhkkkkkkhkkkkkkkk

FilePath="C:\Documents and Settings\sudhakar\Desktop\demo.txt"

Set fso=CreateObject("Scripting.FileSystemObject")
Set fl=fso.OpenTextFile(FilePath)
txtToReplace=replace(fl. ReadAll,"demo","QTP")
fl.Close

Set fl=fso.OpenTextFile(FilePath,2)
fl. Write(txtToReplace)
fl.Close

Thkkkhkkkkkhkhkkkkkhkhkkkkhkkkkkkhkkkkkhkhkhkkkkhkhkhkkkkhkkkkhkhkkkkkkhkhkkkkkhkkkkkhkkkkkkhkkkkkkkkx

'‘Write a program to check whether a string contains only alpha numerics

Thkkkhkkkkkhkhkkkkkhkhkkkkhkkkkkkhkkkkkhkhkhkkkkhkhkhkkkkkhkkkkhkhkkkkkkkhkhkkkkkkhkhkkkkkhkkkkkkhkkkkkkkkx

str="xyz123!"

Set regEx = New RegEXxp
regEx.Pattern = "["A-Za-z0-9]"
regex.Global = True

Set Matches = regEx.Execute(str)

If Matches.count=0 then
msgbox "String Contains only alpha numerics"
Else
msgbox "String Contains other characters"
End if

All powers within you, you can do it

QuickTest Professional Unplugged 199

* * *kkkkkkkhkkhkkk *kk*k *kkkkk

'Write a program to check whether given string is in date format

Tkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkx

MyDate = "October 19, 1962"

If isdate(MyDate) Then
msgbox "Given String is in Date Format"
else
msgbox "Given String is not in Date Format”
End If

* * *kkkkkkhkkhkkk *kk*k *kkkkk

‘Write a program to Invoke command prompt and execute dir command from the shell
Ikkkkkkkkkkkhkhkhkhkhkkhkkkhhkhkhhhhkkhkhkhkkhkkhkhhhhhhhhhhkhhhhkhkhhkhkhkhkhhhkkhkhhhhrhrhrhiixk

Dim oShell

Set oShell = WScript.CreateObject ("W SCript.shell)

oShell.run "cmd /K CD C:\ & Dir"

Set oShell = Nothing

* *kkkkkkhkkhkkk *kk*k *kkkkk

Sample script for Web Based Application

1. Script to enter data in login screen
kkk

Browser ("Book Store™).Page ("Book Store").WebEdit ("Login").Set "guest"
Browser ("Book Store").Page ("Book Store").WebEdit ("Password").Set "guest”
Browser ("Book Store").Page ("Book Store").WebButton (“Login").Click

Thkkkhkkkkkhkhkkkkhkhkkkkkhkkkkkhkkkkkkkhkkkkkkkkkkkhkkkkhkkkkkkhkkkkkkkkkkkhkkkkkkhkkkkkkkkkx

2. Find X and Y coordinates of button
*kkkkkkkkkkkkkkhkkhkkhkkkhkkkhkkkkkkhkkkhkkhkkkhkkkkkkhkkkkkkkkkkhkkkkkkkkkkhkkhkkkhkkkkkhkkkkkhkkkhkkkkkkx

x=browser ("Book Store").Page ("Book Store").WebButton ("Search").GetROProperty ("x")
y=browser ("Book Store").Page ("Book Store").WebButton ("Search").GetROProperty ("y")
Msgbox x

Msgbox y

Thkkkhkkkkkkkhkhkkkkkkkkkkkkkkhkkk

3. Read items in a list box —=YP->Admin->Entries ->0O racle->Category
kkk
a=browser ("Book Store").Page ("Book Store").WeblList ("category_id").GetROProperty
("items count")
Msgbox a
Fori=1to a

Set c= browser ("Book Store").Page ("Book Store").WeblList ("category_id").Getltem (i)
Msgbox ¢
Next

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkhkhkkkkkkkkkkkhkkkkkhkhkkkkkkkhkhkkkkkkhkhkkkkkhkkkkkkhkkkkkkkkkx

All powers within you, you can do it

QuickTest Professional Unplugged 200

4. Check whether edit box is focused —YP->Home->Nam e
*kkkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkhkkkhkkhkkkhkkkhkkkhkkhkkkkkkkkhkkkkkkkkhkkkhkkkkkhkkkhkkkhkkkkkhkkkhkkkhkkkkx
a=browser ("Yellow Pages").Page ("Yellow Pages").WebEdit ("name").GetROProperty
("visible™)
If a=True Then

Msgbox "edit box is focused"

Else

Msgbox "edit box is disabled"
End If

Tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkhkkk

5. Check default selection in list box
*khkkkkkkkkkkkkkkhkkhkkhkkkhkkkkkkkkhkkkhkkhkkkhkkkhkkkhkkkhkkkkkkkkhkkkhkkkkkhkkkhkkhkkkhkkkhkkhkkkhkkkhkkkhkkkhkkkkx
a=browser ("Yellow Pages").Page ("Yellow Pages").WebList
("category_id").GetROProperty ("default value")
If a="Software" Then

Msgbox "default value is present"”

Else

Msgbox "default value is not showing"
End If

Thkkkhkkkkkkkhkhkkkkkkkkkkkkhkkhkkk

6. List all links in the web page
*kkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkhkkhkkhkkkhkkhkkkhkkhkkkkkkkkhkkkhkkkkkhkkkhkkkkkhkkkhkkkkkhkkkhkkkhkkkhkkx
set a=description. Create
a ("html tag").value="A"
Set cnt=browser ("Yellow Pages").Page ("Yellow Pages").ChildObjects (a)
Msgbox cnt.count
For i=0 to cnt.count-1
c=cnt (i).getroproperty ("name")
Msgbox ¢
Next

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkhkkhkkkkkkkkkkkhkkkkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkkkkkkkkk

7. Print URL name

kkkkkkkkkhkkkhkkkkkkhkkk

a=browser ("Yellow Pages").WinEdit ("Edit"). GetROProperty ("text")
Msgbox a

OR
a=browser ("Yellow Pages").page ("Yellow Pages").GetROProperty ("url")
Msgbox a

Thkkkhkkkkkhkhkkkkkhkkkkkkkkkkkhkkkkkkkhkkkkkkkkhkhkkkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

8. Display entire data in the web table

All powers within you, you can do it

QuickTest Professional Unplugged 201

kkkkkkkkkhkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

a=browser ("Yellow Pages").Page ("Yellow Pages").WebTable
("Categories").GetROProperty (“text")
Msgbox a

Thkkhkkkkkhkkkhkkkkhkhkkkkkkkkkkkkkkhkkk

9. Find the background color of the object
*kkkkkkkkkkkkhkkkhkkhkkkkkkhkkkhkkkkkhkkkhkkkhkkkhkkkkkhkkhkkkkkkhkkhkkkhkkkkkhkkkhkkhkkkhkkkhkkkkkhkkkhkkkhkkkhkkx

a=browser ("Yellow Pages").page ("yellow pages").WebElement ("name").GetROProperty
("outerhtml")

Msgbox a

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkhkkk

10. Check whether selected link is having different appearance
*kkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkhkkhkkhkkkhkkkkkhkkhkkkkkkkkhkkkhkkkkkhkkkhkkhkkkhkkkhkkkkkhkkkhkkkhkkkhkkkx
x=Browser ("Yellow Pages").Page ("Yellow Pages").Image ("CC-YelloPages-
logo").getroproperty (“outer html")

Msgbox x

Tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkhkkkkhkhkkkkkkkkkkkkkkkkk

11. Check whether a link contains image to its left side.
kkx
Browser ("Yellow Pages").Page ("Yellow Pages").Image ("CC-YelloPages-
logo").getroproperty ("x")
If x<30 Then
Msgbox "logo is in left side"
Else
Msgbox "logo is not in left side"
End If

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkhkkk

12. Clear the cache in the web page

kkkkkkkkkhkkkhkkkkkkhkkk

browser ("browser").wintoolbar ("toolbarwindow32").Press"&tools"

Browser ("browser").winmenu ("contextmenu").Select"internet options.”

Browser ("browser").dialog (“internet options").winbutton ("delete cookies").Click
Browser ("browser").dialog ("internet options").dialog ("delete cookies").winbutton
("ok™).Click

Browser ("browser").dialog ("internet options").winbutton ("ok").Click

Thkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkkkk

13. How to test Slideshow in a page

kkkkkkkkkhkkkhkkkkkkhkkk

ExpectedimagePath=Environment("ProductDir")&"\Tests\SlideImageExpected.png"
ActuallmagePath=Environment("ProductDir")&"\Tests\SlideImageActual.png"

Browser("Hindustan Times: Latest").Page("Hindustan Times:

All powers within you, you can do it

QuickTest Professional Unplugged 202

Latest").Image("Slidelmage").CaptureBitmap ExpectedimagePath,True

wait(1)

Browser("Hindustan Times: Latest").Page("Hindustan Times: Latest").Image("Next").Click
Browser("Hindustan Times: Latest").Page("Hindustan Times:
Latest").Image("Slidelmage").CaptureBitmap ActuallmagePath,True

If CompareBitmap(ActuallmagePath, ExpectedimagePath) then
Reporter.ReportEvent micFail, "SlideShow Test", "SlideShow is Not Running"
Else
Reporter.ReportEvent micPass, "SlideShow Test", "SlideShow is Running"
End if

Function CompareBitmap (ActualBmp, ExpectedBmp)
Set fCompare = CreateObject ("Mercury.FileCompare")

If fCompare.IsEqualBin (ExpectedBmp, ActualBmp, 0, 1) Then
CompareBitmap= True

else

CompareBitmap= False

End If

End Function

Thkkhkkkkkkkkkkkhkhkkkkhkhkkkkkkkkkkkkkkhkkk

14. Parameterize links in a web page
*kkkkkkkkkkkkkkhkkkkkkkkhkkhkkhkkkhkkhkkhkkhkkhkkkhkkhkkkkkkkkhkkkhkkkkkhkkkhkkkkkhkkkhkkkkkhkkkhkkkhkkkhkkx
Dim Ink_array

Ink_array=array ("link1","link2","link3","Link4")

For i= 0 to ubound(Ink_array)

Browser ("Google").Page ("Google").Frame ("body").Link ("Link_1").SetTOProperty "text",
Ink_array (i)

Browser ("Google").Page ("Google").Frame ("body").Link ("Link_1").Click

Next

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkkkhkkkkkkkkkkkhkkkkkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkk

15. Show all properties without using Object Spy
*kkkkkkkkkkkkkkhkkkkkkkkhkkkhkkkkkkhkkhkkhkkkhkkkkkhkkkkkkkkkhkkkhkkkkkhkkkhkkhkkkhkkkhkkkkkkhkkkhkkkhkkkhkkkx
Set oDesc=Description. Create

Set gtApp = CreateObject ("QuickTest.Application")

Set gtldent = qtApp.Options.Objectldentification

gtldent.ResetAll

Set objList=browser ("micclass: =Browser").page ("micclass: =Page").ChildObjects
(oDesc)

For iCounter=0 to objList.count-1

obijList (iCounter).highlight

oClassName=objList (iCounter).getroproperty ("micclass")

Set gtObject = gtldent.ltem (oClassName)

set PropColl=qtObject.AvailableProperties

All powers within you, you can do it

QuickTest Professional Unplugged 203

p rl nt Wkkkkkkkkkhkkkkkhkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkxn

For oPropCount=1 to PropColl.count

print PropColl.item (oPropCount) & ":="& obijList (iCounter).getroproperty (PropColl.item
(oPropCount))

Next

p rl nt Wkkkkkkkhkkkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkx"

Next

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkhkhkkkkkkhkkkkkkhkkkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

16. Deleting Browsing history, Temporary Files and Cookies

kkkkkkkkkhkkkkhkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

‘To clear temporary Internet files
Set WshShell = CreateObject("WScript.Shell™)
WshShell.run "RunDII32.exe InetCpl.cpl,ClearMyTracksByProcess 8"

"To clear browsing cookies
WshShell.run "RunDII32.exe InetCpl.cpl,ClearMyTracksByProcess 2"

‘To Clear Browsing History
WshShell.run "RunDII32.exe InetCpl.cpl,ClearMyTracksByProcess 1"

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkkkhkkkkhkhkkkkkhkkkkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

17. How to click on all Google Search Links in all Pages

kkhkkkkkkkhkkkkkkkkhkkhkkkkkkkkkkkkkkk

browser("micclass:=Browser").page("micclass:=Page").webedit("name:=q").Set "amit"
browser("micclass:=Browser").page("micclass:=Page").webbutton("name:=Google
Search").Click

NextExist=true

do until NextExist=false

browser("micclass:=Browser").Sync

Set oDesc=Description. Create

oDesc ("micclass").value="Link"

set InkList=browser ("micclass: =Browser").page ("micclass: =Page").childobjects (oDesc)
Set oDictionary=createobject("scripting. dictionary")

For i=0 to InkList.count-1

oDictionary.add i,InkList(i).getROproperty("name")
Next

All powers within you, you can do it

QuickTest Professional Unplugged 204

LnkProperties = oDictionary.ltems
For i =0 To oDictionary.Count -1

If i=oDictionary.count-1 then
Exit for
End if

If LnkProperties(i+1)="Cached" Then

browser("micclass:=Browser").page("micclass:=Page").Link("name:="&LnkProperties(i)).cli
ck
browser("micclass:=Browser").Back
browser("micclass:=Browser").Sync
End If
Next
NextExist=browser("micclass:=Browser").page("micclass:=Page").Link("name:=Next").Exis
t(1)
If NextExist Then
browser("micclass:=Browser").page("micclass:=Page").Link("name:=Next").Click
End If
Loop

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkhkkkhkkkkkhkhhkhkkkkhkhkkkkkkkkkkkkhkkkkk

18. How to click on all Google Search LinksinaPa ge
*kkkkkkkkkkkkkkhkkkkkkkkhkkkhkkhkkkhkkhkkhkkkhkkkkkhkkkkkkkhkkhkkkhkkkkkhkkkhkkhkkkhkkkhkkkkkhkkkhkkkhkkkhkkx
browser("micclass:=Browser").page("micclass:=Page").webedit("name:=q").Set "amit"
browser("micclass:=Browser").page("micclass:=Page").webbutton("name:=Google
Search").Click

browser("micclass:=Browser").Sync

Set oDesc=Description. Create
oDesc ("micclass").value="Link"
set InkList=browser ("micclass: =Browser").page ("micclass: =Page").childobjects (oDesc)
Set oDictionary=createobject("scripting. dictionary")
For i=0 to InkList.count-1

oDictionary.add i,InkList(i).getROproperty("name")
Next

LnkProperties = oDictionary.ltems
For i =0 To oDictionary.Count -1

If i=oDictionary.count-1 then

Exit for
End if

If LnkProperties(i+1)="Cached" Then

All powers within you, you can do it

QuickTest Professional Unplugged 205

browser("micclass:=Browser").page("micclass:=Page").Link("name:="&LnkProperties(i)).cli
ck
browser("micclass:=Browser").Back
browser("micclass:=Browser").Sync
End If
Next

Thkkkhkkkkkhkhkkkkkhkhkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkhkkkkkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

19. How to get number of controls (Links, Edits, Im ages, etc)
kk
Function GetAllSpecificControls (Page, MicClass)

Set Desc = Description. Create()

Desc("micclass").Value = MicClass

Set GetAllSpecificControls = Page.ChildObjects(Desc)
End Function

Function GetAllEdits(Page)
Set GetAllEdits = GetAllSpecificControls(Page, "WebEdit")
End Function

Function GetAllButtons(Page)
Set GetAllButtons = GetAllSpecificControls(Page, "WebButton")
End Function

Function GetAllLinks(Page)
Set GetAllLinks = GetAllSpecificControls(Page, "Link")
End Function

Function GetAlllmages(Page)
Set GetAlllmages = GetAllSpecificControls(Page, "Image")
End Function

Set oPage = Browser("Google Sets").Page("Google Sets")

MsgBox "Number of Edits: " & GetAllEdits(oPage).Count
MsgBox "Number of Buttons: " & GetAllButtons(oPage).Count
MsgBox "Number of Links: " & GetAllLinks(oPage).Count
MsgBox "Number of Images: " & GetAlllmages(oPage).Count

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkhkkkkhkhkkkkkkkkkkkkkkkkk

19. Capturing the tool tip of the image
Tkkkkkkhkkkkkhkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkhkkkhkkhkkhkkkkkkkhkkkhkkkkkhkkkhkkkkkkkkhkkkkhkkkkkkkkkkkkkk
Set a = Description. Create
a (“html tag”).value="IMG”"
Set b = browser (“name: =Y.*").page (“Y.*").childobject (a)
Msgbox “No of images:"&b.count

For | =0 to b.count-1

C = b (I).GetROProperty (“alt”)

D= b (I).GetROProperty (“SRC")

All powers within you, you can do it

QuickTest Professional Unplugged 206

If C <> " then
Msgbox “image SRC” &C
Msgbox “Tool Tip” &D
End if

Loop

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkhkkkkkkkhkhkkkkkkkkkkkkhkkhkkk

20. Launching Browser

Thkkkhkkkkkhkhkkkkkhkhkkkkkkkkkhkkkkkkhkhkkkkkkkkkkkhkkkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkk

Vhkkkhkkkkkhkhkkkkkhkhkkkkkkhkkkkkkhkkkkkkhkhkkkkkkhkkkkkkhkkkkkhkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

21. Launching Browser
Tkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Set Browser =Createobject (“InternetExplorer.Application”)
Browser.visible = true

Browser. Navigate “www.google.com”

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkhkkkkkkhkhkkkkkkkkkkkhkkkkkhkkkkkkkhkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

22. Close all browsers one by one
Tkkkkkkkkkkkhkkhkkkhkkkhkkkhkkhkkkhkkkhkkkhkkhkhkkhkkhkkkhkhkkkkkkkhkkkhkkkkkhkkkhkkkkkkkhkkkkhkkkhkkkkkkkkkkkk
While Browser (“CreationTime: =0").exist

Browser (“CreationTime: =0").Close
Wend

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkhkhkkkkhkkkkkkkkkkhkkhkkkkkkkkkkkkk

23. Close all browsers one by one
Tkkkkkkkkkhkkkkkkhkk
While Browser (“CreationTime: =0").exist

Browser (“CreationTime: =0").Close
Wend

kkkkkkkkkkkkkhkkhkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkhkkkkhkkhkkkkkkkkkhkkhkkkkkkkkkkkkk

24. To close particular Browser
Tkkkkkkkkkhkkkhkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkhkkkhkkhkkhkkkkkkkhkkkhkkkkkhkkkhkkkkkkkkhkkkkhkkkkkkkkkkkkkk
Set mask = “google.com”
CreationTime ="0"
While Browser (CreationTime: ="&CreationTime).Exist
Set URL = Browser (CreationTime: ="&CreationTime).GetROProperty (“url”)
If Instr (URL.mask)>0 then
Browser (CreationTime: ="&CreationTime).close
Else

All powers within you, you can do it

QuickTest Professional Unplugged 207

CreationTime = CreationTime + 1
End if
Wend

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkkkhkkhkkkkkkkkkkkkk

25. Get name of all open Browser
Tkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkk
Set Browserdesc = Description. Create ()
Browserdesc (“version”).Value="internet explorer 6”
Set browsercoll = Desktop.Childobject (Browserdesc)
Browsercnt = browsercoll.count
Msgbox Browsercnt
For | = 0 to (Browsercnt-1)
Msgbox “Browser” &1& “has title"=& browsercoll (1)
Next

kkkkkkkkkhkkkhkkkkkhkkkkkkhkkkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

26. To check extension of the image
Tkkkkkkkkkhkkkhkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkhkkkhkkhkkkhkhkhkkkhkkkhkkkkkhkkkhkkkkkkkkkkkkhkkkkkhkkhkkkkkkk

Set filename = Browser (“Google”).Page (“Google”).Image (“India”).GetROProperty (“title
name”)

Set ext = Split (filename,”.”)

Msgbox ext (ubound (ext))

kkkkkkkkkkkhkkhkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkk

26. Find out cookies in web page
ThkkkhkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkAAAAAAAAAAAAARAR ARk khdhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhikx
Set cke = Browser (“Google”).Page (“Google”).Object. Cookie
Msgbox cke

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkhkkhkkkkkkkhkkkkkkkkkkhkkhkkkkkkkkkkkkk

An overview of the With Statement

The VBScript with statement enables you to perform a series of operation
on an object. You use the with statement to group related steps together and make a
script easier to read. For example, using with grouping enables you to quickly see all the
activities occurring on the same web page
The below code snippets that perform the same operations. The second code
shippet uses the with statement to group steps

Thkkkhkkkhkkkkhkhkkkkkkkkkkkkhkkkkk

Browser (“Welcome Mercury Tours”).Page (“Mercury Tours”).WebEdit (“username”).Set
“kanak”

All powers within you, you can do it

QuickTest Professional Unplugged 208

Browser (“Welcome Mercury Tours”).Page (“Mercury Tours”).WebEdit
(“username”).SetSecure “3980232390181hh121321"

Browser (“Welcome Mercury Tours”).Page (“Mercury Tours”).Image (“Sign-In").Click
Browser (“Welcome Mercury Tours”).Page (“Mercury Tours").Sync
Reporter.ReportEvent micDone,”Login”,”Login Completed”

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkhkkkkhkkkkkkkkkkkkkkhkkhkkk

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkhkhkkhkkkkkkhkkkkkkkkkkkkhkkhkkk

With Browser (“Welcome Mercury Tours”)
With Page (“Welcome Mercury Tours”)
WebEdit (“username”).Set “kanak”
WebEdit (“username”).SetSecure
Image (“Sign-In").Click
End With
Page (“Mercury Tours”).Sync
End With
Reporter.ReportEvent micDone,”Login”,”Login Completed”

Thkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkhkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkhkkkkkkhkkkkkhkkkkkkhkkkkkkkkkx

About HP QTP Certification

Presently HP offers following two types of certification credentials to the individuals.

1) AIS - full form as “Accredited Integration Specialist”.

2) ASE - full form as “Accredited Systems Engineer”.

QTP Certification gets covered under following two parent streams by the broader name HP Quality
Center v9.

1) AIS - HP Quality Center v9 : Accredited Integration Specialist in HP Quality Center v9.

2) ASE - HP Quality Center v9 : Accredited Systems Engineer in HP Quality Center v9.

We need to clear to get AlS - HP Quality Center v9 Certification?

1) Mandatory or Core Exam: Covers — Implementing HP Quality Center Software (Exam Code:
HPO0-M81)

2) Elective Exam: One can choose either of the following exams
a) HP QuickTest Professional 9.2 Software (Exam Code: HP0-M16)
Or

B) HP WinRunner 9.2 Software (Exam Code: HP0-M12)

All powers within you, you can do it

QuickTest Professional Unplugged 209

We need to clear to get ASE - HP Quality Center v9 Certifications?

1) Mandatory or Core Exam: Covers — HP Quality Center 9.2 Software (Exam Code: HP0O-M15)

2) Elective Exam: One can choose either of the following exams

a) Test Scripting using HP QuickTest Professional Software (Exam Code: HP0-M80)

Or

b) Test Scripting using HP WinRunner Software (Exam Code: HP0-M82)

HP does not provide any certification for individual exams may be the Mandatory / Core or the
Elective exam. Hence to get the HP Certification, successful clearing of both Core exam as well as

Elective exam is essential. After clearing the elective exams, a Score Card is provided by
Parametric, which also commands great respect in the IT sector.

Exam preparation guides are available for all the certification exams. These guides provide
following basic information like:

1) Objective: Purpose of the concerned exam preparation guide.

2) Audience: Who should appear in this exam.

3) Requirements: Basic requirements for the concerned certification.
4) Prerequisites: If any for appearing in the concerned exam.

5) Exam details: Covering information like

a) Number of questions in the exam - 58

b) Type of Questions - Multiple choices

¢) Time commitment in hours - 2 hours

d) Percentage Required Passing the Exam -70%

6) Exam content: specific broad areas covered in the exam.

7) Sample Questions: 2 - 3 sample questions just to present an idea.

All powers within you, you can do it

QuickTest Professional Unplugged

21K

QuickTest Professional Unplugged 216

All powers within you, you can do it

