BDSIM User’s Manual v0.4

I. Agapov, S.Malton
revision 0.4, last updated Jul 5, 2007

Table of Contents

BDSIM v0.4 User’s Manual.................... 1
1 About BDSIM............ ..., 1
2 Obtaining, Installing and Running.......... 1
3 Lattice description......................... 2
3.1 Program structure.......... 2
3.2 Arithmetical expressionsooiiiiiiineeiina... 3
3.3 Physical elements and Entities 4
3.3.1 Coordinate systemo i 4

3.3.2 Units ..o 5

3.3.3 MATRET)

3.3.4 Arift. ... 6

3.3.5 Tbend... ... 6

3.3.6 Sbend....... .. 6

3.3.7 quadrupole 7

3.3.8 sextupole 7

3.3.9 octupole ... 7
3.3.10 multipole 8

3.3 00 T 8

3.3 02 rCol .. 8

3.3 03 @Ol . 9

3.3. 14 801enodidt 9
3.3.15 hkickand VKICKovireine i 9
3.3.16 transform3d........... ... 9
3.3.17 element ... 9

3.3 18 LM .t 10
3.3.19 materials. ... 10
3.3.20 1aSeT . .t 12
3.3.21 gaS .. 12
3.3.22 speckeyword 12
3.3.23 Element number............... 12
3.3.24 Element attributes.......... 13
3.3.25 Material table........ 13

3.4 Run control and output........... 14
341 OpPLIOM. ..t 14

34.2 DRAIM . ..ottt 15

3.4.3 sample. 15

SAd WS . 15

4 Visualizationc.o.eiiieeenenen. 16

5 Physicscooiiiiiiiiii 17
5.1 physicsList option 17
5.2 Transportation........... i 17
5.3 Tracking accuracyooeuiiiiiniiiini 18

6 Output Analysis.................iin... 18

7 Implementation Notes 18
7.1 Architecture 18
7.2 Features to be added in next releases 18

Appendix A Geometry description formats .. 19

Al gmadformat........ 19
A2 MORKA . ..ttt 20
A.2.1 Describing the geometry 20
A.2.1.1 Common Table Parameters........................ 22

A21.2 "Box’ Solid Types.ovvieiiiiiiii 24

A.2.1.3 ’Trapezoid’ Solid Types 24

A2.14 ’Cone’ Solid Types.covviiiniiii ., 25

A.2.1.5 ’Torus’ Solid Typescovvueiieiiin .. 25

A.2.1.6 ’Polycone’ Solid Typescooviiii .. 26

A.2.1.7 ’Elliptical Cone’ Solid Types....................... 27

A.2.2 Creating a geometry list 27

A.2.3 Defining a Mokka element in the gmad file 28

A3 gdml. ..o 28
Appendix B Field description formats....... 28
Appendix C Bunch description formats...... 28

8 Referencesov e eennenn. 29

il

Chapter 2: Obtaining, Installing and Running 1

BDSIM v0.4 User’s Manual

This file is updated automatically from ‘manual.texi’ last updated on Jul 5, 2007.

1 About BDSIM

BDSIM is a Geant4 extension toolkit for simulation of particle transport in accelerator
beamlines. It provides a collection of classes representing typical accelerator components,
a collection of physics processes for fast tracking, procedures of “on the fly” geometry
construction and interfacing to ROOT analysis.

2 Obtaining, Installing and Running

BDSIM can be downloaded from http://ilc.pp.rhul.ac.uk/bdsim.html. This site also
contains some information on planned releases and other issues. Alternatively, a develop-
ment version is accessible under http://cvs.pp.rhul.ac.uk. Download the tarball and
extract the source code. Make sure Geant4 is installed and appropriate environment vari-
ables defined. Then go through the configuration procedure by running the ./configure
script.

./configure

It will create a Makefile from template defined in Makefile.in. You may want to edit
the Makefile manually to meet your needs (if your CLHEP version is greater than 2.x put
-DCLHEP_VERSION=9). Then start the compilation by typing

. /make

If the compilation is successful bdsim executable should be created in the current di-
rectory or in the $G4WORKDIR directory in case this variable is defined. Next, set up the
(DY)LD_LIBRARY_PATH variable to point to the ./parser directory and to the directory
where libbdsim.so is.

BDSIM is invoked by the command bdsim ‘options’

where the options are

--file=<filename> : specify the lattice file

--output=<fmt> : output format (rootlascii), default ascii

--outfile=<file> : output file name. Will be appended with _N
where N = 0, 1, 2, 3... etc.

--vis_mac=<file> : visualization macro script, default vis.mac

--help : display this message

--verbose : display general parameters before run

--verbose_event : display information for every event

--verbose_step=N : display tracking information after each step

--verbose_event_num : display tracking information for event number N

--batch : batch mode - no graphics

--outline=<file> : print geometry/optics info to <file>

--outline_type=<fmt> : type of outline format
where fmt = optics | survey

Chapter 3: Lattice description 2

--materials : list materials included in bdsim by default

To run bdsim one first has to define the beamline geometry in a file which is then passes
to bdsim via the --file command line option, for example

bdsim --file=line.gmad --output=root --batch

The next section describes how to do it in more detail.

3 Lattice description

The beamline, beam properties and physics processes are specified in the input file written
in the GMAD language which is a variation of MAD language extended to handle sophisti-
cated geometry and parameters relevant to radiation transport. GMAD is described in this
section. Examples of input files can be found in the BDSIM distribution in the examples
directory. In order to convert a MAD file into a GMAD one, a utility called mad2gmad.sh
is provided in the utils directory.

The following MAD commands are not supported:
e assign
e bmpm

e btrns

e envelope
e optics
e option
e plot

e print

e return
e survey
e title

e twiss

The following MAD commands:
e moni

e monitor

e wire

e prof

are replaced with the marker command.

3.1 Program structure

A GMAD program consists of a sequence of element definitions and control commands. For
example, tracking a 1 GeV electron beam through a FODO cell will require a file like this:

qf: quadrupole, 1=0.5*m, k1=0.1;
qd: quadrupole, 1=0.5%m, k1=-0.1;

Chapter 3: Lattice description 3

d: drift, 1=0.5%m;

fodo : line=(qf,d,qd,d);
use,period=fodo;

beam, particle="e-",energy=1xGeV;

Generally, the user has to define a sequence of elements (with drift, quadrupole, line
etc.), then select the beamline with the use command and specify beam parameters and
other options with beam and option commands. The sample command controls what sort
of information will be recorded during the execution.

The parser is case sensitive. However, for convenience of porting lattice descriptions from
MAD the keywords can be both lower and upper case. The GMAD language is discussed
in more detail in this section.

3.2 Arithmetical expressions

Throughout the program a standard set of arithmetical expressions is available. Every
expression is ended with a semicolon, for example:

x=1;
y=2.5-x;
z=sin(x) + log(y) - 8eb;

Several expressions can be grouped into one block by means of the { and } symbols or
the begin and end keywords.

Available binary operators are: +, -, %, /, ~
Available unary operators are: +, -
Available boolean operators are: <, >, <=, >=, <>, ==
Available functions'® are:

e sqrt

e cos

e sin

e exp

e log

e tan

e asin

e acos

e abs

! see add_func(..) in parser/gmad.cc

Chapter 3: Lattice description 4

3.3 Physical elements and Entities

GMAD implements almost all the standard MAD elements, but also allows to define ar-
bitrary geometric entities and magnetic field configurations. The geometry description
capabilities are extended by using “drivers” to other geometry description formats which
makes interfacing and standardisation easier. The syntax of a physical element declaration
is

element_name : element_type, attributes;

for example

qd : quadrupole, 1 =0.1%0.1, k1 =0.01;

element_type can be of basic type or inherited. Allowed basic types are

e marker

o drift

e rbend

e sbend

e quadrupole

e sextupole

e octupole

e multipole

e vkick

e hkick

o 1f

e rcol

e ccol

e solenoid

e laser

e transforma3d

e clement

All elements except element are by default modeled by an iron cylinder (given by the
boxSize option) with the vacuum beampipe (defined by beampipeRadius option). An

already defined element can be used as a new element type. The child element will have
the attributes of the parent.

q:quadrupole, 1=1*m, k1=0.1;
qq:9,k1=0.2;

3.3.1 Coordinate system

The usual accelerator coordinate system is assumed (see [MAD], page 29).

Chapter 3: Lattice description)

3.3.2 Units
In GMAD the SI units are used.

length m| (metres)
time s] (seconds)
angle rad] (radians)

[
[
[
quadrupole coefficient [
multipole coefficient 2n poles [
electric voltage [
electric field strength [
[
[
[
[
[
[

particle energy GeV]
particle mass GeV/c?
particle momentum GeV/¢]

beam current
particle charge
emittances

There are some predefined numerical values? are:

pi 3.14159265358979
GeV 1

eV 107°
KeV 106
MeV 1073
TeV 103
MV 1
Tesla 1

m 1

cm 102
mm 103
rad 1
mrad 1073
S 1

ns 107°

clight 2.99792458 x 108

for example, one can write either 100 or 0.1 * KeV when energy constants are concerned.

3.3.3 marker

marker has no effect but allows one to identify a position in the beam line (say, where a
sampler will be placed). It has no attributes.

Example:

ml : marker;

2 see add_var(..) in parser/gmad.cc

Chapter 3: Lattice description 6

3.3.4 drift
drift defines a straight drift space. Attributes:
e 1 - length [m] (default 0)

e aper - aperture [m] (default same as beampipe radius)

Example:

d13 : drift, 1=0.5%m;

3.3.5 rbend
rbend defines a rectangular bending magnet. Attributes:
e 1 - length [m] (default 0)
e angle - bending angle [rad] (default 0)
e B - magnetic field [T]
e aper - aperture [m] (default same as beampipe radius)

e outR - external radius [m] of magnet (default set to aper+1lcm)

when B is set, this defines a magnet with appropriate field strength and angle is not
taken into account. Otherwise, B that corresponds to bending angle angle for a particle in
use (defined by the beam command, with appropriate energy and rest mass) is calculated
and used in the simulations.

Example :

rbl : rbend, 1=0.5*m, angle = 0.01;

3.3.6 sbend

sbend defines a sector bending magnet. Attributes:

e 1 - length [m] (default 0)

e angle - bending angle [rad| (default 0)

e B - magnetic field [T

e aper - aperture [m] (default same as beampipe radius)

e outR - external radius [m] of magnet (default set to aper+lcm)

The meaning of B and angle is the same as for rbend.

Example :

sbl : sbend, 1=0.5*m, angle = 0.01;

Chapter 3: Lattice description 7

3.3.7 quadrupole

quadrupole defines a quadrupole. Attributes:

1 - length [m] (default 0)

k1 - normal quadrupole coefficient k1 = (1/B rho) (dB,/dz) [m~?] Positive k1 means
horizontal focusing of positively charged particles. (default 0)

ksl - skew quadrupole coefficient ksl = (1/B rho) (dB,/dz) [m~?] where (x,y) is
now a coordinate system rotated by 45 degrees around s with respect to the normal
one.(default 0).

tilt - roll angle [rad] about the longitudinal axis, clockwise.
aper - aperture [m] (default same as beampipe radius)

outR - external radius [m] of magnet (default set to aper+1lcm)

Example :

qf : quadrupole, 1=0.5*m , k1 = 0.5 , tilt = 0.01;

3.3.8 sextupole

sextupole defines a sextupole. Attributes:

1 - length [m] (default 0)
k2 - normal sextupole coefficient k2 = (1/B rho) (d*B,/dz?) [m™?]
ks2 - skew sextupole coefficient ks2 = (1/B rho) (d*B,/dz?) [m™3] where (x,y) is
now a coordinate system rotated by 30 degrees around s with respect to the normal
one.(default 0).
tilt - roll angle [rad] about the longitudinal axis, clockwise.
aper - aperture [m] (default same as beampipe radius)
outR - external radius [m] of magnet (default set to aper+lcm)
Example :

sf : sextupole, 1=0.5*%m , k2 = 0.5 , tilt = 0.01;

3.3.9 octupole

octupole defines an octupole. Attributes:

1 - length [m] (default 0)

k3 - normal octupole coefficient k3 = (1/B rho) (d®*B,/dz*) [m~*] Positive k3 means
horisontal focusing of positively charged particles. (default 0)

ks3 - skew octupole coefficient ks3 = (1/B rho) (d*B,/dz®) [m~*] where (x,y) is
now a coordinate system rotated by 30 degrees around s with respect to the normal
one.(default 0).

tilt - roll angle [rad] about the longitudinal axis, clockwise.

outR - external radius [m] of magnet (default set to aper+1lcm)

Chapter 3: Lattice description 8

Example :

of : octupole, 1=0.5*%m , k3 = 0.5 , tilt = 0.01;

3.3.10 multipole
multipole defines a multipole. Attributes:
e 1 - length [m] (default 0)
e knl - normal multipole knl_.n = (1/B rho) (d"B,/dz") [m~ "+

e ksl - skew multipole ksl.n = (1/B rho) (d"B,/dz™) [m~("*V] where (x,y) is now a co-
ordinate system rotated by 30 degrees around s with respect to the normal one.(default

0).
e tilt - roll angle [rad] about the longitudinal axis, clockwise.

e outR - external radius [m] of magnet (default set to aper+lcm)

Example :

mul : multipole, 1=0.5*m , knl={ 0,0,1 } , ksl={ 0,0,0 };

3.3.11 rf
rf defines an rf cavity. Attributes:
e 1 - length [m] (default 0)
e gradient - field gradient [MV / m)]

Example :

rfl : rf,1=5*m, gradient = 10 * MV / m;

3.3.12 rcol

rcol defines a rectangular collimator. The longitudinal collimator structure is not taken
into account. To do this the user has to describe the collimator with the generic type
element. Attributes:

e 1 - length [m] (default 0)

e xsize - horisontal aperture m]

e ysize - vertical aperture [m]

e material - material

e outR - limits external extent [m] of collimator (default set to aper+lcm)

Example :

coll : rcol,1=0.4*m, xsize=2*mm, ysize=1*mm, material="W"

Chapter 3: Lattice description 9

3.3.13 ecol

ecol defines an elliptical collimator. Here, again, the longitudinal collimator structure is
not taken into account. Attributes:

e 1 - length [m] (default 0)

e xsize - horisontal aperture m]
e ysize - vertical aperture [m]

e material - material

e outR - limits external extent [m] of collimator (default set to aper+lcm)

Example :

col2 : ecol,1=0.4*m, xsize=2*mm, ysize=1*mm, material="W"

3.3.14 solenoid
Not yet implemented

3.3.15 hkick and vkick

hkick and vkick are equivalent to a rbend and an rbend rotated by 90 degrees respectively.

3.3.16 transform3d

An arbitrary 3-dimensional transformation of the coordinate system is done by placing a
transform3d element in the beamline. Attributes:

e x = <x offset>

o y =<y offset>

e z = <z offset>

e phi = <phi Euler angle>

e theta = <theta Euler angle>
e psi = <psi Euler angle>

Example:

rot : transform3d, psi=pi/2

3.3.17 element

All the elements are in principle examples of a general type element which can represent
an arbitrary geometric entity with arbitrary B field maps. Attributes:

e geometry = <geometry_description>
e bmap = <bmap_description>

e outR - limits external extent component box size (default set to aper+lcm)

Chapter 3: Lattice description

Descriptions are of the form
format:filename

where filename is the path to the file with the geometry description and format defines
the geometry description format. The possible formats are given in Appendix A [Geometry],
page 19.

Example :

qq : element, geometry ="mokka:qq.sql", bmap ="mokka:qq.bmap";

3.3.18 line

elements are grouped into sequences by the 1ine command.
line_name : line=(element_1,element_2,...);
where element_n can be any element or another line.
Example :

A sequence of FODO cells can be defines as

qf: quadrupole, 1=0.5, k1=0.1;

qd: quadrupole, 1=0.5, k1=-0.1;

d: drift, 1=0.5;

fodo : line=(qf,d,qd,d);

section : line=(fodo,fodo,fodo);

beamline : line=(section,section,section);

3.3.19 materials

To define a material the matdef keyword must be used.

If the material is composed by a single element, it can be defined using the following
syntax:?

<material> : matdef, Z=<int>, A=<double>, density=<double>;
Attributes

e Z - atomic number

e A - mass number [g/mol]

e density - density in [g/cm3]

e temperature - temperature in [K]

Example:

iron : matdef, Z=26, A=55.845, density=7.87

3 In this case, in src/BDSDetectorConstruction.cc the BDSMaterials::AddMaterial(name, Z, A, density)

method is called, which in turns (src/BDSMaterials.cc) invokes the Geantd G4Material constructor:
G4Material(name, Z, A, density);

Chapter 3: Lattice description

If the material is made up by several components, first of all each of them must be
specified with the atom keyword:?

<element> : atom, Z=<int>, A=<double>, symbol=<char*>;
Attributes:

e Z - atomic number

e A - mass number [g/mol]

e symbol - atom symbol

Then the compound material can be specified in two manners:

1) If the number of atoms of each component in material unit is known, the following
syntax can be used:’

<material> : matdef, density=<double>, temperature=<double>,
components=<[list<char*>]>,
componentsWeights=<{list<int>}>;

Attributes
e density - density in [g/cm3]
e temperature - temperature in [K]
e components - list of symbols for material components

e componentsWeights - number of atoms of each component in material unit, in order

The kStateSolid state and a normal pressure of 1 atm are assumed.

Example:

niobium : atom, symbol="Nb", z=41, a=92.906;
titanium : atom, symbol="Ti", z=22, a=47.867;
NbTi : matdef, density=5.6, temperature=4.0, ["Nb","Ti"]l, {1,1}

2) On the other hand, if the mass fraction of each component is known, the following
syntax can be used:®

4 In this case, in src/BDSDetectorConstruction.cc the BDSMaterials:: AddElement(name, symbol, Z, A)
method is called, which in turns (src/BDSMaterials.cc) invokes the Geant4 G4Element constructor:
G4Element(name, symbol, Z, A);

In this case, in src/BDSDetectorConstruction.cc the BDSMaterials:: AddMaterial(name, density, state,
temp, pressure, list<char*> itsComponents, list<G4int> itsComponentsWeights) method is called, which
in turns (src/BDSMaterials.cc) invokes the Geant4d G4Material constructor: G4Material(name, density,
(G4int)itsComponents.size(), state, temp, pressure). Then each component is added with a call to the
G4Material:: AddElement(G4string , G4int) method.

In this case, in src/BDSDetectorConstruction.cc the BDSMaterials:: AddMaterial(name, density, state,
temp, pressure, list<char*> itsComponents, list<G4double> itsComponentsFractions) method is called,
which in turns (src/BDSMaterials.cc) invokes the Geant4 G4Material constructor: G4Material(name,
density, (G4int)itsComponents.size(), state, temp, pressure). Then each component is added with a call
to the G4Material:: AddElement(G4string , G4double) method.

%28

Chapter 3: Lattice description

<material> : matdef, density=<double>, temperature=<double>,
components=<[list<char*>]>,
componentsFractions=<{list<double>}>;

Attributes
density - density in [g/cm3]

e temperature - temperature in [K]
e components - list of symbols for material components

e componentsFractions - mass fraction of each component in material unit, in order

Again, the kStateSolid state and a normal pressure of 1 atm are assumed.

Example:

samarium : atom, symbol="Sm", z= 62, a=150.4;

cobalt : atom, symbol="Co", z= 27, a=58.93;

SmCo : matdef, density=8.4, temperature=300.0, ["Sm","Co"],
{0.338,0.662}

3.3.20 laser

laser defines a drift section with a laser beam inside. The laser is considered to be the
intersection of the laser beam with the volume of the drift section. Attributes:

e 1 - length of the drift section [m]
e x,y,z - components of the laser direction vector

e waveLength - laser wave length [m)]

3.3.21 gas

3.3.22 spec keyword
Starting from v0.3 it is possible to add the spec keyword to all element definition.
spec="keywordl=valuel&keyword2=value2&.."

By this means any set of keyword /value pairs can be passed to the accelerator component
construction classes.

qd : mquad,1=0.5 * m, k1l = qdkl, spec="type=cylinder";

3.3.23 Element number

When several elements with the same name are present in the beamline they can be accessed
by their number in the sequence. In the next example the sampler is put before the second
drift

Chapter 3: Lattice description

bl:1line=(d,d,d);
sample,range=d[2];

3.3.24 Element attributes

Element attributes such as length, multipole coefficients etc, can be accessed by putting
square brackets after the element name, e.g.

x=d[1];

3.3.25 Material table

There is a set of predefined materials for use in elements such as collimators, e.g.
o “Air”
e “Aluminium”
o “BeamGasPlugMat”
e “Beryllium”
e “CarbonMonoxide”
e “CarbonSteel”

e “Concrete”

e “Copper”

e “Graphite”
e “Invar”

e “Iron”

e “LaserVac”

e “Lead”

o “LeadTungstate”
o “LiquidHelium”
o “NbTi”

e “Niobium”

e “Silicon”
° LﬁSmCOU
° “SOil”

e “Titanium”

e “TitaniumAlloy”
e “Tungsten”

e “Vacuum”

e “Vanadium”

e “Water”

o “Weightlron”

For more details see the file src/BDSMaterials.cc

Chapter 3: Lattice description

3.4 Run control and output

The execution control is performed in the GMAD input file through option and sample
commands. How the results are recorded is controlledby the sample command. When the

visualization is turned on, it is also controlled through Geant4 command prompt

3.4.1 option

Most of the options in bdsim are set up by the command

option, <name>=value, ..

*

The following options influence the geometry:

beampipeRadius
beampipeThickness
tunnelRadius
boxSize

default beampipe radius [m]

default beampipe thickness [m]

tunnel Radius [m]

default accelerator component size [m)]

The following options influence the tracking;:

deltaChord
deltalntersection
chordStepMinimum
lengthSafety
thresholdCutCharged
thresholdCutPhotons
randomSeed

stopTracks

physicsList
ngenerate

nperfile
nlinesIgnore
synchRadOn
srTrackPhotons
srLowX

srLowGamE
minimumEpsilonStep
maximumEpsilonStep
deltaOneStep
prodCutPhotons
prodCutPhotonsP
prodCutElectrons
prodCutElectronsP
prodCutPositrons
prodCutPositronsP

chord finder precision

boundary intersection precision

minimum step size

element overlap safety

charged particle cutoff energy

photon cutoff energy

seed for the random number generator;

setting to -1 uses the system clock to generate the seed
if set, tracks are terminated after interaction

with material and energy deposit recorded
determines the set of physics processes used
number of primary particles fired when in batch mode
number of events recorded per file

number of lines to skip when reading bunch files
turn on Synchrotron Radiation process

whether to track the SR photons

Sets lowest energy of SR to X*E_critical

lowest energy of propagating SR photons

minimum relative error acceptable in stepping
maximum relative error acceptable in stepping

set position error acceptable in an integration steps
standard overall production cuts for photons
precision production cuts for photons in element
standard overall production cuts for electrons
precision production cuts for electrons in element
standard overall production cuts for positrons
precision production cuts for positrons in element

Chapter 4: Visualization

For a more detailed description of how the option influence the tracking see Chapter 5
[Physics|, page 17

3.4.2 beam

The parameters related to the beam are given by the beam command
beam, <name>=value, ...;
The available parameters are:

e particle - particle name, "e-","e+" ,"gamma","proton", etc
e energy - particle energy
e distrType - type of distribution

e distrFile - input bunch file

Example:

beam, particle="e+",energy=100*MeV, distrType="gauss";

For more details see Appendix C [Bunch description formats|, page 28.

3.4.3 sample

To record the tracking results one uses the sample
sample, range=<element>;
The sampling plane is then inserted before <element>

Example:

sample, range=d;

Cylindrical sampler of length 1 is put around element <element> at distance <r> with
the command

sample, range=<element>, r=r0, 1=10;

3.4.4 use

use command selects the beam line for study

use, period=11,range=ql/q2

Chapter 4: Visualization

4 Visualization

When BDSIM is invoked in interactive mode, the run is controlled by the Geant4 shell. A
visualization macro should be then provided. A simple visualization macro is listed below.

Invoke the OGLSX driver
Create a scene handler and a viewer for the OGLSX driver
/vis/open OGLIX

Create an empty scene
/vis/scene/create

Add detector geometry to the current scene
/vis/scene/add/volume

Attach the current scene handler
to the current scene (omittable)
/vis/sceneHandler/attach

Add trajectories to the current scene

Note: This command is not necessary in exampleNO3,
since the C++ method DrawTrajectory() is

described in the event action.

/vis/viewer/set/viewpointThetaPhi 90 90
/vis/drawVolume
#/vis/scene/add/trajectories

/tracking/storeTrajectory O
#/vis/viewer/zoom
/tracking/storeTrajectory 1

#

for BDS:

#/vis/viewer/zoom 300
#/vis/viewer/set/viewpointThetaPhi 3 45

By default the macro is read from the file named vis.mac. The name of the file with
the macro can also be passed via the vis_mac switch.

bdsim --file=line.gmad --vis_mac=my_macro.mac

In interactive mode all the Geant4 interactive comamnds are available. For instance, to
fire 100 particles type

/run/beamOn 100 runs the simulation with 100 particles
and to end the session type
exit

To display help menu

Chapter 5: Physics

/help;

For more details see [Geant], page 29.
5 Physics

BDSIM can exploit all physics processes that come with Geant4. In addition fast tracking
inside multipole magnets is provided. More detailed description of the physics is given
below.

5.1 physicsList option
Depending on for what sort of problem BDSIM is used, different sorts of physics processes

should be turned on. This processes are groupes into so called “physics lists”. The physics
list is specified by the physicsList option in the input file, e.g.

option, physicsList="em_standard";

Several predefined physics lists are available

standard transportation of primary particles only

em_standard transporation of primary particles, ionization,
bremsstrahlung, multiple scattering

em_low the same but using low energy electromagnetic models

em_muo the same but using biased muon cross-sections

lw list for laser wire simulation - standard electromagnetic

physics and "laser wire" physics which is Compton Scattering
with total cross-section renormalized to 1.

hadronic_standard standard electromagnetic, fission, neutron capture, neutron
and proton elastic and inelastic scattering

By default the standard physics List is used

5.2 Transportation

The transportation follows the scheme: the step length is selected which is defined either
by the distance of the particle to the boundary of the “logical volume” it is currently in
(which could be, e.g. field boundary, material boundary or boundary between two adjacent
elements) or by the mean free path of the activated processes. Then the particle is pushed to
the new position and secondaries are generated if necessary. Each volume has an associated
transporatation algorithm. For an on-energy particle travelling close to the optical axis of a
quadrupole, dipole or a drift, standard matrix transportation algorithms are used [Course],
page 29. For multipoles of higher orders and for off-axis/energy particles Runge-Kutta
methods are used.

Appendix A: Geometry description formats

5.3 Tracking accuracy

The following options influence the tracking accuracy

chordStepMinimum minimum chord length for the step

deltalntersection determines the precision of locating the point of intersection
of the particle trajectory with the boundary and hence the
error in the path length in each volume. This may influence
the results especially in the case when EM fields are present.

deltaChord

lengthSafety all volumes will have an additional overlap of this length
thresholdCutCharged energy below which charged particles are not tracked
thresholdCutPhotons energy below which photons are not tracked

6 Output Analysis

During the execution the following things are recorded:
e energy deposition along the beamline
e sampler hits
If the output format is ASCIT i.e. if BDSIM was invoked with the -—output=ascii option,
then the output file “output.txt” containing the hits will be written which has rows like
#hits PDGtype p[GeV/c] x[micron] y[micron] z[m] x’ [microrad] y’ [microrad]
11 250 -4.72907 -5.86656 5.00001e-06 0 O
11 250 -8.17576 -4.99729 796.001 0.320334 -0.126792

If ROOT output is used then the root files output_0.root, output_1.root etc. will
be created with each file containing the number of events given by nperfile option. The
file contains the energy loss histogram and a tree for every sampler in the line with self-
explanatory branch names.

7 Implementation Notes

7.1 Architecture

In this section the architecture of BDSIM is briefly described for someone wishing to use it
as a class library.

- BDSMultipole
- gmad

- Physics list - adding own physics processes

7.2 Features to be added in next releases

current development is focused on the beam-gas scattering and implementation of wake-
fields.

Appendix A: Geometry description formats

Appendix A Geometry description formats

The element with user-defined physical geometry is defined by
<element_name> : element, geometry=format:filename, attributes
for example,

colli : element, geometry="gmad:colli.geo"

A.1 gmad format

gmad is a simple format used as G4geometry wrapper. It can be used for specifying more
or less simple geometries like collimators. Available shapes are:

Box {

x0=x_origin,
yO=y_origin,
z0=z_origin,

Xx=xsize,

y=ysize,

z=zsize,
material=MaterialName,
temperature=T

}

Tubs {

x0=x_origin,
yO=y_origin,
z0=z_origin,

X=xsize,

y=ysize,

z=zsize,
material=MaterialName,
temperature=T

}

For example

Cons {

x0=0,

y0=0,

z0=0,

rminl=5
rmax1=500
rmin2=5
rmax2=500
z=250
material=Graphite,
phi0=0,
dphi=360,
temperature=1

Appendix A: Geometry description formats

A file can contain several objects which will be placed consequently into the volume, A
user has to make sure that there is no overlap between them.

A.2 mokka

As well as using the gmad format to describe user-defined physical geometry it is also
possible to use a Mokka style format. This format is currently in the form of a dumped
MySQL database format - although future versions of BDSIM will also support online
querying of MySQL databases. Note that throughout any of the Mokka files, a # may be
used to represent a commented line. There are three key stages, which are detailed in the
following sections, that are required to setting up the Mokka geometry:

e Describing the geometry
e Creating a geometry list
e Defining a Mokka Element to load geometry descriptions from a list

A.2.1 Describing the geometry

An object must be described by creating a MySQL file containing commands that would
typically be used for uploading/creating a database and a corresponding new table into a
MySQL database. BDSIM supports only a few such commands - specifically the CREATE
TABLE and INSERT INTO commands. When writing a table to describe a solid there are
some parameters that are common to all solid types (such as NAME and MATERIAL) and some
that are more specific (such as those relating to radii for cone objects). A full list of the
standard and specific table parameters, as well as some basic examples, are given below
with each solid type. All files containing geometry descriptions must have the following
database creation commands at the top of the file:

DROP DATABASE IF EXISTS DATABASE_NAME;
CREATE DATABASE DATABASE_NAME;
USE DATABASE_NAME;

A table must be created to allow for the insertion of the geometry descriptions. A table
is created using the following, MySQL compliant, commands:

CREATE TABLE TABLE-NAME_GEOMETRY-TYPE (

TABLE-PARAMETER VARIABLE-TYPE,
TABLE-PARAMETER VARIABLE-TYPE,
TABLE-PARAMETER VARIABLE-TYPE
);

Once a table has been created values must be entered into it in order to define the solids
and position them. The insertion command must appear after the table creation and must
the MySQL compliant table insertion command:

Appendix A: Geometry description formats

INSERT INTO TABLE-NAME_GEOMETRY-TYPE VALUES (valuel, value2, "char-value",
.

The values must be inserted in the same order as their corresponding parameter types
are described in the table creation. Note that ALL length types must be specified in mm
and that ALL angles must be in radians.

An example of two simple boxes with no visual attributes set is shown below. The first
box is a simple vacuum cube whilst the second is an iron box with length_x = 10mm,
length_y = 150mm, length_z = 50mm, positioned at x=1m, y=0, z=0.5m and with zero
rotation.

CREATE TABLE mytable_BOX (

NAME VARCHAR(32),
MATERIAL VARCHAR(32),
LENGTHX DOUBLE(10,3),
LENGTHY DOUBLE(10,3),
LENGTHZ DOUBLE(10,3),
POSX DOUBLE(10,3),
POSY DOUBLE(10,3),
POSZ DOUBLE(10,3),
ROTPSI DOUBLE(10,3),
ROTTHETA DOUBLE(10,3),
ROTPHI DOUBLE(10,3)
);

INSERT INTO mytable_BOX VALUES("a_box","vacuum", 50.0, 50.0, 50.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0);

INSERT INTO mytable_BOX VALUES("another_box","iron", 10.0, 150.0, 50.0,
1000.0, 0.0, 500.0, 0.0, 0.0, 0.0);

Further examples of the Mokka geometry implementation can be found in the exam-
ples/Mokka/General directory. See the common table parameters and solid type sections
below for more information on the table parameters available for use.

Appendix A: Geometry description formats

A.2.1.1 Common Table Parameters

The following is a list of table parameters that are common to all solid types either as an
optional or mandatory parameter:

NAME
Variable type: VARCHAR(32)

This is an optional parameter. If supplied, then the Geant4 LogicalVolume associated
with the solid will be labelled with this name. The default is set to be the table’s name
plus an automatically assigned volume number.

MATERIAL
Variable type: VARCHAR (32)

This is an optional parameter. If supplied, then the volume will be created with this
material type - note that the material must be given as a character string inside double
quotation marks(“). The default material is set as Vacuum.

PARENTNAME

Variable type: VARCHAR(32)

This is an optional parameter. If supplied, then the volume will be placed as a daughter
volume to the object with ID equal to PARENTNAME. The default parent is set to be
the Component Volume. Note that if PARENTID is set to the Component Volume then
P0SZ will be defined with respect to the start of the object. Else POSZ will be defined
with respect to the center of the parent object.

INHERITSTYLE

Variable type: VARCHAR(32)

This is an optional parameter to be used with PARENTNAME. If set to “SUBTRACT
then the instead of placing the volume within the parent volume as an inherited object,
it will be subtracted from the parent volume in a boolean solid operation. The default
for this value is set to “* - which sets to the usual mother/daughter volume inheritance.

ALIGNIN
Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the placement of components will be
rotated and translated such that the incoming beamline will pass through the z-axis of
this object. The default is set to 0.

ALIGNOUT

Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the placement of the next beamline
component will be rotated and translated such that the outgoing beamline will pass
through the z-axis of this object. The default is set to 0.

SETSENSITIVE
Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the object will be set up to register energy
depositions made within it and to also record the z-position at which this deposition
occurs. This information will be saved in the ELoss Histogram if using ROOT output.
The default is set to 0.

Appendix A: Geometry description formats

e MAGTYPE
Variable type: VARCHAR (32)

This is an optional parameter. If supplied, then the object will be set up to produce

the appropriate magnetic field using the supplied K1 or K2 table parameter values .
Three magnet types are available - “QUAD”, “SEXT” and “OCT”. The default is set

to no magnet type. Note that if MAGTYPE is set to a value whilst K1/K2/K3 are not set,
then no magnetic field will be implemented.

e K1
Variable type: DOUBLE(10,3)
This is an optional parameter. If set to a value other than zero, in conjuction with
MAGTYPE set to “QUAD” then a quadrupole field with this K1 value will be set up within
the object. Default is set to zero.

e K2
Variable type: DOUBLE(10,3)
This is an optional parameter. If set to a value other than zero, in conjuction with
MAGTYPE set to “SEXT” then a sextupole field with this K2 value will be set up within
the object. Default is set to zero.

e K3
Variable type: DOUBLE(10,3)
This is an optional parameter. If set to a value other than zero, in conjuction with
MAGTYPE set to “OCT” then a sextupole field with this K3 value will be set up within
the object. Default is set to zero.

e P0OSX, POSY, P0OSZ
Variable type: DOUBLE(10,3)
These are required parameters. They are form the position in mm used to place the
object in the component volume. POSX and POSY are defined with respect to the center
of the component volume and with respect to the component volume’s rotation. POSZ
is defined with respect to the start of the component volume. Note that if the object
is being placed inside another volume using PARENTNAME then the position will refers
to the center of the parent object.

e ROTPSI, ROTTHETA, ROTPHI
Variable type: DOUBLE(10,3)
These are optional parameters. They are the Euler angles in radians used to rotate the
obejct before it is placed. The default is set to zero for each angle.

e RED, BLUE, GREEN
Variable type: DOUBLE(10,3)
These are optional parameters. They are the RGB colour components assigned to the
object and should be a value between 0 and 1. The default is set to zero for each colour.

e VISATT
Variable type: VARCHAR (32)
This is an optional parameter. This is the visual state setting for the object. Setting

this to “W” results in a wireframe displayment of the object. “S” produces a shaded
solid and “I” leaves the object invisible. The default is set to be solid.

Appendix A: Geometry description formats

FIELDX, FIELDY, FIELDZ
Variable type: DOUBLE(10,3)

These are optional parameters. They can be used to apply a uniform field to any
volume, with default units of Tesla. Note that if there is a solenoid field present
throughout the enitre element then this uniform field will act in addition to the solenoid
field.

A.2.1.2 ’Box’ Solid Types

Append _BOX to the table name in order to make use of the G4Box solid type. The following
table parameters are specific to the box solid:

LENGTHX, LENGTHY, LENGTHZ
Variable type: DOUBLE(10,3)

These are required parameters. There values will be used to specify the box’s dimen-
sions.

A.2.1.3 ’Trapezoid’ Solid Types

Append _TRAP to the table name in order to make use of the G4Trd solid type - which is
deined as a trapezoid with the X and Y dimensions varying along z functions. The following
table parameters are specific to the trapezoid solid:

LENGTHXPLUS
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the x-extent of the
box’s dimensions at the surface positioned at +dz.

LENGTHXPMINUS
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the x-extent of the
box’s dimensions at the surface positioned at -dz.

LENGTHYPLUS
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the y-extent of the
box’s dimensions at the surface positioned at +dz.

LENGTHYPMINUS
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the y-extent of the
box’s dimensions at the surface positioned at -dz.

LENGTHZ
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the z-extent of the
box’s dimensions.

Appendix A: Geometry description formats

A.2.1.4 ’Cone’ Solid Types

Append _CONE to the table name in order to make use of the G4Cons solid type. The
following table parameters are specific to the cone solid:

LENGTH
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the z-extent of the
cone’s dimensions.

RINNERSTART
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the start of the cone. The default value is zero.

RINNEREND
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the end of the cone. The default value is zero.

ROUTERSTART
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the outer radius of the
start of the cone.

ROUTEREND
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the outer radius of the
end of the cone.

STARTPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the cone. The default value is zero.

DELTAPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
angle of the cone. The default value is 2*PI.

A.2.1.5 ’Torus’ Solid Types

Append _TORUS to the table name in order to make use of the G4Torus solid type. The
following table parameters are specific to the torus solid:

RINNER
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the torus tube. The default value is zero.

ROUTER
Variable type: DOUBLE(10,3)

Appendix A: Geometry description formats

This is a required parameter. This value will be used to specify the outer radius of the
torus tube.

e RSWEPT
Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the swept radius of the
torus. It is defined as being the distance from the center of the torus ring to the center
of the torus tube. For this reason this value should not be set to less than ROUTER.

e STARTPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the torus. The default value is zero.

e DELTAPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
swept angle of the torus. The default value is 2*PI.

A.2.1.6 ’Polycone’ Solid Types

Append _POLYCONE to the table name in order to make use of the G4Polycone solid type.
The following table parameters are specific to the polycone solid:

e NZPLANES
Variable type: INTEGER(11)

This is a required parameter. This value will be used to specify the number of z-planes
to be used in the polycone. This value must be set to greater than 1.

e PLANEPOS1, PLANEPOS2, ..., PLANEPOSN
Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the z-position of the
corresponding z-plane of the polycone. There should be as many PLANEPQOS parameters
set as the number of z-planes. For example, 3 z-planes will require that PLANEP0OS1,
PLANEPOS2, and PLANEPOS3 are all set up.

e RINNER1, RINNER2, ..., RINNERN
Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the inner radius of
the corresponding z-plane of the polycone. There should be as many RINNER parameters
set as the number of z-planes. For example, 3 z-planes will require that RINNER1,
RINNER2, and RINNER3 are all set up.

e ROUTER1, ROUTER2, ..., ROUTERN
Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the outer radius of
the corresponding z-plane of the polycone. There should be as many ROUTER parameters
set as the number of z-planes. For example, 3 z-planes will require that ROUTER1,
ROUTER2, and ROUTERS are all set up.

Appendix A: Geometry description formats

e STARTPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the polycone. The default value is zero.

e DELTAPHI
Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
angle of the polycone. The default value is 2*PI.

A.2.1.7 ’Elliptical Cone’ Solid Types

Append _ELLIPTICALCONE to the table name in order to make use of the G4Ellipticalcone
solid type. The following table parameters are specific to the elliptical cone solid:

e XSEMIAXIS

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the Semiaxis in X.
e YSEMIAXIS

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the Semiaxis in Y.
e LENGTHZ

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the height of the
elliptical cone.

e ZCUT
Variable type: DOUBLE(10,3)
This is a required parameter. This value will be used to specify the upper cut plane
level.
Note that the above parameters are used to define an elliptical cone with the following
parametric equations (in the usual Geant4 way):
x = XSEMIAXIS * (LENGTHZ - u) / u * Cos(v)
Y = YSEMIAXIS * (LENGTHZ - u) / u * Sin(v)
z=u

where v is between 0 and 2*PI and u between 0 and h respectively.

A.2.2 Creating a geometry list

A geometry list is a simple file consisting of a list of filenames that contain geometry
descriptions. This is the file that should be passed to the GMAD file when defining the
mokka element. An example of a geometry list containing 'boxes.sql’ and ’cones.sql’ would
be:

'#’ symbols can be used for commenting out an entire line
/directory/boxes.sql

/directory/cones.sql

Appendix C: Bunch description formats

A.2.3 Defining a Mokka element in the gmad file
The Mokka element can be defined by the following command:
<element_name> : element, geometry=format:filename, attributes

where format must be set to mokka and filename must point to a file that contains a
list of files that have the geometry descriptions.

for example,

collimator : element, geometry=mokka:coll_geomlist.sql

A.3 gdml

GDML is a XML schema for detector description. GDML will be supported as an external
format starting from next release.

Appendix B Field description formats

The element with user-defined physical geometry is defined by command
<element_name> : element, geometry=format:filename, attributes
for example,

colli : element, geometry=plain:colli.geom

Appendix C Bunch description formats

For compatibility with other simulation codes following bunch formats can be read. For
example, to use the file distr.dat as input the beam definition should look like

beam, particle="e-",distrType="guineapig_bunch",distrFile="distr.dat"

The formats currently supported are listed below:”

e guineapig_bunch : E[GeV] x[micrometre] y[micrometre| z[micrometre] x’[microrad]
y’[microrad]

e guineapig_slac : E[GeV] x'[rad] y’[rad] z[nanometre| x[nanometre| y[micrometre]

e guineapig_pairs : E[GeV] x[rad] y[rad] z[rad] x[nanometre] y[nanometre]
z[nanometre] (here a particle with E>0 is assumed to be an electron and with E<0 a
positron.)

e cain: ...

A custom distribution file format can be specified in the form
distrType="fieldl[unitl]:fieldl[unitl]:...

For instance:

7 see src/BDSBunch.cc for more details

Chapter 8: References

beam, particle="e-",
energy=ener * GeV,
nparticles=1le+3,
distrType="pt[1]:E[GeV] :xp[rad] :yp[rad] :z[mum] :x[nm] :y [nm] ",
distrFile="bunches/beam.dat";

The following distribution types can also be generated:®

o Gaussian: beam, distrType="gauss", sigmaX=..., sigmaXp=..., sigma¥=...,
sigmaYp=..., sigmaE=...,

e Elliptic shell : a thin elliptic shell in x,x’ and y,y’ with given semiaxes
beam,distrType="eshell" ,x=...,Xp=...,y=...,ypP=...;

e Ring : beam,distrType="ring"; X0 YO Rmin Rmax sigmall

BAN-

References

G. Blair, Simulation of the CLIC Beam Delivery System Using BDSIM, CLIC Note
509

Root User’s Guide, http://root.cern.ch/root/doc/RootDoc.html
Geant4 User’s Guide, http://geant4.cern.ch/support/userdocuments.shtml
MAD-X User’s Guide, http://mad.home.cern.ch/mad/uguide.html

for example ’Basic course on Accelerator optics’ by Schmuesser, Rossbach, CERN Ac-
celerator school

8 see src/BDSBunch.cc for more details

