— geriptll.y

SIMSCRIPT Graphics
User's Manual

CACI

SIMSCRIPT Graphics

Copyright © 1984, 2003
All rights reserved. No part of this publication may be reproduced by any means without written permission from CACL
If there are questions regarding the use or availability of this product, please contact CACI at any of the following addresses:

For product Information contact:

CACI Products Company CACI Worldwide Headquarters
1011 Camino Del Rio South, suite 230 1100 North Glebe Road

San Diego, California 92108 Arlington, Virginia 22201
Telephone: (619) 542-5224 Telephone (703)841-7800
www.caciasl.com www.caci.com

For technical support contact:
Manager of Technical Support
CACI Products Company

1011 Camino Del Rio South #230
San Diego, CA 92108

Telephone: (619) 542-5224

simscript@caci.com

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the responsibility
for any consequences resulting from the use thereof. The information contained herein is subject to change. Revisions to this
publication Or new editions of it may be issued to incorporate such change.

SIMSCRIPT 11.5 is a registered trademark and service mark of CACI Products Company.

1.
2.

CONTENTS

Introduction to SIMSCRIPT Graphicsc..cccoviecivrecssercsssnncssnncssencssssscssssscsesseses 1
LCOMS coriritiritiicttecteecteesteessnteessssecssssesssasesssssessssnessssesssssnsssssesssssnssssasssssasssssnsses 3
2.1 Getting Started: Adding a Simple ICON.........ieeivvrrinreincensscserssessanssassssesans 3
2.2 Getting Started: Showing the ICoNiieneinvenninseinsennicsenssessssssnssssosans 3
2.3 Using the IcoN Editor.......uiiiiiniinniinceinnneinnencnssissnncssssssasssssssssssssssssassssassssssssae 4
2.3.1 Draw Tool Palette: Creating New Shapesc.ccccceveererieneenieniicneenienieneene 5
2.3.2 Draw Tool Palette: Zoom In and OUtc.ceeieriieniieiiieiieeieeeeeeeeee e 5
2.3.3 Fill Palette: Specifying the Fill Style of a Shape........ccccovvvvviieciiiiiiiieieee. 6
2.3.4 Dash and Width Palettes: Specifying Line Style.........ccccooieviiiniiiiiinienieenen. 6
2.3.5 Font Palette: Vector and System Text FOnts.........cccccvveeevieeciieecieecieecie e 6
2.3.6 Color Palette: Change the Color of Anything............cccecveviieiieniiieiienieeeeee, 7
2.3.7 Selecting, Moving and Resizing Shapes.........cccccveeviieeeiieenieeeeiee e 7
2.3. 8 EItING POINTS....cuviiiiiiiieiiecie ettt ettt ettt et 7
2.3.9 EdItING TEXE c.uviieiiiieeiie ettt ettt e e etee et e e b e e et e e etaeeenseeennaeeennseeennneas 8
2.3.10 Changing Stacking OrdeT............cccuevuieiiiriieiieeieeriee ettt 8
2.3.11 USING the GIid.....cceoiiieiiiieeiieeciie ettt e e e e e 8
2.3.12 Changing Properties of the Whole Icon...........ccccoevieiiiiiniiiiiiniicieieeeeee, 8
2.3.13 Using JPEG Images in YOur ICON........ccccoevvveeiiiieiiiecieeeeeeeee e 10
2.3.14 Copying Icons From Other Projectsccoecvevieriienieiiieieeieeee e 12
2.4 Declaring Icons as ENtities........ceiiiiinneinninninsennensnsssnssscsansssssasssasssssasosassns 12
2.5 Predefined Attributes of Graphic Entities.......cccccceervereveencercrecncercsecccnnenns 13
2.6 Animating Icons declared as Dynamic Graphic Entities..........ccccceeueune 13
2.7 Simulation Time and Real Time..........nininnesinenencsniesesessnsessccscnnes 14
2.8 Coordinate SYStEMSccuivieiinreiinnnninneinssnsanssensssssssssssssssassssssssssassssssasssasses 15
2.9 Editing Background vs. Movable Icons in the Icon Editor..................... 16
2.9.1 Editing Movable [CONScocuiiiiiiieiiesie e 16
2.9.2 Editing Background ICONS.........c.cceiieiiiriiiiieeie ettt 17
2.10 Viewing Transformations...........ccccicceincecnncsecsecsnncssssscsassssssssssassssssasssasans 17
2.11 Selecting an Icon in YOUr Programccieiceenccnnisssssssssssssssssasses 19
2.11.1 Synchronous SEIECtION..........eeeriieeiiieeiiie ettt s 19
2.11.2 Asynchronous SEIECHIONcccueevuiieiieriiieiieeie et 19
2.12 Attaching a dynamic text value to your iCON........cccievererersnicrnnsncsaseanens 20
2.13 Changing the Color of an ICoNieicreineccicecnccnnecseesncsnscnesnsesnen 21
2.14 Destroying and Erasing ICONScuiveericrecnecsencessncsanssnssanssassssssasesassns 22
Segments 23
B TR T 0 o 23
3.2 USING SEOMENLScceeecuieeiinnnninsensnssnnssssssssassssssssssssossssssssassssssssssssssassssssasssasses 24

SIMSCRIPT Graphics

i

3.3 Adding Primitives to a Segment or Display Routine.........cccceeeveeeueeannne 25
3.4 Drawing Filled Areasiieineinneinnnicnsisssisssnssssssssssssssssssssssssssssssssssssssase 25
3.5 Drawing LiNES......cccciericceinnnsanssensssssanssasssssasssssssssssssssssssssassssssssssssssassssssasssasses 26
3.6 Drawing Markers........c.ccecvieneinrensensnnnsensnssasssesssnsssssssssssssassssssssssssossssssssasssssses 27
3.7 Drawing TeXt......cccvienveinsinnseissancsssisssnosesssssossssssssssssssssssssssssassssssssassssssssassssssssase 27
3.7.1 System FONt BrOWSETccciiiuiiiiiiiiiee et e e e saeee s 30
3.8 SeIMENt PriOrity ...cccceveerernencunsunsisnssnnsensesssnsansassassassasssssssosssssossssassassassassssossossos 31
3.8.1 USING PLIOTILY ZETO ...ttt 31
3.9 Display ROULINEScccivreininnninsensinsannsnnsnnsanssessssssssssssssssasssssssssssssssssssssasssssses 32
3.10 Customizing an Icon Defined in SIMSCRIPT Studio.........cccccceeureureuccncee 35
3.11 Modeling Transformationscciiienicreinecnicnennensancsnnsssssnncsnsssssasensans 36
Creating Presentation Graphicsccccceeeveicscuercscnnicscnnecsennes 38
4.1 Using SIMSCRIPT Studio to Create and Edit a Graph..........cccccecveueeuceee. 38
4.1.1Changing Size and Position of @ Graph.........c..ccccceviriininiiniiniineecee 39
4.1.2 Z00m IN and OUL.......ooiiiiiiiiiiiciiccie ettt eve e 40
4.1.3 Changing Color, Font, Fill, and Line Styles.........ccccccveevvieniiieniiieeieeeieeeee 40
4.1.4 Changing Data Related Properties..........ccoeeveriieriierieeniienieeieeie e 40
4.2 Displaying Single Variables in @ Meter...........iiinncninsecnncsansssssasosanns 40
4.2.1 Creating a Meter in SIMSCRIPT Studiocccoveviieiieniiiiiecieeieecie e 41
4.2.2 Monitoring a Single Variable in your Programccccecevvieniiviniinenncnnns 42
4.3 CRAITS ...ucuercriiretctiinnennineninnissesiniesssssinsssssessssssstssssssssssssssssssssssssssanes 43
4.3.1 Editing a Chart in SIMSCRIPT Studio.......cccceeveeriieriieiieeiieieeieeree e 43
4.3.2 Chart Properties Dialog BOX......ccceeviiiiiiiieiiieeieeeeeeeeee e 43
4.3.3 X,Y,Y2 Axis Detail Dialog BOX.......cccveeciiiiiiiiieiiieieecieceeee e 45
4.3.4 Attributes 0f @ Data Set.......ccccveeeiiiieiiieeiieeieeeee e 45
4.4 HiSTOgramsS.......cueieveiiiveiernnncanssnesssissssssssssssssssssosssssssssssssssassssssssassssssssassssssssasoses 47
4.5 TiMe Trace PIOtS......iiiciniictiincsninnnscnsiesessisssesscsssssssssessesssssssesses 51
4.6 SIMPIE X-Y PIOLSceceeeeneecercreenencsneecsanesnnessescssnessasssssessesessssssassssssssassssssssaseses 52
4.7 CIOCKS...ucuitiirerinirentiniinsensinisessissiissississisessississsseesssssssssssssssssessessssssssssssssssssanes 53
4.7.1 Editing a Clock in SIMSCRIPT Studioc.coceevueruiniininiinieeeieeicneeieneene 54
4.7.2 Adding a Clock to Your Program..........ccccceeeviieeiiieenieeeieecieeeeeeeenn 54
T R TN 04 - 1 o £ 55
4.8.1 Editing a Pie chart in SIMSCRIPT Studio.......c.cceocvveeviieeiiieeiee e, 56
4.8.2 Adding a Pie Chart to Your Program...........cccccceevviieiieniiienieiiieieeieeee, 56
DIAloZ BOXES .euuvrreruricssnrinssnncssnnessnncssssncssssicssssssssssesssssesssssosssssssssssssssssssssssssssssssssss 61
5.1 Using the Dialog BOX EdItOr..........cciiiniinrinnninnencnncssancsssssssesssssnsosassssae 61
5.2 Showing a Dialog Box in SIMSCRIPTccccveniereincensncsnnssncsanssasssnssasoasans 62

5.3 Setting and Accessing Field Valuescuivivinnennennensensnnsensansasssnossosens 63

5.4 Using Control Routines to get Input Notification.................cccucueueucuen. 64
5.5 Enable and Disable fields..........nerenenesnsnnenisenencnnisenennesnnsecsennens 66
5.6 Dialog Boxes: Field TYPEScccevrrinrersensanssensnsssnsssssssssasssssssssssssssssssssasosssses 66
5.6.1 BULTOMIS 1ottt et e e e e e e e st e e e e entaeeeeennseeeeennnaeaaens 67
5.6.2 CRECK BOX...iitieiiiiiieiieiee ettt ettt st 68
5.6.3 COMDBO BOX ...viiiiiiiiiiiiciieeee ettt ettt et eba e e earae s 68
5.6.4 Labels & Group BOXES.......cccueeiiiriiiiiieiieeieecieeeie ettt ere e eve e e ssve e 69
5.6.5 LISt BOX..uiiiiiiiiiiiieciee ettt ettt e et e ettt e e et e e et e e sara e e abaeenaraeenarae s 70
5.6.6 MUlti-ling TeXt BOX ...c..cciuiiiiieiieiieeieeciie ettt eve e esse s 72
5.60.7 Progress Bar......c..ooiiiiiiiiiieeee e 73
5.6.8 RAdIO BOX ..coiiiiiiiiiiieieee s 73
5.0.9 TADIC ..ot e e et e e e e araeenaree s 74
5.6.10 TEXE BOX.ouutiiieiieiieieeees ettt sttt st na e 77
5.6.11 TIE€ VIEW LISt ..viiiiiiiiiiieciiic ettt et e e e 77
5.6.12 VAl BOX ..couiiiiiiiiieiieeeeee e e 80
5.7 Tabbed Dialogsccccvivruinneinnninnninsainneissancsssissssssssssssssssssssssssssssasssssssssssssssssass 81
5.8 Dialog DOX Properties........cuiceinciccicseissnssanssssssnsssnssssssssassssssssssssssassssssasosasses 82
5.8.1 Dialog positioning in SIMSCRIPTc.ccooiiiiiiiiiiieeieecieeceeee e 83
5.9 Predefined Dialog BOXES.......ccciviericceinnnnancsnnsncsnncsacsesssancssssssssasssassssssasssassn 84
5.9.1 SIMple MeSSAZE BOX....uuiiiiiiieiiiieciieeciee ettt et 84
5.9.2 Custom Message BOXcoeviiiiiiiiiiiiieiie e 84
5.9.3 File Browser DIalOg......c..oeeiiiieiiiieeiieciieeeee ettt 86
5.9.4 Font Browser DIialog.......c.cooviieiiiiiiiiieieeieee ettt 86
MENU BaTS..cciiiiniiiiinininsnnnininsninsnenseisssenneicsesssesssssssesssesssssessassssssssassssssssssssasssss 87
6.1 Constructing a Menu Bar in SIMSCRIPT Studio........ccccceceeeueeruccceecneccanne 87
6.1.1 Menu Bar Propertiesccueiuieiieiiieiieeieee et 88
6.1.2 MENU PrOPEITICS ...eeeuviieeiiieeiiieciie ettt ettt et e e e e e e e ennaeas 89
6.1.3 Menu [tem Properties........cccvieiiieiiiieeiiieeiee ettt 89
6.2 Showing the Menu Bar in your program..............cceccecceenscnsssssessessesn 90
6.3 Writing a Control Routine for the Menu bar.............ccuiveeciccecccecsnecanne 90
6.4 Using a Menu Bar within a Simulation..............inninencnnseccnnens 91
6.5 Changing Menus, Sub-Menus and Menu Items at Runtime.................. 93
6.5.1 Accessing Menus and Menu [temSccceevieriienieeiiienieeieeee e 93
6.5.2 AccesSing Menus 1N IMENUSeeeiiiieiiieeiiieerieeesteeesieeeireeseeeeeseeessreeesnneeas 94
6.5.3 Adding Checkmarks to Menu [temsc.cccceeviiieniiiiiienieeiee e, 94
6.5.4 Deactivate Menu [temScooouiiiiiiiiiiiiieieeeee e 94
6.6 POPUP MENUS.......cceieeiininnnninsancsnissanesssssassssssssssssssssassssssssassssssssasessssssassssssssase 96
6.6.1 Creating and Displaying the Popup Menu.......c..ccccceveviriiiniininiiniineeicnene 97
6.6.2 Using Popup Menus in @ SIMulationcccceeveeerieniiienienieenieeie e 97

il

SIMSCRIPT Graphics

7.

9.

v

PALELLES cccuueeeenieiiiiiiiniininiecitiicineesnniessnnecssnnecssssessssssesssssssssssssssssssssnsssssnssssssssssanes 99
7.1 Constructing a Palette in SIMSCRIPT Studioccccccceeverieccunccansncsanesanan 99
7.1.1 Properties of the Paletteccceeviiiriieiiiiiiiciieceeeee e 100
7.1.2 Properties of a Palette BUttONcccooeiuiiiiiiiiiiiieeeceeeee e 101
7.1.3 Specifying a Button Face Image........cccceeeviiieiiiiiiiiieieeee e 102
7.1.4 Palette SeParators.....c..cccuereerieeiirienieeieeitenteete ettt sttt 102
7.2 Showing the Palette in your Program...........cceieeinecninsecsecsasssesssssnces 102
7.3 Writing Code for @ Palette..........iienineineeneneenecneensecsncsncsecsascsncsssenees 102
7.3.1 Writing a Control Routine for a Palette............ccceeevvieniiieniiieeieeeeeeeee 103
7.3.2 Writing a Process for an Asynchronous Palette............cccccceveiieniiinieniennn. 104
7.3.3 Handling Toggle Palette Buttons............cccecuvieeiieeriieeiieeieeeeeee e 105
7.3.4 Handling Drag and Drop Palette Buttonscceceeeieeiieniieniienieciieee 105
WINAOWS.cuiiiniiineiinnisnensennsnessnesssnessascssessssesssessssssssassssessssssssssssassssssssassssesssasssses 109
8.1 Setting and Getting the Attributes and Events of a Window............... 111
8.1.1 Window Attributes or “Fields”cccoiiiiiiiiiiieciie e 111
8.2 WINAOW EVENLScuiuirirriniiirinniniinsininnensessnnssessinssessessissscssssssssseans 112
8.3 Scrollable WINAOWSiviiniiineninisnninisninncsissssescsssssssesssssssssssssans 114
8.4 StATUS BATS..ucciueiiiiiitiiniininiinninniineinneissnisssecsssesssssssnssssssssesssssssssssssssssassssssssass 117
Routines and Globals for SIMSCRIPT Graphics........cciueenneecsenssncssnecssnecsannes 119

FIGURES

Figure 1-1: SIMSCRIPT Studio showing dialog box, icon, and source code editing. 2
Figure 2-1: Icon editor in SIMSCRIPT Studio.........ccovueeeiiieeiiieeieeciee e 4
Figure 2-2:The Icon TOOIDAT.........cc.coiiiiiieiieiie ettt 5
Figure 2-3:The Draw Tool Paletteccccuviiiiiiiiiieeiieceecee et 6
Figure 2-4:Fill, Line and Text Palettesccceeviiiiieniieiiecieeieeee et 7
Figure 2-5:Editing POINES.......ccciiiiiiieiii ettt ettt e aae e eaaeeens 8
Figure 2-6:JPEG file imported into the Icon Editor..........cocoeoiiiiniiiiniiniiiiiinceee 12
Figure 2-7: The viewing transformationccccccueeeiuieeriiieeriieesiee e eiee e e 18
Figure 3-1:Graphics produced by Example 3.1 code.........ccoevvreiieniiiiiiiniieiecieeieeee 30
Figure 3-2:0verlapping objects of different prioritycccoeeveeeeieeecieeeiiieeiee e, 32
Figure 3-3: Modeling transformations in aCtioncceecueeriieeiienieeiieenieeieesie e 37
Figure 4-1: The SIMSCRIPT Studio Graph Editorcceevviiieiiiiniieeieeee e 39
Figure 4-2: Meters in SIMSCRIPTcccuiiiiiiiieiieiee ettt 41
Figure 4-3: Three ways to show multiple data sets togethercccccveeeeveeeciieecieennnnn. 45
Figure 4-4: Data Set repreSENtaAtiONSc.ceceeerueerieeiieerieeieenieeteeseeesseesaeesseesseesseesseens 47
Figure 4-5:Bank model hiStOZram.cccvieeiiieiiieeiiie et 48
Figure 4-6:Time trace plot using the “scrolling window”.cccceevevienieninienieneenens 51
FAGUIE 4-7: CLOCKS. ...eiiiiiieeiie ettt e e et e e st e e e sae e e sbaeessaeeeenseeenaee s 54
Figure 4-8: A typical pie-chart shown in SIMSCRIPT.ccccceieiiiiiiiiiiiiiieeeeee 56
Figure 5-1:The dialog boX €ditOrcceeeiiiiiiiiieciieeciee e e e 62
Figure 6-1: Editing a menu-bar in SIMSCRIPT Studio........cccccoceevieriiniininiiiiinieiieee 88
Figure 6-2: The menu-bar from Figure 6.1 displayed in a program.cccceevvevuveenenn. 88
Figure 6-3: Cascading menus used in a small simulation program.c...cccceeeeeveneennene 94
Figure 6-4: Right clicking on the “earth” icon shows a special popup menu................... 97
Figure 7-1: Palette Editor in SIMSCRIPT Studio........ccccevviieiiiniiiiiiniieieeieeeeeeeen 100
Figure 8-1: Two windows opened by SIMSCRIPT..........ccccoooiiiiiiiiiiiieeeeeeeeeeeee 111
TABLES
Table 4-1: Mapping graph types to variable types........cceceeeiieririiienieeiieie e 40
Table 5-1:How to access various fields using display entity attributes.coeeun...e. 64
Table 5-2: Dialog box containing many fields.ccccevviieiiiiiiiiiiini e 67
Table 5-3: Typical use of @ SIMSCRIPT Table.......c..ccoeeiieriiiiiiiieeiieiecieeeeeee e 76
Table 5-4: Dialog boX CONtAINING @ rEE. ..c.eeeuieriieiieeiieiie et ettt 80
Table 5-5:Tabbed dialog box created by SIMSCRIPT Studioccccvvevieriienienirenenne, 82
Table 5-6: SIMSCRIPT MeSSAZE DOX....ccoveiiiriiiiiiieiienieeieeitesieete ettt 84
Table 8-1: Window Display Field Namesccccccueeviieriieiiieiieeieeeecieeieeeve e 112
Table 8-2: EVENt NAIMES.cc.eiiiiiiiiieiieiie ettt ettt et ettt ettt e ebeesneeeneeans 113

SIMSCRIPT Graphics

vi

1. Introduction to SIMSCRIPT Graphics

The goal of a simulation is to increase the understanding of the operation of a complex
system. Unfortunately, the results of simulation studies are often presented only as pages
of numbers, which fail to communicate the understanding gained. The complexity of the
system and the simulation can make it difficult for users and decision makers to fully
appreciate the interactions between elements of the system. In SIMSCRIPT, animated
graphics called icons clearly show the operation of the simulated system and graphic
results are easily evaluated. System operation is better understood, and decision makers
have more confidence in the simulation results. Graphical representation also facilitates
debugging. Coding, data and modeling errors are apparent, thus avoiding the need for
tedious error tracking. SIMSCRIPT I1.5 has a wide range of applications, and is prepared
with built in language features allowing the programmer to represent entities ranging
from aircraft on runways to messages in a communications network.

Icons are custom built graphical objects usually composed of colored circles, lines
polygons, and text. They can be used to represent anything from single moving objects
to a complicated static background. An icon can even contain JPEG images of any
dimension. Using SIMSCRIPT Studio’s icon editor, a template of the icon is created,
named, and saved to the “graphics.sg2” file. Through the SIMSCRIPT “Show” and
“Display” statements, your program can load copies of the icon into display entities.

Effective visualization of statistical quantities may also be important. A time-elapsing
simulation sometimes requires that dials, level meters, 2-d plot chars, histograms and pie-
charts be dynamic. This allows the user to changes to monitored quantities as they take
place. SIMSCRIPT provides several predefined graph objects for viewing single
quantities in dials, level meters, or histograms. 2-d charts and pie charts allow a whole
set of data points to be viewed. Graphs are updated automatically as data quantities
change.

Most modern applications allow more user interaction than in the past. Users expect to
be able to control the whole application through a menu-bar displayed at the top of the
window, or to use a smaller context menu to dynamically make changes to an individual
item. Dialog boxes are used as a convenient way to communicate data quantities to a
program. Applications will also include palettes, scroll bars, and allow the user to
double-click or drag graphical object around the window. SIMSCRIPT provides support
for forms which include menu bars, dialog boxes, tool bars, and popup message boxes.
SIMSCRIPT supports these objects using JAVA which allowing programs to be
recompiled and executed on different operating systems without recoding or retooling the
graphical user interface.

The SIMSCRIPT Studio development environment provides a point and click interface
for creating objects falling into all three of the above categories of icons, graphs and
forms. SIMSCRIPT provides both language and runtime support allowing these objects

SIMSCRIPT Graphics

to be displayed in your program. The objects are contained in a graphics library file
called graphics.sg2 shown as a component in your SIMSCRIPT Studio project tree. The
names of all graphical objects can be seen by clicking on the (+) next to “graphics.sg2”.
Any existing object can be shown in a separate editor by double clicking on its name.
You can add new objects to the library by right-clicking on “graphics.sg2” then selecting
“new” from the popup menu.

Each chapter in this document explains a different facet of SIMSCRIPT graphics.
Chapter 2 describes icons in detail — how to create them in SIMSCRIPT Studio, and how
to use them in the program. Chapter 3 outlines the use of segments and display routines
to create graphics by program code only. Chapter 4 explains how to make use of
SIMSCRIPT’s built in chart, graph and monitoring support. In Chapter 6, we move away
from the canvas drawn graphics and toward user interface support by describing the use
of dialog boxes. Components such as buttons, text and value boxes, list boxes, and tables
are studied along with their interaction with both the code and the user. Chapter 7 is
devoted to menu-bars with emphasis on how to create and use them in your program.
Chapter 8 explains the use of palettes and toolbars. Chapter 9 includes topics related to
windows. For example, how to create multiple windows, use scrollbars to implement a
pan and zoom, show a status bar, and write code to receive notification of mouse,
scrollbar and window manipulation events caused by user interaction.

#i SIMSCRIPT IL5 Simulation Studio - calship

File Edit Project Options Windoww Help

e RN EEETE

78 aiacuiatl W

=il graphics.sg2 =
..... coastinicn process SHIP =
_____ ;] define SHIP.ICON L - R
freighter.icn define PORT, ‘I}w" s
----- [E=) help.frm - 5z
----- [EE Dialog - init.frm E
o Ituo.icn .]
L ftugpicn Mumber of freighters: I5.D T
pactitlg.icn INumber of tankers: |5
& pedroicn
@ pedro_sav.icn Length of simulation (in days): |3EI.D
o rug.icn
B rtugp.icn Timescale in seconds/days: IDD.D
% tankericn
g valdezicn oK Hel Cancel
S waldez_savicn | s | 4'

-3 temp
=[] sources

S e R EERERE

"D:yDocs\newexanplestcalshiptbinycalship. exe™ BLIST.THMP
Creating library D:\Docsinewexanmplesicalshiptbintcalship.lib and object
D:vDocsynewexanplesycalshipiybinycalship. exp

—
Froject Built - |

Ready

Figure 1-1: SIMSCRIPT Studio showing dialog box, icon, and source code editing.

2.lcons

Icons are used by SIMSCRIPT I1.5 to graphically represent any moving or static object
inside a window. Icons are typically composed of a group of shapes such as lines,
polygons, etc. but can include text and even JPEG images. An icon can be arbitrarily
complex. SIMSCRIPT Studio provides an icon editor that allows these icons to be
defined using a simple and easy to use drag and drop interface. An icon can also be
defined entirely by your program. Icons are accessed by your SIMSCRIPT application
using the DISPLAY and SHOW statements.

2.1 Getting Started: Adding a Simple Icon

To create a new icon, right-click on the graphics library shown in the contents pane
(typically “graphics.sg2”) and select “New” from the popup menu. Type a name for your
icon into the dialog box. Choose this name carefully since it must be provided to the
SHOW or DISPLAY statement in your program. Usually icon names end in “.icn”. Now
select “Icon” from the drop down list and click the “Create” button.

When an icon editor window is active a toolbar will appear along the right edge of
SIMSCRIPT Studio called the “Icon toolbar”. Clicking on any of the buttons in this
toolbar will display a row of buttons that can be used to select current fill style, dash,
font, color or mode.

Example 2.1: Create a rectangle icon

Create a new icon called “iconl.icn” and add a rectangle to it. To do this, first click on
the top button in the Icon editor toolbar. Now select the “rectangle” tool (third button
from the left). Click in two different locations in the canvas to define the corners of a
rectangle. Save your changes using the File/Save menu.

2.2 Getting Started: Showing the Icon

The simplest way to show an icon in your SIMSCRIPT program is by using the
display statement:

Display <icon pointer> [with <icon name> [at (<x>, <y>)]]

Where <icon pointer> is your local variable of type pointer, <icon name> is
the same name used by the icon editor, and <x> and <y> define where in the window the
icon is to be placed. (NOTE: The “with” and “at” clauses are optional).

Example 2.2: Show the rectangle in a program

SIMSCRIPT Graphics

In the next part of this example, we will create a small SIMSCRIPT program to display
the icon created in Example 2.1.

Main

Define ICON.PTR as a pointer variable

Display ICON.PTR with "iconl.icn" at (16383.0, 16383.0)
Read as /

End

Note that in the simplest case, you can define a pointer variable to hold your icon.
SIMSCRIPT allows processes and temporary entities to be declared as icons in your
Preamble. See “Declaring Icons as Entities”.

2.3 Using the Icon Editor

The Icon toolbar is located on the right side of SIMSCRIPT Studio’s window. The
toolbar contains 6 buttons that allow you to create new shapes, change the style and color
of existing shapes, change the font of any selected text, or even zoom in and out.
Clicking on a button will pop-up another row of buttons.

|[o]=] fﬁ|+|?<||_

=R ahln

graphics.s02
- dials.orf
—. . dials10.gr
-l dialkas.grf
é dialyas.arf
ejectfrm
- pchute.icn

pilott.icn
pilotz.icn

plane.icn
seaticn

L5 wplodeicn 7|

All Teons, Graphs, Forms Icon Toolhar |-

in the graphics library | Coordinates under mouse, zoom factor |

Selected: pilot3.icn #21 Y20 Zoom:d |

Figure 2-1: Icon editor in SIMSCRIPT Studio

Icons

—| Show Draw Tool Pa.lette|
—— Show Fill Style Palette |

—— Show Line Style Palette |
—— Show Line Width Palette]
—| Show Text Font Palette |
—| Show Color Palette |

EINLE

Figure 2-2:The Icon Toolbar

2.3.1 Draw Tool Palette: Creating New Shapes

The draw tool palette is displayed by clicking on the top button in the icon toolbar
(Initially shown with a small arrow pointing north-west). The palette allows you to
create any of the following shapes: Rectangles, filled polygons, polylines, circles, sectors,
arcs, filled regions, or text (see figure 2.3). To add a new shape to your icon, click on its
button in the mode palette then click in the Icon’s edit window. Rectangles and circles
require 2 clicks to define the size and shape. You must click three times to define an arc
or sector. Shapes such as polylines or polygons require multiple clicks to define the
points. When creating a polyline or polygon, double-click to terminate a sequence of line
segments.

2.3.2 Draw Tool Palette: Zoom In and Out

The draw tool palette also contains a buttons that will allow you to zoom in and out. This
is handy when editing a very small icon. By clicking on the magnifying glass, you enter
“zoom” mode. When in zoom mode you zoom by positioning the mouse of the area of
interest then clicking with the left button. Clicking with the right mouse button will
zoom out. Click on the “Arrow” button to leave zoom mode.

SIMSCRIPT Graphics

| Selection WMode |

| Zoom In / Out |

|DraWRectangle |

| Draw Polygon |

| Draw Polyline |

| Draw Circle |

| Draw Sector |

| Draw Arc |

| Freehand Fill |

| Freehand Li.ne|
| AddText |

|
[[l A @ Y R

Figure 2-3:The Draw Tool Palette

2.3.3 Fill Palette: Specifying the Fill Style of a Shape

This palette will allow you to change the hatch pattern used to fill rectangles and
polygons. To change style, first select any polygon in the edit window. Click on the
second button from the top (Blue square) to expose the fill style palette then select one of
the styles.

2.3.4 Dash and Width Palettes: Specifying Line Style

The third and fourth buttons from the top of the toolbar allow you to set the dash style
and width of line shapes. After selecting an existing line segment or polyline, click on
the third button to select a new dash style. Clicking on the fourth button will allow you
to set the width of the line.

2.3.5 Font Palette: Vector and System Text Fonts

Clicking on the fifth button (shown as “Ab”) allows you to change the font of a selected
text primitive. The first eight fonts on the font palette are called vector fonts. These
fonts are built into SIMSCRIPT graphics and will look identical regardless of which
operating system is being used. Vector fonts can be arbitrarily resized and rotated to any
angle. The last button on the font palette allows you to select from one of the fonts
loaded with the operating system. Clicking on the “ST” button will display a “font
browser” dialog that will allow you to specify a font name, point size and font style.

Icons

These system fonts generally look better than vector fonts, but are not guaranteed to be
portable. Text primitives having system fonts will remain the same size regardless of
parent window geometry.

2.3.6 Color Palette: Change the Color of Anything

The color of any shape can be changed by first selecting it then choosing a color from the
color palette. The color palette is shown when you click on the bottom button.

[Om = = = = W B—] Fill Style Palette |

| e e s . —{ T ine Widlth Palette]
IﬂlbllAbllﬁbllAbIIAhIIAHIAﬁllithI 57— Text Font Palette |
1

Vector Fonts System Fonts

{Select from dialog)

Figure 2-4:Fill, Line and Text Palettes

2.3.7 Selecting, Moving and Resizing Shapes

When you click on a shape in the icon editor it will be surrounded by four green squares
called resize handles. In addition, the toolbar will reflect the color and style of whichever
shape is currently selected. You can select multiple shapes by clicking on the
background and dragging a selection rectangle over the shape or shapes you wish to
choose. Another way to make multiple selections is to hold down the <Shift> key while
clicking on shapes. Use the “Edit / Select All” menu to select the entire icon. Click on
the background to de-select all shapes.

The selected shape(s) can be moved by clicking and dragging with the mouse. To resize
a selected shape, drag any of the four green resize handles.

The “Cut”, “Copy” and “Paste” items from the “Edit” menu can be used on any selected
shape or shapes. To delete any shape, select it then press the <Delete> key.

2.3.8 Editing Points

Clicking on a line or polygon that is already selected will permit you to edit the points
that define the shape. When in point edit mode, each point along a shape’s boundary is
marked by a green square called a point marker. You can change the shape by dragging
any of the point markers with the mouse. New points can be added to the shape by

SIMSCRIPT Graphics

clicking in between two point markers. You can delete a point marker by clicking on it
then pressing the <Delete> key. Click on the background to leave point edit mode.

| Point Markers |

Figure 2-5:Editing Points

2.3.9 Editing Text

You can change the text shown in an icon by double clicking on it showing the “Text
property” dialog box. From this dialog you can specify horizontal and vertical alignment,
an angle of rotation (in degrees), and the actual text string. The edit box will accept the
<Return> key allowing you to create multi-lined text shapes. Horizontal text alignment
will apply to each individual line in multi-lined text. However, vertical alignment applies
to the bounding box of all lines of text.

2.3.10 Changing Stacking Order

If you wish for a shape to appear on top of all other shapes in the icon, select it then use
the “Edit / To Front” menu item. The “Edit / To Back” menu can be used to place the
selected shape underneath all the other shapes. The “To Front” and “To Back” buttons
on the top toolbar can be used as shortcuts. You can even select multiple shapes to be
brought to front or back.

2.3.11 Using the Grid

You can turn on the grid using the “Edit / Grid” menu. Spacing of grid lines can be
specified by SETWORLD.R units or by total number of grid-lines. The “Snap to grid”
feature is useful for making precise alignment of shapes in the icon. When this feature is
turned on, all size, move and point edit operations will result in the modified component
being aligned to the closest intersection pair of grid lines.

2.3.12 Changing Properties of the Whole Icon

The “Icon Properties” dialog box can be displayed using the “Edit / Details” menu. This
will allow you to specify the following:

Icons

Name

This is the name of the icon that is referenced from your application program. This value
should be passed to the SIMSCRIPT “SHOW” or “DISPLAY” statement in your code.
Usually icon names end with a “.icn” extension.

Priority

The priority can be used to specify the behavior of two overlapping icons in an
application program. Icons given a higher priority number will appear on top or lower
priority icons. This is the same value used for SEGPTY.A attribute of the icon’s display
entity in your program.

SETWORLD.R Parameters

The Xlow, Xhigh, Ylow and Yhigh fields contain the dimensions of the world coordinate
system. Usually these same values are passed to the SIMSCRIPT “SETWORLD.R”
routine. If SETWORLD.R is being used in your program, it is important to set these
fields accordingly to ensure that the icon appears to be sized correctly when display in the
application.

Center Point

The “X” and “Y” fields under “Center Point” identify the origin of your icon. When the
application program sets the location of an icon using a “DISPLAY <icon ptr> AT” or
“let LOCATION.A(<icon ptr>) =" statement, the icon is positioned relative to this origin.
You must clear the “Automatic recenter” check box before you can change the values. If
you are designing a static background, and want the objects to appear in your program
exactly where they appear in the editor, Set the center point to match the Xlow and Ylow
attributes under the SETWORLD . R parameters.

Automatic Recenter

Usually, if you are created an icon that is to be used as a “dynamic” graphic entity, you
will want to mark the geometric center point of an icon as its origin. If this is the case,
make sure the Automatic recenter box is checked. If your icon appears in the application
program to be positioned incorrectly, try enabling this option

Allow icons to scale with world

This check box defines how the icon is scaled when used in the application program. If
this option is checked, the icon will automatically be scaled according to the world
coordinate system defined by the application program. If this option is not set, the shape
will stay the same size no matter what values are passed to SETWORLD . R.

SIMSCRIPT Graphics

Example3: Creating a two wheeled “cart”

Begin by creating a new project and adding a new icon to it. (Right click on
“graphics.sg2”, select “new”. Select “Icon” from the list, type “icon3.icn” into the text
box then click on “Create”)

a) Turn on the grid by selecting the “Edit/Grid” option. Check “Snap to Grid” and
“Show grid” in the dialog box, then click OK.

b) Create a rectangle by clicking on the “Mode Palette” button (shown with an
arrow) at the top of the icon editor toolbar. Select the rectangle from the list.
Click down and up in two different locations in the canvas to define the rectangle.

c) Drag the rectangle to the middle of the canvas. Resize the rectangle by dragging
the small green boxes on its corners.

d) Set rectangle fill-style by clicking on the Style button (second from the top of the
icon editor toolbar).

e) With the rectangle selected, click on the bottom button in the toolbar to choose a
color.

f) Add a wheel to the cart by clicking on the mode button then choosing the “circle”.
Click (down then up) on the bottom left corner of the rectangle, then click a
couple of grids away to define the size of the circle.

g) With the circle selected, use the “Edit/Copy” menu then the “Edit/Paste” menu to
make a copy of the circle. Drag the duplicate to the lower right corner of the
rectangle.

h) To resize the whole cart, first drag the mouse over all visible primitives selecting
the rectangle and two circles. (Or click on each primitive while holding down the
“shift” key.) Use the “Edit/Group” menu to create a single group. Drag one of
the four green squares to resize the cart. Use the “Edit/Ungroup” option to allow
individual primitives to be positioned.

1) Click on “Edit/Details” to show the “Image Properties” dialog box. Verify that
the name of the icon is correct and that the “Automatic Recenter” box is checked.
Use the “File/Save” menu to save the icon.

2.3.13 Using JPEG Images in Your Icon

In certain cases, you may want to use an image in your icon that was creating from a
different source. For example, you may already have a highly detailed background image
that you wish to show in your program. Bitmap or “raster-file” image allow arbitrary
detail in the picture and very fast drawing speed in your application. SIMSCRIPT Studio
allows you to import JPEG raster file images into your icon. In addition, SIMSCRIPT
provides some predefined raster images that can also be added to your icon.

Before importing JPEG files into the icon editor, it is recommended that you first copy
these files into the same directory as your “graphics.sg2” file. Use the “Edit / Insert
JPEG” menu to display the “Import” dialog. Click on the “Browse Files” button to select
a JPEG file name. You can also select one of the built in raster images by clicking on the
“Browse Resources” button. The resulting dialog will show samples of all of the

10

Icons

predefined images that can be added to your icon. Click on “OK” once you have either
chosen a file or predefined image.

The JPEG image can be moved and resized the same as any other rectangular shape.

To specify options for JPEG images, double-click on the image in the icon editor. The
following options are available:

Resizable:

If checked, you can change the width and height of this object in the editor. You can
specify the size of the JPEG in World coordinate units. This also means that the image
will change in pixel size in your application whenever the user resizes the window. If
not checked, the image will always remain its original size (in pixels) in your program
regardless of window size or viewing transformation. In this case the image may occupy
more or less of the normalized world coordinate space as the user resizes the window.

One drawback of using a resizable JPEG image is that its quality may be reduced as it is
resized.

H. Align:

Using the alignment features, your program can position the left, right, top, or bottom
edge or any corner of the image without knowing its size in coordinate units. This is
especially useful for non-resizable images, where the extent of world coordinate space
occupied by the image is not known and varies with the size of the window. Click in the
combo box and select from Left, Center, or Right alignment of the image.

V. Align:
Click in the combo box and select from Top, Middle, or Bottom alignment of the image.

Icon Name:

You can change the name of the JPEG file here. Click on the “Browse Files” to locate a
jpeg file, or “Browse Resources” to select one of the built in raster images. The icon
name must be specified WITHOUT the “.jpg” extension.

Browse Files:

Clicking on this button will allow you to select a new JPEG file for the image. The
image file should be located in the same directory as “graphics.sg2”.

Browse Resources:

Allows you to select from the set of predefined raster images. 24x24 and 32x32 images
are available.

11

SIMSCRIPT Graphics

#1 SIMSCRIPT IL.5 Simulation Studio - doc
File Edit Project Options Window Help
|| @[+]x] ¢ |®]e|w|s]) 2|z @n] | ¢
=43 bin Eicon - iconb.icn 2] %] T
Elm graphics.sg2
-l icong.icn 0
icont.icn
icon2icn —
icondicn
icond.icn |
L g b
- sre
4 3
Selected image imported
from JPEG file
Selected: iconB.ich ¥:2807 ¥:12582 Zoom:1 |

Figure 2-6:JPEG file imported into the Icon Editor

2.3.14 Copying Icons From Other Projects

Users who are maintaining more than one project may need to copy icons from project to
project. SIMSCRIPT Studio provides an import capability that you can access by right-
clicking on the “graphics.sg2” and selecting “import” from the popup menu.

From the “Import” dialog, select another “graphics.sg2” file and click on the “SG2
Import” button. A list will be displayed allowing you to select which icons you wish to
copy into your project. Click while holding down the “Shift” key to select multiple
items.

2.4 Declaring Icons as Entities

The principal elementary objects in any SIMSCRIPT simulation program are processes
and temporary entities. SIMSCRIPT provides an easy way to associate icons with the
entities in your model. SIMSCRIPT supports both GRAPHI C entities and DYNAM C
GRAPHI C entities. DYNAM C GRAPHI C entities can move across the screen while
CRAPHI C entities are motionless. Any temporary entity, including processes, may be
declared to be GRAPHI C by adding the following statement to the program preamble:

[dynamic] graphic entities include namel [, nameZ]

This statement may be placed anywhere after the entity definition in the preamble.

12

Icons

2.5 Predefined Attributes of Graphic Entities

When as entity is declared as GRAPHI C or DYNAM C GRAPHI C, SIMSCRIPT will
automatically add several additional attributes to your entity that help your program to
control the icon. The following additional attributes are will be created:

LOCATION.A

This attribute allows the program to specify the location of the object with respect to its
origin. It must be set to a value produced by the system function LOCATI ON. F (xpos,
ypos) as follows:

Let LOCATION.A (entity) = LOCATION.F (xpos, ypos)

ORIENTATION.A

Use this attribute to rotate the icon about its origin. The rotation is specified in radians,
counterclockwise from 3 o'clock. For example, to rotate your icon 90 degress:

Let ORIENTATION.A (entity) = pi / 4.0

SEGID.A

Returns a segment identifier that can be passed to one of several SIMSCRIPT routines
that operate on segments. See Chapter 3 for more information about segments.

2.6 Animating Icons declared as Dynamic Graphic Entities

Dynamic graphic entities have attributes that allow you manipulate their location,
orientation, and velocity. The dynamic nature of such entities is controlled by giving
them a velocity. As simulation time progresses, the location is automatically updated as
determined by the velocity, causing the entity to be redrawn. Use the VELOCI TY. A (
entity) left function that sets velocity. Except for the special value of 0, which stops
linear motion, the value of VELOCI TY. A must be set to a value produced by the function
VELOCI TY. F (speed, theta), where speed is a real value in Real World
Coordinate Units per Simulated Time Unit, and t heta is the direction of motion in
radians.

For example, suppose you want to move a dynamic graphic entity CART straight up at the
speed of 100 coordinate units per time unit:

Let VELOCITY. A(CART) = VELOCI TY. F(100, PI.C 2)

Pass the real world coordinates of the object's starting position to LOCATI ON. A. Suppose
you want the object to initially be displayed at coordinate (0, -100):

13

SIMSCRIPT Graphics

Let LOCATI ON. A(CART) = LOCATI ON. F(0.0, -100)

If you want the object to continue to be refreshed but not moving, set VELOCI TY. A to
VELOCI TY. F(0., 0.). Setting VELOCI TY. A to 0 will not only stop it from moving
across the screen but also remove it from the internal animation queue.

Let VELOCITY.A (entity) VELOCITY.F(0.,0.) ''" Stop motion
Let VELOCITY.A (entity) = 0 '' Stop animation

In addition to the VELOCI TY. A attribute, display entities have an attribute called
MOTION.A. This attribute is a sub-program variable that contains the routine called when
SIMSCRIPT needs to update the position of an icon that has a velocity. Normally, you
will just use the default motion routine which implements linear movement. The motion
routine takes the display entity as its only parameter. If you chose to provide your own
motion routine, you can use the ‘CLOCK.A‘ attribute to keep track of the last simulation
time.

Let MOTION.A(ICON.PTR) = 'LINEAR.MOTION'

Routine LINEAR.MOTION (ICON.PTR)
Define ICON.PTR as a pointer variable
Define TDELTA as a real variable

Let TDELTA = TIME.V - CLOCK.A(ICON.PTR)

Let LOCATION.A(ICON.PTR) = LOCATION.F (
LOCATION.X (ICON.PTR) + TDELTA * VELOCITY.X(ICON.PTR),
LOCATION.Y (ICON.PTR) + TDELTA * VELOCITY.Y(ICON.PTR))
End

2.7 Simulation Time and Real Time

The value of TI MESCALE. V establishes a scaling between real-time and simulation time.
Setting TI MESCALE. V = 100 establishes a one-to-one mapping of simulation time units
and real elapsed seconds—if the

Real Time (in seconds) = TI MESCALE. V * simluation time units / 100

Therefore, decreasing the value of TI MESCALE.V has the effect of making the
simulation run faster, in less elapsed time, provided there is enough computer power to
do both the computational simulation and the animated graphics. There is no guarantee
that this ratio of real time to simulation time will be maintained as the simulation runs.
When there is not enough processing speed, additional elapsed real time will be taken.

14

Icons

Example 2.4: Moving an icon around in your program

In this example, use the icon created in Example 2.3. When you run the program, the
icon will move from the lower left corner (0,0) to the upper right corner of the window.

Preamble

Processes include CART

Dynamic graphic entities include CART
End

Process CART

Let LOCATION.A (CART) = LOCATION.F (0.0, 0.0)

Let VELOCITY.A (CART) VELOCITY.F(4000.0, PI.C / 4.0)
Work 10 units

Let VELOCITY.A(CART) = 0 '' stop the cart

Work 5 units

End

Main

Let TIMESCALE.V = 100 '" 1 second per time unit

Activate a CART now

Show CART with "icon3.icn"
Start Simulation

End

2.8 Coordinate Systems

In SIMSCRIPT size and position of icons is not specified in pixel offsets, but in more
generalized (and portable) world coordinate units. By default, icons are positioned with
respect to what is called “Normalized Device Coordinates”. Using this system, the point
(0,0) is placed in the lower left hand corner of the canvas, while (32767,32767) is the
upper right corner. Given the needs of the application, it may be more convenient to use
a different mapping of coordinates.

The SIMSCRIPT SETWORLD.R routine is used to specify your coordinate system. But
before this function is called, the viewing transformation number must be set to a value
between 1 and 15. For example to identify a coordinate system with (-500,-500) in the
lower left corner of the window and (500,500) in the upper right corner:

Let VXFORM.V =1
Call SETWORLD.R (-500.0, 500.0, -500.0, 500.0)

At the time an icon is made visible, it is sized and positioned with respect to whichever
world is currently identified by VXFORM.V. Therefore, whenever you define a custom
coordinate system, each icon to be drawn in that world must be told its dimensions in the
Icon Editor. While editing each icon, use the “Edit/Details” menu to show the “Icon
Properties” box. Enter the SETWORLD.R coordinates into the dialog box.

Example 2.5: Defining your own coordinate system

Suppose we want to show an icon in the world with (0,0) at the lower left corner and
(1000,1000) marking the upper right corner. From the icon editor, Create “iconS5.icn”

15

SIMSCRIPT Graphics

and draw some shapes. Use the “Edit/Details..” option to show the Icon Properties
dialog. Enter the values 0, 1000, 0, 1000 into Xlow, Xhigh, Ylow, Yhigh. Also, make
sure that both the “Allow icons to scale” and “Automatic recenter” check boxes are
checked. The following code should be used:

Main

Define ICON.PTR as a pointer variable

Let VXFORM.V = 1

Call SETWORLD.R (0.0, 1000.0, 0.0, 1000.0)

Display ICON.PTR with "icon5.icn" at (500.0, 500.0)
Read as /

End

You can implement PAN and ZOOM operations using SETWORLD .R. To zoom in,
increase the values of XLO and YLO while decreasing XHI and YHI. Pan left or right by
adding the same negative or positive constant to XLO and XHI. Pan up or down by
adding a negative or positve constant to YLO and YHI.

Example 2.6: Using SETWORLD.R to implement Zoom
To zoom into the above icon, use the same code and icon as in Example 2.5, but specify
different parameters to SETWORLD.R. The result will be “bigger looking” shapes.

Main

Define ICON.PTR as a pointer variable

Let VXFORM.V = 1

Call SETWORLD.R(250.0, 750.0, 250.0, 750.0)

Display ICON.PTR with "iconb.icn" at (500.0, 500.0)
Read as /

End

2.9 Editing Background vs. Movable Icons in the Icon Editor

When creating your icon in the SIMSCRIPT Studio Icon Editor, it is important to bring
up the “Icon Properties” dialog to make sure that the attributes correspond to the desired
application. In some circumstances the program is responsible for defining the position
of the icon at runtime (by setting the LOCATION.A attribute or rotating using
ORIENTATION.A). We will call this category of icon “movable”. (Remember that both
static and dynamic icons can be repositioned through the LOCATION. A attribute.

2.9.1 Editing Movable Icons

When editing the properties for one of these movable icons, you should inspect the
center-point fields. This coordinate defines the location (in the icon editor) of the origin
or “hot-spot” on the icon that is positioned by the call to LOCATION.A. The object will
be rotated about this point if the ORI ENTATI ON. A attribute is assigned. Usually you
will want the origin to be at the geographic center of the icon, in which case you should
check the “Automatic recenter” box.

16

Icons

If the “Allow icon to scale with world” check box is cleared, this will prevent the icon
from changing size based on changes made via SETWORLD.R. You should clear this
checkbox if you do not know the dimensions of the world ahead of time, or wish for the
icon to remain a fixed size as it appears in the application. The previous example
program uses a movable icon with the “Allow icon to scale with world” flag checked.

2.9.2 Editing Background Icons

Now suppose that you are creating a graphical background for your application that will
only be displayed once. You usually want the background icon to look the same in your
program as it does in the icon editor. Portions of the background may need to be laid out
at precise coordinates to match up with other “movable” icons that are to move about the
background. To ensure that what you see in the editor matches what you see in your
program, double-click on the background of the icon editor window to display the “Icon
Properties” dialog. Set the values in this dialog accordingly:

1) Clear the “Automatic recenter” box.

2) Assign the same values for Xlow, Xhigh, Ylow and Yhigh as you are passing to
the SETWORLD . R routine in your program.

3) Set center point X and Y to match the Xlow and Ylow fields in the
“SETWORLD.R Parameters”.

4) Check the “Allow icon to scale with world” box.

If these rules are followed you can use the coordinate position indicator in the status bar
of the SIMSCRIPT Studio frame window to help you accurately position and size objects
in the background. This indicator lists the coordinate point that the mouse is currently
hovering over. Using the grid may also be helpful. It is activated using the “Edit/Grid”
menu.

2.10 Viewing Transformations

SIMSCRIPT allows more advanced coordinate mapping called the viewing
transformation. Using these transformations, a single window can show more than one
coordinate system, each occupying a separate region of the window. Your program
defines the size and position of these regions.

Before defining an individual viewing transformation, the global VXFORM V must be set
to a value between 1 and 15 and will be used identify the transformation. The default
transformation, VXFORM V = 0, represents the entire NDC space described above and
cannot be changed. Set VXFORM V to the id of the view you wish your icon to appear in
before that icon is loaded using the show or display statement. Icons that extend
outside the boundaries of the coordinate system space are partially displayed (clipped).

17

SIMSCRIPT Graphics

Once VXFORM.V has been set, the program can call SETWORLD . R to specify a unique
coordinate system for that particular viewing transformation. You can then use the
SETVIEW.R call to define a viewport within the canvas of the window.

Call SETVIEW.R(v.xlo, v.xhi, v.ylo, v.yhi)

Each viewport will have its own coordinate space and occupies a portion of the window
space. When calling SETVIEW.R specify this portion of window space using
Normalized Device Coordinates (NDC units) where (0,0) is the lower left hand corner of
the window and (32767,32767) is the upper right corner. Figure 2.7 shows a typical
viewing transformation.

World Camnvas

| | |
| (1000, 10007 (32767 32TaT)

®,0
|
|

Call SETWORLD.R (0.,1000.,0.,1000.) Call SETVIEW.R (8000,128000,12000,24000)

Figure 2-7: The viewing transformation

SETVIEW.R allows for cases where v.xlo > x.xhi or v.ylo > v.yhi. In this case the world
coordinate space appears flipped over.

Example 2.7: Multiple views in the same window

In this example we show two worlds in the same window. The first view will occupy the
lower left corner of the canvas and be identified by VXFORM.V=1. The second view is
in the upper right corner and is referenced by setting VXFORM.V=2.

Main
Define ICON1.PTR, ICON2.PTR as a pointer variable

Let VXFORM.V =1

Call SETWORLD.R(0.0, 1000.0, 0.0, 1000.0)

Call SETVIEW.R(O, 16383, 0, 16383) '' xlo,xhi,ylo,yhi
Display ICON1l.PTR with "icon5.icn" at (500.0, 500.0)

Let VXFORM.V = 2
Call SETWORLD.R(250.0, 750.0, 250.0, 750.0)

18

Icons

Call SETVIEW.R(16383, 32767, 16383, 32767)
Display ICON2.PTR with "icon5.icn" at (500.0, 500.0)

Read as /
End

Note that whenever SETWORLD. R and SETVI EW R are called, all objects drawn under
the current viewing transformation are automatically redisplayed. If you wish to change
both the world coordinate system and the viewport, then you can bracket the calls to
SETWORLD. R and SETVI EW R by calls to GDEFERRAL. R as follows:

Call GDEFERRAL.R (1)

Call SETWORLD.R(w.xlo, w.xhi, w.ylo, w.yhi)
Call SETVIEW.R(v.xlo, v.xhi, v.ylo, v.yhi)
Call GDEFERRAL.R(O)

2.11 Selecting an Icon in Your Program

In certain instances, you may wish to allow the user to click on either dynamic or static
icons with the mouse. SIMSCRIPT supports both synchronous and asynchronous
selection modes. If you have coded for synchronous selection, your program waits until
the user has clicked on an icon in the window. Using asynchronous selection the user can
click on an icon while a simulation is running, and a designated block of code will be
automatically executed.

2.11.1 Synchronous Selection

The routine PICKMENU. R is the easiest way to allow a user to select from a pre-defined
list of icons. This routine is defined as follows:

Routine PICKMENU.R given ICON.PTR.ARRAY (*) yielding INDEX

Each element of ‘TCON.PTR.ARRAY’ is a graphic entity pointer. This routine waits for
the user to make a selection using the mouse. The user must click inside the bounding
box of one of the entities to select it. The index of the highest priority selected entity is
yielded in the variable ‘INDEX’. If the user clicks outside all of the entities, ‘INDEX"’ is
set to zero and the routine returns.

2.11.2 Asynchronous selection

In order to allow users to click on an icon while the simulation is running, your program
must support asynchronous selection. If your program is already supporting an
asynchronous menubar or palette, then you can add the code to handle mouse clicks in
the control routine for the form. Whenever a user clicks anywhere in the window, the
control routine for the menu-bar or palette is called with the ‘field name’ parameter set to

19

SIMSCRIPT Graphics

the text string “BACKGROUND”. Also at this time, the global variable G.4 has been set
to the segment id of the selected icon. Determining which icon is selected is a matter of
comparing G.4 to the SEGID.A attribute of all icons for which selection is meaningful to
the program.

Another common way to support this type of selection is by using the routine
READLOC.R with a style value of 16. Using this method, you must create special process
in your code whose sole purpose is to handle asynchronous mouse clicks. In a loop, the
process will first call READLOC.R(0,0,16), which will return after a mouse click is
detected. The program then compares the global variable G. 4 to the SEGID.A attribute
of any icon that can be selected.

Example 2.8: Select an icon during simulation

For the following example, use “icon3.icn” (cart icon) from Example 2.3. This small
program will allow you to click on the cart with the mouse.

Preamble

Processes include CART, MOUSE.MONITOR
Dynamic graphic entities include CART
End

Process CART
Let LOCATION.A (CART)

LOCATION.F (0.0, 0.0)

Let VELOCITY.A(CART) = VELOCITY.F(2000.0, PI.C / 4.0)
Work 9 units
End

Process MOUSE.MONITOR

While VELOCITY.X(CART) gt 0.0 do
Call READLOC.R(0.,0.,16)
If G.4 eqg SEGID.A(CART)

Write as "Icon was selected!", /
Else
Write as "Nothing was selected!"™, /
Always
Loop
End
Main
Let TIMESCALE.V = 100 ''" 1 second per time unit

Activate a CART now

Activate a MOUSE.MONITOR now
Show CART with "icon3.icn"
Start Simulation

End

2.12 Attaching a dynamic text value to your icon

20

Icons

Suppose you wanted to show a text string displaying a status value along with the icon
representing some object in a simulation. If the icon is dynamic, you will want this text
to move with the icon automatically. Using the SIMSCRIPT Studio icon editor, you can
tag a text primitive in your icon as being “Definable”, then in your program set the text
string by setting the DTVAL. A attribute of the ICON. A attribute of your graphic entity.

Let DTVAL.A(ICON.A(ICON.PTR)) = "Hello There"

After setting this attribute, remember to redisplay the icon to enable the user to see the
changes.

Example 2.9: Dynamically label an icon

For this example, create a new icon named “icon9.icn” similar to the one created in
Example 2.3. Add a text primitive to the icon by clicking on the top button in the icon
editor’s toolbar, then selecting the “text” button. After you have placed the text in the
icon, click on the “Properties” button. Set the “Definable using DTVAL.A” check box,
exit the dialog box, and then save the icon. The following code will increment a counter
attached to the cart every second.

Preamble

Processes include CART

Dynamic graphic entities include CART
End

Process CART
Let LOCATION.A (CART)

LOCATION.F (0.0, 0.0)

Let VELOCITY.A (CART) = VELOCITY.F(2000.0, PI.C / 4.0)
For I = 1 to 9 do
Let DTVAL.A(ICON.A(CART)) = ITOT.F(I)

Display CART
Work 1 unit
Loop
End

Main

Let TIMESCALE.V = 100 ''''1 second per time unit
Activate a CART now

Show CART with "icon3.icn"

Start Simulation

End

2.13 Changing the Color of an Icon

As your simulation is running, it may be useful to change the color of a portion of an icon
to, for example, indicate a state change. From within the SIMSCRIPT Studio icon editor,
you can mark primitives in your icon as being “definable by DCOLOR.A”. Marked
components will be re-colored by SIMSCRIPT after you set the DCOLOR. A attribute of
the icon’s ICON. A attribute pointer value.

21

SIMSCRIPT Graphics

From the icon editor, select any one of the primitives then click on the “properties”
button on the top toolbar. From the dialog box, check the ‘Define color using DCOLOR.A’
check box, and save the icon. In your program, use the following code to change the
color of the icon:

| et DCOLOR A(I CON. A(lI CON. PTR)) = COLOR. | NDEX. VALUE
di splay | CON. PTR

2.14 Destroying and Erasing Icons

The image of a graphic entity is placed on the display surface when the first DI SPLAY
statement is executed. You can simply erase the icon from the window without
destroying the display entity by using the ERASE command:

Erase ICON.PTR

Execution of a DESTROY statement will destroy the entity, free all memory used by
graphics, and erase the icon.

Destroy ICON

Or

Destroy this ICON called ICON.PTR

22

3. Segments

Normally, it is recommended that programmers use the SIMSCRIPT Studio Icon Editor
to create and save icons using the user interface. However, there are some circumstances
where icons must be created by the program. Perhaps the icon is created based on one or
more data values that are known only when the program is run. The SIMSCRIPT run-
time library provides a rich set of routines that can be used to build your own icon.

To draw static graphical images or graphics that are not linked to a display entity,
SIMSCRIPT provides “segments”. A segment is basically a grouped collection of one or
more lines, fill areas, graphic text etc. There are several routines that let you build,
manipulate, and destroy segments.

If you want to use a dynamic or static display entity whose image is defined at execution
time, a “display routine” can be specified for the entity. The display routine will be
called whenever SIMSCRIPT needs to draw your icon. The display related statements
and attributes like VELOCITY.A and LOCATION.A that were explained in Chapter 2 will
still work if the program is using a custom display routine.

3.1 Color

In SIMSCRIPT the color of any primitive can be specified using an integer value ranging
from O to 255. This value is an index into a color table whose entries must be initialized
programmatically. The routine GCOLOR. R defines a color index given the red, green and
blue components of the color (color component values range from 0 to 1000). For
example, to define index 15 to be “green”:

let RED = 0

| et GREEN = 1000

let BLUE = 0

cal | GOOLOR R(15, RED, GREEN, BLUE)

Color index number O refers to the background color of the window selected through
VXFORM V (see chapter 9). For example, to set a window’s background color to “blue”:

call GOOLOR R(0, 0, 0, 1000)

The first sixteen color values can be defined in a file called colors.cfg. This file will be
read in automatically (if it exists) before program starts executing, and should therefore
be kept in the same directory as the executable. Each line in this file defines a color
index as follows: <Index> <red> <green> <blue>. Here are some sample entries:

0 0 0 0
1 1000 1000 1000
2 0 0 500
3 250 250 1000

SIMSCRIPT Graphics

15 1000 250 1000

3.2 Using Segments

Effective generation of moving or changing display images requires either the complete
redrawing of the display at each change or the ability to selectively erase and redraw
parts of the display. The first approach requires redundant work in the common case
where a few objects are required to move against a static background.

An alternative is to structure the display, identify the grouped components of each object
representation, and then provide facilities for manipulating these components. This is
done using a "segment." Each segment has an identifier and comprises a logical grouping
of related graphic primitives. SIMSCRIPT provides operations to make a segment
visible or invisible or to delete it entirely. Further, by attaching a priority level to each
segment, the graphics support can consistently resolve the ambiguity when object
representations intersect on the display, i.e. "priority" determines which segment is
displayed on top.

A segment is identified by your program using its “segment id”. The identifier is an
integer number returned to the application program when the segment is created, and is
usable as a handle to change segment properties (such as visibility).

A program can build segments using one of the following routines:

CALL OPEN. SEG R

Opens a segment. A segment identifier is set in the global variable, SEG D. V. After this
routine is called, you can make calls to routines that draw graphic primitives like
FILLAREA.R and CIRCLE.R.

CALL CLOCSE. SEG R
Closes the currently open segment and makes it visible. SEG D. V is set to zero.

CALL DELETE. SEG R(segi d)
Deletes the indicated segment. All primitives in the segment are erased from the display
surface.

Only one segment may be open at any time. A segment may not be re-opened and edited.
While a segment is open, its ID is available in the global variable SEQ D. V. (This value
is copied to the SEG D. A attribute of the display entity upon exit from a display routine.
Note that OPEN. SEG and CLOSE. SEG should never be called from within a display
routine.)

Once a segment is closed, its attributes may be modified using this identifier and the
following library routines:

CALL GPRICRITY.R (segid , pri)

24

Segments

Explicitly set or change the priority of a segment. pri is an integer in the range 0 to 255.
(Segment priority is explained later).

CALL GVISIBLE.R (segid , vis)
Make a segment visible or invisible, where vi s is an integer; 0 = invisible, 1 = visible.

CALL GDETECT.R (segid , sel)
Make a segment selectable with the mouse where det is an integer; 1 = selectable, 0 =
not selectable.

CALL GHLIGHT.R (segid , hi)
Where hi is an integer; 0 = off, 1 = highlight on. Sets the highlighting status of a
segment. When highlighted, the entire segment is drawn using color index number 15.

3.3 Adding Primitives to a Segment or Display Routine

After the call to OPEN.SEG.R (or anywhere in a display routine) your program can call
routines to add the polygons, polylines, circles, text to the segment.

Many of the routines below accept a set of some point values to define the shape of the
primitive. These points are specified in SIMSCRIPT as arrays of pairs of coordinate
values that live in the Cartesian space whose dimensions are given through the
SETWORLD.R routine described in Chapter 2.

The first subscript in a coordinate pair selects either x-coordinates (index = 1) or y-
coordinates (index = 2); the second subscript determines a point. The coordinate arrays
are stored in REAL (not DOUBLE) mode. For example, to specify points at (40,-100)
and at (40,0) use the following statements:

LET SHAPE. ARRAY(1, 1) = 40.
LET SHAPE. ARRAY(2,1) = -100.
LET SHAPE. ARRAY(1, 2) = 40.
LET SHAPE. ARRAY(2,2) = O.

3.4 Drawing Filled Areas

The primitive operations in this section generate a closed polygon that may be hollow or
filled with a solid color, a hatch style, or a pattern. The graphic style routines for areas are
called first, and set the appearance of the area.

CALL FILLSTYLE. R(style)
Set fillstyle, as follows:

0 = hollow
1 = solid
2 = pattern

25

SIMSCRIPT Graphics

3 = hatch

CALL FILLI NDEX. R (i ndex)
Set pattern or hatch fill selection. Six distinct styles of hatch are available. Hatch styles
are as follows:

1 = Narrow spaced diagonal lines

2 = Medium spaced diagonal lines

3 = Wide spaced diagonal lines

4 = Narrow spaced cross hatch

5 = Medium spaced cross hatch

6 = Wide spaced cross hatch

CALL FILLCOLOR R (col or)
Set color of solid or hatched area.

CALL FILLAREA.R (n, points(*))
Adds a polygon to the segment given its vertices. The last point is automatically joined
to the first point. The present fillstyle and fillcolor are used.

CALL CIRCLE.R (points(*))
Draw a circle, where poi nt s(. ., 1) indicates the center, and poi nt s(. ., 2) isany
point on the perimeter.

CALL SECTOR R (points(*), rad)

Draw a ‘filled’ arc (like a pie slice), where poi nt s(. ., 1) indicate the center, and
poi nts(..,2) andpoints(..,3) aretheend points. The sector is drawn
counterclockwise from the second to the third points specified. If r ad is not zero, join
ends of arc to the center point, and fill.

3.5 Drawing Lines

The primitive operations in this section generate solid and dotted lines. The graphic style
routines should be called first, to set the appearance of the line.

CALL LI NESTYLE. R(style)
SIMSCRIPT supports a number of line styles. The following styles are provided on most

implementations
1 = (solid)

2 = (long dash)
3 = (dotted)

4 = (dash dotted)
5 = (medium dashed)
6 = (dash with two dots)

CALL LI NECOLOR R (col or)
Color (as described above).

26

Segments
CALL LI NEW DTH. R (wi dt h)
Width, given in NDC units.

CALL POLYLINE.R (n, points(*))
Joins n points whose x and y coordinates are given in the 2-dimensional real array
points(*) .

3.6 Drawing Markers

SIMSCRIPT supports a primitive operation to mark points on the display surface. The
graphic style routines that control appearance are called first.

CALL MARKTYPE.R (type)
Where t ype is a polymarker type, and where:

1 =dot

2 = cross

3 = asterisk
4 = square
5=X

6 = diamond

CALL MARKCOLOR. R (col or)
Sets the color of all markers.

CALL MARKSI ZE.R (si ze)
Sets the size of each marker, in NDC units.

CALL POLYMARK. R (n, points(*))
Writes N markers using the current marker type, color, and height.

3.7 Drawing Text

Text can be written directly onto the window. It is displayed using the text size, font and
color attributes. Text can be rotated, and also justified left, right, top, bottom or centered.

CALL WGTEXT. R (string, X, Vy)

Writes string at (X,y) using current text font, color, height, angle, and alignment. The
following graphics routines may be used in display routines to control the appearance of
text output:

CALL TEXTCOLOR. R (col or)
Set color index to use for drawing text.

CALL TEXTSIZE.R (size)
Sets the height of vector (non-system) text given in NDC units (0-32767). Default text
size is 560 units high.

27

SIMSCRIPT Graphics

CALL TEXTALIGN.R (horiz, vert)
Set text alignment. Text will be aligned with respect to the (X,Y) coordinate specified in
WGTEXT.R. Horizontal alignment values are as follows:

1—Left justified

2—~Centered

3—Right justified

Vertical alignment values are as follows:
1—Top of cell
2—Top of character
3—Middle of cell
4—Bottom of cell
5—Bottom of character

CALL TEXTANGLE. R (degrees*10)
Set text rotation angles in tenths of a degree.

CALL TEXTFONT.R (font)
With regard to text fonts, there are two varieties. SIMSCRIPT provides six built in
“vector” drawn fonts. Vector fonts can be fully scaled and rotated, and look identical
under any operating system. To use one of the vector fonts call this function with one of
the following values:

0—basic font

1—Simple script

2—Roman
3—Bold Roman
4—Ttalic
5—Secript
6—Greek
7—Gothic

CALL TEXTSYSFONT.R (fam |y.nanme, point.size, italic, bold)

The disadvantage of vector fonts, is that the may not look nice when scaled up in size.
Drawing speed may also be a concern if lots of text is used in the window. “System”
text fonts (or raster based fonts) are acquired from the operating system under which the
program is currently running. This call lets you specify the common name of the font, as
well as its point size, and whether or not text should be bold or italic. For example, to
draw “Hello world” in Times Roman, size 12 italic font, you could use the following
code:

et FAMLY.NAME = "Ti nes Roman"
et PONT.SIZE = 12
| et | TALI C. DEGREE = 100‘’ range is 0-100
| et BOLDFACE. DEGREE = 0’ range is 0-100
cal |l TEXTSYSFONT. R gi ven
FAM LY. NAME, PO NT. SI ZE, | TALI C. DEGREE, BOLDFACE. DEGREE
call WGTEXT.R("Hello World", X)

28

Segments

From above, FAM LY. NAME is a string known to the toolkit which identifies the font.
Font sizes are in points, the size of which is determined by the toolkit. An integer is used
to define both the amount of “slant” in the italic, and the darkness of the boldface
(usually only two degrees are provided.). Calling TEXTFONT. R will re-enable vector
fonts.

Example 3.1: Drawing some graphics from program code only
Main
Define FILL.POINTS, LINE.POINTS as 2-dim real array

'' define a new segment to draw graphics
Call OPEN.SEG.R

''" Draw a filled purple triangle into the segment
Reserve FILL.POINTS(*) as 2 by 3

Let FILL.POINTS(1,1) = 2000 Let FILL.POINTS(2,1) = 30000
Let FILL.POINTS(1,2) = 30000 Let FILL.POINTS(2,2) = 30000
Let FILL.POINTS(1,3) = 16000 Let FILL.POINTS (2,3) = 2000
Call GCOLOR.R(1, 500, 0, 500) '' purple

Call FILLCOLOR.R(1)
Call FILLAREA.R(3, FILL.POINTS(*,*))

''" Draw green markers on the endpoints of the filled triangle
Call GCOLOR.R (2, 0, 1000, 0) '' green

Call MARKTYPE.R(3)

Call MARKCOLOR.R(2)

Call MARKSIZE.R(600)

Call POLYMARK.R(3, FILL.POINTS(*,*))

'' draw a single line into this segment
Reserve LINE.POINTS(*) as 2 by 2

Let LINE.POINTS(1,1) = 8000 Let LINE.POINTS(2,1) = 18000
Let LINE.POINTS(1,2) = 24000 Let LINE.POINTS(2,2) = 18000
Call GCOLOR.R(3, 1000, 600, Q) '' orange

Call LINESTYLE.R(2)
Call LINEWIDTH.R(700)
Call LINECOLOR.R(3)
Call POLYLINE.R(2, LINE.POINTS(*,*))

''" draw some text

Call GCOLOR.R (4, 1000, 0, 0) "' red
Call TEXTFONT.R(2)

Call TEXTALIGN.R(1,2) '' centered text
Call TEXTSIZE.R(2048) '" 1/16 of window

Call TEXTCOLOR.R (4)
Call WGTEXT.R("Hello, World!", 16000, 20000)

''" done with segment. Now display it
Call CLOSE.SEG.R

'' Wait for the user to close the window
While 1=1 do

Call HANDLE.EVENTS.R (1)
Loop

29

SIMSCRIPT Graphics

End

Figure 3-1:Graphics produced by Example 3.1 code

3.7.1 System Font Browser

You may want to allow a user to select one of the available system fonts from a
predefined font browser dialog box. This is done by calling the FONTBOX. R routine

call FONTBOX. R given TITLE vyi el ding
FAM LY. NAVE, PO NT. Sl ZE, | TALI C. DEGREE, BOLDFACE. DEGREE

The FAMILY.NAME, POINT.SIZE, ITALIC.DEGREE and BOLDFACE.DEGREE parameters
are identical to those defined by the TExTsysrFoNT.R routine. The layout of the dialog
box is dependant on the toolkit and operating system as well as the choice of fonts. If the
Cancel button is pressed, the “FAMILY.NAME” parameter will be set to “”.

Example 3.2: Allowing the User to Select a System Font

This program will immediately show a font browser dialog allowing a system text font to
be specified. The selected font’s name is displayed in the window

Main

Define TITLE, FAMILY.NAME as text variables

Define POINT.SIZE, ITALIC.DEGREE, BOLDFACE.DEGREE as integer variables
Let TITLE = "Select a font"

Call FONTBOX. R given TITLE vyi el ding

30

Segments

FAM LY. NAME, PO NT. SI ZE, | TALI C. DEGREE, BOLDFACE. DEGREE

If (FAMLY.NAMVE ne "")

Cal | OPEN. SEG R

Cal | TEXTSYSFONT. R gi ven

FAM LY. NAME, PO NT. Sl ZE, | TALI C. DEGREE, BOLDFACE. DEGREE

Cal | WGTEXT. R(CFAM LY. NAME, 1000., 16000.)

Call CLGCSE. SEG R

Read as /
Al ways
End

The yielded arguments are identical to those described above for TEXTSYSFONT. R
FONTBOX. R will not return until a font has been selected, or cancel has been pressed. In
this case FAM LY. NAME is set to the empty string.

3.8 Segment Priority

A segment may have a priority. This priority determines the precedence of any
overlapping or intersecting images. A high priority segment is drawn on top of an
underlying low priority segment. Priorities are also used to maintain the accuracy of the
screen. One image will emerge from behind another unscathed. Segments with a priority
value of ‘zero’ are not preserved in this way.

Note that the relationship between differing priorities only exists with segments drawn
under the same VXFORM V value. All segments drawn under one VXFORM V value will
overlap segments drawn under any higher VXFORM V value, regardless of priority.
When objects overlap, segment priorities determine the order of redrawing moving
objects. When priorities are equal, the item drawn last covers anything under it.

When a display routine exits, the value of SEGPTY. A (di splay entity) isgivento
GPRI ORI TY. R to set the priority of the segment. A value of zero for this attribute causes
the default priority, zero.

3.8.1 Using Priority Zero

Segment with priority zero are not redrawn when their bounding box is overlapped by
moving objects. A segment with priority zero will be eaten if any other graphical image
is drawn on top or underneath.

Static objects that will never be crossed or otherwise overdrawn by an animated object
may be drawn with priority zero. This is particularly important if the bounding box of the
static object is much larger than the object itself and is crossed by animated objects.
Unimportant items crossed by moving objects can often be represented in priority zero.
This could leave their image in a temporarily damaged state, but might provide a visual
trace of the path of moving objects.

31

SIMSCRIPT Graphics

— Pril]ri 1

Priority 2

Figure 3-2:0Overlapping objects of different priority

3.9 Display Routines

Previously, we have covered cases where an icon is to move around the window over
time. However, what if the structure of the icon itself should be dynamic? That is to say,
the icon’s exact appearance is either not known ahead of time, or changes dynamically.
A display routine is an attribute of a graphic entity that can be set programmatically. This
routine is called automatically by SIMSCRIPT whenever it is necessary to display an
icon (i.e. the program executes a DISPLAY or LOCATION.A statement). The routine can
contain code to either draw the icon from scratch using calls to create output primitives,
or to make modifications to an icon created using the icon editor. The attribute is called
DRTN. A and is set as follows:

Let DRTN. A = 'V. <routine_nane>'

The heading of the actual routine is defined like this:

Di spl ay routine <name> gi ven | CON. PTR
define I CON. PTR as a pointer variable

You should not call OPEN. SEG.R or CLOSE. SEG.R from inside a display routine. Upon
entering the display routine, SIMSCRIPT will automatically create a new segment
(whose identifier is stored in the global SEGID.V). From inside the display routine, call
drawing routines like POLYLINE.R, FILLAREA.R, and WGTEXT .R.

Example 3.3: Using an icon whose shape changes over time

In the following case, we show how the use of a display routine can enable your program
to draw an icon. In this example the icon editor is not used; all drawing is done entirely
within the program code. Here, the display routine draws a triangle using the
ORIENTATION.A attribute to compute the location of one of its vertices. Note that the
TRIANGLE process draws the icon using the DISPLAY statement knowing that
SIMSCRIPT will automatically call the display routine specified in ‘main’ to render the
icon.

Preamble
Processes

Every TRIANGLE has an ATTR
Define ATTR as a real variable
Graphic entities include TRIANGLE
End

32

Process TRIANGLE
Define I as an integer variable

Let DRTN.A (TRIANGLE) = 'V.TRIANGLE' ' set display routine
For I = 1 to 36*5 do
Let ATTR(TRIANGLE) = (I * 10.) * pi.c / 180.0

Display TRIANGLE
Work 0.1 units
Loop
End

Display Routine TRIANGLE given TRIANGLE
Define TRIANGLE as a pointer variable
Define PTS as a 2-dim real array

Reserve PTS(*) as 2 by 3 ''" 3 points

Let PTS(1,1) = 10000.0 Let PTS(2,1) = 16383.0

Let PTS(1,2) = 22767.0 Let PTS(2,2) = 16383.0

Let PTS(1,3) = 5000.0 * COS.F(ATTR(TRIANGLE)) + 16383.0
Let PTS(2,3) = 5000.0 * SIN.F(ATTR(TRIANGLE)) + 16383.0
Call FILLCOLOR.R(180)

Call FILLAREA.R(3, PTS(*))

Release PTS (*)

End

Main

Let TIMESCALE.V = 100 ''''1 second per time unit

Activate a TRIANGLE now
Start Simulation
End

Example 3.4: A moving icon defined by the program

Segments

This next example is a more complete graphical simulation that uses a display routine,

and a custom defined world coordinate system.

Preamble ''Case Study "DYNSHAPE"

'' This shows a simple dynamic graphics output using SIMSCRIPT.
''" It draws a shape and moves it around the screen.

'' This version does not use the Icon Editor and

''" It shows the details for generating an icon by program code only.

Normally mode is undefined

Processes

Every SHAPE has

a SHAPE.ICON

Define SHAPE.ICON as a pointer variable
Dynamic graphic entities include SHAPE
Define .X to mean 1

Define .Y to mean 2

''" Change SIMSCRIPT GRAPHICS indices from numbers to words
Define .RED to mean 1

Define .SOLID.FILL to mean 1

End ''Preamble

Main
''" Set up the world view and view port

33

SIMSCRIPT Graphics

Let VXFORM.V = 7 '' View port number
Call SETWORLD.R (0.0, 2000.0, 0.0, 2000.0) '' World view
Call SETVIEW.R(0, 32767, 0, 22755) '' Screen view

'' Reserve the array that describes the ICON and fill it.
Define ICON.ARRAY as a 2-dim real array
Reserve ICON.ARRAY as 2 by 7

Let ICON.ARRAY (.X,1) = 40. Let ICON.ARRAY(.Y,1) = -100
Let ICON.ARRAY (.X,2) = 40. Let ICON.ARRAY(.Y,2) = 0.

Let ICON.ARRAY (.X,3) = 100. Let ICON.ARRAY(Y,3) = 0.
Let ICON.ARRAY(.X,4) = 0. Let ICON.ARRAY(.Y,4) = 100.
Let ICON.ARRAY (.X,5) = -100. Let ICON.ARRAY(Y,5) = 0.
Let ICON.ARRAY(.X,6) = -40. Let ICON.ARRAY (.Y, 6) 0.
Let ICON.ARRAY(.X,7) = -40. Let ICON.ARRAY(.Y,7) = -100.

'' Make 1 second of real time pass for every second of simulated time
Let TIMESCALE.V = 100

'' Define index for red to be 1

call GCOLOR.R(.RED, 1000, 0, 0)

''" Put the process notice for this shape on the event list
'' and associate the icon with it.

Activate a SHAPE now

let SHAPE.ICON (SHAPE) = ICON.ARRAY (*,*)

Start simulation

Release ICON.ARRAY (*,*)

End ''Main

Process SHAPE
Define I as an integer variable
'' Set up the parameters for controlling motion

Let DRTN.A (SHAPE) = 'V.SHAPE'
'' Move diagonally up the window for 10 seconds
Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, PI.C/4)

Let LOCATION.A (SHAPE)
Work 10 units

''" Change the direction of motion to straight down
Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, - PI.C / 2)
Work 5 units

''" Change the direction of motion again

'' Make the shape rotate

LOCATION.F (0.0, 0.0)

Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, 0.8 * PI.C)
For I =1 to 60
Do

Add PI.C / 60 to ORIENTATION.A (SHAPE)
Work 0.1 units
Loop
'' Stop the movement and pause to admire the results
Let VELOCITY.A (SHAPE) = 0
Work 5.0 units
End '' SHAPE

Display routine SHAPE Given SHAPE

Define SHAPE as a pointer variable '' The particular SHAPE to be drawn
Define .NUMBER.OF.POINTS as an integer variable

Define ICON.ARRAY as a 2-dim real array

Let ICON.ARRAY (*,*) = SHAPE.ICON (SHAPE)

Let .NUMBER.OF.POINTS = dim.f (ICON.ARRAY (1,%*))

Call fillstyle.r (.SOLID.FILL)

Call fillcolor.r (.RED)

34

Segments

Call fillarea.r (.NUMBER.OF.POINTS, ICON.ARRAY (*,*))
Call linecolor.r (.GREEN)

Call polyline.r (.NUMBER.OF.POINTS, ICON.ARRAY (*,*))
End ''SHAPE

3.10 Customizing an Icon Defined in SIMSCRIPT Studio

Supposed you want to use SIMSCRIPT Studio’s icon editor to create your icon but still
need some portion of the icon to be defined at runtime. SIMSCRIPT allows you to
specify a display routine for an icon even if it had been loaded from the icon editor.
From the display routine you can call routines (like FILLAREA.R) to draw the “run
time” portion of the icon, then instruct SIMSCRIPT to display the rest of the icon.

Basically, the ICON.A attribute points another display entity containing the portion of
your icon defined in SIMSCRIPT Studio. Use the following code inside of your display
routine:

Display ICON.A (MY.ENTITY.PTR)

Be sure in the initialization code that you use the “SHOW” statement to load in the
definition of the icon BEFORE setting the DRTN.A attribute to your display routine.

Example 3.5: An icon defined by SIMSCRIPT Studio and program code

For this example, create in SIMSCRIPT Studio an icon called “icon.icn” containing a few
shapes. (Use the “Icon Properties” dialog to make sure the icon is centered). When the
program is run, your icon will be annotated with text indicating its current position.

Preamble

Processes include MOVER

Graphic entities include OBJECT
End

Process MOVER

Define A as a real variable

show OBJECT with "icon.icn"

Let DRTN.A (OBJECT) = 'V.OBJECT' ''" set display routine

For A = 0.0 to pi.c by 0.01 do
Display OBJECT at (16000. + 12000. * COS.F(A), 27000. * SIN.F(A))
Work 0.1 units

Loop

End

Display routine OBJECT given OBJECT
Define OBJECT as a pointer variable
Display ICON.A (OBJECT)

Call WGTEXT.R(CONCAT.F("X: ", ITOT.F(LOCATION.X (OBJECT))), -
4000.,3000.)

Call WGTEXT.R(CONCAT.F("Y: ", ITOT.F(LOCATION.Y (OBJECT))), 1500.,3000.)
End

35

SIMSCRIPT Graphics

Main

Let TIMESCALE.V = 100 '" 1 second per time unit
Activate a MOVER now

Start Simulation

End

3.11 Modeling Transformations

In SIMSCRIPT, there is a single modeling transformation that consists of translation,
rotation, and scale parameters. Parameters of this modeling transformation can be set by
the programmer to produce changes in how all segments and custom icons are drawn.

The modeling transformation is supported by the library routines:

MXRESET. R (entity) Setmodeling transform using entity attributes.
MSCALE. R (factor) Scale by factor.

MZROTATE. R (radi ans) Rotate counterclockwise around origin.
MXLATE. R (xval, yval) Translate (move)in X and Y.

You can call MZROTATE.R, MXLATE.R, or MSCALE.R before calling routines to
create primitives to cause those graphics to be rotated, translated or scaled. Rotation and
scale are performed before translation. The effects of successive calls on both
MZROTATE. R and MXLATE. R are cumulative. Translation should be specified in real
world coordinate units.

Call MXRESET.R(0) to reset the modeling transformation to zero translation, zero
rotation and a scale factor of 1.0. You can pass a display entity pointer to MXRESET . R to
copy the LOCATION.A, and ORIENTATION.A attributes of the entity into the modeling
transformation.

Keep in mind that whenever your program executes a “DISPLAY entity” or “Let
LOCATION.A entity ” statements, SIMSCRIPT will automatically call MXRESET .R given
a pointer to the entity that is being displayed. In this case the current modeling
transformation will be lost. If you plan on using a display routine, use of the modeling
transformation should be reserved for inside of the display routine. Calls to OPEN. SEG.R
do not change the modeling transformation.

36

Segments

Original 20 20 20
Segment
10 10
10 20 -20 -10 10 20 -20 -10 10 20
10 -10
20 =20

Call MZROTATE.R (pi.c/2.0)
Call MSCALE.R (0.5)

Figure 3-3: Modeling transformations in action

Call MZLATE.R (10.0,10.0)

37

SIMSCRIPT Graphics

4. Creating Presentation Graphics

This chapter describes features of the SIMSCRIPT II.5 language which support both the
display of numerical information in a variety of static and dynamic chart formats, and the
representation of changing values using a variety of graphs. These graphs are constructed
in SIMSCRIPT Studio, and loaded into you program via a SHOW or DISPLAY statement.
Graph types include:

Histograms,

Grouped histograms,

Dynamic bar charts,

Pie charts,

X-Y plots,

Trace plots exhibiting variables traced over time,
Meters that show a single value

These features are supported by SIMSCRIPT II.5 language enhancements. In general,
data is collected with versions of the TALLY and ACCUMULATE statements. Data is then
displayed with several forms of the DI SPLAY statement. Both static and dynamic graphs
are supported. Data structures can be defined to represent either the immediate state of
variables or to generate dynamic displays that automatically change over simulated time,
as the program modifies the variables being observed. The dimensionality of structured
data must match the dimensionality of the graph—for example, a scalar value can be
shown on a dial or level meter, but a 2-d chart, or piechart is required to represent an
array of values.

To create presentation graphics:

1. Create a chart, or meter in SIMSCRIPT Studio and add to gr aphi cs. sg2.

2. Declare the relevant globally-defined variables as DI SPLAY in the Preamble.

3. Add statements to the executable code to associate display variables with the graph
stored in gr aphi cs. sg2.

Each of these steps is described below.

4.1 Using SIMSCRIPT Studio to Create and Edit a Graph

SIMSCRIPT Studio Provides a Graph Editor that can be used to create and modify your
2-d charts, pie-charts, clocks, and meters. To get started with the graph editor, click with
the right mouse button on the “graphics.sg2” element, then select “new” from the popup
menu. In the dialog box, select from the list labeled “Type” the variety of clock, chart,
meter or display you with to create. Also provide a name for your graph. This same
name will be used in your program code to load the graph (via a SHOW or DISPLAY

SIMSCRIPT Graphics

statement). Clicking on the “Create” button will create a new graph editor window in
SIMSCRIPT Studio’s edit pane.

When a graph editor window is active a Style palette becomes attached to the right side of
the SIMSCRIPT Studio window frame. This palette allows you to zoom in and out of
the graph editor window, and also change the fill style, line style, text font and color of
any component on the graph.

Bl SIMSCRIPT IL5 Simulation Studio - doc

File Edit Project Options Wincdow Help

| D)@ @ +]| x| ¢ || &|@|n] @] 2|2 B0 2+ [Propertes]
T o = 5

ER=T

=-J# graphics sg2 Select mode ;
----- custom i Zoom mode C{
----- customa3_ -
----- customa3_; Fill Style D
----- customa3_; =
----- dialog 1 frn Line Style 1::
----- dialog1.icr 3 " -
----- % dialog2 frn Line Width
----- dialog3.frn Text Font 5T
----- dialogs.frn —_—
----- =) gialogs.fm Color il

----- icont.icn
----- icon2icn
----- icondicn
----- icond.icn
----- iconaicn
----- iconB.icn
----- icon¥.icn

w

4 .

LI Selected Component Resize Handle

| MMouse location, zoom factor }—|

I]
Selected: graph! orf #:2101 ¥:320232 Zoom:1 |

Figure 4-1: The SIMSCRIPT Studio Graph Editor

4.1.1Changing Size and Position of a Graph

There are two modes of operation in the graph editor called select and zoom. In select
mode (default) you can click on various parts of a graph, then change the style or color.
You can also move the graph by dragging it with the mouse. At each corner of the graph,
you will see a small green box called a resize handle. You can drag any of these handles
with the mouse to resize the graph. The graph will be displayed in the same size and
location in your program as shown in the editor window.

40

Creating Presentation Graphics

4.1.2 Zoom In and Out

Clicking on the second button from the top of the style palette (magnifying glass) allows
you to enter a zoom mode. When in zoom mode, clicking on the graph with the /left
mouse button will zoom in, while the right button allows you to zoom out. Click on the
top button (arrow) to return to select mode.

4.1.3 Changing Color, Font, Fill, and Line Styles

The Style palette also has buttons that enable you to change fill style, dash style, line
width, and text font. Clicking on the bottom button will allow you to make a color
change. You can change the style or color of any part of the graph by first selecting the
component, then choosing a new style or color from the Style Palette.

4.1.4 Changing Data Related Properties

As the graph editor starts up, a graph with default settings will be shown in the editor’s
window. To change the axis scaling, data-set properties, titles or the name, double click
on the graph while in select mode. A “property” dialog box will appear allowing you to
change attributes of the graph. It is important to set the name field to the same value that
is used in your program code to load in the graph (via the DISPLAY or SHOW
statement). Graph names usually have the “.grf” extension. See below for a more
detailed description of the various graph types.

Table 4-1: Mapping graph types to variable types.

Created in SIMSCRIPT Studio Variable type Declaration statement

Chart Real, Integer, Array DISPLAY,TALLY,
ACCUMULATE

Analog Clock, Digital Clock Real, Integer, TIME.V | DISPLAY

Dial, Digital Display, Level Meter Real, Integer DISPLAY

Pie-chart Array DISPLAY

Text Meter Text DISPLAY

4.2 Displaying Single Variables in a Meter

A SIMSCRIPT program may have important scalar numerical values that are either
global variables or entity attributes that change over time. In SIMSCRIPT you can
associate what we will call a display variable with one of the graphs saved in your
graphics.sg? file. When the variable changes in your program, the graph is updated
automatically to reflect its new value.

41

SIMSCRIPT Graphics

k=i O] x]

150

o
100|
75
50
i

0.

Speed (MPH) -25[

b
Queue Length

Percentage Full

Figure 4-2: Meters in SIMSCRIPT

4.2.1 Creating a Meter in SIMSCRIPT Studio

There are three types of meters that can be created in SIMSCRIPT Studio to represent a
display variable—Level meters, dials, and digital displays. (These items can be picked
from the “Create new graphic” dialog box described above). From the graph editor,
double-click on the meter to display its “Properties” dialog box. This dialog will contain
the following:

- Name — The name of the graph. Used by your program in a “show” or “display”
statement.

- Title — Text of title displayed on bottom.

- Minimum, Maximum — Defines the range of values shown by the meter.

- Interval — Distance between tic marks on the single axis or face (specified in “Axis”
coordinates)..

- Num Interval — Distance between numbers on axis or face (specified in “Axis”
coordinates).

- Min Theta — (Dial only) Angle in degrees where the minimum value is placed around
the dial circumference. Angle is measured counter-clockwise from 3:00 position.

- Max Theta — (Dial only) Angle in degrees where the maximum value is placed
around the dial circumference. Angle is measured counter-clockwise from 3:00
position.

- Field Width — (Digital display only) Number of places allotted for the entire value
(including decimal point).

42

Creating Presentation Graphics

- Precision — (Digital display only) Number of places to the right of the decimal
point. If zero, an integer value is shown.

- Scale Factor — Factor multiplied by value before being displayed in the dial.

-Show Border — A square background can be shown under the meter face and title.

4.2.2 Monitoring a Single Variable in your Program

In order to add graphical monitoring to a quantity in your program, the quantity must be
defined as a display variable. Display variables are defined in the PREAMBLE using the
following syntax:

DI SPLAY VARI ABLES | NCLUDE vari abl el, variable2....

This declaration is made in addition to normal variable declarations. In other words the
variables used in this statement must be known to SIMSCRIPT at the time the declaration
1s made.

The graph to show a single value is created in SIMSCRIPT Studio (see Chapter 4.1).
Table 4.1 will show you of the graph types can be created to display the value. At
initialization time, your program will have to load the graph’s description file called
“graphics.sg2”. This is accomplished with the SIMSCRIPT “SHOW” or :"DISPLAY”
statement.

SHOW variable WITH "graph name"

or

DI SPLAY nanel, nane2,.. WTH "graph_nane"

Using the DISPLAY statement will load the graph from “graphics.sg2” and cause the
graph to become visible immediately. The SHOW statement will only load the graph.
The display or show must be called before the first assignment is made to the monitored
variable.

Graphs may be erased by specifying their display variables in an ERASE statement .

ERASE nanel,

Example 4.1: Show a single global variable changing over time
Create the graph in SIMSCRIPT Studio by right-clicking on “graphics.sg2” and selecting

13 29

new”. From the dialog box choose “Level Meter” from the list and set the name to
“graphl.grf”. Use the following source code:

Preamble
Define K as a real variable

43

SIMSCRIPT Graphics

Display variables include K
End

Main

Display K with "graphl.grf"
For K = 0.0 to 100.0 by 0.01
Do

Loop

Read as /

End

4.3 Charts

As far as SIMSCRIPT Studio is concerned, Histograms (dynamic and static), time trace
plots, and X-Y plots are shown using a single type of graph—the 2-D Chart. A chart can
contain one or more datasets, each representing some statistic compiled on a global
variable in your program. Each dataset can contain a fixed number of “cells” (bar-graph,
histogram, surface chart representation) or can collect a new data point each time the
monitored value changes (continuous representation). A chart can have a second Y-axis
(usually on the right). You can therefore not only show more than one histogram or X-Y
plot on the same graph, but show each quantity in a different scale.

4.3.1 Editing a Chart in SIMSCRIPT Studio

For applications requiring a histogram, time trace plot, or X-Y plot, you should create in
SIMSCRIPT Studio a “Chart”. Create by right clicking on the “graphics.sg2” tag,
selecting “new”, then picking “Chart” from the list-box. Once in the graph editor, charts
behave like the other graphs. You can click on various components (numbering, bars,
axis) then use the style and color buttons on the right palette to change the appearance.
Double click on the graph to show the properties.

4.3.2 Chart Properties Dialog Box

The main detail dialog box for the chart has buttons for changing the Axes, adding,
removing and editing data-sets, as well as specifying labels.

-Name — The name used to load the chart into your application program.

- Title — The title shown on the top of the chart. The title can have multiple lines of
text.

- Axes on Edges — If checked, numbering and tic marks will appear on all edges of the
plot area. For better visual reference, two extra axes will be drawn on both the top and
right sides of the plot area.

- Time Trace Plot — Setting this item implies that the chart is a time trace plot.
Whenever a variable being monitored by the chart is modified, its new value is
plotted along the Y-axis and the current simulation time is plotted along the X-axis.

44

100

300

2251
150]

757

100

Creating Presentation Graphics

- Show Legend — Chart will show a legend below the plot area. The fill style and color
of each data set is shown preceding its name.

- Show Border — A chart can be defined to draw a rectangular background underneath.
- Data Sets — A data set can be added using the Add button, or removed by selecting
its name in the list box and then pressing the Remove button. To change the properties
of a data set, select its current name in the list box and then press the Edit button.

- Handling of Multiple Data Sets —

If “stacked," all discrete data sets will be stacked on top of each other. In other words,
the value plotted in a data cell is reflected as the height of the bar, not its top.
Therefore, stacking means that the bottom of a cell in data set # is equal to the top of
the same cell in data set n-/. I.e. higher numbered data sets are stacked onto the lower
numbered ones.

“Side by side” means to show thinner bars next to each other in the same cell. Unlike
“stacked” the top of each bar reflects its current value.

If the “Overlap” radio button is marked, higher numbered data sets will obscure the
lower numbered sets.

ICovered

1] 10 20 30 40 50

IStacked

1] 10 20 30 40 50

Adjacent

0
B First

10 20 30 40 50

[second [Third

45

SIMSCRIPT Graphics

Figure 4-3: Three ways to show multiple data sets together.

4.3.3 X,Y,Y2 Axis Detail Dialog Box

To change the range, numbering interval, or any other property associated with the X
axis, click on one of either “X axis”, “Y axis” or “Y2 axis” buttons from the “Chart
Properties” dialog box. Another dialog will be brought up which contains the following:

- Title — Label for axis displayed below or to the left of numbering. The title can
contain multiple lines of text.

- Rescaleable — Specifies whether the axis will be re-numbered (scaled) when one of
the data points extends beyond its limit. In the case or the X-axis, the Compress Data
item determines whether a scrolling window is used, and whether old data is
discarded, or the range of the graph is to be expanded showing all data. Note that
rescaling may modify the tic mark, numbering, and grid line intervals to maintain a
similar visual representation of the chart. If this item is not checked, data points
falling beyond the limits of the axis will be discarded.

- Show grid lines — If this item is on, grid lines will be shown crossing the axis.

- Tics centered, Tics inside, Tics outside — Defines the tic mark alignment with respect
to the axis line. Tics marks can be attached to the axis from their center, left or right
sides.

- Compress data — (X-Axis only) When this item is set, re-scaling the X-axis will
increase the coordinate area of the chart enough to encompass the offending data
point. As a result, existing data will shrink in size. Clearing this item will have data
scrolled along the X-axis during axis rescale. In this case, data scrolled out of view
will be discarded.

- Minimum, Maximum — Defines the initial lo and high values on the axis.

- Tic Interval (Major & Minor) — Defines the distance along the axis between
consecutive tic marks. If an interval is zero, tic marks will not be displayed.

- Numbering Interval — Defines the distance along the axis between consecutive
number labels on the axis.

- Grid line Interval — Defines the distance along the axis between consecutive grid
lines.

- X,Y, Y2 Intersection Point — Defines the point (in axis coordinates) along the axis
where the perpendicular axis crosses.

- Data Scaling Factor — Defines the factor multiplied to that component of all data
plotted to the chart at runtime.

4.3.4 Attributes of a Data Set

You can edit individual attributes of a data set from the chart detail dialog box. Select the
name of the database you wish to change, and click on the “Dataset” button. This will
show the “Dataset Detail” dialog box which contains the following fields:

46

Creating Presentation Graphics

- Representation — Defines how the overall data set is structured. You can choose one
of the following data set types:
1. Bar Graph — Contains a fixed number of cells. Each new data point changes the
nearest cell's plot. Neighboring cells are NOT connected. The first cell begins at
(X_Minimum - Cell Width / 2) units. The individual bar is centered over the cell,
and there is a small gap between bars.
2. Histogram — Also contains a fixed number of cells. Each new data point
changes the nearest cell’s bar. There is no connection between neighboring cells.
The bar is set at the left edge of the cell, and there is no gap between bars. The
first data cell begins at the X-axis minimum.
3. Discrete Surface — Neighboring cells are connected to form a surface, however
there are still a fixed number of cells. Each new data point changes the nearest
“peak or valley” on the surface. The first cell begins at (X Minimum -
Cell_Width / 2) units.
4. Continuous Surface — Variable number of cells, i.e. a new cell is added to the
graph each time a data point is plotted at the given (X,y) location. Neighboring
cells are connected. Use this type of data set for trace plots, but not for
histograms.

- Plot Type — A data set can be shown using a filled region or a simple surface line
with or without markers:

1. Fill — Plot a data cell using a filled polygon. The fill style can be reset changes by
clicking on a bar and selecting a new style from the right palette.

2. Line — Plot data cell using a polyline. Clicking on the line from the graph editor
window, then selecting a new line type from the right hand palette can change line
width and dash style.

3. Mark — Use a small marker to represent the data point. Markers should only be used
with the “continuous surface” representation.

- Interpolate — This check box determines whether there is linear interpolation in
forming the connecting surface between consecutive data points. If this item is NOT
checked, the surface will be shown with only horizontal and vertical lines.

- Use Left Axis / Use Right Axis — Your chart can be defined to simultaneously show
two sets of independently scaled data by using a second Y-axis (generally shown to
the right of the plot area). Each data set in your chart can belong to either the left or
right (second) Y-axis.

- Static — This item is used to enhance performance for static graphs. In this case, a
single polygon (or polyline) will be used to display all cells in the data set.

- Cell Width — For bar, histogram and discrete surface data sets, this is the size of each
data cell. For histograms, the first data cell begins at the X-axis minimum. For bar
and surface graphs, the first cell begins at (X _Minimum - Cell Width / 2) units.

- Polymark Attributes — Select from one of six varieties of mark style. You must check
the “Mark” box before markers will be used in your graph.

47

SIMSCRIPT Graphics

I-!istograml Represeptation

100,

0 10 20 30 40 50
100 Bar Graph Representation
50
0l
0 10 20 30 40 50
100 Discrete Surface Representation
50}
0
0 10 20 30 40 50
100 Continuous Surface Representation
50]
0

1] 10 20 30 40 50

Figure 4-4: Data set representations

4.4 Histograms

The purpose of a histogram is to give the user a read-out on how often a variable or
quantity has a particular value, or range of values. Each bar in the chart shows how many
times the monitored quantity has taken on that value.

Histograms automatically acquire display capability, but including the special qualifier
DYNAM C creates histograms that are automatically updated as the data change, without
the necessity of issuing repeated DI SPLAY commands. Histogram names should not be
included in a DISPLAY VARIABLES INCLUDE... statement, but are instead declared
through a TALLY or ACCUMULATE statement.

TALLY hi st. name(l ow TO high BY interval) AS THE [DYNAM (]
H STOGRAM CF var . name

or

ACCUMULATE hi st . name(l ow TO high BY interval) AS THE [DYNAM (]
H STOGRAM OF var . nane

(where var . nane is already defined as an attribute or global variable).

48

Creating Presentation Graphics

In Figure 4.5 a histogram is shown which was obtained from the example called “bank”
which simulates bank customers waiting in line for a fixed number of “teller” resources.
Each bar in the histogram shows the number of “customers” that waited between (n) and
(n+1) minutes for a teller, where the number of minutes (n) is shown on the x-axis.

('.I:ustlom?r ‘-.r".rl'aitirl'lg 'Il'imeI

a0 1 |] 1

o
]
1

b
=
|
T

of Customers / Bin

[l
=
L

Minutes Spent Waiting

Figure 4-5:Bank model histogram.

Create a “2-D Chart” in SIMSCRIPT Studio to use as a histogram by right clicking on the
“graphics.sg2” tag, selecting “new”, then picking “2-D Chart” from the list. (See Chapter
4.1). Keep in mind that each dataset in your chart will correspond to a single histogram.

In the program code, the graph is loaded and displayed using the display or show
statements.

DI SPLAY HI STOGRAM hi st . nanel, hist.nane2,.. WTH "ny_chart.grf"

or

SHOW HI STOGRAM hi st . nanel, hist.name2,... WTH "ny_chart.grf"

One of the above statements must be invoked before any values are assigned to the
monitored variable (and before any other reference is made to the histogram name). The
first assignment to the monitored variable for dynamic histograms will cause the
histogram to be displayed, and any further references will cause the chart’s appearance to
be updated. Thus, for a dynamic histogram, DI SPLAY statements are redundant.

If variable names are used for the histogram limits (low, high, interval) these will be
automatically initialized from the X-axis graduations specified on the chart. These can be
edited in SIMSCRIPT Studio. Should the displayed bounds on the Y-axis be exceeded
during the simulation, the histogram will rescale automatically.

49

SIMSCRIPT Graphics

Dynamic histograms may be destroyed by specifying their names in an ERASE
H STOGRAM statement:

ERASE HI STOGRAM nanel,

Example 4.2: Show the histogram of a single variable

For this example we want to see the only the end results of the simulation run—therefore
a simple (non-dynamic) histogram is used. Notice that the Show... statement precedes
the first assignment to RANDVAR. Assignments to display variable triggers data collection,
and the graph must be loaded from “graphics.sg2” at this time. The di spl ay...
statement at the end of the program makes the chart visible. Here are the steps to create
this chart in SIMSCRIPT Studio.

1. Create the histogram chart in SIMSCRIPT Studio by right-clicking on “graphics.sg2”
and selecting “new”. From the dialog box choose “2D Chart” from the list, set the
name to “graph2.grf”, then click “Create”.

2. From the graph editor window double-click on the chart. From the “Chart
Properties” dialog you can set the title to something appropriate like “Random plot”.
Change the titles of X axis to “Value” and the Y axis title to “Count” by clicking on
the “X-axis” and “Y-axis” buttons.

3. Select the top item in the list of datasets then click on the “Edit” button. From the
“Dataset property” dialog, make sure that under “Representation” the “Histogram”
radio button is selected, and the “Fill” box is checked. Change the “Legend” to
“EXPONENTIAL.F”.

4. Click on the OK button to dismiss the “Chart Properties” dialog box.

Pr eanbl e
defi ne RANDVAR as a doubl e vari abl e
tally HHSTQ(O to 10 by 1) as the hi stogram of RANDVAR

end

mai n

define COUNT, NSAMPLES as integer variables

show H STO with "graph2.grf" '" load fromgraphics file

| et NSAMPLES = 50
for COUNT = 1 to NSAMPLES
| et RANDVAR = exponential .f(5.0,1)
di splay H STO'' see the graph
read as /
end

SIMSCRIPT will allow you to show more than one histogram on the same chart graph.
Assuming you have added multiple datasets to your chart in the graph editor, each of
these data sets is connected to one of the histogram names included in the show/display
statement.

Example 4.3: Show two dynamic histograms in the same chart

The following is a program to show two histograms in the same chart. The first
histogram will show a uniform random distribution while the second shows a normal
distribution.

50

Creating Presentation Graphics

1. Create the graph in SIMSCRIPT Studio by right-clicking on “graphics.sg2” and
selecting “new”. From the dialog box choose “2D Chart” from the list, set the name
to “graph3.grt”, then click “Create”.

2. From the “Chart Properties” dialog, add another data set by clicking on the “Add”
button. Also select the “Side by side” button under “Handling of Multiple Data Sets”

3. Select the top item then click on the “Edit” button. From the “Dataset Properties”
dialog, make sure that under “Representation” the “Histogram” radio button is
selected, and the “Fill” box is checked. Change the “Legend” to “UNIFORM.F”.

4. Apply step 2 to the second dataset except change its legend to “NORMAL.F”.

preamble

define LO, HI, DELTA, K as integer variables

define VAR.NAME1l, VAR.NAME2 as a real variables

tally HIST.NAME1l (LO to HI by DELTA) as the dynamic histogram of
VAR.NAME1

tally HIST.NAME2(LO to HI Dby DELTA) as the dynamic histogram of
VAR .NAME2

end

main
display histogram HIST.NAME1l,HIST.NAME2 with "graph3.grf"
for K = 1 to 500

do
let VAR.NAME1l = UNIFORM.F (LO, HI, 1)
let VAR.NAMEZ = NORMAL.F(LO, HI, 1)
loop
read as /
end

Because the histograms are specified as dynamic, they redisplay any time the variable
VAR. NAME1 or VAR NAME2 is assigned a value. It is not necessary to use a DISPLAY
statement to update the chart.

Example 4.4: A Time-Weighted Accumulated Dynamic Histogram

Accumulated statistics are weighted by the duration of simulated time for which the value
remains unchanged. For this reason the example is written to use a process to generate the
sample data, waiting for simulation time to elapse between each sample. In this example,
histogram limits are declared in terms of variables. These variables obtain their values
from the X-axis specification of the 2-d chart created in SIMSCRIPT Studio. To create
the graph, follow the steps outlined in Example 4.3 (except call the graph “graph4.grf™).

Preanbl e

define RANDVAR, LO, HI, DELTA as double vari abl es

accunul ate HI ST(LOto H by DELTA) as the dynam c hi st ogram of RANDVAR
processes include SAMPLE

end

process SAMPLE

until TIME V gt 100

do
wait exponential.f(5.0, 1) units
l et RANDVAR = uniformf (1, 10, 2)

SIMSCRIPT Graphics

| oop

end

mai n

show HI ST with "graph4.grf"
acti vate a SAMPLE now

| et TIMESCALE.V = 10

start simulation

read as /

end

4.5 Time Trace Plots

SIMSCRIPT Studio will allow you to create a plot showing the value of a single variable
plotted on the Y-axis while simulation time is plotted to the X-axis. Essentially the trace
plot allows the user to see not only the current value (as in a level meter), but the value at
any previous time value. Trace plots use the 2-d chart, but apply to the display variable
and not histograms. Assuming we wanted to monitor the variable “RANDVAR” with a
trace plot, the following code would be placed in the Preamble:

Def i ne RANDVAR as a doubl e variabl e
Di spl ay vari abl es include RANDVAR

Include a trace plot by using SIMSCRIPT Studio to create a 2-D Chart. You should
make the following changes to a new chart: From the “Chart Properties” dialog box,
check the “trace plot” check box. Also, ensure that every dataset in the graph has the
“Continuous Surface” representation.

There are two actions that can be taken by SIMSCRIPT when simulation time becomes
greater than the maximum value on the chart. The first option is to “scroll” previous data
to the left thus making room for more data. When TI ME. V exceeds the X-axis
maximum, a constant is added automatically to both the X-axis minimum and maximum.
Therefore, time value data at the beginning (right side) of the plot is discarded.

If the above “scrolling window” is not appropriate, you can check the “Compress Data”
box in the “X-Axis Properties” dialog box in SIMSCRIPT Studio. Under this option,
SIMSCRIPT will increase only the X-axis maximum when Tl ME. V becomes too large.
In this case, no previous data is ever discarded.

Lnlevel 2 Queule vs Time |

Objects

2.00 2.24 240 275 3.00
TIME.W

Figure 4-6:Time trace plot using the “scrolling window””.

52

Creating Presentation Graphics

Example 4.5: Plotting a variable over time

This example is constructed as a simulation so that it can be used to illustrate the use of a
time trace plot. (A dial or level meter could be substituted without changing the program
code). In the program, simulation time is scaled to real time so that the process actually
waits some noticeable time between samples. Use the global system variable
TI MESCALE. V to achieve this. TI MESCALE. V specifies the number of hundredths of a
real-time second that should correspond to one unit of simulated time.

1. Create the histogram chart in SIMSCRIPT Studio by right-clicking on “graphics.sg2”
and selecting “new”. From the dialog box choose “2D Chart” from the list, set the
name to “graphS5.grf”, then click “Create”.

2. From the graph editor window double-click on the chart. From the “Chart Properties”
dialog check the “Time Trace Plot” box.

3. Modify the X-Axis by clicking on the “X-Axis” button. Check both the “Compress
data” and “Rescalable” boxes. Set the title to “TIME.V”.

4. Click on the item in the “Datasets” list box and push the “Edit” button. From the
“Dataset Properties” dialog box, under “Representation” select “Continuous Surface”.
Clear the “Fill” check box, and set the “Line” and “Interpolate” boxes.

Preanbl e

defi ne RANDVAR as a doubl e variabl e
di spl ay variabl es i ncl ude RANDVAR
processes include SAMPLE

end

process SAMPLE

until TIME V gt 1000

do
| et RANDVAR = uniformf(0, 100, 2)
wait exponential.f(5.0, 1) units

| oop

end

mai n

show RANDVAR with "graphb5.grf"

acti vate a SAMPLE now

|l et TI MESCALE.V = 10 "' 0.1 sec per unit
start sinmulation

read as /

end

4.6 Simple X-Y Plots

SIMSCRIPT can be used to generate a simple line or surface graph when there is no
simulation running. This is done by simply using a time trace plot described above. To
add a data point to the graph, its x coordinate is assigned to the TIME.V global. The
variable used for the graph is set to the desired y value.

Example 4.6: Drawing a line graph of a simple function

In this example the function y = 100 / x+1 is plotted. For this example, borrow the same
graph used in Example 4.5, (but change its name to “graph6.grf””). A temporary variable
“SAVTIME” is used to preserve the original value of TIME.V in case this same code is
used in a simulation.

53

SIMSCRIPT Graphics

Pr eanbl e

defi ne YPLOT as a doubl e variable
di spl ay variabl es include YPLOT
end

mai n
defi ne SAVTI ME as a doubl e vari abl e
| et SAVTIME = TIME V
show YPLOT with "graph6.grf”
for TIMEEV = 1.0 to 100.0 do
l et YPLOT = 100.0 / TIME V

| oop

l et TIME V = SAVTI ME
read as /

end

Example 4.7: Drawing a X-Y scatter plot

In this example, a circle of data points is drawn in a graph.

1. Create the histogram chart in SIMSCRIPT Studio by right-clicking on “graphics.sg2”
and selecting “new”. From the dialog box choose “2D Chart” from the list, set the
name to “graph7.grf”, then click “Create”.

2. From the graph editor window double-click on the chart. From the “Chart Properties”
dialog check the “Time Trace Plot” box.

3. Click on the item in the “Datasets” list box and push the “Edit” button. From the
“Dataset Properties” dialog box, under “Representation” select “Continuous Surface”.
Clear the “Fill”, and “Line” check boxes, and set the “Mark™ and “Interpolate” boxes.
Set the “Mark Style” to “Square”.

Preanbl e

defi ne YPLOT as a doubl e variabl e
di spl ay variabl es include YPLOT
end

mai n

define THETA as a integer variable

show YPLOT with "graph7.grf"

for THETA = 0 to 360 by 10 do
let TIMEV = 40 * COS.F(2.0 * THETA * PI.C/ 360.0) + 50
let YPLOT = 40 * SIN. F(2.0 * THETA * PI.C/ 360.0) + 50

| oop

read as /

end

4.7 Clocks

SIMSCRIPT provides both analog (circular with hands) and digital clocks that can be
used to show current simulation time. The clocks are dynamic in nature and update
automatically whenever the display variable (containing time) changes in value.

54

Creating Presentation Graphics

Simulation Time

Figure 4-7: Clocks

4.7.1 Editing a Clock in SIMSCRIPT Studio

Create a clock by selecting either “Analog Clock™ or “Digital Clock™ from the list in the
“Create New Graphic” dialog box. When you click on the “Create” button a graph editor
window will appear containing the clock. (See Chapter 4.1). The color and fill style of
individual components (including face, title, and border) can be changed by selecting
them and using the Style or Color palettes on the right. Double-click on the clock image
to show the “Clock Properties” dialog box containing the following:

-Name — The name of the object within the current graphics library. Use this name in
your program via the “Show” or “Display” statement.

- Title — Text of title displayed on bottom.

-Interval — (Analog clock only) Distance between tic marks around the face.

-Num Interval — (Analog clock only) Distance between numbers around the face.

- Max Hours — The maximum number of hours the clock (shown at the top of the face)
that the clock is capable of showing (generally 12). As this value is exceeded, the
time display will start over from 0:00:00.

- Show Hours, Show Minutes, Show Seconds — You can control displaying the hour,
minute and second hands with these items.

- Hours Per Day — Currently, this parameter has no effect on the layout of the clock. It
is only used within the application program.

- Minutes Per Hour — Defines the time interval before the “hours” are incremented by
one.

- Seconds Per Minute — Defines the time interval before “minutes” are incremented.

- Show Borders — (Analog clock only) Determines whether to put a borders around the
face of the clock.

4.7.2 Adding a Clock to Your Program

A clock in SIMSCRIPT works by showing the current value of a display variable (See
Chapter 4.2.2). You define this variable in your PREAMBLE like this:

Define CLOCKTIME as a double variable
Display variables include CLOCKTIME

55

SIMSCRIPT Graphics

But there needs to be some way to automatically update the clock whenever simulation
time changes. This can be done by writing a time synchronization routine and assigning
it to the TIMESYNC.V system variable. This routine will then be called whenever
SIMSCRIPT is about to update the value of TIME.V and will allow you to change the
clock by assigning your display variable to the given parameter called “TIME”.

Let TIMESYNC.V = ' CLOCK. UPDATE'

Routi ne CLOCK. UPDATE gi ven TI ME yi el di ng NEWIT ME
Define TIME, NEWI ME as doubl e vari abl es

Let NEWII ME = TI ME

Let CLOCKTIME = TIME '' update the clock

End

By updating the display variable in this routine, you ensure that the clock will be
updating regardless of how many processes are happening in the simulation.

Example 4.8: Showing Simulation Time in a Clock

For this example, create either an analog or digital clock in SIMSCRIPT Studio as
described above. Set its name to “graph8.grf”’. This program will run for 100 seconds
and update a clock as it goes.

Preamble

Define CLOCKTIME as a double variable
Display variables include CLOCKTIME
Processes i ncl ude SAMPLE

End

Process SAMPLE
wait 20.0 / (24. * 60.) units '' wait 20 sinulated mnutes
end

Rout i ne CLOCK. UPDATE gi ven TI ME yi el di ng NEWIl ME
Define TIME, NEWI ME as doubl e vari abl es

Let NEWII ME = TI MVE

Let CLOCKTIME = TIME '' update the clock (tine in days)
End

Mai n

show CLOCKTI ME with "graph8.grf"

acti vate a SAMPLE now

et TIMESCALE.V = 100 * 24 * 60 '' 1 real sec. per sim mnute
Let TI MESYNC.V = ' CLOCK. UPDATE'

start sinmulation

read as /

End

4.8 Pie Charts

A pie chart is useful for displaying the fraction of the whole that each portion of a
population takes up. Each sector has an area in proportion to its fraction. For example, if
a quantity is one-third of the whole, its slice will be one-third of the pie chart.

56

Creating Presentation Graphics

Tax Revenue Breakdown

Schools (33%)
5 General Fund (13%)

EH Redevelopment Agencies {15%)
B Special Districts (18%)

Cities (18%)

Figure 4-8: A typical pie-chart shown in SIMSCRIPT.

4.8.1 Editing a Pie chart in SIMSCRIPT Studio

Add a pie chart to your application by right clicking on the “graphics.sg2” tag then
selecting “new” from the popup menu. Select “Pie chart” from the list-box then click on
the “Create” button. Position your pie chart by dragging it with the mouse. It can be
resized by dragging one of the small green rectangles at a corner. The color or fill style
of a slice in the chart can be changed by selecting it, then choosing from the style palette
on the right. You can also select the text labels and borders and change the style, color
and font by using the palette on the right edge of the window.

Double click on the piechart to display a dialog box showing its properties. From this
dialog you can add and remove slices in the chart, or change the name displayed in the
legend. This dialog box contains the following items:

-Name — The name of the object within the current graphics library. This name is used in

you program code.

- Title — Text of title displayed on top.

- Show border — Determines whether to put borders around the legend, title, and

plot of a pie chart.

- Slice List Box — This list box contains the names of all slices in the chart.

1. To add a slice, set the new slice’s name and value in the Slice Name and Slice Value
text boxes below, and click on the Add button.

2. To remove a slice, select its name in the list box and click on the Remove button.

3. To change the name or value of a slice, first select its name in the list box, and then
update the Slice Name and Slice Value text boxes and press the Update button.

4.8.2 Adding a Pie Chart to Your Program

57

SIMSCRIPT Graphics

Basically, a pie chart can be used to monitor a 1 dimensional array in SIMSCRIPT. Each
element in the array contains the value for one of the slices in the pie. (Naturally you
should make sure that the number of elements in the array matches the number of slices
added in SIMSCRIPT Studio.)

Define PIE.VALUES as a l-dim double array
Display variables include PIE.VALUES

The array should be defined as a display variable in the Preamble. After the pie chart
has been loaded using a “SHOW?” statement, assignments made to any element in the
array will update the pie chart automatically.

Example 4.9: A Dynamic Pie chart

Here we show a pie chart with four slices. As the program runs, an array with 4 elements
is assigned values repeatedly, causing the chart to be redisplayed. To construct the chart
in SIMSCRIPT Studio:

1) Add a new pie chart named “graph9.grf” to the project.

2) Double click on the pie chart to show its properties.

3) Click on the first slice shown in the list box. Enter “y = sqrt(TIME.V)” in the
“Slice name” field then click on the “Update” button.

4) Click on the second slice shown in the list box. Enter “y = TIME.V” in the “Slice
name” field then click on the “Update” button.

5) Click on the third slice shown in the list box. Enter “y = TIME.V * TIME.V” in
the “Slice name” field then click on the “Update” button.

6) Click on the “Add” button to create a new slice. Select the new fourth item in the
list. Enter “y=TIME.V * TIME.V * TIME.V” in the “Slice name” field then click
on the “Update” button.

Preamble

Define Y as a 1-dim double array
Display variables include Y
Processes include PIECHART

End

Process PIECHART
While 1 eg 1 do
'' assign values to the slices, then wait

Let Y(1) = SQRT.F(TIME.V)
Let Y(2) = TIME.V
Let Y(3) = TIME.V * TIME.V
Let Y(4) = TIME.V * TIME.V * TIME.V
Display Y
Wait 0.01 units
Loop
End
Main

Reserve Y (*) as 4
Show Y with "graph9.grf"
Let TIMESCALE.V = 100 '' 1 sec per unit

58

Creating Presentation Graphics

Activate a PIECHART now
Start simulation
End

Example 4.10: The Bank Model

As an example of the use of presentation graphics in a simulation model, a very simple
single-queue, multiple-server bank model has been augmented to include displays of the
simulated time on an analog clock, the queue length as a level meter, and the waiting time
of customers as a dynamic histogram. The code and graphics for the complete model are
included on the distribution kit for SIMSCRIPT IL.5. The simulation model is described
in the Preanbl e, Mai n, the | Nl TI ALI ZE routines, and in the GENERATOR and
CUSTOMER processes. The 2-d histogram is defined in lines 12 to 13 of the Preamble,
and initialized in line 9 of | NI TI ALl ZE. GRAPHI CS. The animated clock is defined in
lines 9-10 of the Preamble, created in line 5 of | NI TI ALI ZE. GRAPHI CS, and updated in
line 4 of CLOCK. UPDATE. In addition to the model enhancements, SIMSCRIPT Studio
was used to produce the three graphs to be used for display purposes. These are:
clock.grf, queue.grf,andwait.grf.

preanble '' BANK - Mbdderni zi ng a Bank

normal Iy, node is undefined

processes include GENERATOR and CUSTOMER

resources include TELLER

define NO OF. TELLERS as an integer variable

define MEAN. | NTERARRI VAL. TI ME, MEAN. SERVI CE. TI ME, DAY. LENGTH
and WAI TING TI ME as real variables

Define W.O, WH and WDELTA as integer vari abl es

Define CLOCKTI ME as a doubl e variabl e

Di splay variabl es include CLOCKTI ME, N Q TELLER

Graphic entities include SHAPE

Tal |y WAI TI NG Tl ME. H STOGRAM (W.O to WHI by WDELTA)
as the dynam c hi stogram of WAI TI NG Tl ME

end '' preanbl e

OCO~NOUITRWNE

PR R
AWNRO

mai n

call I NI TIALIZE

call I NI TIALI ZE. GRAPHI CS
start sinulation

read as /

end '''main

routine | N TIALIZE

| et NO OF. TELLERS = 4

| et MEAN. | NTERARRI VAL. TIME = 2.0

let MEAN.SERVICE.TIME = 7.0

| et DAY.LENGTH = 4 / hours.v '' days
create every TELLER(1)

et u. TELLER(1) = NO. OF. TELLERS

acti vate a GENERATOR now

end '' routine |IN TIALIZE

routine I Nl TIALI ZE. GRAPHI CS

Define DEVICE.|I D and Tl TLE as poi nter vari abl es

Let timescale.v = 1000 '' clock ticks (1/100 sec) per unit
Let timesync.v = ' CLOCK. UPDATE

Di splay CLOCKTIME with "clock.grf"

create a SHAPE called TITLE

display TITLE with "title" at (15000.0, 21000.0)

Di splay N. Q TELLER(1) with "queue.grf"

O~NOUTRARWNE OCO~NOURWNE OO WNE

59

O~NOUTRARWNE ~NOoOOTR_RWNE ORrWNE = ©

o

60

Creating Presentation Graphics

Di spl ay hi stogram WAI TI NG TI ME. H STOGRAM wi th "wait.grf"
end "' I NI TI ALI ZE. GRAPHI CS

routi ne CLOCK. UPDATE gi ven TI ME yi el di ng NEWI ME
Define TI ME, NEWIl ME as doubl e vari abl es

Let NEWII ME = TI ME

Let CLOCKTIME = TI ME

End ' ' CLOCK. UPDATE

process GENERATOR

until tinme.v >= DAY. LENGTH

do

activate a CUSTOVER now

wait exponential . f (MEAN. | NTERARRI VAL. TI ME, 1) mi nutes
| oop

end '' GENERATOR

process CUSTQOVER

define ARRIVAL. TIME as a real variable

let ARRIVAL.TIME = tine.v

request 1 TELLER(1)

let WAITING TIME = (tinme.v - ARRIVAL.TIME) * minutes.v * hours.v
wor k exponenti al . f (MEAN. SERVI CE. TI ME, 2) m nutes

relinquish 1 TELLER(1)

end '' CUSTOVER

5. Dialog Boxes

Dialog boxes provide an interactive way for the user to enter input data. A dialog box is
a window containing a variety of input controls including buttons, text labels, tabular
controls, single and multi-line text, combo, value, list, radio, and check boxes. These
items will be referred to as the “fields”. Tabbed dialogs can also be created in
SIMSCRIPT.

Dialog boxes are constructed using SIMSCRIPT Studio’s dialog editor. The Studio
allows you to create a template for each dialog box needed by your program. Templates
are saved in the file “graphics.sg2”.

Routines in the SIMSCRIPT runtime library will allow you to load a dialog box, initialize
its fields, display it, and also retrieve data at any time. You can also provide a “control
routine” that gets called automatically whenever the user presses buttons or changes field
values.

5.1 Using the Dialog Box Editor

The first step to adding a dialog box to the SIMSCRIPT program is to define its layout
using the SIMSCRIPT Studio dialog box editor. To create the dialog and add it to your
project, right click on the graphics library (“graphics.sg2” in the project tree) then select
the “New” from the popup menu. Select “Dialog box™ from the list and click OK. To
edit an existing dialog box, double-click its name shown in the contents pane under
“graphics.sg2”.

The dialog box editor window is designed to resemble the dialog box being edited. The
dialog box editor can be resized by dragging its right or bottom edges with the mouse.
Double-clicking in the background of the window allows properties such as the title and
library name to be specified. The library name will be used by your program when it
needs to create this dialog box. As a convention, dialog box names should end in “.frm”.

The new dialog box will initially contain two buttons labeled “OK” and “Cancel”. Add
input fields to the dialog by clicking on one of the palette buttons attached to the right
side of the Studio’s main window. A field can then be positioned by dragging it with the
mouse. The field that is currently selected is shown with a checkered border. Click and
drag any edge of the border to resize the field. You can make multiple selections by
holding down the shift key when you click on a field or dragging a box over a region
containing fields to be selected.

To set the label or other attribute of the field, double-click on it to display its
“Properties”. Each field should be given a unique “Field Name”. This is important,
because the field name allows your program to access the field’s data. (See Table 4.1 for

SIMSCRIPT Graphics

detailed descriptions of the various input fields and how to edit them in SIMSCRIPT
Studio.)

&1 SIMSCRIPT II.5 Simulation Studio - doc
File Edit Froject Options ‘Window Help| Properties, Grid, Test ’?
| D] @]+]Xx] ¢ & e]|w|n] =] 28| Bn] 2| =
= hin EE Dialog - dialog1._frm M =1 E3 =T
=i graphics.so2 Button Gl
----- B customzicn ¥ Collspse Time Text Rox —
----- custom3_1 S
..... custom3_2 Murnber of resources |3.D Value Box 2z
stu Initial gueue length |32.D Check Box ‘@
----- dialog.icn Maximum gueue length IEDD.D Radio Buttons [¢
----- 3 icont.icn f =
----- icon2.icn List Box 4
..... iconaicn (] | Cancel | i =
..... L icond icn Multiline Box [f{=
----- icon5.icn [
----- icong.icn Selected Field Tahle E
061 g icon?.icn Text Label T
[obj =
B3-E3 sre Group Box]
Combo Box LB
Tree B
4] Tah]
Selected: dialogl frm

Figure 5-1:The dialog box editor

5.2 Showing a Dialog Box in SIMSCRIPT

SIMSCRIPT provides some easy to use constructs which will allow you to load and
display your dialog box. The SIMSCRIPT “show” will create a new instance of a dialog
box and assign it to a pointer variable, but not yet make the dialog box visible.

Show DIALOG.PTR with "my dialog box.frm"
Display this dialog box using the ACCEPT . F function as follows:

Let FIELD.NAME = ACCEPT.F (DIALOG.PTR, O0)

This function will actually display the dialog box on the screen. ACCEPT.F does not
return until the dialog box is dismissed. At this point, it will return with the field name
(text value) of the button that was clicked on to close the dialog box.

62

Dialog Boxes

Here is a small example program that simply loads and displays a dialog box created in
SIMSCRIPT Studio.

Example 5.1:

Main

'"'" — Display a dialog box. To create this in Sl MSCRI PT STUDI O

"' 1) Right click on "graphics.sg2", select new from the popup menu
2) Chose "Dialog Box" fromlist then click on "Create"
3) Double click on the wi ndow to show the Di al og Box properties.
4) Set library name to "my dialog box.frm", click "OK"
5) Build your project

Define DIALOG.PTR as a pointer variable
Define FIELD.ID as a text variable

Show DIALOG.PTR with "my dialog box.frm" '' load the dialog box
Let FIELD.ID = ACCEPT.F(DIALOG.PTR, O0) "' display the dialog box

End

5.3 Setting and Accessing Field Values

Each item in you dialog box should be given a unique field name. (To set the field name,
double-click on an item from the SIMSCRIPT STUDIO dialog editor window to display
its properties, then fill in the “Field Name” box.) Your program can retrieve a pointer to
any one of the fields in your dialog box by passing its field name the pFIELD. F function.

The entity attributes DDVAL.A,DARY.A and DTVAL.A of the resulting pointer will
contain the numerical, array, or text data shown in the dialog. Before calling ACCEPT.F,
you should initialize the fields in your dialog box by setting attributes of the field pointer.
For example:

Let DTVAL.A(DFIELD.F("my_text box_field", DIALOG.PTR)) = TEXT.VALUE
Let DDVAL.A(DFIELD.F("my _value box_field", DIALOG.PTR)) = REAL.VALUE
Let DARY.A(DFIELD.F("my list box_field", DIALOG.PTR)) =TEXT.ARRAY (*¥)

Use these same attributes to get the data after dialog interaction is complete and
ACCEPT.F has returned.

Let TEXT.VALUE = DTVAL.A(DFIELD.F("my _text box_field", DIALOG.PTR))
Let REAL.VALUE = DDVAL.A(DFIELD.F("my _value box_field", DIALOG.PTR))
Let TEXT.ARRAY(*) = DARY.A(DFIELD.F("my list box_field", DIALOG.PTR))

Example 5.2:

Main
— Display a dialog with a value box. To create in Sl MSCRI PT STUDI O
"' 1) Double-click on "my dialog box.frm" (create in Example 5.1)
"' 2) dick on the value box tool button on the right palette
3) Position the value box by dragging it with nouse
4) Doubl e-click on the value box to display properties.
"' 5) Change Field name to "my value box field"

63

SIMSCRIPT Graphics

"' 6) dick OK Build the project

Define DIALOG.PTR as a pointer variable
Define FIELD.NAME as a text variable
Define REAL.VALUE as a real variable
Let REAL.VALUE = 12.3

"' Create a new dialog box and load it from template library
Show DIALOG.PTR with "my dialog box.frm"

"' initialize the dialog box

Let DDVAL.A(DFIELD.F("my_value box field", DIALOG.PTR)) = REAL.VALUE
"' Display the dialog box and wait for terminating button click
Let FIELD.NAME = ACCEPT.F(DIALOG.PTR, 0)

"' Get the data from dialog
Let REAL.VALUE = DDVAL.A(DFIELD.F("my_value box_field", DIALOG.PTR))
List REAL.VALUE

End

Consult the following table to determine which of the attribute to use on a given field:

Table 5-1:How to access various fields using display entity attributes.

FIELD Data Application User | Calls Entity Attributes
Can Control
Edit Routine
Button No data No Yes Not used
Check box Receive yes / no input Yes Yes DDVAL.A
Combo box Select from a list Yes Yes DTVAL.A, DDVAL.A, DARY A
Label Single text or numeric value No No DTVAL.A, DDVAL.A
List box Select from a list No Yes DTVAL.A, DDVAL.A, DARY.A
Multi-line text | Display many lines of text Yes No DARY.A
box
Progress bar Single numeric value No No DDVAL.A
Radio button Select one of many Yes Yes DDVAL.A
Table Select one from a 2-d grid No Yes DTVAL.A, DARY.A, DDVAL.A
Text box Enter a single line of text Yes Maybe DTVAL.A
Tree Select from hierarchical tree No Yes DTVAL.A, DDVAL.A, DARY.A
Value box Enter a single numeral Yes Maybe DDVAL.A

5.4 Using Control Routines to get Input Notification

In some cases, you will want to provide code to immediately handle dialog input events
generated by the user (such as button clicks, text box modification, etc) while the dialog
is still visible. A control routine can be passed to ACCEPT . F that will be called whenever
a user performs some action on one of the items in a dialog box. This is a useful way to
perform immediate validation or cross-checking of fields. Your program should define

the routine like this:

64

Dialog Boxes

routine DIALOG.RTN given FIELD.NAME, DIALOG.PTR yielding
FIELD.STATUS

define FIELD. NAVE as text variable "' name of field
define DI ALOG PTR as pointer variable "' pointer to dialog
define FIELD. STATUS as integer variable '' set this to -1,0,1

The routine name is passed to ACCEPT.F like this:

let FIELD.NAME = ACCEPT.F(DIALOG.PTR, ‘DIALOG.RTN’)

Consult Table 5.1 or Section 5.3 to see which items generate calls to the control routine.
To get a callback from a text or value box, mark “Return Selectable” in the “properties”
dialog box for the item.

Handler code for the control routine should check the FIELD.NAME parameter to
determine which of the items in the dialog was clicked on or changed. Before the dialog
is first displayed, the control routine is called with FIELD.NAME equal to “INITIALIZE”.
In addition, your control routine will be called with FIELD.NAME equal to
“BACKGROUND?” if the user clicks in the canvas of the graphics window (not dialog
box window). You can retrieve the location of this mouse click through the LOCATI ON. A
attribute of the display entity pointer DI NPUT. V (if nonzero).

The FI ELD. STATUS parameter can be used to communicate the following to
ACCEPT. F:

0 -- Accept the input

1 -- Terminate the interaction (return from ACCEPT.F).

Here is a small program that uses a control routine:

outine DIALOG.RTN given FIELD.NAME, DIALOG.PTR yielding FIELD.STATUS
' — Use control routine to receive callbacks from SIMSCRIPT

' To create in SIMSCRIPT STUDIO:
Al
\l
Al
\l
Al
\l

R
L}
L}
' 1) Double-click on "my dialog box.frm" (create in Example 5.1,2)
L}
L}
|}
L}
L}

)

2) Double-click on the value box to display its Properties

3) Position the value box by dragging it with mouse

4) Double-click on the value box to display properties.

5) Change Field name to "my value box field"

6) Click OK, Build the project
define FIELD.NAME as text variable ''" name of field
define DIALOG.PTR as pointer variable '' pointer to dialog
define FIELD.STATUS as an integer wvariable '' set to -1,0,1

Select case FIELD.NAME
Case "INITIALIZE"

let DDVAL.A(DFIELD.F("my value box field", DIALOG.PTR)) = 123.4
Case "value box field name"

List DDVAL.A(DFIELD.F("my value box field", DIALOG.PTR))
default
Endselect

65

SIMSCRIPT Graphics

Let FIELD.STATUS = 0 '' everything is OK!

Return
End

Main
'' assumes we have created a dialog box named "my dialog box.frm"
'' containing a value box named "my value box field"

Define DIALOG.PTR as a pointer variable
Define FIELD.NAME as a text variable

'' Load and then show the dialog
Show DIALOG.PTR with "my dialog box.frm"
Let FIELD.NAME = ACCEPT.F(DIALOG.PTR, ‘DIALOG.RTN’)

''" Show the result
List DDVAL.A(DFIELD.F("my_value box_field", DIALOG.PTR))

End

5.5 Enable and Disable fields

In many cases, you may want to activate and deactivate items in your dialog box in
response to the user changing one of the fields. This can be done inside your control
routine. The routine SET.ACTIVATION.R can be used to disable or enable a field. The
syntax is:

Cal | SET. ACTI VATI ON. R gi ven FI ELD. PTR, ACTI VATI ON. STATUS
' ACTI VATI ON. STATUS = 1 neans to enable, 0 nmeans disable

For example, suppose you want to deactivate the field “value box_field” when user
clicks on “my_check box field”. The control routine should now contain the code:

Select case FIELD.NAME

When "my check box field"
Call SET.ACTIVATION.R(
DFIELD.F("my value box field", DIALOG.PTR),
DDVAL.A(DFIELD.F("my_check_box_field", DIALOG.PTR)))

let DDVAL.A(DFIELD.F("my value box field", DIALOG.PTR)) =
123.4

It is also possible to hide and show fields using the SIMSCRIPT “display” and “erase”
statements. 1.e.

Erase DFIELD.F("my value box field", DIALOG.PTR)
Display DFIELD.F("my value box field", DIALOG.PTR)

5.6 Dialog Boxes: Field Types

66

Dialog Boxes

SIMSCRIPT allows you to use a variety of fields in you dialog boxes. Fields are added

using SIMSCRIPT Studio. Refer to Figure 5.1 to see which button to click on to add a

particular field. Figure 5.2 below shows an example of a dialog box containing all types
of fields:

Fields in a Dialog Box x|

tab |

group box

" radio button

¥ check box

combo box |Opti|:|n 1 'I
text box IEntertert here

value box |12.5 1 | e | b | € |
label 2
3
ftern 1 g
ftern 2
[tern 3 4] | _'I
table

list boo

can bhe placed into
this field.

Many lines of text ﬂ

[|

multi-line text hox —

Table 5-2: Dialog box containing many fields.

5.6.1 Buttons

Buttons do not hold data, but it can be used to activate a control routine, verify contents
of value boxes, or close its dialog box. In SIMSCRIPT Studio, double click on a button
to edit its properties.

-Label — Text shown on the face of the button.

- Default — Setting this item will make this button the “default” button. Default buttons
can be “pressed” using the <Enter> key.

- Verifying — When a “Verifying” button is clicked on, each numerical value in the
dialog will be checked against its acceptable range. (see “Value Box”).

- Terminating — Clicking on a “Terminating” button will erase its dialog. If the dialog
box is modal, the application will return immediately from ACCEPT.F.

67

SIMSCRIPT Graphics

5.6.2 Check Box

A check box is used to receive and show yes/no input. The SIMSCRIPT Studio
“Checkbox Properties” dialog will show the following:

-Label — The text on the right-hand side of the box identifying it to the user.
- Checked — Initial state of the check box.

In your program, the check box is checked when ppovar.a =1, and cleared when
DDVAL.A = 0.

5.6.3 Combo Box

A combo box is of a text box with a drop down list attached to it right side. SIMSCRIPT
Studio lets you set the following properties:

-Label — The text on the left-hand side of the box identifying the box.

-Width — The width in font units of the text box plus the drop down button.

-Height — The number of visible items in the drop down list.

- Editable — Defines whether or not you can edit the text field.

- Sorted Alphabetically — Indicates whether or not to sort the items automatically.

- Selectable using return — The control routine is also invoked when the user presses

the Return key.

DARY. A contains a selectable list of alternatives for the text box. Your program can also
use DTVAL.A to set the text in the box. The control routine is called whenever the user
selects an item from the list. The routine can use the DTVAL.A attribute to determine
which item was selected.

Example 5.4: Use a combo box in a dialog

Main

''" Display a dialog with a value box. To create in SIMSCRIPT STUDIO:
'' 1) Create a new dialog called "my dialog box.frm" (see Example 5.1)
'' 2) Click on the combo box tool button on the right palette

'' 3) Position the combo box by dragging it with mouse

'' 4) Double-click on the combo box to display properties.

'' 5) Change Field name to "my combo box field"

''" 6) Click OK, Build the project

Define DIALOG.PTR as a pointer variable
Define FIELD.NAME as a text variable

Define COMBO.ARRAY as a 1-dim text array
Reserve COMBO.ARRAY (*) as 3

Let COMBO.ARRAY (1) = "Hello"

Let COMBO.ARRAY (2) "There"

Let COMBO.ARRAY (3) "World"

''" Create a new dialog box and load it from template library

68

Dialog Boxes

Show DIALOG.PTR with "my dialog box.frm"

'' initialize the dialog box

Let DARY.A(DFIELD.F("my combo box field", DIALOG.PTR)) = COMBO.ARRAY (*)

'' set the initial text in the box
Let DTVAL.A(DFIELD.F ("my combo box field", DIALOG.PTR)) = "World"

'' Display the dialog box and wait for terminating button click
Let FIELD.NAME = ACCEPT.F(DIALOG.PTR, 0)

End

5.6.4 Labels & Group Boxes

A label is used to place explanatory text, values or titles in a dialog box. The text of the
label can be reset programmatically but cannot be modified by the user. Labels can have
an attached group box which shows the user a related set of fields. Through SIMSCRIPT
Studio you can specify the following properties:

-Label — The text of the label.

- Show Group Box — Defines whether a group box will be shown.

-Width — The width in font units of the group box.

-Height — The height in font units of the group box.

Through the Properties dialog, you can define whether the label is defined
programmatically through the DTVAL. A or DDVAL. A attributes of its field pointer.
One of the following three access modes can be defined:

a. Use the DTVAL. A attribute to define the text.

b. Use the DTVAL. A attribute to define the text. Truncate the text to Field width
places.

c. Use the DDVAL. A attribute to define a real value displayed by the label. The Field
width text box specifies the total number of places, while the Precision box defines
the number of places after the decimal point.

For example, if the label’s reference name is “MY.LABEL”, you could programmatically
set the label as follows:

Let DTVAL. A(DFI ELD. F("my | abel field", FORM PTR))
or
Let DDVAL. A(DFI ELD. F("my | abel _field", FORM PTR))

"Hello World"

12.5

The control routine is not called when the user clicks on a label.

Example 5.5: Setting static (read only) text and numerical labels

Main
T

Display a dialog some static text. To create in SIMSCRIPT STUDIO:
''" 1) Create a dialog box entitled "my dialog box.frm" (see Example 5.1)

69

SIMSCRIPT Graphics

Click on the label tool button on the right palette three times
Position each label control by dragging it with mouse

Double-click on each label to display properties.

Call a label "my label fieldl". Select "Normal Text" radio button
Call a label "my label field2". Select "Truncated Text" radio button.
' Set the field width to 9

''"'7) Call a label "my label fieldl". Select "Formatted Real" radio button
' Set the field width to 5, precision to 2

'' 8) Click OK, Build the project

oy U1 b W N

Define DIALOG.PTR as a pointer variable
Define FIELD.NAME as a text variable

''" Create a new dialog box and load it from template library
Show DIALOG.PTR with "my dialog box.frm"

'' initialize the dialog box

Let DTVAL.A(DFIELD.F ("my label fieldl", DIALOG.PTR)) = "Hello World"
Let DDVAL.A(DFIELD.F("my_label_fiele", DIALOG.PTR)) = "Truncated Text"
Let DDVAL.A(DFIELD.F ("my label field3, "DIALOG.PTR)) = 33.333333

''" Display the dialog box and wait for terminating button click
Let FIELD.NAME = ACCEPT.F(DIALOG.PTR, O0)

End

5.6.5 List Box

A list box is used to accept input from a sequential list of text items. The list may vary in
length and may contain scrollbars. You can define the list to accept only single item
selections, or accept multiple item selections using the Shift and/or Ctrl keys. A list box
has the following properties:

-Width — The width in font units of the list (including scroll bars).

- Height — The height in font units of the list.

- Allow Multiple Selections — Allows the user to select several items in the list using
the Shift and Ctrl keys.

In your program, use the DARY.A attribute to set the array containing the list of text
values, and the DDVAL. A attribute to set the index of the initially selected item.

The control routine is called when a selection is made. The program can then examine
the DDVAL.A attribute to get the index of the newly selected item. DTVAL.A will
contain the text of the selected item.

List boxes can be defined in SIMSCRIPT Studio to allow multiple selections. The user
can add selections to the list box by holding down the <shift> key while clicking. The
control routine will be called each time any item changes selection state. The routine
LI STBOX. SELECTED. R can be used to get all the selected items or even to determine if
the user has double-clicked on an item. Given a pointer to the list box field and item
number, this routine yields 2 if the item has been double-clicked on, 1 if this item is
selected, and O if the item is not selected.

70

Dialog Boxes

To deselect all items in a multiple selection list box, set its DDVAL. A attribute to O
and redisplay the field.

Let DDVAL.A (DFIELD.F("my listbox field", DIALOG.PTR)) = 0
Display DFIELD.F ("my listbox field", DIALOG.PTR)

Example 5.6: Multiple selection list box.

Main

'' Show a dialog containing a list box. To create in SIMSCRIPT STUDIO:
''" 1) Create a new dialog named "my dialog box.frm" (see Example 5.1)
'' 2) Click on the list box tool button on the right palette

''" 3) Position the list box by dragging it with mouse

'' 4) Double-click on the value box to display properties.

'' 5) Change Field name to "my listbox field"

''" 6) Mark the "Allow multiple selections" box.

''7) Click OK, Build the project

Define DIALOG.PTR as a pointer variable

Define LIST.ARRAY as a 1l-dim text array

Define ITEM.SELECTED.FLAG, I as integer variables
Define FIELD.ID as a text variable

''" Create a new dialog box and load it from template library
Show DIALOG.PTR with "my dialog box.frm"

'' initialize the dialog box
Reserve LIST.ARRAY (*) as 3

Let LIST.ARRAY (1) = "Hello"
Let LIST.ARRAY (2) = "There"
Let LIST.ARRAY (3) = "World"
Let DARY.A(DFIELD.F("myflistboxifield", DIALOG.PTR)) = LIST.ARRAY (*)

''" Display the dialog box and wait for terminating button clicklet
Let FIELD.ID = ACCEPT.F(DIALOG.PTR, O0)

'' Get the selection state for each item in the list
for I = 1 to DIM.F(LIST.ARRAY (*))

do
call LISTBOX.SELECTED.R
given DFIELD.F("my listbox field", DIALOG.PTR), I
yielding ITEM.SELECTED.FLAG
select case ITEM.SELECTED.FLAG
case 0
write LIST.ARRAY(I) as "ITEM ", T *, " not selected. ", /
case 1
write LIST.ARRAY(I) as "ITEM ", T *, " was selected !", /
case 2
write LIST.ARRAY(I) as "ITEM ", T *, " was double-clicked!", /
endselect
loop
'' wait for user to hit the <return> key
Read as /
End

71

SIMSCRIPT Graphics

5.6.6 Multi-line Text Box

A multi-line text box is useful for displaying or allowing a user to edit multiple lines of
text. Horizontal and vertical scroll bars are attached if needed. SIMSCRIPT Studio allows
you to change the following properties:

-Width — The width in font units of the box (including scroll bar).

- Height — The height in font units of the box (including scroll bar) .

- Text — The text initially displayed in the box.

- Allow Horizontal Scrolling — If checked, a horizontal scroll bar will be attached
whenever any line of text is too long to be viewed in the text box. If not checked, long
lines of text may appear truncated if unable to fit inside the edit box.

Use the DARY. A attribute to set/get lines of text. Note that the control routine is NOT
called when the Return key is pressed. Here is some example code that sets the initial
text, receives input, then displays lines of text entered by the user:

Example 5.7: Multi-line Text Box

Main

'' Display a dialog containing an edit box. To create in SIMSCRIPT
STUDIO:

''" 1) Create a dialog box called "my dialog box.frm" (see Example 5.1)

'' 2) Click on the multi-line text box tool button on the right palette
'' 3) Position the edit box by dragging it with mouse

'' 4) Double-click on the edit box to display properties.

''" 5) Change Field name to "my edit box field"

'' 6) Click OK, Build the project

Define DIALOG.PTR as a pointer variable
Define INITIAL.TEXT, FINAL.TEXT as a 1l-dim text array
Define I as an integer variable

'' load the dialog box
Show DIALOG.PTR with "my dialog box.frm"

''" Initialize the multi-line box with field name "my edit box field"
Reserve INITIAL.TEXT (*) as 2

Let INITIAL.TEXT (1) = "First line of text"
Let INITIAL.TEXT (2) = "Second line of text"
Let DARY.A(DFIELD.F("my_edit_box_field", DIALOG.PTR)) = INITIAL.TEXT (*)

''" Show the dialog box, wait for input
If ACCEPT.F(DIALOG.PTR, 0) eg "OK"
'' Get and display the text that the user has entered
Let FINAL.TEXT(*) = DARY.A(DFIELD.F("my edit box field", DIALOG.PTR))
For I = 1 to DIM.F(FINAL.TEXT(*)) do
List FINAL.TEXT(I)
Loop
Always

'' Wait for user to hit return

72

Dialog Boxes

Read as /

End

5.6.7 Progress Bar

A progress bar is useful for indicating the time to completion of some task being
performed by your program. It is composed of a horizontal bar whose size indicates a
magnitude relative to some lower and upper bound. You can set the minimum and
maximum values in SIMSCRIPT Studio. The user cannot change the position of the bar
with the mouse. The following properties can be specified in SIMSCRIPT Studio.

e Label — The text on the left hand side of the bar identifying it to the user.
e Width — The maximum visible size of the bar in font units.

e Min — The bar will have zero length when set to this value.

e Max — The bar will have maximum length when set to this value.

e Value — The initial value displayed by the bar.

Usually progress bars need to be displayed in modeless dialog boxes. The ACCEPT.F
function must return immediately without dismissing the dialog to allow your program to
perform necessary processing. To make dialog box modeless, edit its properties in
SIMSCRIPT Studio. Un-check “modal interaction”, then set the “Don’t wait” radio
button in the “Action taken by ACCEPT.F” radio box.

5.6.8 Radio Box

The radio box accepts input from a fixed list of mutually exclusive toggle buttons.
From SIMSCRIPT Studio, the properties dialog allows you to add and remove radio
buttons from the radio box.

- To add a button, enter its label, and field name in the Radio Buttons area of the
Properties dialog, and then press the Add button.

- To remove a button, select its label in the list box and then press the Remove button.
- To change the attributes of a button, select its label in the list box, modify its label,
and field name, and then press the Update button.

Each individual radio button in the box has its own field name, and can therefore be
accessed by your program. Provide the field name to DFIELD.F then use the DDVAL.A
attribute to turn the button on (DDVAL.A = 1) or off (DDVAL.A = 0). The control routine
is called whenever the user clicks on a radio button. Here is an example of how to set
and get the values of radio button fields.

Example 5.8: Using a radio box

73

SIMSCRIPT Graphics

Main

''" Display dialog with radio buttons. To create in SIMSCRIPT STUDIO:
) Create a dialog named "my dialog box.frm" (see Example 5.1)
) Click on the radio box tool button on the right palette

) Position the radio button by dragging it with mouse

) Double-click on the button to display properties.

) Change Field name to "my radio box field"

) Add buttons with field names "green button", "red button"

" and "blue button".

'''7) Click OK, Build the project

o U W N

Define DIALOG.PTR as a pointer variable
Show DIALOG.PTR with "my dialog box.frm"

'' Make the blue button initially selected

Let DDVAL.A(DFIELD.F("red button", DIALOG.PTR)) = 0
Let DDVAL.A(DFIELD.F("green button", DIALOG.PTR)) = O
Let DDVAL.A(DFIELD.F("blue button", DIALOG.PTR)) = 1

'' Display the dialog box
If ACCEPT.F(DIALOG.PTR, 0) eg "OK"
If DDVAL.A(DFIELD.F ("red button", DIALOG.PTR)) ne 0

Write as "Red was selected", /

Always

If DDVAL.A(DFIELD.F ("green button", DIALOG.PTR)) ne O
Write as "Green was selected", /

Always

If DDVAL.A(DFIELD.F("blue_button", DIALOG.PTR)) ne O
Write as "Blue was selected", /

Always

Always

'' Wait for the user
Read as /

End

5.6.9 Table

A table is a two dimensional arrangement of selectable text fields or “cells”. The table
can be scrolled both horizontally and vertically. All cells in the same column have the
same width, but you can define the width of this column. A table can have both column
and row headers. The headers are fixed and will remain in view when the table is
scrolled.

You can navigate through a table using the left-, right-, up- and down-arrow keys. The
callback routine is invoked whenever a cell is clicked on or an arrow key is used to move
to activate a new cell. The table can automatically add a new row of cells at the bottom
when the user attempts to move below the last row. Use SIMSCRIPT Studio to specify
the following properties:

74

Dialog Boxes

-Viewed Width — The total width in font units of the table including row headers and
scroll bar.

-Viewed Height — The total height in font units of the table including column headers
and scroll bar.

- Number Columns — Number of columns of cells (not including headers).

- Number Rows — Number of rows of cells (not including headers).

- Column Headers — If checked, the table will contain a separate row of column
headers at the top of the cells.

-Row Headers — If checked, the table will contain a separate column of row headers to
the left of the cells.

- Automatic Grow — The table will automatically add a row if the user attempts

to move past the last row with the “down-arrow” key.

The attributes of all columns in the table are shown within a separate Column Detail table
invoked by clicking on the Columns button:

* Column (1,2,...) Width — The number of characters shown in the cells of a particular
column. Select the cell in the column corresponding to the one you want to change,
and type in a new width.

* Column (1,2,...) Alignment — Text in a table cell can be justified to the left or right, or
can be centered. Within the Column Detail table (I=Left justified, c=Centered, and
r=Right justified).

You can also set the initial contents of the cells in the table by clicking on the Contents ...
button. A duplicate table of the one you are working on will show the initial contents of
all cells. To change the initial contents of a cell, select the corresponding cell in the Cell
Detail table, and then type in the new text and press Return.

Your SIMSCRIPT program can initialize the table using the DARY.A attribute. Text
values are laid out in row major order. For example, assume the table has
*.NUM.COLUMNS’ columns (including row headers) and ‘.NuM.RrRoOwS’ rows. The index into
DARY .A for cell (CELL.coLuMN, CELL.ROW) is computed as follows:

Let TABLE.VALUES ((CELL.ROW-1) * .NUM.COLUMNS + CELL.COLUMN) = 3

Note that the array containing these text values must be reserved big enough to hold all
the cells. The DDVAL. A attribute contains the index of the currently selected cell while
DTVAL. A contains the text for this cell. You can compute the selected row and column
from DDVAL. A as follows:

Let TABLE. PTR = DFI ELD. F(("table_field", D ALOG PTR)
Let SELECTED. ROV = DI V. F(DDVAL. A(TABLE. PTR)) -1, NUM COLUWNS) + 1
Let SELECTED. COL = MOD. F(DDVAL. A(TABLE. PTR) -1, NUM COLUWMNS) + 1

Row (1) is the top row in the table and column (1) is the leftmost column. If row
headings were added to the table then column (1) refers to the row headings. If the table
contains column headings, row (1) corresponds to the headings.

75

SIMSCRIPT Graphics

Table in SIMSCRIPT x|

| Customer Name | Compary | Fhaone | Email
1 Ann Sheridan Glamorco 555-1236 |asheridoni@c«|
2 Rita Heyworth Dish Corp. 555-3739 |rheyworth@d—l
3 Lana Turner Big Screen Lmt. 955-1287 [Rturneri@bigs:
4 Hedy Lamar Starr Tech. 555-2834 |hlamar@stan
a Doris Da: Glamorous kfg. 955-4388 [ddavi@glamo
& Susan Heyward Starr Tech. 955-0823 [sheward@ste
e et —— 1 1'_I

Cancel |

Table 5-3: Typical use of a SIMSCRIPT Table

Example 5.9: Using a 2d table in a dialog box

Main

''" Display a dialog containing a table. To create in SIMSCRIPT STUDIO:
''" 1) Create a dialog called "my dialog box.frm" (see Example 5.1)

'' 2) Click on the table tool button on the right palette

'' 3) Position the table by dragging it with mouse.

''" 4) Double-click on the table to display properties.

'' 5) Change Field name to "my table field"

'' 6) Change number of rows to 10, number of columns to 2

''" 7) Check the "show column headings" box

''" 8) Click OK, Build the project

Define DIALOG.PTR, TABLE.PTR as pointer variables
Define TABLE.VALUES as a 1-dim text array

Define CELL.ROW, CELL.COLUMN as integer variables
Define .NUM.ROWS to mean 11

Define .NUM.COLUMNS to mean 2

Show DIALOG.PTR with "my dialog box.frm"
Let TABLE.PTR = DFIELD.F("my table field", DIALOG.PTR)

Reserve TABLE.VALUES (*) as .NUM.ROWS*.NUM.COLUMNS

'' label each cell in the table by its own row and column
For CELL.ROW = 1 to .NUM.ROWS do
For CELL.COLUMN = 1 to .NUM.COLUMNS do
Let TABLE.VALUES ((CELL.ROW-1) * .NUM.COLUMNS + CELL.COLUMN) =
CONCAT.F(ITOT.F(CELL.COLUMN), ",", ITOT.F(CELL.ROW))
Loop
Loop

'' initialize the fields
Let DARY.A (TABLE.PTR) = TABLE.VALUES (*)

'' display the dialog box
If ACCEPT.F(DIALOG.PTR,0) eg "OK"

Let SELECTED.ROW = DIV.F(INT.F(DDVAL.A(TABLE.PTR))-1, .NUM.COLUMNS) + 1

Let SELECTED.COLUMN = MOD.F (DDVAL.A(TABLE.PTR)-1, .NUM.COLUMNS) + 1

List SELECTED.ROW, SELECTED.COLUMN
Always

'' wait for user to press return

76

Dialog Boxes

Read as /

End

5.6.10 Text Box

A Text box is a commonly used field type which allows you to place a single line of
editable text into your dialog. Text boxes have the following properties:

-Label — The text appearing on the left-hand side of the box.

-Width — Size of the input box in font units. (average number of characters it can
contain).

- Text — The text string initially shown in the box.

- Selectable Using Return — If true, the control routine will be called when user presses
the Return key after typing text.

Use the DTVAL. A attribute to initialize and retrieve the text. If you wish for the control
routine to be called when the user presses the <return> key, set the Selectable

using Return property in SIMSCRIPT Studio. Some code to initialize and retrieve text
from a dialog is:

Let DTVAL. A(DFI ELD. F("ny_text field", DIALOG PTR)) = "Hello world"
Let TEXT.VALUE = DTVAL.A(DFIELD.F("my_text_field", DIALOG.PTR))

Example 5.10: Using a text box in a dialog

' Display a dialog containing text box. To create in SIMSCRIPT STUDIO:
Create a dialog named "my dialog box.frm" (see Example 5.1)

Click on the text box tool button on the right palette

Position the text box by dragging it with mouse

Double-click on the value box to display properties.

Change Field name to "my text box field"

Click OK, Build the project

o U W N

Define DIALOG.PTR as a pointer variable

Show DIALOG.PTR with "my dialog box.frm"
Let DTVAL.A(DFIELD.F("my text field", DIALOG.PTR)) = "Hello world"

If ACCEPT.F(DIALOG.PTR, 0) eg "OK"
Write DTVAL.A(DFIELD.F ("my text field", DIALOG.PTR)) as

"User entered: ", T*, /
Read as /
Always

End

5.6.11 Tree View List

77

SIMSCRIPT Graphics

Lists of items can be viewed hierarchically with items containing other items. Each item
consists of a label and an optional jpeg image, and each item can have list of sub items
associated with it. By clicking an item, the user can expand and collapse the associated
list of sub items.

Using SIMSCRIPT Studio you can specify the initial set of items and sub items in the
tree. Using the “Tree Properties” dialog, click on the “Add” button to add the top-most
items. To add sub items, click on any item the click on the Add button. You can change
the label, icon, and field name by clicking on an item, setting these fields, then clicking
on the “Update” button.

The items contained in the list are defined through the DARY. A attribute. The name
specification uses the "/ " character to separate item name from the sub item name and
works much the same way as a path name for the file system, i.e.

<top_item nane>/ <sub_item nane>/ <sub_sub_item name>/.
It is not necessary to include separate text values for the parent items.

For example, if you wanted to show following items:

a. "Reno" contained in "Nevada" which is in "USA"

b. "Las Vegas" contained in "Nevada" which is in "USA"
c."Berlin" contained in "Ger many" which is in "Eur ope" .
The DARY. A attributes should contain the following text strings:

Define TREE. I TEMS as a 1l-dimtext array
Reserve TREE. | TEMS5(*) as 3

Let TREE. | TEMS(1)
Let TREE. | TEMS(2)
Let TREE. | TEMS(3)

"USA/ Nevada/ Reno"
"USA/ Nevada/ Las Vegas"
" Eur ope/ Ger many/ Berlin"

Let DARY.A(DFIELD. F("ny_tree field", DI ALOG PTR) = TREE. | TEMB(*)

To specify a jpeg picture to place next to the item name, use the "| " character after the
name specification to separate the item name from jpeg file (or resource) name (without
extension). To show an image next to a container item, add that item to the list. In the
above example, suppose we want to:

a. show the bitmap “US_flag.jpg” next to the “USA” item.
. show the jpeg file “Poker chip.jpg” next to the “USA/Nevada/Las Vegas” item.
c. show the jpeg “German_flag.jpg” next to “Europe/Germany”:

Reserve TREE.ITEMS(*) as 4

Let TREE. | TEMS(1)
Let TREE. | TEMS(2)
Let TREE. | TEMS(3)
Let TREE. | TEMS(4)

"USA| US_fl ag"

"USA/ Nevada/ Las Vegas| Poker _chi p"
" Eur ope/ Ger many| Ger man_f | ag"

" Eur ope/ Ger many/ Berlin"

78

Dialog Boxes

If you need to use the "| " or "/ " characters in your item name, you can make them literal
using a preceding backslash "\ " character.

The DDVAL. A attribute of a tree list field pointer will contain the index of the last
selected item. In the above example, if the user clicked on the "Las Vegas" item, the
field's DDVAL. A attribute would be "2". You can set the selected item in the tree by
setting DDVAL. A and redisplaying the field. From above, to set the selected item to
"Berlin":

", DIALOG PTR)) = 4

Let DDVAL. A(DFI ELD. F("tree_field
', DI ALOG PTR)

Di spl ay DFIELD. F("tree field",

The control routine will be called whenever any item in the list is selected, but not when
an item is expanded or collapsed. From the control routine, your program can inspect the
DDVAL. A attribute to get the index of the selected item.

Let TREE.|TEMS(*) = DARY. A(DFIELD. F("ny_tree field", DI ALOG PTR))
Wite TREE. | TEMS(DDVAL. A(DFI ELD. F("my tree_field", DI ALOG PTR)) as
"ltemselected is ", T*, /

Example 5.11: Show a tree control in a dialog box

Main
''" Display a dialog with a value box. To create in SIMSCRIPT STUDIO:

''" 1) Create a dialog called "my dialog box.frm" (see Example 5.1)
'' 2) Click on the tree tool button on the right palette

'' 3) Position the tree by dragging it with mouse

'' 4) Double-click on the tree to display properties.

''" 5) Change Field name to "my tree field"

''" 6) Click OK, Build the project

Define DIALOG.PTR as a pointer variable
Define TREE.ITEMS as a 1-dim text array

Show DIALOG.PTR with "my dialog box.frm"

Reserve TREE.ITEMS (*) as 4

Let TREE.ITEMS (1) = "USA|US flag"

Let TREE.ITEMS(2) = "USA/Nevada/Reno|Poker chip"

Let TREE.ITEMS (3) = "USA/Nevada/Las Vegas |Poker chip"
Let TREE.ITEMS (4) = "Europe/Germany/Berlin|German flag"

'' Initialize the dialog box tree field. Set the items and the initially
''" selected item

Let DARY.A(DFIELD.F("my tree field", DIALOG.PTR) = TREE.ITEMS (*)

Let DDVAL.A (DFIELD.F ("my tree field", DIALOG.PTR)) =1

If ACCEPT.F(DIALOG.PTR, 0) eqg "OK"
Write TREE.ITEMS(DDVAL.A(DFIELD.F("myitreeifield", DIALOG.PTR)) as
"Item selected is ", T *, /
Read as /
Always

End

79

SIMSCRIPT Graphics

Tree With kems X |
E= sa oK_]
H-_4 Nevada
; Feno Cancell
o Las Yegas
-y
B4 Germarny
L. [erin

Table 5-4: Dialog box containing a tree.

5.6.12 Value Box

A value box is used to receive or show a single numerical value to the user. A lower and
upper bound can be specified for a value box input field. The width of the value box is
dependant on its Minimum and Maximum. Use SIMSCRIPT Studio to set the following
properties:

- Label — The title appearing on the left-hand side of the box.

- Min, Max — The range of values the box can contain. If a value typed into the box
is out

of range, the user will be informed whenever a verifying button is pressed.

- Precision — Precision is used to format output and round input. It defines the
number

of digits to the right of the decimal point. Negative values can be used to round to
10s, 100s, etc. (0 = integer value, 1 =0.1, 2 =0.01, -1 =rounded to 10’s, -2 =
rounded to 100°’s)

-Value — The initial value displayed in the box.

- Use Scientific Notation — Indicates whether output should be formatted using
scientific

notation. (i.e. 71 =7.1e+1).

- Selectable Using Return — Defines whether the callback routine will be notified
when the user presses the Return key the control has input focus.

Your SIMSCRIPT program can initialize or retrieve the contents using the DDVAL.A
attribute.

Let DDVAL.A(DFIELD.F("value field", DIALOG.PTR)) = 12.5
Let VALUE.REAL = DDVAL.A(DFIELD.F("value field", DIALOG.PTR))

Example 5.12: Using a value box

Main

''" Display a dialog with a value box. To create in SIMSCRIPT STUDIO:

''" 1) Create a dialog called "my dialog box.frm" (see Example 5.1)

''" 2) Click on the value box tool button on the right palette

'' 3) Position the value box by dragging it with mouse
4)

v Double-click on the value box to display properties.

80

Dialog Boxes

'' 5) Change Field name to "value field"
'' 6) Change the Precision to "1"
''7) Click OK, Build the project

Define DIALOG.PTR as a pointer variable

Show DIALOG.PTR with "my dialog box.frm"
Let DDVAL.A(DFIELD.F("Value_field", DIALOG.PTR)) = 12.5

If ACCEPT.F(DIALOG.PTR, 0) eg "OK"
Write DDVAL.A(DFIELD.F ("value field", DIALOG.PTR)) as
"User entered: ", D(4,1), /
Read as /
Always

End

5.7 Tabbed Dialogs

Tabbed dialog boxes contain overlapping pages of fields. They allow you to create
complex dialog boxes without using much screen space. Related fields can be grouped
into the same page. The user can expose a page by clicking on its heading on top of the

page.

Using SIMSCRIPT Studio, you can create a tabbed dialog by dragging one or more tab
pages from the Studio’s palette. Add fields to tab pages by first selecting the desired
page, then dragging the field onto it. You can drag fields out of a page to place them
back into the dialog box. Each page in the tab control has its own set of properties.
Double click on a page’s heading to edit the following properties:

* Label — The text label shown on the heading of the page.

* Icon Name — The resource or file name (without extension) of the jpeg file
shown next to the page’s label. Use the “Browse Resources” button to select
from one of the built in JPEG images, or click on the “Browse Files” button to
locate a JPEG file.

* Verify before hide —All value boxes in this page must be validated before the
page can be hidden by the user. In other words, if any value is out of range,
another page will not be exposed until the fields have been corrected by the user.

You do not need to make any changes to your source code to use tabbed dialog boxes.
SIMSCRIPT treats the controls in separate tab pages as if they all belong directly to the
dialog box. You should therefore make sure that controls in different pages do not share
the same field name.

81

SIMSCRIPT Graphics

Preferences E3

= Sa\tel Cnmpatibilityl B User Infarmation
General | Q Wiew | 4 Edit | & Print

~Options

v Blue hackground white text
W Provide feedback with animation

v Recently used fila list Id entries

~Measurement

LS Cerimeters [

¥ Show grid lines

Ok I Cancel |
Table 5-5:Tabbed dialog box created by SIMSCRIPT Studio

5.8 Dialog box Properties

Di
on

alog boxes have various properties that allow you to specify the title, initial placement
the screen, tab key traversal ordering, and how the dialog should be handled by

ACCEPT.F.

Using SIMSCRIPT Studio you can change the properties of the dialog box itself by
double-clicking on the background of the dialog editor’s window. Dialog properties
include the following:

82

* Library Name — Your program should use this name in the SIMSCRIPT “show”
statement when loading the dialog box.

* Modal Interaction — If checked, your program will not return from ACCEPT.F until a
button is clicked on that has the “terminating” property set. While this dialog is
displayed, the user will not be able to click on any other windows in the application.

» Title — Text displayed in the top or the dialog frame.

* Multiple rows of tab page headers — If your dialog contains tab pages, setting this
flag will cause page headers to appear in multiple rows when there are too many to
display in the page area. Otherwise the user will be able to scroll page headers into
view.

* Position — Use these items to define where on the screen the dialog box will appear
when shown. Using the radio-box, you can specify which corner of the dialog will be
offset from the lower left-hand corner of the screen. For example, if Top Right
positioning is selected, the X Offset and Y Offset fields define the distance from the
bottom left-hand corner of the screen to the top right corner of the dialog box. This
distance is specified in “screen coordinates” where the width and height of the
computer screen are each 100 units.

Dialog Boxes

* Tab key traversal — The ordering of items in the list defines the order in which to
transfer input focus from one control to the next when the user presses the Tab key.
Use the up- and down-arrow keys to shift the tab ordering of controls.

* Action taken by ACCEPT.F — You can also define the modeless behavior of
ACCEPT. F when the “Modal interaction” flag is cleared. Select one of the following
radio buttons:

1. Asynchronous: If this interaction mode is used, ACCEPT. F will suspend the
active process when called. Whenever a status value of “1” is returned from
the control routine or a terminating button is pushed, this process is
resumed. If there is no simulation running and hence no active process, the
Synchronous interaction mode is used.

2. Synchronous: Regardless of the simulation, ACCEPT. F will not return until
a status value of "1" is returned from the control routine or a terminating
button is pushed.

3. Don’t wait: ACCEPT. F will not wait for any action by the user but will
return immediately. Subsequent action on the form will invoke the control
routine.

5.8.1 Dialog positioning in SIMSCRIPT

The initial location of the dialog box can be set programmatically using the LOCATI ON. A
attribute of the form pointer. As far as your program is concerned, The lower left-hand
corner of the screen maps to coordinate (0,0) while the upper right-hand corner maps to
(32767,32767).

Using the DDVAL.A attribute of the dialog box pointer, you can specify at runtime
which corner of the dialog box to position. Acceptable values for DDVAL.A are as
follows:

0 - Position ignored. Place the dialog box in the center of the application’s window.
1 = Bottom left corner

2 - Bottom right corner

3 = Top left corner

4 - Top right corner

For example, suppose we want to show the dialog box in the top right corner of the
screen.

Let DDVAL.A(DIALOG.PTR) = 4
Let LOCATION.A (DIALOG.PTR) = LOCATION.F (32767,32767)

The value of LOCATI ON. A is updated automatically whenever the user repositions the

dialog. The allows you to save the location of the dialog before your program quits, then
redisplay it in the same place.

83

SIMSCRIPT Graphics

Write LOCATION.X (DIALOG.PTR), LOCATION.Y (DIALOG.PTR) as
"Dialog box is at ", D(6,0), ", ", D(6,0), /

5.9 Predefined Dialog Boxes

Dialog boxes are designed to be general enough to receive a wide variety of data type
from the user. However, some dialog boxes are commonly used in many different
applications for a specific purpose. Toolkits provide standard dialog boxes for message
display, file browsing and font selection. The SIMSCRIPT runtime library provides an
interface for these built-in dialogs.

5.9.1 Simple Message Box

If you wish to only display a message and not present the user with a decision, the easiest
way is to call the MESSAGEBOX . R routine. Pass the message text and the title of the dialog
to this routine and a dialog is displayed containing a button labeled “OK” or “Continue”.
MESSAGEBOX. R will not return until the user presses the button.

| et MESSACGE = "Your task has been conpleted! "
et TITLE = "Conpletion Status...™"
cal | MESSAGEBOX. R gi ven MESSAGE, TITLE

5.9.2 Custom Message Box

In some cases you will want only to display a simple message to the user and allow him
to answer “yes”, “no”, or “cancel”. This necessity is so common that most toolkits
provide built in dialog boxes just for that purpose. SIMSCRIPT allows you to add

message boxes to your program to make use of these dialogs.

ALERTH X

WARNING: Reformatting will erase all
data on your hard disk drive.

Do wou want to continue?

Table 5-6: SIMSCRIPT message box.

More advanced message boxes can be created in SIMSCRIPT Studio and are loaded and
displayed by like regular dialogs. Your program can display Alert, Question, Information
and Stop dialog boxes. To add a message box to your project, right-click on
“graphics.sg2” then select “new” from the popup. Select “Simple message box” from the
drop down list and click on the “Create” button. The “Message Box Editor” can then be

84

Dialog Boxes

used to edit these dialogs. Here, a message dialog can be set up to have one of the
following five styles:

a. Plain

b. Stop Sign

c. Question

d. Exclamation
e. Information

Each style shows a different icon in its window. It can contain one of the following sets
of response buttons:

OK button only

OK and Cancel buttons

Yes and No buttons

Yes, No and Cancel buttons
Retry and Cancel buttons

Abort, Retry and Ignore buttons.

Mmoo o

Any one of these buttons can be designated as the default button. This button is activated
when the user presses the <return> key.

Custom message dialogs are displayed using the SHOW statement and then the
ACCEPT. F routine (like a conventional dialog). Control routines are not used with
message dialogs. The text of the message can be set from SIMSCRIPT Studio or by your
program. The DARY. A attribute of the dialog points to a text array containing the
message.

The field name returned by ACCEPT. F indicates which button was pressed. Valid
responses returned by ACCEPT. F are "OK", "CANCEL", "YES", "NO", "ABORT",
"RETRY" and "IGNORE." (Note: there is no display entity corresponding to these field
names. Do not use DFI ELD. F on a message dialog box). The following example shows
a typical interaction with a message dialog:

Example 5.13: Using the two varieties of message box.

''" Display a message box. To create in SIMSCRIPT STUDIO:

' 1) Right click on "graphics.sg2" then select "new"

'' 2) From the "Create" dialog select "Simple message box" from the
v drop down list. Click on the "Create" button.

' 3) From the "Message Box Properties" dialog enter

' "my message box.frm" as the Name.

'' 4) Check the radio buttons "Question", "Yes, No, Cancel" and
' under "Default button" check "Yes".

''"' 5) Click on the OK button, then build the project

Main

Define MESSAGE.PTR as a pointer variable

Define TEXT.LINES as a 1l-dim text array

Reserve TEXT.LINES(*) as 2

85

SIMSCRIPT Graphics

Show MESSAGE.PTR with "my message box.frm"

Let TEXT.LINES (1) = "Do you want to save changes to the project"
Let TEXT.LINES(2) = "'My Project.dat'?"

Let DARY.A (MESSAGE.PTR) = TEXT.LINES (*)

Select case ACCEPT.F(MESSAGE.PTR, 0)

Case "YES" Call MESSAGEBOX.R ("User selects YES.", "Response")
Case "NO" Call MESSAGEBOX.R ("User selects NO.", "Response")
Case "CANCEL" Call MESSAGEBOX.R ("User selects Cancel.", "Response")
Endselect

End

5.9.3 File Browser Dialog

Toolkits provide standard dialogs for browsing through the directory structure of the file
system. These dialogs can now be accessed from within a SIMSCRIPT program using the
FI LEBOX. R routine as:

Define FILTER, TITLE, PATH NAME, FILE. NAME as text vari abl es

Let FILTER = "*.dat"

Let TITLE = "Select a data file..."

Call FILEBOX.R given FILTER, TITLE yielding PATH NAVE, FILE. NAME

The FI LTER variable can either be a wild card, or a fully or partially qualified file name.
The selected file and its path are returned in the FI LE. NAME and PATH. NAMVE variables
respectfully. The Tl TLE parameter is shown in the title bar of the dialog.

5.9.4 Font Browser Dialog

A predefined dialog box can be brought up programmatically allowing the user to select
system font attributes from those available on the server. This is done by calling
FONTBOX. R as follows:

Define TITLE, FAMLY.NAME as text variables
Define PO NT. SI ZE, | TALI C. DEGREE, BOLDFACE. DEGREE
as integer variables
Let TITLE = "Select a font™"
Call FONTBOX. R given TITLE vyi el ding
FAM LY. NAVE, PO NT. S| ZE, | TALI C. DEGREE, BOLDFACE. DEGREE

The yielded arguments are identical to those described above for TEXTSYSFONT. R (see

Chapter 3). FONTBOX. R will not return until a font has been selected, or cancel has
been pressed. In this case the result of FAM LY. NAME will be " " .

86

6. Menu Bars

In a typical application, the user interacts with a menu bar attached to the top of the
window. For most applications, the entire range of functionality is accessible through the
menu bar. Given its widespread use, most users expect to be able to control the program
through the menu bar.

A menu bar is composed of several menus arranged in a row on a bar across the screen.
Clicking on one causes its menu-pane to be displayed. Clicking on an item inside a menu
causes it to be selected. Cascadeable menus are supported, meaning that menus can
contain other menus and so on.

Like other forms, a menubar is constructed using SIMSCRIPT Studio, and displayed in
your program using the ACCEPT. F function. As with dialogs and palettes, the program
can employ a control routine to receive notification of menu item selection while a
simulation is running.

6.1 Constructing a Menu Bar in SIMSCRIPT Studio

Using SIMSCRIPT Studio you can add a menu bar to your project by right clicking on
the graphics library and selecting the “New” item from the popup menu. Select “Menu
bar” from the list and click OK. To edit an existing menu bar, double-click its name
shown in the contents pane under “graphics.sg2”.

The menu bar editor will show a representative of your menu bar near the top of the edit
window. To the right of the edit window a vertical toolbar contains three buttons used to
add both menus and menu items. To add a menu, click on the second button from the top
of the toolbar, then click in the menu bar to deposit the menu. At this time, a placeholder
is displayed under the menu which allows you to add menu items. This is done by
clicking on third button from the top of the tool bar, then inside the placeholder. Clicking
on any menu will show or hide its placeholder contains its items. The menu-bar editor is
shown in Figure 6.1:

SIMSCRIPT Graphics

Bl SIMSCRIPT IL5 Simulation Studio - doc

File Edit Project

Options Window: Help

| o)== @|+|}<|| |5¥t|@||i|_|| A= e

----- =i o [=] 3
----- _.l graph4 b, art = 3
..... 4 oraphd-c.on Menubar ~ PYTET: =
. o . . enu
""" ol graphd-d.orf File Edit “iew Simulation Help -
N [ot Stan Add Menu Ttem){ 1|
----- o icont.icn Copy Stop
& icanz.icn Paste
icond.icn Delete Menus
icandicn Il - -
jeanch Bitmap Image...
:EE:S:E: “ector Image. . Menu Items
i Separator -
=3 Dbj I ,
-1 sre A

Selected: menubar! frm

Figure 6-1: Editing a menu-bar in SIMSCRIPT Studio

Mvmw Simulation Help
Cut Cirl+
Copy Ciri+C
Pazte Cirl+
Delete

Insert Eitmap Image...

Figure 6-2: The menu-bar from Figure 6.1 displayed in a program.

You can double-click on the menu bar, menus, or menu items shown in the edit window
to display a properties dialog. This allows you to specify (among other things) the text of

the menu or item, as well is its field name which is used in your program. These dialog
boxes contain the following:

6.1.1 Menu Bar Properties

* Library name — The name of the object in the graphics.sg2 library. This name should be
passed to the SIMSCRIPT SHOWstatement.

* Action taken by ACCEPT.F — You can also define how ACCEPT. F will behave when

displaying the form in your program. ACCEPT. F will behave according to one of three
interaction modes:

88

Menu Bars

1. Asynchronous: If this interaction mode is used, ACCEPT. F will suspend the active
process when called. Whenever a status value of “1” is returned from the control routine
this process will be resumed. If there is no simulation running and hence no active
process, the Synchronous mode is used automatically.

2. Synchronous: Regardless of the simulation, ACCEPT. F will not return until a status
value of "1" is returned from the control routine.

3. Don’t wait: ACCEPT. F will not wait for any action by the user but will return
immediately leaving the menu bar visible. Subsequent selection of items in the menus
will invoke the control routine.

6.1.2 Menu Properties

* Field name — Any menu added to the menu bar or another menu can be accessed from
inside an application by specifying a Field name. (Usually the program will be interested
in the field name of the menu item, not the menu).

* Label — The text identifying the menu which appears on the menu bar.

* Mnemonic — A letter in the menu’s label that can be typed from the keyboard (while
holding down the Alt key) to bring down the menu pane. The mnemonic character will
appear underscored in your application.

6.1.3 Menu Item Properties

* Field name — Any menu item can be accessed from inside an application by specifying
its Field name. The field name is passed to the callback routine whenever a menu item is
clicked on.
* Label — The name identifying the menu item appearing within the container menu.
* Mnemonic — A letter in the item’s label that can be typed from the keyboard (while
holding down the Alt key) to activate the item. The mnemonic character will appear
underscored in your application.
* Accelerator Key Name — While running the application, you can use the keyboard to
activate menu options instead of using the mouse. Any menu item can have its own
accelerator key. This attribute determines which key will be mapped to this menu item.
To use enable keys such as [a-z], [0-9], and other punctuation and symbols keys to
activate the menu item, just type the key character directly. The naming convention for
keys performing functions are defined below:

“escape” — Names the Esc or Escape key.

“delete” — Names the Del or Delete key.

“return” — Names the Enter or Return key.

“backspace” — Names the < or the Backspace key.

“tab ”— Names the Tab key.

“f1”, “f2”, ..., “fn = Names the function keys “F1”, “F2”, ..., “Fn” at the top of the

keyboard.

89

SIMSCRIPT Graphics

* Use Alt, Use Ctrl, Use Shift — Specifies which modifier key must be held down in
conjunction with the accelerator key described above.

* Accelerator Key Label — This is the name appended to the menu item label used to
describe how to invoke the keyboard accelerator. For example, the string “(Ctrl+C)” could
describe an accelerator activated by holding down the Ctrl key and pressing “c”.

* Status Message — If the window containing this menu bar has a status bar, this help
message will appear in the first status bar pane. The text will be displayed whenever this
menu item is highlighted by the pointer (not necessarily activated).

* Checked — Menu items can have an “off/on” state shown by a small check mark next to
the label. The initial state is defined by the Checked attribute.

Note: This state is NOT changed automatically when the item is clicked on, but must be
updated by the application program.

6.2 Showing the Menu Bar in your program

SIMSCRIPT provides some easy to use constructs which will allow you to load and
display your menu bar. The SIMSCRIPT “show” will create a new instance of the menu
bar and assign it to a pointer variable, but not yet make it visible.

Show MENUBAR.PTR with "my menu bar.frm"

The text in quotes is the name of the menu-bar that was assigned in SIMSCRIPT Studio
when the menu bar was first created. The text must match up exactly with the name
provided in the menu-bar editor, or a runtime error will be generated. Display the menu-
bar using the ACCEPT . F function as follows:

Let FIELD.ID = ACCEPT.F (MENUBAR.PTR, 'MENUBAR.RTN')

Pass to ACCEPT.F the pointer to the menu-bar display entity used in the SHOW
statement. A control routine should be provided as the second argument (described
below). ACCEPT.F will normally not return until the control routine indicates
termination by setting its yielded STATUS argument to ‘1’ instead of zero.

6.3 Writing a Control Routine for the Menu bar

Normally, you will want the menu bar to remain visible while your program is executing
other code. A separate routine should be written for the menubar called a control routine.
When the user selects a menu item while the program is running, the SIMSCRIPT
runtime library will call the control routine passing the field name of the menu item
selected. Code in the control routine can match the field name against the known menu
item fields, taking whatever action is necessary when a match is found.

A control routine heading looks like this:

Routine MENUBAR.RTN given FIELD.NAME, MENUBAR.PTR

90

yielding FIELD.STATUS

Menu Bars

The FIELD.NAME text argument will contain the field name specified in SIMSCRIPT
Studio. The MENUBAR.PTR argument is the pointer to the menu-bar display entity.
Your control routine will fill in the FIELD.STATUS integer argument with one of the

following values:

0 -- Continue to display the menubar.

1 -- Stop displaying the menubar. Return from ACCEPT.F

Example 6.1:

'' — Use control routine to receive callbacks from a menu bar

''" To create in SIMSCRIPT STUDIO:

''" 1) Right click on "graphics.sg2" then select "new" from popup
''" 2) Select "Menu bar" in the list, click on the "Create" button
''" 3) Click on the Menu icon (right toolbar) then on the menubar
v in the edit window to add a menu.

'' 4) Double click on the text of the new menu to show properties.
v Set its Label to "Menu" and field name to "MENU".

''"' 5) Click on the menu to show its pane. Add four items

' by clicking on the Menu Item toolbar button (third from top)
v then in the small pane.

''" 5) Double click on items to set text and properties.

v Set item field names and labels to "FIRST", "SECOND, "THIRD"
' and "QUIT".

''" 6) Build the project.

Routine MENUBAR.RTN given FIELD.NAME, MENUBAR.PTR yielding FIELD.STATUS

define FIELD.NAME as text variable '' name of field
define MENUBAR.PTR as pointer variable ''" pointer to bar
define FIELD.STATUS as an integer variable '' set to 0,1
Select case FIELD.NAME
Case "FIRST" Write as "First was selected" , /
Case "SECOND" Write as "Second was selected", /
Case "THIRD" Write as "Third was selected", /
Case "QUIT" let FIELD.STATUS =1 ''" 1 => return from ACCEPT.F
Default
Endselect
Return
End
Main

Define MENUBAR.PTR as a pointer variable
Define FIELD.ID as a text variable

Show MENUBAR.PTR with "menubarl.frm" ''
Let FIELD.ID = ACCEPT.F (MENUBAR.PTR,
box

End

load the dialog box
'MENUBAR.RTN"'") '

display the dialog

6.4 Using a Menu Bar within a Simulation

If the menu bar needs to be available to the user while a simulation is running, you will
not want the program to “disappear” into the ACCEPT.F function. To prevent this, the
menu bar must be “asynchronous”. This means that the simulation will not stop running
when a call is made to ACCEPT.F—instead the current process is suspended, allowing

the simulation to continue.

91

SIMSCRIPT Graphics

There are two steps to setting up this asynchronous interaction. First, the menu bar
should be defined as “Asynchronous”. From SIMSCRIPT Studio double click on the
menu-bar shown in the edit window to bring up the “Menu Bar Properties” dialog box
described above. Then click on the radio button labeled “Asynchronous”.

The next step is to add to your code a simple process in to show your menu bar. The call
to ACCEPT . F should be made inside this process. When ACCEPT. F is called, the process
will be suspended, therefore you should not try to use this same process to perform any
other simulation related activities. The process should look something like this:

Process MENU.BAR

Define MENUBAR.PTR as a pointer variable

Define FIELD.ID as a text variable

Show MENUBAR.PTR with "menubar.frm"

Let FIELD.ID = ACCEPT.F (MENUBAR.PTR, 'MENUBAR.RTN')
End

Example 6.2: Menu bar displayed during a simulation
In this example a menu bar can be used while a simulation is running. Every second the
process “TEST” will print a message. While this is happening, the user can select items

in the menus without interrupting the simulation.

' To create in SIMSCRIPT Studio:

' 1) Right click on "graphics.sg2", select new fromthe popup nmenu
' 2) Double click on the container shown in the Menu bar editor.

' 3) Set library name to "nenubar2.frnf'. Select the "Asynchronous"”
' radio button. dick OK

' 4) Create the contents of the menu bar by follow ng the steps

' 3-6 outlined in Exanple 6.1

Preanbl e

Processes include MENUBAR, TEST

End

Rout i ne MENUBAR. RTN gi ven FIELD. I D, FORM yi el di ng STATUS
Define FORM as a pointer variable
Define FIELD.ID as a text variable
Def i ne STATUS as an integer variable
Wite FIELD. ID as "Button selected: ", T *, [/
If FIELD.ID eq "QU T"
Let STATUS =1
Al ways
End

Process MENUBAR

Def i ne MENUBAR PTR as a poi nter variable

Define FIELD.I D as a text vari able

Show MENUBAR. PTR wi t h "nenubar 2. f r nf'

Let FIELD. I D = ACCEPT. F(MENUBAR. PTR, ' MENUBAR. RTN)
St op

End

Process TEST
Wiile 1 eq 1 Do

Wait 1 unit

Wite as "Message fromtest process", /
Loop
End

92

Menu Bars

Mai n

Let TIMESCALE.V = 100 '' 1 sec per unit
Activate a TEST now

Activate a MENUBAR now

Start sinmul ation

End

6.5 Changing Menus, Sub-Menus and Menu Items at Runtime

Occasionally, items in the menu bar will may need to be changed at runtime. For
example, deactivating or “graying-out” of items is needed when function indicated by
the item is no longer possible to perform. For functions that toggle off and on, a check
mark can be placed next to the item. A SIMSCRIPT program can access menus and
menu items the same way controls in a dialog box are accessed, through the DFIELD.F
function.

6.5.1 Accessing Menus and Menu Items

The DFIELD.F function can be used to obtain a pointer to a display entity representing
the menu or item. To get a pointer to a menu, pass the menu’s field name along with the
menu bar pointer to the DFIELD. F function. To get a pointer to the menu item, pass a
pointer to its menu and its field name to DFIELD. F.

Define MENU.PTR, MENU.ITEM.PTR as pointer variables
Let MENU.PTR = DFIELD.F (MENU.FIELD.NAME, MENUBAR.PTR)
Let MENU.ITEM.PTR = DFIELD.F(ITEM.FIELD.NAME, MENU.PTR)

The DFIELD. F call will recursively search through all menus and sub-menus for the item
specified. Therefore you can usually get a pointer to the menu item using only one call to
DFIELD.F with the menu bar pointer as its parameter:

Let MENU.ITEM.PTR = DFIELD.F(ITEM.FIELD.NAME, MENUBAR.PTR)

The DARY.A (text array) attribute of the menu pointer contains the labels of the items
shown in the menu. If for some reason you need to know the ordinal position of the
menu item that was last selected by the user, it is available through the DDVAL. A
attribute of the menu containing the selected item. The indexing begins at 1.

Define | TEM ARRAY as a 1l-dimtext array
Define | TEM NUM as an integer variable
Def i ne SELECTED. | TEM TEXT as a text variable

Let | TEM NUM = DDVAL. A MENU. PTR)

Let | TEM ARRAY(*) = DARY. A(MENU. PTR)
Let SELECTED. | TEM TEXT = | TEM ARRAY(| TEM NUM

93

SIMSCRIPT Graphics

6.5.2 Accessing Menus in Menus

Menu bars can be cascadeable, i.e. menus can contain other menus. The relationship
between menus and sub-menus is specified in SIMSCRIPT Studio by dragging a menu
onto another menu. This hierarchy is preserved in your program with respect to fields
accessible by DFI ELD. F. To access a menu contained within another menu, pass the field
name of the desired sub-menu along with a pointer to the parent menu. DFl ELD. F will
then return a pointer to the sub-menu. There is no limit to the number or layers of menus.

E?,Buuncing Balls !EIE
M Ervironment

mMedium

Figure 6-3: Cascading menus used in a small simulation program.

6.5.3 Adding Checkmarks to Menu Items

Your program can dynamically set and clear check marks next to any menu item. To
display the check mark, set the DDVAL. A attribute of the menu item field pointer to “1”.
Clear the mark by setting the attribute to “0”. Before the check mark is actually drawn
or erased from the menu, the item must be re-displayed using the SIMSCRIPT display
statement.

For example:
Let DDVAL. A(DFI ELD. F("MENU TEM TO CHECK", MENUBAR PTR)) =
Let DDVAL. A(DFI ELD. F("MENUI TEM TO_ UNCHECK VENUBAR. PTR))
Di spl ay DFI ELD. F(" MENUl TEM TO CHECK", MENUBAR. PTR)
Di spl ay DFI ELD. F(" MENUI TEM TO_ UNCHECK VENUBAR. PTR)

1
=0

6.5.4 Deactivate Menu Items

A menu item can be deactivated (grayed out) by calling the SET. ACTI VATI ON. R
routine. The arguments are a pointer to the menu item entity, and the integer value “0” to
deactivate the item, and “1” to activate it.

"' Deactivate the itemwith field nane " RUN'
Cal | SET. ACTI VATI ON. R(I ELD. F("RUN', MENUBAR PTR), 0)

"' Activate the itemw th field name "RUN'
Cal | SET. ACTI VATI ON. R(DFI ELD. F("RUN', MENUBAR. PTR), 1)

94

Menu Bars

Another way to active and deactivate items is by concatenating the special code ASCII
129 to the beginning of the menu item text.

Let | TEM ARRAY(*) =
DARY. A(DFI ELD. F(" MENU. | TEM FI ELD", MENUBAR PTR))

"' Activate the second item by concatenating 129
Let | TEM ARRAY(2) = CONCAT. F(ATOT. F(129), | TEM ARRAY(2))

"' Deactivate the second item by concatenating 130
Let | TEM ARRAY(2) = CONCAT. F(ATOT. F(130), | TEM ARRAY(2))

Example 6.3: Check, uncheck, activate and deactivate menu items.
This example shows how individual menu items can be grayed out or have a check mark

placed next to them.

''" To create in SIMSCRIPT STUDIO:

''"' 1) Right click on "graphics.sg2" then select "new" from popup
'' 2) Select "Menu bar" in the list, click on the "Create" button.
' Set the name of the menu bar to "menubar3.frm".

' 3) Click on the Menu icon (right toolbar) then on the menubar
' in the edit window to add a menu.

'' 4) Double click on the text of the new menu to show properties.
v Set its Label to "Menu" and field name to "MENU".

''"' 5) Click on the menu to show its pane. Add five items

' by clicking on the Menu Item toolbar button (third from top)
te then in the small pane.

''" 5) Double click on items to set text and properties.

re Set item field names and labels to "ITEM", "ACTIVATE,

' "DEACTIVATE", "CHECK", "UNCHECK".

' 6) Build the project.

Routine MENUBAR.RTN given FIELD.NAME, MENUBAR.PTR yielding FIELD.STATUS

define FIELD.NAME as text variable ''" name of field
define MENUBAR.PTR as pointer variable ''" pointer to bar
define FIELD.STATUS as an integer variable '' set to 0,1

define MENUITEM.PTR as a pointer wvariable
Let MENUITEM.PTR = DFIELD.F("ITEM", MENUBAR.PTR)
Select case FIELD.NAME
Case "ACTIVATE"
Call SET.ACTIVATION.R(MENUITEM.PTR, 1)
Case "DEACTIVATE"
Call SET.ACTIVATION.R(MENUITEM.PTR, Q)
Case "CHECK"

Let DDVAL.A (MENUITEM.PTR) = 1
Display MENUITEM.PTR

Case "UNCHECK"
Let DDVAL.A (MENUITEM.PTR) = 0

Display MENUITEM.PTR
Default
Endselect
Return
End

Main

Define MENUBAR.PTR as a pointer variable

Define FIELD.ID as a text variable

Show MENUBAR.PTR with "menubar3.frm" '' load the dialog box

95

SIMSCRIPT Graphics

Let FIELD.ID = ACCEPT.F (MENUBAR.PTR, 'MENUBAR.RTN') '' display form
End

Example 6.4: Menus inside menus

In this example cascading menus are constructed.

'' To create in SIMSCRIPT STUDIO:

''" 1) Right click on "graphics.sg2" then select "new" from popup

''" 2) Select "Menu bar" in the list, click on the "Create" button

''" 3) Click on the Menu icon (right toolbar) then on the menubar

v in the edit window to add a menu.

''" 4) Double click on the text of the new menu to show properties.

' Set its Label to "Menu" and field name to "MENU".

''"' 5) Click on the menu to show its pane. Add a menu to the menu

' by clicking on the Menu toolbar button then in the menu pane
v Set the field name and Label of the new menu to SUB-MENU

''" 6) Repeat step 5 adding a new menu to the sub menu. Label it

v SUB-SUB-MENU. Add a menu item labelled SUB-SUB-ITEM to the sub
v sub menu.

'' 7) Build the project.

Routine MENUBAR.RTN given FIELD.NAME, MENUBAR.PTR yielding FIELD.STATUS

Define FIELD.NAME as text variable '' name of field
Define MENUBAR.PTR as pointer variable ''" pointer to bar
Define FIELD.STATUS as an integer variable '' set to 0,1
Write FIELD.NAME as T *, " was selected", /

Return

End

Main

Define MENUBAR.PTR as a pointer variable
Define FIELD.ID as a text variable

Show MENUBAR.PTR with "menubar4.frm" '' load the dialog box

Let FIELD.ID = ACCEPT.F (MENUBAR.PTR, 'MENUBAR.RTN') ''" display the dialog
box

End

6.6 Popup Menus

Popup menus are not contained inside the menu bar, but instead are displayed when the
user clicks with the right mouse button inside a SIMSCRIPT graphics window. They are
sometimes referred to as context menus because a different menu can easily be displayed
depending on both where and when the user right-clicks in the window.

96

Menu Bars

& Bouncing Balls
Control Ball Environment

Double Mass
Half Mass

Figure 6-4: Right clicking on the “earth” icon shows a special popup menu.

6.6.1 Creating and Displaying the Popup Menu

Popup menus are not created in SIMSCRIPT Studio, but are specified in your program.
A popup menu is displayed using the POPUP.F function. An array of text values to be
shown in the menu is passed to the function. It then displays the menu at the mouse click
location. POPUP.F does not return until the user has made a menu selection. The text of
the selected item is returned. The user can decline to make a selection by clicking

(132

outside the menu. In this case POPUP.F will return the empty string .

Here is an example of some code that displays a popup menu containing the items “Cut”,
“Copy” and “Detail”:

Define POPUP.ITEMS as a 1l-dim text array
Reserve POPUP.ITEMS(*) as 3
Let POPUP.ITEMS (1) = "Cut"
Let POPUP.ITEMS (2) = "Copy"
Let POPUP.ITEMS (3) = "Detail"
Select case POPUP.F (POPUP.ITEMS (*))
case "Cut"
case "Copy"
case "Detail"
default
Endselect

6.6.2 Using Popup Menus in a Simulation

As in the case with menu bars, it is desirable for the simulation to continue to run while
waiting for the user to right-click in the window. When the right-click comes, the

97

SIMSCRIPT Graphics

simulation should be interrupted in order to allow the program to display the popup menu
and process the selection.

A popup menu can behave asynchronously by creating a separate process for interacting
with it. This process should use the READLOC.R routine given locator style 16 to
suspend itself until the mouse is clicked. At this time the process calls POPUP.F to
display the popup menu.

After READLOC.R returns, the global variable G.4 will contain the segment id of the
icon that was last clicked on. You can compare G.4 with the SEGID.A attribute of
known icon display entities to decide which popup menu to show.

Example 6.5: Showing a popup menu in a simulation

In this example a popup menu can be used while a simulation is running. Every second
the process “TEST” will print a message. While this is happening, the user can click in
the window with the right mouse button to display the popup.

Pr eanbl e

Processes incl ude POPUP. MENU, TEST
Define POPUP.F as a text function
End

Process POPUP. MENU

Define POPUP. | TEMS as a 1-dimtext array
Define X, Y as doubl e variabl es

Define XFORM as an integer variable
Reserve POPUP. | TEMS(*) as 3

Let POPUP. | TEMS(1) = "Red"
Let POPUP. | TEMS(2) = "G een"
Let POPUP. | TEMS(3) = "Bl ue"

Wiile 1 eq 1 do
Call READLCC.R given 0, 0, 16 yielding NEWK, NEW, XFORM
Sel ect case POPUP. F(POPUP. | TEMS(*))
case "Red" wite as "Red item sel ected", /
case "Geen" wite as "Green itemsel ected", /
case "Blue" wite as "Blue item sel ected", /

def aul t wite as "Nothing sel ected", /
Endsel ect
Loop
Rel ease POPUP. | TEMS(*)
End

Process TEST
VWile 1 eq 1 Do

Wait 1 unit
Wite as "Message fromtest process”, /
Loop
End
Mai n
Let TIMESCALE.V = 100 '' 1 sec per unit

Activate a TEST now
Activate a POPUP. MENU now
Start simulation

End

98

7. Palettes

Toolbars and palettes are also popular components in a user interface. (For the sake of
SIMSCRIPT Studio, we will refer to either component as a palette.) A palette is basically
a horizontal or vertical bar containing a row (or column) of buttons, with each button
showing a little picture icon. Your application may need a palette at the top of the
window to provide quick access to commonly used items. Many applications also allow
users to drag various items from palettes on the side into the adjacent window.

In SIMSCRIPT, a palette can be attached to any edge of the window. The buttons
contained on a palette can be by typical push buttons, or can toggle (stay down when
pressed.) The user can drag with the mouse the image on a palette button and drop it into
the canvas portion of the window. In this case your program is notified of the action
allowing you to create a display entity representing the object that was dragged.

Palettes are designed using the SIMSCRIPT Studio Palette Editor. A runtime, your
program code will load and display the palette using the SHOW or DISPLAY statements.

7.1 Constructing a Palette in SIMSCRIPT Studio

Adding a palette to you program is fairly simple. From SIMSCRIPT Studio, right click
on “graphics.sg2” and select “new” from the popup menu. From the “Create New
Graphic” dialog box, select “Palette” in the list. Provide a name for your palette. As a
convention, palette names usually have the extension “.frm”. This name will be provided
to your program’s SHOW statement. Clicking on the “Create” button will show your
new palette in a palette editor window.

The palette editor will show a vertical toolbar attached to the right side of SIMSCRIPT
Studio containing three buttons. To add a new palette button to your SIMSCRIPT palette
first click on the second button from the top of this toolbar. Then position the mouse
over the container shown in the palette editor and click down once again.

The order of the buttons can be rearranged by clicking and dragging a button to the
desired position in the container. Delete a button by selecting it with the mouse and
pressing the <Delete> key.

To see what your palette will look like when the application is run by using the “test
window”. Display your palette in a test window by clicking on the rightmost button in
the toolbar at the top of the SIMSCRIPT Studio window.

SIMSCRIPT Graphics

#1 SIMSCRIPT I1.5 Simulation Studio - d== :
File Edit Project Options Window Hejst Show properties

EEEREEE T E =

_J grapht gﬁ Al Enter "test" mode .
----- ol graphi.grf ™ — =
..... B icont.icn m Create palette button S|
""" W iconZ.icn = Create separator -
----- % icond.ich L J \—

----- S icond.icn / |]

I: Palette buttons

----- B icon? icn
----- =7 menubarl frm
----- & menubarl.icn
nalettal . frir

= Clotj
-2 sre —
4] dq | | »

Selected: palette1 frm

Figure 7-1: Palette Editor in SIMSCRIPT Studio

7.1.1 Properties of the Palette

Palettes can be attached to any edge of the application window, or be floating (not unlike
a modeless dialog box.) Palettes can also be dockable meaning they can be moved by the
user from one edge of the window to another while running the application. Palettes
cannot be resized; they are always sized to fit their contents.

The “Palette Properties” dialog box can be viewed by double-clicking on the palette
button container shown in the edit window. This dialog box contains the following:

* Library Name — The name of this palette in the graphics library which should be
provided to the SHOW statement.

» Title — Title text displayed in the header bar of a floating palette.

* # Columns for Left/Right Dock — Number of columns of palette buttons and separators
whenever the palette is docked on the left or right edges of the window, or the palette is
floating.

* # Rows for Top/Bottom Dock — Number of rows of palette buttons and separators
whenever the palette is docked on the top or bottom edges of the window.

* # Columns for Floating — Number of columns of palette buttons and separators whenever
the palette is not docked on a window edge, but floating free.

* Action taken by ACCEPT. F— Specify one of the following interaction modes:

100

Palettes

1. Asynchronous: If this interaction mode is used, ACCEPT. F will suspend the active
process when called. Whenever a status value of “1” is returned from the control routine,
this process is resumed. If there is no simulation running and hence no active process, the
Synchronous interaction mode is used.

2. Synchronous: Regardless of the simulation, ACCEPT. F will not return until a status
value of "1" is returned from the control routine.

3. Don’t wait: ACCEPT. F will not wait for any action by the user but will return
immediately. Subsequent action on the form will invoke the control routine.

7.1.2 Properties of a Palette Button

You will need to double-click on each button in the palette to specify its properties. At
the top of the “Palette Button Properties” dialog is the “Field name” box. Specify a
unique text value that will be used in by the program code to gain access to the data
associated with this button.

* Field Name — Any button added to the palette can be accessed from inside an application
by specifying a Field name. The field name is passed to the callback routine whenever the
button is clicked on.

* Icon Name — The name of the JPEG file (without extension) icon displayed on the face
of the palette button. Pressing either the “Browse resources” or “Browse files” button to
set the name.

* Status Message — You can specify a “Status Message” that will appear at run-time in
the status bar at the bottom of the window whenever the user passes the mouse over the
button.

* Tool Tip — Specify text to be presented in a small popup window when the user stops the
mouse over the button (without clicking on it).

* Momentary/Draggable/Toggle — Determines the variety of input interaction. One of three
button types can be selected:

1. Momentary — Button will automatically pop back up after it is pressed.

2. Toggle — Two state button. The state (up or down) alternates with each activation. The
DDVAL.A attribute of the button field pointer will be “1” if the button is down, or “0”
otherwise.

3. Draggable — Allows the user to hold the mouse button down and drag an outline of the
palette button into the canvas portion of the adjacent window.

* Icon Button/Color Button — If the Icon Button item is activated, the face of the palette
button will show the bitmap defined by the Icon Name field. For Color Buttons the button
will be colored using the values specified in the “Red”, “Green” and “Blue” boxes.

* Button Face Color (Red,Green,Blue) — You can set the color of the Color Buttons using
these value boxes. Color is defined by the percentage of Red, Green, and Blue (range [0-
100]).

* Browse resources — To use a built-in icon, click on the “Browse resources” button. A
dialog will be shown which allows you to select from a picture list of all predefined
images.

101

SIMSCRIPT Graphics

* Browse files — Brings up a file browser dialog that will allow a JPEG file to be selected.
(NOTE: Always select a JPEG file in the same directory as your executable).

7.1.3 Specifying a Button Face Image

To specify the JPEG icon shown on the face of a button, first make sure that the “Icon
Button” radio button is selected. From this point you have a choice of using one of the
“built-in” icons provided by SIMSCRIPT, or you can specify the name of a jpeg file that
will be shown on the face of your palette button.

If you wish to use an icon defined in a JPEG file, it is recommended that you FIRST copy
the file into the same directory as your executable and “graphics.sg2” file (usually the
“executable” sub-directory under your current project directory). These JPEG files must
remain with the executable whenever your program is run. Click on the “Browse files”
button to choose a JPEG file for the button face.

7.1.4 Palette Separators

It may be desirable to show some buttons in the palette in groups. This is common when
the buttons are functionally distinct from the rest. The palette editor allows separators to
be placed in between two buttons.

You can add a separation by dragging a separator item from the toolbar on the right

7.2 Showing the Palette in your Program

The SIMSCRIPT “show” will create a new instance of a palette and assign it to a pointer
variable.

Show PALETTE.PTR with "my palette.frm"

The text in quotes is the name of the menu-bar that was assigned in SIMSCRIPT Studio.
The text must match up exactly with the name provided in the menu-bar editor, or a
runtime error will be generated. Display the menu-bar using the ACCEPT.F function as
follows:

Let FIELD.ID = ACCEPT.F (PALETTE.PTR, 'PALETTE.RTN')

7.3 Writing Code for a Palette

The program needs to be notified of user interaction with the palette. You can provide a
control routine to ACCEPT.F which will be called whenever the user clicks on a button
in the palette, or drags a button image into the window. The SIMSCRIPT runtime library

102

Palettes

automatically calls your control routine as the simulation runs (asynchronously) without
the need to poll.

7.3.1 Writing a Control Routine for a Palette

The first step is to define your control routine. Passed to this routine will be a pointer to
the PALETTE form and the field id (assigned in SIMSCRIPT Studio) of the palette
button that was clicked on by the user. The format of this routine is as follows:

Routine PALETTE.CTL given FIELD.ID, FORM yielding STATUS

The routine should contain a “select case” statement which compares the FIELD.ID to
each known palette button “field name” and performs the appropriate action when a
match is found. The STATUS variable should be set to ‘0’ if you want to continue
displaying the palette. If this variable is set to —1, the palette will be erased, and the
suspended process used to display the palette will be activated.

Here is an example of a typical control routine:

Routine PALETTE.CTL given FIELD.ID, FORM yielding STATUS
Define FORM as a pointer variable
Define FIELD.ID as a text variable
select case FIELD.ID
case "SHOW STATISTICS"
call SHOW.STATISTICS
case "RESET VALUES"
call RESET.VALUES
default
endselect
let STATUS = 0 '"' never return from accept.f
return

Example 7.1: Simple palette with two buttons

In this example a palette is displayed which contains two buttons that can be clicked on.
The field name of the selected button is printed to the screen. The control routine is
called first with the field name “INITIALIZE” and when a click outside the palette is
detected, it is called with the field name “BACKGROUND”.

To create in SI MSCRI PT Studi o:
"' 1) Right click on "graphics.sg2", select new fromthe popup nenu
"' 2) Double click on the container shown in the Palette editor.
"' 3) Set library nane to "Palettel.frni'. Select the "Synchronous"
v radio button. dick K
"' 4) Add two palette buttons using the toolbar on the right then clicking
v inside the container in the edit w ndow.
"' 5) Double click on the top button. Select "lcon button" in the dialog
" Set Icon nanme to START L.
"' 6) Repeat step 5 for the second button but set Icon name to STOP_L.
Routi ne PALETTE. CTL given FlIELD. 1D, FORM yi el ding STATUS
Define FORM as a pointer variable
Define FIELD.ID as a text variable
Wite FIELD.ID as "Button selected: ", T *, /
End

103

SIMSCRIPT Graphics

Mai n

Defi ne PALETTE. PTR as a pointer variable

Define FIELD.ID as a text variable

Show PALETTE. PTR with "pal ettel. frnt

Let FIELD.|D = ACCEPT. F(PALETTE. PTR, ' PALETTE. CTL")
End

7.3.2 Writing a Process for an Asynchronous Palette

If the palette is to be used while a simulation is running, you will want to define it as
“asynchronous” within the “Palette Properties™ dialog box described above. This means
that the simulation will not stop running when a call is made to ACCEPT.F—instead the
current process is suspended, allowing the simulation to continue.

There are two steps to setting up this asynchronous interaction. First, create a simple
process to show your palette. The call to ACCEPT.F should be made inside this process.
When ACCEPT.F is called, the process will suspended, therefore you should not try to
use this same process to perform any other simulation related activities. The process
should look something like this:

Process PALETTE

Define PALETTE.PTR as a pointer variable

Define FIELD.ID as a text variable

Show PALETTE.PTR with "palette.frm"

Let FIELD.ID = ACCEPT.F(PALETTE.PTR, 'PALETTE.CTL'")
End

Example 7.2: Palette displayed during a simulation

In this example a palette can be clicked on while a simulation is running. Every second
the process “TEST” will print a message. While the is happening, the user can click on
palette buttons without interruption of the simulation.

"' To create in SIMCRIPT Studio:

"' 1) Right click on "graphics.sg2", select new fromthe popup nenu

‘' 2) Double click on the container shown in the Palette editor.

"' 3) Set library nane to "Palette2.frnf'. Select the "Asynchronous”

" radio button. dick K

‘' 4) Add two palette buttons using the tool bar on the right then clicking
v inside the container in the edit w ndow

‘' 5) Double click on the top button. Select "lcon button"” in the dialog
v Set lcon nanme to START_L.

‘' 6) Repeat step 5 for the second button but set Icon name to STOP_L.
Preanbl e

Processes i nclude PALETTE, TEST

End

Routine PALETTE. CTL given FIELD. 1D, FORM yi el ding STATUS
Define FORM as a pointer variable

Define FIELD.ID as a text variable

Wite FIELD.ID as "Button selected: ", T *, [/

End

Process PALETTE

Defi ne PALETTE. PTR as a pointer variable
Define FIELD.ID as a text variable

Show PALETTE. PTR with "pal ette2.frnt

104

Palettes

Let FIELD. I D = ACCEPT. F(PALETTE. PTR, ' PALETTE. CTL")
End

Process TEST
Wiile 1 eq 1 Do

Wait 1 unit
Wite as "Message fromtest process", /
Loop
End
Mai n
Let TIMESCALE.V = 100 '' 1 sec per unit

Activate a TEST now
Activate a PALETTE now
Start sinulation

End

7.3.3 Handling Toggle Palette Buttons

As was mentioned in Chapter 7.1.2, you can define your palette buttons to be one of three
varieties: momentary, toggle or dragable. “Momentary” buttons pop back up
automatically after being pressed, while “toggle” buttons stay down. Like dialog boxes
and menu bars, the buttons in a palette are represented by fields of the palette form. The
DDVAL. A attribute of the “toggle” button field (obtained using DFI ELD. F) indicates
whether the button is currently in a down (=1) or up (=0) state.

You can set the initial state of the button before calling ACCEPT.F but after using the
SHOW statement. In the following code, we set the palette button with field name
“TOGGLE_FIELD” to be initially down.

Show PALETTE.PTR with "my palette.frm"
Let DDVAL.A(DFIELD.F("TOGGLE FIELD", PALETTE.PTR)) =1

Your control routine is called after the user changes the state of the button. Here the
program code acquires the current state of the button by examining DDVAL. A.

Let BUTTON.DOWN = DDVAL.A(DFIELD.F(("TOGGLE FIELD", PALETTE.PTR))

7.3.4 Handling Drag and Drop Palette Buttons

Defining a palette button as being “Dragable” in SIMSCRIPT Studio allows the user to
click down on the button, then drag its outline to the canvas of the window. When the
mouse button is released, the palette's control routine is called.

In some cases, you will need to know the exact location in the window that the mouse

was released. To get this coordinate value, set the global variable DINPUT.V to a display
entity pointer. When the user releases the mouse, the drop point can be retrieved through

105

SIMSCRIPT Graphics

the LOCATI ON. A attribute of DI NPUT. V. The DI VAL. A attribute of DI NPUT. V will
contain the viewing transform number corresponding to that drop coordinate.

Example 7.3: Dragging items from a palette

In this exanple a palette can be clicked on while a simulation is
running. Any one of three buttons on the palette can be dragged
and dropped into the canvas of the window. An icon representing
the itemis displayed at the drop | ocation.

'' To create in SIMSCRIPT Studio:

''" 1) Right click on "graphics.sg2", select new from the popup menu

''" 2) Double click on the container shown in the Palette editor.

''" 3) Set library name to "Palette3.frm". Select the "Asynchronous",

v radio button. Click OK.

'' 4) Add three palette buttons using the toolbar on the right then clicking
v inside the container in the edit window.

''" 5) Double click on each button. Mark the "Icon button" and "Draggable"
v fields. For each button, set "Icon name" fields to "QUEUE L",

v "ROUTER L" and "CLOUD L". For each button set "Field name" to

v "QUEUE", "ROUTER", and "CLOUD".

''" 6) Create three icons named "queue.icn", "router.icn" and "cloud.icn".
v For each icon use the "Edit/Insert JPeg" option to add a bitmap.

' Name the jpeg images "QUEUE L", "ROUTER L", and "CLOUD L"

v Respectfully. Use the "Edit/Icon Properties" menu to ensure each

' icon has the "Automatic recenter" box checked.

Preamble

Processes include PALETTE, DUMMY

Graphic entities include LOCATOR

End

Routine PALETTE.CTL given FIELD.ID, FORM yielding STATUS
Define FORM as a pointer variable
Define FIELD.ID as a text variable
Define ICON.PTR as a pointer variable
Define X,Y as real variables
Let X = LOCATION.X (DINPUT.V) Let Y = LOCATION.Y (DINPUT.V)
Select case FIELD.ID
case "QUEUE"
Display ICON.PTR with "queue.icn" at (X,Y)
case "ROUTER"
Display ICON.PTR with "router.icn" at (X,Y)
case "CLOUD"
Display ICON.PTR with "cloud.icn" at (X,Y)
default
Endselect
End

Process PALETTE

Define PALETTE.PTR as a pointer variable

Define FIELD.ID as a text variable

Show PALETTE.PTR with "palette3.frm"

Let FIELD.ID = ACCEPT.F(PALETTE.PTR, 'PALETTE.CTL'")
End

Process DUMMY
While 1 eq 1 Do
Wait 1 unit
Loop
End

Main

106

Palettes

Create a LOCATOR called DINPUT.V
Activate a DUMMY now

Activate a PALETTE now

Start simulation

End

107

SIMSCRIPT Graphics

8. Windows

SIMSCRIPT allows the programmer to create multiple windows with various sizes,
positions, titles, and mapping styles. Each window can optionally have a horizontal and
vertical scroll bar, and a multi-pane status bar. In addition, messages are passed from the
SIMSCRIPT runtime library to your program whenever the user manipulates the window,
(i.e. resizing, closing, moving the thumb on a scroll bar, etc.).

A window is created by calling the OPENW NDOW R routine described below:

Routi ne OPENW NDOW R gi ven XLO, XHI, YLO, YH, TITLE,
MAPPI NG MODE yi el di ng W NDOW PTR

Is not always necessary to call OPENW NDOW R to create your window. If the program
attempts to display graphics without a window, one is created automatically. To create a
window by program code, call OPENW NDOW R before displaying any graphics.

The parameters XLO, XHI , YLO, and YHI specify the size and position of the window
with respect to the computer screen. These coordinates are integers the range
0..32767. The point (0, 0) defines the lower left corner of the screen, and
(32767, 32767) is located in the upper right corner. Window size and position
specifications include title bar, border and menu bar, (a window whose YHl is 16383
will NOT overlap a window whose YLO is 16383). The Tl TLE parameter is of mode
TEXT and specifies the window title.

The MAPPI NG MODE parameter defines how the window contents will appear inside the
visible portion of the window. Assume the world coordinate system defined by the
SETWORLD.R routine is (WORLD. XLO WORLD. XH WORLD. YLO WORLD. YHI). The
following modes are available:

MAPPI NG MODE = 0: Contents mapped to largest centered square within window.

MAPPI NG MODE = 1: WORLD. XLO is mapped to the left border of the window,
VORLD. YLO is mapped to the bottom border, and WORLD. XH is mapped to the right
border. The top portion of the world coordinate space may not be visible depending on
window size. This mode is useful when the background you want to display is
significantly wider than it is tall.

MAPPI NG MODE = 2: WORLD. XLO is mapped to the left border of window, WORLD. YLO
is mapped to bottom border, and WORLD. YHI is mapped to the top border. The right
portion of the world coordinate space may not be visible depending on window size. This
mode is useful when the background you want to display is significantly taller than it is
wide.

SIMSCRIPT Graphics

Selecting a window to display your icons, graphs, and forms is accomplished by
associating the window with one or more viewing transformations. In this way the
VXFORM V variable not only specifies which viewing transformation will be used to
draw subsequent graphics, but also identifies the window to contain the graphics. Objects
drawn under the same VXFORM V value cannot appear in two different windows.

Viewing transformations are assigned to a window using the SETW NDOW R. Set
VXFORM V to the desired transformation number, and then call SETW NDOW R given the
W NDOW | D of the window to contain the objects drawn under that transformation.

Example 8.1: Creating two windows:
In this example the OPENWINDOW.R routine is used to display two separate windows,
each containing an icon.

Mai n

Defi ne WNDOM. PTR, W NDOVW2. PTR as poi nter vari abl es

Define | CONL. PTR, | CON2. PTR as poi nter vari abl es

'"'-- create two windows, one directly above the other

Cal | OPENW NDOW R gi ven 8192, 24576, 16383, 32767,
"Top Wndow', 1 yielding WNDOM. PTR

Cal | OPENW NDOW R gi ven 8192, 24576, 0, 16383,
"Bottom Wndow', 1 yieldi ng WNDOA2. PTR

'-- attach viewing transformation 1 and 2 to the top

"'-- window, and 3 to the bottom

Let VXSFORMV = 1

Cal | SETW NDOW R gi ven W NDOM. PTR

Let VXFORMV = 2

Cal | SETW NDOW R gi ven W NDOM.. PTR

Let VXFORMV = 3

Cal | SETW NDOW R gi ven W NDO/2. PTR

Let VXSFORMV = 2 "' prepare to display iconl
Display I1CONL. PTR with "iconl.icn" at (16383, 16383)
Let VXSFORMV = 3 "' prepare to display icon2

Display 1CON2. PTR with "icon2.icn" at (16383, 16383)
Wile 1 eq 1 do
cal | HANDLE. EVENTS. R(1)
Loop
End

110

Windows

(32767, 32767)

Internet
Explorer

(24576, 16383)

Py Command

& Bl:lttum Window
IRIRRNR

T

[Top... &Eotio. | ¢ 11:02PM

Figure 8-1: Two windows opened by SIMSCRIPT.

The coordinate space of the computer screen ranges from (0,0) in the lower left corner to
(32767,32767) in the upper right.

8.1 Setting and Getting the Attributes and Events of a Window

Calling OPENW NDOW R yields a display entity pointer. The DFI ELD. F function can
then be used on this display entity to access window fields that are predefined by the
SIMSCRIPT runtime library

8.1.1 Window Attributes or “Fields”

A window display entity has several predefined field names. See table 8.1. The
DFI ELD. F routine is used to get a pointer to the field, while attributes DDVAL. A,
DARY. A, and DTVAL. A can be read or written to the field by your program. Fields with
the access code “RW” represent modifiable components of your window. To see the
result of a change made to a DDVAL. A, DARY. A or DTVAL. A attribute you must
redisplay the modified field using a DI SPLAY statement.

For example, to dynamically reset the title on a window, use:

| et DTVAL. A(DFI ELD. F("TI TLE", WNDOWPTR)) = "My New Titl e"

111

SIMSCRIPT Graphics

di spl ay DFI ELD. F("TI TLE", W NDOW PTR)

To determine the top of the window canvas after the window has been resized, use:

et TOP = DDVAL. A(DFI ELD. F(" VI EWHEI GHT", W NDOW PTR))

Table 8-1: Window Display Field Names

Field Name Attribute Access | Description

W DTH DDVAL. A RW Current window width in screen space

HEI GHT DDVAL. A RW Current window height in screen space

VI EWN DTH DDVAL. A R Width of visible portion of NDC space

VI EVHEI GHT DDVAL. A R Height of visible portion of NDC
space

TITLE DTVAL. A RW Title displayed at top of window

HSCROLLABLE DDVAL. A RW > (if window should have a
horizontal scroll bar

VSCROLLABLE DDVAL. A RW >(0 if window should have a vertical
scroll bar

HTHUMBSI ZE DDVAL. A RW Width of horizontal scroll bar thumb
range (0.0 - 1.0)

VTHUMBSI ZE DDVAL. A RW Height of vertical scroll bar thumb
range (0.0 - 1.0

HTHUMBPOS DDVAL. A RW Current position of the horizontal
scroll bar from left edge, range (0-
HTHUMBSIZE)

VTHUMBPGS DDVAL. A RW Current position of the vertical scroll
bar from top edge, range (0-
VTHUMBSIZE)

PANEW DTH DDVAL. A RW Array of integers describing width (in
characters) of each pane of the status
bar.

STATUSTEXT DARY. A RW Array of text values shown in each
status bar pane

XCLI CK DDVAL. A R X location of last mouse click (in
NDC units)

YCLI CK DDVAL. A R Y location of last mouse click (in
NDC units)

XMOVE DDVAL. A R Current X location of mouse (in NDC
units)

YMOVE DDVAL. A R Current Y location of mouse (in NDC
units)

BUTTONDOVWN DDVAL. A R If nonzero, the mouse button is
currently being held down

BUTTON DDVAL. A R Identifies which of the mouse buttons
was last pressed

DOUBLECLI CK DDVAL. A R If nonzero, the last click was a double
click.

8.2 Window Events

112

Windows

Whenever the user resized, moves scrolls or closes a window, the program will
sometimes need to take some sort of action. For example, if the user moves a scroll bar,
you may want to “pan” the contents of the window. SIMSCRIPT will generate
asynchronous callbacks as a result of any action performed on the window, eliminating
the need to continuously “poll” the window fields for changes. A control routine can be
defined by the programmer to handle these events. Window control routines work the
same way as dialog box, menu bar, and palette control routines do. The control routine is
assigned to the window by calling SET. W NCONTROL. R.

Cal | SET. WNCONTROL. R gi ven W NDOW PTR, ' CONTROL. ROUTI NE'

Where the control routine is formatted as follows:

Rout i ne CONTROL. ROUTI NE gi ven EVENT. NAME, W NDOW PTR
yi el di ng BLOCK. DEFAULT

Defi ne EVENT. NAME as a text variabl e
Defi ne WNDOW PTR as a pointer variable
Def i ne BLOCK. DEFAULT as an integer variable

Table 8.2 lists all events that can be received by the control routine. The “Default
Action” column explains what the SIMSCRIPT runtime library will do after the control
routine is called if the yielded argument BLOCK. DEFAULT is set to “0”. The “Affected
Fields” are defined in Table 8.1 and set by the runtime library before the control routine
is called.

Table 8-2: Event Names

Event Name Default Action Affected Fields Description
CLCSE Terminate application None Sent when user selects
window go away icon.
RESI ZE Redraw window W DTH, HEl GHT, Sent when the user
contents VI EWA DTH, resizes or maximizes the
VI EVHEI GHT window.
VSCROLL None VTHUMBPGS Sent whenever the user

moves the vertical
scrollbar thumb.

HSCROLL None HTHUMBPOS Sent whenever the user
moves the horizontal
scrollbar thumb.

MOUSECLI CK None XCLI CK, YCLI CK, Sent whenever any
Eg¥$m! mouse button is pressed
DOUBLECL1 CK down, or lifted up.

MOUSEMOVE None XMOVE, YMOVE Sent whenever mouse

movement occurs.

Example 8.2: Using a control routine to receive window events

This example illustrates how your program can receive notification of changes made to
the window by the user at runtime. A window control routine receives three of the
predefined event types: CLOSE, MOUSEMOVE and MOUSECLICK.

113

SIMSCRIPT Graphics

Routi ne W NDOW CONTROL gi ven EVENT. NAME, W NDOW PTR
yi el di ng BLOCK. DEFAULT

Defi ne EVENT. NAME as a text variable

Defi ne WNDOW PTR as a pointer variable

Def i ne BLOCK. DEFAULT as an integer variable

Sel ect case EVENT. NAME

Case "CLOSE"
Wite as "Attenpt to close window... ", /
Let BLOCK. DEFAULT = 1 "'*do not term nate here!

Case " MOUSEMOVE"
Wite DDVAL. A(DFI ELD. F("XMOVE", W NDOW PTR)),
DDVAL. A(DFI ELD. F(" YMOVE", W NDOW PTR)) as

“Muse noved to ", D(7,1), ", ", D7,1), [/
Case "MOUSECLI CK"
St op "' terminate on click in w ndow
Def aul t
Endsel ect
End
Mai n

Define WN. PTR as a pointer variable

Cal | OPENW NDOW R gi ven 16383, 32768, 8192, 24576,
"Exanpl e 2 Wndow', O yielding WN. PTR

Cal | SETW NDOW R(W N. PTR)

Cal | SET. WNCONTROL. RCW N. PTR, ' W NDOW CONTROL')

Wiile 1 eq 1 Do
Cal | HANDLE. EVENTS. R(1)

Loop

End

8.3 Scrollable Windows

Scroll bars provide a more natural mechanism for panning across a scene too large to fit
inside the boundaries of your window. This is common after zooming into a rectangular
section of your graphics area. To create the scrollable window, set the HSCROLLABLE
and / or VSCROLLABLE fields of the window pointer before displaying the window.
For example:

Cal | OPENW NDOW R (4096, 28672, 0, 32768, "Scrollable Wndow', O0)
yi el di ng W NDOW PTR

Let DDVAL. A(DFI ELD. F("HSCROLLABLE", W NDOW PTR))

Let DDVAL. A(DFI ELD. F(" VSCROLLABLE", W NDOW PTR))

Cal | SETW NDOW R(W NDOW PTR)

1
1

You can set the width of the scroll bar thumb either before or after the window has been
displayed. The DDVAL. A attribute of the HTHUMBSI ZE and VTHUMBSI ZE fields
contains a real number between 0.0 and 1.0. Set this attribute to the percentage of the
scroll bar area you wish the thumb to occupy. The size of a scroll bar thumb should
represent the ratio of viewable area to total area.

For example, suppose the total area occupied by the graphics is defined by (t . x| 0,

t.xhi, t.ylo, t.yhi). Suppose also that you only want the user to see a portion
of this space and have therefore provided the (smaller) visible coordinate space to the

114

Windows

SETWORLD. R routine as (W. xl o, w.xhi, wylo, wyhi). In this case the
thumb sizes should be as follows:

| et DDVAL. A(DFI ELD. F(" HTHUMBSI ZE", W NDOW PTR))
(w. xhi - w.xlo) / (t.xhi - t.xlo)

| et DDVAL. A(DFI ELD. F(" VTHUMBSI ZE", W NDOW PTR))
(w.yhi - wylo) / (t.yhi - t.ylo)

di spl ay DFl ELD. F("HTHUMBSI ZE", W NDOW PTR))

di spl ay DFI ELD. F("VTHUMBSI ZE", W NDOW PTR))

Movement of the scroll bars by the user will not automatically pan the scene in the
window. This action will only send a HSCROLL or VSCROLL event to the window’s
control routine informing of the change to the scroll bar thumb position. At this time, the
DDVAL. A attribute of the HSCROLLPOS field is set to distance from the left side of the
horizontal scroll thumb to the left side of the window. DDVAL. A of VSCROLLPCS is the
distance from the top of the window to the top of the vertical scroll thumb. In each case
“1.0” is the total length of the scroll bar. Therefore, these attribute values are in the range
[0.0, 1.0-HTHUMBSI ZE] and [0. O, 1. 0- VTHUMBSI ZE], respectfully.

Example 8.3: Pan and Zoom

Simple pan and zoom can be implemented using the SETWORLD.R routine. Attaching
scroll bars to your window not only provide a way to pan, but also indicate to the user
which portion of the scene is currently being viewed. In this example, the user can zoom
in by clicking with the left mouse button, zoom out with the right button, and pan using
the scroll bars

Preanmbl e
Define t.xlo, t.xhi, t.ylo, t.yhi as real variables
Define Z. XLO, Z. XH, Z.YLO Z YH as real variables
Defi ne WNDOW PTR as a pointer variable
End
"' this routine pans the display by shifting the world to the
gi ven | ocation
Routi ne PAN given XLO, YH

Define XLO, YH as real variables

Defi ne WDTH, HElI GHT as real variables

"' Compute new di nensions for zoomrect
Let WDTH = Z. XHI - Z. XLO
Let HEIGHT = Z YH -Z. YLO

Let Z.XLO = XLO
Let Z.XH = XLO + WDTH
Let Z.YH = YH
Let Z.YLO = YH - HEI GHT

pan by changing the world coordi nate system

Cal | SETWORLD. R(Z. XLO, Z. XHI, Z.YLO, Z.YH)
End
"' taking the center point for the zoom this routine will
adj ust the world coordi nates via SETWORLD. R and t hen updat e
the size of the scroll bar thunb accordingly
Routi ne ZOOM gi ven CLICK. X, CLICK. Y, FACTOR

Define CLICK. X, CLICK Y, FACTOR as real variables

Define CENTER X, CENTER Y as real variables

Defi ne WDTH, HEI GHT as real variables

115

SIMSCRIPT Graphics

"' convert NDC nouse click coordinates to zoom coordi nat es
Let CENTER X = (Z. XH - Z. XLO * CLICK X / 32768.0 + Z. XLO
Let CENTER Y = (Z. YH - Z. YLO * CLICK Y/ 32768.0 + Z. YLO
"' Conmpute new di nensions for zoom

Let WDTH = M N. F((Z. XH - Z. XLO) / FACTOR, t.xhi-t.xl 0)
Let HEIGHT = MN. F((Z YH -Z. YLO / FACTOR t.yhi-t.ylo)

""" Limt zoomto world boundaries

Let CENTER X = M N. F(MAX. F(CENTER. X, WDTH 2.0 - T.XLO,
T.XH - WDTH 2.0)

Let CENTER Y = M N, F(MAX. F(CENTER. Y, HEIGHT/ 2.0 - T.YLO),
T. YH - HElI GHT/ 2. 0)

"' compute new zoom rectangl e using center and size val ues

Let Z. XLO = CENTER X - WDTH / 2.0
Let Z.XH = CENTER X + WDTH / 2.0
Let Z.YLO = CENTER Y - HEIGHT / 2.0
Let Z.YH = CENTER Y + HEIGHT / 2.0

"' performzoomby setting world to zoomrectangle
Cal | SETWORLD. R(Z. XLO, Z.XH, Z.YLO, Z.YH)

"' Update scroll bars

Let DDVAL. A(DFI ELD. F("HTHUMVBSI ZE", W NDOW PTR)) = W DTH /
(t.xhi-t.xlo)
Let DDVAL. A(DFI ELD. F(" VTHUMBSI ZE", W NDOW PTR)) = HEI GHT /

(t.yhi-t.ylo)
Let DDVAL. A(DFl ELD. F(" HTHUMBPCS', W NDOW PTR)) = Z. XLO /
(t.xhi-t.xlo)
Let DDVAL. A(DFI ELD. F(" VTHUMBPCS', W NDOW PTR)) =
(T.YH -Z.YH') / (t.yhi-t.ylo)

Di spl ay DFI ELD. F("HTHUMBSI ZE', W NDOW PTR)
Di spl ay DFI ELD. F("VTHUVBSI ZE", W NDOW PTR)
End

"' This routine is called by the SI MSCRI PT runtine when
"' the user clicks in the wi ndow or sonehow positions
"' the scrollbar thunb.
Routi ne W NDOW CONTROL gi ven EVENT. NAME, W NDOW PTR
yi el di ng BLOCK. DEFAULT

Defi ne EVENT. NAME as a text variable
Defi ne WNDOW PTR as a pointer variable
Def i ne BLOCK. DEFAULT as an integer variable
Sel ect case EVENT. NAME
Case "HSCROLL" "' Pan horiz or vert

wite as "User moved horiz scroll bar", /

Call PAN(t.xlo + (t.xhi-t.xlo) *

DDVAL. A(DFI ELD. F(" HTHUMBPOS', W NDOW PTR)), Z. YH)

Case "VSCROLL"
wite as "User npved vert scroll bar", /
Call PAN(Z.XLO, t.yhi - (t.yhi-t.ylo) *
DDVAL. A(DFI ELD. F(" VTHUMBPQOS', W NDOW PTR)))

Case " MOUSECLI CK"
| f DDVAL. A(DFI ELD. F(" BUTTONDOMN', W NDOW PTR)) gt O
| f DDVAL. A(DFI ELD. F("BUTTON', W NDOWPTR)) gt O
Cal | ZOOM DDVAL. A(DFI ELD. F(" XCLI CK", W NDOW PTR)),
DDVAL. A(DFI ELD. F(" YCLI CK", W NDOW PTR)), 0.5)
El se
Cal | ZOOM DDVAL. A(DFI ELD. F(" XCLI CK", W NDOW PTR)),

116

Windows

DDVAL. A(DFI ELD. F(" YCLI CK", W NDOW PTR)), 2.0)

Al ways

Al ways

Def aul t

Endsel ect

End

Mai n
Define | CON. PTR as a pointer variable
Let Z XLO =0 Let Z. XH = 32767
Let ZYLO=0 Let Z. YH = 32767
Let T.XLO =0 Let T.XH = 32767
Let T.YLO=0 Let T.YH = 32767

Let VXSFORMV = 1
Call OPENW NDOW R (0, 26000, 2000, 30000, "Pan and Zoom W ndow', 0)
yi el di ng W NDOW PTR
Let DDVAL. A(DFI ELD. F("HSCROLLABLE", W NDOW PTR))
Let DDVAL. A(DFI ELD. F(" VSCROLLABLE", W NDOW PTR))
Cal | SETW NDOW R(W NDOW PTR)
Cal | SET. W NCONTROL. R(W NDOW PTR, ' W NDOW CONTROL')
Display 1 CON.PTR with "wi ndow3.icn"
Call zOOMZ. XH [2.0, Z.YH / 2.0, 1.0)
VWile 1 eq 1 Do
Cal I HANDLE. EVENTS. R(1)
Loop

End

=1
=1

8.4 Status Bars

All windows can display a status area at the bottom of the frame called a status bar. The
status bar is composed of several individual panes of varying width; each containing text.
You can define the width of each pane before the window is displayed, and set the text
displayed in a pane after the window has been rendered.

To add a status bar to a window, the PANEW DTH field of the window pointer must be
assigned after the pointer is obtained from oPENwINDOW.R. Each element of the array in
the DARY. A attribute of this field specifies the maximum number of characters visible in
the corresponding pane.

Cal | OPENW NDOW R gi ven 16383, 32768, 8192, 24576,
"Title", 0 yielding WN. PTR

Reserve PANE. WDTH(*) as 3

Let PANE. WDTH(2) = 15

Let PANE. WDTH(3) = 10

Let DARY. A(DFI ELD. F(" PANEW DTH', WN. PTR)) = PANE. W DTH(*)

Cal | SETW NDOW R(W N. PTR)

Note that the width of the first status pane is determined automatically based on the width
of the window. The width specification for the first status pane (i.e. PANE. W DTH(1)) is

always ignored.

Each element of the DARY. A attribute of the STATUSTEXT field defines the text to
display in the corresponding pane. Usually this text will need to be updated as the

117

SIMSCRIPT Graphics

program runs. Do this by first obtaining a pointer to the DARY. A attribute of the
STATUSTEXT field, changing the element, then re-displaying the field.

Specify initial text array to go in the status bar
Reserve STATUS. TEXT (*) as 3

Let STATUS. TEXT(1) = "One"
Let STATUS. TEXT(2) = "Two",
Let STATUS. TEXT(3) = "Three",

Let DARY. A(DFI ELD. F(" STATUSTEXT", WN. PTR)) = STATUS. TEXT(*)

Update the status bar text in the niddl e of the program
Let STATUS. TEXT(*) = DARY. A(DFI ELD. F(" STATUSTEXT", W N. PTR))
Let STATUS. TEXT(2) = "New status text"

Di spl ay DFI ELD. F(" PANEW DTH', W N. PTR)

The first pane in the status bar shows status text for a highlighted menu item or palette
button. From the menu bar and palette editors in SIMSCRIPT Studio, this can be
specified in the “Status message” box in the “Menu Item Properties”, and “Palette Button
Properties” dialogs. At runtime, existing text in this pane will be replaced as the mouse
hovers over the menu item or palette button.

Example 8.4: Creating a window with a status bar:

In this example we show how the above window fields can be used to add a status bar to
the bottom of a window. Both the size of each pane and its contents are controlled by the
“PANEWIDTH” and “STATUSTEXT” fields.

Main

Define PRANE.WIDTH as a l-dim integer array
Define STATUS.TEXT as a 1l-dim text array
Define WIN.PTR as a pointer wvariable
Define I as an integer wariable

Reserve PANE.WIDTH(*) as 3

Reserve STATUS.TEXT(*) as 3

Let PANE.WIDTH(2) = 10

Let PAME.WIDTH(3) = 20

Let STATUS.TEXT(1l) = "Pane one"
Let STATUS.TEXT(2) = "Pane two"
Let STATUS.TEXT(3) = "Count: 0"

Call OPEMWINDOW.ER given 16383, 32768, 8192, 24E76,
"Example 4 Window", 0 yvielding WIN.PTR
Let DARY.A(DFIELD.F({"PANEWIDTH",WIN.PTR)) = PAMNE.WIDTH/(*)
Let DARY.A(DFIELD.F({"STATUSTEXT",WIN.PTR)) = STATUS.TEXT(*)
Call SETWINDOW.R(WIN.PTR)
For I = 1 to 10000 do
Let STATUS.TEXT(3) = COMNCAT.F("Count: ", ITOT.F(I))
Display DFIELD.F("STATUSTEXT", WIN.PTR)
Call HANDLE.EVENTS.R({O)
Loop
End

118

9. Routines and Globals for SIMSCRIPT Graphics

The following is an exhaustive list of all graphics related routines and predefined global
variables in SIMSCRIPT II.5:

Function ACCEPT. F
Arguments:
FORM PTR

CONTROL. RT

Purpose:

Notes:

(FORM PTR, CONTROL. RT)

A pointer to the graphic input form to be used. This pointer was
obtained in the SHOW statement.

This is either the name of a control routine to control the graphic
interaction, or simply 0 to specify no control routine. If there is no
control routine, then it is left entirely up to the automatic
processing to manage the interaction.

Accept graphic input from the screen.

Returns the reference name of the last selected field in a form. Any
data which may have been entered by the user is then accessible
through the value attributes and names of the various fields in the
form.

Routine Cl RCLE. R (PO NTS(*))

Arguments:
PO NTS(*)

Purpose:

Notes:

Real, 2-dimensional array, reserved as 2 by 2. Values are in real
world coordinates. PO NTS(1, ...) are the x-coordinates.
PO NTS(2, ...) arethe corresponding y-coordinates.

Draw a circle.

A circle is drawn, with the center at the first given point. The
second given point is any point on the circumference. The circle is
drawn with attributes set through FI LLCOLOR. R, FI LLSTYLE. R
and FI LLI NDEX. R.

Routine CLEAR. SCREEN. R

Purpose:

Notes:

Erases all graphics in the current screen.

No segments or entities are destroyed.

Attribute CLOCK. A (DSPLENT)

Mode:

Double.

SIMSCRIPT Graphics

Argument:
DSPLENT Pointer to a GRAPHI C entity or to a DYNAM C GRAPHI C
entity.
Notes: Time of last position update. This value is maintained by the

routine called through MOTI ON. A.

Routine CLCSE. SEG. R
Purpose: Close a segment.

Notes: The segment is closed. No additional primitives may be added to
it. Its representation is made up-to-date on the display surface. No
drawing occurs until the segment is closed. As a side effect, the
value of SEGID.V is set to zero.

Routine CLOSEW NDOW R (W NDOW | D)
Arguments:
W NDOW PTR Pointer. Identifier returned by OPENW NDOW R.

Purpose: Closes a SIMSCRIPT window given its pointer.

Notes: Graphical entities contained in this window are NOT destroyed.

Attribute DARY. A (Fl ELD. PTR)

Mode: Array of text.
Argument:
FI ELD. PTR A pointer to a field in a graphic input form.
Notes: Contains the lines of text from a field on an input form. For
instance, in list boxes it is a pointer to the array of text variables in
the list.

Attribute DDVAL. A (FI ELD. PTR)

Mode: Double.
Argument:
FI ELD. PTR A pointer to a field in a graphic input form.
Purpose: Access the numeric value attribute of a field.
Notes: This is used to acquire or change information in one field of a

form. For instance, in a value box it is the value which the user

120

Routines and Globals for SIMSCRIPT Graphics

entered or which was pre-set.

Routine DELETE. SEG R (SEG | D)

Arguments:

SEG I D Integer. Identifier of a segment, as produced by OPEN. SEG. R.
Purpose: Delete a segment.
Notes: The segment is deleted. Its representation is removed from the

display surface. Space occupied by its data structures is recycled.

Function DFI ELD. F (FI ELD. NAME, FORM PTR)

Arguments:
FI ELD. NAMVE Text. The name of the field (assigned in SIMSCRIPT Studio).
FORM PTR A pointer to a graphic input form.

Purpose: Returns a pointer to the specified field.

Notes: The acquired field pointer is used to access the attributes of the

graphic input field, for examining input, altering values, or setting
control attributes.

Attribute DRTN. A (DSPLYENT)

Mode: Subprogram variable. The subprogram does not return a value.
Argument:
DSPLENT Pointer to a GRAPHI C entity or to a DYNAM C GRAPHI C
entity.
Purpose: Associates a display routine with an instance of an entity.
Notes: The use of a particular display routine is indicated through the

value of the DRTN. A attribute. The display routine is normally
generated by the compiler and has a name of the form
"V.routine_nane'.

Attribute DTVAL. A (FI ELD. PTR)

Mode: Text
Argument:
FI ELD. PTR A pointer to a graphic input field.
Purpose: Access a text value associated with the field.

121

SIMSCRIPT Graphics

Notes:

DTVAL. A is used to access a text value associated with a field. For
instance, in text boxes, DTVAL. A has the value of the input or pre-
set text.

Routine FI LEBOX. R(FI LTER, TITLE) yi el di ng PATH. NAME, FI LE. NAME

Arguments
FI LTER

TI TLE
PATH. NAME
FI LE. NAME

Purpose:

String. This variable can either be a wild card, or a full or partial
file name that uses wildcards.

String. The title of the file selection dialog box.

String. The path to the file selected by the user.

String. The name of the file selected from the dialog box.

Displays the standard dialog box for browsing through the
directory structure.

Routine FI LLAREA. R (COUNT, PO NTS(*))

Arguments:
COUNT

PO NTS(*)

Purpose:

Notes:

Integer. Number of points to process.
Real, 2-dim array, reserved as 2 by N, where N > COUNT. Values

are in real world coordinates. PO NTS(1, ...) are the x-
coordinates. PO NTS(2, ...) are the corresponding y-
coordinates.

Draw a line or a polygon.

A filled area (polygon) is drawn connecting the indicated points.
The area is drawn in the current fill color, index, and style
specified through routines FI LLCOLOR. R, FILLI NDEX. R, and
FI LLSTYLE. R The first and last points are automatically
connected to close the filled area.

Routine FI LLCOLOR. R (COLOR. | NDEX)

Arguments:
COLOR. | NDEX

Purpose:

Notes:

Integer. Color index number. May have values from 0 to 255.
Set color of subsequent fill areas.

Assign index values using the GCOLOR. Rroutine.

Routine FI LLI NDEX. R (| NDEX)

Arguments:
| NDEX

122

Integer. Identifies a style of fill hatch:

Routines and Globals for SIMSCRIPT Graphics

1 = narrow diagonals

2 = medium diagonals
3 = wide diagonals

4 = narrow crosshatch
5 = medium crosshatch
6 = wide crosshatch

Purpose: Set style of subsequent fill hatch areas.

Routine FI LLSTYLE. R (STYLE)

Arguments:
STYLE Integer. Identifies a style of fill:
0 = Hollow area
1 = Solid color
2 = Pattern (appearance is device-dependent)
3 = Use hatch fill. Pattern is set by FI LLI NDEX. R
Purpose: Set style of subsequent fill areas.

Routine FONTBOX. R(TI TLE) vyi el di ng FAM LY. NAME, PO NT. SI ZE,
BOLDFACE, | TALIC

Arguments:
TI TLE String. The title for the font dialog box.
FAM LY. NAME String. The name of the font selected in the dialog box.
PO NT. SI ZE Integer. The size of the font selected in points.

| TALI C Integer. Return value of the font slant selected by the user. The
range is from 0 to 1000. For most fonts only two values are
allowed.

BOLDFACE Integer. Return value of the “boldness” of the font. The range is

from 0 to 1000. For most fonts only two values are allowed.
Purpose: Show the system font dialog box.
Notes: Provides a predefined dialog box for font specification that can be

brought up programmatically to allow the user to select system

font attributes. The yielded arguments can be passed directly to
TEXTSYSFONT. R

Routine GCOLOR. R (COLOR. | NDEX, RR, GG BB)

Arguments:
COLOR. I NDEX Integer. Values range from 0 to 255.
RR Integer. Amount of red to use, 0 to 1000.
GG Integer. Amount of green to use, 0 to 1000.
BB Integer. Amount of blue to use, 0 to 1000.

123

SIMSCRIPT Graphics

Purpose:

Notes:

Routine GCDEFERRAL.
Arguments:
DEFER

Purpose:

Notes:

Routine GCDETECT. R
Arguments:

SEG I D

DETECT

Purpose:

Notes:

Routine GHLI GHT. R
Arguments:

SEG I D

HI GHLI GHT

Purpose:

124

Define a color index value.

Sets the color representation for subsequent use under the indicated
color index. RR, GG and BB are the portions of red, green, and
blue to use. Index values are passed to routines like
FI LLCOLOR R, LI NECOLOR R, MARKCOLOR. R, and
TEXTCOLOR R. If the color of an existing segment is redefined,
it must be redrawn for the color change to be visible.

R (DEFER)

Integer.
1 = set deferral on
0 = set deferral off

Set deferral status of entire system.

When deferral is on, system changes may be made without
updating the display. When deferral is off, changes to the display
will be seen immediately. For example, when a number of
possibly overlapping segments are deleted, response may be faster
if deferral is on before deletion, and is then turned off afterwards.

(SEG | D, DETECT)

Integer. A segment ID value as returned by OPEN. SEG. R
Integer.

0 = set undetectable status

1 = set detectable status

Make a segment detectable or not.

A detectable segment can be detected using READLOC. R or
Pl CKMENU. R

(SEG I D, H GHLI GHT)

Integer. A segment ID value as returned by OPEN. SEG R.
Integer.

0 = normal display

1 = highlighted

Set the highlighting status of a segment. A highlighted segment
draws attention to itself on the display surface.

Routines and Globals for SIMSCRIPT Graphics

Notes: SIMSCRIPT graphics implements highlighting by drawing the
entire segment using the color index number.

Routine GPRI ORI TY. R (SEG I D, PRI ORI TY)

Arguments:
SEG I D Integer. A segment ID value as returned by OPEN. SEG R.
PRI ORI TY Integer. Range is 0 to 255.
Purpose: Set or change the priority of a segment.
Notes: If segments overlap, the segment with the higher priority

overwrites the segment with lower priority. For segments of the
same priority, the drawing order is undefined. Deleting a segment
automatically redraws all segments with bounding boxes
intersecting the bounding box of the deleted segment, but not
segments with priority zero.

Routine GUPDATE. R
Purpose: Draws all un-segmented primitives.

Routine GVI SI BLE. R (SEG |1 D, VI SI BLE)

Arguments:
SEG I D Integer. A segment ID value as returned by OPEN. SEG R.
VI SI BLE Integer.
0 = Set invisible status
1 = Set visible status
Purpose: Make a segment visible or invisible.

Routine HANDLE. EVENTS. R(WAI T. FOR. EVENT)

Arguments:
WAI T. FOR. EVENT
Integer.
0—Return immediately after processing all immediate events.
1—Wait for a mouse or other event to occur.
Purpose: Call the event handler.
Notes: Handles toolkit events such as window resizing and mouse

interaction. Necessary for tight loop constructs occupying a large
amount of time.

125

SIMSCRIPT Graphics

Routine LI NEAR. R (DSPLYENT)

Arguments:
DSPLYENT Pointer to a DYNAM C GRAPHI C entity.
Purpose: Manage one object with linear motion.
Notes: The values of LOCATI ON. A (present location) and CLOCK. A

(time of last change) are updated, and the entity displays itself. The
user does not call this routine. It is automatically assigned as the
motion attribute of a DYNAM C GRAPHI C entity.

Routine LI NECOLOR. R (COLOR. | NDEX)
Arguments:
COLOR. | NDEX Integer. Values range from 0 to 255.

Purpose: Set color of subsequent line primitives.

Notes: Call before POLYLI NE. R, SECTOR. R.

Routine LI NESTYLE. R (STYLE)
Arguments:
STYLE Integer. The following style values are supported:

1 = solid
2 =long dash
3 = dotted
4 = dash dotted
5 = medium dashed
6 = dash with two dots
7 = short dash

Purpose: Set style of subsequent line primitives.

Notes: Call before POLYLI NE. R, SECTOR. R.

Routine LI NEW DTH. R (W DTH)

Arguments:

W DTH Integer. In NDC units (range 0 to 32767).
Purpose: Set width of subsequent lines.
Notes: Call before POLYLI NE. R, SECTOR. R

126

Routines and Globals for SIMSCRIPT Graphics

Routine LI STBOX. SELECTED. R (LI STBOX. PTR, |1 NDEX) Yi el di ng SELECTED

Arguments:
LI STBOX. PTR Pointer to a list box FI ELD within a form.
| NDEX Integer. Index into array of list items
SELECTED Integer return value. 1 if item has been selected, 2 if it has been
double-clicked on, O otherwise.
Purpose: Get selection status of an item in a list box.
Notes: Given a list box field pointer and an index into the array of items,
returns whether this item is currently selected or has been double-
clicked.

Routine LOAD. FONTS. R (FI LE. NAME)

Arguments:
FI LE. NAME String. The name of the file to be loaded.
Notes: Loads the font re-definition file FI LE. NAME. A font re-definition

file defines equivalent names for font families. For example, a
program may use the font name Times, when on Windows systems
the equivalent system font is Times New Roman and on Unix
systems it is Times Roman. Then the font re-definition file would
consist of the line:

"Times"" Ti nes New Ronman"" Ti nes Ronman"

The first entry is the generic (program) name and the subsequent
entries are the equivalent system fonts.

Left Monitoring Routine LOCATI ON. A (DSPLYENT)

Argument:

DSPLYENT Pointer to a graphic entity, dynamic or static.

Right hand side: A pointer to a LOCATI ON. E entity. The value must be obtained
from LOCATI ON. F (x, V). This value indicates the location of
the origin of the object, in real world coordinates.

Purpose: Provide location for modeling transformation.

Notes: Set or change the location of a moving object. Draw or redraw the

object if and as necessary. Assignment to this attribute triggers
redisplaying of the graphic entity. If you also want to change
ORI ENTATI ON. A, do it before assignment to this attribute. If only
ORI ENTATI ON. A is to be changed, the object should be explicitly
redisplayed.

127

SIMSCRIPT Graphics

Function LOCATI ON.
Mode:

Arguments:
X
Y

Purpose:

Function LOCATI ON.
Mode:

Arguments:
DSPLYENT

Pur pose:

Function LOCATI ON.
Mode:

Arguments:
DSPLYENT

Purpose:

Routine MVARKCOLOR.

Arguments:
COLOR. | NDEX

Purpose:

Notes:

F(X V)

Pointer to a LOCATI ON. E entity. This entity is constructed from
the x and y values to represent a coordinate position, and should

only be used in an assignment to LOCATI ON. A.

Real, in real world coordinates.
Real, in real world coordinates.

Set a present location given x and y.

X (DSPLYENT)
Real, in real world coordi nates.

Pointer to a graphic entity, dynamic or static.

Inquire the present X position.

Y (DSPLYENT)
Real, in real world coordinates.

Pointer to a graphic entity, dynamic or static.

Inquire the present Y position.

R (COLOR. | NDEX)
Integer. Ranges from 0 to 255.

Set color of subsequent markers.

Use the GCOLOR. R routine to assign an index value.

POLYMARK.R

Routine MARKS| ZE. R (S| ZE)

Arguments:
SI ZE

Purpose:

128

Integer. The value is 0 to 32767, in NDC units.

Set size of subsequent markers.

Call before

Routines and Globals for SIMSCRIPT Graphics

Routine MARKTYPE. R (TYPE)

Arguments:
TYPE

Purpose:

Integer. Identifies a marker type. Permitted values include:
1 =dot

2 = cross
3 =star

4 = square
5=X

6 = diamond

Set type of subsequent markers.

Routine MESSAGEBOX. R (MESSAGE. TEXT, TI TLE. TEXT)

Arguments:
MESSAGE. TEXT
TI TLE. TEXT
Purpose:

Notes:

Text. Identifies a one line message.
Text. Title displayed in title bar of message.

Display a dialog box containing a one-line message.

A modal dialog box containing one OK button the given message
will be displayed. The routine returns when the user clicks on OK.

Attribute MOTI ON. A (DSPLYENT)

Mode:
Argument:
Purpose:

Notes:

Subprogram variable. The subprogram does not return a value.
Pointer to a DYNAM C GRAPHI C entity.

Provides an animation velocity management routine.

The use of a particular animation velocity management routine is

indicated through the value of the MOTI ON. A attribute. The
default routine is named ' LI NEAR. R’ .

Routine MSCALE. R (FACTOR)

Arguments:
FACTCR

Purpose:

Notes:

Scale factor, DOUBLE.

Set the scaling component of the system modelling transformation.

The effect of this routine is reset upon entry to a DI SPLAY
routine, or with an explicit call of MXRESET. R with argument
zero, a call to this routine with the argument equal to zero, or
before the display of an icon. The scaling factor will take effect

129

SIMSCRIPT Graphics

only if called from within a display routine or before a call to
CLCSE. SEG R

Routine MKLATE. R (POSX, POSY)

Arguments:
POSX
POSY

Purpose:

Notes:

Real. Distance to move.
Real. Distance to move.

Specifies translation (movement) component of a modeling
transformation.

Call from within a display routine or before a call to
CLOSE. SEG. R. The translation is cumulative with previous
translations. All rotation specified through MZROTATE. R is
performed before translation.

Routine MXRESET. R (DSPLYENT)

Argunent s:
DSPLYENT

Purpose:

Notes:

Pointer to a graphic entity. An argument of O resets all the
components of the system's modeling transformation to null.

Reset the modeling transformation to that of the given object.
The rotation is set from ORI ENTATI ON. A(OBJECT). The

translation is set from the LOCATI ON. A attribute of the given
graphic entity.

Routine MZROTATE. R (THETA)

Arguments:
THETA

Purpose:

Notes:

Real. Angle of rotation in radians. Positive values indicate counter-
clockwise rotation.

Set the rotation attribute of the modeling transformation.

Specify rotation component of a modeling transformation.
Successive calls on this routine are cumulative. The given rotation
is added to previous rotations. Will only take effect if called from
within a display routine or before a call to CLOSE. SEG. R

Routine OPEN. SEG. R

Purpose:

Notes:

130

Open a new segment.

A new graphic segment is opened and made able to accept graphic

Routines and Globals for SIMSCRIPT Graphics

primitive operations. The integer global variable SEQ D.V is
changed to the identifier of this new segment.

Routine OPENW NDOW R (XLO, XHI, YLO YH, TITLE, MAPPI NG
Yi el di ng W NDOW PTR

Arguments:
XLO

XHI
YLO
YHI

TI TLE
MAPPI NG

W NDOW PTR
Purpose:

Notes:

Integer. NDC coordinate for left edge of window (with respect to
screen)

Integer. NDC coordinate for right edge of window (with respect to
screen)

Integer. NDC coordinate for bottom edge of window (with respect
to screen)

Integer. NDC coordinate for top edge of window (with respect to
screen)

Text. Title of window

Integer. Mapping mode of window (0=LCS, 1=X maj or, 2=Y
naj or)

Pointer to a window display entity.

Opens a new SIMSCRIPT graphics window.

Opens up a SIMSCRIPT graphics window of the prescribed
dimensions on the screen and returns a display entity for it. Using
this routine, you can create more than one graphics window for
your application. SETW NDOW R can then be used to associate the
current global viewing transformation number (VXFORM V) to this
window. The MAPPI NG flag defines how NDC space is mapped to
the four boundaries of the window.

Attribute ORI ENTATI ON. A (DSPLYENT)

Mode:

Subscript:

Notes:

Real, in radians. Positive values specify counter-clockwise
rotation.

Pointer to a GRAPHI C entity or to a DYNAM C GRAPHI C
entity.

Sets orientation of a graphic entity, for the modeling
transformation. When ORI ENTATI ON. A is used, it should be set
before a value of LOCATI ON. A is set.

Routine PI CKMENU. R G VEN ARRAY(*) YI ELDI NG | NDEX

Arguments:
ARRAY(*)

I-dim POINTER array. Each element of the array is a graphic
entity pointer.

131

SIMSCRIPT Graphics

| NDEX

Purpose:

Notes:

Integer. Subscript to array produced by PI CKMENU. R.

Selection from a menu using the mouse.

Waits for the user to select a graphic entity with the mouse. If an
entity is not selected, | NDEX is set to zero. Otherwise, yields the
index of the highest priority entity that was clicked on.

Routine POLYLI NE. R (COUNT, PO NTS(*))

Arguments:
COUNT
PO NTS(*)

Purpose:

Notes:

Integer. Number of points in the line.
Real, 2-dimensional array, reserved as 2 by N, where N > COUNT.

Values are in real world coordinates. PO NTS(1, ...) are the x-
coordinates. PO NTS(2, ...) are the corresponding y-
coordinates.

Draw a multi-jointed line.

A line is drawn connecting the indicated points. The line is drawn
with the current line color, line style, and line width, as set by
calling LI NECOLOR. R, LI NESTYLE. R and LI NEW DTH. R.

Routine POLYMARK. R (COUNT, PO NTS(*))

Arguments:
COUNT
PO NTS(*)

Purpose:

Notes:

Integer. Number of points to process.
Real, 2-dimensional array, reserved as 2 by N, where N > COUNT.

Values are in real world coordinates. PO NTS(1, ...) are the x-
coordinates. PO NTS(2, ...) are the corresponding y-
coordinates.

Draw a series of markers.

Markers are drawn at the indicated points. The markers are drawn
in the current markcolor, marksize, and marktype, provided
through routines = MARKCOLOR R, MARKSI ZE. R, and
MARKTYPE. R,

Routine POSTSCRI PTCTRL. R(ENABLE, SHOW CON)

Arguments:
ENABLE
SHOW CON

Purpose:

132

Integer. Enable conversion of window to PostScript.
Integer. If the value is greater than 0 the conversion button will be
displayed in the top-right corner of the window.

Enables and configures PostScript output.

Routines and Globals for SIMSCRIPT Graphics

Routine POSTSCRI PT. R(PSFI LE, PSSI ZE, PSBORDER, PSMONO,
PSI NVERT, PSHATCH, PSDI ALOG)

Arguments:
PSFI LE Text. The name of the output file.
PSSI ZE Real. Height and width of the output in inches.
PSBORDER Integer. Show a window border in the output.
PSMONO Integer. Not yet implemented.
PSI NVERT Integer. Not yet implemented.
PSHATCH Integer. Not yet implemented.
PSDI ALOG Integer. Bring up a dialog box to get options for the conversion to
PostScript.
Purpose: Captures all graphics in the current window to a PostScript file.

Routine PRI NT. SEG R gi ven SEGVENT. | D, USE. DI ALOG yi el di ng SUCCESS
Arguments:

SEGVENT. | D Integer. Segment identifier.

USE. DI ALOG Integer. Nonzero if dialog should be shown.

SUCCESS Integer. Nonzero if printing was completed.
Purpose: Print the segment identified by SEGVENT. | D.
Notes: If USE. DI ALOG is nonzero the system print dialog is displayed

allowing the user to set print options.

Routine PRI NT. W NDOW R gi ven
W NDOW PTR, USE. DI ALOG vyi el di ng SUCCESS

Arguments:

W NDOW PTR Pointer to a window’s display entity (returned from
OPENW NDOW R) .

USE. DI ALOG Integer. If USE. DI ALOG is nonzero the system print dialog is
displayed allowing the user to set print options.

SUCCESS Integer. Nonzero if printing was completed.
Purpose: Prints a window.
Notes: If USE. DI ALOG is nonzero the system print dialog is displayed

allowing the user to set print options.

Routine READ. GLI B. R (FI LE. NAME)
Arguments:
FI LE. NAME Text. File name of the graphics library.

133

SIMSCRIPT Graphics

Purpose:

Notes:

Read a graphics library file from disk.

This routine will read a graphics library file created by
SIMSCRIPT Studio. Subsequently, all icons, forms and graphs
contained in the library can be accessed through the SHOW and
DI SPLAY statements. Note that the file graphics.sg2 is
automatically read in at the beginning of execution.

Routine READLCC. R (POSX, POSY, STYLE) YIELDI NG NEWK, NEWY, XFORM V

Arguments:
POSX
POSY
STYLE

NEWK
NEWY
XFORM V

Purpose:

Notes:

Real, in real world coordinates: X anchor point of the cursor.
Real, in real world coordinates: Y anchor point of the cursor.
Integer:

0= Do not draw any special cursor

= Draw rubber band line while waiting
= Draw rubber box while waiting

3,4= Allows a global variable DI NPUT. V to be assigned
be repeatedly updated with a new LOCATI ON. A
value, thus tracking the mouse until a button is
clicked.

16 = May be used within a SIMSCRIPT process routine
(which READLCOC. R will suspend). The mouse
position will be sampled from the timing
mechanism, allowing it to be active while a
simulation is running. A suspended process is
reactivated after the mouse is clicked.

Final X position of the mouse in real world coordinates.

Final Y position of the mouse in real world coordinates.

Value of the viewing transformation used to map NDC locator
position into real world coordinates.

Wait for the user to click somewhere in the canvas with the mouse.

The graphic cursor is anchored at the given (POSX, POSY). As the
user moves the mouse, the cursor updates automatically. After a
click, READLCC. R scans the viewing transformations in reverse
numerical order - from 15 to 0 - until the NDC position can be
reverse-transformed. If the mouse is located within a viewport
specified by some transformation number, this number is returned.
In this way, movement of the mouse between viewports may be
detected and acted upon. As a side effect, the global integer G 4
will be set to the | D of the selected segment.

Function RGTEXT. F (X, Y, MAXLEN)

134

Routines and Globals for SIMSCRIPT Graphics

Arguments:
X Real. (Currently ignored)
Y Real. (Currently ignored)
MAXLEN Integer. (Currently ignored)
Purpose: Read graphic text.
Notes: A text string is read in from a popup dialog box and returned.

Routine SEARCH. GLI B. R yi el di ng ARRAY. OF. | TEMS

Arguments:
ARRAY. OF. | TEMS

1 dimensional text array.
Purpose: Provide the names of all loaded graphical objects.
Notes: Returns an array containing names of all graphical objects that

have been loaded so far. The array should NOT be released.

Routine SECTOR. R (PO NTS, FILL)

Arguments:

PO NTS(*) Real, 2-dimensional array, reserved as 2 by N, where N =3.
Values are in real world coordinates. PO NTS(1, ...) are the x-
coordinates. PO NTS(2, ...) are the corresponding vy-
coordinates.

FI LL Integer. Identifies filling procedure:

0= Draw an arc of a circle using current line style,
width, and color. (see LI NEW DTH. R,
LI NESTYLE. R, LI NECOLOR R).
1= Draw a sector of a circle, fill with current fill style
and fill color. (see FI LESTYLE. R,
FI LLCOLOR. R)
Purpose: Draw an arc or a sector of a circle.
Notes: The first point identifies the center of a circle. The second point

should be any point on the circumference and marks the beginning
of the arc. An arc is drawn counter-clockwise to the third point.

Routine SEG. BOUNDARI ES. R (SEGVENT. | D)
yielding SEG. XLO, SEG XHI, SEG YLO, SEG YH

Arguments:
SEGVENT. | D Integer. Identifies a segment.
SEG. XLO Integer. Left side of bounding box in NDC units.

135

SIMSCRIPT Graphics

SEG. XHI Integer. Right side of bounding box in NDC units.
SEG YLO Integer. Bottom side of bounding box in NDC units.
SEG. YHI Integer. Top side of bounding box in NDC units.
Purpose: Compute the bounding box of any existing segment.
Notes: Computes the NDC coordinates defining the bounding rectangle of

the segment given by SEGVENT. | D. Can be called before the
segment has been made visible.

Left Monitoring Rout i ne SEG D. A (DSPLYENT)
Arguments:
DSPLYENT Pointer to a graphic entity.

Function input value: Integer. A segment identifier as produced by OPEN. SEG. R.

Purpose: Removes image of a segment and causes a new image to be drawn.

Notes: An assignment to this attribute will delete the previous segment, if
one exists. Assigning the value 0 to this attribute will erase the
segment.

Assignment to this attribute has the following side-effects:

1. If the old value is not zero it is taken to be a segment
identifier of an existing segment. That segment is deleted.

2. If the new value is not zero, it is taken to be a segment
identifier of an existing segment. That segment is re-
displayed at the position and rotation indicated by the
LOCATI ON. A and ORI ENTATI ON. A attributes.

Global Variable SEG D. V
Mode: Integer. Segment identifier.

Notes: While a segment is open, its ID is available in the global variable
SEG D. V. This value is copied to SEG D. A upon exit from a
DI SPLAY routine. When a segment is closed, the value of
SEG D. V becomes zero.

Attribute SEGPTY. A (DSPLYENT)

Mode: Integer. Display priority should range between 0 and 255.
Subscript: Pointer to a GRAPHI C entity or to a DYNAM C GRAPHI C
entity.

136

Routines and Globals for SIMSCRIPT Graphics

Notes: The priority of a graphic entitie is supplied through this attribute.
Graphic entities with a higher priority are displayed in front of
lower-priority segments. The order of displaying segments of equal
priority is not defined. Priority 0 is treated specially by
SIMSCRIPT. Segments of this priority are not automatically re-
displayed by the system.

Routine SET. ACTI VATI ON. R (FORM PTR, ACTI VATE)

Arguments:
FORM PTR Pointer to any form or form field.
ACTI VATE Integer:
0 = Deactivate or "gray out" the field.
1 = Activate the field; make it selectable.
Purpose: Set activation state (gray out) of a form or field.
Notes: Sets the activation state of a field on a form. A deactivated field

will appear “grayed out,” i.e., it is visible but cannot be interacted
with. Setting the activation state of a dialog box or menu bar will
apply that state to all fields contained therein. Fields are initially
activated.

Routine SETCURSOR. R(CURSORSTATUS)
Arguments:
CURSORSTATUS Integer:
0 = Set the cursor to the normal (arrow) cursor.
1 = Set the cursor to the busy (watch) cursor.

Purpose: Sets the cursor status to busy or normal and changes its shape to a
watch (hourglass) or arrow.

Routine SET. LI STBOX. TOP. R(LI STBOX. PTR, TOP. | NDEX)

Arguments:
LI STBOX. PTR Pointer. Pointer to list box field obtained from DFI ELD. F.
TOPI NDEX Integer. Index of the list item to be positioned at the top of the list
window.
Purpose: Scrolls the given list box so that the item indexed by TOPI NDEX

appears at the top of the list.

Routine SETVIEWR (V. XLO, V. XH, V.YLO V.YH)

137

SIMSCRIPT Graphics

Arguments:
V. XLO

V. XH

V. YLO

V. YH
Purpose:

Notes:

Integer, in Normalized Device Coordinates, (where 0 <V. XLO <
V. XH <32767).

Integer, in Normalized Device Coordinates.

Integer, in Normalized Device Coordinates.

Integer, in Normalized Device Coordinates.

Sets viewport of the current viewing transformation.

This routine defines a rectangular viewport region on the display
surface. The global variable VXFORM.V should be assigned prior
to calling this routine. Areas, lines, and points outside this region
are clipped. For the purpose of specifying viewports, a separate
coordinate system is used where 0 <x <32767 and O <y
<32767.

Routine SET. W NCONTROL. R gi ven W NDOW PTR, CONTRCL. ROUTI NE

Arguments:
W NDOW PTR

Pointer to the window display entity.

CONTROL. ROUTI NE

Purpose:

Notes:

Name of the routine to call when a window event occurs.
Specifies the control routine to be used for the given window.
The given control routine will be invoked on any of the following

asynchronous window events: CLOSE, RESI ZE, VSCROLL,
HSCROLL, MOUSECLI CK, MOUSEMOVE.

Routine SETW NDOW R (W NDOW PTR)

Arguments:
W NDOW PTR

Purpose:

Notes:

Identifier for a SIMSCRIPT window returned by OPENW NDOW R.

Associates the current viewing transform (VXFORM V) to the
window with the given id.

All subsequent drawing to the viewing transform will appear in
this window. This allows the programmer to use VXFORM V to
specify which window will receive subsequent graphic input. Note
that a single viewing transform cannot be drawn in two separate
windows. Therefore, this call must be used if graphics are to be
drawn in more than one window.

Routine SETWORLD. R (W XLO, WXH , WYLO W YH)

Arguments:

138

W XLO
W XHI
W YLO
W YHI

Purpose:

Notes:

Routines and Globals for SIMSCRIPT Graphics

Real. In real world coordinates.
Real. In real world coordinates, where (W XLO ne W XHI).
Real. In real world coordinates.
Real. In real world coordinates, where (W YLO ne W YHI).

Defines a square or rectangle in world space. The argument values
define the area to be displayed. Points outside this area are clipped,
and are not displayed.

Sets the mapping of problem-oriented coordinates, given in real
world coordinates. The given arguments define the coordinate
system for the rectangular viewport defined using the SETVI EW R
routine. If icons are loaded from SIMSCRIPT Studio, the
arguments passed to SETWORLD. R should agree with the world
coordinate system indicated in the “Icon Properties” dialog box of
the icon editor. Usually W XLO < W XH and WYLO < W YHI .
However, SETWORLD. R can be used to invert or mirror-image a
transformation by reversing one or both of the above inequalities.

Routine SYSTI ME. R Yl ELDI NG CURRENT. TI CK

Arguments:
CURRENT. Tl CK

Purpose:

Integer. The value represents the elapsed time, since midnight, in
1/100 second on most systems.

This routine returns the current time of day in the indicated units.

Routine TEXTALI GN. R (HORI Z, VERT)

Arguments:

HORI Z

VERT

Purpose:

Notes:

Integer. Value =0, 1, or 2.
0 = left justified (the default)
1 = centered text
2 = right justified
Integer. Value =0, 1, 2, 3, or 4.
0 = bottom justified (the default)
1 = centered vertically
2 = top justified
3 = bottom of character cell
4 = top of character cell

Set portion of character that is aligned upon the graphic text
position.

The character cell extends both above and below the actual

139

SIMSCRIPT Graphics

character.

Routine TEXTANGLE. R (ANGLE)

Arguments:
ANGLE Integer. Selects an angle in tenths of degrees, 0 to 3600.
Purpose: Sets the angle of rotation of subsequent lines text.
Notes: An angle of zero represents normal, horizontal text. Line of text is

rotated counter-clockwise as the angle increases.

Routine TEXTCOLOR. R (COLOR. | NDEX)
Arguments:
COLOR. | NDEX Integer. COLOR. | NDEX 1is an integer with values from 0 to 255.

Purpose: Set color of subsequent characters.

Routine TEXTFONT. R (FONT)

Arguments:
FONT Integer. Indicates which font to use.
0—Basic font
1—Arial
2—Roman
3—Bold Roman
4—TItalic
5—Secript
6—Greek
7—~Gothic
Purpose: Set text font of subsequent characters.
Notes: Calling this routine will specify that a predefined vector font is to

be used. These fonts are scaled with the graphics window and can
always be rotated, but are defined by SIMSCRIPT and may not
match fonts found on your operating system. To show text in one
of the fonts found on your system, use the TEXTSYSFONT. R
routine.

Routine TEXTS| ZE. R (S| ZE)
Arguments:
S| ZE Integer. The character height in NDC units, with a range of 0 to
32767.

140

Purpose:

Notes:

Routines and Globals for SIMSCRIPT Graphics

Set size of subsequent characters.

This routine applies to vector fonts only. (see TEXTFONT. R)

Routine TEXTSYSFONT. R gi ven FAM LY. NAMVE, PO NT. Sl ZE,
| TALI C, BOLDFACE

Arguments:
FAM LY. NAME

PO NT. SI ZE
BOLDFACE
| TALI C

Notes:

String. FAM LY. NAME is a string known to the toolkit which
identifies the font.

Integer. The size of the font in points.

Integer. Denotes the thickness of the font. Range is 0 to 1000.
Integer. Denotes the slant of the font. Range is 0 to 1000.

Allows programmatic selection of a system (raster) font. These
fonts are generally provided by your operating system and
availability may vary across platforms. Text drawn using a raster
font will remain the same size regardless of how big the graphics
window is. If called, the font set using TEXTFONT.R is
temporarily ignored.

System Global Variable TI MESCALE. V

Mode:

Purpose:

Integer.

Scales Real time (1/100 second) per simulated time unit.

System Global Variable TI MESYNC. V

Mode:

Notes:

Subprogram variable.

When non-zero, this subprogram variable will point to a user exit
routine, called with the following parameters:

TI ME. PROPOSED
G VEN argument; mode is DOUBLE. The value will be
greater than Tl ME. V.

TI ME. COUNTERED
Yl ELDI NG quantity; mode is DOUBLE. The user must set
this to a value between Tl ME. V and T| ME. PROPOSED.

The Yl ELDI NG parameter will be taken as the next
simulated time.

When events or processes are scheduled or canceled by the

141

SIMSCRIPT Graphics

user time exit routine, the value returned for
TI ME. COUNTERED must be less than TI ME. PROPOSED.
This causes a rescan of the time file, preventing

potential difficulties.

The user exit routine reached through the TI MESYNC. V
variable is called whenever the simulated clock is to be
updated, but before any animation is performed.

Left Monitoring Routine VELOCI TY. A (DSPLYENT)

Arguments:
DSPLYENT
Function input value:

Purpose:

Notes:

Function VELOCI TY.
Arguments:

\%

THETA

Function value:

Purpose:

Notes:

Function VELCCI TY.

Arguments:
DSPLYENT

Function value:

142

Pointer to a DYNAM C GRAPHI C entity.

A pointer to a VELOCI TY. E entity . This value indicates the
velocity of the object, in real world coordinate units per simulated
time units. Assigning a value of O to VELOCI TY. A causes the
object's position updates to cease. This stops the object from
moving. Except for the special value of 0, the wvalue of

VELCCI TY. A can only be set to the function value produced by
VELOCI TY. F (speed, theta).

Associate a constant velocity with a dynamic graphic entity.

Set or change the velocity of a moving object. Draw or redraw the
object if necessary.

F (V, THETA)

Real. Velocity in real world coordinate units per simulated time
units.

Real. Angle of motion, in radians.

Pointer to a VELOCI TY. E entity. This entity is constructed from
the velocity and angle values to represent a vector location.

Set a present velocity given absolute velocity and angle.

Returns the indicated function value.

X (DSPLYENT)

Pointer to a DYNAM C GRAPHI C entity.

Real. This function returns the x-coordinate of the current velocity
of the object, in real world coordinate units per simulated time
units. This is a read-only value.

Purpose:

Routines and Globals for SIMSCRIPT Graphics

Inquire the present velocity, in the X direction.

Function VELOCI TY. Y (DSPLYENT)

Arguments:
DSPLYENT
Function value:

Purpose:

Pointer to a DYNAM C GRAPHI C entity.

Real. This function returns the y-coordinate of the current velocity
of the object, in real world coordinate units per simulated time
units. This is a read-only value.

Inquire the present velocity, in the Y direction.

Global Variable VXFORM V

Mode:
Purpose:

Notes:

Integer. Values range between 0 and 15, inclusive.
Indicates which viewing transformation is in effect.

The default transformation is provided by VXFORM V = 0, a one-
for-one mapping of real world coordinates into Normalized Device
Coordinates. VXFORM V indicates which transformation is to be
defined, redefined, or used. This allows SIMSCRIPT to provide
multiple mappings between real-world spaces and areas on the
display screen. Such user-defined mappings are specified by first
assigning VXFORM V to a unique value, then calling routines like
SETWORLD. R and SETVIEW R VXFORM V can be used in
conjunction with SETW NDOW R to define which window receives
subsequent graphic input and output.

Routine WGTEXT. R (STRING, X, Y)

Arguments:
STRI NG
X
Y

Purpose:

Notes:

Text.
Real, in real world coordinates.
Real, in real world coordinates.

Write a text string to the currently open segment
The text string is written starting at the indicated point. The string
is written in the current text alignment, text angle, text color, text

size, and text font, using values provided through the routines that
set these properties.

143

A

ACCEPT.F, 61, 82, 87, 88, 90, 118
ACCUMULATE statement, 36, 46
animation

speed, 12

start, 11

stop, 12
attributes of graphic entities, 11

B

BACKGROUND field, 64
bank model, 47, 57

bar chart, 44

button, 63, 66

C

chart, 38, 41
adding and removing datasets, 42
adding program code, 47, 50
changing properties, 41
data cell connection, 45
data set attributes, 44
editing in SIMSCRIPT Studio, 41
grid lines, 44
marker style, 45
multiple data sets, 42, 43
name (for loading), 41
rescaling over time, 44
second y axis, 45
specifying attributes of axes, 43
check box, 63, 67
circle
color, 24
drawing, 24
hatch style, 24
Cl RCLE. R 24, 118
CLEAR. SCREEN. R, 119
clock, 38, 53
adding program code, 54
editing in SIMSCRIPT Studio, 53
updating with TIME.V, 54
CLOCK.A, 12,119

INDEX

CLCSE. SEG. R 22, 119
CLCSEW NDOW R, 119
color, 20, 21

colors.cfg file, 21
combo box, 63, 67
context menus, 96
coordinate systems, 13

D

DARY.A, 62,71,77,93,117,119

DCOLOR.A, 20

DDVAL.A, 62, 68, 75, 78, 80, 120

DELETE. SEG R, 22, 120
DESTROY statement, 20
DFIELD.F, 93,110, 120
dial, 38
dialog
application of attributes, 63
control routines, 63
data field access, 62

enable and disable fields, 65

field name, 60
field types, 66
loading in a program, 61
tabbed (multi-page), 80
dialog box, 1, 60
location, 82
modal, 81
modeless, 81
predefined, 83
tab-key traversal, 82
dialog box editor, 60
dialog properties, 81
tabbed dialogs, 80
DI NPUT. V, 64
DISPLAY statement, 1, 36
display variables, 40
drag and drop, 106
DRTN. A, 30, 120
DTVAL.A, 19, 62, 68, 75, 121
DTVAL. A., 76
dynamic graphic entities, 10

E

ERASE HI STOGRAMstatement, 48
ERASE statement, 20, 65

F

field, 62

file browser dialog, 85

FI LEBOX. R, 85, 121

FI LLAREA. R, 24, 121

FI LLCOLOR. R, 24, 122

FI LLI NDEX. R, 24, 122

FI LLSTYLE. R 24, 122
flipping the viewport, 16
font browser dialog, 29, 85
FONTBOX. R, 29, 122

G

G.4,18

GCOLOR. R, 21, 123

GDEFERRAL. R, 123

GDETECT.R, 23, 124

GHLIGHT.R, 23, 124

GPRIORITY.R, 23, 124

graph, 1
creating in SIMSCRIPT Studio, 36
erasing, 40
loading into program, 40

graph editor
changing axis scaling, 38
changing color/style of a component,

38

creating a meter, 39
move a graph, 37
resize a graph, 37
style palette, 37
zoom in and out, 38

graphic entities, 10

graphics library, 2

graphics library file, 2

graphics.sg2, 1,2, 1, 8, 9, 10, 36, 39, 40,
41,47, 48,49, 51, 52, 55, 60, 62, 84,
85, 87, 88,91, 92, 95, 96, 100, 103,
104, 105, 107, 134

graphs, charts and meters, 36

group box, 68

GUPDATE. R, 125
GVISIBLE.R, 23, 125

H

HANDLE. EVENTS. R, 125
histogram, 44, 46, 48, 49

I

icon, 1
animation, 11
attaching text, 19
background, 15
constructed on-line, 30
constructed on-line and off-line, 33
creating in SIMSCRIPT Studio, 1
destroy, 20
detecting selection, 17
display routines, 30
drawing by program, 21
dynamic, 15
erase, 20
g.4,18

icon editor
center point, 7
colors, 5
coordinate system, 7
creating new shapes, 3
dash styles, 4
definable color, 20
definable text, 19
drawing tools, 4
edit points, 5
edit text, 6
fill styles, 4
fonts, 4
grid, 6
icon properties, 6
import graphics, 10
importing jpeg files, 8
move shapes, 5
priority, 6
resize shapes, 5
stacking order, 6
toolbar, 3
using, 2
zoom in and out, 3

145

SIMSCRIPT Graphics

ICON.A, 19, 20, 33 control routine, 90
importing graphics, 10 creating in SIMSCRIPT Studio, 87
INITIALIZE field, 64 enable and disable items, 95
introduction, 1 menu, 89
menu item, 89
J mnemonic letters, 89
JAVA, 1 names of accelerator keys, 89
ipeg file, 8, 80, 103 program c'ode, 90
sizing, 9 menu bar editor, 87‘
menu bar properties, 88
L message box, 83
label. 63. 68 MESSAGEBOX. R, 129
> U9 meters, 38
level meter, 38 modeling transformation, 34
line monitoring a variable, 40
color, 25 MOTION.A, 12, 129
drawing, 35 VECALE 1 34 129
! ’ multi-line text box, 63, 71
L zg}é’ Izi 125 multi-page dialog box, 80
LI NECOLOR. R, 25, 125 m;ggf’g; 130
LI NESTYLE. R, 25, 126 NZROTATE. R 34 130
LI NEW DTH. R, 25, 126 ’
list box, 63, 69 N
LI STBOX. SELECTED. R, 70, 126 _ _ ,
LOAD. FONTS. R, 126 nor'mahz.ed device coordinates, 13, 16
LOCATION.A, 11,127 notification
LOCATI ON. E. 127 calling event handler, 125
LOCATI ON. X: 127 of dialog input, 63
LOCATI ON. V, 128 window events, 112

M 0
MARKCOLOR. R, 25, 128 OPEN. SEG R, 22, 23, 130
OPENW NDOW R, 108, 130

marker
color, 25 ORIENTATION.A, 11, 131
drawing graphic, 25
. P
size, 25
styles, 25 palette, 1, 100
MARKSI ZE. R, 25, 128 asynchronous, 105
MARKTYPE. R, 128 control routine, 104
menu bar, 1, 87 creating in SIMSCRIPT Studio, 100
accessing fields, 93 docking, 101
asynchronous, 89, 91 drag and drop, 106
cascading (menus in menus), 94, 96 dragging items into canvas, 102
changing at runtime, 93 field name, 102
checked items, 94 loading in a program, 103

146

program code, 103

separators, 103

toggle buttons, 106
palette editor, 100

button properties, 102
PICKMENU.R, 17, 131
pie-chart, 38, 55

adding and removing slices, 56

adding program code, 56

editing in SIMSCRIPT Studio, 55
polygon

color, 24

drawing, 24

hatch style, 24
POLYLI NE. R, 25, 132
POLYMARK. R, 25, 132
popup menus, 96
POSTSCRI PT. R, 132
POSTSCRI PTCTRL. R, 132
predefined bitmap images, 10
predefined field names, 111
PRI NT. SEG R, 133
PRI NT. W NDOW R, 133
progress bar, 63, 72

R

radio button, 63, 72
READ. GLI B. R, 133
READLCC. R, 134
resize handle, 37
RGTEXT. F, 134

scatter plot, 52
screen coordinate space, 110
SEARCH. GLI B. R, 135
sector

color, 24

drawing, 24

hatch style, 24
SECTOR. R, 24, 135
SEG. BOUNDARI ES. R, 135
SEGID.A, 11, 18,136
SEQ D. V, 22, 136
segment, 21

adding primitives, 23

Index

close, 22

color, 21

delete, 22

filled area primitives, 23

highlight, 23

identifier, id, 22

lines, 24

markers, 25

open, 22

priority, 23, 29

selectable, 23

show, hide, 23

text, 26

using, 22

zero priority, 30
SEGPTY. A, 136
selecting an icon, 17
SET.ACTIVATION.R, 65,95, 137
SET. LI STBOX. TOP. R, 137
SET. WNCONTROL. R, 112, 138
SETCURSOR. R, 137
SETVIEW.R, 16, 138
SETW NDOW R, 109
SETWORLD.R, 7, 13, 139
SIMSCRIPT Studio, 2
simulation

popup menus, 98

using a menu bar, 91

using a palette, 102, 105
status bar, 116
stop motion, 12
surface chart, 44
SYSTI ME. R, 139

T

table, 63, 73
TALLY statement, 36, 46
text
alignment, 26
bold, 27
color, 26
drawing graphic, 26
font name, 27
height (vector only), 26
italic, 27
point size, 27

147

SIMSCRIPT Graphics

raster font, 27

rotated, 26

vector font, 26
text box, 63, 76
text meter, 38
TEXTALI GN. R, 26, 139
TEXTANGLE. R, 26, 140
TEXTCOLOR. R, 26, 140
TEXTFONT. R, 26, 140
TEXTSI ZE. R, 26, 141
TEXTSYSFONT. R, 27, 29, 86, 141
time scaling, 12
time trace plot, 42, 44, 50
TI ME. V, 50
TIMESCALE.V, 12, 51, 141
TIMESYNC.V, 54, 141
tool tip, 102
tree, 63, 77

\%

validate dialog data, 81
value box, 63, 79

velocity, 11

VELOCI TY. A, 11, 142
VELOCI TY. F, 11, 142
VELOCI TY. X, 143

VELCCI TY. Y, 143
verification of dialog data, 67
viewing transformations, 15
viewport, 16

VXFORM V, 16, 109, 143

W

WGTEXT. R, 26, 143

window, 108
control routine, 112
event names, 112
fields, 110
implementing pan and zoom, 114
mapping mode, 108, 131
scrollable, 113
selecting for graphic output, 109
size and position, 108
status bar, 116

148

x-y plot, 52

V/

zoom, implementing, 14

	Introduction to SIMSCRIPT Graphics
	Icons
	2.1 Getting Started: Adding a Simple Icon
	2.2 Getting Started: Showing the Icon
	2.3 Using the Icon Editor
	2.3.1 Draw Tool Palette: Creating New Shapes
	2.3.2 Draw Tool Palette: Zoom In and Out
	2.3.3 Fill Palette: Specifying the Fill Style of a Shape
	2.3.4 Dash and Width Palettes: Specifying Line Style
	2.3.5 Font Palette: Vector and System Text Fonts
	2.3.6 Color Palette: Change the Color of Anything
	2.3.7 Selecting, Moving and Resizing Shapes
	2.3.8 Editing Points
	2.3.9 Editing Text
	2.3.10 Changing Stacking Order
	2.3.11 Using the Grid
	2.3.12 Changing Properties of the Whole Icon
	Name
	Priority
	SETWORLD.R Parameters
	Center Point
	Automatic Recenter
	Allow icons to scale with world
	Example3: Creating a two wheeled “cart”

	2.3.13 Using JPEG Images in Your Icon
	H. Align:
	V. Align:
	Icon Name:
	Browse Files:
	Browse Resources:

	2.3.14 Copying Icons From Other Projects

	2.4 Declaring Icons as Entities
	2.5 Predefined Attributes of Graphic Entities
	
	LOCATION.A
	ORIENTATION.A
	SEGID.A

	2.6 Animating Icons declared as Dynamic Graphic Entities
	2.7 Simulation Time and Real Time
	
	Example 2.4: Moving an icon around in your program

	2.8 Coordinate Systems
	2.9 Editing Background vs. Movable Icons in the Icon Editor
	2.9.1 Editing Movable Icons
	2.9.2 Editing Background Icons

	2.10 Viewing Transformations
	2.11 Selecting an Icon in Your Program
	2.11.1 Synchronous Selection
	2.11.2 Asynchronous selection
	Example 2.8: Select an icon during simulation

	2.12 Attaching a dynamic text value to your icon
	
	Example 2.9: Dynamically label an icon

	2.13 Changing the Color of an Icon
	2.14 Destroying and Erasing Icons

	Segments
	3.1 Color
	3.2 Using Segments
	3.3 Adding Primitives to a Segment or Display Routine
	3.4 Drawing Filled Areas
	3.5 Drawing Lines
	3.6 Drawing Markers
	3.7 Drawing Text
	
	
	Example 3.1: Drawing some graphics from program code only

	3.7.1 System Font Browser
	
	Example 3.2: Allowing the User to Select a System Font

	3.8 Segment Priority
	3.8.1 Using Priority Zero

	3.9 Display Routines
	
	Example 3.3: Using an icon whose shape changes over time
	Example 3.4: A moving icon defined by the program

	3.10 Customizing an Icon Defined in SIMSCRIPT Studio
	
	Example 3.5: An icon defined by SIMSCRIPT Studio and program code

	3.11 Modeling Transformations

	Creating Presentation Graphics
	4.1 Using SIMSCRIPT Studio to Create and Edit a Graph
	4.1.1Changing Size and Position of a Graph
	4.1.2 Zoom In and Out
	4.1.3 Changing Color, Font, Fill, and Line Styles
	4.1.4 Changing Data Related Properties

	4.2 Displaying Single Variables in a Meter
	4.2.1 Creating a Meter in SIMSCRIPT Studio
	4.2.2 Monitoring a Single Variable in your Program
	
	Example 4.1: Show a single global variable changing over time

	4.3 Charts
	4.3.1 Editing a Chart in SIMSCRIPT Studio
	4.3.2 Chart Properties Dialog Box
	4.3.3 X,Y,Y2 Axis Detail Dialog Box
	4.3.4 Attributes of a Data Set

	4.4 Histograms
	
	
	
	Example 4.3: Show two dynamic histograms in the same chart

	4.5 Time Trace Plots
	4.6 Simple X-Y Plots
	4.7 Clocks
	4.7.1 Editing a Clock in SIMSCRIPT Studio
	Adding a Clock to Your Program

	4.8 Pie Charts
	Editing a Pie chart in SIMSCRIPT Studio
	Adding a Pie Chart to Your Program

	Dialog Boxes
	5.1 Using the Dialog Box Editor
	5.2 Showing a Dialog Box in SIMSCRIPT
	5.3 Setting and Accessing Field Values
	5.4 Using Control Routines to get Input Notification
	5.5 Enable and Disable fields
	5.6 Dialog Boxes: Field Types
	5.6.1 Buttons
	5.6.2 Check Box
	5.6.3 Combo Box
	5.6.4 Labels & Group Boxes
	5.6.5 List Box
	5.6.6 Multi-line Text Box
	5.6.7 Progress Bar
	5.6.8 Radio Box
	5.6.9 Table
	5.6.10 Text Box
	5.6.11 Tree View List
	5.6.12 Value Box

	5.7 Tabbed Dialogs
	5.8 Dialog box Properties
	5.8.1 Dialog positioning in SIMSCRIPT

	5.9 Predefined Dialog Boxes
	5.9.1 Simple Message Box
	5.9.2 Custom Message Box
	5.9.3 File Browser Dialog
	5.9.4 Font Browser Dialog

	Menu Bars
	6.1 Constructing a Menu Bar in SIMSCRIPT Studio
	6.1.1 Menu Bar Properties
	6.1.2 Menu Properties
	6.1.3 Menu Item Properties

	6.2 Showing the Menu Bar in your program
	6.3 Writing a Control Routine for the Menu bar
	6.4 Using a Menu Bar within a Simulation
	6.5 Changing Menus, Sub-Menus and Menu Items at Runtime
	6.5.1 Accessing Menus and Menu Items
	6.5.2 Accessing Menus in Menus
	6.5.3 Adding Checkmarks to Menu Items
	6.5.4 Deactivate Menu Items

	6.6 Popup Menus
	6.6.1 Creating and Displaying the Popup Menu
	6.6.2 Using Popup Menus in a Simulation

	Palettes
	7.1 Constructing a Palette in SIMSCRIPT Studio
	7.1.1 Properties of the Palette
	7.1.2 Properties of a Palette Button
	7.1.3 Specifying a Button Face Image
	7.1.4 Palette Separators

	7.2 Showing the Palette in your Program
	7.3 Writing Code for a Palette
	7.3.1 Writing a Control Routine for a Palette
	7.3.2 Writing a Process for an Asynchronous Palette
	7.3.3 Handling Toggle Palette Buttons
	7.3.4 Handling Drag and Drop Palette Buttons

	Windows
	8.1 Setting and Getting the Attributes and Events of a Window
	8.1.1 Window Attributes or “Fields”

	8.2 Window Events
	8.3 Scrollable Windows
	8.4 Status Bars

	Routines and Globals for SIMSCRIPT Graphics
	Sec 8.pdf
	Windows
	8.1 Setting and Getting the Attributes and Events of a Window
	8.1.1 Window Attributes or “Fields”

	8.2 Window Events
	8.3 Scrollable Windows
	8.4 Status Bars

	SEc 9.pdf
	Routines and Globals for SIMSCRIPT Graphics

