
An overview of the 1974 COBOL standard

by MARGARET M. COOK, GEORGE N. BAIRD, WILLIAM M. HOLMES,
PATRICK M. HOYT, L. ARNOLD JOHNSON and PAUL OLIVER
Department of the Navy
Washington, D.C.

INTRODUCTION

Since 1 luly 1972, all COBOL compilers brought into the
Federal Government have to be identified as implementing
one of the levels of the Federal COBOL Standard. The
National Bureau of Standards, which has the responsibility
for the development and maintenance of Federal ADP
Standards, has delegated to the Department of Defense the
responsibility for the operation of a Government-wide
COBOL Compiler Testing Service. This responsibility is
discharged by the Federal COBOL Compiler Testing
Service (FCCTS), an activity of the Department of the
Navy's Automatic Data Processing Equipment Selection
Office Software Development Division, through the imple­
mentation and maintenance of the COBOL Compiler
Validation System (CCVS),l a comprehensive set of com­
puter programs used to test COBOL compilers for compli­
ance with the Federal COBOL Standard.

In May 1974, the American National Standards Institute
approved ANS Programming Language COBOL, X3.23-
19742 as the national standard for the COBOL language
replacing USA Standard COBOL, X3.23-1968.3 Federal
Information Processing Standards Publication 21-14 adopts
X3.23-1974 (minus the Report Writer module) as the
Federal COBOL Standard. As a result of these actions,
the Testing Service is engaged in the development of a
new COBOL Compiler Validation System, incorporating
tests for the revised language. This paper presents an
overview of COBOL 74, highlighting the new features in
the language, major language deficiencies, and important
contributions to the programming discipline. All comments
made with regard to COBOL 68 or COBOL 74 will be
based on the language as defined in References 3 and 2,
respectively.

REVISIONS TO THE COBOL 68 MODULES

The Nucleus, Sequential 1-0 and Library modules of
COBOL 68 have undergone major revisions. The Table
Handling and Segmentation modules are essentially the
same modules as appeared in the 1968 COBOL Standard.
The Random Access module has been replaced by the new
modules, Relative 1-0 and Indexed 1-0, and the specifica­
tions for the Report Writer module have been rewritten.

301

The Sort module has been expanded into the Sort-Merge
module by the addition of the MERGE verb.

The Table Handling module in COBOL 74 consists of
two levels instead of the previous three levels, and the
punctuation changes in the 74 Standard have relaxed the
rigid rules for the use of parentheses and commas in
referencing table items. Literals and index-names may be
mixed when referencing a table item, and an index may be
incremented or decremented by a negative value.

In the remainder of this section we concentrate on the
new features of the Nucleus and Library modules. The 1-0
modules will be covered in a later section, and we ignore
the Report Writer as being beyond the scope of the
Federal Standard.

Section 2.3 of Appendix B of the X3.23-1974 Standard2

documents in greater detail the modifications made to the
1968 Standard and the additional language features added
for the 1974 Standard.

Nucleus

Three new verbs have been added to the Procedure
Division of the Nucleus module; INSPECT, STRING and
UNSTRING. The INSPECT verb replaces the old EXAM­
INE verb and provides expanded editing capabilities. With
an INSPECT statement one can count, and replace
occurrences of either single characters or groups of
characters in a data item. For each of these INSPECT
functions, the BEFORE or AFTER phrase allows one to
specify that the function begins or ends upon encountering
a given character or group of characters.

As an example of the INSPECT statement, consider the
following source code. (Coding examples in this paper will
contain formatting errors due to the typesetting require­
ments.)

DATA DIVISION entries
01 ID-1 PIC X(54) VALUE jS))DEFEAT)))))))S)S)S

D ED U CT~JS)S)S)S)))))))))))S
D EFEN SF)S)S)S)))))))))S)S)SD ET AIL' .

PROCEDURE DIVISION entries
INSPECT ID-1 REPLACING ALL jS))DE' by 'THFJS',

FIRST 'A' BY 'E',
FIRST jS)S))J)' BY jS OF)) , ,
FIRST 'T' BY 'K' AFTER INITIAL 'UC',
~IRST jS)S)SJ))))S)S)S)S' BY jSGO)SOVERJ}',

From the collection of the Computer History Museum (www.computerhistory.org)

302 National Computer Conference, 1975

FIRST'S' BY 'C',
FIRST $MJSJSJSJSJS' BY $BEFORFJS' AFTER INITIAL
'EN'.

After executing the above INSPECT statement ID-l would
contain

'THFJSFEETJSOFJSTHFJSDUCIq)GOJS
OVEIU>THFJSFENCFJSBEFORFJSTHFJSTAIL' .

This example points out one of the limitations on the use
of INSPECT; the number of characters being replaced
must equal the number of characters by which they are
replaced. Thus, 'DE' cannot be replaced by 'THFJS' but
the characters $JSDE' can be replaced by 'THFJS'.

With the 1974 Standard, the COBOL language has the
features necessary for manipulation of character strings
without each individual character string beginning in the
leftmost character position of a data item. The STRING
statement allows a user to build a single data item from
two or more data items. The sending data items may be
delimited by one or more character(s), or the entire
sending item can be part of the receiving item. A user can
also indicate the relative starting position in the receiving
item for the STRING operation.

The following example illustrates the use of the STRING
statement.

DATA DIVISION Entries
01 WISH-LIST.

02 FILLER PIC X(4) VALUE 'GEFJS'.
02 FILLER PIC X(33) VALUE SPACES.

01 REL-POSITION PIC 99 VALUE 5.
01 STRING-VALUES.

02 FIELDl PIC X(13) VALUE 'ij)WISEUSI,t})YOU'.
02 FIELD2 PIC X(24) VALUE

'WASJSMFORTRAN,lSPROGRAMMER' .

PROCEDURE DIVISION Entries
P ARAGRAPH-l.

STRING FIELDl DELIMITED BY', "
SPACES, FIELD2 DELIMITED BY SIZE
INTO WISH-LIST WITH POINTER REL-PO­
SITION,
ON OVERFLOW GO TO P ARAGRAPH-2.

P ARAGRAPH-2.
After the execution of the STRING statement, the data

item WISH-LIST contains
'GEElSij)WISEUSij)WASJSMFORTRANJSPROGRAMMER' .

The opposite is achieved by the UNSTRING statement
which causes data in a sending field to be separated based
on one or more delimiters, and placed into multiple
receiving fields. A delimiter may be a single character or a
combination of characters.

The SIGN clause allows a user to specify whether a
separate character position is used for the sign in numeric

items and to indicate whether the position of the sign is
leading or trailing.

The PROGRAM COLLATING SEQUENCE clause per­
mits one to specify ASCII, or some other collating
sequence. However, changing the collating sequence for a
program will necessarily require consideration of all state­
ments which depend upon a character's relative position in
a given collating sequence; for example, the SEARCH
statement, the SORT/MERGE statement, or alphanumeric
comparisons in an IF statement.

Library

Several major changes have been made to the Library
module. There are now no restrictions on where a COpy
statement may appear in a COBOL program. A COPY
sentence may appear anywhere that a COBOL word may
appear. As a result, rather strange looking source code can
be produced, e.g.,

ADD COpy XX. TO B.

If the content of the library text XX contains the single
identifier A, the results after the COpy takes place are:

ADD A TO B.

There can be more than one library available at compile
time. In this case the COPY sentence must contain the
name of the library in which the text resides. The
presence of the REPLACING phrase in a COpy sentence
causes the library text being copied to be edited prior to
being inserted in the program. There are several levels of
editing that can be used. Words, literals, identifiers and
pseudo-text can be replaced by like or different types of
operators.

Pseudo-text is bounded by pseudo-text delimiters, which
are matching sets of double equal signs (= =), much like a
nonnumeric literal which is delimited by sets of matching
quotation marks. The replacement of pseudo-text is based
on finding a matching set of character-string(s) contained
in the library text. The replacement string may be longer
or shorter than the characters replaced.

The following COpy statement illustrates the use of
pseudo-text to edit a library entry.

User's COBOL Library LIBRARY-TEXT
01 IDl PIC X(54) VALUE IS

$DEFEATJSDEDUCTJSDEFENSFJS
D ET AIUJSJSJSJSJSJSJSJSJSJSJSJSJSJS
JSJSJSJSJSJSMJSJS' .
COBOL Source Statement:

COpy LIBRARY-TEXT REPLACING
= =JSDE= = BY = =THFJS= =
= =AT= = BY = =ETJSOFJS= =
= =CT= = BY = =CIQSGOJSOVER,1S=
= =SE= = BY = =CFJSBEFORFJS= =

From the collection of the Computer History Museum (www.computerhistory.org)

The compiled results of a program with the above COpy
statement are the same as a program in which the
following source code appeared:

01 ID1 PIC X(54) VALUE IS
"THFJSFEET»OF»THFJSDU CIQSGO»OVERlS

THFJSFENCFJSBEFORFJSTHFJSTAIL" .

THE DEBUG MODULE

In the 1968 Standard there were no explicit proce­
dures for specifying what debugging actions, if any, would
take place during the execution of a COBOL program. The
DEBUG module for the 1974 Standard includes language
elements which are designed for debugging COBOL pro­
grams. Their inclusion in the COBOL language permits a
user to consider the debugging of source programs in the
design of an application, not as an afterthought when
problems are encountered.

The USE FOR DEBUGGING statement identifies the
user items that can be monitored by the associated
debugging section. The debugging algorithm which is
defined in the debugging section can be controlled by both
a compile time switch and an execution time switch.
Debug lines are source statements whose inclusion or
omission from an object program is controlled by a compile
time switch. There is a special register called DEBUG­
ITEM which can be accessed in debugging sections. This
special register contains information relative to the source
code which causes the execution of a debugging section.

INTER-PROGRAM COMMUNICATION

The Inter-Program Communication module provides a
means· for a program to transfer control to one or more
subprograms and the sharing of data among these pro­
grams. The action which is taken when there is not enough
object time memory can be specified and the memory
areas occupied by called programs can be released and
made available to the operating system.

Features

The CALL statement causes control to be transferred
from one object program to another object program in the
same run unit. If the subprogram name is known at
compile time, the CALL statement operand is a nonnu­
meric literal. The subprogram name can also be specified
dynamically as the contents of a data-name.

The data items which are shared with the called
program are specified in the USING phrase of the CALL
statement. In the subprogram, the shared items are
specified in the USING phrase of the PROCEDURE
DIVISION header and defined as data descriptions in the
LINKAGE SECTION. There must be a one-to-one corre­
spondence between the operands in the CALL statement

An Overview of the 1974 COBOL Standard 303

and the operands in the PROCEDURE DIVISION header
of the called program. The data descriptions for corre­
sponding operands must define an equal number of
character positions but the data descriptions do not have
to be identical. No space is allocated in the called program
for items defined in the LINKAGE SECTION, and refer­
ences to items in the LINKAGE SECTION are resolved at
object time.

The CALL statement also permits the user to specify
the action to be taken when there is not enough memory
available for a subprogram. This is done in the imperative­
statement of the ON OVERFLOW phrase of the CALL
statement.

The CANCEL statement releases the memory area
occupied by the program referred to in the CANCEL
statement. A CALL to a program that has been cancelled
causes that program to be loaded and executed in its initial
state.

The EXIT PROGRAM statement marks the logical end
of a called program. Control is returned to the calling
program when this statement is executed. More than one
EXIT PROGRAM can appear in a subprogram, but the
EXIT PROGRAM statement must be the only sentence in
a paragraph.

Inadequacies

The INTER-PROGRAM COMMUNICATION module
restricts the possible operands which may appear in the
USING phrases. The operands must refer to 77 or 01 level­
number items and may not be defined in the REPORT
SECTION of the calling program.

There are implementor-defined areas in the Inter­
Program Communication module which could cause prob­
lems in program portability between systems. The relation­
ship between the operand in the CALL/CANCEL state­
ment and the referenced program is implementor-defined.
This means that even though the program-name is a user­
defined word and thus could be 30 characters, the
implementor may limit the actual number of characters
which are used to establish linkage between the called and
calling programs. If a user has subprograms on a system
which recognizes the first 10 characters of the program­
name and moves to an implementation which recognizes
the first six, then any referenced program-names with the
first six characters identical would be treated as referenc­
ing the same subprograms.

The action to be taken when there is not enough
memory available for a called program can be specified in
the ON OVERFLOW phrase of the CALL statement. If
this phrase is not specified, the effects of the CALL
statement are defined by the implementor.

THE INPUT-OUTPUT MODULES

The major enhancement of COBOL 74 over COBOL 68
is in the revision to the input/output modules. The

From the collection of the Computer History Museum (www.computerhistory.org)

304 National Computer Conference, 1975

Sequential 1-0 module has been revised, and the Random
Access module has been replaced by two new ones;
Relative 1-0 and Indexed 1-0, with some degree of
functional and syntactic similarity existing between the
new Relative 1-0 module and the old Random Access
module. Taken as a group, the three 1-0 modules provide
the COBOL programmer with the file handling capabilities
which are well beyond what has been possible previously.

Sequential 1-0

The Sequential 1-0 module for the 1974 Standard has all
the features of the 1968 Standard with the exception of
user defined labels and declarative label processing sec­
tions, which are no longer supported by the COBOL
language. The data-name option of the LABEL RECORDS
clause and the USE statement option for label record
processing were deleted.

A major new feature in the 1974 Standard allows a user
to process character code sets other than the system's
native character code set on input and output operations.
The CODE-SET clause of the File Description entry
specifies the character code set which is used to represent
the data on the external media. When this clause is
included in a File Description entry, characters are
converted to the native character set on input or converted
from the native set to the code specified on output. The
CODE-SET clause can only be used in File Descriptions
which are not mass storage files and the external code
representations are limited to the ASCII code set, the
native character code set or other character code sets
supported by the implementation.

The Sequential 1-0 module provides the capability to
add records to the end of an existing sequential file.
Execution of an OPEN EXTEND statement positions a file
immediately following the last logical record of the file.
Subsequent WRITE statements for that file add records to
the end of the file as if the file had been opened in the
OUTPUT mode.

The FILE STATUS clause of the File-Control entry and
the REWRITE statement are also elements of the Relative
1-0 and Indexed 1-0 modules and these two new features
are discussed later.

In the Sequential 1-0 module for the 1974 Standard one
can describe the logical page format for a printer-destined
file through the LINAGE clause in the File Description
entry. The LINAGE clause specifies the size of the top
and bottom margins for a logical page, the number of lines
comprising the page body, and the line number within the
page body where the footing area begins. The values given
in the LINAGE clause may be specified as integer
constants or the contents of data-names. If the values are
integer constants each page has the same format through­
out execution of the programs. If the values are the
contents of data-names, the values at the time the file is
opened specify the first logical page. Each time a new
page is started, the values of the data items are examined
to determine the values for the current page. Thus the

logical format and size oLa page can be changed for each
new page in a file designated for printer output.

New Input-Output Modules

The INDEXED 1-0 and RELATIVE 1-0 are new
modules in the 1974 Standard. Because the Indexed 1-0
module is the most complex and important of the two, we
will concentrate our remarks on it, mentioning important
features of the Relative 1-0 module where appropriate.

Features

The INDEXED 1-0 and RELATIVE 1-0 modules pro­
vide the capabilities for accessing a file in a predefined
mode. INDEXED 1-0 also provides the capability of
defining several paths of information retrieval.

In a Relative file, records may be stored "randomly",
but are identified by a relative record number on which
record storage and retrieval is based. The record number,
or key, must be unique, and is the only means by which
the file may be accessed. The record storage relationship
for an Indexed file however is based upon one or more
indexes associated with the file. Thus, an Indexed file may
be accessed through one or more record keys.

The prime and alternate keys are defined within the
SELECT clause of the FILE-CONTROL paragraph for
Indexed files. The contents of the prime key must be
unique for each record in the file. This is the base key
from which the file is constructed, and is used for
inserting, updating, and deleting records. The user may
specify one or more alternate keys for the file. Unlike the
prime record key, alternate keys may be non-unique.

The content of the keys which are used to retrieve
records are considerably more flexible in the Indexed 1-0
module than in the Relative 1-0 module. Under the
Relative 1-0 file organization the record reference key
must be an unsigned integer and is defined outside the
record description entries for the file. In the Indexed 1-0
organization the record reference key must be an alphanu­
meric data item which can contain any combination of
characters in the computer's character set, and must be
defined within a record description entry for the file.

The language specification for COBOL 74 allows for
sequential, random or dynamic access within both Relative
1-0 and Indexed 1-0 modules. The access mode for a
given file is indicated by use of the ACCESS MODE IS
RANDOM or ACCESS MODE IS SEQUENTIAL clause.
When the ACCESS MODE IS DYNAMIC is specified,
records may be processed either randomly or sequentially
through use of the appropriate 1-0 statement. The access
mode for a file need not be the same as the mode in which
the file was created. When accessing the file sequentially,
the records are retrieved in ascending order based on the
key cont~nts. The START statement provides positioning
within an indexed or relative file for subsequent sequential
retrieval of records. When processing the file randomly,

From the collection of the Computer History Museum (www.computerhistory.org)

records are stored or retrieved based on the data contents
of the record key. Records are accessed based on the
current key of reference. The key of reference, prime
record key or alternate record key, is established at the
COBOL instruction level. The default key of reference is
the prime record key, but an alternate key of reference
may be specified in a random READ statement. Any
subsequent sequential read uses the key of reference
established by the last random read or START statement.

File maintenance

The means of maintaining mass-storage files, i.e., record
insertion, record deletion and record updating is accom­
plished through the use of the verbs DELETE, WRITE
and REWRITE. Only the prime record key associated with
the file is used in providing all file maintenance func­
tions, i.e., RELATIVE KEY for Relative I-a and RE­
CORD KEY for Indexed I-a.

The DELETE verb logically removes a record from the
file. Once the statement has been executed, the record
cannot be accessed again. The WRITE and REWRITE
verbs insert and update, respectively, the records in the
file. Any file maintenance key associated with the file
must be unique within all the records for the file. The
previous input-output statement for the file must have
been a READ statement. The REWRITE statement causes
the last record READ. by the program to be logically
replaced by the specified record. The number of character
positions in the record being rewritten and the record
being replaced must be equal. The WRITE statement
causes a record to be inserted assuming the key does not
already exist.

An important addition to the 1974 language specification
for all I-a modules is the FILE STATUS data item which
contains information as to the success (or failure) of an I-a
operation. The FILE STATUS clause, located in the FILE­
CONTROL entry for a file, specifies a two character
alphanumeric data item and contains values which indicate
the results of every statement which references that file
explicitly or implicitly. The operating system moves the
values into the file status data item upon the completion of
any statement which references the file.

The new I-a modules provide the user greater flexibility
and a wider range of functions than have been previously
available. The Indexed I-a module in particular gives the
user the ability to implement multi-key retrieval functions
and provide a closer relationship of the capabilities of data
base management systems entirely within the scope of the
COBOL Language.

THE COMMUNICATION MODULE

The motivating factor behind including a "Communica­
tion Module" in COBOL 1974 was the advent within the
past decade of computer systems using remote terminals
and the use of these terminals for message processing

An Overview of the 1974 COBOL Standard 305

applications. Heretofore, the COBOL user has been un­
able to perform this class of interactive operations without
resorting to system dependent facilities such as assembly
language support routines. Many implementations of
COBOL permitted limited degree of access to remote
terminals via the ACCEPT and DISPLAY verbs, but
obviously these posed serious limitations on capabilities by
limiting transmission to an "on demand" basis and in no
case could a program be notified of unsolicited input from
a terminal.

The Communication module in COBOL 1974 attempts to
solve these deficiencies by providing four new 110 verbs
(RECEIVE, SEND, ENABLE, DISABLE) and interfacing
COBOL programs to any configuration of remote terminals
via a set of message queues. The operation of the message
queues and the remote terminals is handled by a Message
Control System (MCS), a "black box" software package
which is largely implementor defined and by its very
nature is system-dependent. The MCS must provide the
logical interface between the COBOL communication
object program and the systems network of communication
devices by performing line discipline, including such tasks
as dial-up, polling, and synchronization, and by performing
device-dependent tasks such as character translation and
insertion of control characters. The COBOL programs
interface with the MCS through the programs' Communi­
cation Descriptions or CD's. CD's are placed in the
Communication Section which follows the File, W orking­
Storage, and Linkage Sections in the Data Division. The
CD establishes either an input or an output path for
messages, and provides parameter fields for passing
information between the program and the MCS.

Features

For the Procedure Division, the Communication Module
introduces four new verbs; RECEIVE, SEND, ENABLE,
and DISABLE; plus a new variation for an old one,
ACCEPT. The following paragraphs summarize these
statements as presented in the formal language specifica­
tion for the Communication module.

"The RECEIVE statement makes available to the
COBOL program, a message, message segment, or a
portion of a message or segment." Prior to executing a
RECEIVE the user must specify in his input CD record
area, the name of the queue or subqueue he wishes to
address. Executing the RECEIVE then effects dequeuing
of a message from the appropriate queue and placing of
that message into the field designated by the user. If the
addressed queue is empty, then at the user's option, the
program can be forced to wait until a message becomes
available, or it can be directed to proceed immediately
with execution of the next sequential statement. During
the RECEIVE operation, all data items in the input CD
record are updated by the MCS.

"The SEND statement causes a message, a message
segment, or a portion of a message or segment to be

From the collection of the Computer History Museum (www.computerhistory.org)

306 National Computer Conference, 1975

released to one or more output queues maintained by the
MCS."

Prior to executing a SEND, the user must specify in his
output CD record area, the number and names of the
destinations to which the data is to be sent, plus the length
of the text in characters. In the SEND statement itself, the
user specifies which transmission sentinel is to be used,
end-of-message, end-of-group, or end-of-segment. When a
SEND is executed, the MCS must enqueue the data on the
appropriate queue(s) and return the operation status to the
CD for use by the program. Line and page control may be
exercised on line oriented devices.

A variation of the ACCEPT statement enables the user
to determine the number of messages currently enqueued
in any particular queue. Prior to executing the ACCEPT
statement, the user must specify in his input CD, the
name of the queue or subqueue whose size is to be
returned. The MCS will return to the CD in the appropri­
ate parameter fields, the message count and the status of
the operation. Only input queues may be measured in this
way.

The ENABLE and DISABLE statements direct the MCS
to allow and inhibit respectively, data transfer between
specified output queues and destinati"ons for output, or
between specified sources and input queues for input. The
queues or destinations involved must be named in the
appropriate CD before execution of the statement. These
statements make and break the logical connections be­
tween the queues managed by the MCS and the network
of communication devices, but they do not affect the
logical connections between the various queues and the
program itself. The specification of a key or system
password is required in both statements "in order to
prevent indiscriminate use of the facility by a COBOL user
who is not aware of the total network environment, and
who may therefore disrupt system functions by the un­
timely issuance of ENABLE and DISABLE statements".

A special option permits the user to specify the symbolic
name of a specific device in his input CD, and then
request enabling or disabling of the logical paths between
that device and all queues and subqueues linked to it.

Finally, there is the added capability to designate in a
COBOL communication program that it is to be scheduled
for execution automatically by the MCS whenever the
MCS determines that there is message processing to be
done. This is accomplished by specifying an option in
one input CD i~ the program. Subsequently, when the
MCS invokes the program, it will place the name of the
queue or subqueue, which prompted the action, in the
appropriate parameter fields of the input CD. There are
means to test within the program whether the program was
invoked by the MCS or scheduled through job control
language.

Inadequacies

The basic problem with the Communication module as it
now stands is the fact that the MCS and its interface to

the network of peripheral devices is so ill-defined. Al­
though the concept of the MCS is never formally intro­
duced except in Appendix C of the Standard, its existence
is implied throughout the specification for the Communica­
tion module by frequent references to it (the MCS) by
name. Unfortunately, the appendices are not considered a
part of the formal COBOL language specification; and thus
they are in no way binding. At best, the appendix can be
considered a suggested guideline for implementation. In
other words, it can only serve to enlighten the reader as to
what the Programming Language Committee (PLC) of the
Conference on Data Systems Language (CODASYL) might
have had in mind when they designed the specification for
the Communication module.

Contributions

It is not really possible to assess the usefulness of the
new Communication module. Such an assessment must
await the use of the features in a communication environ­
ment. The features themselves are not extensive, and the
heart of the system, the MCS, is not well defined. These
considerations suggest a degree of skepticism vis-a-vis the
degree of applicability of the Communication module.
Despite this skepticism, it must be admitted that some
capability is now available for message handling.

RECOMMENDATION

COBOL 74 is in many ways a vast improvement over
COBOL 68. New features have been added which contrib­
ute to the capability of the language (the new 1-0
modules), enlarge its ,scope (the Communication Module),
and enable the programmer to produce a better product
(the Inter-program Communication and Debug modules).
Furthermore, old modules have been enlarged and im­
proved. We believe the efforts of the standardizing body,
ANSC X3J4 (COBOL) should now be directed toward
producing a more complete and precise definition of the
language.

The procedures of the American National Standards
Institute require that action be taken to reaffirm, review,
or withdraw the standard no later than five years following
the publication of the current standard. X3J4 should
seriously consider a radical rewrite of the standard in an
effort to make it more a standard and less a generalized
user's manual. A "standard" is supposed to be an
authoritative measure by which correctness of other things
may be determined (condensed from Websters'), but it is a
difficult task to measure correctness against a standard
which is ambiguous and subject to interpretation. Both the
syntax and semantics of the language should be expressed
as formal grammars and defined in an appropriate meta­
language. The efforts of ANSC X3Jl to so define the PLil

From the collection of the Computer History Museum (www.computerhistory.org)

language is an admirable example of what can be done.
When a language is well defined, there can be no
ambiguities and no doubt as to what is valid and what is
not. There is seldom a need for interpretation. Such
definitions are also of significant value when a compiler
implementor chooses to use a syntax-directed or other
automated parsing technique. Finally, a precise definition
would make much simpler the task of determining the
degree to which COBOL compilers conform, in their
translation of COBOL programs, to the Standard.

An Overview of the 1974 COBOL Standard 307

REFERENCES

1. Baird, G. N., "The DOD Compiler Validation System," Proc. 1972
FlCC, AFIPS Press, Volume 41, pp. 819-827.

2. American National Standard Programming Language COBOL, X3.23-
1974, American National Standards Institute Incorporated, New York
1974.

3. American National Standard COBOL X3.23-1968. American Na­
tional Standard Institute Incorporated, N ew York 1968.

4. Federal In/ormation Processing Standards, Publication 21-1, U. S.
Government Printing Office, Washington, D. c., (pending).

From the collection of the Computer History Museum (www.computerhistory.org)

From the collection of the Computer History Museum (www.computerhistory.org)

