

PersOnalized Smart Environments to increase Inclusion of people with DOwn’s syNdrome

Deliverable D5.6

Integrated POSEIDON technology technical

documentation

Call: FP7-ICT-2013-10

Objective: ICT-2013.5.3 ICT for smart and

personalised inclusion

Contractual delivery date: M18

Actual delivery date: 30.04.2015

Version: V1

Author: Lars Thomas Boye, Tellu AS

Contributors: Fenglin Han, Karde AS

 Dean Kramer, MU

 Silvia Rus, Fraunhofer

Reviewers: Dean Kramer, MU

 Terje Grimstad, Karde AS

Dissemination level: Public

Number of pages: 35

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

2

Contents
Executive summary ... 5

1 Introduction ... 6

1.1 POSEIDON prototype 2 overview .. 6

1.2 POSEIDON technical documentation .. 7

2 Deployment ... 8

2.1 Equipment ... 8

2.1.1 Smartphone ... 8

2.1.2 Interactive table .. 8

2.2 Google account .. 9

2.3 SmartTracker account ... 9

2.4 Phone setup ... 10

2.4.1 Initial startup ... 10

2.4.2 POSEIDON application ... 10

2.4.3 POSEIDON Context Middleware .. 11

2.4.4 universAAL Middleware .. 11

2.4.5 Phone settings ... 11

2.4.6 Other configuration ... 12

2.4.7 Android/firmware version and updates .. 13

2.4.8 Connecting to development tools ... 13

2.5 Interactive table setup .. 13

2.6 Computer setup ... 17

2.6.1 universAAL Installation .. 17

2.6.2 First setup of Moneyhandling App with the interactive table 17

3 Mobile app technical user manual .. 19

3.1 Starting and modes ... 19

3.2 Start screen and app navigation .. 20

3.3 System screen .. 20

3.3.1 Status information ... 20

3.3.2 Settings and GPS simulation .. 20

3.4 Routes and navigation ... 21

3.4.1 Planned routes .. 21

3.4.2 New route .. 21

3.4.3 Navigation and map .. 22

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

3

3.5 Calendar and events .. 22

3.5.1 Entering events .. 23

3.5.2 Editing and deleting events ... 23

3.5.3 Event reminders .. 23

3.5.4 Notification at event start ... 23

3.6 End user preferences ... 23

4 POSEIDON web developer manual .. 25

4.1 Composition .. 25

4.2 Open source API .. 26

4.3 Conclusions .. 27

4.4 Reference .. 27

5 Use of calendar data.. 28

5.1 Calendars ... 28

5.2 Event scheduling.. 28

5.3 Other event attributes .. 28

5.4 Event notification .. 29

6 Context middleware .. 30

6.1 Using Contexts in Applications .. 30

6.1.1 Declaring a new Context Requirement ... 30

6.1.2 Removing a Context Requirement .. 30

6.1.3 Updating Context Parameters ... 31

6.1.4 Receiving Context Inferences .. 31

6.1.5 External Context Data Input .. 31

6.1.6 Adding new ContextObservers to the middleware ... 32

6.2 Context from POSEIDON prototype 2 app .. 32

6.2.1 NavState .. 32

6.2.2 Calendar events ... 32

7 Route data semantics .. 33

7.1 Structure .. 33

7.2 POSEIDON Meta Data .. 33

7.3 Directions Data .. 34

7.3.1 Leg ... 34

7.3.2 Travel modes in mobile app .. 34

7.3.3 Step .. 35

7.3.4 Navigation instructions in mobile app... 35

7.4 Media Archive ... 35

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

4

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

5

Executive summary
This deliverable contains technical documentation for the POSEIDON system. The introduction gives

an overview of the system. The rest of the deliverable is a collection of various documents which are

maintained separately in the project as part of the work on the prototypes and pilots.

Chapter 2 describes the needed equipment, setup of service accounts and devices, and installation of

the software for pilot 1. Chapter 3 is the technical user manual for the mobile application. Chapter 4

is a developer manual for the POSEIDON web application, giving information about the technology

used here. Chapter 5 documents the use and semantics of calendar data in this prototype system.

Chapter 6 is the developer documentation for the context middleware, while chapter 7 documents

the route data. See the introduction for references to other deliverables which contain

documentation of the PSOEIDON system.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

6

1 Introduction

1.1 POSEIDON prototype 2 overview
The figure shows the most prominent components and data flows at the present stage of the project

– the second of four prototype iterations. There are three types of applications, for three different

platforms. The stationary system is what is installed on a PC or laptop at the home of the primary

user or some other location the primary user frequently visits. The main focus here is training and

virtual reality. The Android device is the current mobile device, with the main design target being

large phones and small tablets. This is what the primary user can always bring with them, with the

focus being on providing guidance when out and about. The web application targets the third

platform – the browser. It is a responsive web app which can be used on any device. It is primarily for

the secondary user, to provide monitoring and personalisation services.

Outside of these three sub-systems are the cloud services we connect to. These provide shared

storage for the different sub-systems, and services necessary for their functionality. SmartTracker is

the server side of the POSEIDON framework. It provides a shared storage for tracking and context

observations, as well as for preferences for personalisation. Any POSEIDON application can send

context observations here and access the database, as long as it is authenticated as a registered user.

We have produced framework components for handling the connection to SmartTracker, to make

more POSEIDON applications connected to the framework.

Figure 1: Overview of POSEIDON prototype 2 system

The other half of the framework is the middleware running locally on the stationary and mobile sub-

systems. This is primarily for context awareness, supporting ontology and rules. For this prototype

the main focus is the context middleware running on the mobile device, using the sensors of the

device to monitor context. Context considered includes location, time, weather, battery capacity,

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

7

communication, user preferences etc. Applications can subscribe to context updates from the

middleware, and also post their own context observations to the middleware.

The colour coding in the figure shows the main aspects of this POSEIDON solution. Green is for

navigation – the guidance related to space. The home system part is used by carers to create

personalised routes, and by primary users to train with virtual reality. Navigation guidance is

provided on the mobile device, tracking the user on a trip. The Google Directions service is used for

route calculation. The basic route calculated by this service is augmented with personalised

instructions and media in the home system, and the personalised routes are transferred to the

mobile device.

Orange highlights the assistance related to time – the calendar-based functionality. The web

application has a calendar interface, for managing events and connecting them to functionality such

as navigation. The mobile application also has a calendar interface – a simpler interface better

adapted to the smaller screen and primary users, but also allowing entering basic events. And the

mobile application provides reminders. An augmented reality daily helper prototype has also been

developed for the mobile device, to include detailed instructions including use of augmented reality

for setting up and delivering calendar-based instructions. All calendar-based functionality connects to

the same cloud storage of events. This is so far provided by Google, with ambitions to switch to our

own storage service later.

Context awareness and tracking is indicated in red. Context and navigation tracking is sent to

SmartTracker, so that it can be made available to other applications and to the monitoring part of the

web application. Access to the tracked data will be restricted for privacy reasons.

On the stationary system, the other main training application in this prototype is for money handling.

The CapTap (the interactive table) is used as an input device for both the money handling and virtual

reality navigation training.

1.2 POSEIDON technical documentation
Chapter 2 is the deployment documentation for pilot 1. It describes the needed equipment, setup of

service accounts and devices, and installation of the software. Chapter 3 is the technical user manual

for the mobile application. For the first prototype iteration this was placed in D5.2, but it has been

moved to D5.6 as this is the correct deliverable for it (there was no version of this deliverable for the

first prototype). Chapter 4 is a developer manual for the POSEIDON web application, giving

information about the technology used here.

Chapter 5 documents the use and semantics of calendar data in this prototype system. Chapter 6 is

the developer documentation for the context middleware, while chapter 7 documents the route

data.

Each chapter is a document from the technical group of the project, assembled here to create a

snapshot of the documentation not covered by other deliverables, as it is on the delivery data of

D5.6. Most of these documents will continue to be updated as the pilot is deployed and tested.

Project personnel should refer to the separate documents in the project's internal document

repository to make sure they have the latest version.

Other technical and end user documentation is found in other deliverables. See WP3 deliverables for

details on the context awareness middleware layer of POSEIDON. HCI-specific documentation is

found in D4.5. The PSOEIDON development framework is described in D5.1, while the data stores are

documented in D5.4 and the usage of media is documented in D5.3.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

8

2 Deployment
This is the documentation of the deployment of the system for pilot 1, describing the needed

equipment, setup of service accounts and devices, and installation of the software. It is a stand-alone

living document in the project, with the version of the deliverable delivery date included here.

2.1 Equipment
The following equipment is needed for the pilot trial:

 Smartphone: Huawei Ascend G7. Provided by the project. Box includes charger with USB

cable and a protective cover. Applications will be pre-installed.

 SIM card/mobile subscription: Micro-SIM. The pilot primary user should get an additional

SIM card for their subscription, and the project will pay for their data traffic.

 Carer needs a phone, tablet or camera for taking pictures and filming. The carer should be

used to using a smartphone.

 PC/laptop with Windows 7 or higher, or Mac. The user will need to install applications for

navigation training and money handling here.

 Internet and Wi-Fi at home.

 Interactive table. Provided by the project. To be connected to the PC/laptop.

2.1.1 Smartphone
We have selected the Huawei Ascend G7 for the pilot trial. It has a screen size of 5.5 inches, which

we think is a very good size for the user group, being large but hopefully not crossing over into being

too large. It also has a large battery, at 3000 mAh, which is important. And it is otherwise a powerful

phone, with a four core processor, 2 GB memory, 16 GB storage and 4G network. It has a metal back

and generally feels solid. And it is very reasonably priced, being much cheaper than equivalent

phones from the more established brands. The table shows the prices in each country, including tax.

 Germany UK Norway

Price 258,24 € £199.99 2995 NOK

It comes with Android version 4.4.4. As many phones are now being updated to version 5, it is likely

that this phone will also get an update in the not too distant future. Huawei have their own user

interface layer on top of Android, which they call EMUI. This means that things like the home

screen/launcher are different from Android phones from other manufacturers, but the general

principles of operation are mostly the same.

The phone comes with an optional protective cover. It’s a good idea to use it for a little added

protection if the phone is dropped, but the phone is probably quite robust, so it’s not required. The

cover makes the power button a bit difficult to operate. As an alternative to the power button, it is

possible to turn the phone off by holding a hand over it and turning it on by double-tapping it.

If a phone is broken during the trial, we will buy a new one to replace it, but no more than once for

any user and no more than two phones in total, limited by the project budget. As an incentive to the

pilot families, they will get to keep the phone if they complete the trial.

2.1.2 Interactive table
The interactive table is a prototype of a new interactive device which combines the size of a

multitouch table with 3D hand position recognition. It is intended to be unobtrusively built in tables.

For the sake of user studies however, mobile versions have been built. These are intended to be

placed on a surface in front of a monitor, like shown in Figure 2.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

9

Figure 2 – mobile interactive table in front of monitor

2.2 Google account
A Google account is used to store calendar appointments. It is important that the same Google

account is used on the phone and in the web application, so that they are connected and show the

same content. For the pilot, the project will create a Google account for each primary pilot user. This

can be done in the initial setup of the phone. The account is entered in the phone, where it is used

for calendar storage and access to Google Play. For the pilot it is important that there are no other

Google accounts on the phone, and that the Google account only has one calendar. Project

personnel can use existing accounts or have multiple accounts on their phone for testing, but keep in

mind that the mobile app doesn’t distinguish between multiple calendars.

2.3 SmartTracker account
The administration interface of the SmartTracker server instance used in the POSEIDON project is

available at the following URL:

http://ri.smarttracker.no

A service provider called “Poseidon SP” has been set up to manage POSEIDON accounts. Tellu

manages this service provider and issues logins to relevant project partners. For the pilot we are

using a single SmartTracker account to hold the user data, called “Poseidon Pilot”. Each user entity,

used to access data, will be restricted to one asset, representing a primary user. A SmartTracker user

with administrator permissions needs to set up the SmartTracker entities for a pilot user with carer.

Firstly, create an asset to represent the primary user, and a device to represent the app. Adding a

device is necessary for the application to be able to submit observations to SmartTracker. The device

can be identified based on a device ID, through a different API than the one responsible for accessing

accounts and data. This can be done following these steps:

 From the Content menu, select Personnel. Press New to create. Write a Name, and select

“Primary user” for the Type property. Press Create Person.

 Select Devices from the content menu, and press New. Select POSEIDON app. Provide a

Name and an MSISDN. MSISDN is the phone number of the primary user (the number for the

SIM card used in the device). As we are so far not using the SIM number to communicate

with the application, this doesn’t need to be the real number.

http://ri.smarttracker.no/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

10

 Go back to Personnel and select the new person. Click the “+” in the Devices field, and select

the device just created.

Then we need to create a SmartTracker user for authentication. This will be used to log in to the web

and app.

 From the Administration menu, select Users, and Add user.

 Enter Name in the form of an email address (i.e. @something - it doesn’t have to be a valid

address). Select User as Role.

 Enter then a Password and a Name. This password is temporary and must be reset before

use anyway, so put something really simple.

 Tick “Do not send email verification”, at least if the user Name isn’t a valid email address, and

press Add user.

 In the list of users, find the one just added. In the Actions column, click the icon with a single

shield. Select the correct primary user (asset).

 Log out of SmartTracker, and try logging in with the new user. You will be asked to change

the password.

If the process is successful and the asset you have access to is the right person, the account is

correctly configured and can be used with the web and mobile app.

2.4 Phone setup

2.4.1 Initial startup
Insert the SIM card (micro-SIM). It goes in a small tray in the side of the phone (the lower of the two).

A small tool comes with the phone – insert it in the little hole until the tray pops out.

On initial startup, there is a setup “wizard” (everything can be changed later). If the phone has

already been used by someone else, first do a Factory data reset (under Backup & reset in the

settings). The phone will then restart as new. The wizard goes through the following things:

 You can agree if it asks for Location consent, but there’s no need to allow Google apps to

access location.

 Select language.

 If Wi-Fi is available where setting up the phone, connect to it.

 Agree to terms and conditions.

 Google account: It will ask for a Google account. If a Google account hasn’t already been

created for the user, this is a good time to do it.

 Backup & restore: Untick Backup and Communication. The Location boxes should be ticked.

 Don’t add credit card for Google services.

2.4.2 POSEIDON application
Install the POSEIDON app in Google Play1. Search for “poseidon tellu” and it should be the top hit for

apps. Starting it, enter the SmartTracker user name and password for the user, and tick “Remember

login”. Once logged in, the app will stay active in the background, to occasionally check for new

calendar events and other data. The POSEIDON icon will be shown in the notification bar as long as

POSEIDON is active.

1 https://play.google.com/store/apps/details?id=no.tellu.poseidon

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

11

2.4.3 POSEIDON Context Middleware
Install the POSEIDON Context Middleware app in Google Play 2. Search for “Poseidon context”, and

you should find the app “POSEIDON Context Reasoner” by “GOODIES @ Middlesex University”. Be

sure to have this application installed before starting the main POSEIDON app.

2.4.4 universAAL Middleware
The universAAL middleware application needs to be installed on the device. This app is not available

on the Google Play Store. Therefore, we will need to first allow apps to be installed outside of the

Google Play store. This is done by firstly going to the device app Settings. Then scroll down to

Security. Following this scroll down to the Device administration section, and enable Unknown

sources – Allow installation of non-Market apps. Following this, the application can be installed. To

do this, go to the device web browser and type in the following case sensitive web address:

http://goo.gl/awQi1i . On the Google Drive webpage, click on the Download button, which should

download the app and ask if you wishes to install it.

2.4.5 Phone settings
The phone settings are available from the launcher (a gear icon).

 Wi-Fi: Connect to the Wi-Fi in the home of the primary user.

 Display:

o Font size: The current prototype app has been designed with the “Large” setting in

mind, and this is the recommended size. The text of the POSEIDON app is in any case

much larger than most apps.

o Brightness: Increase the slider to maximum, but leave it on Automatic.

o Sleep: You may want to increase the screen sleep time from 30 seconds to 1 minute,

but it also depends on personal preferences.

o Auto-rotate screen: Can be left on if the user is OK with it. The current prototype app

will in any case always be in portrait mode.

 Sound: Phone and Notification ringtones can be changed for personal preferences.

 Power saving: The Power plan should be Normal or Smart (make sure it’s not set to Ultra).

 Location services: Make sure Mode is High accuracy.

 Notification manager: Find POSEIDON in the list, and select Allow.

 Protected apps: Find POSEIDON in the list, and turn it on (so it says Protected). This is

important to make sure it is allowed to run in the background.

 Security: The Screen lock is a personal preference. If using the phone cover, the power switch

isn’t easily activated by accident, so it may not be necessary to have any lock screen. The

Huawei unlock (default) is a swipe unlock. A secure unlock shouldn’t be necessary. SIM card

lock can also be turned off, so that it’s not necessary to enter a PIN code when turning on the

phone.

 Google: Make sure a Google account has been set. Going into the account’s sync settings,

make sure Calendar, Contacts and Gmail are on. The others can be disabled to save data and

battery.

2 https://play.google.com/store/apps/details?id=org.poseidon_project.context

http://goo.gl/awQi1i

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

12

 Motion control: As an alternative to using the power button, you can try to turn on Cover

screen and Double touch. The screen can then be turned off by pressing on it with a whole

hand, and turned on by tapping twice. This can be tried by the primary user.

 Date & time: Automatic date & time and time zone should work well, just check that the

clock is correct. Use 24-hour format or not based on personal preference.

2.4.6 Other configuration

2.4.6.1 Google Play

Enter the Settings in the menu (the three lines in the top left). Turn off notifications. Auto-update

apps should be on Wi-Fi only (the default). Any update to the POSEIDON apps put into Google Play

will then be received automatically.

2.4.6.2 Calendar

Enter the phone’s own calendar app. Enter Settings from the Menu. Turn off Notifications. This is

important, as the POSEIDON app should be the only calendar app notifying the user.

2.4.6.3 Email

Since the phone has a Google account, email to this Gmail address is received by the Gmail app. This

is located in the Google folder in the launcher. Enter the menu (top left), Settings. Enter the account

(Gmail address). It is recommended to turn off Notifications, unless the email address will be actively

used and the primary user wants to be notified of incoming email.

2.4.6.4 Installed apps

The phone comes with many apps pre-installed, some of which can be uninstalled. The following may

well be uninstalled to clean up the phone (press and hold icons in the launcher, and drag them to the

garbage can at the top right):

 100% Games!

 Each of the games in the Games folder

 Highlights (In Top apps)

 Zinio (In Top apps)

The app called Backup (in Management folder) should either be uninstalled or have its reminders

disabled. To disable reminders, open the app and go to Menu – Settings and set “Backup reminder

cycle” to “Don’t remind me”.

The icons in the launcher can be moved around to reorganize the launcher screens. The widgets on

the front page can also be removed. The front page should be set up with the functions most useful

to the primary user, including the POSEIDON app.

2.4.6.5 Installing apps

Other apps can be installed on the phone, based on the preferences of the primary user.

Note that SmartTracker can use SMS to send commands to an application, such as to request a

position update. Some communication apps which include SMS may consume all incoming messages

so that they don’t reach our app. We are not planning to use SMS commands for pilot 1, so it is not

currently an issue. However, if we start using it, we need to be aware of the issue and remove

communication apps which use SMS if there is a problem.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

13

2.4.7 Android/firmware version and updates
There will sometimes be phone system updates available. The Huawei comes with Android 4.4.4, and

at the time of writing there haven’t been any updates. It is likely the phone will get an update to

Android version 5 at some point. This Android version has some major UI changes compared to 4.x,

but Huawei also have their own UI modifications on top of Android, which may lessen the visible

effect of an Android update.

Phone system details can be found in the settings, “About phone”. In the settings, go to “Updater” to

check for updates. This should be done before starting the trial, to make sure the phone has the

latest version. Then, enter the Updater menu, Update settings, and turn off Auto-check for updates.

This is to keep the phone stable during the pilot.

2.4.8 Connecting to development tools
For developers wanting to connect the phone to Android Studio or other tools, an ADB driver is

needed on the computer. Our experience is that no special driver was needed on OS X, while on

Windows 7 we needed to install Huawei’s HiSuite software to get a suitable driver. This can be done

by selecting PC Suite mode for the USB connection on the phone, which connects a virtual drive to

the computer. This has the installation program for HiSuite. Once installed, the ADB driver should be

in place.

As in other Android phones, you need to enable the developer options in the settings. This is done

with multiple clicks on the “Build number” field, under “About phone”. This allows access to the USB

debugging setting.

2.5 Interactive table setup
Having received the interactive table, the proper working of the interactive table has to be checked.

For this, the interactive table has to be connected to a screen/monitor through the HDMI input, see

Figure 3. Additionally a keyboard can be connected to the USB plug. The interactive table needs to

be connected to the internet, so please plug an Ethernet cable from the local router into the table. As

the last step, the power plug should be plugged in. This triggers the start of the mini PC from inside

the interactive table and also automatically starts the sensor data processing software on the PC.

Figure 3 – Plugs of interactive table: power plug, Ethernet jack, HDMI connector, USB plug

Please check that it is properly working. After ~1minute the Ubuntu loading screen should appear on

the monitor and you should be automatically logged in as user captap.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

14

If this doesn’t happen, please open the lid of the table and take a look at the front of the PC, next to

the power on button, like shown in Figure 4, there should be a green light, not red, nor blue.

Figure 4 – mini PC from inside the interactive table in power on mode.

A red light means that the power is on but the PC didn’t automatically start. This happens if there is a

USB hub connected to the USB plug of the interactive table with multiple USB devices plugged to it.

Because the PC doesn’t have enough power to power all the USB ports, the PC doesn’t start. You can

solve this by attaching an actively powered USB hub. However, with a single keyboard connected to

the interactive table the mini PC started.

An additional check for the functionality of the table by looking under the lid is to check if there is a

pulsing light on each of the boards, like shown in Figure 5. If it is pulsing, the boards are successfully

communicating with each other, exchanging data. If ever the LED should not pulse, then go to the

board marked with a blue sticker and a 0 written on it and plug out the mini USB next to the label

and plug it in again. This triggers the communication between the boards to start again.

Figure 5 – Check pulsing LED on boards inside the interactive table.

If all of this works and you have the Ubuntu UI, then please press the windows key and then type into

the search area terminal and press enter, to open a terminal.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

15

Figure 6 – Find IP address of interactive table

First type ifconfig to find out the IP address attributed to the interactive table. Later on, you can

connect to the table using ssh with this IP address without having to connect an external monitor and

keyboard. The IP address is to be found in the second paragraph, like shown in Figure 6. In this case it

would be 146.140. 1. 81.

Next, we would like to check if the software processing the sensed data automatically starts. For this

we search for the processes which contain the string table by typing ps –ef | grep –i table. The

output is shown in Figure 7.

Figure 7 – check if software of the interactive table started

Generally three processes appear to be found. This means that the software has successfully started.

In the yellow box in Figure 7 the process IDs are highlighted.

To test the interactive table locally, another program with a graphical interface has to be started. But

first, the already running processes have to be terminated. To gain the rights to terminate processes

one needs to log in as admin user captap-admin by typing su – captap-admin. Then the password is

typed in, which is disseminated through the technical partners. By typing sudo kill [processID] the

first two processes need to be terminated. The third one does not need to be terminated. By typing

ps –ef | grep –i table, one can see that the processes does not exist anymore.

To start the software using a graphical user interface go to the folder captap by typing cd

/home/captap. Now type sudo ./tablegui.sh . This command starts the graphical interface shown in

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

16

Figure 8. By pressing the button “Refresh Port List”, highlited in yellow, the available ports appear in

the drop down menus of the areas highlighted in orange. Please set these areas to ttyUSB2, then

ttyUSB1 and ttyUSB0. This ensures that the boards are attributed to the right area of the graphic

which appears by pressing the button “Connect”. An irregularly moving white surface appears. This

shows the initial state of the sensors. Please pass with the flat hand over the entire surface of the

table until there is no white area left after lifting your hand. Now you can place your hand on the top

or near the top of the table and a white area will show where the hand has been detected, like

shown in Figure 9. Try out also taping on the surface of the table. In the terminal window, the

coordinated of the position of the hands will appear, as well the recognized tap will be logged by

displaying the string [KNOCK].

Figure 8 – Graphical user interface of interactive table software

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

17

Figure 9 – try out the interactive table

2.6 Computer setup

2.6.1 universAAL Installation
The universAAL middleware needs to be installed on the chosen laptop/PC. To do this, the user

needs to download the .zip file containing the universAAL server from the following case sensitive

URL: http://goo.gl/XWF9OG . This file should be placed in the main C drive of the user’s computer

and unzip, leaving a folder named “universaal_server”. Next, a shortcut to

“C:\univeraal_server\bin\karaf.bat” needs to be created and added to the startup folder, which

causes Windows to automatically start the application on startup.

2.6.2 First setup of Moneyhandling App with the interactive table
Before starting the first iteration (Pilot 1) of the Moneyhandling application (Moneyhandling App)

you have to do some preparation. First of all connect the interactive table to the local subnet using

an Ethernet cable and then plug in the power cord on the side of the table.

NOTE: Please check the following things to be true:

 1x interactive table stands on a solid table

 1x computer with network connection and connected to the same subnet as the interactive

table

 DHCP enabled (no fixed IP addresses)

 No MAC address blocking

Download the most current version of the Moneyhandling App from http://goo.gl/awqWVX

(Windows Version) and extract it to a location of your choice. With the interactive table properly set

up and powered on double click the application to start. You will be asked to enter the hostname (of

the form PCxyzv), which can be found on the side of the interactive table, like shown in Figure 10.

After providing the right hostname the application will connect to the interactive table and you can

start navigating and interacting with the app through the interactive table.

http://goo.gl/XWF9OG

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

18

Figure 10 – Hostname of the interactive table

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

19

3 Mobile app technical user manual
This is documentation for the prototype 2 iteration of the POSEIDON app. It is meant as a

comprehensive, technical documentation, not primarily targeted at end users and including

information mainly of interest to technical personnel. An end user version, translated to all project

languages, is made by extracting the relevant content.

The prototype mobile application offers navigation, tracking and

calendar functionality, and connects to the context awareness

middleware, which should also be installed on the device. It will run

on any Android device with Android version 4.0 and up, although the

user interface is designed primarily for the screen size range 5-7

inches, held in the vertical (portrait) orientation. The primary target

device, used in the pilot trial, is the Huawei Ascend G7 phone.

The application is distributed via Google Play. Direct link:

https://play.google.com/store/apps/details?id=no.tellu.poseidon

To find it by search in Google Play, use “poseidon tellu” to get a good match.

Make sure to enable automatic updates in Google Play, so that new versions of the application are

installed automatically. Also make sure GPS positioning is enabled on the device.

3.1 Starting and modes
A starting screen for logging in is shown the first time the application is started. The connection to an

account can be remembered, so this screen is only needed for the initial setup, and doesn’t need to

be seen again by the primary user. Logging in requires a correctly configured account in the

POSEIDON SmartTracker service. User name and password are used for the authentication with this

service. Tick “Remember login” to log in automatically the next time the application is started,

bypassing this screen. If the login is successful, user data is retrieved from SmartTracker, and the

tracking part of the application can send sensor and context observations

there, making them available to other POSEIDON applications. The

application will also connect to the calendar of the phone, which in turn

should be set up to synchronise with Google Calendar.

The application can also be run in a demo, offline mode. This allows

testing and demonstration of the application without the need for setting

up an account or connecting to online services. The application will run as

normal, but won’t send data to SmartTracker or use a real calendar.

Instead you get a fixed set of demo content. The application will work

without an internet connection, but the map is downloaded from Google,

so without an internet connection the map may not be drawn, depending

on what map tiles have previously been cached in the device.

Once a real or demo session has been established, the start screen with

main menu is shown. The application is not meant to be “turned off” when in real use. When leaving

the application with the phone’s home button, the POSEIDON icon stays in the notification bar, to

show its presence. Except in navigation mode, the only activity it will perform in the background is to

check for new calendar events.

https://play.google.com/store/apps/details?id=no.tellu.poseidon

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

20

Completely turning off the application can be done from the system screen. The Settings are

described in the next chapter.

3.2 Start screen and app navigation
The start screen has the main menu for selecting app functions. Routes

and Map are described in the Routes and navigation section of this

manual. Calendar is described in the Calendar section of this manual, and

Preferences in the preferences section. When in navigation mode, the

two first elements are replaced by Navigation (getting back to the

navigation screen) and Stop navigation (turn off navigation).

Below the main menu, the current or first upcoming event of the

calendar is shown, with title and time until start. Pressing it brings up a

complete, scrollable list of upcoming events.

Navigating between the screens of the application, the back button of

the Android system, at the bottom of the screen, can be used to

backtrack to the previous screen. At the far left on the top bar in the

application, there is a start screen icon which will always take you back to the start screen.

3.3 System screen
Currently, the application has a status indicator in the top right corner, which changes colour

depending on the state (green – runs as expected, yellow - temporary problem or wait, and red -

permanent error). Pressing this while showing the Preferences screen brings up a system screen with

functions of a technical nature (the system screen is hard to find on purpose, and you may have to

try several times to hit the small status indicator correctly). The end users will not normally need to

enter this screen, but it has status useful for diagnostics and local settings such as for GPS simulation.

Buttons on the main system screen:

 Settings: Access to local settings.

 Debug: Detailed status of the tracking system.

 Log out: Exit to the login screen, logging out of the account.

 Exit: Shuts down the application completely (if the login is

remembered, this is not lost).

3.3.1 Status information
Application status is broken down into contributing components:

 SmartTracker sync: The logged in session and use of the

SmartTracker API.

 Positioning: Position tracking, only active when navigation is on.

 Connection: Sending observations to SmartTracker.

 Calendar: Connection to device calendar.

3.3.2 Settings and GPS simulation
The application has a number of technical settings, available from the login and system screens.

These are being used in the development process and testing. We will describe the most relevant

settings for testing the prototype.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

21

Tracking event submission has settings for sending observations to

SmartTracker. If there is a problem with this in online mode, the device id

and server URL used can be checked here. The Positioning category is for

tweaking the position tracking done when travelling.

The most interesting category for testing and demonstration is GPS

simulation. As it would be very difficult to test route navigation if we actually

had to travel the route each time, we have implemented a GPS simulation

module, which can be used in place of the real positioning. This can be

enabled in the settings, in which case positions will be produced to match

the route when navigation is activated. Simulation speed is a speed

multiplier for the simulation, to go through the route faster than real time.

The simulation includes a variable inaccuracy in the values of the position. In

addition, based on the Deviation chance setting, the simulated movement

can deviate from the route. It will then move randomly, and can also switch back to trying to get back

to the route. A switch between real and simulated GPS won’t take effect while in navigation mode,

so switch before starting a route. Note that GPS simulation is independent of the online/demo

modes – both real and simulated positioning can be used with both modes, and SmartTracker won’t

know if a position is real or simulated.

For the developers, the settings also give access to the logging system. All the logs can be sent to a

Tellu server for analysis in case of a suspected error.

3.4 Routes and navigation
The POSEIDON application offers navigation using two types of routes. Planned routes are those

created with the route planning tool of the stationary system. These are the personalised routes with

custom instructions and photos, and should therefore be preferred for navigation. However, it is a

fixed route from a specific starting point, and so can only be used when starting from the planned

location. To be able to navigate from any starting location and to one of the destinations configured

for the user, a new route can be retrieved from a route planning service. This is the approach used by

most navigation applications.

3.4.1 Planned routes
Selecting Routes from the main menu, planned routes transferred from the

stationary system are listed. Selecting one, you can start navigation, being

reminded that you need to be at the planned starting point.

3.4.2 New route
All destinations configured for the user are listed here, for selecting a

destination for navigation. Destinations taken from the planned routes

usually include a photo. Additional destinations (without pre-planned

routes) may have been specified through the POSEIDON web. Selecting a

destination, the application will first attempt to find the current position

using the device’s satellite positioning system. It will then contact the route

planning service. If all goes well and a route is produced, navigation can

start.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

22

3.4.3 Navigation and map
Starting navigation for a route sets the application in navigation mode.

Position tracking is activated, to keep track of route progress and provide

route guidance. The route is drawn in the map. The current position (latest

position observation) is shown as a red marker on the map, with an

accuracy circle indicating the accuracy of the position. The map view uses

Google Maps. Map interaction such as zooming and panning is enabled,

although whenever there is a new position available the map is centered on

this. The map is actually a 3D surface, so it’s also possible to tilt the map by

swiping with two fingers.

A route is divided into legs, such as for different modes of transport. The

application supports both walk legs and transit legs (public transport). A

walk leg is further divided into steps, where each step has a textual instruction, and a transit leg can

be broken down into intermediary stops. In the map, the current step is highlighted in red.

While in navigation mode, an instruction field appears at the bottom of the screen, always showing

the information for the current step. A step can also have a photo description that pops out when

entering the step. The photo can be removed if touched and re-added when the instruction field is

clicked.

The navigation process stops when reaching the destination. However, the

navigation can be stopped at any point by selecting Stop option after

selecting Routes from the main menu.

The navigation algorithm searches forward through the route to find the

corresponding place in the route for each position observation. This makes

possible finding the correct step even if the start position is located in the

middle of the route.

3.5 Calendar and events
The POSEIDON application is also a calendar application. It connects to the

calendar data provider in the phone, which in turn has access to the calendars of accounts entered in

the phone, such as Google Calendar for a Google account. For the intended usage, linked with other

POSEIDON applications, the phone should have a single Google account with a single calendar.

The events in the calendar can be accessed with the Calendar function on the main menu. This lists

the events of the current day, with title and time. The buttons at the top

can be used to change the date, to see the events of other days. Finished

events are “greyed out” (text with less contrast), while any current event is

highlighted. Press an event to get a detailed view, with any description

entered for the event. The most “current” event – started or next to start –

is shown on the start screen. This can be pressed for an alternative listing of

events, with all upcoming events for several days in a scrollable list.

Events can have two types of additional information, entered on the

POSEIDON web. These are indicated with icons on the event item in lists

and the start screen, and available from the detail view.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

23

 Instruction list (list icon): An event can have a set of instructions.

Each is a short text. These are shown sequentially at the start of an

event, and can also be shown from the event detail screen.

 Route for navigation (route icon): An event can include a planned

route. At the starting time of the event, the user will be informed.

If the user confirms that the app is to provide navigation, it enters

navigation mode.

3.5.1 Entering events
The calendar has a button for creating a new event. A title and start time

must be entered. An end time can be entered; otherwise the event has no

duration. Time can be specified with just the hour, or adding minutes, with

or without a colon between hour and minutes. The date is initially that of

the date in the calendar when pressing the New event button, but may be changed. Events cannot

cover multiple dates. A description can be entered to give information about the event.

Note that some of the more advanced features of the web calendar are not

available when entering or editing events in the mobile application. It can’t

be used to enter a recurring event, and a route or instruction list can’t be

added.

3.5.2 Editing and deleting events
From the detail view of an event, edit and delete actions are available. Edit

has the same user interface as for a new event. Title, date, start and end

time and description can be edited. Note that it’s not possible to edit or

delete recurring events. These are events which repeat according to some

pattern, and must be managed through a more complex user interface such

as that of the POSEIDON web.

3.5.3 Event reminders
An event can have reminders at specific times prior to the start time of the event. This is added to

the event in the web interface, and works much like in other calendar applications. The user is given

a notification at the reminder time, with the event details and how long it is until the event start

time. A notification is placed in the notification bar of the phone if the application is not currently on

screen, and the full reminder is shown in the application when it is opened.

3.5.4 Notification at event start
The user is notified of any event at the start time of the event. As with

reminders, a notification is placed in the notification bar of the phone if the

application is not currently on screen, and a popup in the app gives the

details. If the event has instructions, the button on the popup leads to the

first instruction, and these are shown in sequence with presses on the

button. The rest of the app is unavailable until the notification and

instruction dialogs are acknowledged with the button. If the event has a

route, the dialog will finally ask for confirmation to start navigation.

3.6 End user preferences
There are some application and service settings stored in SmartTracker.

These can be edited from the POSEIDON web. The colour theme can also

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

24

be changed in the app, to make this personalization option easily available

to the primary user. In addition, the application has its own privacy setting,

controlling whether or not position tracking is sent to SmartTracker.

The Preferences screen has the personalisation settings which are available

in the app.

 Tracking: When off, position data is not sent to SmartTracker. Any

location tracking done will then not be stored or processed on the

server, so it won’t be available for any researcher or carer to see or

for any server-side service logic. Note that the current version will

only track position during navigation, so it should not normally be

any need to switch this off.

 Colours: This is the theme of the user interface – the colours. The

default theme (POSEIDON) is based on the colour palette used in

the project. The other theme currently available is a high-contrast theme, with yellow and

white on a black background. The colour theme is part of the user account and can be

changed from the web.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

25

4 POSEIDON web developer manual
The Poseidon web is part of the POSEIDON project and system. This system is to consist of services

and applications to support people with Down’s syndrome and, to some extent, also those who

interact with them on a daily basis. The Poseidon web is composed open source software

component. In this manual we will give a rough view of the techniques used for supporting the HCI

interface and system. More details of POSEIDON system development and integration can be found

in [1].

4.1 Composition
Poseidon web is supported by the SmartTracker platform provided by TellU AS [2], SmartTracker

platform is an intelligent Internet of Things cloud-based service that gathers data from GPS- and

other devices. Data is processed by rules and other mechanisms designed to meet the different

needs of industries, partners and individual customers. In addition to this platform, we integrated

Google Calendar service and third party open source code to Poseidon web. Figure 11 shows an

iconized platform architecture of Poseidon web.

Figure 11 Poseidon web supporting architecture

The Poseidon web is mainly developed by HTML5, angularJS and Jquery, and also integrated some

third party open-source code to develop new component. In the following we will introduce two

parts of integrated code and what developer can do if they want to study and apply it to the system:

1. Open authorization for public calendar service: In Poseidon web, we choose to use the Google

calendar as the calendar publishing provider, this involves the integration of Google service

authorization to Poseidon system. We applied the Google Open Authorization 2 (OAuth2) to

connect Poseidon web to Google Calendar server. In contrary to tradition authorization methods,

the OAuth uses an access token issued by the service provide instead of directly using user name

and password to authorize usage of services for third party software. Figure 12 shows the

authorization sequence of OAuth using a UML sequence diagram [3].

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

26

Figure 12 OAuth credential application flow

2. The OAuth credential application as shown in Figure 12 can be described as follows:

1) The client redirects the user to a login dialog at the provider.

2) The user authorizes the client.

3) The provider redirects the user back to the client, additionally returning an access_token.

4) The client validates the access token.

5) The access token allows the client to access a protected resource at the provider.

3. Calendar component: The calendar component on Poseidon web is based on Jquery FullCalendar,

and encapsulated in an angularJS directive. The FullCalendar API is available on web.

4.2 Open source API
We list the open source APIs in the table below for developers who are interested in extending the

Poseidon web system.

API
Link

OAuth 2 https://developers.google.com/identity/protocols/OAuth2

FullCalendar
http://fullcalendar.io/docs/

Google Calendar API https://developers.google.com/google-

apps/calendar/v3/reference/events

A FullCalendar AngularJS

directive
http://angular-ui.github.io/ui-calendar/

https://developers.google.com/identity/protocols/OAuth2
http://fullcalendar.io/docs/
https://developers.google.com/google-apps/calendar/v3/reference/events
https://developers.google.com/google-apps/calendar/v3/reference/events
http://angular-ui.github.io/ui-calendar/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

27

4.3 Conclusions
We will constantly develop and update the Poseidon web during POSEIDON project life-cycle. At

present, the system is under heavy development and testing.

4.4 Reference
[1] Development framework, POSEIDON project D5.1.

[2] TellU AS. Link: http://www.tellu.no/

[3] How to Implement Safe Sign-In via OAuth. Link:

http://devcenter.kinvey.com/html5/tutorials/how-to-implement-safe-signin-via-oauth

http://www.tellu.no/
http://devcenter.kinvey.com/html5/tutorials/how-to-implement-safe-signin-via-oauth

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

28

5 Use of calendar data
For pilot 1 there are two applications making use of the calendar. The POSEIDON web is the primary

interface for managing the calendar, with the full range of options for creating and editing events.

The mobile application is where the calendar events are delivered to the primary user, with

reminders, notifications and instructions. For cloud storage and synchronisation of the events

between the two applications we are currently using Google Calendar. The calendar data model is as

we know from this and other calendar services, with events which may have reminders ahead of

time.

This document explains this conceptual model and how the data is used in the system. It is a cross-

cutting concern in the system, affecting context reasoning as well as the two applications. This

information should also be communicated to the (secondary) end users in some form, to help use the

system correctly. For the technical details of the data implementations in Google Calendar and the

Android Calendar API, see chapter 3 of D5.4, version 2.

5.1 Calendars
All events belong to a calendar. Any Google account has a calendar, and it may have several. An

Android device has access to the calendars of Google accounts entered in the device. There may be

any number of calendars in an Android device. Our pilot system is meant to be used with a single

calendar. The mobile application doesn’t distinguish between multiple calendars, but uses whatever

is available, so to avoid any confusion it is important that the Google accounts and devices are set up

with only a single calendar.

5.2 Event scheduling
The main entity of the calendar model is the event. The main attribute of an event is its scheduled

date and time. This can get quite complex, as events for most calendar services can be recurring

based on some pattern, there can be exceptions to the recurrence, events can have a duration or not

and they can be for full days (no start or end time). We do not support all the possibilities of the

Google or Android calendar models in our applications. Here is a summary of our rules:

 An event can have a start and end time, or just a (start) time (no duration).

 We do NOT support all day events, or events spanning multiple dates. An event must have a

start time, and if it has an end time this must lie on the same date. The reason for these

restrictions is to keep the user interface of the mobile app simple, listing events sorted on

time for a specific day.

 We support recurring events. This means there can be a potentially open-ended amount of

occurrences of an event. Basic patterns of recurrence can be specified in the web interface.

Note that any additional attributes of the event, such as description or route, will be the

same for each occurrence.

An event may also have a reminder scheduled a specific number of minutes before the start time.

5.3 Other event attributes
These are the other attributes we currently support.

 Title/summary: This is the “name” of the event, and is the primary attribute for identifying

the event. It is what is shown in lists, notifications and short descriptions in the mobile app,

and should preferably be short enough to fit on a single line on the phone.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

29

 Description: This text can be whatever the user wants to convey about the event. It can be

left empty, if the title gives enough information, but will typically give more details about the

event. Although there is no explicit limit in the system, it shouldn’t be too long – no more

than half of the phone screen is a good rule of thumb.

 Route for navigation: In POSEIDON an event can be linked to the navigation functionality by

specifying one of the routes planned for the primary user. The mobile app will then offer to

start navigation at the start time of the event.

 Instruction list: While the description can be used to give instructions, we also support an

ordered list. Each item of the list can be any text, but should be kept short – typically a single,

short sentence. Each instruction will be shown in turn in the mobile app, from the

notification at the start time of the event (before navigation if the event has both). While this

is currently just text, the intention is to be able to add media such as a photo to each item.

5.4 Event notification
The events are communicated to the primary user by the mobile app in two main ways. They are

displayed in the calendar so the user can see what is planned for a day, and the ongoing or next

event is also shown on the main screen. And the app provides notifications at the scheduled times.

The start time of an event is the main notification time. The mobile app will give a notification with

sound at this time. The notification bar of the phone is used if the app isn’t on screen at the time,

much like other types of alerts such as for received SMS. A dialog box in the app shows the title and

description of the event. If there are instructions, the dialog goes on to show these in sequence each

time the user pressed the dialog button to advance it. Finally it will ask to start navigation if the event

has a route.

If the event has a reminder, a notification is given at the reminder time. It uses the same notification

mechanisms as the main notification, but the dialog states the title, description and how much time

is left before it starts. Note that a reminder has no information of its own, so except for the minutes

left it can’t give the user any information different from that of the event itself.

An event is a simple object, and there is no link between events in this calendar model. It is very

much up to the secondary users how to use events to create a helpful plan for the primary user. The

event and its “start” time is primarily a mechanism for notification. For instance, if the primary user is

to be at school at 8:30, we might need an event at 7:50 to remind the user to get ready to go, with

instructions on what to bring. Then an event at 8:00 for actually going, possibly with route for

navigation. The time to actually be at school – 8:30 – is probably less interesting for this calendar use,

but it may be good to enter it so that it is displayed in the calendar in the mobile application.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

30

6 Context middleware
The POSEIDON context middleware is a centralised system for handling context acquisition,

management, and reasoning. It can be deployed in two specific scenarios:

 Centralised Application: In this scenario, the middleware is a completely separate

application which can be installed and used independently. This app is distributed using

the Google Play Store3. To use the middleware in this scenario, each application needs to

use the Service declared as

org.poseidon_project.context.IContextReasoner. To use this service,

each application needs to bind to the service, before interface methods can be invoked.

 Integrated an Existing Application: In this scenario, the middleware is integrated as a

library into an existing application during compilation. In most circumstances, this

usecase is not expected to be used. To use the middleware within this scenario, the

containing application needs to use the core service class directly, which is named

org.poseidon_project.context.ContextReasonerCore. Each request

can be made directly, as a conventional java class.

6.1 Using Contexts in Applications
By definition, each POSEIDON compatible application should not have direct control over what

ContextObservers are running or not. Instead, the reasoner functions on a need-by-need basis. Only

ContextObservers that are actively required by an application are used. If at some point, an observer

ceases to be required by an application, it will be automatically stopped.

6.1.1 Declaring a new Context Requirement
When an application requires context information about a particular type, it must declare a new

context requirement. This is carried out on the service interface, depending on the usecase scenario

introduced earlier. The developer has two specific service methods that can be used for declaring

context requirements:

 addContextRequirement(String appkey, String contextName): This method is used in

situations where the context does not require any parameters and can be used as it is. This

method requires an identifier for the requesting application, and the name of the context

passed as method parameters.

 addContextRequirmentWithParameters(String appkey, String contextName, Map

parameters): This method is used when a required context also needs specific parameters for

it to function. For example, for the Weather context, the system needs to know the specific

locations it needs to check the weather for. Similar parameters are required to the standard

method described above, except a Map object containing the different parameters needs to

be passed also.

6.1.2 Removing a Context Requirement
Once a context requirement has been requested, it will continue to reason and broadcast context

updates indefinitely. Therefore, when a given application no longer requires updates for specific

contexts, it needs to explicitly inform the middleware. This is carried out by calling the method:

3 https://play.google.com/store/apps/details?id=org.poseidon_project.context

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

31

 removeContextRequirement(String appkey, String contextName): This method requires an

identifier for the application, and the name of the context it no longer needs passed to it.

Once this has been invoked, the reasoner will check if any applications still require the

specific ContextObservers involved. If the ContextObservers in question are found to not be

required anymore, they are stopped.

6.1.3 Updating Context Parameters
We have described the situation where context parameters might be required by a ContextObserver

e.g. Weather. If during the use of a context, specific parameters need to be updated or changed, this

can be carried out in the following method:

 setContextParameters(String appkey, String contextName, Map parameters): This updates

the various parameters of the context in question. This method requires an identifier for the

application, name of the context in question, and a Map object containing the parameters

passed.

6.1.4 Receiving Context Inferences
Because context management and reasoning is handled externally to each POSEIDON application, we

therefore need an approach for applications to receive context updates. To do so, each application

must use Android BroadcastReceivers to listen for context broadcasts. These BroadcastReceivers

should listen for intents using the name:

org.poseidon_project.context.CONTEXT_UPDATE. These intent broadcasts will bring

the following intent extras that each application will need to collect:

 context_name: This is a String that contains the name of the context. An example could be

“BATTERY”.

 context_value: This is a String containing the value or state of that context. An example for

the battery could be “LOW”.

6.1.5 External Context Data Input
Not all context data can be gathered by the context middleware. The centralised context reasoner
can include context data sent from other apps in the mobile system. Context values being sent from
external apps need to be handled in that application’s ContextReceiver. This means, as the case with
context observers, an application needs to have registered its ContextReceiver for context values to
be reasoned over. In terms of POSEIDON, we shall have a default ContextReceiver developed as part
of our prototypes, which can be extended by other POSEIDON compatible applications.

To send Context values from external applications, this must be carried out using Android Intent

Broadcasts. For the ContextReceiver to receive the context, the intent must use the name:

org.poseidon_project.context.EXTERNAL_CONTEXT_UPDATE. In addition to this

intent the following intent extras need to be included:

 context_name: A String containing the name of the context source. An example can be

“NavState” which is received from the navigation application.

 context_value_type: A String containing the name of the internal datatype the value is

stored in. An example can be “long”. The ContextReceiver needs this as context data can be

many different datatypes.

 context_value: A random type which contains the actual context data.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

32

6.1.6 Adding new ContextObservers to the middleware
As the context middleware is intended to be a centralised resource which can be used by multiple

applications on the device, the system needs to be extensible with new contexts. These contexts can

be added to the middleware by other POSEIDON compatible applications. These ContextObserver

classes need to be first in their separate Android .dex file. This can be handled with an Ant or Gradle

build script. To import a .dex file containing new ContextObservers, the application in question needs

to first copy this .dex file to a temporary location on the SD card, so the middleware can access it.

Once this has been carried out the application can call the following method:

 importDexFile(String appkey, String dexLocation, String[] contexts, String packagename, int

permissions): This method requires the applications identifier, the location of the .dex file,

an array of the different ContextObserver names contained in the file, the

namespace/package the ContextObservers are contained in, and the usage permissions of

the observer. If the permission is set to 0, it is a public ContextObserver that can be used by

any POSEIDON compatible app. If however the permission is set to 1, this means the

observer is private and can only be used by the application adding it to the middleware.

Following invocation of this method, the .dex file copied to the temporary SD card location can be

removed.

6.2 Context from POSEIDON prototype 2 app
The mobile application will send the following context events to the middleware, over an intent

broadcast on the intent

org.poseidon_project.context.EXTERNAL_CONTEXT_UPDATE.

context_name context_value_type context_value

NavState long 0: Off
1: On, critical deviation
2: On, deviation
3: On, no deviation

CalReminder long Milliseconds until event start

CalEvent long Milliseconds until event end

6.2.1 NavState
An event is sent each time the navigation state changes. Deviation (2) means the user is further from

the planned route than some limit and therefore is instructed to return to the route. Critical (3)

means they are too far away for the current route to be used for navigation. The user is asked if they

want a recalculated route from their current position to the destination, or to quit navigation. In the

first case a new route is retrieved and navigation restarted, so the critical state will soon be followed

by either 3 or 0.

6.2.2 Calendar events
Context events are sent on the start time of a calendar event, and on the times any reminders are

shown before an event. The user is notified at the same time as the context is broadcast (usually

posted to Android’s the notification bar). The time value for CalReminder could possibly be negative,

if the calendar event is found by the app after the start time of the event. The time until the end of

the calendar event is 0 if the event has no duration.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

33

7 Route data semantics
This is the technical documentation for the route data, written and used by the home navigation

system and used by the mobile app for navigation.

Route data created on the stationary system is a set of files stored in an archive on the local disk. This

archive is transferred to the mobile device and the files placed in the local file system, to be used for

navigation. This chapter contains the specification of the contents of the archive.

7.1 Structure
The overall structure of a POSEIDON route will be an archive file (e.g. .zip) which will be broken down

into the following components:

 POSEIDON Meta Data

 Directions Data

 Media Archive

This file during copying/installation can be copied and unzipped into the following location:

/SDCARD/POSEIDON/Routes/$RouteID$/

The $RouteID$ will be stored in the POSEIDON Meta Data file, and will provide us with easy relative

locations to use. (Don't need to worry about absolute directories)

7.2 POSEIDON Meta Data
This file will hold the POSEIDON meta data related to a route, which can be stored in the app

database.

Filename: meta.json

JSON identifier Class field Datatype Comments

id id long Unique id (from stationary
system).

title title string Name for selecting the
route in the UIs.

start_location startPoint.name string Name of starting point, to
tell the user where they
need to start from.

end_location endPoint.name string Name of destination, to tell
the user where they will go.

start_longitude startPoint.

longitude

double

start_latitude startPoint.latitude double
end_longitude endPoint. longitude double
end_latitude endPoint.latitude double
resource imageURI string URI for image representing

the route, in media folders.

If a route is not specified with an "id" we will need to just insert into the db, get a new id from the db,

and change the folder name to be the same.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

34

7.3 Directions Data
This file will contain the directions in a format similar to Google Directions to keep some

compatibility.

Filename: directions.json

Currently, the difference is that in each segment, there can be an array of "resources", with each

"resource" pointing to a particular image/video/audio file.

While both Google Directions JSON and the object structure of the mobile app has leg objects

containing step objects, it’s not a 1-to-1 correlation between the two data models. The JSON can

have a single leg for a route with multiple transport modes, with a step for each mode containing

nested steps for detailed instructions. In the app objects, there needs to be one leg for each

transport mode, and just one level of steps. So in this case the outer level of steps in the JSON is the

app legs and the sub-steps are the app steps.

7.3.1 Leg

JSON identifier Class field Datatype Comments

(step.
travel_mode)

mode string In each step in JSON data, but
the navigation needs it on leg
level. See Travel modes section
below.

? legId string Short name of leg, such as bus
number. Used in transit mode
instruction.

? legName string Long name of leg, such as start
and destination of transit line.
Not currently used.

? headsign string Headsign of the bus or train
being used. Used in transit
mode instruction.

? agencyName string Name of the transit agency that
operates the service. Not
currently used.

duration.value duration long Leg's duration. JSON is seconds,
class needs milliseconds.

distance.value distance float Distance to travel, in meters.
start_location from object Name and lat,lon of leg start. If

JSON has full address, extract
street address (up till first
comma).

start_address

end_location to object Name and lat,lon of leg end. See
previous row. Used in transit
mode instruction.

end_address

7.3.2 Travel modes in mobile app
App code is so far based on OpenTripPlanner mode names, such as WALK, BUS and TRAM. It is used

by navigation logic:

 The main distinction is between active (user controls movement) and transit (user is

transported) modes. So far active mode is only true if mode==”WALK”. We can include

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

35

driving as active mode (we won’t fully support driving instructions, but walking instructions

may be used).

 In transit modes, instructions include the mode name, such as “Take <mode> two stops to

<stop name>”.

7.3.3 Step

JSON identifier Class field Datatype Comments

start_location latitude double Step class position is start of
leg. longitude double

distance.value distance float
html_instructions instruction string JSON instruction includes

HTML tags, which are
removed in the app.

polyline.points stepGeometry string Encoded polyline bean for the
path.

maneuver relativeDir string We could read this from
JSON, but we need a clear
definition of how it is
represented in the class and
used for navigation.

? imageURI string ?

7.3.4 Navigation instructions in mobile app
In walk (active) mode, each Step should have an instruction text. Google Directions provides basic

step instructions, or this may have been changed by route customisation.

In transit mode we have so far only generated instructions based on fixed templates where leg

properties are plugged in. We need to support step instructions here as well.

7.4 Media Archive
This will be a folder that contains the different media that will supplement a route. This can be used

for storing the media e.g. photos of places for the journey, or annotative text. While for this project

we may not use audio/video, it included for structure sake, and it is there if someone ever wants to

use it.

Folder name: media

Will contain the following:

 Folder named "p" for Photos/pictures

 Folder named "v" for videos

 Folder named "a" for audio

