
DCAM Software User Manual 1

Videre Design
DCAM Digital Camera Capture Software

User’s Manual
Version 1.0c

July 2001

? Kurt Konolige
Videre Design

kurt@videredesign.com
http://www.videredesign.com

DCAM Software User Manual 2

1 Introduction__ 3

2 Getting started with dcam___ 4

2.1 Enumerating Devices__5

2.2 Inputting Live Video __6
2.2.1 Video Format __ 6
2.2.2 Frame Size __ 6
2.2.3 Frame Rate __ 6
2.2.4 Display Output and Actual Frame Rate ______________________________________ 7

2.3 Video Parameters___8
2.3.1 Exposure and Gain __ 8
2.3.2 Brightness ___ 8
2.3.3 White Balance ___ 9
2.3.4 Color Saturation __ 9
2.3.5 Sharpness ___ 9
2.3.6 Gamma ___ 9

3 DCAM Capture Software API_______________________________________ 10

3.1 dSystem Class __11
3.1.1 Initialization Function __ 11
3.1.2 Camera Enumeration ___ 11
3.1.3 Video Streaming___ 11
3.1.4 Error Codes___ 12

3.2 dCamera Class __13
3.2.1 Video Modes__ 13
3.2.2 Video Parameters __ 13
3.2.3 Video Streaming___ 13
3.2.4 Grabbing Images __ 13
3.2.5 Error Codes___ 14

3.3 dcamWin Class ___15
3.3.1 Constructor and Destructor __ 15
3.3.2 Drawing Images ___ 15

3.4 dcamDebugWin Class __16
3.4.1 Constructor and Destructor __ 16
3.4.2 Printing Text__ 16

3.5 DDISP Example Application___17
3.5.1 Display Window ___ 17
3.5.2 Camera Initialization ___ 17
3.5.3 Video Streaming___ 17
3.5.4 Grabbing and Displaying Images__ 17

DCAM Software User Manual 3

1 Introduction
The DCAM is Videre Design’s VGA-format progressive-scan digital camera, with an IEEE 1394

(Firewire) bus interface. While IEEE 1394 hardware is a well-established standard, the software interface
for image processing is not. The DCAM Capture Software is an easy-to-use C++ API that offers cross-
platform access to video images from DCAM devices, and gives user programs full program control over
video parameters. Its intended use is for programmers who want to capture uncompressed video images
into memory for further processing.

Features:
? ? Conforms to the IEEE Digital Camera (DC) specification
? ? Efficient access to video images via DMA transfer (no CPU involvement)
? ? Capture 640x480 frames at 30 fps in monochrome mode, 15 fps in RGB color mode
? ? Automatically enumerates accessible devices on the IEEE 1394 bus; up to 10

devices accessible from the same program
? ? Capture simultaneous video streams, up to the 400 Mbps IEEE 1394 limit
? ? Select frame size and video mode (color, monochrome) under program control
? ? Auto and manual modes for exposure, gain, brightness, and white balance
? ? Manual control of color saturation, sharpness, and gamma

The DCAM Capture Software comes with 2 applications with full source code. dcam(.exe) is a full-
featured GUI that allows immediate viewing and control of DCAM devices, including the saving of
images to files. ddisp(.exe) is a simple application that shows how to access the DCAM video stream and
display it.

The Capture Software is available for MS Windows 98/ME/2000, and Linux 2.2.16 and higher
kernels. Table 1-1 describes the main components of the Capture Software.

Capture Software Component
MS Windows Linux Description
dCamera.dll, .lib
dcam.h

libdcap.so
dcam.h

Driver interface file. Contains the
dSystem and dCamera classes that are
the interface to the IEEE 1394 drivers
for the DCAM. The class definitions
are in dcam.h.

fltkdll.dll, .lib libftlk.so.1 FLTK windowing library. Cross-
platform display classes for images and
GUI widgets.

dcam.exe dcam Full-featured GUI application.
Enumerates the available cameras,
presents video imagery from one
camera in a window, saves single
images to files, full camera control

ddisp.exe ddisp Simple capture program. Illustrates
the basic operation of opening a
camera, grabbing images from it, and
displaying the images.

Table 1-1 Capture Software components

DCAM Software User Manual 4

2 Getting started with dcam
The dcam(.exe) program is a standalone application that exercises the DCAM Capture Software. It is

a GUI interface to the software, and in addition can save single images. The dcam program is a useful
tool for checking out your digital cameras.

The dcam program is in the bin\ directory. It requires the Capture Software component shared
libraries (Table 1-1), all of which are in the bin\ directory. Under MS Windows, these shared libraries
(DLLs) must be in the same directory as the dcam.exe program, or in the system DLL directory. Under
Linux, the LD_LIBRARY_PATH variable must have the path to the libraries.

Figure 2-1 shows the startup screen of the program. The black window is for display of the video
image. The display programs in dcam use the FLTK cross-platform window interface, and work best in
24 bit mode. The version of the program is indicated in the title bar.

The rest of this section explains the operation of dcam. Since dcam exercises all of the functionality
of the DCAM Capture Software libraries, it serves as a general reference for camera functions. The rest of
this Section explains the operation of dcam.

Figure 2-1 dcam program interface. The black
window is for display of video.

DCAM Software User Manual 5

2.1 Enumerating Devices
Before starting up dcam, plug in a DCAM digital camera to an available IEEE 1394 port. You must

have installed an IEEE 1394 PCI or PCMCIA card, and the low-level drivers, as detailed in the
installation instructions for the DCAM (www.videredesign.com/support_dcam.htm). Then, when dcam is
started, it will enumerate all of the available DCAMs attached to the IEEE 1394 bus. The text
information window will show the number of cameras found. If there is a problem with recognizing the
DCAM, no cameras will be found. Please check the installation instructions to determine what to do.

Assuming there is at least one recognized camera, you can choose which camera to control by using
the Camera pull-down menu. The current one will be marked.

Individual cameras are identified by a 64-bit identifier, parsed as two 32-bit hexadecimal integers.
The API function dSystem::InitCamera() can open a particular camera based on this identifier, or based
on the order of its enumeration by dSystem.

DCAM Software User Manual 6

2.2 Inputting Live Video
The DCAM Capture libraries provide support for live video input. To start a live video stream, follow

this procedure:
1. Choose a camera using the Camera menu.
2. Initialize the camera for input by pulling down Video from the Input: chooser.

After a short pause, the application will display Camera initialized, and the Single
and Continuous buttons will become active. If there is a problem with the camera, it
will not be initialized.

3. Select appropriate Size, Format, and FPS (frames-per-second) from the drop-down
lists in the application. Default values will work.

4. Press the Continuous button. If the camera does not support the selected modes,
then the message Unsupported modes will appear in the information window.
Otherwise, video imagery will appear in the video window. This window always
shows a 320x240 frame, even when the camera video image is 640x480.

Size, format, and frames-per-second cannot be changed while the video image is live. The
image stream must first be halted, the mode changed, and then restarted.

2.2.1 Video Format
Video format is the format of the pixels in the video image. The DCAM Capture Software libraries

support two video formats: RGB24 and monochrome. In RGB24, each pixel is 24 bits, with 8 bits of red,
8 of green, and 8 of blue. In monochrome, each pixel is 8 bits or grayscale information. Video format is
selected from the drop-down Format list.

Since each DCAM is limited to a maximum of 200 Mbps over the IEEE 1394 bus, the video format
helps determine the maximum frame size and rate combinations available. Consult Table 2-1 for a
complete listing.

2.2.2 Frame Size
There are two frame sizes, 320x240 and 640x480. In both of these, the image is scanned

progressively, that is, the camera captures a frame all at once, and scans it out one line at a time. Frame
size is selected from the drop-down Size list.

The DCAM imager has 640x480 pixels, in a Bayer color pattern – each pixel returns a Red, Green, or
Blue color value. The DCAM camera interpolates to give a complete set of RGB color values at each
pixel in 640x480 mode, which produces a somewhat blurred color image. At 320x240, the color image is
much more crisp, because no interpolation is needed.

Another advantage to of a 320x240 size is that is uses a lot less bus and memory bandwidth than
640x480. Each DCAM is limited to a maximum of 200 Mbps over the 1394 bus; consult Table 2-1.

2.2.3 Frame Rate
DCAM Capture Software supports 4 different frame rates: 30, 15, 7.5, and 3.75 frames per second.

Not all of these frame rates can be used with all the frame sizes and video formats; consult Table 2-1.
Selecting slower frame rates has two advantages:

1. Exposure times can be made longer for low-light situations.
2. Lower bus traffic means more cameras can be active simultaneously

Video Format Frame Size Frame Rates
320x240 30, 15, 7.5, 3.75 fps RGB24 (24 bit pixels)
640x480 15, 7.5, 3.75 fps
320x240 30, 15, 7.5, 3.75 fps Y800 (monochrome, 8 bit pixels)
640x480 30, 15, 7.5, 3.75 fps

Table 2-1 Compatible video modes

DCAM Software User Manual 7

Frame rates are selected from the FPS drop-down list.

2.2.4 Display Output and Actual Frame Rate
The video display can be turned on or off using the Display button. Displaying video with in the

FLTK window can use significant system resources, and it is sometimes useful to stop it, while continuing
the input of video. The displayed frame is always 320x240, even when the video image is 640x480.

The actual frame rate, determined by timing the last 10 frames, is indicated in an output box.

DCAM Software User Manual 8

2.3 Video Parameters
The DCAM Capture Software allows direct control of all of the video parameters that are available on

the DCAM imagers. These include:
? ? Exposure and gain
? ? Brightness
? ? White balance
? ? Color saturation
? ? Sharpness
? ? Gamma

Some of these parameters can be controlled automatically by the DCAM itself. All parameters can be
adjusted manually under program control. In manual mode, the parameters are adjusted by giving a value
between 0 and 100 (except Gamma, which is either on or off).

The video parameters are set using the Video Parameter dialog (Figure 2-2). Invoke this dialog by
choosing the Video menu item in the dcam application window.

A note about Manual modes. The DCAM camera has no provision for reading back values set by
Auto modes. As soon as Auto mode is switched to Manual mode, the parameter value given by the
application takes effect. It is not possible to use Auto mode to set a parameter, then switch to Manual
mode to freeze that parameter.

2.3.1 Exposure and Gain
Exposure is the amount of time the DCAM imager is exposed to light on each video frame. Gain is

the amount of amplification applied to the charge accumulated by each pixel. In general, larger exposures
mean better images because the signal to noise ratio is increased. Larger gain, which is necessary for low-
light situations, amplifies noise as well, and tends to lead to a noisier image.

In Auto mode, the DCAM adjusts exposure and gain to give an image with reasonable levels of light
and dark. The algorithm tries to maximize exposure and minimize gain, in keeping with minimizing
image noise.

In Manual mode, the exposure and gain can be adjusted independently.

2.3.2 Brightness
Brightness is the offset of the video signal when no light is present. Normally this should be left in

Figure 2-2 Video Parameter Dialog Box

DCAM Software User Manual 9

Auto mode, where the imager looks at a set of pixels that are not exposed to light and adjusts the offset
accordingly.

2.3.3 White Balance
The relative amounts of red, green, and blue present in the video image can be adjusted by

differentially adjusting the gain on the red and blue pixel values, relative to green. In Auto mode, the
DCAM camera tries to make the image have an overall balance of these colors. As the lighting and scene
changes, it constantly adjusts the picture so that the relative amounts of these colors are the same. For
many image processing applications, this leads to unacceptable changes in the color balance, and Manual
mode should be used.

In Manual mode, the gains of the U,V color channels can be adjusted using the sliders. For a
particular lighting source, try adjusting the gains until a grey area in the scene looks grey, without any
color bias.

2.3.4 Color Saturation
Color saturation is the overall amount of color present in the image. This value is always set

manually. A value of 0 yields equal amounts of red, green, and blue, that is, a monochrome image. A
value of 100 gives the largest differential in the colors, but will look odd. The default value is 27.

2.3.5 Sharpness
The 640x480 color images appear slightly blurred, because the DCAM color processor is

interpolating the color values. To compensate, it provides a sharpness filter that will emphasize image
edges. Moderate amounts of sharpness can make the image look better, but also emphasizes any noise
present in the image. Low values of sharpness actually blur the image. Most image processing
applications will prefer to have a neutral sharpness value, which is 20 (the default setting).

2.3.6 Gamma
The output response of most monitors is nonlinear, and the display of an image with linear brightness

values will be seen as overly dark and contrasty. Applying a gamma correction to the video image make
the image display more naturally, by emphasizing dark values. For many image processing applications,
however, gamma correction is undesirable.

DCAM Software User Manual 10

3 DCAM Capture Software API
The capture interface is a set of C++ classes whose member implement the functionality described in

the previous Section. By including the appropriate capture interface library (Table 1-1), user programs
can access a DCAM and import video images into memory.

The capture classes are described in the header file src/dcam.h. The two classes are dSystem and
dCamera. dSystem is the class for initializing the IEEE 1394 bus, enumerating and selecting a camera.
The dCamera class controls an individual camera, inputting video and changing video modes and
parameters.

Two windowing classes are provided for display and debugging. The dcamWin class can draw
monochrome or color images in a window. The dcamDebugWin class provides a simple output browser
window for displaying text message to the user. Both windows are based on the FLTK windowing system
(www.fltk.org), and can be used in either MS Windows or Linux environments.

See the source code for the ddisp(.exe) application (Section 3.5) for typical use of these classes.

DCAM Software User Manual 11

3.1 dSystem Class
This class initializes and controls the IEEE 1394 bus.

class dSystem

3.1.1 Initialization Function

 dSystem *dSysInit()
 dSystem *dSys

This function is called once, at the start of the application, to initialize the IEEE 1394 bus and

enumerate the DCAM devices on it. It returns a dSystem class instance that can be used to access the
cameras. This is the preferred way to instantiate a dSystem object. The global variable dSys is set to the
value of the dSysInit() call, so it is always available. If the call fails, because there are no nodes on the
IEEE 1394 bus (i.e., no IEEE 1394 cards are found), then it returns NULL.

3.1.2 Camera Enumeration

 int NumCameras()

Returns the number of cameras found on the IEEE 1394 bus.

 char **Names()

 U64V *ChipIDs()

Each camera has a name, which is the string Videre Design DCAM for the DCAM. Individual

cameras are distinguished by their chip ids, which are U64V structures: an array of two 32-bit integers.
The camera id is part of the camera firmware, and does not change across instantiations of dSystem.

 dCamera *InitCamera(char *)
 dCamera *InitCa mera(int n)
 dCamera *InitCamera(U64V *id)

Once cameras are enumerated on the IEEE 1394 bus, they can be opened (or initialized) using one of

these functions. They return an instance of the dCamera class, which can then be used to input video into
buffers and otherwise control the camera. If there is a problem opening the camera, the member function
returns NULL.

The first form opens the first camera which matches the name. The second opens the nth enumerated
camera, starting with index 0. The third form opens the camera with id id.

3.1.3 Video Streaming

 bool Start()
 bool Stop()

These functions start and stop the video streaming of all opened cameras, at the same time. They are

mostly for convenience; applications will typically start or stop video streaming by using the individual
camera object.

The return value is true if the call is successful, and false if not. The reason for the error can be found
using the Error() function.

DCAM Software User Manual 12

3.1.4 Error Codes

 char *Error()

Functions that return errors, such as Start() and Stop(), usually place a reason for the error into a

buffer that can be accessed with the Error() function.

DCAM Software User Manual 13

3.2 dCamera Class
This class controls individual cameras, providing an interface for grabbing images into buffers. It

also provides functions for controlling video modes and parameters. See Section 2 for an explanation of
video modes and parameters.

 class dCamera

A camera object should be instantiated using one of the InitCamera member functions of the dSystem

object.

3.2.1 Video Modes

 bool SetFormat(dISIZE size, dITYPE type, dISPEED speed)
 dISIZE Size()
 dITYPE Type()
 dISPEED Speed()

The SetFormat function sets the frame size, video format (type), and frame rate (speed). The values

for modes are enums, and can be found at the beginning of the dcam.h header file. If a particular video
mode is achievable, it returns true; else it returns false, and the error reason can be retrieved with the
Error() function. Video modes cannot be changed during video streaming, and SetFormat will return an
error in this case.

The three other functions return the current values for the video modes.

3.2.2 Video Parameters

 void SetExposure(int val, bool auto_flag = false)
 void SetGain(int val)
 void SetBrightness(int v al, bool auto_flag = false)
 void SetWhiteBalance(int uval, int v val, bool auto_flag = false)
 void SetSaturation(int val)
 void SetGamma(bool on)
 void SetSharpness(int val)

These functions set the corresponding video parameters. All take a value from 0 to 100, except for

SetGamma, which takes a Boolean. Video parameters can be changed at any time, even during video
streaming.

3.2.3 Video Streaming

 bool Start()
 bool Stop()

These functions start or stop video streaming from the camera. They return true if successful, and

false if not. The most likely cause of not being able to start a video stream are
1. Incompatible video modes, and
2. Insufficient IEEE 1394 bandwidth (with multiple cameras)

3.2.4 Grabbing Images

 bool GetImage(unsigned char **buf, int ms = 0, int *frame = NULL,

 unsigned long *time = NULL);
 bool ReadyImage(int ms);

DCAM Software User Manual 14

These functions control grabbing of images into memory buffers.
The GetImage function returns an image into the pointer buf provided by the caller. The buffer itself

is generated and managed by the capture interface, and should not be freed up by the caller. But, the
caller is free to write into or copy the buffer. The buffer contents are guaranteed not to be changed until
the next call to GetImage.

The image is packed into the buffer in a form that depends on the video format. For Y800
(monochrome), each pixel occupies one byte. For RGB24 images, each pixel occupies 3 bytes, with the R,
G, and B components appearing in that order. The pixels are packed in each line, so that a line of a
320x240 frame occupies 960 bytes, and a line of a 640x480 frame occupies 1920 bytes.

The ms argument is an optional timeout; the GetImage function will wait up to ms milliseconds for
the camera to return a new image, and return false if there isn’t one available within that time.

Information about the particular frame returned is found in the optional frame and time arguments. If
present, the frame argument is set to the frame number. Frame numbers start at 1 when the camera is
initially opened, and increment for each frame received during streaming mode. So, a user application
can tell if a frame has been skipped by checking the frame number.

The time at which a frame is captured (that is, at which the full buffer is received by the host) can be
returned in the time variable. The value is a system time in milliseconds. The absolute value does not
mean much (except if you are using the system clock for other purposes), but the relative times tell how
much time has elapsed during frame capture. For example, at 30 fps, the time variable will be 33 or 34
between successive frames.

The ReadyImage function can be used to check for the availability of a new image, without returning

it.

3.2.5 Error Codes

 char *Error()

Functions that return errors, such as Start() and Stop(), usually place a reason for the error into a

buffer that can be accessed with the Error() function.

DCAM Software User Manual 15

3.3 dcamWin Class
This class provides a graphics window for drawing the images returned from the DCAM. Both color

and monochrome images are supported. The image is decimated by a factor of 2 horizontally and
vertically to fit within the graphics window. For example, if the window is 400 x 300, then an image of
size 640 x 480 is decimated to 320 x 240 before displaying.

class dcamWi n

3.3.1 Constructor and Destructor

dcamWin(int x, int y, int h, int w)
~dcamWin()

Constructs a dcamWin object of size w x h, and puts its left-hand corner at position x,y with respect to

its parent window. Generally, a dcamWin object will be the child of an Fl_Window object; see Section 3.5
for an example.

3.3.2 Drawing Images

 void DrawImage(unsigned char *im, dCamera *)
 void ClearImage()

These functions control the display of images in the dcamWin window. To draw a particular image

held in a buffer, use the DrawImage function. The image is typically returned by the GetImage function
of a dCamera object. The dCamera object is included as an argument so the DrawImage function can tell
the image dimension and pixel format (monochrome vs. RGB color).

An image persists in the dcamWin display until it is displaced by another image with the DrawImage
function, or until ClearImage is called to clear the window.

DCAM Software User Manual 16

3.4 dcamDebugWin Class
Often it is useful to have a text display window for printing debugging information from an

application program. The dcamDebugWin class provides a simple output browser for printing text strings
for user perusal.

class dcamDebugWin

3.4.1 Constructor and Destructor

dcamDebugWin(int x, int y, int w, int h, char *nam e = 0L)
~dcamDebugWin()

Constructs an output window browser that can be written to. The size is w x h, and the offset from its

parent window is x,y. Generally, debug windows won’t have parent windows, and it won’t be necessary to
specify nonzero offsets.

3.4.2 Printing Text

void Print(char *str)

Prints the string str on the debug window, and scrolls the screen up so that str is visible in the

window.

DCAM Software User Manual 17

3.5 DDISP Example Application
This section presents a simple application that exercises the DCAM API. Some excerpts from the

program illustrate the basic ideas for capturing and displaying images.

3.5.1 Display Window
The display window is an FLTK window, with a graphics subwindow for displaying images.

 Fl::visual(FL_RGB8); // try to use 24 -bit graphics
 Fl_Window *mainw = new Fl_Window(327, 276, "Videre Design DCAM");
 dcamWin *win = new dcamWin(3, 23, 320, 240);
 mainw->show(0,NULL); // show the window

3.5.2 Camera Initialization
The IEEE 1394 system and the cameras are initialized, and the camera parameters are set up. After

this,

 dSysInit(); // sets global var dSys
 if (dSys == NULL) // oops, problems initializing
 {
 …error…
 }

 dcam = dSys ->InitCamera(0); // get first one found
 if (!dcam)
 {

 …error…
 }

 // set format to 320x240, RGB color, 15 fps
 if (!dcam->SetFormat(S_320x240, S_RGB24, S_15))
 {

 …error…
 }

3.5.3 Video Streaming
Next, we start video streaming

 if (!dcam->Start())
 {

 …error…
 }

3.5.4 Grabbing and Displaying Images
Once video streaming is started, images are available to the application with the GetImage function.

This function can also return information about the frame number and the time it was captured, although
this capability isn’t used here.

The following loop checks for windowing events, then

 while (1)
 {
 if (!Fl::check()) // process any window events
 return 0; // exit button pressed

 unsigned char *im;
 if (dcam ->GetImage(&im, 500)) // get the latest image
 win->DrawImage(im, dcam); // and draw i t
 }

