Overcoming the Software Crisis

Growing

Marc Brevoort

n Growing Better Software

Growing Better Software

© 2008 by Marc Brevoort. All rights reserved.
Unauthorized reproduction prohibited.

Please support independent publishing.
This book is available through:
http://www.growingbettersoftware.com

Published by Marc Brevoort.

Special thanks go out to gallery.bufferchuck.net
and curator David De Groot.

Word processing performed on OpenOffice Writer.
Graphics made with the GNU Image Manipulation Program.
Running under GNU/Linux.

R7/81012

ISBN 978-0-9559824-0-8

Software is like a bonsai tree;
It needs planning, shaping,
pruning, dedication;
Skill and art go hand in hand.

n Growing Better Software

Table of Contents

Front matter....c.ccceeiiiiiiiiuiiiiiiiiiiiriiiiieiecieciicntentieceecsecncencens 9
0.1 Acknowledgements.........c.ceuviuiiiiiiiiiiiiiiiiiiiereeeeeeneaanes 9
0.2 Preface...cc.oieniiiiieiiiei e 10
0.3 About the author........c.cocoviiiiiiiiiiii 12
0.4 About the examples in this text.........ccocoeeveiiiiinnnn.n. 13
0.5 Using this teXt......c.viuiiiiiiiiiii e, 14

The roots of sOftware........cccceveuruieieieieieiiiiiiiieceieieieiecnenes 15
1.1 The bonsai tree and the mighty oak...........ccocoeeviiinnn.n. 16
1.2 What makes a good programmer?............cceeuveneneneenenen. 18
1.3 Say goodbye to absolute truths.........c.c..cocoiiiiiiinnen. 20
1.4 Fix your development ProCess.......c..coeveuvereenieneneneneenenen. 21
1.5 Stay up to date, strategically.........c..cceeuveniiiiiiininininnan.n. 24
1.6 Learn from the masters...........c..ocoeeiiiiiiiiiininiinnnnnee. 26

Communication......c.ccocveieiiiininiiiiiiiiiiiiiiiciriiieieiiieneieiecacnne. 27
2.1 Split technical from functional issues................cccoenenen. 28
2.2 Prefer written communication...........c..ccoeeviniiiininnn.e. 30
2.3 Determine limitationscccoevviiiiiiiiiiiiiniinnnn. 33
2.4 Give the client some responsibility.............c.c.coceiiini. 35
2.5 Work from complete specifications.............cccceveveninnn.n. 37
2.6 Help your client choose what's best..............c..c.oooini. 38
2.7 Prototype On PapeT.......ccccivviiniiniiiiiiiiiiie e, 40
2.8 Share your knowledge...........ccoovviiiiiiiiiiiiiiiiiiinnininene, 42

Software Architecture........c.ccccvuieieieninininieieieniieccceceneneene. 43
3.1 What is information analysis?..........cccceeoviiiiiiiniininnnnn. 44
3.2 Beware of N instead of many.......c....cceeeeveiiiiniinininnn. 46
3.3 A rudimentary information analysis...........ccccoceeveninnen.n. 49
3.4 A recipe for diSaster.......ccviuviiiiiiiiiiiiir 56
3.5 Preventing chaos........ccooviiiiiiiiiiiiiii e, 59
3.6 Use UUIDs where appropriate.........ccocevevuieiniiiininenenen.. 62
3.7 Don't cut corners as systems evolve...........c..cccvevenennn.n. 64
3.8 Keep data structures normalized..........c..cceeuvenieninininnen.n. 68
3.9 Beware of over-analyzing..........c..cceeeueenneenieieeineinennennnn. 74

Guarantee preconditions.........cccccevvviiiiiiiiiiiiiiiiiiiiiiiiiiini 75
4.1 Perform initialization............cccocoeviiiiiiiiiiiiinininnn. 76
4.2 Verify preconditions..........coeeuveuviiiiiiiniiiiiiiiinneeeen, 77
4.3 Decide on precondition responsibility..............c.c.c.oeeee. 80
4.4 Be aware of invalidated preconditions................c........... 85

Mimimize complexity......cccceriiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiinacianes 87
5.1 Write 1ess Code.......ceeviimiiiiiiiiiiiiiiiiiiiii e 88

5.2 Avoid global variables...........cccoeiiiiiiiiiiii 89

5.3 Keep minimal scope and extent..........c.ccoeeveniiinininnenan.n. 94
5.4 Prevent side effects by functions.........c..ccoeeieeiiennian.e. 96
5.5 Pull vs. push methodology..........ccccveiiiiiiiiiiiiiinnenenen. 97
5.6 Small projects instead of big ones..............cccceeevienienan.n. 99
5.7 AvOid GOTO......iiiiiiiiiiiiiiiii e 101
IMProve Your COAeE......ccccvuiurrrierrersacessnrcasersocsssessasessassssonnss 105
6.1 Program Structure Diagrams........c..cocoeeveieiiiiininennnnnen. 106
6.2 Keep logically related code together.............c....c.c.ee..ne. 110
6.3 Split up compound IF expressions.............cccceeeuvenennen.. 112
6.4 Reduce duplication in IF statements................c........... 119
6.5 Use atomic statements..........ccoeveeviiiiiiiiiiiiniinnennnn.. 122
6.6 Guarantee operator precedence...........c.ccveveuennenenennnne. 124
6.7 Keep loops in the correct order............ccoceveveniniinenennne. 127
6.8 Prevent wasting processing power...........cocvvvvvinininnnen. 129
6.9 Put code in the most efficient order...................c........ 140
6.10 Start and finish in the same scope.............c.ccveuvennen... 148
6.11 Static vs. Dynamic programming..............cceceeevnenn.n. 151
Make your work user friendly........cc.ccoveiiiiiiiiiiniiniincinnnnnns 155
7.1 Limit user input......coooieuiiiiiiiii e 156
7.2 Provide visual ClUES.........ceviviiiiiiiiiiiiiiiiiiiiiireeeenene 157
7.3 Prevent raising errors unnecessarily.........c..c..c.oceeenet. 159
7.4 Use blocking errors sparingly...........cceveveniiveneninninenenns 160
7.5 Value the efforts of your users...........coeevveiviivininiininenn. 161
7.6 Let error messages help the user..........c..cc.ooceeviiiinn. 162
7.7 Guide the user in providing input............cccoceeiiiinennt. 163
7.8 Prevent duplicate data entry...........cccoeeeiiiiiiiiiniiininenn. 164
7.9 Make your program look familiar..........c..ccecoeeveniiinni. 165
7.10 Use information analysis in Ul design.............cc.......... 167
7.11 Don't irritate the USer..........ccoooviiiiiiiiiiiiiies 171
7.12 Don't confuse end users with jargonc....c....c........ 172
7.13 Visit the hall of fame and shame............c...ccocceeennienni. 172
7.14 Perform usability tests.......ccoeuviiiiiiiiiiiiiiiiiiiiiiiien 172
Make your work 'programmer friendly'........c.ccccocveenennenene. 173
8.1 No hard-coded, undocumented values...........c............. 175
8.2 Name boolean functions by behaviour......................... 177
8.3 Limit length and width of functions.............c......c.o....0. 178
8.4 Write modular code........c.ooeuiiiiiiiiiiiiiiiiiiiieen 179
8.5 Use a clear naming convention...........c..cceeveeienninenennne. 180
8.6 Avoid multiple declarations per line...........c....c........... 183
8.7 Parameterize all your error messages..........c..cceeuvennenn.. 184
8.8 Keep your code neatly layout..........ccocoveviiiiiniinenenan.. 186
8.9 Name for maximum readability............ccoocevreiiiiiinianne. 188

8.10 Add useful comments to your code..........c...ccevenneneene. 189

n Growing Better Software

8.11 Avoid hidden errors........ccccveuvieiiiiiiieiiiiiiiieieeenenne. 192
8.12 Be consistent........cccoviviiiiiiiiiiiiii 194
Optimizing your code.......cccoevevinininininieiniiiieiiieiecninenecnne. 195
9.1 If possible, do not optimize............c.ccoeeiviiiiiiniinenenan.. 197
9.2 Perform trivial optimization...............ccoevvviiiiiininennn.. 198
9.3 Be aware of the Big O.......ccoeiviiiiiiiiiiiiiiiiiiiiiiiineeeeen 201
9.4 Optimizing by memoization..............ccccoeeiviiiiiiini 203
9.5 Prevent iterations and recursion..........c...cccceeeeeneenennnn.. 206
9.6 Optimize only if there is a bottleneck........................... 210
9.7 Prepare data to prevent bottlenecks..........c..cc.cceeuennnne. 211
9.8 Spread out peak load.........cocvvviiiiiiiiiinii 213
9.9 Prevent active waiting...........cooceevviviiiiiiiininiiiinnnnne, 214
9.10 Allow a bit of quality 10SS.......c.oveiiriiiiiiiiiiiiiieeenane, 216
9.11 ReWTIte 100PS. . .uiuniiniiniiiiiiieiei e 217
9.12 Optimizing interpreted code..........c..ccceveiiiiiiinnennn... 219
e T) S 221
10.1 Select the right tool for the job..........ccoeviiiiiiiiiiniann.. 222
10.2 Use the Internetcooeeviiiiiiiiiiiiiiiiiiiens 223
10.3 Use Version Control.........ccceuveuieiieniniineniniiinenenianenenns 224
10.4 Bug tracking/workflow.............ccoeeeiiiiiiiiiiiiinieieniane. 226
10.5 Create a build S€IVer..........cceevuviiiiiiiiiiiiiiiiinan 227
10.6 Create a knowledge base..........covevveviiiiiiniiiiiininiinennn. 228
10.7 Set up your development environment....................... 229
10.8 Use code analysis toOolS.......c..coveveniiiiiiniiiinienienneenn. 230
10.9 Create a toOIDOX....c.uvuuiiniiniiiiiiiiiieii e 231
Prevent duplicate efforts..........ccoceviiiiiniiiiniiiiiecieciinninnnes 233
11.1 Avoid copy/paste programming..........ccccoeeveeenenienenenns 234
11.2 Standardize validations based on type....................... 237
11.3 Save time with existing building blocks..................... 239
11.4 Make it data driven..........coeeveiiiieniiinii e 241
11.5 Write knowledge-free functions..........c..c..covvvenieniini. 244
Software Quality......ccccceviiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciieneeae. 249
12.1 Do not count on diScipline...........c..ceeveveniiniiineniinenen.. 251
12.2 Don't rely on undocumented behaviour 253
12.3 Fix problems at the source.............cccecveveiiiiinininiinenen.. 254
12.4 Save time by allocating enough time 255
12.5 Plan emergencies properly.......ccccveeveuieiniiniinenennenennns 256
12.6 Defensive programmingc.ccee.eeeueenneeneeineinennenennes 257
12.7 Write testable codecccoevviiiiiiiiiiiiiiiiinnn 258
Automatic Quality Control.........c.cccceuveieeinincncncaieienenennnnes 259
13.1 Catch errors in compile timeooieiiinne. 260
13.2 Compile with O errors, O warningsc..ceceeevenenenn. 265

13.3 Write unit tests....ooiviiiiiii 267

13.4 Use automated check listsccoceveiiiiiiiiiinninininne. 273
13.5 Write tests first.......ccoveiiiiiiiiiiii 275
13.6 Run tests as part of the compile cycle..........c............ 276
13.7 Find anti-patterns during compilation....................... 277
13.8 Equip your system with a self-test.............c..c....coei. 279
13.9 Let the system keep @ log........coveveniiiiiiiiiiiiniinenenn. 281
Working with databases.......ccccoeveuiuinininieieieieiniieieiiienennnn, 283
14.1 Choose (non-)standard SQL...........ccoveiiiiiiiiiiininnnennn. 284
14.2 Keep database tables Nnarrow............ccceeveeeieninnenenenn. 286
14.3 Use parameterized qUeries.......c..c..ceeuveiiniiiiniininiinennane. 288
14.4 Keep the Cartesian Product small............................. 290
14.5 Keep data values out of program code....................... 292
14.6 Explicitly name your columns..............cceeeveiiennennne. 294
14.7 Access data via an interface...........cccccoeeeieiniiiiininni. 295
14.8 Use informationless Keys........cooeeveiiiiiiiniiiiininnenenne. 297
Security considerations..........cccceviiiiiiiiiiiiiiiiniiiiiiiiinen, 299
15.1 Avoid security through obscurity........c...ccooevvveiini. 301
15.2 Be aware of ways to bypass securityc...c.cceceeneene. 302
15.3 Never trust user inputcocceeiiiiiiiiiiniiiiine. 303
15.4 Avoid clear-text passSwords.........coccveveininininieninenenne. 307
15.5 Use one-way password encryption..........c...ccoceeuveninis 309
15.6 Be aware of sniffing.........c..coooveiiiiiiiiiiiiii 312
15.7 Avoid buffer overflows........c...cooeviiiiiiiiiiiiiiiiinninine. 313
15.8 Add a bit of chaosc.ceeviiiiiiiiiiiiir e 315
15.9 Treat sensitive information carefully.......................... 316
15.10 Don't rely on software alone............cccoeeeeveieinninene.. 317
Programming for the web........cc.ccccceuviiiiiiniiiiiiiiinniincannee. 319
16.1 First of all, get the basics right.............ccooeiiiniini. 320
16.2 Keep core dependencies to a minimum...................... 322
16.3 Decide on a character encoding............c..cceevenenienenen.. 325
16.4 Use style sheets to control layout........c....c.ceeveviienint. 327
16.5 Skip the HTML/Flash/HTML cyclec.c.coeeenet. 328
16.6 Use gracefully degradable Javascriptc..ceeueene. 330
16.7 Let web pages post to themselves............c..c.oeeviiini. 332
16.8 Validate and compute on the serverc..cc.......... 334
16.9 Use one form called formc...ccoevvviiiiiiiiiiinenieninne. 335
16.10 Name and ID HTML fields equally............cc.cceuenenen. 337
16.11 Use DIVs to allow dynamic behaviour 338
16.12 Avoid framesc.ceeuueeuiiiiriiiiiiieie e 341
16.13 Prevent unnecessary reloadsccceeveviiininiinennn. 342
16.14 Avoid using the userAgent string..............c.c.oceeenet. 344
The future of programming tools.........ccccceuiuininininininnnnee. 347

17.1 Variable code layoutc..coeeveeieniiiiiiiiiiiiniiienenns 348

n Growing Better Software

17.2 Integrated PSD generation..........c..ccoceveveivinienininenent. 349
17.3 Design Warningscoeeveiveiiiiiiniiniiniieieieeeeeeeenenes 350
17.4 Automatically rewriting codecooceiviinini 351
17.5 Tools that help us design for change..........c...cc.......... 352
17.6 Parallel programimning.........c.cceuveeureeniereineneenennenneneanes 356
General considerations..........cccceeivuiininiiiiiiiiiiiiiiiiiin., 357
18.1 Be aware of existing standards..........ccc..cceeeieninian.e. 358
18.2 Know the basic stuff...........ccooociiiiiiiiiiiiiinn 359
18.3 Know your environment..........c..cccoeeeeeniiiinininenenenn.. 359
18.4 Learn how to build it yourself............ccocoeevviiiiiinini. 360
18.5 First make it work, then make it great....................... 360
18.6 NO asSSUmMPiONS......ouvvviiiiiiiiiiiiiiiie e 361

18.7 Remember to have a good time...........ccccceeveveneniinenn.. 361

Introduction

Front matter

0.1 Acknowledgements

Thanks go out to all those who made this book possible. To my
wife, who deserves more attention than she got during the
process of writing this text; to my father, who introduced me to
the digital world; to the many programmers who wrote the
software used in putting together this text and provided it to the
world for free; to those who share their programming knowledge
online; and to all those who contributed their support to this
text.

m Growing Better Software

0.2 Preface

Over the years that I've worked as a programmer, to my surprise
I have observed that many professional programmers have no
formal education in computer science. One can only make
guesses about the cause: Maybe it has always been this way, or
perhaps it is the inevitable result of the burst .com bubble. In
any case, source code is often of such poor quality that it is
surprising that some systems work at all. It turns out there are
no bad intentions involved. All the programmers that I know do
the best they can, with the skills that they have.

The purpose of this text is to improve the quality of source code
of computer programs by increasing awareness in programming
by addressing common mistakes that occur over and over again.

To this end, this text provides techniques that can help to
prevent and solve possible problems that occur when writing
code. Additionally, this text may be used to troubleshoot existing
systems and find out what could be done or what should have
been done to get better results.

In the book Gulliver's Travels by Jonathan Swift!, there was a
war going on between 'Big Endians’ and 'Small Endians’ over the
issue of whether a boiled egg should be broken on the big end or
the small end. Obviously there are benefits and drawbacks to
either way, and there may be no ‘right’ or 'wrong’ way to do it.
Similar heated discussions without ‘right’ or 'wrong’ answers go
on about various topics in programming; for instance, 'Big
Endian’ and ’Little Endian’ byte ordering in fact borrowed its
name from the aforementioned book.

1 See Gullivers’s Travels, by Jonathan Swift (1667-1745), online at
http://www.gutenberg.org/etext/829

After giving it some thought, I have deliberately decided not to
avoid topics to which no absolute truth exists. As I intend to
increase awareness in programming, I feel it is better to highlight
the different sides of the story and let readers form their own
opinion, than to keep these subjects untouched.

In many cases, the topics covered have impact far beyond
written source code, but apply as strongly to other areas as well.
To name an example: Version control clearly does not apply only
to source code but also to written documents. Other examples
include initialization, preventing duplicate efforts, and so on.
When using this text, the programmer should be aware that
topics may be broader than writing source code, and seek other
situations where the same principles might apply.

I have tried to keep this text simple enough to be used by
average programmers, but even experienced programmers may
still learn a thing or two from this text.

This text does not pretend to have the ultimate answer to all
programming issues, but addresses common problems to make
programmers aware of the trouble that frequently observed
programming styles may cause. By increasing this awareness
and providing alternatives to problematic programming style, I
hope to provide guidelines that will help improve the average
quality of source code.

n Growing Better Software

0.3 About the author

Over two decades ago, I started programming computers in
BASIC, which was the main programming language of home
computers at the time. I've been writing commercial software for
around fifteen years, of which around a decade professionally. I
have programmed in a wide range of programming languages,
ranging from low-level languages such as assembly, to high level
languages such as Java, Perl, PHP and C# and just about
everything in between. I have also played around with a few
rather exotic languages such as Forth and Miranda, which
influenced my programming style for the better, although I've
never used those languages for anything serious. Over the years,
I have developed anti-virus software, file system tools, audio
processors, various interpreters, copy protection schemes, cross-
assemblers, device drivers and content management systems, as
well as business automation and workflow software.

I realize this does not make me an authority on the subject of
programming. However, I feel that after decades, I do have some
knowledge that is worth sharing. I've learned mostly by reading
publications and books by others; Now that I've found the time
to put together these pages, I hope they will give back a bit and
help make the programming world a better place.

0.4 About the examples in this text

This text contains snippets of source code intended to illustrate
the situations being discussed. These situations are generally
not bound to any programming language in particular. For this
reason, the source code for most examples in this text is written
in a fictional programming language.

This fictional language will show strong similarities with a large
number of modern, imperative programming languages such as
C, C++, Java and C#. One should however not expect that code
in this text actually compiles or runs on any of these platforms;
the code is merely intended to illustrate a point. The principles
shown should apply to most programming languages out there.

Over the years, programming languages have been extended
with many useful features, such as object-orientation and
exception handling. These are useful tools that the programmer
has available to let the code work as intended. However, the
techniques discussed in this text generally are intended to be
independent of programming language. It is possible to write
object-oriented programs in machine language, as it is possible
to simulate exception handling in BASIC (even the old-fashioned
type, that still used line numbers). In this text the author
attempts to view the syntax of a programming language and
logic apart from each other. Programming languages are merely
a means to express logic; this text attempts to order that logic.

n Growing Better Software

0.5 Using this text

This text can be used in various ways. First of all, it is set up in
such a way that you may read it, front to back.

As most topics are kept brief, you can also choose to read the
topics that apply to you at that moment. Used in such a
manner, this text may serve you as a reference.

You may have noticed that most chapter titles are set in an
imperative tone. This will allow you to take the table of contents
and use it to jog your memory while developing.

Finally, you may use the table of contents as a check list to
troubleshoot your project.

Chapter 1

The roots of
software

As the capabilities of computer hardware evolve, software
systems are getting increasingly complex. This complexity
becomes more and more difficult to manage. The result is a
software crisis which has been going on for decades- where
software is more often than not of poor quality. This poor quality
is somehow accepted, by users and developers alike, albeit not
without complaints- all too often 'the computer' is blamed when
systems do not work as they should.

The only group of people on the planet capable of resolving these
problems are software designers. Are we up to the task of
keeping the most complex systems on the planet in good state?

n Growing Better Software

1.1 The bonsai tree and the mighty oak

Once upon a time, two trees lived in a faraway land. One was a
small bonsai tree; the other was a mighty oak. The bonsai was
taken good care of by its master. Every now and then, its
branches would be trimmed with delicate instruments, shaping
it into a perfect work of art. The mighty oak proudly looked down
upon the bonsai tree. “What good is a tree, if it won’t provide a
shelter from the sun?” it would say. “And what is up with all the
spoiling?” After all, the mighty oak had grown there all on its
own, without help, rooted firmly in the soil.

The pride of the oak was misplaced. Over the years, it had
gathered quite a bit of moss and lost quite a few branches
during thunderstorms. The oak didn’t mind; it usually said that
it didn’t need those branches anyway, as it had so many of
them. But it had stood there for so long in ever changing
weather, that it had long started to rot from the inside. It was
plagued with termites and other little bugs. Although
magnificent at first sight, the oak was doomed.

At one dark night, there was another thunderstorm. A lightning
bolt struck the old oak. The oak lost another branch, which fell
on the house of the master of the bonsai tree. It took weeks to
repair the damage. The old oak tree was considered a safety
hazard and cut down. A big chainsaw cut through the rotten
wood in seconds. A new acorn was planted. The bonsai tree
didn’t complain. It was being treated with even better care from
that day on, as was the young oak.

The moral of this metaphorical story is that great software
design doesn’t happen overnight. Most systems 'happen' by lots
of changes over a long period of time. This is understandable:
the whole point of software is to be adaptable, in contrast to the
hardware that it runs on.

Strangely, for a long time this fact has not been given due credit.
Many computer science students have been taught to design
systems by thinking of them as static designs, rather than as
evolving systems®. Requirements would be collected, the system
would be implemented and the project would be considered
finished.

The benefit of this approach is that it allows us to precisely
define when a system is considered finished. But in reality, we
simply cannot foresee all future requirements of a system when
we start working on it. As a result, we do not build the system
all at once, but in phases. Each phase comes with its own set of
requirements; new requirements often face as a result of how the
system evolves.

Because of this, we could say that complex software is never
statically designed, but grown. The result often feels quite
organic indeed, and may grow out of our control unless we take
proper care of our systems. Only systems that are taken proper
care of will be a joy to maintain.

2 Fortunately, the ever-changing nature of software is starting to gain the
recognition that it deserves. Agile development methods are now being
taught in most courses.

n Growing Better Software

1.2 What makes a good programmer?

In air travel, a good landing is one_from which
you can walk away.

A great landing is one after which
the airplane can be reused.

A good programmer is a programmer that gets the job done. A
problem arises, it is analyzed, a solution is implemented and the
problem is solved.

As it turns out, what is commonly considered ’getting the job
done’ is not even half the work. Around three quarters of all
programming hours spent are in maintenance activities®. A great
programmer is aware of this, and designs software in such a way
that the burden of maintenance is eased. As it turns out, great
programmers can be ten times as productive as ’journeyman
programmers’ - and they’re a bargain, because their salary is
rarely proportional to the time they save.

Maintenance activities involve, mainly:

e Fixing bugs and other issues that may still arise as the
system is used

e Updating the system (and documentation, etc.) to reflect
the latest requirements and insights

3 See The Magic Cauldron, online at
http://www.catb.org/” esr/writings/cathedral-bazaar/magic-cauldron/

The easier a programmer makes it to perform maintenance on a
program, the better that program is. This is not to say that when
a programmer has built a maintenance-free system, it
automatically makes him or her a great programmer.

The system may have been delivered a year after the deadline.
Or it may have cost ten times the intended budget. The
programmer may be a first class jerk, claiming all requested
features are 'impossible’ to implement - leaving the customer
with a useless system.

A great programmer is not only able to deliver a low-
maintenance system, but also able to deliver it on time and
within budget - while staying friendly to the customer and
providing added value to their business.

m Growing Better Software

1.3 Say goodbye to absolute truths

In creating software, we are faced with some principles based on
formal, classical theory. Some of these principles are: Normalize
your data structures, communicate, follow procedures to
guarantee software quality. These are indeed all best practices.

We should not abandon these, nor take them too far. It doesn’t
require explanation that abandoning best practices altogether is
a bad idea. But taking best practices too far may also harm our
project. We may get stuck over-analyzing a problem, be in
endless meetings to discuss changes and be hindered by the
bureaucracy of formal procedures.

There are situations where opposing perspectives exist on how to
best deal with certain issues. People tend to think that if one of
these perspectives is right, the opposing one must be wrong.
This is a misconception; we should not always think in terms of
right” or ’'wrong’. Sometimes the perspectives are simply
different.

This text deals with a few of such situations, neither of which is
always right or always wrong. I will try to highlight the
drawbacks and benefits of either side, when I can. When dealing
with these topics, please consider both perspectives, whenever
applicable. After careful consideration, choose the one that best
suits your purposes.

1.4 Fix your development process

Often, the software development process is defined as something
like this:

1. Coding (new features)

2. Testing

3. Fixing bugs

4. Delivering the project

5. Cleaning up code

6. Writing documentation

The last two steps (after delivering the project) fall in the “We'll
do that later” category, which we might as well call the “We're
not going to do that” category, because usually the next
development cycle starts as soon as a project is delivered. As a
result, there is no time to clean up the code or to write
documentation. The lack of cleaning up code in turn causes
more bugs, which in turn leaves even less time for the "We’ll do
that later” steps. In other words, the above development process
is fundamentally broken.

The following revised development process addresses this
problem. Documentation, code reading and testing have become
an integral part of the development process, instead of being
treated as overhead.

m Growing Better Software

1. Writing documentation (specifically, producing a
functional specification that is accepted by the client)

2. Designing and writing unit tests (see page 267)

3. Coding (new features) based on documentation

4. Building code and running unit tests. If any bugs were
found, fix them and run unit tests again

5. Code reading (by another team member)/cleaning up
code. If any changes were made, go back to step 4

6. Perform peer reviews against functional specification:
Let another team member test your code. If any bugs
were found, fix bugs and go back to step 4

7. Nightly build

8. Regression tests. If any bugs were found, fix bugs and
go back to step 4

9. Integrating partial documentation with the master
document

10. Delivering the project along with the documentation

When our team adapted this process, the defect rate of our
software dropped dramatically. The first sign of this was that the
client started reporting mostly old defects (from previous
releases) rather than new defects. At some point, old defects
stopped coming in, which in turn freed up some time for some
long overdue code cleaning. In effect, the extra steps made our
development process more efficient.

By working according to a documented development process, all
team members will know what is expected from them at what
time. This helps ensure proper communication at critical
moments. New developers that join the team will be able to get
up to speed quickly.

Implementing a new development process takes time, but peer
reviews and code reading can be introduced by simply deciding
to. Take in account that programmers can be sensitive about
their code. There is a risk that some team members will feel
personally attacked by code reading sessions. Because of this,
we must describe and agree on which coding practices are
acceptable and which ones are not. Issues not described should
not be part of the formal evaluation, although they may be
chalked up for inclusion at a later stage.

Before you start peer reviews or code reading sessions, make
sure you can track the number of defects, so that your team can
ask for a raise once the defect rate drops.

m Growing Better Software

1.5 Stay up to date, strategically

As programmers, we continuously need to invest in learning new
things to keep up with the state of technology. As we are mere
mortals, we can not possibly learn everything there is to know at
the rate that things are developing. We have to make choices to
get to the skill set that best serves us.

In choosing what skills to develop, you may find the following
criteria useful:

e What are your knowledge gaps?

e What are your interests?

e What skills are in demand?

e How durable do you want your skills to be?

e Do you want to specialize in a certain subject or broaden
your horizon?

After having programmed in assembly language for a few years, I
found that those skills proved not to be very durable. It was
quite an effort just to keep up to date, as hardware was evolving
rapidly. Also, I found that programming in assembly very much
limited me to writing code just for the processor and platform
that I happened to work on at the time.

If marketability of your knowledge is important to you, you can
either choose to specialize in a subject that very few people know
about, or go with the latest hypes. Be prepared however, that if
you follow the latest hype, the bubble may burst and you may
find yourself unmarketable.

If you keep a toolbox or set of libraries, and you don’t want to
keep rewriting it from scratch over and over again, durability of
your knowledge may be more important to you. In general,
technologies that have been adapted to various platforms and
operating systems are more resistant to ageing than vendor-
specific technologies. Also, standardized technologies are often a
strong base to learn to work with vendor-specific ones. Thus the
emphasis of this text on writing portable code; If you can write
cross-platform software, most likely you have adapted a more
durable skill set than someone who only follows the latest hype,
or who develops only for one specific platform or operating
system.

A good exercise to write proper software is to port over a piece of
software from one platform several others, each time porting the
last port to the next platform. When done right, after each port,
your code will tend to contain less platform-specific code. In the
process, you will probably pick up a few platform-specific skills,
which will likely be key skills for that platform. These key skills
will serve you well when at some point you need to target that
specific platform.

m Growing Better Software

1.6 Learn from the masters

We normally do not hear the names of programmers in the daily
news. As it seems, most programmers usually keep a low profile.
However, there are quite a few masters that have earned respect
and a worldwide reputation by their efforts. To name a few:

e Richard M. Stallman, founder of the GNU project;
e Linus Torvalds, creator of the Linux kernel;

e DBrian W. Kernighan and Dennis M. Ritchie, inventors of
the C programming language;

e Larry Wall, creator of the Perl programming language;

® Andrew S. Tanenbaum, creator of the Minix operating
system,;

e Donald Knuth, author of The Art of Programming.

There are many more that deserve a place in the above list, but
space is limited. If you didn't make it into the list - better luck
next time.

In any case, many master programmers have made the source
code of their life’s work available online. Your favourite search
engine will take you there, and will allow you to learn a thing or
two from their code.

Chapter 2

Communication

Except for projects that are carried out only for and by the same
individual, we will have to deal with other people when
developing software: our bosses, our co-workers, the client, our
users.

Communication - especially proactive communication - is a key
skill in this. Effective communication works in two directions: It
will help us understand what is expected from us, and it will
help the others understand what they are going to get. By
communicating about a system, the client will feel involved in its
design and more readily accept it. It greatly increases the
chances that a project will be successful, and should it project
fail with flying colours, at least it will be obvious why.

m Growing Better Software

2.1 Split technical from functional issues

We may perform an information analysis with or without
discussing a system-to-be with anyone. The guideline for
deciding between discussing the system with someone else or
not is very simple; if there is a client involved, we must discuss
the system with that client. The word ’client’ is used in the broad
sense of the word; the client may well be your employer.

The initial talk with a client to discuss a system should be
simple enough; it is intended to give a broad overview about
what it is that we are going to build. In any project, if we are to
keep grip on a project, we should separate functional concerns
from technical concerns from the beginning on. Functional
matters can be identified by asking what: “What problem are we
trying to solve?” Technical issues can be identified by asking
how : “How are we going to solve the problem?”

As projects get discussed in more and more detail, the
boundaries between 'what’ and 'how’ will become more vague.
We may have to tell 'no' to the client. When a client says “We
want a button that does this or that”, what is the problem that
the client wants to solve? Surely the problem is not to add a
button. Adding a button is how the client envisions solving the
problem. However, a button may not be the best way to solve the
problem. We were hired for our expertise, it is all right to subtly
stop the client from telling us how to do our job.

Of course, blurting out “Don’t tell me how to do my job, am I
telling you how to do yours?” won’'t help. Our client will be
offended. Instead, you can ask, “What is the problem you are
trying to address by adding a button?” and suggest, for example,
that a drop-down box may be a better choice to address the
problem, if you think this is the case.

Keep in mind that the client is the functional designer of the
system; we are to stay in charge of technical decisions. These
technical decisions also include the platform or programming
language in which the problem is to be solved.

m Growing Better Software

2.2 Prefer written communication

It is in human nature to try to get the best possible deal, and
then to try to push things a bit further. When dealing with
clients, this can be a source of stress to both sides. During a
coffee break (or over a nice cup of tea, if you're British), a client
may ask for a little something extra, we say “sure” and before we
know it we find ourselves trapped in an endless project, with
heavily increased maintenance.

We shouldn’'t assume that the client will take care of
documentation for us, as the informal talk is beneficial to them:
the added functionality is off the record, but it will be built in
anyway, most likely at our personal expense.

Should the ’little something extra’ contain a bug, the client will
rightfully insist on having it fixed. The more little extras we
provide, the bigger the amount of time that needs to be spent off
the record.

We can protect ourselves from this in two ways: by keeping
things formal or by simply saying no. Clients like to hear yes, so
generally we will keep things formal. This doesn’t mean writing a
full fledged design document for every little extra, but the least
we can do is keeping a record, for instance by confirming the
functionality by email. A few lines is enough, as the following
short example will show.

Dear Client,

We discussed adding a menu choice 'Save All' intended to save
all open files instead of just the current one.

This menu choice will be built in as soon as this email is
confirmed by a responsible manager.

Best regards,

Programmer Bob

By having a written record of the requested new functionality, we
create the possibility of charging for it.

Still, sometimes it is better to say no. At some point, I was at a
client to rescue a project which was months overdue because of
a batch process that was troubled by bugs. Halfway the first day
of debugging, the client asked if I could add an extra view to the
database: “It will only take you ten minutes”. Obviously, adding
functionality to an already late project which I was supposed to
rescue wasn't why I was there. I tactfully told them that that
wasn't why I was there, but that I'd consider it if there was any
time left by the end of the day.

As it turned out, the system was in worse state than expected.
After four days of working overtime, everything was finally
working the way it should. The next Monday, the project was
finally taken into production. The rescue operation was
considered a success. The extra view was never implemented.

m Growing Better Software

Documentation also helps communication. At some point, our
team spent several weeks writing an official functional design
document for a complex system of a client. A few hundred pages
of condensed documentation were produced. We didn’t think the
client would ever pick up the documentation and read it, but at
least it was paid work.

What happened next was unexpected. The functional
documentation became a central tool in filing bug reports, and to
distinguish between bug reports and feature requests. We got
comments such as “According to paragraph N, the system
should raise an error message in these conditions, but it
doesn't”. and “The system raises an error message and the
documentation mentions that it should, but a non-blocking
warning message would be enough. Would you give an estimate
needed for this change?”

Ever since we started seriously documenting the system, the
documentation was considered a requirement to maintain
software quality. It made expectations clear to both parties
involved.

2.3 Determine limitations

During the phase in which we are discussing a system with a
client, it is important to know which measurable standards the
system should live up to. We should make sure the limitations of
our system are known by both parties involved, objective and
realistic. Important to consider are for example:

e How much data must the system be able to handle?

e How many users should the system be able to serve
simultaneously?

e How much scheduled/unscheduled downtime is allowed?
e How fast should the system respond?

e How many bugs is it allowed to have?

e When should it be delivered?

e How much is the system allowed to cost?

e What software (and which versions) is needed by our
system?

m Growing Better Software

e What are the specifications of the hardware will be used
to run the system on?

e How much drive space will be available?

® How much network bandwidth will be available?

e How much RAM?

e What screen resolution (or range of screen
resolutions) do we need to support?

The list above is still incomplete, so you can extend it as needed.
Needless to say, there is quite a difference between the
complexity of a birthday calendar application of a start-up
company, and a governmental tax database containing data of
the entire population of a country. Likewise, the correctness of
an air traffic control system is usually more critical than that of
a program that plays tic-tac-toe or a nice game of chess.

It should be obvious that certain combinations of limitations in
writing software are mutually exclusive. If our client demands
such combinations, it will make it highly unlikely that our
project will succeed. There is a saying that goes around in
various incarnations:

Cheap, good, fast - choose any two

This should be kept in mind at all times when discussing system
limitations with our client. Based on the demands the client
makes, we can make some demands ourselves.

2.4 Give the client some responsibility

While building a system for a client, we will often run into little
details that could not have been foreseen. We may often come to
a solution with a bit of creativity, when there are no big, obvious
deviations from the original project specification. In many cases
however, it is a good idea to consult the client. This will prevent
the client from being overwhelmed with a large number of small
surprises in a later stage.

Unfortunately, we can not always count on the availability of our
client. If our client is not available for comments, we may get
ourselves in trouble. We may decide on a solution that we think
is best, while our client may have preferred the other solution.
Either way, we may be wasting time on implementing a wrong
solution.

The more little assumptions we make, the greater is the chance
that at some point we deviate from the wishes of the client. At
the very least, this will make the client less accepting of the final
result.

Because of this, it is vital that the client is given some
responsibility for the outcome of the project. Customers do not
always have to be around while we are developing and designing
for them; often a one-minute phone call or lunch break talk can
clear up a lot. In any case, our clients should be aware that their
availability and choices can greatly influence the outcome of a
project. This isn’t a bad thing; it will increase their feeling of
involvement for the project, which will help during the
acceptance phase.

m Growing Better Software

Things don't always go our way. In the past I've heard clients
ask for features that would cause their project to get into big
trouble. In some cases, these clients could be brought to their
senses by explaining what the implications would be: ”I could
build this feature, but it would cause the system to break. It
won’t be in your best interest”.

In other cases, I've heard customers insist on features that
would break their system, even after they were warned about the
implications. Invariably, this was the result of political games.
So, the features were implemented and the system broke down.
At least the responsibilities were clearly defined.

In short, our customer is part of our team and should be
available for comments. This will help prevent a project from
getting stuck and will help its acceptance. Be sure to be aware of
the risk involved, which is that some clients like to change their
mind all the time. Written communication will help address this
risk.

2.5 Work from complete specifications

Many a programmer has sighed, “Clients don’t know what they
want”. We build something, and when we show it to the client,
it's back to the drawing board. This has nothing to do with the
natural growth or evolution of the system, but with incomplete
or wrong specifications for part of the system. We must make
sure the functional specifications are sufficiently complete and
well understood by all parties before starting to implement
something. It is our job to help our clients figure out what they
want.

When clients say “I want to be able to choose the name from a
list”, they probably do not realize the implications that this may
have. Where does the list come from? Who maintains it? Do we
need to create a maintenance module for the list too? What
about access control for this module?

Then we need to deal with the question 'how many’ and with
constraints: How many names are there in the list - ten, one
hundred, millions? What if there are no names in the list? What
if there is only one name in the list, should it be preselected or
should the default be empty to prevent mistakes? Is it obligatory
to choose a name from the list? Can multiple names be selected?
What if the desired name is not (yet) in the list?

All these questions and more will influence the design decisions
that need to be made to answer to the wishes of the client. They
will also influence the time needed to implement the result.
Clients who are aware of these questions will also be aware that
it takes time to make a system that suits their needs.

m Growing Better Software

2.6 Help your client choose what's best

To clients, the ideal solution is the solution that best serves their
needs. Once, I had a client with employees performing surveys
throughout the country. The results were to be sent back to
main office on a daily basis, to be published on a website. The
employees had laptops at their disposal, with modem internet
access. Manually entering the results online via a slow modem
connection proved impractical, and at hotel phone rates, quite
expensive. A program specifically aimed at entering and sending
the data was estimated to take a week to develop. Deploying
such a program to the laptops that were always on the move was
perceived as an issue. The website ran on Linux with Apache,
whereas the laptops ran Windows.

The solution proved simple and effective. The client turned out
to be relatively proficient in creating spreadsheets. With only a
slight bit of assistance, he managed to create a spreadsheet that
accepted and validated survey data. The spreadsheet was
exported to a delimited text file. These text files could be
uploaded to the server in seconds, solving the problem of the
high phone bills. In one day of work, an import module was
created for the web server to accept and validate files. To receive
data from the notebooks, the web server would have needed an
extension anyway, so no additional work was needed here. The
import module was pretty picky about what it considered valid
data; only completely valid files were accepted. In case of
trouble, a clear log explained exactly what went wrong.

The client only specified what the problem was (high hotel phone
bills) and wanted a solution for that. The solution initially
suggested by the client was a separate application, which would
have taken considerably longer to implement, even without
considering roll-out.

The client was open to alternative solutions. The spreadsheet
solution was realistic, took less time to implement, and most of
the work could be done by the client himself. A bit of training to
the users proved to go a long way for this client, who was on a
low budget.

Should a separate application have been built, the time needed
for return-on-investment would have been considerably longer.
In this case, development time had been cut drastically. In
addition, the solution had some benefits:

e Would updates be needed to the spreadsheet, the client
could perform these himself.

e The spreadsheets were exported and sent as plain text.
This not only cut the transfer time, but also eliminated
the dependency on a specific spreadsheet format. The
result is more flexibility: should the client decide to
change from one spreadsheet program to another, or to
have an application developed to send the data, the file
format can be maintained.

e The solution provided useful functional redundancy: If
directly uploading the data would fail for some reason,
sending the spreadsheet files by e-mail was a realistic
alternative.

m Growing Better Software

2.7 Prototype on paper

When we are as lucky as to design a system from scratch,
especially in its early stages, a lot of input from the client is
needed to provide the best match between our technology and
their wishes. Providing a prototype in this stage greatly aids
communication. Unfortunately, there is a risk when providing
the client with a coded example: it is easily confused for the real
thing, and the client may grow impatient waiting for the final
version. After all, in the first week of the project the system was
already almost done, wasn'’t it?

To prevent this confusion, I find it helpful to draw the earliest
draft of the prototype on paper, rather than showing a model on
screen. Before writing a single line of code, this allows me to
visually show what happens when a button is clicked, and
feedback from the client can immediately be taken into
consideration. By making careful notes, a rather precise model
can already be made at this stage, and the notes double as
documentation. This paper prototype serves as basis for a
functional design document (put together with a word processor)
which basically outlines how the system should react under all
circumstances. Once this document is ready, we pretty much
already have a user manual for the system, which doubles as a
functional design document. There will be little room for
confusion about the scope of the project: Whatever is not in the
documentation was outside the scope of the project.

Alternatively, if you're handy with computer graphics, you may
be able to draw a quick mock-up of what the system will look
like. Especially changes in existing user interfaces can be drawn
quickly, as a screen shot may serve as basis for the picture.

For communication purposes, it is no problem if a few user
interface elements are a few pixels off; this will in fact help the
user distinguish between our prototype and the finished
product.

Another approach is to let the users create a paper prototype
themselves. This will take you straight into their world, which
will help you understand their perspective on things. The
involvement of the users will help their acceptance and the
usability of the system.

Keep in mind, however, that your users may not see the
technical implications of the system that they're proposing. You
may need to adjust their prototype to make it realistic.

m Growing Better Software

2.8 Share your knowledge

Show your code to fellow programmers and explain it to them.
This will automatically make it easier for them to maintain your
code, should it at some point be necessary.

It will also stimulate your co-workers to give comments on the
code. When a co-worker asks you “Why are you doing that in
this-or-that way?” or “Have you thought of ...”, this either gives
you a chance to improve your code or their skills.

Knowledge may also be shared by means of code reviews. Other
ways are by making documentation available in a known spot (a
public share, version control system or a wiki), by creating a
forum, mailing list, knowledge base or otherwise.

Chapter 3

Software
Architecture

A key issue that distinguishes great programmers from average
programmers is the architecture of their software systems. A
system that has a solid architecture will take less effort to
maintain and extend. This chapter discusses the cornerstone of
proper system architecture: information analysis. Information
analysis deals with the structure of information. A proper
understanding of information analysis will help us keep our
information and our systems structured, making it a lot easier to
develop low-maintenance systems. Lack of understanding is
almost a guarantee for chaotic, high-maintenance systems.

m Growing Better Software

3.1 What is information analysis?

Information analysis is the practice of obtaining information
about information (which is also called meta-information),
usually with the primary goal of designing a database or data
structure capable of effectively storing the given information. A
secondary goal is to provide enough flexibility to allow us to
enhance the application later on, which is essential for the
healthy growth of a system. Usually, information analysts
represent the relationship between bits of information by means
of diagrams. Commonly used methods are:

e ERD (Entity Relationship Diagrams)

e NIAM (Nijssens Information Analysis Method, later
renamed Natural-language Information Analysis Method);
which evolved into

e ORM (Object-Role modelling)

e FCO-IM (Fully Communication-Oriented Information
Modelling)

These methods serve mostly the same purpose. Their specific
details are beyond the scope of this text, but we will briefly
discuss the underlying concept.

It is commonly understood that information analysis needs to be
performed when designing databases and data structures. As
our code needs to deal with the data structures that it uses (be it
databases or otherwise), it is directly influenced by the quality of
the information analysis, as will be shown briefly.

In its simplest form, an information analysis describes only
relationships between things. This is done in terms of 0, 1 and
many. This is reflected in our code as follows:

e The number O usually implies that we need to perform a
validation for the existence or absence of a relationship:
“If the person does not have an email-address, do not
attempt to send mail there”.

e The number 1 usually implies a relationship between
different types of data, and thus our system will contain
code to handle that relationship.

e The number 'many’ usually implies the presence of
multiple relationships; for instance, a person can have
many phone numbers. In code, this general case is
normally solved by means of a loop.

m Growing Better Software

3.2 Beware of N instead of many

All diagrams in the world won’t prevent us from solving problems
for a fixed number of entities, rather than for 'many’ of them.
This is a common mistake, which we should be aware of when
designing a system.

This mistake manifests itself in data structures that have several
fields or properties that represent essentially the same type of
information, for instance:

class person
{
date birthdate;
string name;
person childl;
person child2;
person child3; /* fixed maximum of 3
children */

We can't iterate these properties with a loop*; this means we will
need to write several pieces of code, one to deal with each
property. Changes in one piece of code imply the others need to
be updated as well. In other words, solving a problem for a fixed
number of entities rather than 1 or many will increase
maintenance. It also creates an unnecessary logical limitation in
our system.

4 Some object-oriented languages provide a workaround by allowing access
to Run-Time Type Information. This will however disallow us to find
certain problems as early as in compile time.

The following example has basically the same problem, although
it is slightly less obvious, and as such much more common:

class person

{
date birthdate;
string name;
phone phoneHome;
phone phoneOffice;
phone phoneCell;

When several such mistakes meet, our metaphorical bonsai tree
soon turns into an old, rotten oak: we must write code for all
permutations of the mistakes, and maintenance will quickly get
out of hand®. Additionally, data structures designed for N
instead of 'many' are sensitive to design changes. The following
solves this, and once again allows us to loop through the list of
children or phone numbers.

class person
{
date birthdate;
string name;
person [] child; /* array of (many)
children */

5 [If the phone fields are all merely informative, only intended to provide
information to humans and never used by the system itself for automation
purposes, we can actually get away with this. But we can not predict what
the system will look like in the future, so why should we take the risk?

m Growing Better Software

The case of the various types of phone numbers is solved in a
similar manner. By defining the various types of phone number
as enumeration, their proper usage in code can be checked in
compile time.

type phone

{
enum numbertype= (Home, Office, Cell);
string number;

class person
{
date birthdate;
string name;
phone [] phonenumber; /* array of (many)
phone numbers */

Another benefit from this “many instead of N” approach is that it
also helps prevent users from abusing fields for the wrong
purpose: If a client has several cell phones and no home phone,
we can allow our users to select the correct type of phone
number, rather than forcing them to enter a cell phone number
in a home phone or fax number field.

When these fields are for use by human operators only, this may
not be a problem. However, if at some point we want to extend
our system with faxing functionality, it would be very convenient
if the "fax number” field on screen actually contains a fax
number. A proper design will help us prevent such database
pollution.

3.3 A rudimentary information analysis

In this paragraph, I'll show that at least a rudimentary
information analysis does not have to be a big effort. No fancy
tools or diagrams are required.® Let us take a look at a simplified
example, the information analysis of a book (which, as it
happens, is a pretty good read).

Writing Solid Code
Author: Steve Maguire
ISBN: 1556155514

What can we say about the above book? First of all, the above
information is not complete. If we would be computers, we would
not know what the first line of the above example would
represent. Speaking as humans, we actually do not know this
either. We can say that the book is 'Writing Solid Code’, which is
not entirely accurate. It is more accurate to say that the title of
the book is 'Writing Solid Code’. The name of the author is Steve
Maguire, and the book has an ISBN (international standard book
number) which is 1556155514.

Let us proceed by making statements about the intended book.
Ideally, in a proper information analysis, these statements are
facts about the real world. In any case, the statements will
represent the inner working of our system. The closer the model
of our system matches the real world, the less maintenance we
will be able to expect in the future.

6 It may not be worth it to spend a lot of time on drawing diagrams, unless
they are considered essential for communication, or if your client loves to
see pictures.

Growing Better Software

So, here we go:

Each
Each
Each
Each
Each
Each
Each

Each

Each
Each

When we

book must have at least one title.
book can have at most one title.
book must have at least one author.
book can have many authors.

book must have at least one ISBN.
book can have at most one ISBN.
book is identified by its ISBN.

author must have at least one name.

author has at most one name.
author is identified by its name.

read the above sentences backwards, we hopefully

won't find any satanic messages, but we will be able to gain even
more information about the system.

Each
Each

Each
Each
Each
Each
Each

Each

Are there
are. That

title must belong to a book
title can belong to several books

author can write many books
author must have (written) one or
more books

ISBN must belong to at least one book
ISBN must belong to at most one book

name belongs to at least one author

name can belong to at most one author

any incorrect assumptions in the above? Sure there
is the whole point about performing an information

analysis: We try to find facts. As such, it is our job to prove the
above rules wrong. This is most easily done in the second part
we just wrote down, for example:

Fach title must belong to a book

This statement may be true in a certain system. But not all titles
in the world belong to books. Some titles may belong to songs,
movies, paintings or albums. If our system may contain all of
these, it is more accurate to call them medium-titles rather than
simply titles. If our system will contain only books, perhaps it is
better to call our titles book-titles. This explicitly expresses to
our client what we are talking about.

Each title can belong to several books

This is definitely true. Perhaps also to other media, but we are
leaving this out of consideration for now. But the fact that a title
can belong to several books is without question.

Each author must have (written) one or more books

This is also true- otherwise the person wouldn’'t be an author,
but merely a person. By saying this, we introduce another type
of information: people. A person can write a book or not, and
this decides whether he or she is a (book)author or not. In other
words,

Each author is a person

What do we know about a person? We could say that a person is
an author that has not written any books. But as in information
analysis we like to speak in general truths, we like to use the
word each. So, it would be more accurate to say that each
author is a person that has written one or more books. In a
sense, authors are a specialized subset of the total group of
people. Now that we see this, we should make sure which rules
that apply to authors also apply to people.

E Growing Better Software

Fach author must have at least one name.
Each author can have at most one name.
Each author is identified by his/her name.

Well, this seems to apply to people more than it applies to
authors. It’s wrong too. Several people can have the same name,
so a name alone isn’'t suitable as identifier. We should find a
better way to identify people.

Each person must have at least one name.
Each person can have at most one name.
Each person must have at least one

national insurance number.
Each person can have at most one

national insurance number.
Each person is identified by his/her

national insurance number.

If now we say “Each author is a person”, this automatically
implies that each author also has a name, and a national
insurance number that can be used to identify that author.

For those who are into object-oriented programming, this should
ring a bell: this is inheritance. An author is everything that a
person is, plus he or she has written a book (or other medium)”.
For simplicity, in this initial version of the system, an author is
exactly one person. Let us continue:

Each author can write many books.
Each ISBN must belong to at least one book.
Each ISBN must belong to at most one book.

7 Perhaps artificial intelligence at some point will bring us computer authors.
An author list would then need to include both types of author. In object-
oriented programming, this possibility of treating different data types as the
same thing is known as polymorphism.

All these statements are true.

Each name belongs to at least one author

This one is tricky. I'll say this is false, because a name does not
have to belong to an author- it can belong to non-author
entities. Specifically, after saying that an author is a person, it is
more correct to say that a name belongs to a person rather than
to the author. It would then also be clearer to speak of a person-
name. A specific author-name exists too: It is called a
pseudonym. We could add it to our information analysis if we
want, but let us not over-complicate for now.

Each name can belong to at most one author

We have previously proved this to be false - first of
all, a name does not belong to an author but to a person: In a
sense, a person can be considered the 'base class' of an author.

Second, there can be several people with the same name. Thus
the talk about the national insurance number earlier.

We now have performed the major part of the information
analysis by writing down general truths by using the word Each.

m Growing Better Software

We have answered some important questions:

e How much minimum?

e How much maximum?

® Are there obligations?

e Do these obligations lead to sub-types?

e By what property can we identify each entity?

Other questions to answer are:

e Are there any exclusions?

e I[s all the information in the system explicit?

e Is any information duplicated in the system?

If people are divided into subtypes 'good guys’ and 'bad guys’,
then if a person would be a ’bad guy’, this would automatically
exclude that person from the ’good guys’. When the system
explicitly contains all information that it needs, we no longer
need to rely on implicit information (such as, in the beginning of
this chapter, that 'Writing Solid Code’ is actually the title of a
book) and assumptions that may turn out to be wrong. For all
we know, 'Writing Solid Code’ could have been the tip of the day.

It should be noted that for maintainability purposes of a system,
we should make an information analysis based on only three
numbers: 0, 1 and many. If something is 'more than one’, we
have to take in account the case of 'many’, otherwise we will
create unnecessary logical limitations in our system.

The most obvious place where we will see this is in the design of
databases, but the same happens in code. The results of this will
be discussed in the next paragraphs.

m Growing Better Software

3.4 A recipe for disaster

Let us imagine a library that used to order exactly one copy of
any book. To better serve their readers, the library wanted to
have several copies of some books. The ISBN that was formerly
used as identifier for each book was not unique enough
anymore, because each copy of the book would have the same
code, so it wouldn't be possible to identify exactly which copy of
a book had not been returned.

To solve this, the in-house programmer of the library appended a
digit to the ISBN, which was used as library book number. This,
as it turned out, was the start of a lot of chaos. The system got a
lot slower, but still worked fine otherwise. The first problem
arose when the library ordered a dozen copies of a best-seller.
After all, a single digit only warranted a maximum of 10 books
with a given ISBN. “No problem”, assured the programmer, “T'll
just append another digit.”

All code that isolated the sub-number of the book from the
library book number had to be rewritten, which was quite a bit
of work, because the identifier of library books was used all over
the system. It turned out to be quite a task. The conversion of
the database from 10+1 digits to 10+2 digits was the least. As it
turned out, when a book was returned, it wasn’'t recognized
because the bar code on the book only had 11 digits, while the
new system used 12. The library staff didn’t feel like sticking
new bar codes on thousands of books. “No problem”, assured
the programmer again, “I'll just add a conversion table to the
system”. Meanwhile, the book exchange project between the city
library and university library showed to have trouble dealing
with the new codes as well. The old COBOL system that worked
with fixed size ISAM records could not handle a sub-code of 2
digits.

The Dean mentioned how he already spent a considerable sum
on the first sub-digit, and that the university didn’t have the
funds to justify altering the system again. “Oh well, we’ll just
allow them to exchange a maximum of 10 books then, they’ll be
able to use the old code then”, said the programmer.

Needless to say, things got from bad to worse. Schedules
slipped, the system got more and more troublesome to work with
and after some time, conversion tables kept popping up, and
finally the programmer got involved in a traffic accident. His
successor couldn’t figure out which of the now three different
keys needed to be used when. The system was polluted with
unnecessarily complexity, that was built in just to deal with
wrong design decisions.

But what exactly is it that went wrong? The programmer
overlooked the fact that information analysis also applies to
itself. The average database management system is built around
the assumption that

each entity is identified by at least 1 key
each entity is identified by at most 1 key

If instead we start using multiple keys, the information analysis
of the information analysis is no longer correct. This means that
the DBMS built on top of the previous assumption will no longer
be able to assist us in these tasks. Suddenly we are on our own
in solving the (theoretically infinitely big) problem of

each entity can be identified by many keys

But we never design systems like that, do we?

E Growing Better Software

The fixed-length fields of the COBOL system of course also didn’t
help, as another logical restriction was imposed by the ISAM
database. Had the data been exported to a delimited file or to an
XML file, the problem would have been non-existent, as there
would have been no hard length restriction on the field (save the
maximum line length that some systems impose on text files).

There is something to say for using text files with fixed record
length: it is fast. From a performance perspective, it may have
been a sensible choice, but for data transfer it doesn't make a lot
of sense.

From a maintenance perspective, using text files that work with
fixed field length and fixed record length is asking for trouble,
because field lengths keep changing, requiring us to change our
import module over and over again.

This is to be expected: In the information analysis game of zero,
one and many, using fixed field lengths is a typical "N instead of
many" mistake. Using a delimited file works around this
problem, because field lengths are no longer limited.

Also, in the above story, politics got in the way. As the Dean
could not preview how many more times he would have to invest
in an extra digit, he was unwilling to spend another bunch of
money on something he thought was already done. Naturally -
what would you do?

3.5 Preventing chaos

Of course the programmer in the previous story made more
mistakes, most notably storing ISBN and book sequence number
together in a single field, as library book key.

In information analysis, two equals many - if we store 'many’
pieces of information in one field, it will no longer be possible to
index by the individual bits of information in the field, which will
impact performance. To solve this, we must have separate fields
containing each snippet of information, and we can index our
table once again.

However, we now see a table containing a compound key field
(containing both ISBN and sequence number), followed by fields
containing its individual components (one field containing the
ISBN, the other field the sequence number). Should we base the
key on its components, or the components on the key? The only
correct answer is neither; they should be independent. This
means that if the sequence number part of a book changes from
5 to 05 to allow for more copies of a book, the key should remain
the same. This prevents the need for running a conversion.

Why not use a combination of fields as primary key? Because it
would require you to use ‘'many’ fields to identify a record. If you
use 'many’ fields to identify a record, and a field needs to be
added, you need to change all code that identifies records of that
type. If you use a single field as identifier, after a change it will
still be a single field. In other words, the single-field key
approach will save you maintenance.

Simply joining the values into a single compound key field
doesn't work. Such keys are not suitable as permanent record
identifiers, as they can be predicted to require changing every
now and then.

m Growing Better Software

Consider, for instance, a ten-digit product identification code:
Two digits are assigned as country code, three digits as
manufacturer code and the remaining five as manufacturer-
specific product code. Soon, we will find that there are more
than 100 countries, and we need an extra digit. Or a country
has more than 1000 manufacturers, with the same result. Or
two manufacturers merge, requiring the keys for half the
product range to change.

Storing multiple types of information in an identifier will
invariably cause us to run out of keys, or will require us to
change keys. Forced maintenance is the result- a result that we
were trying to prevent.

The fact that the keys may show some structure, makes room
for another problem. It makes it easy to fall for the temptation of
relying on implicit information: “Oh, this key already contains
the country code, manufacturer code and product code, so I
won't have to lookup that data anymore”. This is a wrong
assumption, as the product code in the key and the contents of
the product code field do not have to be equal.

Using auto-incrementing numbers as keys for records causes a
similar problem. First of all, we cannot safely use auto-numbers
on a decentralized, distributed system. Is this a big deal?
Perhaps not, if you're fine with a centralized system. Using auto-
numbers does however mean that we almost immediately rule
out the possibility of ever entering data off-site, from a laptop for
instance, that has no connection to the server.

We could solve this by assigning a certain range of numbers to
one system, and another range of numbers to another system,
but at some point we will run out of numbers. If instead we
interlace numbers, and for instance assign even numbers to one
system and odd numbers to another, we forever limit ourselves
to a fixed maximum number of systems- another unnecessary
logical limitation. If the algorithm of assigning keys by auto-
numbers is known, we will easily make the mistake of relying on
implicit information: “Oh, this identifier falls in the 8000-9000
range so the record must have been created by this-and-that
laptop”. Later on, this reliance on implicit information may trap
us into hard-coding these rules in our code, making it
impossible to implement the same system for another client.

An effective way to solve these problems is to use keys that are
structure-free and informationless. Something pseudo-random,
yet guaranteed to be unique.

As there no longer is any implicit information in the identifiers,
we will no longer be tempted to hard-code dependencies based
on it. Why not simply start out on the right foot, and save
ourselves the trouble of remodeling our system later on?

m Growing Better Software

3.6 Use UUIDs where appropriate

The solution is as simple as it is effective. For identifying
records, use exclusively keys that will forever be sufficiently
large, such as UUIDs (Universally Unique Identifiers), also
known as GUIDs (Globally Unique Identifiers)®. A UUID or GUID
is a number or code which is guaranteed never to be generated
twice, to a very high degree of certainty. Leading information
analysts around the world have known this for a long time, and
as such all major operating systems and DBMS software have
GUID support. Even so, UUIDs or GUIDs are not quite as well-
known as they should be, as auto-incrementing numbers die
hard.

Usually, a UUID is represented as a series of hexadecimal
characters (0-9, A-F). A long line of hex codes will not look very
appealing to users. Because of this, it is recommendable to
distinguish between a UUID and a user-key. A UUID will
exclusively be used to maintain referential integrity within a
database (or even across databases for that matter). The
human-readable user-key is presented to the user.

For creating references between systems, it is recommended to
use UUIDs as keys, exclusively. These are assigned only once,
and you will never have to change them. No central authority is
needed to generate UUIDs; because of this, they will work in
decentralized, disconnected systems. Typical applications are
off-line laptop use or interconnected databases.

As a general rule, never show the UUID to users. At some point,
they will complain about whatever they see and demand you to
change keys, which is exactly what we want to prevent. Instead,
show the users a structured key- in our library example, we
used ISBN plus sequence number as a user key.

8 See internet draft RFC 4122, ISO standard ISO/IEC 9834-8:2005

Should the user-key need converting (as in the case study
before), the conversion will be limited to renaming the user-keys
in a single table, as the referential integrity of our database is
handled with the UUID keys. Inserting a zero in the user-key will
have no consequences, because the user key isn't any more
special than the title of the book; it has no impact on the
referential integrity of the database. Whenever we need to
display the user-key, we can look it up based on the UUID key.

Suddenly, exactly the same issue as before no longer has
disastrous consequences. The link to the university system uses
UUIDs and requires no more alterations. As the library marked
the books with UUID bar codes as well, no maintenance to
expect there either. Best of all, the library that just opened in the
next city uses UUIDs as well. There will be no overlap between
their identifiers and ours. Setting up a little book exchange
program between the two would be nearly trivial. What a
wonderful world.

One more tip: Most likely you will not have to implement your
own UUID library. Depending on your DBMS, you may already
have UUID or GUID functionality available: Under Oracle, it is
implemented in function SYS_GUID (), MySQL supports UUID (),
and PostgreSQL has a native UUID data type.

In a non-database context, UUIDS and GUIDs are available too.
If you run Windows, your API already supports generating
UUIDs - where did you think Dot-Net Class Ids came from?
Under Linux, use uuid_generate.

Should you really need to implement your own UUID library,
consult internet draft RFC 4122 for an example implementation.

Search the web for your options and rejoice.

m Growing Better Software

3.7 Don't cut corners as systems evolve

This paragraph discusses a key factor in keeping systems
maintainable. By applying this paragraph, you will make
your job a lot easier. Please, take enough time to absorb
this matter.

What happens when a system evolves? It changes, usually
tending to get more complex. However, some changes are major,
some are minor. What makes the difference between a major
change and a minor one?

Generalizing, a major change is one where one of the following
things happens:

® A 1-to-1 relationship between entities turns into a 1-to-
many relationship

e A new type of entity is called into existence, which is to
be a subtype of an existing type, other than at the ’edge’
of the system.

In other words, in the game of O, 1 and many, a relationship is
promoted to the next level. Perhaps a person record is allowed to
reference other person records to indicate a parent/child
relationship between people. Perhaps the number of email
addresses of a person increases, making it necessary to lookup
the email address from another database table.

In case of a minor change, usually what happens is

e A constraint is added to the system

® A new entity or entity-type is added as a leaf or node, on
the ’edge’ of the system

In other words, a limitation is added to the system, or whatever
is added has no big impact on the functioning of the system- it
may in fact simplify it. Perhaps a description field is added to a
person record, which is just used as memo field for the users
(but which has no functional implications otherwise).

What we often see happen is the following mistake: An 1-to-1
relationship should be turned into a 1-to-many relationship (a
major change), but instead in turned into a 1-to-N relationship
(as if it is a minor change). As a result of an attempt to keep the
data structure simple, our code will get a factor N more complex,
instead of a factor 1. A lot of code duplication and added
maintenance is the result.

What happens is that “A person can have a phone number”
becomes “A person can have two phone numbers”. A new field is
added to a table, instead of creating a new database table for it.
The result is:

e We can no longer easily create a list of all phone
numbers; we’ll need specific code to join 2 database
columns.

e If only 1 phone number is used, the other field stays
empty, wasting space (and requiring code to prevent
displaying empty phone numbers).

m Growing Better Software

® Any code that searches by phone number most now be
duplicated to first search for phonenumberl, then for
phonenumber2. Maybe the first number is for fixed phone
and the second for mobile? What if someone deviates
from this convention?

e We introduce a logical limitation. Suddenly, instead of 1
phone number and 1 only, we can only enter 2 phone
numbers. This seems great, until we want (for instance)
to add a fax number. At that point, once again we need to
modify our system while we thought we were done. What
if a person has 2 mobile phones and a fixed phone? What
if someone has a call center with a whole range of
numbers?

If instead we take the time to implement an extra table for
multiple phone numbers, we’ll only need to make one (albeit a
bit more complex) change. We can then add as many numbers
as we like, and prevent introducing logical limitations. To list all
available numbers, all we do is a lookup in 1 column in the
table. To distinguish what is what, maybe we’ll create an
additional table containing all possible types of phone number:
home, office, fixed, cell, SMS, home fax, office fax and so on.
Reverse lookups are also much easier.

This will also add flexibility in the future: Maybe at some point
we’ll be asked to add email-addresses (home, office, instant
messenger...) for which we won’t have to do much: Maybe we’ll
just add some phone number types and use regular expressions
for pattern matching.

This little extra investment in time is easily won back as things
are progressing, because subsequent changes will be much
easier to make. Should we want a limit (3 phone numbers
maximum), we can add a validation. To raise this limit, all we
have to do is change a constant, instead of duplicating and
altering code. Stepping back from 1-to-many to 1-to-N is simple
enough, as long as you didn't cut corners before.

The following topic explains in detail how we should work to
keep our data structures in shape. This will help clear up a few
questions that you may still have.

m Growing Better Software

3.8 Keep data structures normalized

Normalization is the practice of restructuring data structures in
such a manner that they are free of duplication and free of
redundancy. An added benefit of normalization is that a
normalized data structure can be more easily adapted to
changing requirements. The following pages show how.

There are several degrees of normalization, offering increasing
levels of flexibility. The most commonly used degree of
normalization is called the third normal form®. The third normal
form defines data structures in such a way that there is a well-
defined functional separation between various entities or data

types.

Let us assume a table-based system. Refactoring such an
existing system can be quite hard, but keeping a structure
normalized can be surprisingly simple, as long as we follow a few
basic principles:

1. 1-on-1 relationships can be kept in a single table.

2. 1l-on-N relationships live in 2 tables, where the “N”
table contains a foreign key to the “1” table.

3. N-on-N relationships should be kept in a third table,
which has its own primary key. This table merely
connects 2 existing tables.

9 At least six degrees of normalization, or normal forms, exist. The third
normal form corresponds to the degree of normalization normally used in
object-oriented programming.

This may seem a bit confusing at first, so let us take a look at an
example. We will create a simple, one-table telephone book
database. As multiple people can have the same name, we
identify them by a separate key, which we will call person_id.
This is not required for phone numbers, because they are their
own identification. So, our simple phone book looks as follows
(according to principle 1):

Table person

person_id person_name phone_number
(primary key)
1 P. Fink 555-5782
2 M. Plow 555-3226

A new requirement just got in: Some people have more than one
phone number, and we must be able to store it. As the field
person_id is a primary key, it can not be duplicated in the
table. We have two options: One is to add another phone
number column (this is a step in the wrong direction, as
discussed in previous chapters), and the other is to separate
phone numbers from people. This will give us the following:

Table person

person_id person_name
(primary key)
1 P. Fink

2 M. Plow

Growing Better Software

Table phone_numbers

phone_number phone_number_owner (foreign key referencing
(primary key) person_id in table person)
555-5782 1
555-3226 2
555-3223 2

In this last table, we see how multiple phone numbers can be
assigned to the same person (according to principle 2 mentioned
earlier). Maybe we want to add a little free text description to
each phone number; as long as it is 1 description, it can be in
the same table (principle 1).

Table phone_numbers

phone_number phone_number_ phone_number_
(primary key) owner (foreign key) description
555-5782 1 home phone
555-3226 2 business
555-3223 2 home

Oops- another requirement just got in. Not only can a person
have multiple phone numbers, a phone number can also be
used by multiple people. So we are dealing with an N-to-N
relationship here. Enter principle 3: A connector table
connecting the two others together.

The structure of table person is unchanged. But let's add a
person that will have the same phone number as M. Plow:

Table person

person_id (primary person_name
key)
1 P. Fink
2 M. Plow
3 B. Simpson

The foreign key to table person in table phone_numbers will be
moved to the connector table, so it is removed from table
phone_numbers.

Table phone_numbers

phone_number phone_number._
(primary key) description
555-5782 home phone
555-3226 business
555-3223 home

Finally, we create the connector table and give it its own primary
key. We'll have to give it a name that properly describes the
information contained by the table. Because it contains phone
numbers and people, perhaps this is the actual phone book. So
let us simply call that table phone_book. It will look as follows:

Growing Better Software

Table phone_book

phonebook_ phone_number person_id (foreign key
entry_id (foreign key referencing | referencing the primary

(primary key) the primary key of table key of table person)

phone_numbers)

PB1 555-5782 1
PB2 555-3226 2
PB3 555-3223 2
PB4 555-3223 3

So, there we have it: Multiple people can have multiple phone
numbers. But what is the point of having a primary key for each
of these relationships? Well, this will allow us to store data
related to combinations of a person and a phone number. For
instance, we can now easily implement a call register:

Table call_register

callreg_entry phonebook_ to_number start_ | end_

(primary key) entry_id (foreign key) time time
(foreign key)

CR1 PB4 555-5782 12:34 | 01:23

CR2 PB3 555-5782 01:24 | 01:25

CR3 PB3 555-3226 01:26 | 01:27

CR4 PB4 555-5782 01:28 | 01:31

In conjunction with the other tables, this gives us all information
about who called what number, and when.

From the previous example, it is clear when new tables should
be created, and it also shows how a design might be updated to
maintain flexibility. When every table contains a primary key (in
a single field), this will allow us to easily find which information
goes together.

When we want to keep the data structure normalized, of course
some data migration may be needed once in a while. But by
keeping the data structure normalized, we keep it flexible
enough to adapt to almost any requirement.

In the above example, it is easy to query the structure for all
phone numbers, or even for all calls to all phone numbers. The
amount of duplicate code needed to interact with the structure is
minimal. Should we have decided to instead add a column
phone_number_2, not only would we have introduced a limit of 2
phone numbers per person to our system, we would also have
needed to duplicate and complicate a lot of code for even the
most common queries.

To finish off this topic, a few words of caution are in place. To
query a structure for certain very specific information, it will be
necessary to join the data of a lot of tables together. If this is
done carelessly, your query may hit almost the entire database.
This can cause performance to drop immensely. Read the
chapter “Keep the Cartesian product small”’ (page 290) for a
possible way to remedy this situation.

It would seem that implementing every relationship as N-to-N
would solve all problems. Be careful: you will then be well on
your way of designing your own DBMS, which is usually
counter-productive and comes with the risk of over-analyzing.

Growing Better Software

3.9 Beware of over-analyzing

As important as it is to perform a thorough analysis of the
system that we're building, it is possible to take things a step too
far. A proper information analysis allows our client a great deal
of flexibility, but we cannot escape building systems with some
limitations. The risk of over-analyzing is to get stuck in analysis,
never getting anything done. This is a common anti-pattern
known as analysis paralysis.

But how do we recognize where to stop analyzing? For best
productivity, in most cases, you’ll want to stop analyzing at the
point where you start designing a design tool. At that point, you
are no longer designing what the client asked but something
different altogether. The end user doesn’t need to have ultimate
power to design their own system. They expect you to do this for
them. It may still be possible to justify designing such a tool in
company time, between projects.

By the time you've started designing a design tool in itself, you've
probably already gone a step too far for most practical purposes,
into the deepest realms of information theory. This can be a
wonderful trip in which a great deal can be learned, but you
should probably limit these trips to your own time.

Chapter 4

Guarantee
preconditions

If all error-causing conditions are prevented, no errors will
occur. This seemingly trivial statement is the cornerstone of
writing bug-free code. There are many ways to improve on code
and user interfaces, which can be traced back to this first
statement. The following pages of this chapter are a selection of
these techniques. When followed closely, these techniques will
help you write robust code time after time, rather than leaving
the quality of your code to chance.

Growing Better Software

4.1 Perform initialization

Before any variable is used, it needs to be initialized to a
sensible value. In some cases our programming language does
this for us, but in other languages the result of the following
piece of code can not be guaranteed, as declaring variables does
not equals initialization:

int x()
{
int a; // uninitialized!
int b; // uninitialized!
int c¢; // initialized in next line
c=a+tb;
return c¢; // can be anything

Initializing variables with a default value prevents unpredictable
behaviour. When porting code from one language to another,
this will greatly influence the reliability of the ported code.

In object-oriented programming, initializing all properties of an
object class is even more important. When object properties
remain uninitialized by the constructor, this can cause the
program to crash, but this will only happen when the destructor
of the object is called. This makes it extra difficult to find the
cause of the error.

4.2 Verify preconditions

Although at first sight the following code looks fine, further
inspection will reveal some mistakes.

int a(object objectl)

{
int x=objectl.getobject2 () .getvalue();
return x;

The mistakes are not syntactic but semantic in nature. The code
is semantically wrong, because:

e When objectl==null, the program will crash.

® When getobject2() returns the value null, the
program will crash.

If we're lucky, the problem will never reveal itself in runtime, but
we should not depend on luck for our code to work.

The cause of the problem is that variable objectl is being used
without verifying its value, which allows the code to be called
with values that crash it. Likewise, the return value of function
getobject2 () is being used without verifying its value.

Growing Better Software

In the following code, this problem is solved by checking all
variables before use:

int a(object objectl)
{
int x;
if (objectl!=null)
{
object object?2;
object2=objectl.getobiject2();
if (object2!=null)
{
x=object2.getvalue () ;
}

else

{
throw new exception ("AARGH!!");
}
}

else

{
throw new exception ("OUCH!!"M);

}

return x;

By checking all variables before their first use, and all return
values of functions as well, we can properly throw exceptions
and handle errors depending on what went wrong, rather than
letting the program crash hard and not having a clue. In some
cases, throwing exceptions may not even be necessary; just
because an object has an undefined value, this doesn't always
mean we're dealing with an invalid condition. We'll just have to
consciously distinguish between these situations.

Some people will prefer the following variation of the above code.
By inverting the IF expressions, the ELSE branches could be
eliminated. This will show more clearly which condition triggers
each exception.

int a(object objectl)
{

int x;

if (objectl==null)
{

throw new exception ("OUCH!!");
}
object object2=objectl.getobject2();
if (object2==null)
{

throw new exception ("AARGH!!");

}

/* All preconditions are OK,
no further tests needed. */

x=object2.getvalue();

return x;

Functionally, both pieces of code are exactly identical.

The main conclusions for this topic are:

e Failing to check preconditions is the main cause of
uncontrolled crashes.

e By splitting up your statements, rather than trying to
write everything on a single line, exceptions can be
prevented.

m Growing Better Software

4.3 Decide on precondition responsibility

There are two opposing philosophies when it comes to
precondition checks. One is that subroutines should be
responsible for checking their input; the other is that they never
should be called with incorrect values. As is often the case, there
is no absolute truth, as will be shown by the following.

Imagine a subroutine that draws a pixel on the screen. There are
two possible scenarios: either the subroutine itself checks its
input parameters, or the caller has to make sure that it never
calls the subroutine with incorrect parameters. In the first
scenario, the subroutine might be implemented as follows:

function drawpixel (x,y,color)

{

if (x<0) { return; }
if (x>=SCREEN_WIDTH) { return; }
if (y<0) { return; }
if (y>=SCREEN_HEIGHT) { return; }
if (color<O0) { return; }
if (color>255) { return; }

writemem (y*SCREEN_WIDTH+x,color);

If we call the subroutine with coordinates that are outside the
boundaries of the screen, it will simply not draw anything. The
behaviour of the subroutine is defined for every possible input
parameter. As a result, the subroutine will be very reliable.
Nothing will crash it or cause it to show unexpected behaviour.

Now imagine we call this subroutine from another subroutine:
one that draws straight lines. To better serve its users, this line
drawing routine allows specifying coordinates outside the screen
boundaries. Rather than calculating where a line intersects the
screen, it simply calls the pixel-drawing routine with any
coordinates that come up. This doesn’t crash the pixel-drawing
function; in fact, it shows lines perfectly clipped at the screen
boundaries, intersecting the screen at exactly the right positions.

As a result, the line-drawing function can stay as simple as
possible.

Unfortunately, there are a few drawbacks to that approach. First
of all, the line drawing function will make a lot of unnecessary
function calls when the endpoints of the line fall outside the
screen boundaries. But even when the line drawing function
makes sure to clip the line in such a way that it will only draw
pixels within the screen boundaries, CPU cycles are wasted. If
both of the endpoints of the line are within the screen
boundaries, why does the pixel-drawing function need to verify
all the pixels in between?

The screen handling of the original PC-XT BIOS was designed in
a similar manner: All BIOS functions checked their own values.
The BIOS would never crash, but screen handling was
notoriously slow.

The second philosophy assigns responsibility of the correctness
of the function parameters to the caller, rather than the
subroutine being called. As a result, the functions being called
could be much lighter and simpler.

When a function is only called with correct parameters, there is
no point for that function in checking all its input parameters.

m Growing Better Software

A pixel-drawing subroutine might then be as simple as:

function drawpixel (x,y,color)

{
writemem (y*SCREEN_WIDTH+x,color);
}

This code is lightning fast compared to the code with all the
internal checks, but it is not quite as reliable. Of course, in this
case we assume that the correctness of the function is the
responsibility of the caller. In our test code, we make sure to
verify the correctness of the caller by adding assertions to our
code, which will abort the code as soon as a caller breaks the
rules:

function drawpixel (x,y,color)

{

assert ((x>=0) && (x<SCREEN_WIDTH));
assert ((y>=0) && (y<SCREEN_HEIGHT));
assert ((color>=0) && (color<=255));
writemem (y*SCREEN_WIDTH+x,color);

This ’asserted’ code will be automatically removed in the
production version, effectively leaving the above code without
checks. However, if somehow some untested combination of
conditions causes the subroutine to be called with incorrect
parameters, this will result in pixels being drawn at the wrong
position, in the best case scenario. If we are not so lucky, it may
cause all kinds of deliciously unpredictable behaviour such as
corrupting data, crashing the computer, or compromising
security.

Which philosophy you follow depends on the requirements. If the
pixel-drawing code would run on an arcade game machine,
speed might be crucial. If it would run on the on-board software
of an airplane, reliability might be more important.

Alternatively, we may choose a combination of both
philosophies, and get the best of both worlds:

function drawpixel_raw(x,y,color)

{

writemem(y*screenwidth+x,color);

}

function drawpixel (x,y,color)

{

if (x<0) { return; }
if (x>=SCREEN_WIDTH) { return; }
if (y<0) { return; }
if (y>=SCREEN_HEIGHT) { return; }
1f (color<0) { return; }
if (color>255) { return; }
drawpixel_raw(x,y,color);

}

function drawline(x1l,yl,x2,y2,color)

{
// Check preconditions, clip as needed.
// Then use drawpixel_raw for speed.

Especially in object-oriented environments this may be a
sensible approach; In that case, the raw' version would likely be
made private for safety reasons.

m Growing Better Software

The main conclusions of this topic are:

e For best reliability, code should be responsible for
checking its own preconditions. However, this causes a
performance loss.

e For best performance, if we are careful never to call
subroutines with incorrect arguments, we can leave out
these checks, at the risk of introducing unpredictable
behaviour.

4.4 Be aware of invalidated preconditions

In the previous paragraph, we have seen that for best reliability
each piece of code needs to be responsible for its own
preconditions. Normally, we think of preconditions and
postconditions as existing only at the beginning and end of
subroutines. In reality, the point of return of a function call, too,
needs to have its preconditions guaranteed.

Any time when a variable changes, its precondition checks may
be invalidated.

The importance of re-validating a variable after it changes, is
quite obvious when it is the result of a function that returns an
object or a pointer. The following, although syntactically sound,
is semantically wrong;:

Object myobject=GetObject (objID);
myobject.do_something () ;

The problem with the above is that the function can return a
null object, which will cause the program to crash as soon as a
method of myobject is called. The code on the following page
fixes this:

m Growing Better Software

/* object myobject has been checked,
everything is safe and sound

*/
myobject=GetObject (objID) ;
/*
function call completed- we must now
check the post-call preconditions
for all influcenced variables, for the
rest of code.
The call to GetObject influences
myobject, so that is what we must check.
*/

if (myobject==null)
{
/* precondition check
for remaining code */
throw new Exception ("Whoops...");

}

/* Everything is safe and sound again */
myobject.do_something () ;

In some cases, the result of the function call is still processed
further before it is used and passed on to another function call.
If that function checks its own preconditions, we should not
need to do it as well- but we might perform the check anyway to
be on the safe side.

In some cases, the return value of a function is part of a larger
plan. For instance, in a web page generator, the result may be a
single HTML element, and the return values of many function
calls are put together to form a single piece of output. In such
situations, there seems to be little added value in checking the
results, but some checks (such as verifying maximum string
length of the resulting page) of course still have their use.

Chapter 5

Mimimize
complexity

The main strategy we have in keeping software systems
maintainable, is to keep their complexity to a minimum. To be
able to do this, first we must understand the factors that make a
system complex:

e The number of different states a program can be in

e The degree in which code depends on other code
(requiring us to read more code before we can perform
maintenance tasks)

e Inconsistency or chaos

The following paragraphs will hand you a few techniques that
will help reduce complexity by avoiding the above causes.

Growing Better Software

5.1 Write less code

Often code written by master programmers is deceivingly simple;
to solve a problem, master programmers will typically need to
write fewer lines of code than novice programmers. Code written
by master programmers will typically contain smaller functions,
and each function typically uses fewer variables.

The fewer variables our code contains, the fewer states our code
can be in. Smaller, less stateful functions will be easier to test
and debug than big ones.

Writing less code does not mean 'cramming as many operations
as possible in a single line'. Instead, we want our code to contain
fewer atomic instructions. The fewer atomic instructions the code
contains, the less complex it will be. What I mean by atomic
instructions are instructions that can not be split up in several
smaller instructions, in the language they are written in. For
instance, the instruction

alb++1=1;

is not atomic, because it can be split up. We can rewrite it as the
following, which can not be split up any further:

albl=1;
b++;

If you are coding and there is a little voice in the back of your
head saying “There must be a simpler, shorter way to code this”,
there probably is. Take a step back from your code and try to
find it. If you don't see it, maybe a co-worker will. Consult them
in case of doubt.

5.2 Avoid global variables

Global variables are variables that can be accessed from
anywhere in your program. To the novice, this may seem like a
wonderfully practical idea, but in reality using global variables is
one of the worst programming practices there is.

Global variables are an especially big problem in event-driven
code, because any event can alter their value. As such their
value cannot be guaranteed without verifying the entire system.
Most systems nowadays are event-driven, so this is a big deal.
Event-driven code that uses global variables is only predictable
when the contents of the variable are verified every single time
that the variable is used, except when the variable is protected
from changes by some locking mechanism.

Another problem with global variables is that they will make the
code less transparent, because the same input parameters for a
function may give a different result from one time to another.

int a(int Db)
{
global c;
if (c==10)
{
/* by now, newly checked global c
may already have been changed

by an event- result of a() 1is
unpredictable

*/

b=c+c;

}

return b;

m Growing Better Software

In this example, the global variable c¢ is declared for
illustrational purposes only. In most programming languages,
globals can be used without being declared.

There are a number of problems with the above source. First of
all, it is theoretically possible (in case of event driven code) that
the value of the global variable has changed between the
moment that the precondition check was performed and the
moment that the variable was used for the calculation. This
renders the return value of the code unpredictable, and therefore
makes the function unreliable.

In addition, the interface definition of the code doesn’t reveal
that the code uses a global variable. It is not enough to read the
function header to fully understand what parts of the system
influence it, and what parts are influenced by it; to fully
understand the scope of the function, one must read the
function in its entirety- and hope it doesn't call other functions
which exhibit the same problem. If functions use global variables
carelessly, this may cause a snowball effect, as it could mean
programmers need to fully understand the system in its entirety
before they can safely start working on it without risking to
break existing code. Because of this, systems that contain a lot
of global variables will typically require much more time to get
accustomed to than systems without globals.

The following piece of code solves these problems. The value of
local variable ¢ can not be influenced by external factors. In
addition, the function prototype shows fellow programmers that
the outcome of the function is influenced by more than just a
single input value.

int a(session sessionobject,int Db)
{
int c¢; /* local variable is safe from
manipulation by external
events */
if (sessionobject==null)
{
throw new exception ("AAIEEE!");
}
c=sessionobject.c;
if (c==10)
{
b=c+c;
}

return b;

In this example it is assumed a session object exists which may
hold many (formerly) global variables. In this case, only property
c of the session object is used.

One might argue that it would be better to pass just variable
sessionobject.c to the function, instead of the session object.
Depending on the context of the problem, this may be true. It
will make even more clear what exactly it is that is used or
influenced by the function. The trade-off is that the interface of
the function might need to change more often, breaking
compatibility between different versions of the function.

m Growing Better Software

Ideally, our interface definition would make it clear if the
function can or cannot alter the session object. In this case, the
session object is only read, not written. Some languages allow
specifying whether a variable is intended for input or output,
which will help inform fellow programmers what to expect from
the function:

int a(in session sessionobject,in int b);

This shows that when calling function a, we won't have to worry
about changes in the session object. Languages in the C/C++
family define similar behaviour with the const keyword, to
indicate that a variable should never be modified by the called
function. It is considered good practice to default to using this
keyword for all input-only variables.

Many of the objections of using global variables do not apply to
global constants. Because their value never changes, a single
precondition check is sufficient to guarantee that their value
fulfills all requirements. Also, if their value is wrong, we will
know where to look for that wrong value.

Even so, the use of globals (either constants or variables)
typically indicates a lack of modularity. Functions or procedures
that use globals are usually hard to re-use in other systems,
because they depend too much on the environment of the
system for which they were written.

That said, there are a very small number of exceptional
situations in which the use of global variables is somewhat
acceptable.

A rare situation where using global variables is acceptable, is for
memoization (function result caching), in case the language
lacks static variables. Any global variable should then be set and
used by one and only one function. This greatly reduces their
problematic behaviour, because the global variables are used in
a manner that mimics local variables.

In such a case, it is recommendable to keep the global variable
definition near the function that uses it, and to add a comment
indicating that it should be accessed by that function only. The
function, along with its globally declared result, can then still be
easily reused in other code. See the chapter on memoization
(page 203) for more details on this.

Even to store configuration information, it may already be better
not to use global variables but a configuration- or session object.
The configuration of a program is generally read from file or
database only once, and as such the globals in fact act mostly as
constants. However, using global variables in this context
already impacts code reusability. Using a configuration- or
session object reduces this impact by channelling all
configuration information through function parameters.

Finally, keep in mind that carelessly used member variables in
classes can exhibit some of the problematic behaviour as global
variables, albeit in a smaller scope. Like is the case with global
variables, most of this problematic behaviour instantly
disappears when the value of the member variable is set in one
place only. Setting member variables as private will protect them
from external changes and will improve the modularity of your
system.

m Growing Better Software

5.3 Keep minimal scope and extent

The fewer variables are used in a piece of code, the fewer
different states the code can be in. The complexity of the code is
reduced, which is a Good Thing (as we will see in chapter Write
Unit Tests, see page 267). This not only suggests we should
prefer local scope over using global variables, but also to keep
the lifetime (or extent) of local variables as small as possible.

We could count the number of lines of code in which a variable
is effectively in use, to get an idea of the complexity of the code.
The lower the resulting number, the less complex the code. Take
a look at the following code.

int x=1; // first line where x is used
int y=2; // first line where y is used
write(x); // last line where x is used
write(y); // last line where y is used

The effects of variables x and y in this snippet span 3 lines each
from where they are first used to where they are last used. This
potentially increases the complexity of the code, and makes it
harder to read. Alternatively, we could write the code as:

int x=1; // first line where x is used
write(x); // last line where x is used
int y=2; // first line where y is used
write(y); // last line where y 1is used

In this case, each variable only spans 2 lines from their first to
their last use. Also, there is no overlap in their usage. As a
result, the average number of states that each line can have is
reduced. Of course, in this small example the benefit is minimal.

Some languages allow defining block scope; in such a case,
contrary to the first snippet, the latter code allows itself to be
rewritten as:

int a=1;
write(a);

int b=2;
write (b);

In the last case, the two snippets are completely separated from
one another, meaning the compiler helps us guarantee that one
snippet of code can never influence the results of the other. This
helps us further minimize the statefulness of each line of code.
Also, the fact that the two snippets of code can be completely
separated from one another proves better modularity over the
initial example.

Small scope and extent help keep the number of states of code to
a minimum, making the code less complex and more modular.
This in turn makes it easier to rewrite our code into functions (a
benefit even more clear if each snippet contains more lines).
Because of this, even in languages that do not support block
scope, it is useful to keep minimal scope and extent.

m Growing Better Software

5.4 Prevent side effects by functions

For a function to be as useful as possible, there must be no
doubt about what it does, preferably without the need to consult
a manual or to read the entire code of the function. To this end,
it is necessary that function is deterministic; that is, given the
same input, a function always returns the same result.
Whenever a function affects the state of the system other than
by its own return value, the function is said to have a side effect,
or to be unorthogonal.

Changing global variables from a function is a particularly bad
side effect. It may not have much impact on the function itself,
but it can make other functions unpredictable. If several
functions all set a global variable to a certain value, and one of
them is incorrect, how will you find the wrong function among
the suspects?

By making functions deterministic and stateless, they will be
easier to test automatically by means of unit tests (see page
267). Indeterministic functions may grow so many different
possible states that automated testing will be impossible.

State implies a memory effect. As such, less state implies a more
scalable, less complex system. This is wonderfully demonstrated
by the world wide web, which was originally designed as a
stateless system. Given enough bandwidth, a completely
stateless web site can serve billions of users with near-zero
memory requirements.

5.5 Pull vs. push methodology

In the previous paragraph we talked about side effects of
functions. The same principle applies in a wider context as well.
We most commonly see this in user interfaces that act as
database front end.

For simplicity, we can see this in an object-oriented context.
Consider a field object. A field is a data structure which has a
data type and a value, and a piece of code (a method) associated
to it that performs a calculation.

We speak of pull methodology when a field object exclusively
calculates its own value: it reads values from other fields,
performs a calculation and comes to a result. It is as if the field
object 'pulls' the data towards itself. Given the same set of
source data, the result is always predictable. Recalculating the
field has no side effects in the rest of the system. Note that the
field only reads information from other fields, but it does not
write to them, so it can never leave the rest of the system in a
corrupt state.

In push methodology, a field may take the initiative to update
one or more other fields- to 'push' data to them, as it were. For
instance, field A, B, C and D may all write to field E. If any of the
code in field A, B, C or D is wrong, this will result in an incorrect
value for field E. It will be difficult to debug the system, because
a wrong value in field E can have so many different causes. In a
situation like this, field E behaves very much like a global
variable.

m Growing Better Software

To create the most consistent, maintenance free system possible,
don’t let fields tell other fields what their value is. Let every field
calculate its own value. Allow any field to read the value of other
fields, but do not allow them to write another value to them.

There is a link between the concept of using pull- vs. push
methodology and information analysis. In case of pull-
methodology, the value of a variable is only calculated in one
place, which makes it easier to maintain the value of that
variable correct. In case of push-methodology, the value of a
variable may be calculated in many places. As a result, when we
encounter a bug, we need to visit all of these many places to find
out where things went wrong.

Chapters Use information analysis in UI design (page 167) and
Write knowledge-free functions (page 244) help to explain this
further.

5.6 Small projects instead of big ones

In my experience, the most effective way to guarantee that a
project will fail, is to attempt to build a system that does
everything: contact management, managing business processes,
stock control, invoicing, reporting, and so on. This applies to
custom-built software as much as it does to mass-produced
software. At some point, unless things are extremely well-
managed, systems will get so complex that they collapse under
their own weight.

At the same time, the same complexity will cause a big
duplication of functionality. We can easily observe this: How
many user-lists are there present within your company?
Probably you have a windows login, an email account, bug
tracking account, time sheet software account, an entry in
salary administration, a human resource record, and so on, and
so forth.

World wide, your name may be subscribed into hundreds of user
lists, and chances are, probably you've built a login box or user
administration module several times. Why is it that after
decades and decades of business automation, we're still building
modules for such trivial tasks?

If we are to build a simple, one-form system such as a user
database, there is a big probability that the project will succeed.
Chances that the information in there can be exported to other
systems are pretty good too, provided that the data is properly
structured.

m Growing Better Software

In a business environment, if we build several small systems
instead of one huge monolithic system, not only will we increase
the chance for the project to be successful, we enhance
reusability of each small module and possibly make the
business itself more efficient: it is obvious that entering
employee data only once will cost less time than doing the same
ten times. It will also help guarantee consistency of the data
within the cooperation.

A key factor in the success of this approach is that we have a
way to transparently synchronize data from one system to
another. We can either write our own code to synchronize the
data, or use one of the several commercial solutions that exist
for this purpose.

5.7 Avoid GOTO

You probably already know to avoid goto statements, and
thanks to Edsger Dijkstra'®, we have practically abolished the
use of this statement from our programming languages. As such,
telling you to avoid goto statements is probably a cliché, but
this text would not be complete without a few words on the
subject.

As it turns out, most languages still contain the goto statement.
Also, the code that our compilers generate is full of jump
instructions, both conditional and unconditional. So why aren't
jumps or goto statements a problem in compiled code?

The answer is structure. The jump statements themselves are
not the problem. In fact our code would not work without them.
The problem is how we use these statements. The following are
the key reasons to avoid using goto statements:

e Jumping between functions (should your compiler allow
i) may mess up the call stack which is normally
managed by the compiler;

e Jumping to any location in code will invalidate all
precondition checks preceding that location. This is also
why we should consider all preconditions invalid at the
returning point of any function;

10 Go To Statement Considered Harmful, by Edsger W. Dijkstra, Letter to
Communications of the ACM (CASM) Vol. 11 no. 3, March 1968, pp.
147-148. Online at http://www.acm.org/classics/oct95.

m Growing Better Software

e When jumping between different scopes, the concept of
scope breaks down. Suddenly everything should be
treated as global scope, which implies extra complexity;

e Without a mechanism to enforce program structure,
using goto statements likely results in “spaghetti code”
which is not reusable and almost impossible to maintain.

e These reasons aside, your programming language most
likely provides you with better, more structured
alternatives.

This last point gives some room for discussion. What if your
programming language is of such limited syntax that it does not
provide you with the alternative that you need?

The answer is, when the syntax of the language we work with is
limited, this should not limit us from expressing logic. The long
obsolete Sinclair ZX81 computer had a BASIC dialect which did
not support ELSE as part of an IF statement. It was impossible
to write the following:

10 IF A>B THEN MAX=A ELSE MAX=B
20 REM REST OF PROGRAM

Instead, to obtain the exact same effect, a programmer had to
write:

10 IF A>B THEN GOTO 40
20 LET MAX=B

30 GOTO 50

40 LET MAX=A

50 REM REST OF PROGRAM

The second program uses a goto statement, the first does not.

Of course this doesn't make the first program any better than
the second one. As the programmer of the second piece of code
really had no choice but to use goto, this merely shows that the
programming language in which the first piece of code was
written, was better suited for the purpose. The program itself is
equally good.

Although the code contains the goto statement, there is no
‘spaghetti code’ going on. Both pieces of code share the following
elegant program structure:

is A greater than B?

YES NO

MAX=A MAX=B

(Rest of program)

Syntax aside, the semantics of the former two snippets of code
are exactly identical. This shows us that structure and syntax
are independent of each other. It also implies that to write
reusable, modular code, structure plays a more important role
than syntax. The underlying reason for the discussion about the
goto statement has always been the structure of the written
code, rather than the syntax used to obtain that structure.

Although the improved syntax of modern programming
languages is a big help to writing structured programs, it does
not guarantee it. As such, no matter what syntax you use, you
should never use it as an excuse for writing poorly structured
code.

m Growing Better Software

In an effort to avoid goto statements at all costs (or perhaps as
an excuse for writing unstructured code) some programmers
choose to implement state machines. By embedding a case
statement inside a loop, we can cause ourselves all the
structural problems of goto statements and negatively impact
program performance'':

PROG_END=9999;
line=0;
while (1line<PROG_END)
{

line+=10;

switch (line)

{

case 10:
if (a>b) line=40 /* goto */;
break;
case 20:
max=b; break;
case 30:
line=50 /* goto */; Dbreak;
case 40:
max=a; break;
case 50:

/* REST OF PROGRAM */
1ine=PROG_END; break;

Such code would be better off being rewritten with goto
statements: it would perform better and have a much simpler
structure. It would still need rewriting, but it would be easier to
rewrite into proper code than the state machine version.

11 Attentive readers will recognize that this code is equivalent to the previous
two code snippets .

Chapter 6

Improve
your code

In the previous chapter we briefly discussed how program
structure can help in writing maintainable code. Regardless of
the language you work in, you will have used decision branches
(if, elseif, else), loops (while, for, do, repeat), selections (switch,
case) and of course sub-programs or functions.

This chapter will dig a bit deeper than usual into these basic
constructs, to help you write code with the cleanest possible
structure. This will result in code that is easier to read, more
memory efficient, faster, more modular, easier to debug and even
easier to prove correct.

m Growing Better Software

6.1 Program Structure Diagrams

Before we dive into the actual material, let us first take a look at
how we will be graphically representing program flow.

Traditional flowcharts have long had their time. Although being
a useful tool to draw program flow, they made it too easy to draw
unstructured programs. Things got a bit better when structured
programming languages such as Pascal took the place of less
structured programming languages such as FORTRAN. In the
spirit of structured programming, flow charts also became more
structured, and made way for Nassi-Schneidermann diagrams
(also known as Program Structure Diagrams'?).

Unfortunately, even when we use structured programming
languages and PSDs, we can still create unstructured code, as
will be shown briefly.

To present the structure of a piece of code graphically, we will
represent program structure in the following manner:

12 Program Structure Diagrams help people to think of their code as blocks
that are executed front to back, a block at a time. Traditionally, diagonal
lines are used for IF statements. For simplicity, in this text, we abandon the
diagonal lines. This allows us to represent these diagrams in any
environment that can handle tables.

107

IF statements:

expression

true

false

code to be executed
when expression is true

code to be executed
when expression is

false
e SWITCH/CASE statements:
expression
valuel value2 value3

e DO..WHILE (or REPEAT..UNTIL) loops:

code to be
executed when

expression
equals valuel

code to be
executed when

expression
equals value2

code to be
executed when

expression
equals value3

WHILE /FOR loops:

WHILE/FOR expression

Code to keep executing while the

expression is true

is true

(or until it is true,

code to be expressed while expression

in case of

REPEAT. .UNTIL loops)

WHILE/UNTIL expression

For best program structure, in general, we will be wanting to
draw Program Structure Diagrams that as clearly as possible
show all the possible code paths and their respective results.

m Growing Better Software

The following shows us an unstructured PSD:

statement
if
true false
statement if
true false
Statement Statement
if
true false
statement Sstatement

The problem with the above diagram is that it does not
clearly show all possible ways the code can be executed, because
some code paths re-join after branching. As a result, if we want
to write a unit test for our code, we will have some trouble to
make sure all paths are covered.

In this text, we will pursue code that is structured in such a way
that each code path stands by itself, and can be traced back to
the unique set of conditions that led to that code path. This is
done by making sure that of each if statement, one branch
always extends to the end of the code block.

To allow tracing back the code path to the unique set of
conditions causing it, once code paths are separated, they will
not join again. The one exception to this rule is joining the code
paths by a single termination clause, as shown on page 133 and
beyond. This will help us to debug our program and to prevent
resource leaks.

The following diagram is structured in such a manner that all
code paths can be traced back to their cause:

statement
if
true false
if
true false
if
true false
statement Statement sStatement statement

Note the diagonal structure of the if statements. By following
this structure, in an instant we can see how many possible code
paths there are by simply counting the amount of columns at
the bottom of the diagram.

As it turns out, keeping such a structure is a pretty good
indicator when to split up a function. Whenever the structure
can no longer be maintained, it is usually a good idea to create a
new function.

When you write code according to the above structure, you will
find there is little need to ever draw diagrams of your code to
make crystal clear what it does. When your code returns a value,
structuring it as above will allow you to make sure that all
possible code paths have a defined result, which in turn will
make your code more robust.

Now that we have this settled, let us continue exploring the ways
in which we may improve our code.

m Growing Better Software

6.2 Keep logically related code together

In some cases, programmers write ELSE in an IF statement that
ends a method or function, for example:

if (somethingIsWrong)
{

throw new Exception ("Something is wrong");
}

else
{
block_b();
}
block_c();

Using an ELSE statement here unnecessarily increases the
amount of indentation of the code, which leaves us with less
horizontal space per line of code.

Also, it may confuse us into thinking that statements
block_b(); and block_c(); do not logically belong together,
whereas the PSD shows us that in reality they do:

if (somethingIsWrong)

true false

throw new Exception block_b () ;
("Something is wrong");

block_c();

By throwing an exception, the procedure is terminated, whereas
block_b () and block_c () are always executed under the same

conditions. Because of this, it is better to write:

if (somethingIsWrong)

{

throw new Exception ("Something is wrong");

}
block_b () ;
block_c();

m Growing Better Software

6.3 Split up compound IF expressions

Code may break when we do not work atomically, because
preconditions are overlooked. This was already demonstrated in
an earlier example in this text:

int a(object objectl)

{
int x=objectl.getobject2 () .getvaluel();
return x;

What happens when getobject2 () returns the value null? The
code breaks, the program crashes. Less obvious is that the same
problem might occur in compound conditions in IF statements:

if ((objectl!=null)
&& (objectl.getobject2() !=null))

{
/* do something */

}

The above IF statement will only work correctly when only part
of the expression is evaluated, and if we can guarantee that the
expression is evaluated from the left to the right. If this is how
our compiler or interpreter works'?, there is no real problem, but
why submit ourselves to possible quirks of the language in
which we have written the program?

We can guarantee that things always work as we intended by
splitting up the compound IF statement into two atomic IF
statements, as is shown next:

13 Often it is, as many programming languages default to lazy evaluation.

if (objectl!=null)
{
if (objectl.getobject2() !=null)
{
/* do something */

} // else? (1)

There are several benefits of this method:

e We don't assume that the code breaks out of the if
statement when (objectl==null), we guarantee it.
Even if our compiler does not perform 'lazy evaluation'
optimizing, no more is evaluated than necessary and our
program won't crash.

e We motivate ourselves to think of all possible
combinations of conditions. The original statement never
made us think about (1), what to do when (objectl!
=null) and (objectl.getobject2==null).

e By splitting the conditions, we can generate more specific
error messages:

if (objectl==null)
{

throw new exception ("OOMPH!");
}
if (objectl.getobject2()==null)
{

throw new exception ("GASP!");

}
/* do something */

m Growing Better Software

Because only one condition is evaluated at a time, the code is
also easier to inspect in runtime. Not only will single-step
debugging be easier, debugging by means of a log file will be as
well.

The concept of splitting up compound expressions into atomic
ones inside IF statements has similar benefits when applied to
the logical OR. The following example shows this.

if ((age<MINIMUM_AGE) || (age>MAXIMUM_AGE))
{
throw new exception (
"Age not within range!");

By rewriting the compound expression in this manner, we will be
able to more precisely define the error that has occurred:

if (age<MINIMUM_AGE)
{
throw new exception (
"Person is too young!");

if (age>MAXIMUM_AGE)

throw new exception (
"Person is too old!");

Rather than nesting one IF statement inside another IF
statement, a logical OR can be expressed by following one IF
statement by another (when each exits the function) or by using
an ELSE IF construction.

Finally, there is yet another type of logical OR misfit that we
sometimes run into. It goes something like this:

if ((age>=MINIMUM_AGE) | | (license==true))
{
do_something_useful () ;
if (age>=MINIMUM_AGE)
{
// old enough
do_something_specific();

if (license==true)

// too young but has a license
do_something_else();

Although structurally sound, the compound expression in the
outer if statement makes it necessary to repeat the individual
parts of this expression in the inner if statements, causing an
unnecessary performance impact.

From a readability perspective, there are four possible code
paths, but the path where both expressions are true is not
explicitly represented in the code. Should we wish to log a
message when both expressions are true, we will have to write
an additional IF statement to deal with that situation, which will
increase the performance overhead even further:

if ((license==true) && (age>=MINIMUM_AGE))
{
log("both situations are true");

}

Growing Better Software

To resolve these problems, we can first write out all possibilities
that the above code can represent, then use this to write simpler
code. By reading the code, we will find that these are all possible
conditions and outcomes for the code above:

age license do something | do something | do something
>= == useful specific else
minimum true
FALSE FALSE No No No
FALSE TRUE Yes No Yes
TRUE FALSE Yes Yes No
TRUE TRUE Yes Yes Yes

The benefit of writing out all these possibilities is that we will be
able to guarantee that no combinations are ever forgotten, which
will come in handy when we want to create unit tests that cover
all possible code paths. Of course there is a limitation to what is
practical. If we have thousands of combinations, we may need to
rethink our strategy.

By using the table above to rewrite the IF statement one sub-
expression at a time, we come to the following result which
clearly represents all code paths:

117

if (age>=MINIMUM_AGE)

{
//

do__
do__

if
{

}
//

else

//
if
{

}
//

code path A
something_useful () ;
something_specific();
(license==true)

// code path 1
do_something_else();

else { // code path 2 }

code path B
(license==true)

// code path 3

do_something_useful () ;
do_something_else();

else { // code path 4 }

In the rewritten code, every expression is only evaluated once,
and only if needed, so the code will perform better. Also, all
required comparisons are already present: If we want to log each
possible code path, this does not require adding extra if
statements to the code.

The added comments also show that the code better represents
every possible code path, both before and after the code paths

split.

m Growing Better Software

By rewriting the code in this manner, the extent of each
expression is reduced. This makes the code more readable and
easier to abstract into functions, should we wish to do so.

Additionally, by having written out all combinations of
expressions and their results, we will have paved the way for
creating a data driven version of our function. This may be
useful if we want to give more power to our users while cutting
down on the maintenance of our system.

6.4 Reduce duplication in IF statements

Each 1F statement can have two branches: the THEN branch and
the ELSE branch. The THEN branch is the branch that is
executed when the expression defined for the IF statements is
logically true, whereas the ELSE branch is the branch that is
executed otherwise.

To prevent redundant code and the added maintenance
associated with it, it is recommendable to keep the content of
each branch as brief as possible. The following counter-example
shows the common situation where this was not yet done.

if (a==1)

{
initialize();
do_something () ;
finalize();

}

else

{
initialize();

do_something () ;
do_something_else();
finalize();

There is a good chance that both branches need to be updated in
a quite similar manner as the code is being developed further
and further. As this happens, it becomes less and less obvious
that the different branches are actually quite similar and that
the updates need to be made to both branches, increasing the
probability that bugs are introduced in the code.

m Growing Better Software

In the example above, certain lines of code are equal in both
branches, so these operations will be executed regardless of
what the expression evaluates to. In other words, it makes no
sense to duplicate them into both the THEN or ELSE branches; as
these statements are basically executed unconditionally, there is
in fact no need to have them inside the IF statement at all.

The code below yields exactly the same result as the code above,
but the redundancy issue has been resolved. The result is
reduced maintenance, and the code has become more compact,
allowing us to see a bigger part of the logical flow on the same
screen surface.

initialize();
do_something () ;
if (a==1)
{

// empty THEN branch
}

else

{

do_something_else();

}

finalize();

We should get rid of the empty THEN branch. We do this by
inverting the IF expression and switching around the THEN and
ELSE branches. We can then remove the empty ELSE branch.

The final refactored code will then look as follows:

initialize();
do_something () ;
if (a'!=1)
{

do_something_else();
}

finalize();

This shows us more clearly which part of the code is subject to
conditional execution.

m Growing Better Software

6.5 Use atomic statements

Especially Perl and C programmers like to cram a lot of
operations in a single line of code. This is bad form; it makes
code more sensitive to errors and more troublesome to debug.

Consider the following line of C code:
al++i]=b[++]];

Obviously, some element from array b is copied to array a, but
what about the indices? Which of the two is incremented first?
Also, due to the way the statements are written down, the
bounds of the arrays are not checked. As a result, the
programmer must check if the indices are one below the
maximum. For clarity, it would be better to write the above code
as follows:

++1;

// bounds checking for a[i] goes here
++3;

// bounds checking for b[Jj] goes here
alil=b[]jl;

This notation disambiguates the order in which the atomic
instructions are executed and allows for bounds checking, while
still allowing the compiler to take advantage of processor-specific
optimizations (i.e. translating the ++ operator to an increment
instruction). As is the case with splitting up IF statements into
their atomic counterparts, this will also facilitate debugging.

Another example is calling functions in if statements. This is
especially troublesome when done in compound if statements
(as outlined in Split up compound IF expressions, page 112).

The following example shows possible problems with this.

if (employee.getcompany () !=null)
{
write ('Company name is:');
write (employee.getcompany () .name) ;

As we see, one problem is that by performing the function call in
the if statement, we will need to perform the call again later on.
This is not always the case, of course, but chances that we will
be wasting processing power are increased.

There is no guarantee that the code will return the same result
every time. Some time will elapse between the two function calls.
If the given employee is fired between function calls, the system
will crash. In other words, the code is not suitable for use in a
multi-tasking system unless made thread-safe by some kind of
locking mechanism.

Third, depending on your debugging style and tools, debugging
will be more difficult when dealing with function results rather
than with variables, because it is hard to find a place in code
which allows us to inspect the state of the system. The following
code solves all of these problems, just by splitting up compound
statements into atomic ones:

object company=employee.getcompany () ;
// we may inspect the company variable here
if (company!=null)
{
write ('Company name is:');
write (company.name) ;

m Growing Better Software

6.6 Guarantee operator precedence

As we find ourselves switching between platforms, we will find
certain languages work one way, and other languages work in
another. As the number of platforms we work on grows, it gets
increasingly hard to remember all the quirks of any specific
platform. As such, it pays off to write code in such a way that
there is no room for misunderstanding. Consider, for example,
the following valid Visual Basic statement:

if a is not b then statement

Although this is pretty readable for native English speakers,
logically speaking it doesn’'t make a lot of sense. In most
programming languages, the not operator has precedence over
most other operators. Most programming languages would treat
the statement above as

if ((a) is (not b)) then statement

Most likely, this is not what the programmer intended to write,
as it checks whether variable a is of the same data type as the
result of the expression (not b). Most likely, b and (not b) are
of the same data type, causing statement to always be executed.
To avoid any possible confusion caused by these differences, we
best write down the statement in a way that more explicitly
shows what we intend to say, regardless of programming
language:

if (not (a is b)) then statement

In pretty much any programming language, the use of brackets
helps to make sure that the expression is evaluated in the order
that we intended'. As a result, there is also less room for
misinterpretation of our intentions; not only by the compiler, but
also our fellow programmers. In the above IF statement, the
outermost brackets are added because in C-like languages, they
are required to detect the start and end of the expression. As
they do no harm in other languages, we might as well get used
to including them.

Along the same lines, always explicitly use compound
statements. The following code 1is open for multiple
interpretations'®:

if (expr)
// expression is valid
do_something () ;

A programming language might, in theory, interpret this as
follows:

if (expr)
{

// expression is valid

}

do_something () ;

14 In some languages such as assembly and Forth, it is the programmer who
has to provide operations in the correct order.

15 This is a non-issue in the Python programming language, where compound
statements are grouped together by their indentation.

m Growing Better Software

But the programmer probably meant:

if (expr)

{
// expression is valid
do_something () ;

When we make our intentions explicit through the notation that
we use, there will no longer be room for misunderstanding,
either from co-workers or from the compiler we use. Also, with
the curly brackets are already in place, we can no longer forget
adding them later on. As a result, there is less chance to break
the code when we add one or more statements to the THEN or
ELSE branch of an IF statement.

127

6.7 Keep loops in the correct order

There are cases when it looks like the only way to keep a loop
clean is to put it in reverse order. An example is when we want
to read and process a file until a certain character is found.
Some instructors would write a piece of code for this as follows:

function readfile(File file)

{
char invalue;
invalue=file.read();
while (invalue != TERMINATION_CHAR)
{

process (invalue) ;
invalue=file.read () ;

Some drawbacks of writing code like this are:

® The file.read() code is duplicated, which potentially
increases maintenance;

e The contents of the loop seem to be in reverse order
(processing a value, then reading one);

e Iterations require the result of the previous iteration. This
indicates that the code is not context free; it introduces a
memory effect. This means that if we wanted to skip a
few iterations for efficiency reasons, it would be likely
that the code would stop working.

m Growing Better Software

Ideally, the block of code inside the loop can be verified for
correctness by itself, without needing to look at the code that is
outside the loop in another scope. Because of this, it would seem
more logical to write the code as follows:

function readfile(File file)

{
while (true)
{
char invalue=file.read();
if (invalue==TERMINATION_CHAR)
{

break;

}

process (invalue) ;

Functionally, the two snippets are equal, but the latter code no
longer requires code duplication, reducing maintenance. As
variable invalue is only defined inside the loop, it can have no
influence outside that scope, reducing the possibility of bugs.
The code can now also be read front-to-back, which is not only
more intuitive than the former solution, it would also allow us to
move the loop contents into a stateless function.

Another possibility is to use a do..while (or repeat..until)
loop. This would have the benefit of automatically getting into
the correct order. The drawback however is that it needs to
check invalue twice: once to see if it needs processing, and
once to see if the loop needs to be iterated again. By interrupting
the loop with a break statement, this is no longer needed. We
also see that the difference between the two types of loop (while
vs. repeat..until) is essentially eliminated.

6.8 Prevent wasting processing power

The following code shows a case of an often seen programming
technique which unnecessarily wastes processing power. It is
frequently caused by bug fixes and changing requirements that
are implemented in a hurry.

bool hasNullObject (Object objectl,
Object object2,
Object object3)

bool hasNull=false;
if (objectl==null)
{

hasNull=true;
}

else
{
if (object2==null)
{
hasNull=true;
}
}
/* Bugfix by Bob, check object3 */
if (object3==null)
{
hasNull=true;
}

return hasNull;

What happens here? If any of the precondition checks fails, the
return value is already known. Nothing ever changes it anymore,
but we will only find out and know for sure after reading the rest
of the function. After all, after the ELSE branch of the IF
statement closes, in theory the function might still change its
mind.

m Growing Better Software

So we read the rest of the function as well, only to find out we
wasted valuable reading time because the return value isn’t
changed once it is set.

But that's not all. In the example above, we don’t only waste
time of the code reader, but also processing power. The value of
the return variable is never changed anymore once it is set, yet
we force the computer to do more comparisons, wasting
processor resources. For clarity, let us also show this in a PSD
(Program Structure Diagram):

bool hasNullObject (Object objectl,Object object2,
Object object3)

hasNull=false;

objectl==null?

true false

object2==null?

true false

/* else
statement is
empty. Did we

forget
hasNull=true; hasNull=true; something? */
object3==null?
true false

/* else statement is empty. Did we
hasNull=true; forget something? */

return hasNull;

The PSD didn’t add a lot of clarity, did it? This is what happens
when a bug fix is carelessly slapped at the bottom of the
function. The result is that the function no longer clearly shows
all possible code paths. But look what happens if we refactor the
code to return as soon as the return value is known:

bool hasNullObject (Object objectl,
Object object2,
Object object3)

if (objectl==null)
{

return true;
}
if (object2==null)
{

return true;
}
if (object3==null)
{

return true;

}

return false;

By returning from the function as soon as possible, we've
obtained code that executes faster and that gives bugs less place
to hide. We also save ourselves a (marginal) bit of memory by no
longer needing the return variable. In addition, it will be easier
to optimize further, should this be important; we can simply
swap around IF statements if one object is null more frequently
than others. The PSD suddenly appears beautifully structured:

m Growing Better Software

function hasNullObject (Object objectl,Object
object2, Object object3) returns bool

objectl==null?

true false

object2==null?

true false

object3==null?

true false

return true; return false;

Obviously, in the latter case, the programmer had a more
defined thought about which return value was to be given when.
In the PSD, in a single glance we can see in which case each
result is obtained, and this can also easily be traced back
bottom-up to the condition that returned that result. Intuitively,
it will be easier to proof the correctness of the code, because we
can instantly see all 4 possible code paths created by the
conditions. When drawing a PSD such as the one above, we may
switch around the true and false branches to have the code
that actually does something on one side, and the branches that
do nothing on the other.

It should also be noted that in the PSD we can do something
that code doesn’'t allow us to do, which is to let multiple IF
statements share the same THEN branch. This show us that a
PSD code editor would potentially allow us to have more control
over code duplication than a traditional text editor. Likewise, if
the programming language of our choice provides us with some
way to define a termination clause for our functions, we will
have more control over code duplication.

Some programmers prefer single-exit code rather than early-exit
code. That’'s fine; the above PSD suits both notations equally
well. To turn the above PSD into a true single-exit PSD, however,
a few minor changes are needed:

e Instead of writing return true; or return false; we
write result=true; or result=false;

e At the end of our code we write return result;

e The resulting single-exit PSD and code look as follows (in
essence structurally identical to the one before):

function hasNullObject (Object objectl,Object
object2, Object object3) returns bool

objectl==null?

true false

object2==null?

true false

object3==null?

true false

result=true; result=false;

return result;

m Growing Better Software

bool hasNullObject (Object objectl,Object object2,
Object object3)
{
bool result;
if (objectl==null)
{
result=true;
}
else
{
if (object2==null)
{
result=true;
}
else
{
if (object3==null)
{
result=true;
}
else
{
result=false;
}
}
}

return result;

People that like to write single-exit code probably like this last
piece code better than the early-exit code. As mentioned before,
when we compare the PSD of single-exit code to the PSD of
multiple-exit code, we will see that there is no vital structural
difference between them. The only difference is the return
statement in the end; either style of writing code results in the
same semantic structure. There are some benefits to either style.

The benefit of early-exit code is that it shows the result of both
branches of an IF statement in the smallest possible scope. To
explain this, consider the following two snippets of code:

e Single exit:

if (a==null)
{
result=true;
}
else
{
/* 1000 lines of code
(that might, or not, overrule result
due to programmer Bob slapping a
bug fix in the bottom of the function)
*/
}

return result;

e Early exit:

if (a==null)
{
return true;
}
/* 1000 lines of code
(that can never overrule result)

*/

These two pieces of code may or may not be semantically equal.
Specifically, in the first code snippet, will the value of variable
result still change? I can’'t tell unless I follow the flow of
another 1000 lines of code.

m Growing Better Software

The early-exit code answers this question by immediately closing
the scope of the IF statement. By keeping minimal extent, it is
instantly obvious that the answer is, “No, the return value will
not change anymore”.

Of course, it is best not to let a function grow to 1000 lines, and
split code up into smaller functions before we face these
problems.

Previously we have seen that keeping the smallest possible
extent helps improve modularity of our code, which in turn
allows such code to more easily be abstracted into functions.
This suggests that early-exit code is a better choice for
producing modular, low-maintenance code, while making it
easier to write structured code that is easy to read.

In contrast, there is also some substance to the claims that
early-exit code will make our code more sensitive to bugs, harder
to troubleshoot and more likely to introduce code duplication.

The following example will demonstrate the issues that we must
be aware of, should we choose to write early-exit code:

137

function write_something to_file() returns bool
{
Fhandle handle=fopen("filename.txt","w");
if (handle==null)
{
return false;

}

bool canwrite=success_write_to_file (handle);
if (! (canwrite))
{

fclose (handle); // cleanup code

return false;

}

canwrite=can_write_more (handle) ;

if (! (canwrite))

{
fclose (handle); // cleanup code
return false;

}

fclose (handle); // cleanup code
return true; // successful termination

The code attempts to write something to a file, and includes both
error trapping and clean-up code.

Using early-exit coding makes it necessary to duplicate code to
perform clean-up, which is a bad thing. If the clean-up code
changes, we will need to change it everywhere (which implies
increased maintenance), or else we introduce a bug. When
attempting to troubleshoot this bug, we will find that there is no
single exit-point where we can check the post-conditions of the
function (as the function has multiple return statements).

m Growing Better Software

This can be resolved by putting the clean-up code in a function
or by wusing the try..finally construct that some
programming languages offer, although this will have a (small)
performance penalty. In such cases, single-exit code may offer a
more elegant solution, as we will see in the following example:

function write_something_to_file() returns bool
{

Fhandle handle=fopen("filename.txt","w");

bool result=false;

if (handle!=null)

{

bool canwrite
=success_write_to_file (handle);

if (canwrite)
{
canwrite=can_write_more (handle) ;
if (canwrite)
{
result=true;
}
}
else
{
result=false;
}
fclose (handle); // only 1x cleanup code
}
/* we can check all postconditions here*/
return result;

No code is duplicated in this example, and all postconditions can
be verified in a single location. We should keep in mind that we
have solved one problem, but not without a few trade-offs.

Introducing the result variable makes this code use more
memory. Also, assigning a value to this variable will have a slight
performance impact. The extent of each individual statement is
bigger, which implies reduced modularity.

In early-exit functions, we have to figure out where we need to
make changes before we can make them. Single-exit functions,
in contrast, allow us to simply add code at the end of the
function. This can be perceived as a benefit, but carelessness in
doing is the main cause of the structural issues and
performance loss demonstrated earlier in this chapter.

Overall, the structure of the code in the last two examples is
virtually identical'®. This identical structure shows us that either
fragment of code isn't better than the other, which is similar to
the two code snippets in chapter Avoid GOTO (see page 101).

Hopefully, after reading this chapter, you will be able to
recognize when to use single-exit, and when to use early-exit
coding style.

If you deal with single-exit code, I hope that after reading this
chapter, you will be able to recognize which code can safely be
added to the end of a function, and which code will cause
problems in the structure of your code.

16Drawing the corresponding PSD is left as an exercise to the reader.

m Growing Better Software

6.9 Put code in the most efficient order

Sometimes we see code that seems in internal conflict with itself:
it performs some operations, only to discard the effort a bit later
on and overrule it by other operations. Such awful code can
often be improved dramatically by reordering the order of
execution. An example of such code is the following:

function return_a_value (bool mustreturnthird,
bool mustreturndefault)
{
// return the third value, default or a sum
int defaultvalue = lookup_default ();

int firstvalue = lookup_first();
int secondvalue = lookup_second();
int resultvalue = firstvalue + secondvalue;

if (mustreturnthird)

{
int thirdvalue = lookup_third value();
resultvalue = thirdvalue;

}

if (mustreturndefault)
{

resultvalue = defaultvalue;
}

return resultvalue;

It is possible to rewrite this code to prevent unnecessary
operations. Like tying shoe laces, it is easier to do it than to
explain how, but let me give it a shot.

First of all, there are a few rules that we will follow when
rewriting the above code:

1. We only make changes that maintain the meaning of
the code. Otherwise we will break the code.

2. We postpone operations until they are needed. This
prevents wasting processor resources.

3. Results that are overridden move down; results that
are not overridden move up. As a result, we will no
longer need to override any results.

When we look at the former code, we see that the result of the
lookups is only used conditionally.

In this case, postponing the lookups until their result is used
(rule 2) does not alter the meaning of the code (rule 1), so we
move the lookups down to just before where their result is
required.

m Growing Better Software

After following the second rule, the code will look as follows:

function return_a_value (bool mustreturnthird,
bool mustreturndefault)
{

// return the third value, default or a sum

int firstvalue = lookup_first();

int secondvalue = lookup_second();

int resultvalue = firstvalue + secondvalue;
resultvalue = firstvalue + secondvalue;

if (mustreturnthird)

{
int thirdvalue = lookup_third_value();
resultvalue = thirdvalue;

}

if (mustreturndefault)

{
// Default lookup is moved down to here
int defaultvalue=lookup_default () ;
resultvalue = defaultvalue;

}

return resultvalue;

Now for the third rule. The only result that is not overridden is
that of the last if statement. By adapting an early-exit strategy
(temporarily, if you prefer) we can rewrite the last snippet of code
without changing its meaning:

if (mustreturndefault)
{

int defaultvalue = lookup_default ();
resultvalue = defaultvalue;

return resultvalue;

}

return resultvalue;

The result of the last if statement is never overridden. Because
of this, we can move it up all the way to the start of the function.
The return statement we added helps us to preserve the
meaning of the code.

function return_a_value (bool mustreturnthird,
bool mustreturndefault)
{
// return the third value, default or a sum
if (mustreturndefault)
{
int defaultvalue = lookup_default();
resultvalue = defaultvalue;
return resultvalue;
}
int firstvalue = lookup_first();
int secondvalue = lookup_second() ;
int resultvalue firstvalue+secondvalue;

1if (mustreturnthird)

{
int thirdvalue=lookup_third_wvalue();
resultvalue = thirdvalue;

}

return resultvalue;

Likewise, the last if statement overrides the result value
calculated before it (however, it will not override our first if
statement anymore due to the return statement). We can also
add a return statement to it, which once again leaves the
meaning of the last snippet of code intact:

m Growing Better Software

if (mustreturnthird)

{
int thirdvalue=lookup_third_value();
resultvalue = thirdvalue;
return resultvalue;

}

return resultvalue;

Then, we can move the if statement up (until after the previous
statement that we moved, otherwise we would change the
meaning of the code):

function return_a_value (bool mustreturnthird,
bool mustreturndefault)
{
// return the third value, default or a sum
if (mustreturndefault)
{
int defaultvalue=lookup_default ();
resultvalue = defaultvalue;
return resultvalue;
}
if (mustreturnthird)
{
int thirdvalue=lookup_third_value();
resultvalue = thirdvalue;
return resultvalue;
}
int firstvalue=lookup_first();
int secondvalue=lookup_second() ;
int resultvalue = firstvalue + secondvalue;
return resultvalue;

The code now no longer overrides any results, so we are
practically done refactoring it. As the variable resultvalue is no
longer needed, we can eliminate it. This will in turn show us that
most other variables are no longer needed either, so we eliminate
these as well. Here is the resulting code:

function return_a_value (bool mustreturnthird,
bool mustreturndefault)
{
// return the third value, default or a sum
if (mustreturndefault)

{
return lookup_default ();

}

if (mustreturnthird)

{

return lookup_third value();

}

return lookup_first () + lookup_second();

We have eliminated all unnecessary variables from the code.
This helps guarantee that the various pieces of code will not
have a memory effect that may influence the other pieces of
code.

The resulting code is shorter, clearer and will no longer performs
unneeded assignments and lookups. We may verify that the
result is indeed compatible with the original function by writing
a unit test.

If you prefer to write single-exit functions, you may want to turn
the code into its single-exit equivalent by assigning to a result
value rather than exiting, which will render the following result:

m Growing Better Software

function return_a_value (bool mustreturnthird,
bool mustreturndefault)

{

// return the third value, default or a sum

int resultvalue;

if (mustreturndefault)

{

resultvalue = lookup_default();
}

else
{
if (mustreturnthird)
{
resultvalue = lookup_third_value();

}

else

{
resultvalue=lookup_first ()
+lookup_second () ;
}
}

return resultvalue;

However, the added value of this last transformation is marginal.
The extra assignment will make the code less efficient, and
subsequent code reordering will be more tricky. Also, writing
down code this way will make it more likely to end up with code
that has the same problems as the code that we just refactored.

We should recognize that refactoring code implies the risk that
we may introduce bugs. Especially functions that have side
effects or that are not referentially transparent increase this risk.

147

If, for instance, function lookup_default () opens a file that is
required by the other lookup () functions, the rewritten version
of the function will no longer work, because some functions in
the original code depended on a side effect of other functions. In
such cases, it is better to address the referential transparency of
the called functions first.

When refactoring code, beware of functions and procedures that
use global variables; these are likely to be functions with side
effects. Functions that are especially suspect to have side effects
are functions that are called without parameters, but that do
return a value. This is often an indication that global variables
are in use. In the former code, the lookup () functions would be
up for inspection before we would start refactoring the code.

Finally, it is a good idea to unit test the refactored function, to
make sure we didn't break anything. If an official unit test
doesn't exist yet for the old function, a simple way to perform the
unit test is by keeping a copy of the old function before
refactoring, and calling it from the rewritten function to compare
and match the result. If the functions give equal results for all
possible inputs, the unit test has succeeded and we can discard
the old function.

m Growing Better Software

6.10 Start and finish in the same scope

When writing code that creates objects, we should be aware that
objects can either be created on the stack or on the heap. When
objects are created on the stack, any object-oriented language
will automatically call their destructor when the function
terminates. This will help prevent memory leaks. However, it
makes it risky to write code that creates objects and attempts to
return them to another scope, such as the following:

LinkedList create_linked_1list (int numberofnodes)
{
/* create a linked list with the
given number of nodes */
int 1i;
LinkedList mylist;
for (i=1; i<=numberofnodes;i++)
{
ListNode * mylistnode=new ListNode () ;
mylist.Add (mylistnode) ;
}

return mylist;

When the above function terminates, variable mylist will go out
of scope and its destructor will be called. However, the pointer
value used beneath the surface may not be reset. As a result, the
list may seem available, but get corrupted as the application
runs.

A compiler could detect this and complain about it, but not all
compilers will. By creating and destructing objects in the same
scope, this risk is avoided. The above function could be rewritten
as:

LinkedList init_linked_list (LinkedList mylist,
int numberofnodes)
{
/* initialize the linked list with the
given number of nodes */
int i;
for (i=1; i<=numberofnodes;i++)
{
ListNode * mylistnode=new ListNode () ;
mylist.Add (mylistnode);
}

return mylist; // destructor won't be called

The actual allocating of the mylist object is then done by the
caller:

int main ()
{
LinkedList *mylist;
mylist=new LinkedList (); // stub for list

mylist=init_linked_list (mylist,5);
use_the_list_as_we_please (mylist);

delete mylist; /* delete and new called
in the same function */

m Growing Better Software

In this new and improved version, the linked list is created in
the same scope in which it is destructed, which at least allow us
to check for memory leaks more easily. Although returning
mylist from the function is not needed when passing the object
by reference, it makes it clear to other programmers that the list
is manipulated.

Obviously, in the case of object-oriented programming, allocation
of resources will often be done in the constructor (or even better,
in an initialization function called after successful object
creation), while clean-up of the same resources is done in the
object destructor. Although this is technically not the same
scope, it serves the same purpose.

Finally, this technique is also useful for other operations that
have a clearly defined start, middle and end, such as opening
and closing files, setting up and closing database connections,
and so on.

6.11 Static vs. Dynamic programming

In creating applications, we often have the choice between
implementing something statically in code, or to do the same by
dynamically creating the same effect in runtime. This is possibly
most obvious in creating user interfaces creation, but it applies
more general to code generators as well.

We can spend endless hours fine tuning a user interface, by
drawing buttons and other controls on a form, only to find out
the result is not readily adaptable. However, usually it pays off
to go the extra mile and learn how to generate the same user
interface in runtime. This will give a great deal of added
flexibility in the long run. Still, generating everything in runtime
also has a few drawbacks. The following comparison chart
outlines the benefits and drawbacks of statically predefining

code vs. generating it dynamically, in runtime.

Statically coded user interface

User interface dynamically
generated in runtime

Initially easier to implement:
For instance, by dragging and
dropping buttons onto a form.

Initially harder to implement:
requires knowledge on how to
generate user interface
elements, how to position
them, how to control their style
and how to link them to code.

Static: User interface always
looks the same. Will sometimes
require us to introduce logical
limitations (e.g. a maximum of
4 children per person).

Dynamic: We can be presented
with just the relevant interface
elements at any time. Will
allow us to completely bypass
logical limitations.

Allows us to stay ignorant of
the inner workings of the
framework used.

Will give us in-depth
knowledge of the user interface
framework used.

Not customizable by end users.

Potentially highly customizable
by end users.

m Growing Better Software

Statically coded user interface User interface dynamically
generated in runtime

A change in layout (such as Little work to maintain: Allows
font) means manually updating | us to create a data driven user
all relevant user interface interface. A change in layout
element (which may be a big (e.g. font) only needs to be
task). Recompiling may be done in 1 place, as the user

required to reflect the changes. |interface is re-generated in
runtime. Changes are reflected
without need for recompiling.

Typically serves one medium Because of being data driven,
only (e.g. screen). may serve various platforms
(screen, Braille terminal, web
browser, etc.)

When we use code generators, a similar situation applies. There
are code generators that generate static code once, which still
needs fine-tuning by hand. These code generators do not allow
us to bypass their inner workings, so we have to adapt our way
of working to them. This is fine as long as we actually only need
a one-time code generation, such as is the case with generating
an application framework using a wizard.

However, we will not be able to maintain our code with the same
code generator. As a result, we better get things right the first
time, or else we will be stuck with extra maintenance.

On the other hand, there are code generators that allow us to
maintain the entire project from within them. Though it may be
a bit bold to consider them as code generators, most compilers
fall into this category. Likewise, any tool that we use to convert a
text file to code written in the language of our choice, we use
such a generator.

Any time we need to generate code, we just re-generate all code,
and things will be fine. As a result we may keep an entire project
in such an environment. Ideally the environment is aware of its
own limitations, allowing us to bypass them.

In case of compilers, for example, this bypass can be provided by
an in-line assembler or the possibility to link external libraries to
our code. The original ANSI Pascal language failed in this
respect, whereas in Borland Turbo Pascal this was addressed.

When we write a code generator ourselves, it is worth the effort
to have it generate a comment in the header of the target code.
This comment should state that the code is generated, and also
how and where any edit operations should take place.

Growing Better Software

This page intentionally left blank

Chapter 7

Make your work
user friendly

The term ’user friendly’ is, unfortunately, subjective. A good,
widely accepted definition doesn’t really exist. A program that is
called user friendly by one person is a mystery to another.
Because of this, a functional specification mentioning that a
program should be 'user friendly’ is not specific enough to define
project scope.

However, the term 'user friendly’ has been increasingly used to
indicate the usability of a program. There are several things you
can do that will help in making it more obvious how to use your
programs, and several other things that will make your program
more pleasant to use. These techniques will be discussed on the
pages that follow.

m Growing Better Software

7.1 Limit user input

Limiting user input is one of the most effective best practices in
creating user friendly software. The less users can do wrong to
start with, the fewer conditions you will need to check in your
code. Instead of checking if user input is correct after it is given
by the user, make sure they can not possibly give wrong input.

From the perspective of the user, this will allow him or her to
move around the program without being confronted with error
messages all the time saying that (s)he has done something
wrong. If the user is simply unable to give wrong input, that will
definitely make them feel a lot smarter!

If you thought that computers like the Apple Macintosh or
Windows machines were designed only to make things easier to
the user, think again. The implications actually reach much
further from a programming point of view, because of the
deliberate limitations introduced by graphical user interfaces.

In a command-line interface, programmers would need to filter
all kinds of incorrect input; in a graphical environment, we can
simply prevent users from giving the wrong commands. For
example, a date picker will guarantee that the user won't make
formatting errors when entering dates. Other wrong input, such
as mouse clicks on areas of the screen that do not contain any
controls, can simply be ignored. As a result, less code needs to
be written.

157

7.2 Provide visual clues

Users will not be able to read your mind about fancy key/mouse
combinations that they need to use to get things done. The user
can not be expected to guess that the F4 button needs to be
pressed to open a file, or that pressing control-shift-escape will
cause a network meltdown if so desired.

Give your users visual clues about how to use the program'’. If
first-time users need to be explained that they have to press a
certain key to use the program, you may want to reconsider that
part of the user interface.

A common visual clue in web forms is marking a text field in a
certain way (often a little star), if the user is obliged to enter data
in it. By itself this does not explain anything; as such, it is also
useful to add a little explanation about this mark on the screen.

If you want to insist on having the user work with a certain key/
mouse combination to obtain the desired behaviour, you might
use a tool tip. For instance, if they hover over a control that can
be control-clicked, display a tool tip that says “Ctrl-click this
item for this-or-that behaviour”. The same goes for double-
clicking items, click-and-hold and drag-and-drop. The more
clear a program is visually, the less room there is for confusion.

Grey out screen elements that can not be clicked, or hide them
altogether. If a button is disabled and greyed out, a user may
wonder “Why is this button grey? I need to click it, how can I
enable it?”

17 Of course for non-visual systems such as automated answering machines,
visual clues won't do, so give helpful indications otherwise.

m Growing Better Software

We can help the user by giving a visual clue saying “this button
will be enabled as soon as you do this-or-that”. This clue could
for example be given as a simple text message on screen.

Additional information may be given when an action may
confuse the user. An example of this is deleting shortcuts from
the Windows desktop. In the past, Windows would ask for
confirmation as follows: “Do you wish to delete 'Program'?”

This would confuse especially semi-informed users that knew
they might lose the program altogether. In more recent versions,
the users are given more confidence, simply because the
message has changed a bit. It now says something along the
lines of “Are you sure you want to remove 'Program' from the
desktop? This will not uninstall the program.” This gives the
user the confidence to proceed.

Finally, when using icons for visual clues, use images that
depict what you intend to say in a language independent
manner. A picture of a block of wood is probably not going to be
understood as 'log’ icon in most languages.

7.3 Prevent raising errors unnecessarily

When a program requires a user to enter a phone number, we
can expect the user to enter all kinds of characters: spaces,
brackets, slashes, dashes, and so on.

Should the user enter unwanted characters, we can respond by
giving an error “You entered an invalid phone number, a phone
number should be formatted as follows...”.

As user input should be filtered before use anyway, it is
friendlier to let our program filter the input for unwanted
contents before checking if it is valid. In this manner, we will not
make the user feel stupid for our own lack of sensibility.

If a field normally would require some formatting such as
punctuation or dashes (such as in a date field), see if it is
possible to accept input in such a way that formatting is no
longer important. Perhaps dashes be omitted and added at the
right spots later on; or perhaps the values could be entered as
multiple fields so that the formatting no longer matters.

Or perhaps the problem could have been prevented altogether by
limiting the user input (as mentioned before) by means of a pop-
up dialog, a wizard or an input field that only accepts numbers.

m Growing Better Software

7.4 Use blocking errors sparingly

A very effective way to drive your users up the wall is to raise an
error as soon as the slightest mistake is made, and insist that
this error be corrected at the second that it occurs. Examples of
this are input fields that capture the cursor until correct input is
given, or blocking validations that are performed on every key-
press. As sometimes validations depend on a combination of
factors, it may be the actual mistake isn’t in the current input
field.

Apart from causing a considerable amount of irritation, early
blocking errors increase the risk that your user interface
presents the users with an error situation that can not be
resolved by them.

Instead, trust that the user will get back to those errors to
correct them. Often, in your system there will be a point where a
series of validations can be performed at once. At that moment,
the user can be presented with a list of errors. This is also more
pleasant to the user than presenting just one error at a time,
which may cause the user to sigh, “What else have I done
wrong?”

To help the users enter data correctly, we may make them aware
of errors in an early stage by giving a non-blocking visual clue. If
we have a visual user interface, we could for instance display a
red X next to an input field, while the content of the field is
incorrect. This will not prevent the users to move around the
user interface, but help them in fixing any problems.

7.5 Value the efforts of your users

Imagine a user that has just spent fifteen minutes filling out a
complex form. After submitting it, the system shows an error
message:

You forgot to enter the field ’'Middle name’.
Press a key to try again.

After doing as requested, the system presents the user with an
empty form, and the user has to re-enter all data, including the
data that was previously entered correctly. The problem is
twofold: Not only was the effort of the user wasted, but there is
no guarantee that all data will be entered correctly the second
time around. The users of such a system are in for a lot of
frustration. The described system would be much more friendly
if all correctly entered data was restored into the correction form,
so that users could limit themselves to correcting mistakes.

If you can prevent unnecessary actions, this may also be
perceived as positive. Many programs nowadays show dialog
boxes along with a checkbox saying “Don’t show this
message again” or “Remember this answer”, which will save
the user unneeded frustration and actions in the future.

Along the same lines, if a program runs into a fatal error, you
can save your users a lot of work by saving a crash dump before
exiting, which then can be used for recovery the next time the
program is opened. An alternative approach to this is to build in
an auto-save feature which periodically saves the work of the
users.

m Growing Better Software

7.6 Let error messages help the user

When the input can not be limited by means of input or
selections, we will have to raise an error to the user if a field
validation failed. If you have a form with many fields to validate,
it is probably friendlier to collect errors and list them, than to
pop-up an error dialog for each individual error. When you really
need to give error messages, make sure that they will be useful,
preferably both to yourself as a programmer and to the user.

To the user, an error message such as
The calculated value is too high.

will possibly not be very informative on a form with multiple
calculated values. The following alternative is a lot more useful:

Based on your salary data, the calculated price of
150000 dollars for the selected article ’Lamborghini
Murcielago’ 1is too high for vyou to pay 1in cash.
Correct your salary data, choose a cheaper product or
get a loan.

The extra clarity is not just a result of being more verbose, but a
result of giving additional information about the cause of the
error and possible solutions to resolve it. Optionally, we may
create a wizard to assist the user in resolving the problem.

7.7 Guide the user in providing input

Despite our best efforts, users may enter incorrect data due to
typos. To reduce the number of errors caused by this, it is
possible to incorporate some type of checksum. An example of
this is the LUHN-10 check on credit card numbers. Although a
correct checksum is no guarantee for a valid number, at least an
incorrect checksum guarantees that the number is invalid,
which allows reducing invalid input by 90% without ever
needing to consult a database of valid credit card numbers.

Although this works well to distinguish between valid and
invalid keys, it is not a lot of help for free-form input, in which
all input is technically correct.

In such systems, we may offer guidance by providing the user
with alternatives. Various search engines offer an alternative for
search terms that we type in by asking: "Did you mean
<alternative term>?”

One way to do this is by assigning scores based on exact
spelling. Another way, which is used in governmental databases,
is to employ a soundex algorithm to allow the call center
employees to find back data based on their phonetic sound. A
soundex algorithm works by assigning equal codes to letters that
represent similar sounds'®. As a result, the correct information
can be found even if the person answering the phone didn't get
the spelling right.

18 The original soundex algorithm is based on the pronunciation rules of the
English language and may not work well for other languages. See The Art
of Computer Programming' by Donald Knuth.

m Growing Better Software

7.8 Prevent duplicate data entry

Some time ago I had to make a phone call to my energy supplier.
I was directed to an automated menu in which I had to enter my
client number, so I did. The call was then transferred to a lady
who handled the call. Her first question was: “What is your
client number?” This puzzled me. As the system wouldn’t
transfer the call without asking and verifying my client number,
why was that question necessary?

From a user perspective, duplicate data entry such as which I
faced when calling my energy supplier is a minor inconvenience,
but nothing more than that.

In information systems, duplicate data entry can result in bigger
problems. Manually entered data is sensitive to typos. As a
result, two copies of what should be identical information can
end up contradicting each other.

Having to enter the same data twice causes a direct loss of
productivity (because the same work has to be done twice), but
eventually an additional loss of productivity caused by having to
figure out which of the two pieces of information is real, and to
set straight any mistakes.

In exceptional cases, duplicate data entry has its uses, to
guarantee high integrity data input. The requirement to enter a
password twice to change it is a good example of this. Of course,
although the password is entered twice, only one password is
stored (after the entered passwords are verified to match), so
there is no doubt about which password is the correct one.

7.9 Make your program look familiar

When you take a look at two different spreadsheet programs, or
two different mail programs, or two different web browsers, you
will often find striking similarities. In fact, when observing two
entirely different programs, such as a web browser and a word
processor, equally striking similarities can be seen: A title bar, a
menu stating File Edit View Tools Window Help, an icon
bar beneath it, a status bar on the bottom.

Repeating this structure rather than inventing one of your own
will likely help you save time in designing a user interface. To
save time, leave out some elements, if you wish. A structure like
the one mentioned will help you in your design, and it will also
help the user in using your program.

A bit more experienced user already knows that it is common
practice to save a file with the File->Save menu, before having
seen your program. If your program meets such expectations,
bonus points to you.

There is no official standard for custom-built financial
applications or GUI front-ends for huge databases, but a
structure similar to a mail program seems to be suitable for
most software. A folder bar (or navigation pane) on the left, a list
of records on the right. Double-clicking a record opens a form to
edit that record. Meanwhile, the top of the screen shows a row of
icons or buttons that allow the user to perform common actions,
such as saving the data.

m Growing Better Software

By observing an email application, you will see that a lot of
search functionality is made redundant by the fact that you can
sort the contents of the mailbox by clicking column headers. To
find an email, you will probably start out by selecting a specific
mail folder, followed by clicking the column header to sort the
mail overview by date, subject or sender. Failing that, you use
the search functionality, which will scan the actual contents of
the records.

167

7.10 Use information analysis in Ul design

By the state of a user interface, we can usually tell a lot about
how well designed a program is underneath. This little chapter
will make clear why: information analysis not only has its
benefits in designing databases, but also can have a lot of
impact in user interface design.

Imagine we are creating a database system that allows us to
create client records and contracts. We perform a quick
information analysis and find out that a contract must belong to
a single client, whereas a client can have O, 1 or many contracts.
Based on this, we find the database may contain the following
tables:

Table contract

field name field type NULL?
contract_id primary key no
client_id foreign key no

referencing field
client_id in table

clients
contract_content blob yes
Table client
field name field type NULL?
client_id primary key no
client_name varchar (127) no
client_dateofbirth date yes

m Growing Better Software

By looking at these tables, we can tell that a client can exist
without a contract, but a contract can not exist without a client.

If we want to make things easy for ourselves, we base our user
interface on the data structure of our database. This implies that
it makes more sense to choose the client in the contract screen
than to create contracts in the client screen: there is nothing
about contracts in the clients table, so there will be nothing
about contracts on the client screen.

This will help us keep our client screen re-usable for other
systems, with or without contracts (see also: Write knowledge-
free functions, page 244). It will also help keep the user
interface of the client screen clean and simple. If we allow a
contract button on the client screen, imagine what will happen if
client data would be related to dozens of other types of data: The
client screen would possibly be cluttered with dozens of buttons
and look more like a space ship than like a client form.

In our lean and mean user interface, our user happily navigates
to the contract list and clicks New contract. An empty contract
is displayed. Only now our user realizes that the client data
doesn’t exist yet.

Our user has to perform quite a few actions to resolve this:

e cancel the contract and navigate back to the contract list,

e click the client navigation button,

® click the ‘create client’ button

e enter client data and save it,

e navigate back to the client list,

e click the contracts navigation button,

® and re-create the new contract.

Obviously this is not very efficient, and we will be able to predict
various complaints from our user. We can resolve this without
cluttering the client screen by allowing users to create clients
from within the contract screen. In the same situation as above,
our user now will do the following:

e click the ’create client’ button (or perhaps to keep the
user interface clean, all client functions are available via
the 'choose client' button)

e enter client data and save it

® close the client screen

170 Growing Better Software

Our user can now continue writing the contract (rather than
starting over as before - which might have been a reason for lost
productivity) and client data may even already have been filled in
automatically into the contract when closing the client screen.
This makes the user interface much more effective, without
cluttering it with lots of buttons.

As a bonus, next time we need a client screen, there is a chance
that we can reuse the one we designed before.

171

7.11 Don't irritate the user

While the user is performing a task, our program may perform
some background processing. Perhaps at some point, we will
want to bring something to the attention of the user, or while the
user is typing a search query, we have found a partial result.

A program can be considered irritating if it interrupts what the
user is doing, and demanding other action before allowing the
user to continue the previous task. An example of this is stealing
focus while the user is typing something. Imagine a spell checker
that would pop up a dialog box demanding correction after every
misspelled word — how irritating would that be? By this example,
the solution is also obvious: Display a discreet visual clue, and
the user will be able to respond at the best suited moment.
Flashing the task bar is already a big improvement over stealing
focus.

Even if you don't steal focus, effects such as sounds, blinking,
overly bright colours and animations can be distracting. When
you must add them, allow the user to turn them off.

When a program changes the input of the user, while the user is
working with that input, this invariably leads to unwanted
changes once in a while. This too should be avoided, or at least
the user should be given a way to disable this behaviour. A
particularly irritating example is an auto-complete algorithm
that will complete any incomplete word after each key-press —
even when the backspace key is used, effectively rendering the
backspace key unusable.

172 Growing Better Software

7.12 Don't confuse end users with jargon

Not all your users are as bright as you are. Using a lot of
technical terms in your applications is a sure-fire way to confuse
some of your users, so please try to avoid overly technical terms.

But users also don't like to be treated like four-year-olds.

Sometimes it is not possible or impractical to avoid jargon. In
such cases, it helps to keep the following in mind. When faced
with something they don't understand, some users prefer to stay
ignorant, while others want an explanation.

Hide technical information from the first group; provide a way to
make this information available to the second group (perhaps by
clicking a button labelled 'Advanced...). Include a textual
explanation, if you want.

7.13 Visit the hall of fame and shame

User interface design can be a very creative activity. A bit too
creative, at times. Sometimes learning by counter-example
works better than learning by example, so start up your
favourite search engine, search for “user interface hall of
shame”, and have a good laugh.

7.14 Perform usability tests

Finally, have a few people that are not familiar with your
application try to perform some common tasks with it. This will
help you find out which parts of your user interface still need
further attention.

173

Chapter 8

Make your work
'Programmer
friendly’

The amount of time needed for another programmer to be able to
start working on your code is a good indicator of its clarity. If it
takes more than a few weeks to get familiar enough with a
project to become productive, this is a strong indication that
something is wrong. By adapting a transparent working
methodology, other programmers will more easily adapt to your
code, your code will be more portable, and bugs have less place
to hide. You know that you've run into a master programmer
when an extensive system written by that programmer doesn’t
seem to be complex.

174 Growing Better Software

The code is modular and full of useful comments, but is quite
readable even without them. Here and there the code contains
pointers to the paper documentation- or the documentation is
part of the code itself.

Code of a master programmer distinguishes itself by its absence
of implicit information. Explanations are right there in the code
itself, not just in the head of the programmer.

We can come a step closer to being a master programmer by
being explicit about what our code does and how it works; by
writing code that is no more complex than absolutely necessary
to get the results we want. When things are non-trivial but
documentation is available, we won’'t pose a problem to others
that need to work with our code. What if the lead programmer
keeps most knowledge about the system in his or her head?
Well, if you happen to employ this lead programmer, this
involves a big risk to you: Your system is built around a single,
irreplaceable person. If this person leaves your company or gets
involved in a traffic accident, you're in trouble.

If you are this lead programmer, well done: You are irreplaceable
and can ask for any salary you want. Not because of your
competence but because of your lack thereof. If you get bored of
the system that you're working on, tough luck. Nobody can take
your place.

It is beneficial to both sides to have a properly documented
system. Writing documentation is a task that nobody seems to
enjoy. It may be worth it to outsource this task to a student, who
will learn a lot from the experience. The following paragraphs
deal with making the code itself more transparent, and reducing
its learning curve.

175

8.1 No hard-coded, undocumented values

It takes a minimal effort to write code like the following, but
reading and understanding it is definitely much more difficult.

switch (objectdatatype.ToLower ())
{

case "st":
intML=255;
break;
case "si":
intML=5;
break;
case "dt":
intML=10;
break;
default:
intML=0;
break;

From a technical point of view, the above code is crystal clear.
Few language constructs are as transparent as a case
statement. What makes the code hard to understand is the fact
that it is full of hard-coded, constant values that appear to have
some meaning, but this meaning is not explained by the code.
We can only guess what si means and why the magic number
10 is used in branch dt. When we define constants earlier on in
the code and provide them with comments, a lot of guesswork
can be prevented:

176 Growing Better Software

const DATATYPES_STRING="st"; // STring
const DATATYPES_NUMBER="si"; // Short Int
const DATATYPES_DATE="dt"; // DaTe

/* length of short strings is
0..255 stored in 1 byte */
const MAXLEN_STRING=255;

/* max number=16 bit=65535
=5 digits */
const MAXLEN_NUMBER=5;

/* yyyy-mm—-dd=always 10 chars */
const MAXLEN_DATE=10;

switch (objectdatatype.ToLower ())
{
case DATATYPES_STRING:
intML=MAXLEN_STRING;
break;
case DATATYPES_NUMBER:
intML=MAXLEN_NUMBER;
break;
case DATATYPES_DATE:
intML=MAXLEN_DATE;
break;
default:
intML=0; // invalid type
break;

Even with the slightly clumsy naming of variable intML in the
code, at least it is a lot more understandable what the values
mean. We should keep in mind that what may be crystal clear to
us, may be an absolute mystery to others.

177

8.2 Name boolean functions by behaviour

In the case of boolean functions, we can make an agreement
that their name should start with a second-person verb such as
'is’, ’has’, ‘'must’, ‘’can’ or other verb that will help indicate what
result will be expected from the function in what situation. The
following is a counter-example of a function prototype:

bool validatedata (DataObject data);

Will this function return TRUE or FALSE if the validation fails?
By this interface definition, we can not read what value is
returned in which situation. The return value TRUE could either
mean “yes, the data was valid” or “yes, an error has occurred”.
When the function name starts with a verb (is, has, can, must)
and is followed by a noun or adjective, or (even better) both, the
return value of the function will automatically become much
clearer:

® Dbool isDataValid (DataObject data)
will probably return true if the data is valid

® Dbool isDatalInvalid(DataObject data)
will probably return false if the data valid

® Dbool hasValidContent (DataObject data)
will probably return true if the content is valid

® Dbool fileExists(string filename)
will probably return true if the file exists

178 Growing Better Software

8.3 Limit length and width of functions

Functions that span a multitude of pages are not acceptable. It
shows that something is wrong with the level of detail of the
function. Because of this, the readability of the function is
reduced. By lack of other guidelines, you should make sure that
functions should not exceed a page when printed in a normal
font on a sheet of letter size paper (or A4 sized paper, if that is
what you print on).

Rather than speaking of the width of functions, we might speak
of the maximum line length used in functions. Bugs may hide
and be overlooked in the hidden part of the line.

If a line of code does not fit on the screen horizontally, split it
up. In case of variable screen size, a maximum of 80 characters
is often recommended.

Rather than splitting up a line in the middle of a word, choose a
logical place to split up the line - for instance between function
arguments, after a comma or before an operator.

179

8.4 Write modular code

The time that it takes a programmer to get used to a system,
depends on the amount of knowledge required to work on that
system safely and effectively. To minimize the effort, it helps to
design systems as blocks inside blocks inside blocks; Each of
these blocks should only communicate with its direct
neighbours, and affect only its own state and scope'®.

The other key to modular code is functional separation. Each
part of the system, be it a procedure, a button on a user
interface or even a variable, should perform exactly one function.
This means, among other things, we should steer clear of
functions that do everything, buttons with alternating labels and
carelessly re-using variables for various purposes.

When a system is poorly designed, and various parts are
entangled in each other, a much bigger part of the system must
be understood before it can be modified without causing
dependent code to break. The performance of the programmers
working on the system is then only related to how familiar a
programmer is with the given system. This can be a very
frustrating experience, especially to skilled new team members
who know very well how to write proper code.

In contrast, when a system has a proper modular design, little
knowledge about the system is necessary to be able to start
working on it in a safe and effective manner. As changes to a
module only affect that module, new programmers will be able to
become productive team members in a very short amount of
time- sometimes from the first day on.

19 This is a simplified explanation of what is commonly known as the Law of
Demeter.

m Growing Better Software

8.5 Use a clear naming convention

When naming variables, functions or procedures, the chosen
name should be sufficiently descriptive. The only exception to
this rule are loop counters, where for decades single-letter
variable names such as i have been used (originally to conserve
memory).

Prevent abbreviations whenever possible, because the loss of
information may cause fellow programmers to get confused
about the meaning of the name. This will cost a lot more
productivity than the seconds saved by using abbreviated
names. In addition to the fact that most programmers can type
fairly quickly, modern development environments have code
completion, which will allow you to type long variable names as
quickly as short ones. A benefit of using non-abbreviated
variable names is that it will not only make clearer what a
variable name means; it also clears the confusion such as “What
was the name of that variable again, 'passwd' or 'password'?”

In many programming languages, variable names are case
sensitive. That is, variablea and VariableA are two different
variables. Do not choose variable names that can only be
distinguished from each other by their case.

There is somewhat of a convention that variables written entirely
in UPPERCASE refer to predefined constants or enumerations.
As for variables, there are two popular conventions of variable
naming: by using MixedCase variable naming, and by using
lowercase variable naming. Each convention has their
advantages. Naming variables in lowercase has the advantage
that you will be able to port code from that platform to any other
platform without need to change the existing convention, though
this might not be an important consideration.

Some people argue that Mixed Case naming is more readable,
because the case of the characters indicates where words start
and end. Spelling mistakes caused by the wrong case are easy to
make and hard to find by eye, however, and it may sometimes be
unclear which characters to capitalize if a word could equally
well be considered two words. Fortunately, our compilers can
help us find spelling errors by only accepting pre-declared
variable names.

The people that prefer working in lowercase often enhance
readability of their variables by means of underscores, for
instance by writing person_name rather than personname. It is
as easy to accidentally end up with both variables personname
and person_name as it is to accidentally end up with
PersonName and Personname. The risk is equal, so one isn’'t
better than the other.

Use any convention that suits you, just do not mix conventions
in a single system. If a system already follows one convention,
follow that convention.

To avoid confusion, prevent using different variable names that
are spelled equally, such as person_name Vvs. personname, or in
case you use a case sensitive language, variable names that can
only be distinguished by their capitalization (such as
Personname and PersonName).

In object-oriented programming, there may be some extra
confusion between properties and parameters of a method. For
instance, consider the code on the following page:

m Growing Better Software

class Person
{
private string name;
Person: :Person (string name)
{
this—->name=name;

}

In object-oriented programming, we may often allowed to omit
the reference to the current object, this->. If accidentally we
write name instead of this->name, our code won't do a thing,
possibly without the compiler warning us. It's clear that we
should distinguish between parameters and properties.

For this reason you may want to prefix either method properties
or function parameters to make this distinction, or give them
different names altogether. Either way helps prevent confusion.
In the following example, the chance of variable names getting
mixed up is virtually zero; if we write this->person_name or
accidentally leave out the this—> prefix before writing name, the
compiler will raise an error.

class Person
{
private string name;
Person: :Person (string person_name)
{
this->name=person_name;

}

8.6 Avoid multiple declarations per line

Various languages allow us to declare multiple variables or
arrays on a single line. In general, however, it is better to avoid
this feature, as it can have side effects when not approached
carefully.

In languages in the C family, we might carelessly write the
following declaration:

char* a,b,c

This will declare only variable a as pointer to a char, whereas
variables b and ¢ are declared as char.

Languages in the Visual Basic family have a similar flaw:
Dim a,b,c As String

will declare only variable ¢ as string, whereas the other
variables, lacking an explicit type definition, are declared as
variants.

By declaring only one variable per line, we avoid these
ambiguities. As an added bonus, this gives us the space to write
in-line documentation for the use of each variable, for instance:

char* tmpfilename; /* full path+name */
char* filekey; /* filename only */

m Growing Better Software

8.7 Parameterize all your error messages

Generating error messages by itself is simple enough.
Consistently generating error messages that are useful and
informative to whomever runs into them is harder. In most (if
not all) cases, however, there is a considerable added value to
adding a parameter in your error messages. This will
significantly reduce the time that your fellow programmers need
to find a bug. It may also give more advanced users a clue about
what they can do to resolve the problem by themselves.

For example:
File not found

This may trigger our response: Which file was the system looking
for?

File ’'<filename>’ not found

A bit better. The quotes make sure that empty file names won't
go undetected. So, we know what wasn’'t found, but we don’t
know where the system has been looking for it.

File ’'<filename>’ not found
in search path ’<path>’

Ah, that makes sense, at least to us programmers. Perhaps for
users we want to hide this technical information in a details
section of the error dialog.

Say, for instance, we just defined a database table with some 20
new columns, and run a big set of queries on that table. After a
while we get an error message:

YSE-00AQ5: column name 1is invalid

If were lucky, the message has something to do with the
table we just added. If not, we're going to have to painfully
browse through all possible queries that may have been issued
to the database. In the best case, we need to check which of the
20 column names was misspelled.

An error message

Invalid column name:
"pesron_name’ in table ’person’

would have immediately cleared this up.

As you can see, adding one or more parameters to an error
message will easily save our fellow programmers, our clients and
ourselves a lot of trouble. This is one programming habit that
you should pick up immediately if you haven’t already.

m Growing Better Software

8.8 Keep your code neatly layout

It is worth it to keep the layout of your code tidy. When talking
about tidy code layout, I mean positioning of brackets, usage of
white space, and proper indenting. This will help make your
code easy to read. Unfortunately, there are different opinions
about what is best,

Which of the following is better, the left hand side or the right

hand side?

Compact layout

Spaced layout

if (a==1) {
do_something () ;

}

if (a==1)
{

do_something () ;

}

if (a==1)
{
do_something () ;

}

if (a==1)
{

do_something () ;

}

if (a==1)
{
do_something() ;

}

if (a==1)
{

do_something() ;
}

The left-size version has the benefit that code takes a bit less
space. As such, more code can be displayed at once. The right-
side version is a bit easier on the eyes.

187

The very thing that is considered a benefit in one point of view,
is considered a drawback in the other. It just depends on what
you consider to be more important.

Follow whatever convention seems to be in effect; it is not worth
quarrelling about, and choosing one way over the other is not
going to change the quality of your software.

No matter what layout you choose, if you can, perform code
layout automatically rather than manually. Not only will this
save time, but it will also help enforce a consistent layout
between team members. If you work with Visual Studio, you will
find that code layout tools are already available in your
integrated development environment. In other cases, code may
be automatically formatted by command line utilities for the
language or languages that you work with.

188 Growing Better Software

8.9 Name for maximum readability

The general consensus seems to be that fixed-space fonts are
more readable for program code than proportionally spaced
fonts. However, some fixed-space fonts make it difficult to
distinguish the upper-case letter O and the number O, as well as
the characters | (vertical line or pipe), I (capital i), 1 (lower-case
L) and 1 (one).

When your variable names contain such characters, this will
make some errors hard to spot, and when displayed in a certain
font even impossible. Can you spot which character is what in
the following code®*?

variab0=0;
variabl=1;

To yourself, you can make things easier by choosing a font that
clearly distinguishes between these similar looking characters.

20 Answer: variab zero equals upper-case O, variab one equals lower-case L.

8.10 Add useful comments to your code

Source code should contain enough comments to make clear
what the code is doing, how, and why. A good habit that some
programmers have is to write down their source as commented
pseudo-code first, then to add real code in between - this will
guarantee that the ’how’ part is covered, although the
programmer might forget to explain what the code is for.

Some programmers are of the opinion that the how’ part should
already be sufficiently explained by the code itself, and that
writing it down as comments is a duplicate effort. Provided the
code is readable enough, this is no problem:

// Bananas
Process_fruits ("Bananas");

// Grapes
Process_fruits ("Grapes");

// BApples
Process_fruits ("Apples");

The comments in the above example have no added value
whatsoever, because the code itself is already equally clear about
what it is doing. In combination with the spacing, the comments
makes the code take up three times the screen space that it
needs to. The code is better off, and equally clear, with the
comments and white space left out.

m Growing Better Software

Some rules can be followed to make comments useful. Every
function-definition should start with a comment that describes
what the function is for, what parameters it accepts and what
return value we can expect from the function, given certain
input. Other useful places are in the separate branches of an IF
statement, and in the beginning of a loop.

Possibly the most useful type of comment you can add are
comments that double as documentation for the system. As the
documentation is written along with the system, most likely the
documentation will stay up to date better than when it would be
written separately. Some tools exist that will allow you to
generate documentation for your system based on the content of
comments. Examples of such tools are Doxygen and JavaDoc.
Tools of this sort generally assume that you have set up the
comments in your system in a certain way. For instance, the
comments that are to be included in the documentation start
with with /** instead of /* or with three slashes instead of two.
In other words, they are still syntactically valid comments in a
normal context, but the documentation system will know that
only these comments are intended to be added to the
documentation.

In a system that is actively being developed, it can be useful to
add little comment snippets that show who made a change to a
piece of code. Of course you should already be able to figure this
out by having version control operational, but when the
comment itself contains this information, we can save ourselves
the time needed for looking it up. A good example of a comment
snippet is:

/* Bug 42 */

Even better is to write the snippet in the following manner
(which will save our co-workers more time than it takes us to
write it):

/* Bob - Bug 42, added precondition check
for object3 */

This points us to bug number 42 in our bug tracking system and
briefly describes what it is about. Writing a comment like this
will cost just about no time at all, while the bug system can
contain all additional information required to have a full
understanding of what the code is about. We should be aware
that dependence on the bug tracking system will cause the
comments to no longer stand for themselves.

In some cases, we may use several bug tracking systems (for
instance one at the client, one internally), in which case our
comment snippets should somehow indicate in which bug
tracking system the appropriate problem description can be
found.

Finally, by popular convention, comments starting with ToDO:,
FIXME: or BUG: indicate that an action is required in the code
near the comment. This allows the developer quickly search for
unresolved issues in the code. Some development environments
will use such comments to display a handy list of tasks yet to
complete.

m Growing Better Software

8.11 Avoid hidden errors

Most modern programming languages have some means of
error-trapping, be it as try/catch, ON ERROR, TRY/END TRY,
eval/if (s@) or similar construct. This is very useful to recover
from severe errors that may occur for reasons beyond our
control. Instead, error trapping mechanisms are often abused to
hide sloppy programming from users- an anti-pattern known as
error hiding. An example:

try
{
x=document .getElementById ("name") .value;
/* [block of mission critical, bug free
code that we wrote] */
alert (x);
}

catch (ex)

{
/* empty catch block; errors in the
entire try block are hidden */

When any runtime errors are present in the above try block (for
instance because the name field does not exist), execution of the
rest of the block is interrupted. Our mission critical code is not
executed. Also, when new code is added to the try block, it will
be difficult to properly test it, because no runtime errors will
ever be visible, even if they occur. As a result, bugs may slip
through. Worst of all, while the system appears to work
correctly, unpredictable behaviour may occur, but only become
visible when it is already too late. Without any error messages, it
can be very hard for other programmers to trace where the
actual mistake took place. In this case, the whole try..catch
clause is nothing but a cover-up that makes life more difficult
for other programmers.

Even if we do not want to show the users any errors that are the
result of sloppy programming, empty catch blocks (or empty
error handles in general) are simply not acceptable because
invariably they will cause programmers to spend more time
debugging and less time being productive. The very least we can
do is to log errors behind the scenes- making sure that this
logging itself can never trigger recursive exceptions, of course.

This small investment in time will earned back on the first
occasion that an error is caught, because the log file will
immediately inform us where a bug is hiding.

Apart from making sure that the error handling provides us with
useful information, it is also highly recommended to make error
traps span as few instructions as possible. This has a few
benefits:

e It will make it easier to pinpoint the exact location where
the error condition occurred

e It helps prevent us from accidentally hiding other errors

e It helps us not to disrupt the normal flow of the program,
reducing the chances that wunintentional behaviour
occurs.

As a rule of the thumb, exception handling or error trapping
should only be used for situations that are beyond our control.
Our own code should obviously not fall into that category.
Whenever our code catches an error, it should deal with the
situation gracefully.

m Growing Better Software

8.12 Be consistent

If various pieces of code are written by consistently following the
same rules, it will be easier for another programmer to start
working on a piece of code that (s)he has never seen yet, because
the methodology in it will match the usual.

It is understood that consistency can be hard to enforce within
large programming teams. In that case, the teams first need to
agree on which conventions will be consistently followed. See if it
is possible to enforce coding conventions automatically, rather
than depending on discipline.

If it is not possible to enforce the coding conventions
automatically, at least make sure that the conventions are well-
documented and clear to all programmers on the team. Make
sure that all programmers stick to the documented rules by
making someone responsible for enforcing the coding
conventions.

It is likely that enforcing coding conventions manually will
require a considerable effort; this is why enforcing such
conventions automatically is preferred.

Chapter 9

Optimizing
your code

The first home computer that I had regular access to was pretty
much top of the line when we got it. It ran at 3 MHz, had 16
kilobyte of RAM, an additional 16 kilobyte of video RAM (oh
luxury!) and read programs from audio tape, recorded at a baud
rate of 300 bit per second. As such, a one-hour tape would
contain roughly 128 kilobytes of data.

Bill Gates is now ridiculed for saying “640 kilobytes ought to be
enough for everyone™'. Not strange, considering the fact that
computers nowadays are extremely powerful compared to the
ones back then. Nowadays, we won’t be surprised if we hear a
computer runs at 3 gigahertz, has 1 gigabyte of RAM, 256
megabytes of video RAM and a 200 gigabyte hard drive?.

21 He never actually said that.
22 Unless you read this text a few years after it was written, and only obsolete
computers will have such poor specs.

m Growing Better Software

To put this in perspective, compared with the computer I started
with, nowadays a nice computer has at least 1000 times the
clock speed, 65536 times the RAM, 16384 times the amount of
Video RAM and over a million times the amount of storage.
Speed for accessing that storage are immense: data rates of over
10 megabyte per second are pretty common. In addition, you
may have a 2 megabit per second or better internet connection
and a gigabit LAN.

We should, as such, face a reality. Computers nowadays are
speed-monsters. With a machine that powerful, if your code is
slow, you must have done something awfully wrong. Because of
this, the most important rule about optimizing your code is: Do
not optimize your code. Instead, write it in such a way that it will
not need optimizing.

The following paragraphs will give tips and tricks that will help
prevent the need for optimization. In addition, should you get to
the point where you do need to optimize your code, the described
techniques will be a good starting point.

197

9.1 If possible, do not optimize

The first rule in optimization is: don’t optimize. However, there
are situations in which system performance is so poor that
something must be done to solve the problem.

Before you optimize, make sure that the optimization is desirable
and worth it. Be aware that there may be some serious
downsides to optimization. Optimizing may cost time and
maintenance, and often sacrifices code clarity.

Premature optimization might prove to limit the flexibility of the
system in a later stage. There is such a thing as things running
fast enough; if you can get away with it, do not optimize.

It may be cheaper to get a heavier machine by the time your
system gets too slow. It may be possible to archive old data to
win back some speed. It may be possible that things are slow
because the computer is swapping, in which case adding a bit of
extra RAM will solve the problem. Of course, the possibility to
throw more hardware at a problem is no excuse for badly written
code, but sometimes it is the most cost-effective solution.

If you really can’t escape optimizing your code, it is worth it to
have your optimization strategy planned out. I hope the following
paragraphs will be of assistance in this.

m Growing Better Software

9.2 Perform trivial optimization

In optimizing code for optimal performance, the first thing we
learn is to prevent unnecessary calculations and operations. It is
literally the oldest trick in the book, but this text would not be
complete without it, so here we go.

function uppercase(string strInput)
{
string strOutput="";
for (i=0;i<strlen(strInput);i++)
{
if ((substr(strInput,i,l)>="a")
&& (substr (strInput,i,1l)<="z"))
{
strOutput=strOutput+
chr(
asc (
substr (strInput,i, 1)
) =32
)
}
else
{
strOutput=strOutput+
substr (strInput,i,1);
} /* end else */
} /* end for */

return strOutput;

The above function returns the upper-case version of an ASCII
string. Calculating the length of a string (done by the function
strlen) and getting a substring from a string (done by the
function substr) may be heavy operations, yet they are
performed repeatedly.

If we limit the amount of function calls by storing their result in
a variable, our code will most likely be faster. In the above case,
any loop iteration may be forced to recalculate the length of the
string. In case of a ‘zero-terminated’ string, this may be a very
heavy operation, growing heavier as the string grows longer. The
reason for this is that the length calculation needs to scan the
string for the terminator character, one character at a time. As
such, figuring out the string length of a string N characters long
will take N operations.

This is, of course, if the strings library of the programming
language in question works as described. If it simply keeps track
of the length of a string by storing it in a separate word in the
string data structure, retrieving the string length can be done in
constant time.

This shows a risk of optimizing: time is spent on improving code,
but sometimes these improvements may be based on incorrect
assumptions about the underlying system. To prevent building
on incorrect assumptions, all we need to do is to call the string
library functions with both short and long strings and
measuring if the difference in performance is expected to be
worth our effort.

For the case of this example, we'll assume that we found out
that calculating the string length and extracting substrings are
indeed slow operations. Now consider the following code.

m Growing Better Software

function uppercase(string strInput)
{
string strOutput="";
int slength=strlen (strInput);
for (i=0;i<slength;i++)
{
char currchar=substr (strInput,i,1);
if ((currchar>="a")
&& (currchar<="z"))
{
strOutput+=
chr (asc (currchar)-32);
} else {
strOutput+=currchar;
} /* end else */
} /* end for */
return strOutput;

This piece of code will most likely run faster, because it only
calculates the string length once: before entering the loop. This
means that while looping, the calculation is not done over and
over again. In addition, the substring containing the character
being processed is also only extracted from the string once per
iteration. Overall, this also improves maintainability and
readability; the variable names end up being more descriptive
than the code that they replace, and if the code needs to change,
it will only be in one place. This means that even if the
performance win is marginal, it would still be beneficial to write
your code like this.

The good thing about this practice is that we can implement it as
we write our code; it does not have to be done afterwards.

9.3 Be aware of the Big O

In information analysis, there are only 3 different numbers: zero,
one and many. If you do not require processing any items, no
room for optimization there. If you can avoid processing 1 item,
great. However, optimization mostly deals with the latter case:
‘Many’. If you need to sort ‘'many’ items, how much time does it
take? If you need to search for an item in a list of ‘many’ items,
how much time does it take?

‘Big O’ notation is used to indicate the order of efficiency of an
algorithm compared to the size of a given problem. We can
attempt to measure and graph the performance of a system after
we've built it, but often this is not necessary as the performance
can be roughly predicted while we are writing the code. Although
the following is not exact, it gives a pretty usable 'rule of the
thumb’ indication of the efficiency of certain programming
techniques:

e The ideal case is when an algorithm runs in O(1), it
means it runs in a constant amount of execution time
regardless of the size of the problem to solve. Hash
algorithms generally fall into this category. Usually, the
trade-off is more memory usage.

e If a piece of code runs in O() time, it means that the
execution time is proportional to the size of the problem.
A single, unnested loop is a common example of this.

m Growing Better Software

e If a piece of code runs in O(n’), it means that typically the
execution time rises proportionally to the square of the
size of the problem. This happens for instance when we
nest a loop inside a loop. Algorithms of this order are not
scalable. A common example is bubble sort. We should
be aware that a function containing a loop called from
within a loop in another function also runs in O(r).

e Likewise, code running in O(2" will not scale well.
Encryption algorithms are deliberately designed in such a
way that the only way of decrypting a message without
the appropriate key is by trying all possible
combinations. As such, cracking a message encrypted
with a 128 bit key would require up to 2!2® attempts.

e If a piece of code runs in O(log(n)), the algorithm gets
more and more efficient as the size of the problem
increases, because in each step of solving the problem,
the size of the problem is reduced by a certain factor. As
such, algorithms of this order are scalable too. A
common example of this is a binary search tree.

Obviously, the algorithm that we choose to use greatly impacts
the efficiency and scalability of our code. When writing a piece of
code, we should consider both the average (expected) efficiency
of the code and the worst-case efficiency.

9.4 Optimizing by memoization

Memoization is an optimizing technique similar to caching,
which can be applied to referentially transparent functions
(functions that always return the same output given the same
input) that perform repetitive operations. For example, the
following is a naive implementation of an algorithm that
calculates the factorial of a number:

function fact (int x) returns int
{

1f (x<=1)

{

return 1;

}

return x*fact (x-1);

When we follow the program flow to look at how the result is
calculated, we will find:

fact (1) = 1
fact (2) = 2*1
fact (3)= 3*2*1
fact (4)= 4*3*2*1

We see that as the value of n grows, the efficiency drops, while
tail of the calculation is always repeated. We could try to cache
the tail, by implementing the function slightly differently.

m Growing Better Software

The following implementation assumes a programming language
that features static variables, meaning variables that are
remembered after exiting a function. If your language of choice
does not feature static variables, you can simulate them by
declaring them as private class member or even as global
variables - as long as you make sure that they are used by only
one function.

function fact (int x) returns int

{
const MAXNUM=1000; // cache size
static int mem[MAXNUM]; // result cache

/* The result cache must be initialized
to contain only 0 values before use */

if (x<=1)

return 1;

if (x>=MAXNUM)

// out of range for cache, so calculate
return x*fact (x-1);

if (mem([x]!=0)

// result is already cached, return cache
return mem[x];

}

// Not yet in cache,

// calculate result and cache it
mem[x]=x*fact (x-1);

return mem[x];

In the above case, the original algorithm happened to be very
short, but for larger pieces of code the absolute number of lines
to add should stay about the same: three if statements and a
static array to cache function results.

As you may have noticed, caching aside, the actual algorithm
itself still functions pretty much as before and hasn’t suffered all
that much rewriting. The main difference is that it reuses a
previous result, if possible, and otherwise stores the result of the
current calculation for future lookup.

There is a slight bit of added complexity because the above
example limits itself to remembering a maximum of 1000
numbers. In the above example, the code assumes that all array
elements are automatically initialized to O before use. This is
used to indicate whether an element is already cached or not.

The spectacular part about memoization is that it actually alters
the order of the algorithm, with almost no rewriting work at all.

Where the original factorial ran in O(n), the algorithm that uses
cached results will run in constant time or O(1). For larger
values of n it will run in O(n — MAXNUM).

m Growing Better Software

9.5 Prevent iterations and recursion

A loop is such an elementary construct in programming, that it
is hard to imagine working without it. Yet, using loops inside
loops inside loops inside loops will cause your system to get
slower and slower, as the execution time of part of the program
goes from O(n) to OMm1 * n2) to OMnl * n2 * n3).

One of the most frequently used operations is finding an item in
a list. If you need to find an item in a list, you can simply start
iterating the list until you find the item. If the list is sorted, you
can start in the middle and do a binary search, which is already
a lot more efficient.

If you have the RAM (nowadays rarely a problem), you can
possibly prepare a hash table and simply check if for the
existence of the element at the calculated position. Good news:
most modern languages have a construct known as a HashTable
or Associative Array, which allows looking up elements in a table
by their name, rather than by a numeric index. Note the use of a
separator to simulate a multi-dimensional associative array; this
works well, but we have to make sure that normal keys do not
contain this separator.

HashTable pricelist=new HashTable () ;

/* The following separator never occurs in
prodtype/prodcolor: */

const string SEPARATOR="__";

string prodtype="toy car";

string prodcolor="red";

string prodsize="small";

pricelist.Add (prodtype+SEPARATOR+
prodcolor+SEPARATOR+
prodsize, (float)4.95);

207

In general, built-in associative arrays of a language such as in
Perl and PHP, or standard data structures such as HashTables
that are present in DotNet or Java are a lot more efficient than
doing a search by ourselves, and save us the need to use a loop.

A real HashTable is one of the most efficient data structures that
exists for purposes of looking up data. Writing data might be a
bit more CPU-intensive.

Getting an item from the price list as defined in the example
above could be as simple as:

float price=(float)pricelist.GetObject (
"toy car"+SEPARATOR+
"red"+SEPARATOR+
"small"

)

This would calculate a single hash, and simply get the element
from the hash table with that hash, most likely in O(1) or
O(log(rn)), depending on the algorithm used to implement it.

The following naive equivalent without associative arrays would
probably have been something along the following lines. Not only
is the code itself more cluttered, but it will also execute far
slower than the previous example.

m Growing Better Software

string strDesiredprodtype="toy car";
string strDesiredprodcolor="red";
string strDesiredprodsize="small";
int prodtypeindex=0;
int prodcolorindex=0;
int prodsizeindex=0;
for (i=1;i<=TOT_PRODTYPES; i++)
{

if (prodtypeli]==strDesiredprodtype)

{

prodtypeindex=i; break;
}

for (i=1;1i<=TOT_PRODCOLORS; i++)

if (prodcolor[i]==strDesiredprodcolor)
{
prodcolorindex=1i; break;

}
for (i=1;i<=TOT_PRODSIZES;i++)

if (prodsize[i]==strDesiredprodsize)
{
prodsizeindex=i; break;
}
}
float price=pricelist [prodtypeindex]
[prodcolorindex] [prodsizeindex];

This could be optimized by using three binary trees, for example.

But before we lose ourselves in optimizing anything, let's take a
look at the former example code again:

float price=(float)pricelist.GetObject (
"toy car"+SEPARATOR+"red"+SEPARATOR+
"small");

Obviously it will cost less time to write code like this than to
optimize the existing code.

In addition, looking up items by an index will often cost fewer
comparison operations than when a forest of if statements is
used- especially when those if statements are used in a loop.

Now you see why I said before: Do not optimize your code.
Instead, write it in such a way that it will not need optimizing.

m Growing Better Software

9.6 Optimize only if there is a bottleneck

In general, when our code is too slow, there is a bottleneck. This
can be in computations, but it can also be in the communication
of the computer with its peripherals, be it the screen, printer,
disk, network or others. Before you start optimizing, make sure
there is a bottleneck, and figure out where it is.

Often, 1/0O operations are slow. We can boost their performance
by caching. Once, I spent a day on writing a caching algorithm,
only to find out that things ran slower after optimizing them -
because, as it turned out, the system used all its free RAM as
disk cache anyway. The existing cache worked better than the
one I implemented. What went wrong was that I tried to
eliminate a bottleneck that wasn’t there. Because of this, we
should measure which pieces of code use how much execution
time.

Profiling tools can be a big help in finding the offending piece of
code, although companies often do not supply such tools to their
employees.

We can however perform some simple measurements without
such specialized tools, by simply reading the timer before and
after executing a piece of code to find out which piece of code is
the offending one. If necessary, execute a piece of code several
thousand times to get a more precise average runtime. This will
also reveal the presence of a cache, in the case of I/0O
operations.

9.7 Prepare data to prevent bottlenecks

When optimizing our code, we replace slow code by faster code.
For the best possible performance, often we have to make a
trade-off; usually this trade-off is increased complexity or a
larger memory footprint.

In some cases, we can pretty much predict what functions will
be called by our code. For instance, before math co-processors
were common, programs that would show graphical animations
would calculate a sine/cosine table in advance, because doing a
lookup was much faster than performing the actual calculation.
The downside was that the table required some RAM, and of
course the precision of the table was limited compared to the
calculation.

In the past I built a system that displayed survey results on a
website. In an early version, calculating the full set of data to
display on the website would cost 20 minutes. As such, it was
done periodically on the server, once per hour. This was an
acceptable delay as the system was only fed with new data on a
daily basis. However, by performing calculations in advance, the
website was able to display any subset of the data to the end
users almost instantly. The users were impressed with the
performance, and the client was happy.

There was a reason for optimizing here, other than performance
as perceived by the client. Each full system calculation took 20
minutes, making for a major delay in debugging and testing.

Also, the client had plans to take his company multi-national
and wanted to run several sites on a single server. Just having
three of them would have bogged down the server so much that
it would constantly be calculating.

m Growing Better Software

After redesigning and optimizing the calculation module, it took
about 2 minutes to perform the full calculation. This was still
too long to wait for when loading a web page, but a maximum
delay of 5 minutes between entering data into the system and
displaying it on the site was now possible.

Another popular use of the data preparation technique is to
make web-based systems operate blazingly fast. A news website
(typically non-interactive but featuring content management)
may be written in PHP. If such a system generates the HTML for
its pages every time the website content is altered, rather than
on each incoming HTTP request, this will eliminate the need to
interpret a slow script on each request.

The web server will simply be able to serve up the raw HTML
pages, which is about the most trivial operation that a web
server can handle. When all web pages are prepared and the
entire site can be fully cached in RAM, such a server should be
able to satiate a 100 Mbps link without breaking a sweat.

9.8 Spread out peak load

Often the reason that a program feels sluggish is because it
attempts to do everything at once, creating a bottleneck in CPU
power, network bandwidth or other resources. Often, the
operations that need to be performed could be spread out over a
larger period of time. The average load will remain about the
same, but the peak load is greatly reduced, which can help
creating a system that is much more responsive.

A computer is a machine that spends most of its time doing
nothing at great speed. This idle time could be used in the
background to do all kinds of useful operations. In the past, I
wrote a training program that would decode its data files during
idle time. When the user needed that data, it was usually
already available. As a result, the program seemed extremely
fast. In reality it just made efficient use of idle time. While users
were reading through the course material that was presented by
the program, the program was already busy decoding the next

pages.

If spreading the load is not an option, we can make our users
more tolerant to the wait by distracting them. This does not help
response times and is more of a psychological optimization than
anything else. Still, the users will tolerate, and might even enjoy
being presented with a proper distraction. Splash screens or
dialogs presenting a tip of the day can be nice ways to distract
the user, and are a great time to prepare some data while the
user is busy reading. A variation on this theme is displaying the
user interface and playing make-believe that the system is ready
for input, while in reality a lot of initialization is still going on.
The user will be able to move around the mouse cursor and
click, but the system will only be fully usable when it has
completely initialized.

m Growing Better Software

9.9 Prevent active waiting

Keeping the user entertained might be good on occasion, but if it
happens too frequently it is not the answer. In a timesheet
system that I once built, the finance department needed to
actively wait for about a minute between confirmation
operations. As it turned out, there was no way to perform the
operations any quicker due to the limitations of the platform. As
a result, it took over an hour lost in active waiting just to
confirm the data entered by over 60 employees. Needless to say,
the finance department was not amused.

The problem was solved by turning the time consuming task into
a background task. Instead of actively waiting for the records to
be confirmed, they were now merely set ’'marked for
confirmation’ on the client side, which cost less than a second. A
background agent on the server would detect which records were
marked for confirmation and would periodically mark those
records ’'confirmed’. The total amount of time that it took to
confirm the records was still equal- over an hour. But as this
hour didn’'t require an manual action every minute, this hour
could now be spent in a more productive manner.

Later on, at another employer, I found myself in a similar
situation. The open source package PHProjekt required multiple
slow submit actions to enter time sheet data of the various
projects. Each and every project entered required reloading a
web page various times. This web page was being run off-site
and dreadfully slow. I built another, PHProjekt-compatible web
interface, which limited submit actions as much as possible by
usage of JavaScript and by showing a month worth of project
data on a single screen.

After loading the initial page and showing ‘ready’, the rather long
project list of the user was loaded in the background (in a
hidden frame) in a few seconds, usually before the user could get
to the point of clicking the ‘choose project’ button.

This button would run a Javascript which would instantly pop
up this long list, sortable in various ways. This gave an extra feel
of smoothness to the whole. After this new interface was done, I
sent out an email saying “Feel free to try this alternative
interface, feel free to stick to the original”. After a few weeks,
most of my co-workers had switched to the alternative interface,
including the head of the department, who of course took credit
for the idea.

One way to prevent active waiting is by turning a single-threaded
application into a multi-threaded one. Effectively this means
that some of the processing of the application is done as
background process while the rest of the application continues
responding to user requests.

There is a risk associated with this: debugging multi-threaded
applications is considerably harder than debugging single-
threaded ones. It is a must to read up on concurrent
programming before going this way.

m Growing Better Software

9.10 Allow a bit of quality loss

One way to achieve guaranteed fast response times is by
reducing the quality of the result offered when the system is
being stressed to its limits. These limits can be bottlenecks in
any place: I/O throughput, network bandwidth, processor
power, and so on. Examples are all around us:

e A text editor may interrupt rendering the current page
when it detects that the page-down key is being pressed.
As a result it will never fall behind and instantly render
the correct page when the key is released;

e The sound quality of our cell phones will reduce when
less bandwidth is available, but the latency between
sender and receiver will remain constant;

e A web server may interrupt serving a page when the user
has just requested another one.

e When fast-forwarding our CD player, it will not suddenly
read audio blocks from CD at twice the speed. Instead, it
may skip every other block. While burning a CD,
skipping blocks is not an option. In such cases, features
such as fast forward and rewind are disabled.

By determining which concessions we can make in the quality of
the response, we can create systems that are a lot more
responsive. In most cases, it will have been the user who was
triggered the action that caused the quality loss, and there will
be no need to make up for it.

217

9.11 Rewrite loops

In handling loops, a considerable amount of processor power is
spent in checking if the loop is finished yet. The following code
does this 1000 times:

int buffer=array();
for (int i=0;i<1000; i++)
{
buffer[i]=0;
}

This overhead can be reduced by unrolling the loop; we simply
place more code inside the loop and reduce the amount of
iterations.

int buffer=arravy();
for (int 1i=0;1<1000; i+=4)
{

buffer[i]=0;

buffer[i+1]=0;
buffer[i+2]=0;
buffer[i+3]=0;

As the loop now only needs to be iterated 250 times to obtain the
same result, the overhead that is added to the code by the loop
is reduced considerably.

A drawback is that unrolling loops introduces some degree of
code duplication. Also, compilers are often already capable of
unrolling loops, so the performance gain may be marginal.

m Growing Better Software

A bigger performance win can be expected if we simply employ a
cleverer algorithm whenever possible. For instance,

int sum=0;
for (int i=0;i<1000; i++)
{

sum=sum+i;

}
We can pair the values added to the sum as follows:

i=0 and i=999
i=1 and i=998
i=2 and i=997

i=n and i=999-n

As we pair the numbers, we can do with half the iterations, so
we might as well rewrite the loop as follows:

int sum=0;
for (int i=0;i<500; i++)
{

sum=sum+999;

}

Obviously, 500 times adding 999 to a sum is the same as a
multiplication, so we can get rid of the loop altogether:

int sum=999*500;

By removing the loop altogether, the order of the loop has
changed from O(n) to O(1), which will perform considerably better
than the loop.

9.12 Optimizing interpreted code

Code that is interpreted, rather than compiled, will benefit to
some degree from cutting out unnecessary weight. Interpreted
code will run faster when short variable names are used rather
than long ones, and when comments are removed.

It is important to realize that from a readability perspective, this
is a terrible idea. Also, depending on the language, code that
seems interpreted might actually be compiled on-the-fly or
passed through a just-in-time compiler, making the benefit
marginal. Your mileage may vary.

A similar argument applies to optimizing scripts that are
downloaded on demand. If the bottleneck is the available
bandwidth, it is likely that a lot more can be gained by
compressing and decompressing the script on-the-fly, than by
shortening variable names and leaving out comments.

Growing Better Software

This page intentionally left blank

Chapter 10

Tools

In designing and implementing systems, we do not live in an
ideal world. Some tools that would be ideal to do a certain job
may be too expensive to your employer due to licensing costs.
This should however not be what decides the success of your
project. When we put the tools that are available to their best
possible use, the outcome will be the same.

@ Growing Better Software

10.1 Select the right tool for the job

Whenever possible, we should use the right tool for the job. If we
need a system that provides reliable real-time information
several times per second, a garbage-collecting language like Java
probably isn’t suitable, a language like C is probably more
appropriate.

If we need a menu system that works on mobile phones and
several operating systems, and real time operation is no issue,
perhaps Java is a better choice than C.

Whoever wrote Tetris as an Excel spread sheet didn't do so
because Excel was the right tool for the job, but to prove it could
be done. If you are that person, I salute you; your project has
great hack value. Don’t do this in the boss’ time.

To be able to make an informed decision about which tool to use
for a particular purpose, it is necessary to get familiar with
several of them. This is true for both programming languages
and for supporting tools, such as bug tracking systems.

On the other hand, the ideal tool may be prohibitively expensive.
If another tool isn’t specifically intended for a given job, but it
serves the purpose well, why not use it? Who hasn't ever
hammered in a nail with something else than a hammer? Using
the wrong tool often is better than using nothing at all. Of
course, if you're stuck with writing to-do lists on paper, you may
want to inform management that there is a better way.

10.2 Use the Internet

It has happened to me on many, many occasions that people
requested my help to solve a problem they were having. Typically
they would be confronted with some error message that they
didn’t understand.

Often such problem could be solved in a very short time by a
combination of experience, intuition, and most of all by simply
looking up the text of a received error message on the internet.

Especially Usenet (online at http://groups.google.com) is an
extremely useful troubleshooting resource. Almost always there’s
someone that has faced the same problem before, and the
solution is found quickly.

When it comes to actually finding tools, the internet is also the
first place to search. There is a wealth of free development tools
available. If commercial tools are too expensive, searching the
web will generally offer an alternative, free solution.

As it turns out, support on open source software is pretty good.
Especially if the software is backed up by an active community,
mailing lists or forums can be a big source of help. When neither
is available, proceed with caution. Authors of open source
software are often very willing to help when you send them an
email, but understandably don’t like it when you waste their
time with trivial issues. Most of them will however reply you,
once, when you email them. They don’t owe you anything, so use
this one chance wisely. Keep your email short, polite and only
resort to emailing the author directly if you have not found a
solution otherwise.

m Growing Better Software

10.3 Use Version Control

Implementing some type of version control is vital when a project
is performed by multiple team members. The various version
control systems make sure that the changes made by multiple
people are well managed.

To do this, some version control systems block access to a file
while it is being edited by a team member. Team members can
work on a system simultaneously, as long as they only work in
files not being used by others at the same moment. This leaves
no doubt as to which version of a piece of code is the 'real’ one,
but files may be blocked more and more frequently as teams
grow. One way to resolve this is to keep source files small; this
makes it less likely that a file is needed by two people at the
same time.

Other version control systems allow changes by multiple people
at once. As long as the changes made by two or more people do
not overlap, the changes can be merged without causing version
conflicts.

Version control systems typically keep a full history of the
changes made on a central server. In effect, this automatically
documents which changes where made when by whom. All this
is accomplished with a minimum of extra effort: Files are
checked out before editing them (sometimes before each edit,
sometimes only once, depending on the version control system),
changes are made, and the changes are checked in again or
committed. This implies there are multiple copies of each file: on
both the version control server and the workstations of all
developers involved. As a result, projects that employ version
control rarely lose a lot of data, even if disaster strikes.

Both source code and documentation may be stored in version
control systems, as both may be subject to frequent updates.

Even single developers may still benefit from using version
control. You will be able to see which changes have been
implemented when, and you will be able to easily revert to
previous versions. Also, when working from different locations,
or if you have written a library that you use in several projects,
version control makes it easier to keep track which files
represent the latest 'official’ version of your system.

In a professional environment, a version control system is
typically implemented on a server somewhere on the network.
This will help ensure that work is not only stored locally on a
workstation (which may be switched off at night), but on a server
that is always available. It is also good idea to have the checked
out files (or working directory) reside on a network share®, so
that they can be included in daily backups. This will help ensure
that backups of all the latest work are made. Committed
changes allow creating a ’'nightly build’ of the software by
compiling and installing the latest version automatically each
night, which in turn can be used for a regression test.

When choosing a version control system, an important
consideration is the platform or platforms from which it needs to
be accessed. If you work with exclusively with Visual Studio,
using Visual Source Safe is the obvious choice. However, if you
work in a multi-platform or UNIX-like setting, it makes more
sense to choose CVS, Subversion (svn) or Trac. These will also
work on Windows, and free client software can be found easily
with your favourite search engine.

23 It would be recommendable that this network share resides on a different
drive than the version control server uses for storage. This will help
recovery in case of a drive crash.

w Growing Better Software

10.4 Bug tracking/workflow

Bug tracking systems such as Bugzilla or Mantis are very useful
to register bugs, but they have more uses. They are ideal to
track the progress of solving bugs or implementing feature
requests, but can also help project management. If a project is
entered as a series of tasks with sufficiently small impact, the
bug tracking system will very precisely show the progress of
implementing new functionality.

More often than not, users of your system will also enter feature
requests in the bug tracking system. This is where the
availability of functional documentation starts to pay off. When
the user can say “according to chapter 2, paragraph 3 of the
documentation the system should behave like this or that”, or if
we can say “what you are asking conflicts with page x of the
documentation”, we save ourselves a lot of fruitless discussion
with the client as of what should be part of the system and what
should not.

A bug tracking system will serve to remind you which tasks are
still to be done. give you structure in your work, and help you
focus.

Whichever bug tracking system is decided on, it is important
that using it is a minimal effort. If it is too much of a hassle to
use a bug tracking system, it is likely that its users will at some
point neglect to register small and seemingly unimportant issues
in it. As proper procedures are not followed for these issues, this
may ultimately result in increased maintenance costs.

227

10.5 Create a build server

It is extremely useful to have one or more machines dedicated to
periodically occurring processes such as building your software®*
and creating backups. You will find these a worthwhile addition
to your programming infrastructure. If several physical
machines are not an option, consider virtual servers.

A build server may limit itself to pulling the last version of the
software from the version control system and compiling it, but
such a server can do much more for you: It can scan your
software for common errors, package your software, forward it to
the test server, publish it on a website for beta testing- the
possibilities are endless.

A properly configured build server will save you a lot of work
(mostly boring, repetitive jobs) and help you detect possible
problems in an early stage, often within 24 hours from their
occurrence.

In the best case, your build server will provide you with a one-
step build process, so that building and packaging the software
is trivial, even if there is little or no documentation.

24 Joel Spolsky has written the excellent article about this, “Daily Builds Are
Your Friend” on his weblog: http://www .joelonsoftware.com.

@ Growing Better Software

10.6 Create a knowledge base

Knowledge should not be only in the head of the developers, it
should be shared amongst them. This will help ensure the
continuity of a project, when a developer gets ill or leaves the
project for whatever reason.

To set up a knowledge base, a wiki seems a natural choice: It
costs little effort to set up, makes it easy for everyone to
contribute and share their knowledge, and the information will
be easy to find back. A separate server to host the knowledge
base is a good idea; not a lot of processing power is required, but
it is important that plenty of disk space is available.

If high availability is not a requirement, a knowledge base may
be run on cheap hardware, as long as backups are made on a
regular basis.

Version control systems and wiki may compete over being the
most suitable place to store knowledge. However, in general a
wiki is easier to search and edit. If you set up a wiki,
communicate this fact with the people that will use it. It may
take a bit of time for the knowledge base to gain popularity, but
as more and more questions are answered by it, it will be
consulted more and more frequently.

New employees may well be the most suitable people to write
'getting started' style documentation, both because they're not
tied up in projects yet, and because they will run into all the
questions that are considered common knowledge by
programmers that are already familiar with the system being
developed. The effort will pay back for itself with every new
employee being hired.

10.7 Set up your development environment

To work effectively, you will need to set up your development
environment to allow you to be as effective as possible. This
includes proper tools for writing documentation, programming,
debugging, editing, quality control, any graphical work that you
may need to do, and so on.

Make a list of software that you use; probably your co-workers
have a set of favourites that they use on a daily basis, which
may be worth investigating. You may have a few favourites
yourself that you may share with others.

Perhaps your company enforces a policy about which software is
acceptable and which software is not. In any case, you should be
familiar with the choices that you have and use them to your
best advantage. If certain tools are obviously missing from the
list of acceptable software, you may have a say and have it
added. Management usually has little trouble accepting
productivity-boosting software that is free, legal and safe.

@ Growing Better Software

10.8 Use code analysis tools

There are some tools which analyze code to detect common
problems in the code base. Code analyzers are generally
relatively heavy-weight programs, and as such it may not be
possible to perform a code analysis every time you compile your
project. However, it may be a good idea to include such code
analysis tools in the nightly build cycle to catch problems in an
early stage. A few examples:

e Simian is a similarity analyzer. Its purpose is to detect
duplicated code. Duplicated code is often a sign of copy/
paste programming, and it will lead to increased
maintenance. By running a copy/paste detector in the
build cycle, this increased maintenance can be
prevented.

e Valgrind is a code analyzer for Linux that was originally
intended to detect memory leaks, but nowadays it also
has profiling capabilities.

Of course, if neither you nor your co-workers ever copy/paste
code, a copy/paste detector is of little added value. Likewise, one
doesn't necessarily need a memory leak detector to detect
memory leaks. Writing wrapper functions for malloc and free
to log memory usage can be just as effective, but the problem is
to enforce this practice.

Including a few tools in the automated build cycle may prove to
be less effort, and it will help the entire team to adhere to the
same quality standards.

10.9 Create a toolbox

Whenever you find yourself repeating a chain of tasks or writing
the same type of code over and over again, it is likely that you
can save time by writing library functions and scripts to
automate your tasks.

At some point, you will have a collection of scripts and library
code that make your life a lot simpler. When sufficiently
documented, your co-workers might benefit from this toolbox as
well. Especially then, a small investment in time can have a big
impact on overall efficiency.

Efficiency may be the main reason to start on a toolbox, but
there are more reasons that are just as important.

e Makes your work more interesting: Manually repeating
the same tasks over and over again is not only inefficient,
it also makes your work more boring. Creating tools to
solve such problems is a lot more fun.

e Continuity: If the build-and-release process within your
company is a complex, multiple step operation, releasing
a new version of a piece of software may be a daunting
task, even if it is a thoroughly documented procedure. If
the person responsible for releases is absent for whatever
reason, the company may not be able to perform a
software release. If, on the other hand, performing a
software release is a one-click process, the software can
be released at any given moment by anyone. If you must
have a complex release procedure, creating a release
wizard may solve your problem.

E Growing Better Software

e Quality: By automating tasks that otherwise would
require strong discipline, a higher quality standard can
be reached. This can range from something as simple as
automated reminders, to something as complex as
enforcing strict coding standards.

Chapter 11

Prevent
duplicate efforts

There are several ways of making sure that software stays
maintainable. One of them is to make sure that when something
needs to be changed, it needs to be done only once.

Not only will this be less work, which of course is nice, it will
also help prevent the system to contradict itself, which makes it
much easier to track down and fix bugs.

This chapter is dedicated to the rightfully lazy. It will give tips
that allow us to do things in such a way, that we will need the
minimum amount of effort to keep our system in the best
possible shape.

m Growing Better Software

11.1 Avoid copy/paste programming

In copy/paste programming, a snippet of code is duplicated
several times in a project. Every time a bug needs to be fixed in a
previously copied piece of code, or if something else needs
changing in it, the change will need to be carried out in each
individual clone of that code.

The problem is to track down all copies of the code. As the
various copies of the code evolve in different ways, they become
less and less similar to one another. This will make it more and
more difficult to track down all copies of the code. The result is
that problems that we thought we resolved, may reappear until
finally we've fixed every broken instance of the code.

There is a better way: When instead we abstract the given piece
of code into a function, we won't be confronted with this
problem. A problem shows up, we track it down, we fix it on one
place, and it is solved.

To help reduce maintenance, we can refactor pieces of code that
are similar (but not equal) to contain the smallest amount of
similarity possible. Using an array or hash table can help
turning conditional behaviour into unconditional behaviour.

Consider the following example:

for

{

i=0; 1i<100; i++)

if ((1i mod 2)==0)

{
print "Number "+i+" is even";
print "and that's how I like it";
print "because even is the best!";

else
print "Number "+i+" is odd";

print "and that's how I like it";
print "because odd is the best!";

We can reduce maintenance in this code by using an array to
remove the conditionality of the code.

label[0]="even";
label[1]="o0odd";

for

{

i=0; 1i<100; 4i++)

evenodd=label [i mod 2];

print "Number "+i+" is "+evenodd;

print "and that's how I like it";

print "because "+evenodd+" is the best!";

The resulting code is not only shorter, it also needs to perform
fewer comparisons than the original code. As a result, in
addition to saving us maintenance, the resulting code will
probably perform better.

@ Growing Better Software

When a switch/case statement is used instead of an if, this
effect is amplified. There are legitimate uses for embedding a
switch/case statement inside a for loop, but often it is an
indication that the code is sub-optimal®®, both in maintenance
and performance.

To help detect copy/paste programming in existing code, a
similarity analyzer such as Simian can be helpful, but it is better
to prevent code duplication altogether; As mentioned before,
duplicates in code tend to become less and less similar as the
system evolves.

When refactoring code, this best practice will most likely reduce
the total number of lines in your code. This means that if
management measures your productivity in lines of code per
day, your productivity will seem negative. Make management
aware of the fact that ’lines of code per day’ is a very poor way to
measure productivity. Generally, as programmers evolve their
skills, they will need to write less and less code to solve a
problem.

25 Indications that code is sub-optimal are also known as a 'code smells'. See
"The Pragmatic Programmer' by Andrew Hunt and David Thomas,
Published by Addison-Wesley, Oct 1999 ISBN: 020161622X

237

11.2 Standardize validations based on type

When designing an input form, certain types of input validations
can be generalized. For instance, in a consistent system, all date
fields will allow the same characters, share the same date
format, and so on. The same goes for number fields, for
instance. This type of validation can be fully automated in a
class (or derivative of an existing class).

As it turns out, we can distinguish several different types of
validations.

® Generic validations that are strongly associated with
the data type of a field. The term ’'data type’ in this
context is to be seen in its broadest sense: A key field
(regardless of it being a number or a string) is obligatory
and its value must be unique; an integer field can
contain only digits, a name field most likely will not
contain numbers and be relatively short, whereas a
description field can contain all kinds of textual
nonsense. We can go a bit further than just considering
something to be a ’text field: We can think of email fields,
(web page)link fields, phone number fields, and so on.
Once we develop a single generic piece of code to validate
a certain field type, we can use that piece of code over
and over again. Once we've written a generic validation
for a certain data type, we won’t ever need to write a
single line of code again to perform that type of
validation.

@ Growing Better Software

e The next type of validation can be implemented in a data
driven manner and has to do with range and precision.
When a person comes to the bank to open an account,
his date of birth should be in the past, not in the future
(unless the person is a time traveller). Any monetary
amount first deposited most likely is positive, and
probably has at most 2 decimals after the decimal
separator. As you see, with this type of validation, we
walk away slightly from the generic, because we are
already in the realms of configuring the validations- but
writing code is still not necessarily required.

e The last type of validation are completely custom
validations, specific to a certain field. For instance, a
date field containing birth date would normally have to
fall a considerable amount before the wedding date of the
same person. Or, if the user chooses option X in field Y,
the value of the current field is not allowed to surpass
the value 100. Most likely, these validations are too
specific to be made configurable, and should simply be
coded.

Writing code for generalized validations can often save a lot of
time in correctly performing the validations themselves. In
addition, the list of properties that can be configured for
validating a data type can act as a check-list in communicating
requirements with the client.

11.3 Save time with existing building blocks

If you need a function that is of average complexity, chances are
that someone somewhere has already written that function. For
example, if you need to check if something is a valid date, a
function to check this is bound to already exist.

If youre working at a company and starting to implement a
common functionality such as a user list, stop right there. First
check if you can possibly import this data from an existing
system.

Other than for educational purposes®, there is no point in re-
inventing the wheel over and over again by infinitely rewriting
trivial functionality. If you find an existing function on the web,
you're set- but it’s even better to see if the framework that you're
using or the environment in which youre working already
contains a suitable alternative. In fact, it is your job to know the
framework that you're using.

If we take in consideration that at big shot companies like IBM
only 11 lines of debugged, documented code are written per
programmer per day, this means that spending an hour of
finding 10 lines of documented, debugged code will save you 7
hours of work. Keep in mind that 'lines of code per day' is a poor
way to measure productivity, as good code is typically more
compact than bad code.

26 From an educational perspective, it can be highly rewarding to create your
own solution to existing problems. Be forewarned that from a problem-
solving perspective, it is generally quite unproductive. However, if you
have the time, designing your own networking stack or DBMS will most
likely take you along the same paths as the masters before you, and it will
give you a profound understanding of their inner workings.

m Growing Better Software

It can be highly rewarding to be a bit creative in finding existing
solutions to a problem. I remember implementing a string stack,
after which a co-worker asked me why I would want to do that.
He correctly pointed out that a string-list class was available,
which could be used for the same purpose.

This shows that asking around can be a highly effective way of
searching. If I would simply have asked “Does anyone have a
string stack class?” I could have saved myself a few hours of
work. On the other hand, my implementation performed
significantly better than his, so the effort wasn't entirely wasted.

Of course, if you're too shy or too proud to ask your co-workers,
your favourite search engine and/or Usenet will work magic too.

It should be noted that there are some risks involved in using
existing building blocks, as in using any existing software. There
may be licensing issues that need tending to.

Also, should there be bugs in those building blocks, we may not
be able to fix them. This is not necessarily a problem; sometimes
we can program around any bugs or limitations of a building
block. Likewise, if there is a bug in the compiler that you use,
often it is possible to work around it by writing down your code
differently.

However, in writing safety-critical applications, using existing
building blocks may simply not be good enough, just as much as
using a consumer-level operating system may not be good
enough for safety-critical systems. Only having the source code
of a building block can guarantee whether it meets our quality
standards.

11.4 Make it data driven

In making systems maintenance-free, an effective method is to
move out things from the world of written code into the data
domain. This allows us to store some aspects of the application
as configuration in a database or configuration file, rather than
having them hard-coded into the program.

To the client the benefit is that they have a bit more power over
their application, allowing them to configure some of the inner
workings of the system without need to constantly call upon the
developer. To developers, there are considerable advantages as
well:

e Fewer requests for trivial maintenance tasks, allowing us
to focus on 'real’ work.

e Data driven solutions tend to help prevent the temptation
of copy/paste programming by centralizing values to a
configuration file or database, which helps reduce
duplicate efforts.

® A data driven application doesn't always need to be
restarted after an update to the configuration, whereas if
the same configuration were code driven, a system
restart might be inevitable (unless the system is written
in an interpreted language). This means that the
availability of data driven systems is easier to guarantee
than that of code-driven systems.

e In some cases, a data driven solution forces us to write
out all possible scenarios that can take place, which
guarantees that no cases are forgotten.

m Growing Better Software

Code that uses values that are specified in configuration files
nees to validate those values before use. This means that for
correctness of the parameters, having a configuration tool
available is not mandatory. If data changes frequently, providing
our users with a configuration tool is probably a good idea.

We can go very far in making a system data-driven: It is possible
to implement an entire system as a database-based solution,
code and all- although in most cases this is a bad idea. As a rule
of the thumb, things that change on a regular basis are good
candidates for a data driven approach. Examples are access
control lists, currency exchange rates and interest rates. Work-
flow applications can be great candidates for a data driven
approach as well, as business processes are subject to change
all the time. A data driven solution may allow our customers to
adapt the system to their business process, whereas a compiled,
code driven solution certainly won't.

Rather than blindly deciding to turn the entire system into a
data driven equivalent, we should first consider a few things:

e Is it beneficial to make it data driven?

e How often would changes be needed in a code-driven
situation?

e How much time does it cost to turn it into a data driven
situation?

e Is sufficient funding available?

Will new code be written, or is refactoring needed? If
code is being refactored, it is a good idea to write a unit
test that will guarantee that the data driven version of
the code behaves functionally identical to the original.

Who will be maintaining the data driven configuration?

How much time does it cost to train the client to use the
data driven version of the solution?

Is it realistic to assume the maintenance will be done by
manually editing a text file or database table, or is a tool
required?

What is the impact on performance of the system?

m Growing Better Software

11.5 Write knowledge-free functions

When functions contain the least amount of information about
the environment in which they are operating, chances that they
can be reused greatly increase. This is based on the Principle of
Least Knowledge. Consider the following code:

bool isPersonTooOld(object person)

{
// precondition checks left out to save space
DateTime birth=person.birthdate;
int age = DateTime.Now.Year - birth.Year;

if (DateTime.Now.Month<birth.Month)
{
/* birthday this year is still to come */
age——;
}
else
{
if (DateTime.Now.Month==birth.Month)
{
if (DateTime.Now.Day<birth.Day)
{
/* birthday is still to come */
age——;

}

}

if (age>=65)

{
// person too old
return true;

}

return false; // not too old

Altogether this function looks quite clean. Its reusability however
is very limited, be it in other systems or even within the system
itself.

This is caused by the function having specific knowledge of the
system®”: in this case the maximum allowed age of a person and
the data structure of the person object. As a result, the following
problems occur:

e The function can only check against a certain age. It
would be better to add a parameter for age.

e Only applications that use a compatible person class will
be able to use the function. It would be better to use a
more generic data type such as DateTime.

Even if we apply the changes suggested above, we must take into
consideration what the function call will look like, which will be
something like

if (isPersonTooOld (person.birthdate, 65))

{
// person too old
}

As we can see, the function call does not explain if the age limit
should be read as “65 years, inclusive” or as “65 years,
exclusive”.

27 Attentive readers will recognize that using global variables causes the same
code reuse issue. Functions that contain global variables make assumptions
about the environment that they live in.

m Growing Better Software

A simple and elegant solution is to instead write a knowledge-
free function. Because it doesn’t try to tell any system what to
look like, it is more easily accepted into any system. The
following example shows what the code may look like:

int CalculateAgelInYears (DateTime agedate)
{
int age = DateTime.Now.Year - agedate.Year;
if (DateTime.Now.Month < agedate.Month)
{
return age-1;
}
if (DateTime.Now.Month == agedate.Month)
{
if (DateTime.Now.Day < agedate.Day)
{
return age-1;
}
}

return age;

The associated function call is also more explicit about the
behaviour of the system:

const MAXIMUM_AGE=65; // or get from database
int age=CalculateAgelInYears (person.birthdate);
if (age>=MAXIMUM_AGE)

{

// person has reached age limit

}

This code explicitly shows that 65 years is already too old. As we
can also see, the total amount of code has actually reduced,
which will translate into lower maintenance, even if we use the
function only once.

247

If necessary, we can maintain full compatibility with the old
situation by creating a (hopefully temporary) wrapper function
that will use the new function:

bool isPersonTooOld(object person)

{
int age=CalculateAgelInYears (person.birthdate);
if (age>=65)
{

return true;

}

return false;

We should be aware that while this allows us to maintain
compatibility with an existing system, this is not ideal, as we will
re-introduce a piece of code that is not reusable. If you can,
avoid writing this wrapper function, or even remove the function
isPersonToo0Old altogether.

When the rewritten wrapper function is absent, your compiler
will raise errors about this. This is a situation where the
compiler actually works for us; by replacing these errors with
the new, more explicit, reusable function call, we will be able to
guarantee that no instance of the old function call remains in
our code. Once our code compiles again, our code base will
contain a bit more reusable code, making our work a bit easier
than before.

For clarity, the above examples lack precondition checking.
Rewriting the functions to include these checks is left as an
exercise to the reader.

Growing Better Software

This page intentionally left blank

Chapter 12

Software Quality

The most often heard excuse for sloppy code and badly designed
systems is time pressure. It costs time and money to deliver
quality systems; time that is considered to be overhead, rather
than part of the development process. It is a good thing that
certain software companies are not in civil construction, or
London Bridge would be falling down - several times a day.

It is true that building quality software costs time. Time to train
people, to set up procedures, to test the written code, to
document the system, and so on. But this is an investment that
should pay back for itself after some time. After all, bugs that
never happen cost less time and money to fix than bugs that
have managed to cause severe damage.

W Growing Better Software

Implementing a quality control system is about making sure that
things will work properly, instead of hoping for the best. Ideally,
this is done by making it as difficult as possible to make
mistakes.

If we're placed in an environment that makes it impossible for us
to make mistakes, we won’t. But that won't necessarily make us
productive. If we're being tied up, we won't get any work done.
Creating a productive environment in which we cannot make
mistakes is much harder - a continuous effort is needed to get to
a point where mistakes are effectively prevented, but it can be
done.

Each time a mistake is found, we should ask ourselves how we
could have prevented that mistake, preferably in an automated
manner. We should then implement a mechanism that will
perform that automated mistake prevention. We, human beings,
are simply too fallible to rely on.

12.1 Do not count on discipline

Managing programmers is commonly compared to herding cats.
You can tell a cat not to touch the fish, but as soon as you're
away, itll do as it pleases. At the moment you’re looking, it
probably won’t be anywhere near the fish, but as it is licking its
paws it will give itself away. It would be foolish to tell a cat “I
thought we agreed that you were going to stay away from the
fish”, because that won’t solve the problem. The problem here is
that it is not realistic to depend on discipline alone. Instead, put
the fish out of reach of the cat and the problem will be solved.

Likewise, introducing countless rules for programmers to obey is
just not going to work- At some point, there will be too many
rules to remember. Under pressure, it will be too tempting to
deviate from the rules. Discipline alone is obviously not enough
to guarantee the quality of a system.

We can only prevent things from going wrong if we enforce
discipline automatically, and if we have backup mechanisms in
place to deal with the situations where enforcing discipline
automatically is not possible.

Source code control systems are an excellent example of this:
While they cannot entirely prevent programmers from
overwriting the code of their team mates, they make it harder.

Even if someone deliberately messes up the work of others, the
revision history still serves as a backup mechanism.

ﬂ Growing Better Software

By enforcing discipline automatically, we make it easier to do
things right than to do them wrong. As a result, the chances of
things going wrong are greatly reduced, and work will be carried
out in a more procedural manner.

Unfortunately, it is not always possible to automatically enforce
a certain way of doing things, even if that way is generally
accepted to be the Right Way to do them. For instance, it is
understood that software systems should be documented. Yet
documentation is rarely present and mostly out of date. The
least we can do to ease this chore is reduce the amount of
overhead to a minimum.

Depending on company policy, you may ask a developer about
an undocumented system via instant messenger. Capturing
these instant-messenger conversations can be a good start for
documenting the system, with a minimum of added effort from
either side. Although it is hardly up to professional quality
standards, it is considerably better to have a captured
conversation in a wiki than having no documentation at all.

12.2 Don't rely on undocumented behaviour

As we get to know the platform that we work on better and
better, it gets more and more tempting to start using
undocumented behaviour of that platform to get things done.

For instance, in a spreadsheet program, we may at some point
’know’ that calculations are performed row by row rather than
column by column, and tune our calculations accordingly. When
at some point a new version of the spreadsheet is issued, or if for
instance we port the spreadsheet from Excel to OpenOffice, this
undocumented behaviour is subject to change.

There is nothing wrong with performing 'measurements’ on a
black box system to find out how it works on the inside, but if
we base our code on the results, we reduce the portability of our
code and increase the risk that our software system will break at
the next upgrade, because we rely on undocumented behaviour.

W Growing Better Software

12.3 Fix problems at the source

In medicine, treating the symptoms of a sickness may earn the
pharmaceutical industry more than actually curing the disease.
When given the choice, however, most people would opt for a
cure, rather than a treatment. The same is true in software
development. When faced with the task of fixing a bug, we have
to understand the cause of the problem. Otherwise, we are
merely treating symptoms, and a bug that we thought we had
fixed may keep popping up.

Sometimes, the immediate cause of a bug is found (for instance
a forgotten precondition check), but the actual origins are to be
found in flawed design. This may for example happen when a
bug has been copy/pasted to many places.

If you find such a design flaw, rather than fixing the bug in a
multitude of places, in the long run it is usually better to fix the
design. In the case of copy/pasted code, this can be done by
defining a function, fix the bug there, and refactor the various
old copies of the code to call that function instead.

If we consistently refactor flawed code to flawless code, in the
long run we should end up with a flawless system. The
refactoring should itself help by making that system easier to
maintain, although refactoring existing systems can be a long
process.

12.4 Save time by allocating enough time

Doing something wrong first and right afterwards will cost more
time than doing things right the first time around.

Given this statement, we should decide how much time is
enough. Depending on how experienced they are, programmers
should be able to give relatively accurate estimates of how much
time they will need to finish a certain task.

Nothing is more stressful to a programmer than being forced to
finish a task within an unrealistic time frame. Such time frames
are often the result of the marketing department making
unrealistic promises to the client.

Let programmers estimate the required time themselves, and
communicate this estimate with the client. Insist to the
programmers that they take the responsibility to deliver as
planned. Better estimates can be obtained by having multiple
developers making an estimate for the same task. After a task is
finished, keep a record of how long it actually took. This
documentation will allow you to make more accurate estimates
in the future.

When a new programmer starts on the project, a different
planning is required, because different programmers solve
problems in different ways. Time needed to get familiar with the
used project and tools should be included in this new planning.

E Growing Better Software

12.5 Plan emergencies properly

In case of a big commercial benefit or emergency, it may be
interesting to go against the rules and do something the 'wrong
way’ before doing it right. This allows for much shorter response
times, but the risk is that we will never be given the time to do
things right.

To assess this risk, before implementing a quick and dirty
solution, communicate with your client that although a
temporary solution can be implemented very quickly, it will
require a significant amount of cleaning up afterwards. During
this clean-up phase, the client needs to be aware that our time
is already allocated to them; it can not be allocated twice. This
means that less urgent matters will have to wait.

It may be possible to implement a quick and dirty solution in a
week, or a clean solution in four weeks. The full task will then
take roughly five weeks. Talk to management; It may be a good
idea to have the client agree that half of this amount will be
charged on completion of the quick-and-dirty solution. This will
help prevent the client from entering a permanent state of
emergency, because quick-and-dirty work alone is most likely
less cost-effective than the full solution. As the system is kept in
better shape, emergencies are in turn less likely to occur.

Delivering a patch may cost more work and effort than a regular
release. Make it clear to the client that patches are exclusively
intended for emergencies, and thus shouldn’t be used instead of
the normal release cycle.

257

12.6 Defensive programming

Even though by convention we may have agreed that certain
strings should be in lower-case, it may be that not everyone
obeys by these rules.

What is called “defensive programming” by many people is
actually one of the main issues that this text is about:
guaranteeing preconditions. The fact that a certain string should
be lower-case is a precondition, so we need to guarantee this
precondition. This can be done in different ways- either by
raising an error when the string is not in the correct case, or by
putting the string in the correct case. Defensive programming
assumes that a certain condition is wrong, and attempts to
correct it before it causes trouble.

W Growing Better Software

12.7 Write testable code

In a piece of code that I developed, I noticed that a certain dialog
which would rarely be displayed, started popping up at the
wrong moment. I noticed that the logic which decided if the
dialog should pop up, was part of the code of a button which
performed a file export.

Free automated testing software for C++ is hard to find, so for
this hobby project, I wasn’t using any. I found that the error
could not be reproduced automatically, because I couldn’t
simulate clicking the button. I had tested the button manually,
but this case had slipped through my tests.

The reason that I could not test the functionality of the button
through a unit test was because the pop-up logic was an integral
part of the button (known as the “magic push button” anti-
pattern, as I found out later). Would I have written this logic as a
separate function which would be called from that button, I
could have written a unit test for that function®.

I learned the hard way that the code in user interface elements
should be kept as simple as possible. By keeping front end and
back end separated, you will create the conditions that allow you
to at least write unit tests for your code.

Some programmers go as far as writing unit tests before writing
the code that is to be tested®®. This will affect the way we think
about writing code, because it will force us to write our code in
such a manner that it can be tested automatically.

28 A Model-View-Controller design pattern would be worth considering, as it
could allow for recording and playing back macros. This would allow for
automated testing, without requiring specific software.

29 See Write tests first, page 275

Chapter 13

Automatic
Quality Control

When code can not be made part of the system when it does not
comply to certain predefined quality-standards, we will know for
sure that the quality of all parts of the system will meet our
standards. It is possible to meet many of these demands by
means of automated checks. This has resulted in some of the
highest quality software ever written.

Some thoughts on this are described next.

W Growing Better Software

13.1 Catch errors in compile time

Despite all the thoroughness in the world, you may still be
confronted with bugs and errors. The later you spot bugs, the
more time it will take to fix them, so it is important to find errors
as early as possible in the development process.

The compiler or language you use can be of tremendous
assistance in finding problems in your code, provided you help
your environment to help you.

Consider the following statement:

form.setField(
"MyTooLongNamedAddressField",
"North pole"

)

If we happen to be as unfortunate as to make a typo in the field
name MyVeryLongNamedAddressField, sure enough the code
won’'t work as intended. What’s worse, no compiler is likely to
detect this error, because it is a string between quotes. This can
not be completely avoided, however there is no reason to not let
the compiler help us to find typos.

What if we define the field name in a constant?

const ADDRESSFIELD=
"MyTooLongNamedAddressField";
form.setField (ADDRESSFIELD, "North pole");

As soon as we use the field name more than once, we will start
reaping the benefits:

e If we have a development environment with code
completion, it will help us write the name of the constant,
reducing the chance of errors in written code;

e If we compile the code, ADDRESSFIELD must exist. If we
misspell it, the compiler will raise an error.

e Changing the field name later on (should this be
required) will be less work.

This practice can be taken a step further. Consider the following
(rather questionable®®) code:

void show_dialog(string strDialogName)
{
switch (strDialogName)
{
case "help":
show_dialog_help();
break;
case "file":
show_dialog_file();
break;
case "print":
show_dialog_print();
break;
default:
throw Exception (
"Dialog does not exist!");

30 The function merely seems to act as a layer of indirection. It may be
possible to drop it altogether and call the individual functions directly- or to
at least create an array of functions and drop the switch statement.

ﬂ Growing Better Software

Usefulness of the function aside, we can define some constants
that help us catch typos in the dialog names in compile time:

const DIALOG_HELP="help";
const DIALOG_FILE="file";
const DIALOG_PRINT="print";

However, this still allows us to call the function with regular
strings as function parameter. As a result, we still can not
guarantee the absence of typos in the parameters. In a situation
like this, it is useful to use an enumerated type, for example:

enum DialogType

{
DIALOGTYPE_HELP,
DIALOGTYPE_FILE,
DIALOGTYPE_PRINT

}i

void show_dialog(DialogType diatype)
{
switch (diatype)
{
case DIALOGTYPE_HELP:
show_help_dialog();
break;
case DIALOGTYPE_FILE:
show_file_dialog();
break;
case DIALOGTYPE_PRINT:
show_print_dialog();
break;
default:
throw Exception (
"Dialog does not exist!");

As it is now impossible to compile the code while specifying a
non-existing dialog type, we've just prevented an error from ever
possibly occurring in runtime.

Also, some compilers will detect when an enumerated type is
used in a case statement, and will complain when not all
possible values are accounted for.

Needless to say, this allows us to catch possible errors much
quicker than by any means of runtime testing. Moreover, we
guarantee that we will catch the errors, whereas in runtime we
would only catch such errors by chance.

It has been common knowledge for decades that it is a best
practice to not use hard coded values. Isn't it strange that after
all this time, virtually every programming language still allows
us to use hard coded variables without even raising compiler
warnings?

In many programming languages, it is easy to accidentally
substitute the comparison operator (==) for the assignment
operator (=). The result is an if statement which is always
evaluated as true, and which has an assignment as side effect:

if (b=5)
{
/* b has just been assigned value 5
This branch is always executed */

Some people recommend reversing the left-hand side and right-
hand side of the comparison. This will force the compiler to raise
an error when an assignment operator is used instead of a
comparison.

m Growing Better Software

The result will look as follows:

if (5=b)
{
/* Assigning to left hand side
is impossible, compile will fail */

Keep in mind that this is not a cure-all solution, as it will not
catch errors where one variable is assigned the value of the other
variable. The following will simply assign the value of variable b
to variable a, rather than comparing the two variables:

if (a=b)
{
/* switching around sides makes
no difference to the compiler. */

Fortunately, many compilers nowadays understand that we
usually do not intend to assign variables a value in the
expression part of an if statement, and will raise a warning when
we write something like the above.

If your compiler raises a warning in such cases, rather than
switching around the arguments of an if expression, you may
want to configure it to treat all warnings as errors. This will be a
more reliable solution than depending on mere mortals to switch
around the arguments of the expression.

13.2 Compile with 0 errors, 0 warnings

When our code contains syntax errors, it will not compile, and
obviously we will not ship such code to our customers. Compile
warnings are a different story altogether: these are non-critical
errors which do not cause a compile to fail, but which are
indicators that normal program operation may be disrupted.

If we are serious about the quality of our software, we want to be
informed about as many potential problems as possible. Many
programming environments allow you to be more picky than
usual in compile time. There may be compile flags to enable all
warnings, or one-liners that will tell the compiler to be more

picky.

Examples that come to mind are the -Wall and -Werror options
in the GNU Compiler Collection, use strict and the -w flag in
Perl and Option Explicit in languages similar to Visual Basic.
If you develop JavaScript and happen to use Firefox, you can set
Javascript.options.strict to true on the about:config
page. Find out what options your programming platform allows
to make it more picky about what you write; once in place, these
will help you pinpoint potential problems without any additional
effort. If you develop web pages, it is highly recommended to
regularly run your pages through HTML- and CSS validators to
make sure they conform to existing standards.

Compile warnings mean that the code could be compiled and is
syntactically correct, but that a situation has been detected that
will potentially cause problems in runtime. However, warnings
normally do not block compilation. As a result, warning-ridden
code may end up in the production environment of the client,
which of course is bad news.

m Growing Better Software

Fortunately, many compilers and languages nowadays allow us
to treat warnings as errors. That is, if a warning is found, the
build will fail.

Enable whatever flags you can to treat warnings as errors; before
long, you will be used to writing warning-free code, which is also
less likely to break in runtime. This will in turn save you
debugging time, causing the minimal extra effort to be earned
back in a very small amount of time.

267

13.3 Write unit tests

A unit test is a piece of program code that checks another piece
of source code for the presence of errors, by feeding it all
expected sorts of input and verifying the results against a
predefined answer. When the results match the expected results,
the unit being tested is assumed to work as intended.

After changing a piece of code, running its unit tests will help us
make sure that it keeps behaving as expected. Ideally, running
the unit tests should not be a manual effort (only); it is far more
useful to (also) run them during nightly build on the build
Server.

Other than for testing purposes, unit tests can provide us with
useful examples of how to use (or not use) a piece of code.

Consider the following test code which will test one aspect of the
behaviour of the substr function:

string x="abcdefghij";
dummy=substr(x,8,3); // string, start, length
if (! (dummy.equals ("ij")))
{
throw new Exception("substr(x,8,3)==""
+dummy+"’, should be "ij’");

This unit test shows that the programmer (who either wrote the
substr function or simply wants to make sure that it behaves in
a certain way) expects the string ”"ij” to be returned when the
substr function is called with parameters "abcdefghij”, 8 and
3

@ Growing Better Software

This shows that the position is zero-based (the letter ”1i” is the
ninth character in the string but has index 8), and also shows
that the programmer expected this function to return the
remainder of the string, should one try to read past the end of
the string.

In this sense, unit tests can play a useful role in documenting
code.

Unit tests may facilitate porting code from one platform to
another. If another platform for instance uses a one-based
starting position, the original unit test will fail. In such cases, it
is possible to create a new substring function for each platform,
that will work identical to the substring function on the platform
for which the code was originally developed.

Unfortunately a unit test can not prove that all errors are
absent; it can only prove that the tested errors are not present.

There are however certain classes of errors that are likely to
occur in our code and for which we can include checks in our
unit tests even before writing the actual code:

e Undefined values: Does the function work properly when
called with undefined objects, zero values, null pointers
or empty strings? If a structure or object is passed to the
function, does it deal well with the absence of certain
fields or properties?

e Range boundary checks: For numeric parameters, we
deliberately call the function with values outside the
normal range of operation.

What happens when we check a substring function with
zero length? With negative length? With a length greater
than the end of the string being processed? With a length
exactly equal to the length of the string being processed?

e Binary overflow and wrap-around: For n-bit values,
does the function work as expected when it is called with
the values 2™V-1, 209, 271, 272

e Floating point operations: Does the code deal well with
rounding errors?

e Object-oriented code: Does destructing an object cause
a crash? If it does, it is often due to a forgotten
initialization in the object constructor.

e Lack of Resources: Does the code fail elegantly when it
can not allocate required resources such as memory,
storage space, or CPU power?

e Many other errors can be predicted. Feel free to extend
this list to suit your own needs.

All these tests assume black-box testing, or testing based on the
functional specification of a program. We can write tests for code
without having any knowledge of the code that will be tested, or
even the code itself.

If we have access to the code that is being tested, we can go a
step further: We can then write a glass-box test which can go as
far as testing all combinations of inputs, following all possible
code paths and running all statements at least once.

270 Growing Better Software

If a piece of code is simple enough, we can write an exhaustive
test for it. Consider the following PSD:

function hasNullObject (Object objectl,Object
object2, Object object3) returns bool

objectl==null?

true false

object2==null?

true false

object3==null?

true false

return true; return false;

This piece of code has 3 input parameters, which are each of an
object data type, which can in theory account for an infinite
number of different states. However, the only thing that happens
in the code is that the object parameters are checked for being
null or not. This would indicate a total of 8 possible situations:

object1 object2 object3
null null null
not null null null
null not null null
not null not null null
null null not null
not null null not null
null not null not null
not null not null not null

271

Do we need al these combinations, or can we take a short cut?
After all, having intimate knowledge of the code itself, we know
that there are only 4 possible code paths that the computer can
follow in executing the code, so why not call the function with
the following parameters:

object1 object2 object3
null (don't care) (don't care)
not null null (don't care)
not null not null null
not null not null not null

This will cause every code path to be followed. As the PSD
showed, in the first case, the values of both object2 and
object3 can be disregarded. In the second case, the value of
object3 is unimportant.

The problem is in changing code. Imagine object3 has the value
null much more often than objectl. To boost performance, we
switch around the checks for object3 and objectl, and the
code will run faster. However, this also changes the code paths
that are followed, so the unit test will lose full code coverage and
would also need to be changed along, whereas the full unit test
would not have needed any alterations.

Writing a complete glass-box test may involve writing out all the
possible combinations of inputs and reasoning about the desired
outcome. This will give a lot of insight into the problem being
solved, but may be very time consuming. As such, full glass-box
tests will usually only be realistic for small modules.

272 Growing Better Software

When a piece of software gets sufficiently complex, it will become
clear that the code can have so many different states that it
becomes unrealistic to test all of them. We will then have to
abandon our practice of attempting to write a piece of code that
tests every possible combination of input values. Instead,
whenever we encounter an error, we will try to find out which
combination of conditions triggered the error, write a unit test
that reproduces that scenario, and fix the code. We can then be
sure that the condition won't trigger that error again.

Most of the time, unit tests will run under a unit test framework.
Some well-known frameworks are nunit (C++), junit (java) and
csunit (C#), which are all available for free. Similar modules are
available for other languages.

If you wish to implement unit testing, go ahead and download
one of the frameworks. Read the documentation that comes
with these frameworks. The “Getting started” section (or
whatever it may be called) will have you up to speed in no time.

It is important to realize that our capability to implement unit
tests does not depend on these frameworks; if no unit testing
framework is available for your favourite language, you can still
write unit tests without one.

You should be able to make a start on unit testing in a matter of
days. It is likely, however, that it will be difficult or impossible to
come up with proper unit tests for existing code, especially when
dealing with long functions or big modules. The reason for this is
that the existing code was never written with the intention to
make it testable. This is normal; you will find that your coding
style will improve as you get used to writing tests along with new
code.

273

13.4 Use automated check lists

The previous chapter gave a list of things you could check for in
a unit test. By using such a list and extending it whenever we
find something lacking, we can prevent a lot of problems and
bugs in a very systematic manner.

Of course, merely adding items to a check-list may not be
enough. For instance, a check point “Have we checked if the
database design has changed?” is useless if we have no way to
verify if any changes occurred, so in such a case we must first
find a way to detect database design changes.

We do not want to perform all checks manually. Instead, we
want to have our development environment do that for us,
automatically. When it comes to quality, sometimes problems
can be avoided by selecting the right programming platform
before starting a project. Powerful programming languages such
as C and C++ do not offer a lot of assistance in preventing
problems such as memory leaks, incorrect pointer arithmetic
and such, whereas other languages such as Java have no
pointers and built-in garbage collection. Although this does not
render the problem irrelevant, it will help reduce its impact.

Switching environments is not always an option, though. The
British automobile industry was faced with the fact that they
needed to program in C, but still required to produce reliable
software, as safety was a priority. To address the problems
associated with writing quality code in C, the MISRA (Motor
Industry Software Reliability Association) set up a list of as many
as 127 guidelines (which has extended since) to prevent common
mistakes. These guidelines are available from the MISRA website
at http://www.misra.co.uk, or can be found with your
favourite search engine.

274 Growing Better Software

The interesting part is that many guidelines could be enforced
automatically, and quite a few of them apply as much to C as to
other languages (e.g. rule 75: “Every function shall have an
explicit return type”).

If checks can be performed automatically, great. This will leave
less room for human error. In addition to enabling all warnings
on your compiler, treating warnings as errors and using
language validators, you can add your own tools to the build
cycle to automatically check for certain classes of errors.

If you work in a Unix-like environment, you can call these
validators to your Makefile; if you work with Visual Studio, you
can set your project properties to include a post-build event
which will trigger your validations. This can start with checks as
simple as checking the maximum line length of your source files,
up to automatically enforcing entire coding standards.

275

13.5 Write tests first

Once you are used to writing unit tests, start writing them
before you write the code that has to pass those tests. This is
practice is called Test-driven development, or more accurately
Test-first development.

Writing your test code before the actual code being tested has a
few advantages. First of all, it will force us to write code that is
actually testable. The test code doubles as a formal requirement
specification of the system. Being written first, it will become an
integral part of the system, rather than something that is added
as an afterthought, or something that will be 'forgotten' due to a
tight deadline. This guarantees that we will actually have tests
for our system.

This guaranteed presence of tests is a powerful debugging tool
by itself. If new code accidentally breaks some functionality, our
unit tests will give us feedback about it immediately, rather than
weeks later. This will make it easier to locate and fix problems.

Finally, once we are done writing our code, it will not only be
possible to test it, but we can confidently move on to the next
piece of code, in the knowledge that the code has been tested
and is verified to be correct (within our definition of 'correct').

Of course all this is still no guarantee that the code that we have
written is bug-free. When a bug is detected, we extend our test
code with code that can reproduce and detect the error
condition, and then we fix the unit code so that the error
condition no longer occurs. The bug in question has then been
resolved and, in theory, will never come back.

276 Growing Better Software

13.6 Run tests as part of the compile cycle

Merely having unit tests will not guarantee that they are run.
Because of this, it is a good idea to make unit tests part of the
automatic nightly build of the system.

If a unit test fails on the build server during the nightly build, a
lot of time is lost, because the nightly build is typically run only
once every 24 hours.

Unless the time required for automatically running the tests is
considerable, it is a good idea to run these tests as part of the
compile cycle.

When the unit tests are made part of the compile cycle on the
desktop of the programmer, the programmer will receive
feedback in a much earlier stage. By running unit tests as part
of the compile cycle, we no longer leave running the tests to
discipline. This means that when a programmer works as before,
unit tests are automatically run.

Technically, when the code compiles without errors, a post-build
event can be triggered. This post-build event normally installs
the compiled version for running, but it can also automatically
run the unit tests. If a unit test fails, the compiled code is
considered invalid. Ideally, such code is prevented from being
committed to source control, turning source control into a
repository of valid, tested code.

277

13.7 Find anti-patterns during compilation

Although we can not catch all errors, the chance that our client
receives a compiled system that contains syntax errors is nearly
zero; after all, if our system would contain syntax errors, it
would not compile.

There are certain practices that we can follow that will further
reduce the chance of errors. Let us take another look at the
piece of code from the paragraph Verify Preconditions (page
77):

int a(object objectl)

{
int x=objectl.getobject2 () .getvalue();
return x;

The expression objectl.getobject2().getvalue() contains
more than one dot, which implies that the value of a method or
property (in this case the result of getobject2()) is not
checked.

It is certainly possible to write a validator that detects such
expressions. Likewise, it is possible to write a validator that will
detect that variable objectl is used without having been
checked for having a null value.

Effectively, when we add such validations to our compile cycle,
what we are doing is limiting what we consider valid syntax.

We can write code that detects a wide variety of problems, and
add these checks to our compile cycle. If our code does not
adhere to the coding standards that we set, it will fail to compile,
indicating that our code contains problems.

278 Growing Better Software

All of these problems are detected at compile time, before we
even have started testing. All these little extensions add up,
resulting in a ’safer’ programming environment which will force
us into a more disciplined style of programming. In turn, this
leads to code which contains fewer bugs.

We can go pretty far in this, as is demonstrated by the SPARK
ADA programming language. Spark ADA is a safe subset of ADA
intended to write high integrity software (for use in airliners,
medical equipment, etc.) where the highest possible quality
standards are needed (CMM level 5 or better®}).

SPARK Ada is limited in such a way that common errors are
impossible to code. For instance, SPARK ADA does not allow
heap allocation, pointers nor recursion.

As a result, memory requirements can be predicted and stack
overflows can not occur. In addition, SPARK ADA is an
annotated subset of regular ADA. It allows the programmer to
add design-by-contract information inside comments. These
allow an additional toolset to analyze if the code written matches
the specification in the comments.

Our set of syntax validating extensions ultimately perform the
same function as this toolset.

31The Capability Maturity Model only has 5 levels. Sometimes a defect rate
better than typically achieved with CMM level 5 is required.

279

13.8 Equip your system with a self-test

It is a good idea for a program to execute some type of
diagnostics to test its own consistency when it is started. This
will help detect problems and solve them before they happen.
Detecting errors during such a self test also speeds up manual
testing, because if a mistake is caught during program start-up,
this saves us the work of transcending half the program. It is all
right for such a self test to take a few seconds, as it is executed
only once during program start-up®. If it would be performed
during operation of the program, the same test might get in the
way.

Possible targets for such a self-test are for instance issues that
have to do with configuration:

e Do all specified directories exist?
o Is the database server up and running?
e If the program plays audio, is a sound card detected?

® Are the amount of available disk space or memory likely
to become a problem?

These are often issues that do not need verifying over and over
again. If a directory doesn’t exist, we can create it and lock it so
that no other process can remove it anymore. If no sound card is
detected, it is not usually very likely that one will suddenly be
present from one moment to another, so we can default to a
dummy audio driver that does not require a sound card.

32 This may be an appropriate time to think of adding a splash screen.

m Growing Better Software

When a system depends on manually edited text files that are
parsed during execution, a typo can cause the program to fail. Is
it possible to check for typos by comparing one file to another? If
we can automatically detect such problems during program
start-up, this will save us quite a bit of time spent on bug-
hunting.

Whenever the system fails, we should ask ourselves if this
problem could have been resolved or detected during a self-test.
If so, we add it to the self test module of the system. Obviously,
which self tests can be performed on a system varies from one
system to another.

13.9 Let the system keep a log

At times we may be confronted with bug reports from users that
have no idea that they were doing something wrong, or that are
ashamed of an action that they performed which may have
resulted in data loss. At times like these, if there are problems
with the system, we will not be able to count on our users for
troubleshooting, as they may be unable or unwilling to tell us
what the cause of the problem is.

In turn, we are unable to reproduce the problematic behaviour of
the system, and a status quo is born.

Having a system log can then be a great help in troubleshooting
problems. When the system log is sufficiently detailed, we can
exactly follow the flow of actions that a user performed that led
to an error condition. If the user says that “suddenly the data
was gone” and the system log clearly shows that the user
selected 10 records, pressed ’'delete’ and confirmed the removal
of said records, we will know that the problem existed between
chair and computer, rather than in our software system.

Growing Better Software

This page intentionally left blank

Chapter 14

Working with
databases

There are various ways to store data: ISAM, CSV files, XML or
binary files. But when it comes to ease of querying,
maintainability and extendibility, SQL-based databases are still
by far the most popular choice, despite their relatively poor
handing of relationships and sub-typing®.

This chapter will not deal with database design, which was
already covered in chapter 4, but it will go a bit more in depth
about some practical aspects of working with SQL databases.

33 See chapter Software Architecture, page 43 and further

m Growing Better Software

14.1 Choose (non-)standard SQL

I was introduced to MySQL when I started programming for the
web. I had been working with Oracle for some time, and I found
that table joins such as the following no longer worked:

SELECT person.name, dept.name
FROM person, dept
WHERE (p.dept_id=d.dept_id);

Initially I blamed MySQL for not being powerful enough to
support table joins. As it turned out, I was wrong. The reason
that table joins did not work wasn't because they were not
supported, but because the above query was was written in an
Oracle-centric dialect of SQL. The query worked fine after
rewriting it to standard SQL:

SELECT person.name, dept.name
FROM person
LEFT JOIN dept

ON (p.dept_id=d.dept_id)
WHERE (p.dept_id=d.dept_id);

Over time, I found myself building database-driven websites that
worked with various different databases, depending on what the
customer happened to have available. Instead of managing
several code bases for the various database management
systems used by my web development framework, it seemed to
make more sense to make my SQL work equally well on MySQL,
PostgreSQL, SQLServer, and Oracle. The only way that this
could reasonably be accomplished was by following the SQL-92
dialect of SQL (an official standard). In my case, as the database
logic for most websites is relatively straightforward, it paid off to
write standard SQL only.

As it turns out, there are some relatively dramatic differences
between the various database management systems. What is
called int on one DBMS is called integer on another, what is
called number on one DBMS is called float or real on
another, each system has their own way of handling date and
time, and so on. The varchar data type seems to be the only
one supported natively by most any dialect of DDL3*,

If you happen to run into a database where almost any field, be
it number, date or keys, are defined as varchar (such as on the
product that was formerly called RedHat Interchange), do not
immediately consider it bad design; most likely it was designed
to be defined by DBMS independent DDL.

Because it is a hairy business to design for full DBMS
independence, I cannot recommend anyone to write only SQL-92
for anything moderately complex.

This doesn't mean, however, that getting familiar with SQL-92 is
a futile effort. It will make you more flexible in moving between
different databases. Also, if you adhere to SQL-92 whenever you
can, your application will be easier to port to other DBMS
platforms than applications built for a single DBMS-specific
dialect.

Likewise, it pays off to be conservative with special characters,
mixed case, reserved words and spaces in tables and column
names, as not every DBMS will handle them gracefully.

34 DDL is the SQL Data Definition Language by which the structure of
databases is defined.

@ Growing Better Software

14.2 Keep database tables narrow

Tables that span dozens of columns are often an indication of a
poorly normalized database®®. As a rule of the thumb, try to keep
the size of all database tables at 7 columns or less, if possible.

Usually, when a table has many columns, it can be replaced
with a table that has few columns and more rows. There are
generally two situations that cause many columns in a table:

e Attempting to store several child-items in a table; for
instance, in a table person, the table would contain
columns for childlname, child2name, child3name,
childlbirthdate, child2birthdate and so on; this
should be avoided, because it implies logical limitations
and will make it more cumbersome to query the
database. Instead, a table for the children could be
created - or, in this case, the children could be stored as
entries in the table person with a reference to the key of
the records of their parents.

e Attempting to store an ever-expanding list of properties
in a table; for instance, for a table contactinfo, the
table would contain columns for phone number, cell
phone, fax number, email address, secondary email
address, MSN address, and so on. This list can keep
growing infinitely and requires a developer to make each
change.

35 See chapter Software Architecture, page 43 and further

287

From a maintainability perspective, it makes more sense
to create table that contains one record for each type of
contact information, and another table that contains the
actual contact information, with a foreign key pointing to
the person record that the contact information belongs
to, or link the two tables together with a third one®®.

This allows the system to be maintained by an
application administrator, rather than by you as a
developer. As a result, you will save precious time, and
your customer will save money.

36 See “Keep data structures normalized”, page 68

288 Growing Better Software

14.3 Use parameterized queries

Whenever we run SQL queries from our program code, there is a
good chance that our code sends multiple similar queries to the
DBMS. In other situations, the WHERE clause of our query will
contain some data that is entered by our users.

The naive approach in both situations is to construct a string
containing the query to be sent to the database server. But this
is not the best way to deal with programmatically constructed
queries.

Whenever we send multiple similar queries, this requires the
database client to construct the query string over and over
again, after which it is sent to the database server which then
has to parse and execute (almost) the same query over and over
again as well. But if we can construct a single query and reuse it
without change, the database client can save itself some work
constructing query strings. The following code is a PHP example
of this:

Sdb=pg_connect ("dbname=mydatabase") ;
$myprep=pg_prepare ($db, "prep",

"DELETE FROM employees WHERE dept=$1");
Sdepts=array ("development", "sales",

"Jim's department");

foreach (S$depts as $currdep) {

Sresult=pg_execute ($db, "prep", Scurrdep) ;
}

There is a vast number of different implementations of
parameterized queries, and implementation details will vary
depending on programming language and DBMS used, but the
general concept is identical.

Depending on implementation, using parameterized queries will
help the database server to easily detect that the query being
sent has been issued recently.

As a result of this, the database server may decide that the
query string does not need to be re-parsed, improving
performance on the server side as well. Some network
bandwidth may be saved, if the design of client and server is
clever enough: the client can then simply tell the server to reuse
the previously prepared parameterized query with new
parameter values, instead of re-sending the entire query.

In the code above, note that the parameter $1 in the
parameterized query is not surrounded by quotes. The prepare
statement takes care of this, and will also make sure that any
special characters (such as the apostrophe in the last array
element) are automatically escaped as needed, making our
system less sensitive to SQL injection attacks.

m Growing Better Software

14.4 Keep the Cartesian Product small

When your need to join several tables to collect a certain data
set, it is very likely that the DBMS engine will generate all
possible combinations of records from one table with another.
Thus, if you join 3 tables of 10 records, the Cartesian product of
the tables already contains 10 x 10 x 10 = 1000 combinations of
records. Because of this, a query such as the following will most
likely not run very fast:

SELECT person.name,
department .dept_name,
salary.amount
FROM person
LEFT JOIN department
ON (person.dept=department.id)
LEFT JOIN salary
ON (person.id=salary.pers_id)
WHERE (person.name='Dilbert')
AND (department.dept_name='Engineering');

By reducing the amount of records per subset, the size of the
Cartesian product will dramatically be reduced, and as a result,
the query will potentially run much faster. We can accomplish
this by adding the parts that are in the WHERE clause to the
relevant ON clauses, as demonstrated in the following query. As
you will see, writing such a query is hardly any more difficult
than the poorly performing one above.

SELECT person.name,
department .dept_name,
salary.amount
FROM person
LEFT JOIN department
ON (person.dept=department.id
AND person.name='Dilbert'
AND department.dept_name
= 'Engineering’
)
LEFT JOIN salary
ON (person.id=salary.pers_id
AND person.name='Dilbert'

)
WHERE (person.name='Dilbert')
AND (department.dept_name='Engineering');

Depending on the DBMS used, this may significantly boost the
performance of your queries. On others, the effect will be less
dramatic.

The Cartesian product is now much reduced, but it may still
take quite a bit of time to construct the subsets themselves. By
making sure that an index is kept for the columns being queried,
constructing the subsets will be substantially more efficient.

This is of course just the tip of the iceberg when it comes to SQL
performance optimization. Entire volumes have been written on
the subject, and this text won't be able to replace those volumes.

For more tips and tricks about SQL performance tuning, consult
the appropriate books.

ﬂ Growing Better Software

14.5 Keep data values out of program code

When working with legacy systems, I have regularly encountered
the programming practice of using database values (often key
values) in program conditions, such as

if (company_key=='1352")

{
// do something specific to this company
// (often values such as 9999 appear;
// this is just as random as 1352)

In other words, the program code attaches a special meaning to
certain keys. There are multiple problems associated with
storing information in program code:

e It may introduce a 'time bomb' in the system: in the
above example, a problem may arise when a table hits
1352 (or 9999) records.

® Reduced separation of business logic and database.
Extra code may be needed to filter 'special' keys when
querying the table, all of which needs to contain each
'special' key.

e Makes it substantially harder to re-populate the database
from scratch, should the need ever arise. When the
database is being repopulated, new keys may need to be
assigned; This means all code needs to be checked as
well.

We can overcome these problems by defining an additional field
in the table which indicates that the record has the given special
meaning. The name of the column can then be used to give a
clue about what that special meaning is. Alternatively, an entire
table can be devoted to the purpose, containing references to all
records with the given special meaning.

We can then write reusable, low-maintenance program code that
performs certain actions if any of these 'special records' is
encountered; but it is the database, rather than the program
code, that holds the information about which records are the
special ones.

A configuration tool can be created to allow the customer to
maintain which records are supposed to have the desired
'special' meaning.

Growing Better Software

14.6 Explicitly name your columns

When writing SQL queries for programmatic use, you should
explicitly list the names of the columns that you intend to
receive, rather than performing a SELECT * query. There are
several reasons for this:

SELECT * will address all columns in all tables that you
are trying to access. Unless you actually need all of them,
this will result in unnecessary performance loss and
increased memory usage.

By explicitly naming which columns you want to retrieve,
you will have control over the order in which the query
returns the columns to you- even if the database design
changes.

When the order of the columns in the result is known,
you can access them by a numeric index. This is likely to
perform better than having to look up the columns by
their name.

Of course, when accessing a database manually, rather than
programmatically, these reasons may not be as important.

14.7 Access data via an interface

When designing a database, we will be faced with a data
structure and operations that can be performed on that data
structure. As this is consistent with object-oriented
programming, it makes sense to treat the database as such.

Rather than having all your code directly perform queries on the
database, consider writing an interface layer that always handles
all data access.

There are several benefits to writing such interface code:

e In the case of complex transactions across various tables,
interface code will be simpler to understand because
your fellow programmers will not need to know the
implementation details of your code to work with it.

e It helps you centralize code. Therefore, if the database
structure changes, most likely you will only need to
change the appropriate functions in the interface code;
but most likely not the code that uses it.

There are basically two possibilities for implementing such
interface functions:

® As stored procedure in the DBMS

e As wrapper class used by the Business Logic Layer of
your system

m Growing Better Software

An example will help clarify things. For instance, to add a user,
we can create a function add_user (username, password). This
function may perform a complex transaction which consists of
the following:

e create an entry in the user table;

e encrypt the password using the default encryption
scheme (possibly based on a setting in the configuration
table);

e add the user to the default user groups, and

e assign the default set of roles to the user.

Perhaps in our system, all of these operations must be carried
out to create a valid user entry. By providing an interface
function to create the user, our fellow programmers are no
longer bothered by implementation details for creating a user.

Providing interface functions to read data from and write data to
a database will help us see a database in a more object-oriented
manner.

Should the password table be separated from the main user
table for whatever reason (a fundamental change in the database
structure), we can simply modify the existing function to work
with multiple tables, whereas any code using the original
add_user function can stay the way it was before.

297

14.8 Use informationless keys

For maintaining referential integrity within your database, use
informationless, structure free keys as primary key for your
tables.

A good example of an informationless key is a UUID (essentially
a random 128 bit value, guaranteed to be unique) which is
typically displayed as hex string. Such a key may not look very
friendly to the user. That is because it is not intended to be
displayed to the user®- it is intended for the computer.

We distinguish between keys that are used for maintaining
referential integrity and keys that have some meaning to the
user, or contain some information.

A user may use his or her email address as username; when this
username or email address is used to maintain referential
integrity between the various tables, many tables need to be
updated when the user wants a different username. Most likely,
the user will need to logout or access needs to be temporarily
blocked in the process of changing username, as the database
transaction implied by a username change is considerable.

In contrast, when referential integrity between tables is
maintained by an informationless key rather than by the
username, the user can readily change email address as it only
implies changing a single field in one record in the database. As
a result, changing the username is a minimal change.

37 See chapters Preventing chaos and Use UUIDs where appropriate (pages
59, 62) for a deeper explanation about informationless keys.

@ Growing Better Software

If you relate records from two or more tables into another table,
rather than using a combination of multiple keys to identify the
record, it is a good idea to create a new, informationless, one-
column key to identify this relation. This ensures that one field
is always enough to identify your records.

In turn, this will prevent a lot of the maintenance that you would
otherwise spend re-keying tables (and perhaps rewrite
associated code) to restore referential integrity when an
additional key column is added to the table (usually when an
additional table is joined into the relation).

Another benefit of giving each record a database-wide unique,
one-field key, is that all keys in the database share the same
structure- they are compatible with each other.

This high degree of compatibility will prove useful if you want to
record information that needs to transcends the structure of the
records being referenced. This occurs, for instance, when you
want to keep a change history of records (of any type), or if you
want to store access control information for records (of any type).

If all keys of all records consist of a one-column key, you can
create a table containing information about any record type by
using a single key column to reference all those different record
types, and perhaps a second column to indicate in which table
each record is stored. This is relatively simple to implement- but
imagine what a mess it would be to build such functionality if
each table in your database would has a different key structure!

Chapter 15

Security
considerations

Imagine that the software that you write is like the house that
you live in. If you own a lot of expensive goods, but leave the
doors and windows of your house wide open, burglars will find
their efforts to be paid back generously. If your house is empty,
but equipped with a full-blown burglar detection and capturing
system, this will likely solve most of your burglary problems?®,

In computer systems, the same applies, but instead of goods we
protect information. The value of the information being protected
increases as more money, more sensitive information and more
users are involved.

38 Unless, of course, you run into the type of burglar that is interested in
stealing your burglar detection and capturing system, for the sake of
showing that it can be done.

m Growing Better Software

The reason that we should worry about security is that security
breaches can cause substantial damage to the victim. This
damage manifests itself as lost time, lost money and tainted
reputation. Who would trust a bank with their money, if the
computer systems of that bank were known to be insecure?

This chapter is not a full blown course in computer security, but
it does address some common pitfalls that I have ran into over
the years. Although applying the tips and tricks in this chapter
should give your systems a minimum level of security, this may
not be enough for your purposes. If you are serious about
security, you should consult several dedicated books on the
subject, not just this chapter.

15.1 Avoid security through obscurity

When you leave your house and lock the door, do you leave the
key in the flower pot or under the doormat? If you do, you are
practising security through obscurity. If you always leave the key
under the doormat, someone is bound to find out. You may need
to tell it to your babysitter, who in turn might tell her boyfriend.
Or maybe a clumsy mail man stumbling over the doormat
reveals the key. But it may well be that your house is visited by
a burglar who has found keys under doormats before.

In computer software, the same is true. A system that depends
on people keeping their mouth shut about how security is
enforced, depends on security through obscurity. Applications
designed in such a way have a fundamental design flaw: They
provide everything that is needed to break into them. This
means that anyone with access to the application and enough
determination might be able to gain unauthorized access.

An employee that leaves the company might leak information.
Perhaps he or she will tell around that to get into superuser
mode, you need to use a special key combination. If that key
combination is hard-coded into the application itself, that
version of the application is permanently compromised. As such,
if you require to change the code of your application to secure it,
this should raise a few eyebrows.

Instead, we should design our system security in such a way,
that even having all design information of the security system
will not gain us instant® access to the system that is being
protected.

39 Time is an important factor in computer security. Most security systems are
easily broken if we are willing to spend the billions of years needed to try
all possible keys.

m Growing Better Software

15.2 Be aware of ways to bypass security

Imagine you have a bullet proof, stainless steel safe door as the
front door to your house, and you always take the only key with
you. You may think that burglars will have a hard time forcing
the door open, but it is more likely that they will simply break a
window.

When a security mechanism is properly designed, efforts to
break it will fail. Therefore, it makes more sense for malicious
hackers* to work around it. To avoid getting caught, they will
prefer non-intrusive ways to get what they want.

Your software possibly has a login dialog; will it secure your
system if a malicious hacker installs a key-logger? Your software
possibly sends data across a network; is it encrypted, or will a
malicious hacker be able to analyze the data stream?

Does a potential cracker even need to run your application at all
to get what (s)he wants? Your application may reside on another
server than the one that contains the data. Can a malicious
hacker gain access to the database server and simply look at the
data? What if the server is stolen?

What if someone simply buys the drives of the server second-
hand off of his preferred auction website in a few years? Will it
still be possible to extract valid credit card numbers from those
drives then?

40 'Hackers' are individuals that like to stretch the possibilities of software
systems by studying them. A minority of hackers breaks into systems; they
are called 'crackers', but this term never caught on. To show the bad
intentions of crackers, I will refer to them as 'malicious hackers'.

15.3 Never trust user input

Most users that will ever use your software are just interested in
using your software as it was intended. Some people out there,
however, like to deliberately mess up things. If you're lucky, they
do this just for the kick of it; if you're not, they are trying to
break your software to get access to information or functionality
that they should not be able to have.

The following example shows one way they might accomplish
this. Let’'s say that we have written a web application, in which
we use the following input field:

<input type="text" name="firstname" maxlength=10>

A malicious but clever user opens this page and decides to save
it with menu option file->save in his browser. This user then
opens the saved file in a text editor, alters the maxlength value
in the saved file to 15, and re-opens the modified file in his
browser. It is now possible for the user to enter a firstname
which is 15 characters long and submit it to the server. If there
was any Javascript on the page to validate the length of the field,
it can be disabled just as easily.

Although this example deals with a web page, the same lesson
applies to client/server programming in general: We have no
control over our users, but we do have control over our servers.

Therefore, in any client/server environment, user input should
be validated at least on the server. If the user input is validated
on the client side at all, is should be to help the responsiveness
of the application, rather than for security reasons.

m Growing Better Software

Some programmers try to protect themselves from unwanted
user actions by using some client-side Javascript to disable
access to those actions. In this case, for instance, they might
disable the Save menu used by our malicious user, or disable
browser menus that would pop up when right-clicking the
mouse. This may seem like a good idea, but is ultimately
fruitless. Not only are there many ways to get to the source code
of a page, but ultimately all Javascript can be bypassed. Rather
than wasting our time trying to establish security on the client
side (which is ultimately beyond our control), we should get it
right on the server side.

Back to our input field. Assuming we truncate the field to the
desired length on the server, we still have to deal with the actual
content of the field. Some characters may not be desirable as
field input.

It is thinkable that the data submitted by the user is used in an
SQL query that is generated by a script, for example:

Squery="select password "
."from users "
."where firstname='".Sfirstname."'";

If the user has a normal name, all is fine. But if the user is
called O'Brian, the query will result in the following, invalid SQL
statement:

select password
from users
where firstname='O'Brian';

A user could enter this name and would run into an error. To
malicious users, this error would be enough information to know
that this system is vulnerable to SQL injection attacks.

What happens during an SQL injection attack is that a
malicious user enters information in such a way, that it alters
the behaviour of the system beyond its original design. For
example, if the user enters this as first name:

' or firstname like '%

the resulting query would become:

select password
from users
where firstname='"' or firstname like '%';

which obviously returns passwords for all users, rather than
password for a single user. Depending on how the system
evaluates success or failure, this might allow a malicious user to
gain access to the system.

One way to prevent these problems is by filtering out or escaping
all unwanted characters. But in any case, we shouldn't use user
input without verifying its contents.

It is notable that this type of attack is not just limited to SQL; in
any UNIX-like environment, the back-tick operator (the *
character, ASCII code 96) may give the user access to command
line operations. Likewise, input redirection characters < and >
are suspect.

m Growing Better Software

Although code injection attacks can be quite serious, they would
seem to be easy to counter by letting the server filter all user
input to only allow the characters that we want to permit in it.

But filtering alone might not do: Sometimes, we want the user to
be able to enter names such as O'Hara. Of course, we could
escape the unwanted characters, but sometimes this is not
worth the effort.

As it turns out, most of the time we want to filter the user input
because it is going to be used in SQL statements. In that case,
simply using parameterized queries is best, as it takes care of
filtering and escaping any user input as needed.

It is important to realize that SQL injection is not the only risk of
using unfiltered input; whenever user input is displayed on a
web page, we must make sure to escape special characters.

Failing to do so may allow a malicious hacker to inject
JavaScript in our HTML output (using the HTML <script> tag)
in a similar way as SQL injection. These scripts may collect
information about the user in several ways and send that
information to the website of the malicious hacker. Due to the
way they work, these Cross-site scripting (XSS) attacks also
effectively bypass any firewalls. Needless to say, this technique is
most effective if malicious hackers manage to save their script in
the database of a frequently visited site, and having it displayed
to a lot of users. It won't work, however, if we make sure to
properly sanitize our user input.

307

15.4 Avoid clear-text passwords

Using clear-text (unencrypted) passwords is like leaving the keys
to your house in plain sight- it is worse than leaving your keys
under the doormat. If clear-text passwords are stored in a
database, anyone with access to that database has access to all
passwords. If the database password itself is stored as clear text
in source code or configuration file, a glance at that source or
configuration will reveal that password and permit the user to
corrupt the database at will.

Using an unencrypted password in a configuration file is
especially serious when this configuration file can be accessed
by several people. Does your web application share a web server
with other people? Surely the permissions of the configuration
file are set to allow it to be read by the web server. Another user
may be able to write a script that displays the configuration file
of your site. You didn't hard-code the database username and
password into your web application, did you?

If you did, you are not alone. It is actually a bit tricky to keep the
database password out of your application, because the
application needs it to work. Encoding the password is not much
use, because the application also needs to be able to decode it;
and the decoding algorithm needs to be present in the code.

Instead, in this case the security should be implemented on the
database level. The database should only grant read access to
the account represented by the username and password
contained by the application. Moreover, this read access should
be restricted to public information and the user base. This
allows the web browsing public access to any and all information
that they need to access while allowing us to restrict access to
sensitive information.

m Growing Better Software

What if we want to give users more elevated privileges? One way
is to use the login data of the user as a decryption key.

Whenever a user tries to log in, we can use the password that
they entered as a key to decrypt their personal encrypted copy of
the account information required for elevated access. Whenever
users change their password, this account information is re-
encrypted so that only the new password can decrypt it.

I'll leave it up to you whether this account information unlocks
the entire database to the web application, or if it uses the
access control mechanism of the DBMS itself to restrict access.

We should be aware that users may forget their password,
rendering their account information impossible to decrypt. This
is no problem when a copy of the account information exists,
only available to users with elevated access rights, such as
database administrators. This allows the database
administrators to reset the password, without ever needing to
know what the password is.

Although this technique does not entirely prevent storing
passwords in code, the damage that can be done with them is
greatly reduced; after all, any passwords in code will only grant
access to a very limited area of the database.

15.5 Use one-way password encryption

It is obvious that storing passwords as readable text is a bad
idea. We can not always escape the need of storing passwords or
their representations; as such, we need to encode the password
in some way before storing it.

By all means, we should avoid trivial encodings such as storing
the password backwards, storing it as a hex string, storing it as
base64 encoded string, using a XOR mask or performing ROT13
translation. Even without source code of the password encoder,
such encoding methods are easily recognized and inverted.

Instead, they should be encoded in such a way that they cannot
be decoded anymore. Such one-way encryption is no problem
during a login procedure; When the user enters a password, this
password is encoded according to the same encoding scheme as
the stored password, compared to the stored password. If they
match, the user has access to the system.

An easy way to perform one-way password encoding is to
generate an MD5 hash of a password*'. Many languages already
contain an MD?5 library; creating an MD5 hash of a password is
often something along the lines of

encodedpassword=MD5 (password) ;

As using a hash implies that some of the input data is lost, it
cannot be reversed.

41 Should MDS5 be cracked by the time you read this, feel free to substitute
your favourite secure hash algorithm.

m Growing Better Software

Although theoretically several combinations of characters can
result in the same hash, the chance of accidentally running into
one that works is minimal; a brute force attack to crack a 128-
bit hash requires on average 2'*” attempts. If we would be able to
calculate one million of such hashes per second, it would still
take us, on average, 5000000000000000000000000 years to
crack one password. By the time we manage, said password
probably won't be of much value to us anymore.

In practice, cracking such hashes can be done in considerably
less time. If the 128-bit MD5 hash of a password is the string
827ccbleeaB8a’06c4c34a16891£84e7b, how do you find the
password if you're in a hurry? You simply look it up with your
favourite search engine, and you're in.

Likewise, if we have a list of encoded passwords and we find two
equal encodings, we will know that both people have the same
password. This is a potential security hole: if we know the janitor
has the same password as the CEO, we might be able to offer the
janitor a candy bar in exchange for CEO privileges*?.

In the UNIX world, this problem was solved long ago by adding a
’salt’ to the password. A ’salt’ is a number or short string of
characters, which are randomly chosen. The salt is added to the
password before encoding it. As a result, the chance that equal
passwords result in the same encoding is extremely small. As
the encoded password cannot be decoded, there is no way to find
people sharing the same password.

42 According to a survey of the the BBC in April 2004, more than 70% of
people would reveal their password in exchange for a bar of chocolate.

In code, one way of adding a salt might look as follows:

randomize (timer) ;
salt=(1000000*random()) .toString();
encodedpassword=salt+", "+MD5 (salt+password) ;

This allows us to figure out the salt by looking at the encoded
password, which permits us to encode a password in the same
manner as the original. In the above case, there is a one in a
million chance that two people that share the same password
also share the same hash. If this is not acceptable, we can verify
for this possibility before our salted password is stored- and
simply try again.

Of course it is still possible to perform a dictionary attack on the
password list, but every attempt will need to be encoded against
all salts in use by the system. Common measures such as
requiring a minimal password length and mixed alphabetic/
numeric characters help protect against this.

m Growing Better Software

15.6 Be aware of sniffing

In designing secure software, you should assume that data that
is sent through a computer network can be intercepted by the
routers that route your network traffic, and by any computer on
any LAN that your data passes through. Passively looking at
network data without changing anything is called sniffing. As the
data on the network itself is unaffected, sniffing is undetectable.

On Unix-like systems, a network analysis program called
tcpdump allows people to look at incoming network data; On
Windows, the functional equivalent is called windump.

As you run tcpdump on a LAN, you may find out that a lot more
data is received by your computer than just the data intended
for you. But you will also find out that a lot of the data that your
computer sends, is not encrypted. Surprisingly, as this text is
being written, encrypted network data is not the norm.

Some popular sites even have an encrypted login procedure, but
then proceed the session without encryption. This is rather silly
if you ask me- the point of passwords is to gain access to the
data behind them. Why bother cracking a password if the data
protected by it can simply be sniffed? By the way- when you
receive emails with your password in plain text, you may want to
reset that password to something else.

For software developers, the lesson to learn is that we should be
aware that people may be listening in to the data traffic. When
your application needs to send or receive sensitive data such as
passwords or credit card information, it is a good idea to make
sure that the data in question is sent in encrypted form. Any
password-protected data should also be considered sensitive-
otherwise, why bother about a password?

15.7 Avoid buffer overflows

A buffer overflow occurs when write operations to memory
exceed the size allocated for a buffer.

Overwriting memory beyond the end of the buffer will leave the
memory in a corrupt state, normally leading to unpredictable
system behaviour.

With a considerable amount of knowledge about the defective
program and the operating system, a program may be fed with
input that causes a buffer overflow. When the input is well
thought out, it even allows a malicious hacker to crash the
program in a predictable manner. This allows malicious hackers
to use buffer overflows to their advantage. By carefully crafting
the input, malicious hackers manage to crash the program in
such a way that it performs a task that is useful to them.

Although buffer overflow attacks require a cracker to invest
some time in research, the payback may be worth the effort:
When successful, it may allow full control over the machine that
is being attacked.

Buffer overflow attacks are mostly a problem to low-level
languages that do not perform automated bounds checking,
such as assembly, C and C++.

Programs written in virtual-machine based languages (C#, Java,
etc.) and most interpreted languages will generally be safer from
buffer overflow attacks, although a buffer overflow may still raise
exceptions or run-time errors that could terminate such
programs.

m Growing Better Software

How to prevent buffer overflows in low-level languages?

e Whenever we write to the buffer, we perform checks to
make sure that the boundaries are not exceeded;

e We check all user input. In this case, the input can be
any incoming data; it may well be a packet of network
data received by the program.

e When programming in C or C++, whenever possible, use
size-controlled equivalents of functions that deal with
buffers, such as strncpy instead of strcpy. Also, it is
best to refrain from using functions that allow user input
of unlimited length such as scanf in the C programming
language.

As operating system manufacturers are starting to take security
more seriously, they have added some randomness to the
memory manager, causing modules to be loaded at less
predictable places in memory. This makes it harder for attackers
to use the operating system itself to their advantage.

15.8 Add a bit of chaos

A lot of successful security breaches are the result of crackers
being able to make correct predictions or assumptions about the
system being compromised.

In the previous chapter, we learned how moving around modules
randomly in memory could make it more difficult to exploit
buffer overflows, because modules would no longer be at
predictable locations in memory.

When money is involved, it pays to up our level of paranoia a
notch. Although total security is an illusion, we can make it
considerably more difficult to break security by introducing
some chaos in our system.

Consider a malicious hacker that records all our keystrokes: our
username, password, everything. When we visit our online
banking website, it becomes clear how randomness serves us.

My bank requires me to enter a different transaction code for
each online transfer that I make. With this added randomness,
key logging is effectively useless, because all codes being logged
are invalidated the minute that they have been used.

Something similar is being done for credit cards: For online use,
credit card issuers now issue credit card numbers which are
valid for one transaction only. This alone would not help much if
the numbers would be issued in a predictable order. Obviously,
some randomness helps security here too, because it makes it
impossible (or at least very hard) to guess what the next credit
card number will be, based on the last one that was used.

m Growing Better Software

15.9 Treat sensitive information carefully

Every now and then, the news reports how thousands of credit
card numbers were stolen by malicious hackers.

This is surprising, considering the fact that to run a web shop
that accepts credit card payments, that web shop never needs to
receive credit card information to validate the payment- much
less to store that information.

Instead, the payment should be handled directly by a credit card
payment gateway such as provided internationally by companies
such as ProtX, Ogone and RedUnicre. All your website sends to
your customer is a transaction number. After using this
transaction number to handle the payment with the payment
gateway, the customer (or the browser of the customer) will
indicate to your web shop that the transaction is complete. After
your web shop verifies the transaction with the payment
gateway, we know that the payment was successful. As we never
even received a credit card number, we can't accidentally expose
this information to malicious hackers.

Whenever possible, prevent the need to transfer or store
sensitive information. If you send out emails containing
passwords or credit card numbers, a sniffer may be able to
intercept that information. In contrast, such an email might only
contain a URL. If that URL is fitted with a login screen that
requires the user give a username and a code previously received
via SMS and/or postal services, it is far less likely that a
malicious hacker has been able to collect all the information
required to access the actual data.

317

15.10 Don't rely on software alone

You may have spent considerable time on securing your
software, but this is worthless without physical security.

Without physical security, it becomes nearly impossible to
secure your software- because somehow your software will have
to know how to get to all the data that it manages.

Someone might 'borrow’ a backup tape or simply steal a server
that contains sensitive information. Someone that simply sits
down at the keyboard of a server will likely be able to access
data that is available locally on the server but not accessible via
the network.

The human factor should also not be underestimated: people
often use the same passwords on multiple websites, rarely
change their passwords, use passwords that are too easy to
guess. Some people are simply a bit naive and will easily be
conned into giving away sensitive information.

Being aware of these issues does not make your software any
better. But if you are not aware of them, the security of your
software will be at stake, regardless of how well-written your
code is.

Growing Better Software

This page intentionally left blank

Chapter 16

Programming
for the web

This text would not be complete without some tips specifically
aimed at web programming. Web programming may seem
simple, but is not to be taken lightly: it is the current state of the
art. Most people can learn how to build static web pages for their
friends and family in a relatively short amount of time, but this
is a far cry from mission-critical, multi-user, database-driven,
multi-server, load-balanced, cross-browser, secure, interactive
websites- looking as unimpressive as your favourite search
engine.

Numerous books have been written on web development, so this
chapter will only provide a few key points that have proven
themselves over and over again. I hope they will be useful in
your next browser-based project.

W Growing Better Software

16.1 First of all, get the basics right

When programming for the web, we should consider how the
web turned into existence. At the basis of the World Wide Web
lay two important building blocks: HTTP (the HyperText Transfer
Protocol) and HTML (the HyperText Markup Language). The
combination of these two gives you the power to functionally do
almost anything that the web has to offer, and even the simplest
of browsers will support both of them.

A key concept in web design is graceful degradation. HTML was
designed in such a way that a fall-back mechanism can be
provided in case a browser does not support a given feature. For
instance, if a browser does not support images, an alternative
text can be displayed instead, such as the company name
instead of the company logo:

<img src="http://myserver/images/companylogo.png"
alt="ACME enterprises, Ltd.">

This will provide a text alternative in case loading the image
should fail; it will also help to make your site more accessible to
the visually impaired who may access the site through the use of
text-to-speech technology.

To build dynamic web applications, the content of pages can be
generated on-the-fly on the server side; this does not require
additional features on the client side.

The benefit of limiting ourselves to the basics first, is that we will
force ourselves to pick up proper design habits, such as
performing form input validation on the server-side. This gives
us a solid foundation that will make our application work on any
browser.

Browsers are generally fairly forgiving in parsing human-made
HTML. As different browsers forgive different mistakes, our
HTML may render differently on different browsers. Our best bet
for seeing our HTML rendered properly on as many browsers as
possible, is to make sure that it conforms to official standards.

To validate our HTML against existing standards, we can use the
tools that are available online. My personal favourite is the
validator on http://www.htmlhelp.com. Apart from providing
an excellent validation service for HTML, it also provides
descriptions of the different versions of the HTML standard, style
sheet validation and more.

After having validated a few files, you will find yourself writing
better HTML already.

m Growing Better Software

16.2 Keep core dependencies to a minimum

Once we've got the basics right, we can make our websites
fancier and more responsive by using additional technologies
such as Javascript, CSS style sheets, Flash, Java and browser-
specific features. As we extend our site, we should be aware of
the concept of graceful degradation, so that all functionality that
the site has to offer is available to all browsers.

But why would we want to spend the extra time on a clunky,
old-fashioned HTML-based site, if we can go fancy with
Javascript straight away? Here's why. All too often, when we
view the source of websites, we see code such as the following**:

Click here to go to document x

Why on earth would someone in his right state of mind want to
create a link like that? There are plenty of things wrong with this
approach:

e First of all, Javascript is much less forgiving to bugs than
HTML. This means that chances that I need to resort to
debugging my code are bigger, so I'm wasting more time
if I use Javascript. In the above example, the quotes will
cause problems when they are not properly escaped.

® Second, the above link might work on one browser but
not on another, because the Document Object Model
differs from one browser to another.

43 Whenever I see something like the above, I have to stop myself from not
screaming “NOOOOOOQOo00000!!!!”. In fact, 'm screaming right now.

Third, availability of Javascript is not obligatory for web
browsers, so the link might not work at all if I happen to
run another browser than whatever happened to be the
favourite of the web developer.

Fourth, even if Javascript is available on the web
browser, users may disable it for security reasons.

Fifth, bookmarking Javascript links is dodgy at best. The
above example may work fine, but what if the onClick
event calls another Javascript function that would
normally be loaded by the page? This would leave us with
a broken bookmark.

But most importantly, all these reasons aside, there is a
way that gives exactly the same result. A way that always
works, in any and all browsers, without any of the
problems mentioned above. Best of all, if you own a
“HTML for beginners” manual, you will probably find it
on the first page, in paragraph “How to define a
hyperlink”.

The following always works and can be read and maintained by
anyone who has ever done anything at all in HTML:

Click here to go to document x

But what if we want to open a link in another window? This can
be done with the target attribute:

m Growing Better Software

Click here to open document x
(in another window)

If the browser is as primitive as not to support opening the site
in another window, it will open it in the current one (but the link
will still work). In all other cases, the above will use a new
window- or reuse window mynewwindow when another link used
it as well.

There are many more examples where plain HTML does the trick
as well as Javascript. Be creative and look for them. Keep asking
yourself the same question: “Is there a more standard way to do
it?” More often than not, there will be a simple, standard way
which will do just fine, and which will not depend on the
availability of one more technology.

Keep in mind that although I have mostly addressed Javascript
here, the same is true for the use of style sheets, images, Flash
and whatever other fancy functionality your browser might
support.

Use whatever technology you like; As long as you provide a path
that will gracefully degrade the site, all functionality will remain
available to all users. In contrast, requiring anything but the
basics is bound to lock out some users.

16.3 Decide on a character encoding

After the introduction of ASCII (the American Standard Code for
Information Interchange) in the year 1967, computers were
suddenly able to exchange information without the need for
converting the data from one character set to another.

On the World Wide Web, as long as we are dealing with static
text, the regular HTML notation for accented characters goes a
long way. The thought behind writing saacute; or sç is
brilliant: even in this respect, HTML permits graceful
degradation. Browsers or terminals that support only ASCII can
still render saacute; as the letter 'a’. Also, as the HTML
notation limits itself to the regular ASCII character set, it is
immune to character encodings.

Unfortunately, as soon as pages are dynamically generated or if
the communication between browser and server is bidirectional,
converting to and from HTML notation turns out to be too much
of a hassle. ASCII compliance simply isn't enough anymore, as
users copy/paste content directly from their favourite word
processor into their Content Management System. They won't
bother to replace smart quotes (“ and ”) with ASCII-compatible
dumb quotes ("), and the same goes for accented characters.
Things are worse in a multi-lingual environment; Obviously, the
ASCII character set is too limited to deal with this.

When the supported character sets of web server, browser and
database differ from one another, you will be in for some more
fun, as this implies converting between different character sets.

Two popular character encodings are ISO-8859 (which comes in
several incarnations) and UTF-8.

W Growing Better Software

UTF-8 has worked well for me. It is the default encoding for
XML. It supports all characters of the Unicode character set and
is widely supported across operating systems. In addition, it is
ASCII compatible for diacrit-free latin text. It could work for you
as well; but the downside is that you should be aware of, is that
the character length is variable. As such, you need to be aware
of the differences between character length and byte length
when dealing with strings. If this is a problem, possibly one of
the fixed length multi-byte alternatives is a better choice to you.

There are several ways to force web browsers into using the
proper character encoding to display your pages. One way is to
configure your web server software to do so, but this may not
always be realistic (especially if you don't host your own site).
Another is to add a META tag to the header section of your page:

<html>
<head>
<META http-equiv="Content-Type"
content="text/html; charset=utf-8">
(rest of page follows...)

The third way is to set it in the Content-Type in the HTTP
header. In PHP, this looks as follows:

header ('Content-Type: text/html;charset=utf-8");

Of course, the syntax will differ in languages other than PHP
(although the header content will be the same).

Finally, make sure that your text editor can properly handle the
various character encodings that you use; if it doesn't, you may
end up corrupting your files- especially if you convert them from
one encoding to another.

327

16.4 Use style sheets to control layout

Cascading style sheets are currently the most elegant way to
control what your site looks like. As is the case with Javascript,
it is not obligatory for browsers to support CSS. This means that
you should not require CSS for your site to provide certain
functionality.

If you are doing any web development at all, and you haven't
learned how to work with style sheets yet, read up on them
today. It will be worth the effort. The amount of HTML that you
need to write will be dramatically reduced, which will improve
maintainability, reduce bandwidth requirements and speed up
development. In addition, style sheets will give you a lot more
control over what your layout will ultimately look like.

Visit the site http://www.csszengarden.com/ for some
excellent examples of what can be done with style sheets. If you
happen to have a web developer toolbar installed, try disabling
the style sheets altogether: the page will gracefully degrade to
readable text.

@ Growing Better Software

16.5 Skip the HTML/Flash/HTML cycle

An observation can be made about the progress of websites of
many companies. Many times, the websites start out as static
HTML, are then replaced by a fancy-looking Flash site, and
finally by a database-driven website with content management
system with little or no Flash. Where does this cycle come from?

My belief is that most companies start by testing the waters,
wanting only something simple. The site works, and the client
likes the animations and special effects that Flash is capable of,
so when they upgrade, they go for a Flash site. This makes for a
very fancy-looking site, but maintainability is an issue. Although
the content of a Flash site does not have to be static, few web
programmers are proficient both in Flash ActionScript and
database-programming, so the developer of the site needs to be
consulted every time that the product list of the site changes.

After some time, all these animations start to be annoying. The
fact that pages are not indexed by our favourite search engine
becomes an issue, as do the higher maintenance costs.

The next version of the typical site is a better-designed,
database-driven HTML site that Just Works. Flash may still be
used for banners and general looks of the site, but the site no
longer depends on it. When we look at the websites most big
companies, we see that the sites generally are not based around
Flash, although some flash may be used in advertisements and
for the website logo.

A problem with Flash is that it does not allow for graceful
degradation. Some sites solve this by providing both an HTML
version and a Flash version of the site, to be chosen by the user.

It is obvious that providing both a flash site and a non-flash site
requires a duplicate effort.

Scalable Vector Graphics or SVG can be an alternative
technology to Flash. As SVG is text-based (XML-based to be
more specific), search engines will have no trouble indexing the
pages. The text-based nature also makes SVG easier to generate,
from a programmer’s perspective.

However, support for it is still limited, as the W3C standard for
SVG is huge. We have yet to see if SVG will catch on, or if this
will cause sites to start going through HTML/SVG/HTML cycles.
Personally I feel that it is more likely that SVG will find its place
alongside HTML, as a way to generate and display maps and
graphics, rather than to act as a replacement of HTML.

W Growing Better Software

16.6 Use gracefully degradable Javascript

Javascript is a great way to enhance the responsiveness of a
website when used the right way, and allows for some neat
effects. It was originally intended to enhance the functionality of
HTML, not to replace it. Because of this, we should treat it
accordingly.

The principle of graceful degradation applies to Javascript as
well. We can design a fancy site while providing a fall-back
mechanism that will be used when someone with a limited
browser accesses the site. The site will just work.

If Javascript is not available to set the roll-over image of a
button, the button itself could still work when clicked. This
ensures us our site will work on more limited browsers (such as,
for example, the ones found on mobile phones).

If we want a page that is really interactive, we can’t escape
Javascript, or so it seems. This is however a misconception. It is
always possible to submit the page to the server, allowing the
server to perform any necessary interaction with the browser.
Javascript can be used to prevent the need of such a round-trip.

Great examples of proper Javascript use are Google Maps and
Google Mail - Javascript provides additional interactivity, but
these applications will still work just fine without it.

All vital functionality of your application should at least be
defined on the server, but can be duplicated in Javascript to
improve responsiveness of the application. The next PHP
example will work without Javascript, but will be more
responsive with it. The other techniques I used are explained in
the paragraphs that follow.

<?php
Ssubmitbutton=$_POST["submitbutton"];
$a=0;
Sb=0;
if (strtolower ($submitbutton)=="calc")
{
$Sa=$_POST["a"];
Sb=$_POST["b"];
}
$c=S%a+5$b;

?><html><head><title>test</title>
<script language="javascript"><!--
function calcval (document)
{
var a=document.form.a.value;
var b=document.form.b.value;
var c=a+tb;
result=document .getElementById ("result");
result.innerHTML=c;
return false; // do not submit the form
}
// —-—></script>

</head>
<body>
<form name="form" id="form"
method="post" action="">

Enter value A:

<input type="text"
name="a" id="a" value="<?=$a?>">

Enter value B:

<input type="text"
name="b" id="b" value="<?=$b?>">

Sum of A+B=

<div id="result"><?=$c?></div>

<input type="submit"
name="submitbutton"
value="calc"
onclick="returncalcval (document) ;">

</form>
</body>
</html>

@ Growing Better Software

16.7 Let web pages post to themselves

The first means of server-side processing of data were CGI
scripts. Web languages have come a long way since then,
although most of them nowadays are based on the same
principles. ASP, PHP and JSP are strikingly similar. This is
logical, because in the end, they all work on the same platform:
A standardized web browser and a server that serves up the
pages for it.

In the example in the previous paragraph, you will see that the
page posts to itself. For creating (semi) interactive applications, I
find this is a practice that works very well. Not only does it allow
us to treat a web page as a complete, stand-alone module in a
single file, it also makes it easy to make pages that refill
themselves after a post action, rather than requiring an
additional development effort to make a page saying “You made
this-and-that mistake on the form. Please click back and try
again.”

If we let a form post to itself, we make it much easier to redisplay
the form along with all data that was entered in it, and along
with error messages relevant to that data**. This also allows us
to use the same form file to enter either new data or to edit
existing data.

By having a form post to itself, we raise the assumption that the
browser always stays on the same page, unless redirected by
specific action. Redirecting is done by sending a HTTP redirect.
In PHP this would be something along the lines of

header ("Location: http://www.google.com");

44 Also see page 161.

This statement is executed on the server side, before any data is
sent to the browser. All web programming platforms allow
sending headers. Redirecting the browser to another page by
means of a Location header is present and supported by all
browsers, as it has been part of the HTTP standard since the
beginning to accommodate for moved pages. Not a single line of
Javascript is needed to redirect the browser. Should we want to
‘repost’ variables from our current page to the other one, we can
do so by either passing them in the URL of the header
statement, or by means of session variables.

m Growing Better Software

16.8 Validate and compute on the server

As we have seen from the former example, it is possible to create
a web page that works either with or without Javascript.

A drawback that is very visible from that example, is that some
code is duplicated: the calculation code (or business logic, if you
will) is present both on the client (as Javascript) and on the
server (in this case, as PHP). In our search for the Holy Grail of
perfect code, this is not acceptable, because doubling the
amount of code doubles the risk of bugs. In addition, it will cost
us extra time to implement both server-code and client-code,
which we might not have.

Given the choice to either give up Javascript or server-side code,
the choice is clear. If we want to have any control over the
validity of data that the server needs to write to the database, we
need to at least perform checks on the server side. After all, if
someone decides to bypass checks on the client by disabling
Javascript, we're done for. The result of this policy is that we’ll
see our applications gain robustness and use less Javascript.
This is a pity, because Javascript is a very useful addition to web
programming.

When it comes to validating input, it probably makes most sense
to have the server generate some Javascript for it. Easily
checked, generic conditions can be checked on the browser:
characters accepted, field length, field format, entering data in
required fields. This will prevent most round trips to the server.
By leaving specific validations to the server, not only will you
have more control over the final validations than Javascript can
give you, but you will also prevent the browser from ever needing
to directly access the database, making for better separation of
presentation, business logic and data layer.

16.9 Use one form called form

As the Great Browser Wars started between Netscape and
Microsoft, each of them invented their own flavour of Javascript,
each with their own Document Object Model. Unfortunately,
these two object models are not compatible with each other. As a
result, Javascript code that is specifically aimed at the
Document Object Model of one browser will not properly work in
the other.

There is however one trick that will solve the biggest
incompatibility, opening the door to use some Javascript here
and there. In the old Netscape browser, it was only possible to
design pages that had a single submittable form. Internet
Explorer, in the meantime, allowed multiple forms, each with a
different name. You could have a form called forml, and another
one called form2. When in Explorer we want to access the value
of a field in the first form, we write

document.forml.fieldname.value

whereas in the old Netscape browsers (and all their derivatives,
including Firefox) we would write

document . form.fieldname.value

By the way, the latter is officially the correct way, according to
the World Wide Web Consortium. Strange enough, as a member
of the W3C, Microsoft didn't always follow the official W3C
standards in their browser.

m Growing Better Software

We can solve this incompatibility by using only a single form and
naming it form. In Explorer, this will make the form accessible
by its name form, so accessing fields on the form looks like this:

document . form.fieldname.value

which is, surprisingly, equal to the name of the form object in all
Netscape derivatives. Should it be necessary to post to multiple
different locations, a Location header can pass the values to
those locations, instead of a form.

337

16.10 Name and ID HTML fields equally

When you give fields an ID that is equal to their name, any
Javascript-enabled browser will be able to access them as
document elements using the getElementById function. Be
aware that the function name getElementById is case sensitive.

<html><head><title>Dynamic field filler</title>
<script language="Javascript"><!--
function docalc (document)
{
// Fill fields with their field number
// (using dynamically generated field names)
for (i=1;i<=1000;i++)
{
field=document.getElementById("field"+1i);
field.value=i;
}
return false; // do not submit
}
// ——></script>
</head>
<body>
<form name="form" id="form" method="post" action="">
<?php
for ($i=1;%$1<=1000;S$i++) {
/* dynamically generate 1000 fields
(in this case, using PHP) */
?><input name="field<?=$i?>" id="field<?=$i?>"
type="text" value="">
<?)}
?><input type="submit"
name="submitbutton”" value="calc"
onclick="return docalc (document) ;">
</form></body>
</html>

@ Growing Better Software

16.11 Use DIVs to allow dynamic behaviour

Although DIV tags don't do much by themselves, they are very
useful placeholders to group together page elements. Preparing
your pages with DIV tags is a great way to prepare your pages for
interactive behaviour. Using the getElementById function, it is
then possible to access DIVs by their ID and set their innerHTML
property to a snippet of HTML, after the page has already been
rendered.

Using DIV tags in combination with getElementById allows for
mighty interactivity, and allows us to control elements that are
not controllable in any other way.

Using DIV tags in combination with CSS stylesheets allows
overlapping layers on a page, which is very useful for things
such as pop-up date pickers. Unlike old-fashioned Netscape
layers, DIV tags are cross-browser compatible.

The example on page 331 already showed a hint of how DIV tags
may be used to dynamically alter web pages after they have been
loaded.

The example on the next page just shows the part that
dynamically alters the page after loading.

<html>
<head>
<title>
Change page after rendering
</title>
<script language="javascript"><!--

function calcval (document)

{
result=document .getElementById ("result");
result.innerHTML="Hello world!";
return false;

}

// ——></script>
</head>
<body>
<form name="form" method="post" action="">
<div id="result">Hi there</div>
<input type="submit"
name="submitbutton" value="calc"
onclick="return calcval (document); ">
</form>
</body>
</html>

The innerHTML property is read-write, so it is possible to read
the innerHTML of an element, alter it and write it back.

One should keep in mind that although it is a very powerful
technique, altering the innerHTML of an element is not
necessarily the prettiest way to do things. It has a few
downsides: It alters the in-memory HTML of the page, whereas
“view source” in the average browser only shows the source of
the page as it looked when the page was loaded.

m Growing Better Software

You can overcome this problem by installing a developer toolbar
for your browser. If such a toolbar is not available for your
browser, a workaround is to inspect the contents of the DIV by
adding a line of Javascript to our code, for example:

alert (document.getElementById ("mydivid") .innerHTML) ;

This will access the currently active HTML contents of the DIV
with ID mydivid, instead of the contents as they were when the
page was being loaded.

You can use elements=getElementsByTagName ("div"); to
access all DIVs on your page (or other tags, depending on the
parameter). Loop through the array elements to process them
one at a time.

16.12 Avoid frames

To starting web developers, frames seem like an interesting idea.
They allow you to reload part of a page, while keeping the rest of
the site on screen. However, the drawbacks are considerable:

e Passing data between frames is relatively tricky, making
it likely that using frames also introduces a Javascript
dependency.

e To the wuser, bookmarking pages no longer works
properly.

e Search engines have trouble with them.
e Frames potentially lock you into a static design.

e Frames make your site less accessible to visually
impaired people.

e When one frame is loaded, another may not yet be. As a
result, if you use Javascript, it needs to perform a lot of
extra checks just to check if the frame is already there.

If you are using frames for layout purposes, you really should be
using style sheets instead. These will give you a lot more
flexibility than frames. If you absolutely require an element that
can individually post and reload its own contents, iframe
elements are for you; they can act almost identical to frames,
but you’ll have much more control over their positioning by
using style sheets. The next paragraph deals with the last
reason to use frames.

m Growing Better Software

16.13 Prevent unnecessary reloads

In the past, some people used frames to make web pages more
responsive. A website would be visible in one frame, and
another, hidden frame would act as data transfer area.

Whenever a certain event occurred (such as selecting an item
from a drop-down box), the web page would trigger a server
request to load some data into the hidden frame. After this, the
onLoad event of the hidden frame would update part of the
content of the visible page, which had remained unchanged
while the frame was being loaded.

Imagine a search engine page; The user can enter a query and
click submit. Now we will add some Javascript and a hidden
frame. If Javascript is disabled, we will maintain the existing
behaviour. However, if Javascript is available, we will let each
keystroke perform a submit to the server, loading the very same
search engine page in a hidden frame. After loading the page in
the hidden frame, its onlL.oad event will update the results in the
original page. With a minimum of extra code, we have
accomplished the following:

e If the user does have Javascript, the web page will
suddenly be highly interactive.

e All the code for the page is still centralized within that
one page.

® The page does not require Javascript; it is still fully
functional to users that do not have Javascript or that
have disabled it.

As mentioned, originally this technique was implemented with a
hidden frame; For backwards compatibility with old browsers, it
still could be implemented in this manner.

However, there’s been a new kid in town for a few years. It is the
XMLHt tpRequest which works pretty much in the same manner
as the hidden frame, but a hidden frame is no longer required.

Being acknowledged by the World Wide Web Consortium, using
the XMLHttpRequest object is now the recommended way of
creating highly interactive web applications.

The benefit of using XMLHttpRequest is probably most visible
when only a small snippet of a page needs to be updated. For
instance, when we have a full, one-year calendar on screen and
we click a single day cell, we can avoid the browser to reload and
rendering a rather heavy page. Instead, only the contents of a
single table cell needs to be loaded; this is obviously a much
lighter operation.

Regardless of the availability of Javascript or XMLHttpRequest,
it is still a good idea to prevent round-trips to the server in other
ways. For instance, if a form needs to be filled in, it would be
horrible to receive only one error message at a time if the form
contains ten errors. If we need to fill in a weekly time sheet and
we are forced to submit one day at a time, this will require us to
reload the form several times. Doesn't it make more sense to
submit several days at once?

m Growing Better Software

16.14 Avoid using the userAgent string

Some websites that rely heavily on Javascript, will perform
browser detection by means of the userAgent string and block
any browser that doesn't happen to be the favourite of the
developer. Code that uses the userAgent string typically looks
something like the following:

if (navigator.userAgent.indexOf ('IE') == -1)
{

document .write ("We only support IE");
document .write ("Welcome to our page");

As document .write () works best before the page has finished
loading, a server-side solution would make more sense; but the
server has no business interfering with Javascript.

Apart from the fact that the above example shows that the site
introduces a Javascript dependency to function, it is blocking
browsers that might be perfectly capable of rendering the site.
Also, there is no guarantee that the next version of IE won't be
rebranded, breaking the site.

But most of all, many modern browsers allow their users to set
the userAgent string to whatever they please. This makes using
the userAgent string an unreliable mechanism to detect which
browser is accessing your site.

By wusing the userAgent string, our code has to make
assumptions about whether certain features of Javascript are
available or not by the browser in which the code is running.
Instead of making such assumptions based on an unreliable
mechanism, why not simply figure out if certain features are
supported? In most cases, it is possible to sniff for the existence
of special features, for example:

function getHTML (iframeEdit)
{
/* Copy HTML from an IFRAME to a
hidden html field. */
var explorer=true;
var moz=true;
// Try reading the IE way first
try {
var framedoc=iframeEdit.document;
return framedoc.body.innerHTML;
} catch (e) {
explorer=false;

}

// okay, let's try the Moz way

try {
var framedoc=
iframeEdit.contentWindow.document;
return framedoc.body.innerHTML;

} catch (e) {
moz=false;

}

alert ('Unsupported browser');

m Growing Better Software

Even though this code is still targeted at a few key browsers, it
allows any Javascript-enabled browser to take a shot at
rendering the page, so at least it checks for their capabilities
instead of assuming that things won't work by the userAgent
string. Users will only be faced with an error message if their
browser really doesn't support the given functionality, in which
case they still might be provided a non-Javascript alternative.

347

Chapter 17

The future of
programming tools

Programming tools nowadays are a lot better than they used to
be. We now have shiny Integrated Development Environments in
which we can draw user interfaces by dragging and dropping
buttons and such, as well as better programming languages,
design tools, process control tools, and so on.

But they are still a far cry from what they could become. The
following paragraphs deal with a few realistic steps that could be
taken to improve the way we build information systems.

m Growing Better Software

17.1 Variable code layout

There have been long discussions about where to put brackets-
at the end of the line or on a line of themselves? Using a
separate line for just a bracket is a waste of space; Putting the
bracket at the end of the line makes it less clear which bracket
is the closing bracket. If you are a Python programmer, this is
probably a non-issue to you. But for many other languages, why
not have an IDE that places the brackets where we prefer them,
rather than where the last programmer left them?

Some Integrated Development Environments already have layout
engines for pretty-printing the code. But we can take this a step
further. There are programmers that prefer writing single-exit
code, and programmers that prefer to write early-exit code. As
the structure of code is identical regardless of the actual code
written, it should be possible to let editors display code in either
form.

If some programmers prefer viewing code in early-exit notation,
and other programmers in single-exit notation, so much the
better: viewing code in different ways will reveal different types of
errors.

Of course this is relatively complex to build, as code editors
would need go a few steps further than syntax highlighting. They
would need to analyze the structure of the code.

17.2 Integrated PSD generation

It would be even better to have our editors view Program
Structure Diagrams instead of a pure textual representation of
our code. Although software exists to create or display Program
Structure Diagrams, it involves either a rather elaborate process
to manually draw the diagrams, or creates diagrams statically
based on a source listing. At present, no truly integrated
solution exists.

One obstacle in adapting PSD-editors seems to be the required
screen width. This could be addressed by applying the concept of
folding editors horizontally. I would like to see a type of folding
editor which requires little or no change from our usual way of
writing code, but which draws up code as a Program Structure
Diagram, as the code is being written.

With such an editor, branches of an IF statement would be next
to each other rather than one following the other. This would
help us give strong visual clues about the structure of our code.

As such, PSD-viewing editors would help programmers write
beautifully structured code, rather than distracting them with
the single-exit vs. multiple-exits flame war.

m Growing Better Software

17.3 Design Warnings

Our current programming systems allow us to create the most
disgusting systems without ever receiving a warning that the
design of our system isn’t solid. More often than not this results
in an unmaintainable mess.

A good start would be to have programming tools that warn us
when we present them with potentially flawed code such as the
following:

int a(object objectl)

{
int x=objectl.getobject2.getvalue();
return x;

The above lacks checks for null values. There is no reason why
this should compile without warnings. Likewise, it would be
great if our compilers would warn us of badly structured code,
overly long functions, functions with side effects, hard-coded
values, and so on. If we write such code and we know it is
correct, we could tell the compiler so by including meta-
information in comments. This idea is not new; SPARK-ADA
does just this. Clearly, some progress seems to be on its way in
this area, but there is still a long way to go.

In the design of data(base) structures, too, there is a lot left to be
desired; it is too easy to create data structures that aren't
normalized, requiring a lot more code to deal with them.
Unfortunately, data structures usually deal with the semantics
rather than syntax, which makes it much harder to warn their
designers about bad form.

17.4 Automatically rewriting code

There are quite a few techniques mentioned in this book that
show how to improve written code. Based on these techniques,
we can manually refactor code, and soon will find that it is a
rather repetitive, mechanical job- possibly something that a
computer could help us with.

Some automatic refactoring capabilities have made their way
into mainstream software: tools already exist to extract code into
functions, or to help us rename variables by following the
semantics of a program, rather than by doing a crude search
and replace. However, more extreme refactoring of the actual
structure of the code should be possible as well.

It is easy to envision a code editor with a menu option
‘Restructure current function’ that would reduce extent, prevent
overriding return values, put code in the most efficient order,
and generally simplify the code.

Extent analysis combined with syntax-highlighting could
indicate if variables are either read or written anywhere else in
the remainder of the function, or if variables are being used
without being verified first. This would make certain classes of
bugs much more obvious.

ﬂ Growing Better Software

17.5 Tools that help us design for change

Despite all wizards that may exist to help us creating the
framework of our first program, when it comes to changing our
code, we are mostly on our own. What’s worse, our programming
environments never warn us when we were writing code that will
be hard to maintain.

In designing databases and data structures we're also pretty
much on our own, even more so when we need to alter their
structure: Until now, we're stuck manually writing our own data
migration modules.

It is possible to think of a better data definition language that
has a stronger basis in information analysis than our current
SQL Data Definition Language. By providing a bit more semantic
information, it should be possible to create databases that not
only perform better (because no unnecessary normalization is
going on), but that will also be easier to maintain and upgrade.

The following is an incomplete example of what a data structure
definition in such a language could look like. For those who have
read the first chapters of this text, it should look familiar. It is a
case of object-oriented programming meets SQL meets
information-analysis.

database invoice

#include client

each shortstring is "varchar (255)"
each date is "date"

each percentage is "integer"

each number is "number"

/* only the text between quotes above is DBMS-
dependent. */

each currency_code is shortstring
each conversion_rate is number
each entity_being_paid is commonobject

each currency 1is commonobject /* inheritance,
polymorphism */

has 1..1 currency_code /* properties */

has 1..1 conversion_rate

each currency_code has 1..1 currency

each conversion_rate has 0..many currency

each client has 0..many invoice

each invoice has 1..1 client

The above snippet already deals with primary keys, foreign keys,
required fields and unique constraints. It is possible to translate
the above into SQL DDL without much trouble; we could write a
script to automate this.

In addition, information about the data structure of the database
could be stored in the database itself, for the purpose of
generating migration scripts.

Consider the last two statements of the above example:

each client has 0..many invoice
each invoice has 1..1 client

m Growing Better Software

If a client can have several invoices, but an invoice has only 1
client, it makes sense for a database to have one table of
invoices containing a field with the foreign key for a client,
whereas client data (being a complex data structure) would be
contained by another table.

If in a traditional system we would want to assign multiple
clients to a single invoice, this would require restructuring the
database. A single foreign key field in the invoice table wouldn’t
be enough anymore. Instead, we’d have to create a new table
specifically aimed at relating clients to invoices, and then
manually create a data migration script.

However, in our imaginary language, all we have to do is to
change the last line to

each invoice has 1..many client

and we're done. As the database contains all meta-data needed
to describe its own structure, the database migration script that
migrates the existing data from a 1-to-1 relation to a 1-to-many
relation can be completely generated. The same also applies, for
example, to altering the data type of percentages from integer to
floating-point. We could limit ourselves to specifying this once,
in the beginning of the file, and the system would be able to take
care of migrating data and the rest.

Of course, in an environment like this, it would no longer be
possible to access data by directly performing SQL on the
database, because it would not be known which tables or fields
would exist in it at any given moment.

Instead, an interface would be generated that would allow us to
access, for instance, all clients belonging to an invoice. Beneath
the surface of the system, tables and columns would still exist,
but in a manner that is as sparingly normalized as possible,
allowing for maximum performance.

The above example unfortunately only deals with the
information analysis of a system, not with the code that
interacts with it. Perhaps at some point in the future, both
database structure and the code that accesses it can be
automatically upgraded to reflect design changes. Until then, we
should keep ourselves trained to think of systems in such a way
that they support many-to-many relationships, to keep our
databases easily upgradeable.

m Growing Better Software

17.6 Parallel programming

Multi-core processors are now a reality. It can be expected that
this will bring some great performance benefits. From a software
perspective, however, it also means added complexity. One of the
reasons parallel programming is so hard, is that it greatly
increases the number of states that our program can have at
any given moment. For this reason, for the stability of your
software, it would be recommendable to keep the number of
concurrent processes in your program to a minimum, when
possible.

Where single-thread debugging tools allow you to single-step
your code and get to the root cause of the problem, this
approach does not work for parallel code. For this reason too,
avoiding concurrency is best.

But the current state of hardware dictates otherwise. If we are to
use our new hardware to its fullest potential, we have to learn
how to use it.

Our current programming languages allow creating threads,
processes and semaphores in one way or another. But there is
little support to ensure bug-free concurrent operation, and
unless we explicitly write parallel code, our programs won't run
any faster on multi-core processors than they do on single-core.

Hopes are that compiler designers will come up with a way to
perform automatic parallelization (especially of loops), so that we
can keep writing code as before. It is a good idea to prevent loop
iterations to depend on the previous iteration, as this makes it
more likely for new compilers to be able to automatically
parallelize our loops. Until compiler designers figure out how to
do this, extending languages with a map statement such as
exists in Perl may provide a realistic alternative.

357

Chapter 18

General
considerations

We are approaching the end of this book, so I'm left with a few
general, but important considerations to give you.

Growing Better Software

18.1 Be aware of existing standards

Rather than reinventing the wheel for frequently occurring
problems, it pays off to be familiar with extending standards.
This will increase the chances that your software will be able to
interoperate with other software. To name a few:

Standard code Description
ISO 3166 Country codes
ISO 639 Language codes (obsolete)
ISO 8601 Date/time standard (includes week numbering)
I1SO 4127 Currency codes
ISO/IEC 11578:1996 | Universally Unique Identifiers

Protocols will often be identified with an RFC number:

Standard code Description
RFC 821/2821 Simple Mail Transfer Protocol
RFC 3501 Internet Message Access Protocol
RFC 959 File Transfer Protocol
RFC 2616 HyperText Transfer Protocol

Finally, there are standards telling us how to do our jobs:

Standard code Description
ISO 9000 Quality management standard
ISO/IEC 27001 Security standard

18.2 Know the basic stuff

By getting familiar with common data structures and algorithms,
we will be able to make better choices about how to solve
problems.

You should be intimately familiar with data structures such as
linked lists, stacks, circular lists, binary trees, ternary trees and
hash tables. You should be familiar with recursion, as it can
greatly increase the simplicity and maintainability of your code.

You should be intimately familiar with bubble sort (even if for no
other reason than to avoid it) and quick sort, and be aware that
other sorting methods exist that may be more suitable in specific
circumstances. You should be able to work in binary and
hexadecimal numeral systems.

It pays off to read the occasional paper and technical
specification documents on specific subjects, as it will help you
solve problems that you would otherwise not have a solution for.

18.3 Know your environment

By having intimate knowledge of the environment that you're
programming in, it is possible to come up with better solutions.
Usually, this means having some knowledge on a deeper level
than the level that we're working on: If we are programming in
Java, it helps to know a few things about the virtual machine
that is running our code; if we are programming in C, it helps to
know a thing or two about compiler construction and assembly
language; if we are programming in assembly, it helps to know a
few things about the hardware that we are working on.

m Growing Better Software

18.4 Learn how to build it yourself

One of the best ways to learn about the environment that you
are working in, is to roll your own.

For instance, by creating your own programming language, you
will end up with a truckload of knowledge about how
programming languages work in general. This understanding
will make you a better programmer.

Of course, although it is a useful exercise to build things
yourself, it does not mean that you always have to build your
own solution to problems that have been solved long ago.

18.5 First make it work, then make it great

One way to solve problems is to start by building something that
works, then improving on it until it is great. When a program
adds value, it is worth money; by keeping things simple at first,
it will be possible to deliver a program very soon. This program
may not be ideal and it may not be pretty, but it will solve a
problem. From that point on, the program will be able to pay for
itself.

Before you start, however, try to have a vision of what the
'finished' version of the program should be like. This will help
you to keep the program flexible enough to reach that vision,
while it is being developed.

To the client, a benefit of this approach is that the program will
not be overpaid; it will only be developed for as long as it adds
value.

18.6 No assumptions

Do not make assumptions, but make sure; making assumptions
is the same as guessing.

We do not want to guess if our client wants a feature, we want to
make sure; otherwise we end up spending time on building
features that the client didn't ask for.

We do not want to make assumptions about the validity of the
input of our users and cause a huge security leak.

We do not want to make assumptions about the operating
system used by our clients, or the amount of free memory they
have, or the amount of disk space. If instead of assuming, we
make sure, this will allow us to grow better software.

18.7 Remember to have a good time

Last but not least, remember to have a good time. Only when
you are feeling at your best, you will be working at your best. So
take care of yourself, eat well, take your time to relax, and have
some fun once in a while!

Good luck!

Growing Better Software

Alphabetical Index

0

0 errors, 0 warnings.... ...265
0, I and many.......ccccoeeverienieneeeniierenns 55
A

ADbbreviations..........cceceeveereeernieeeennnen. 180
Active waiting, preventing............ 214,215
ADA programming language............... 278
Added value...........ccooeviniiiniiiee 19
AGENL..euiiiiiiiiiieiiieieee e 214
Algorithm..... .61, 359
Algorithm, auto-complete..................... 171
Algorithm, bubble SOIt.........ccccevueeuennnes 202
Algorithm, caching..........ccccceveeveeennnnee. 210
Algorithm, encryption................ ..202
Algorithm, factorial.................... ..203
Algorithm, hash............. ...201
Algorithm, quick SOTt......c.cccevereenneennee. 359
Algorithm, scalable.............ccoecuveeennnen. 202
Algorithm, soundeX.......c...cecevvuveeennnen. 163
Algorithms, efficiency of...........c......... 201
Analysis paralysis.......ccocceeeveeeniieeniieeenn. 74
Anti-pattern.........ceeeeveervennenne 74,192, 277
Architecture..........coceeeiiiieieieicieeeene 43
Art of Computer Programming............. 163
Artificial Intelligence..........c.cccoeeverennene 52
ASCIL....ccoooviiiinnne 325, 326
ASSETHIONS. ... 82
Assumptions....... 35, 54, 60, 113, 199, 315,
345, 361

Atomic statements............cccceeveeenennen.

Auto-incrementing numbers
Auto-save............eee....
Automated check lists

Automatic Quality Control...................
Availability........cooeeviiiniiiiiiie
BASIC...oooiiiiiiiiieeeeecee 12,102

Best practices.......cooeevueecieeennieeeinieeennans 20
Big Endian.........ccooceevviiniiiniiiiiceenn. 10
Big O notation....201
Binary files......c.ccoeveeveeninnenniniiieens 283
Binary overflow..........ccoceeveenenncnnennne. 269
Binary search.........ccccoceeviiiiiiniiinninnnd 206
Binary tree......cccceeevviinnneen. 202, 208, 359
Black box system........ccoceeeveneeneennennne. 253
Black-boX test.....cccueevuervveriinieriiniennes 269
BOnsai tree.......cceeeeeienienienienieeeeene 16
Bottlenecks, optimizing..............ccc....... 210
Bottlenecks, preventing..............ccc....... 211
Boundary checks .

Brackets, positioning............cccceeeennee. 186
Browser......... 152, 316, 319, 335, 339, 343
Browser detection..........cccceeveeeueenennnnne. 344
Browsers, blocking............ccecveevinnneeee. 344
Brute force attack.......ccccceeveeernieeennnee. 310
Bubble Sort......cvvvveiiiiieeeeeeiiien. 202, 359
Buffer overflows.........ccocceeveerieniennennns 313

Building blocks, using existing............. 240
Builds, nightly......cccccooveeninnenniinniieenns 22
Bureaucracy.......cceceeeveeinieeniieeniieee

Business automation..
Business logic
Buttons with alternating labels............. 179
Byte ordering.........cocceeevereenieneenennieennns 10

C

CAtanenieeeeeeeecee e,

Caching........

Call stack

Cartesian product........c..cceceeeueennnnee. 73, 290
Case statement inside a loop......... 104, 236

Cats, herding.........coccovevcveeriuiencienncennns 251

Centralized system......................

Chaos, as a cause of complexity .
Chaos, preventing.......c...ceeeeevereeneennnee.
Chaos, using for security..........cc..........
CheckSUm......coovviiinieinieeniieeiceeeeee,
Class. .46, 76, 182, 204, 237, 240, 245, 295
Class ID....cooveeiirieniinecieccecceeee 63
Clear-text passwords.........cccocveeernnneeen. 307
CLI (Command Line Interface)............ 156
CMM (Capability Maturity Model)......278
Code cleaning.........cccceeeeeveecveenuencneennne 21
Code completion..........ccceeeenneee. ..180
Code coverage.......ccoeevueevueenuennnns 271
Code generators.... ...151
Code 1ayout......ccocueerrieernieeeeiiiiiiieeeeen, 186
Code reading.........coeevveeeeeerrnnnineennn. 21,22
COde TEVIEWS...c..eeveeieeieeieeieeienieee e 42
Code smell......c.ccoceeveencrieniinicnienen. 236
Code, optimizing...........cecceveeeuveenurennnne. 195
Code, reordering..........ccocceeeeeeenennnee. 140
Coding practices, describing................... 23
Command line..............cceeeeeeeennnnn. 187, 305
COommMmENtS........ccccuveeeeecrrieeeeinrnennnn. 189, 190
Common functionality, implementing. .239
CommuniCation........ccceevveerueecrernveeennne. 27
Communication, Written..........c...cce.u.... 30
Compile time................ 260, 262, 265, 278
Complexity, minimizing.........c..cceeevueee.
Concurrent programming...
Consistency........ccoervenuene

Constants.......

CONSLIUCTOT. ..c..eeeverieeneeieeiee e
Copy/paste programming.............. 234, 241
Copy/paste programming, detecting.....236
Correctness, verifying.........cccoceeevereenne. 82
Crash....76, 77,78, 79, 80, 81, 82, 85, 112,
113, 123, 269, 313

Crash dump........coceveeniiniiiiniiinnnen. 161
Cross-platform software................oceeee 25
CSS (Cascading Style Sheets).....265, 322,
327

CSUMIL..eoeveieeiienieeeeeie et 272
CVS (Concurrent Versions System).....225

D

Data structures..20, 45, 46, 47, 67, 68, 207,

350, 352

Data-driven applications............cc......... 241
Database. 31, 34, 45, 48, 55, 56, 58, 62, 63,
64, 65, 69, 73, 93, 99, 150, 163, 165, 167,
168, 185, 241, 243, 246, 273, 279, 283,
284, 285, 286, 288, 289, 292, 293, 295,
296, 297, 302, 307, 308, 319, 325, 328,
334, 352, 354, 355

DBMS. .57, 62, 63, 73, 239, 285, 288, 290,
291, 353

DDL (Data Definition Language)......... 285
Deadline.........ccocoevviiiiiiiiiiiiniiinnns
Debugging.....

Declarations
Defectrate.......cccoovviiiiiiiiiiiiiiiiiins
Defensive programming 257
Dependencies.........coceveereeennieeeennnneenne 87
Deployment of distributed applications. .38
Design By Contract..........cccceeevueeeueennne 278
Design Warningsccccceeeeveeeneennne 350
Destructor.....c..cevveeveeeeenueeeennns 76, 148, 149
Development cycle.......c..ccocereenieeennnnee. 21
Development environment, setting up. .229
Development process..........ccceecverveeunene 21
Development process, fixing.................. 21
Different perspectives.........ccceeveeerueeenne. 20
Discipling........cccceevvveerniveeennneeen. 194, 251
Distributed System..........ccoceeveereecueeennnne 60
Documentation.............. 21,32,40,42, 174
Documentation, as communication tool..32
Documentation, functional................... 226
Documentation, generating................... 190
Documentation, in-lin€......................... 183
Documentation, writing.................. 21, 174
DOM (Document Object Model)..322, 335
DOXYZEN....eoriiiiiiiieiiiiieiciicreceee 190
Dumb quOtes........ccecuerieriiiieniieenee. 325
Duplicate data entry........cccccecueevueeuennne 164

Duplicate efforts...11, 65, 66, 67, 189, 233,

329

Duplicate efforts, preventing.................. 68
Duplicate efforts, reducing................... 241
Duplication in IF statements......... 119, 120
Duplication of code...... 127, 128, 132, 136,
137, 139, 217, 230, 234, 334

Duplication of functionality.................... 99

Duplication of information
Duplication, minimizing.............cccceeenee

Growing Better Software

Durable skills........cocevienieeeniiieeniieenne
Dynamic behaviour using DIV... .
Dynamic programming.........................
Dynamic web applications....................
Dynamically generated pages...............

E

Early exit....... 135, 136, 137, 139, 142, 348
Editor....covoviririiieiciccicccee 132,303
Editor, character encoding.................... 326
Editor, folding........ccocevveenieiinniceennnne.
Editor, PSD.....coooviiiiiiiiieee e,
Editor, refactoring.........cccceeeevuveeennnen.
Edsger Dijkstra...........

Efficiency of code... .
ERD (Entity Relationship Diagrams).....44
Error dialog.........coceeienieniiieiniiceee 184
Error hiding.........ccooveeiviiinieeiinnniines 192
Error messages, informational.............. 162
Error messages, making more specific. 113
Error messages, parameterizing............ 184
Error messages, preventing...156, 159, 160
Error trapping.........cccceeeeevveecueennne 137,192
Error, caused by typos.....c..ccecveeernneeenn. 181
Errors.......ccoooviiiiiiiiiiii 159, 160
Errors, blocking

Errors, logging........ccccocevininieienenennn. 193
Errors, preventing..........ccecceeeeeeennn.

Errors, recovering from

Errors, runtime..........cc.eevvvvveeeeeeeevnnnnnn.
Estimating time...

eval/if ($@).........

Event-driven code...

Evolving syStems........ccceevververeeneeneene 17
Exception handling in BASIC................ 13
Exceptions, recursive..........c.cceeeeeueenee. 193
EXCUSE....uvviiiiiiieeeieeeeeccceee e, 197, 249
Excuse, syntax as ~ for bad structure...103,
104

Existing building blocks, using............. 239
Expectations, managing............c..cceceeeuee 32
EXtent......ccccoviiiiiiiiiiiiiiiii i 94
F
FCO-IM.....ooiiiiiiiinenieccececeee 44

Feedback, from clients.............cccceeeeenn..
Feedback, from unit tests

Fictional programming language............ 13
File format dependency................cce..... 39
Fixed-length fields...........

Fixed-space fonts...

Flash.....cccccceeunenne.

Formal education............c..ccccoeeiiinnins
Formal procedures..........cccccoveeveecueeennnne
Formal theory.........ccccecevviiniiniiiniiiiinns
Functional design document................... 32
Functional redundance

Functional separation...........c.ccceeeueeee.
Functional specification............ 22,37, 155
Future requirements of a system............. 17
G

Garbage collection..........c.ccccueeueenennne. 273
General truths............

Glass-box test.........

Global variables

Global variables, avoiding.............c........ 89
GNU Project.....c..ccevemenerereeceecieenneenne 26
GOTO statement..........cccceeveevveeeuernuennne 101
graceful degradation.....320, 322, 325, 328,
330

Graphical representation of program flow
.. 106
GUI (Graphical User Interface)....156, 165
Gulliver’s Travels........c.ccoceeoevencicnnene 10
H

Hall of fame and shame....................... 172
Hard-coding

Hash table..................

Hash, performance..........cccceeuevvennennee. 201
Hash, secure..........cccccoeeneeee. 309, 310, 311
Header comments............ccccceeeennnnnnn 153
Header files.........cccooeeveiinciiiiiiciene 90
Hexadecimal..........cccccoeeeiiiniiiniinninnnnns 359
Hidden errors.........ccceeeveevverviencieniennnns 192
HTML........... 320, 321, 322, 323, 324, 325
HTML header..........cccccoeeeiinininiennns 326
HTTP...ooiiiiieeeiceeee 212,320
HTTP header............ccceueee. 326, 332, 333

I

I/O operations.........ccccevevenenencrneennne. 210
IDE (Integrated Development
Environment)...........cccoeeveeeeeinieeeeennens 187
IF expressions, splitting up................... 112
IF statements, reducing duplication...... 119
Imperative programming language......... 13
Imperative tone.........ccccceceervveneeneeneennne.
Implicit information.... .
INCONSIStENCY...couvevueeeieriiiieneeeeieeee
Increasing awareness.............ccccoeeueennee.
Indenting.........cccooveervvennnns
Indeterministic functions........................ 96

Information analysis.28, 43, 44, 49, 50, 51,
53, 55,57, 58, 59, 74, 98, 167, 201, 352,
355

Informationless keys........c.ccceeveevennennee. 297
Initialization.........ccccceverveeneeeniiecennnneen.
Injection attack .
Integrated PSD generation.................... 349
Integrating partial documentation........... 22
Interface........cccooovviiiiiiiiiii, 295
ISO standards..........cccccooviviiiiiiinnnnn. 358
ISO-8859 character encoding

Iterations, memory effect in.........

J

Jargoncovieiiiiiiii e 172
JavaDoc.....ccooviiiiiiiiiecee 190
JavasCript.....oceeeeeviernicniieniinieneceee 322
Javascript availability........c..ccocceeeenne. 323
Javascript validation..................... 303, 334
Javascript, bypassing.........cccccevveeeennee. 334
Javascript, degradable..............ccoceeenns 330
JavaScript, enabling strict mode........... 265
Jonathan Swift..............ccooo 10
Jjump Statements........cceevveerverrereennnneen. 101
JUNIL. et 272
K

Key sKills....cocceeiereeniineiiieienieee.

Knowledge base
Knowledge, sharing

Knuth, Donald............c.cccoocoiinn 26, 163
Law of Demeter.........c.cccccevevereneenennne 179
Lazy evaluation........c..ceccceeeeeeriueeennnnee. 113
Length of functions..........cccceevvuveeennnne 178
Limitations, determining........................ 33

Lines of code

Linked Lists..c..cooeeveenienienieniieiieeenee 359
Linux kernel.........ccccooeeieninieiinnnenns 26
Little Endian.........coccoeveevieneeniinicnneennns 10
Log files...ccueeiieiiiiiieniieeeeeeiee 193
Logical limitations..

Login procedure......

Lookup tables..........
Loops, reWriting.........cceeeereveeeenveeennnnns
LUHN-10..ccviiiiiineiieieniceeceeeeee
M

Magic Cauldron........c.cccoceeveeneenceniennns 18
Magic number........c..cccceeveiiieniiieennne. 175
Magic push button... ...258
Maintenance.coeeveereenreeneeeernueeennns 18
Maintenance COStS........ceevvveeerruveeennnnen. 226
Maintenance-free systems.................... 241
Makefile.......cooevvuerveniiniiniieceiecee 274
MDS5 hash, generating.............cccceeueee. 309
Memoization.............. .93, 203
Memory leaks.......ccceeveereeneeneenieennnee. 273
Minix operating System...........c..c.ceeeueuee. 26
MISRA (Motor Industry Software
Reliability Association).........c....ceeuuee..
Mission critical code......
Model-View-Controller.
Modular code........cccoveevuieniieniieniinnninns
Multi-threaded application.................... 215
N

N instead of many......cccceeveeeverveneeneenne. 46
Naming convention...........eeevevveeennnnen. 180

Growing Better Software

OaK tree......coovviiiiiiiiiiiicicccec
Object-orientation..........ceevveerreeeerveennnee
Object-oriented........ccccerveeeereeneenuennnnee.
Object-Oriented Programming....
Off-site data entry......
ON ERROR...................
One-way encryption.......c..cceeeeveeeenunneen.
Operator precedence..........cceeevveeennee.
Opposing perspectives.........oceevveevernnnee.
Optimization, trivial..........ccocceeernne.n.
Optimizing by memoization.......
Optimizing interpreted code.......
ORM (Object-Role modelling)...
Orthogonality of functions......................
Overhead...........ccoooviiiiiniii,

P

Parallel programming..............ccceeeennee
Parameterized queries....
Password encoder.......... .
Password encryption...........cccceeeueeuennee
Peak load, spreading............ccocceveeennnes
Peer reviews.........cccooiiiiiiiiii
Perl programming language....................
Phased software development
PHProjekt.......ooovevieniiniiieneeiiceee,
Planning emergencies..........cc.ccceeueennee 256
Platform-specific skills.........cccccocueernene 25
Pointers........ccccovviiiiiiiiiiiicce 278
polymorphism..
Portable code..........
Porting software......
Post-build event........c.ccceceeevneeennne 274,276
Precondition checks........c..ccceevereinnns
Preconditions, guaranteeing
Preconditions, invalidated..........
Preconditions, verifying.............

Principle of Least Knowledge.............. 244
Productivity of programmers.................. 18
Productivity, measurements.................. 236
Program Structure Diagrams................ 106
Programmer...........ccccccoeviiiiniiniinniins 18

Programmer-friendly systems
Proportionally spaced fonts........

Prototyping, on paper...........cccceeueeunenne.
Pull vs. push methodology..........c.coene

Q

Quality....10, 15, 20, 32, 75, 216, 229, 230,
249, 250
Quality, sacrificing for better performance

... 216
R

Re-inventing the wheel......................... 239
Recursion........ccooeevvvvveeevvnnnnn. 206, 278, 359
Referentially transparent functions....... 203
Regression tests.......ooveevveeeneeenieeeeeennnn. 22
Responsibility

Responsibility of preconditions.............. 80
Return value...........cocoooeiiiiiniinncn, 190
ROTI3 e 309
RUNIME....cvviiiiiiiieieeeceieeeeeee 151
S

Safety-critical systems........ccc.cceueeuneeene 240
St 310
Save time by allocating enough time ...255
Scalability of code........ccceevuerveeeennneen. 202
SCOPL...eeeiieiiiiiiiiciicie e 94
Security hole.......ccccecvevievienencnincnennee. 310
Security through obscurity...... ...301

Security, bypassing.................
Self-test.....evuereieierieieeieeeiieeeeen 279, 280
Separation of functional vs technical
CONCRITIS. c.vnvviieneerinieneereeeresreeneennesneens
Side effects of functions
Simian........ccoceeeeneee
Similarity analyzer....

Sinclair ZX81.....cccoovvvviiviiiniiniiieinnen
Single exit............. 133, 138, 139, 145, 348
Single-threaded application.................. 215
SKill S€t.....ooiiiiiiiiiiiciceceeee
Smart quotes
Sniffing (NEtWOrk).......covveerveeiiveeenineeen. 312

Sniffing, object ~ in Javascript....
Software Architecture.................. .
Software CrisiS.......ccceoveveervereneeeneeenenens
Software Quality........cccceeeervveeennueeenne
Software, packaging....
Soundex algorithm...
spaghetti code..........
Spark ADA......coiiiieeeeee
Specifications.........coceeveerieneesieeennneeenn
splash SCreen.........ceveeveeeviernieesienieneene

Static vs. Dynamic programming......... 151

String stack.......c.cceeeenenne.
Switch/case inside a loop...
System 10g.......cocuiriiviiniiniiiiie, 281

T

Termination clause..........coceeeeveueeeennnne 108
Test-driven development...................... 275
Test-first development..........c..coeeen.eee.
Testable code, writing.... .
TESHNZ..cevevereeeieeiieieiereeeere e
The Art of Programming..........c...ccoec.... 26
TODO LiStuc.eeieeeeiieieieieiesesceceee e

Trees, binary
Trees, bonsai

Trees, 0ak......c.coeeeeviiieeiiiieeeeiieeeeeeeees
try/CatCh..c..eeeieiiiiicce
TRY/END TRY....ccvveeiviieeeeeeeeeeeens 192
Typos, reducing........coocveevveerneeennnnnees 163
U

ULdeSign....c.eeveveneninieeeeieieeeeeeeae 167
Undocumented behaviour 253

unexpected behaviour....
Unit test.......ceovevreennnne.

Unit test framework...........c..c.ccoceeeis
Unit testS...c.eeeeieiereeeeeceenene
Unpredictable behaviour................. 82,192
Usability tests........cccceceeeennnee 172
User friendly systems.............. ...155
User input, guided.........coceeevvveeennneeen. 163
User input, limiting.........cccccecevvuennennee. 156
User input, preventing duplicates.........

Variable code layout
Variables, case sensitivity
Variables, naming.................

Variables, 1e-Using..........cceceereereereennne
Vendor-specific technologies................. 25
Version Control.........cccceevveeennnnnee. 11, 224
Virtual Servers.........ocoeeveveeeeneeeneeenne 227
Visual Basic v
Visual Clues.......oocvevvereerieniesiiee e, 157
Visual Studio........ccoevveeeeeeeeenn... 187,274

W

Warning................
What vs. HOW...cocooiiiiiiniiiiniiiiinccs
White space.........
World Wide Web

	Front matter
	0.1 Acknowledgements
	0.2 Preface
	0.3 About the author
	0.4 About the examples in this text
	0.5 Using this text

	The roots of software
	1.1 The bonsai tree and the mighty oak
	1.2 What makes a good programmer?
	1.3 Say goodbye to absolute truths
	1.4 Fix your development process
	1.5 Stay up to date, strategically
	1.6 Learn from the masters

	Communication
	2.1 Split technical from functional issues
	2.2 Prefer written communication
	2.3 Determine limitations
	2.4 Give the client some responsibility
	2.5 Work from complete specifications
	2.6 Help your client choose what's best
	2.7 Prototype on paper
	2.8 Share your knowledge

	Software Architecture
	3.1 What is information analysis?
	3.2 Beware of N instead of many
	3.3 A rudimentary information analysis
	3.4 A recipe for disaster
	3.5 Preventing chaos
	3.6 Use UUIDs where appropriate
	3.7 Don't cut corners as systems evolve
	3.8 Keep data structures normalized
	3.9 Beware of over-analyzing

	Guarantee preconditions
	4.1 Perform initialization
	4.2 Verify preconditions
	4.3 Decide on precondition responsibility
	4.4 Be aware of invalidated preconditions

	Mimimize complexity
	5.1 Write less code
	5.2 Avoid global variables
	5.3 Keep minimal scope and extent
	5.4 Prevent side effects by functions
	5.5 Pull vs. push methodology
	5.6 Small projects instead of big ones
	5.7 Avoid GOTO

	Improve your code
	6.1 Program Structure Diagrams
	6.2 Keep logically related code together
	6.3 Split up compound IF expressions
	6.4 Reduce duplication in IF statements
	6.5 Use atomic statements
	6.6 Guarantee operator precedence
	6.7 Keep loops in the correct order
	6.8 Prevent wasting processing power
	6.9 Put code in the most efficient order
	6.10 Start and finish in the same scope
	6.11 Static vs. Dynamic programming

	Make your work user friendly
	7.1 Limit user input
	7.2 Provide visual clues
	7.3 Prevent raising errors unnecessarily
	7.4 Use blocking errors sparingly
	7.5 Value the efforts of your users
	7.6 Let error messages help the user
	7.7 Guide the user in providing input
	7.8 Prevent duplicate data entry
	7.9 Make your program look familiar
	7.10 Use information analysis in UI design
	7.11 Don't irritate the user
	7.12 Don't confuse end users with jargon
	7.13 Visit the hall of fame and shame
	7.14 Perform usability tests

	Make your work 'programmer friendly'
	8.1 No hard-coded, undocumented values
	8.2 Name boolean functions by behaviour
	8.3 Limit length and width of functions
	8.4 Write modular code
	8.5 Use a clear naming convention
	8.6 Avoid multiple declarations per line
	8.7 Parameterize all your error messages
	8.8 Keep your code neatly layout
	8.9 Name for maximum readability
	8.10 Add useful comments to your code
	8.11 Avoid hidden errors
	8.12 Be consistent

	Optimizing your code
	9.1 If possible, do not optimize
	9.2 Perform trivial optimization
	9.3 Be aware of the Big O
	9.4 Optimizing by memoization
	9.5 Prevent iterations and recursion
	9.6 Optimize only if there is a bottleneck
	9.7 Prepare data to prevent bottlenecks
	9.8 Spread out peak load
	9.9 Prevent active waiting
	9.10 Allow a bit of quality loss
	9.11 Rewrite loops
	9.12 Optimizing interpreted code

	Tools
	10.1 Select the right tool for the job
	10.2 Use the Internet
	10.3 Use Version Control
	10.4 Bug tracking/workflow
	10.5 Create a build server
	10.6 Create a knowledge base
	10.7 Set up your development environment
	10.8 Use code analysis tools
	10.9 Create a toolbox

	Prevent duplicate efforts
	11.1 Avoid copy/paste programming
	11.2 Standardize validations based on type
	11.3 Save time with existing building blocks
	11.4 Make it data driven
	11.5 Write knowledge-free functions

	Software Quality
	12.1 Do not count on discipline
	12.2 Don't rely on undocumented behaviour
	12.3 Fix problems at the source
	12.4 Save time by allocating enough time
	12.5 Plan emergencies properly
	12.6 Defensive programming
	12.7 Write testable code

	Automatic Quality Control
	13.1 Catch errors in compile time
	13.2 Compile with 0 errors, 0 warnings
	13.3 Write unit tests
	13.4 Use automated check lists
	13.5 Write tests first
	13.6 Run tests as part of the compile cycle
	13.7 Find anti-patterns during compilation
	13.8 Equip your system with a self-test
	13.9 Let the system keep a log

	Working with databases
	14.1 Choose (non-)standard SQL
	14.2 Keep database tables narrow
	14.3 Use parameterized queries
	14.4 Keep the Cartesian Product small
	14.5 Keep data values out of program code
	14.6 Explicitly name your columns
	14.7 Access data via an interface
	14.8 Use informationless keys

	Security considerations
	15.1 Avoid security through obscurity
	15.2 Be aware of ways to bypass security
	15.3 Never trust user input
	15.4 Avoid clear-text passwords
	15.5 Use one-way password encryption
	15.6 Be aware of sniffing
	15.7 Avoid buffer overflows
	15.8 Add a bit of chaos
	15.9 Treat sensitive information carefully
	15.10 Don't rely on software alone

	Programming for the web
	16.1 First of all, get the basics right
	16.2 Keep core dependencies to a minimum
	16.3 Decide on a character encoding
	16.4 Use style sheets to control layout
	16.5 Skip the HTML/Flash/HTML cycle
	16.6 Use gracefully degradable Javascript
	16.7 Let web pages post to themselves
	16.8 Validate and compute on the server
	16.9 Use one form called form
	16.10 Name and ID HTML fields equally
	16.11 Use DIVs to allow dynamic behaviour
	16.12 Avoid frames
	16.13 Prevent unnecessary reloads
	16.14 Avoid using the userAgent string

	The future of programming tools
	17.1 Variable code layout
	17.2 Integrated PSD generation
	17.3 Design Warnings
	17.4 Automatically rewriting code
	17.5 Tools that help us design for change
	17.6 Parallel programming

	General considerations
	18.1 Be aware of existing standards
	18.2 Know the basic stuff
	18.3 Know your environment
	18.4 Learn how to build it yourself
	18.5 First make it work, then make it great
	18.6 No assumptions
	18.7 Remember to have a good time

