
Descot: Distributed Code Repository Framework

Aaron W. Hsu
Indiana University

awhsu@indiana.edu

Abstract
Programming language communities often have repositories
of code to which the community submits libraries and from
which libraries are downloaded and installed. In commu-
nities where many implementations of the language exist,
or where the community uses a number of language vari-
eties, many such repositories can exist, each with their own
toolset to access them. These diverse communities often have
trouble collaborating accross implementation boundaries,
because existing tools have not addressed inter-repository
communication. Descot enables this collaboration, making
it possible to collaborate without forcing large social change
within the community. Descot is a metalanguage for de-
scribing libraries and a set of protocols for repositories to
communicate and share information. This paper discusses
the benefits of a public interface for library repositories
and details the library metalanguage, the server protocol,
and a server API for convenient implementation of Descot-
compatible servers.

1. Introduction
All programming language communities must share code to
be effective. Issues of portability and ease of distribution
arise often within most language communities. In order to
share code effectively, programmers must be able to run code
portably over different implementations of a language, and
they must have some means of distributing their code to
users who need an easy way to install and manage their col-
lection of libraries. In communities with a single dominant
implementation, the first requirement is usually moot, and
a central repository of portable libraries usually satisfies the
second requirement (e.g. — CPAN [15]). However, in diverse
communities, where many language standards and imple-
mentations may actively coexist in close proximity to one
another, portability and easy distribution and installation
can elude the community as a whole.

For example, the Scheme community actively uses at least
four standards [19, 8, 21, 29] and even more actively devel-
oped and maintained Scheme implementations. Other com-
munities share these same features. The Scheme commu-
nity has made progress through efforts like the R6RS [29]
library form at improving the overall portability of Scheme

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

code. The Scheme community also has a number of reposito-
ries and tools for managing libraries. Many of these are im-
plementation specific, but some, like Snow [12] are portable
across implementations and try to store portable code pack-
ages.

In communities like Scheme, standardizing a single set of
tools and a repository for managing, locating, and installing
libraries of code is a difficult proposition at best. Rather than
trying to create a standard toolchain and a central repos-
itory within a community that promotes diverse solutions
and approaches, it would be better if many tools could be
developed and many repositories created in such a way that
they could all interoperate and communicate with one an-
other. This would allow the tools to grow as needed around
the segments of the community to which they were best
suited, and would prevent any other segment of the commu-
nity from losing out on advances made by the rest of the
community. If a public interface existed for library repos-
itories and tools to communicate among themselves in an
effective, extensible manner, the benefits of a central repos-
itory could be retained, as well as the ability to develop
different approaches to the issue.

Descot [18] realizes just such an interface by utilizing an
RDF-based Schema [5, 24] to define a language for express-
ing library metadata and defining a set of protocols for in-
terfacing with servers. It defines protocols for querying the
server about code, retrieving specific library metadata, sub-
mitting code to the repository, and for mirroring one repos-
itory from another. Note that Descot does not try to re-
place existing management tools, which already take care
of installing code, and it does not attempt to establish any
specific repository. Instead, Descot enables the communica-
tion between repositories and among repositories and tools.
Descot does not attempt to deal with the portability of the
code itself, and leaves such efforts to other standards such
as R6RS [29]; it deals only with the metadata of a library
and the means to access this metadata.

With diverse communities like Scheme, collaboration be-
tween libraries will often break down into as much of a social
as a technical problem. Descot cannot hope to solve social
opposition, but it does enable the community to collaborate
while maintaining the normal benefits of decentralized, sep-
arate development. Descot was specifically designed to min-
imize the impact on the social structure of the community
that adopts it. This paper details the first steps towards en-
abling collaboration, by providing the techincal foundation.
The author intends to undertake further efforts, such as the
development of easy tools and libraries for deploying and in-
tegrating Descot, which will further reduce the barriers that
usually exist when trying to improve the collaboration of
largely separate efforts.

86

Among the largest of obstacles, implementors and design-
ers of repositories often have their own ideas about the de-
sign and use of the repository. Descot enables an unbounded
number of clients, each with their own unique features, to
operate on a wide variety of repositories. The basic design
of Descot also enables easy extension to the metalanguage,
which means that additional features for specific reposito-
ries may be added easily, without making it impossible for
existing tools to work with the basic metadata. With Descot
almost every feature and detail is left to the designer of the
system, except for the parts necessary for useful communi-
cation, and even these are made flexible enough to allow a
tremendous range of freedom.

While Descot is not tied to one specific language commu-
nity, the remainder of this paper discusses Descot within the
context of the Scheme community. Section 2 discusses the
existing tools surrounding library distribution that are nec-
essary for Descot to be useful. Section 3 details the Descot
system itself. Section 4 lists some of the work others have
done which relates to Descot. Section 5 contains concluding
remarks.

2. Background
In order to effectively share code in a community such as
Scheme, there must be a way of running another author’s
code, and there must be a way of searching, installing, and
submitting code to the public. Scheme implementations of-
ten have a central repository for that implementation to
which authors usually submit their code [31, 26, 30]. In or-
der to manage large programs effectively, most Scheme im-
plementations provide a module system that helps to control
the visibility of procedures and macros defined in a block of
code. Additionally, these repositories have convenient tools
that allow libraries to be automatically downloaded and in-
stalled if desired. Often, merely specifying a requirement for
one or more libraries is enough to guarantee that an user of
a program can automatically install the libraries, assuming
that they are visible in the central repository.

Other repositories attempt to host portable libraries that
work across implementations. Snow [12] is a good example of
this family of repositories (see Section 4 for more examples of
these systems), and has a number of useful tools, including
command line management tools and a packaging system.
Because Snow tries to be portable across implementations,
the tools themselves are able to run on a variety of Scheme
implementations, and the libraries available in the Snow
repository often run on more than one implementation.

Traditionally, authors of Scheme libraries would simply
host their files in tarballs or flat files, and would maintain a
set of dependencies that their code used. (See, for example,
see Oleg Kiselyov’s collection of Scheme code [23].) User’s
wanting to use their code would then either use the semi-
portable libraries provided, with a little work, or would
attempt to find them in their implementation’s repository.
This effort has been made somewhat easier by the recent
standardization of the R6RS library form [29], which defines
a standard library syntax, enabling code to be more easily
shared among implementations and users.

Still, there are a wide variety of tools for library man-
agement, and many different module systems in active use.
Clearly, the cooperation of these various tools, reposito-
ries, and implementations would benefit the community as
a whole.

Library Binding SCM CVS Retrieval-method
Archive Single-file License Person Implementation

Table 1. Descot Classes

3. Descot
The Descot system itself divides roughly into the schema
[17], which is the actual language for libraries, the server
protocol, which specifies how servers ought to behave, a
query protocol, for handling server queries, and an API that
assists in the development of Descot servers. Descot itself
consists of the first three elements, and the API exists as a
convenience for developers.

3.1 Schema

Descot defines an RDF Schema [17, 24] for describing li-
braries of code. It augments the existing default RDF
Schema [5] and is itself written using RDF. RDF is a spec-
ification for describing metainformation as directed graphs
and has a number of syntactic representations. Current De-
scot tools support arbitrary representation formats, but by
default, use SRDF (see the Appendix). The author chose
RDF as the basic metalanaguage because it already has ex-
isting tools written around it and is relatively mature. RDF
was designed specifically with this sort of problem in mind,
and allows extensions as a matter of course. This makes it
ideal as the basic language from the perspective of market
share and technical features. The XML representation of
RDF, however, is tedious and unpleasant to write by hand.
SRDF is an S-expression based RDF format designed to
mirror Turtle [3]. SRDF makes it easy to write RDF graphs
by hand, while remaining easy to manipulate and parse us-
ing basic Scheme functions. The author actually began by
writing his own S-expression based metalanguage, but soon
realized that it was essentially a reimplementation of RDF.
By using RDF, many features and semantics may be left to
the RDF designers, greatly simplifying the specification of
Descot’s metalanguage. Descot also supports Turtle out of
the box provided that the necessary libraries exist. Since the
Schema itself is based on RDF, it is also format neutral; any
other RDF format could be used, including, for example,
SXML [23]. The Schema itself is a set of URIs to which we
ascribe semantic meaning, and is used in the description of
RDF Triples. All the URIs start with the prefix:

http://descot.sacrideo.us/10-rdf-schema#
All terms mentioned in this section are the tails of URIs
prefixed by the above string.

The terms are divided roughly into Classes (see Table
1) and Properties. Most of the properties apply directly to
Libraries (Table 3), but there are some general, person, and
CVS properties as well (Table 2).

Every class is a type for a specialized node in a Descot
Graph. Every node in a descot graph is expected to have a
type property associated with it to identify its class.

Library nodes represent libraries, and most of the prop-
erties stem from Library nodes. Library nodes are also the
main root node for most retrievals.

Binding nodes represent information about a procedure
or macro that is exported or imported from a library. These
nodes can be used to store information such as alternate
names for procedures. They may also point to documenta-
tion about a specific procedure, but the only required prop-
erty is the name.

Scheme and Functional Programming, 2009 87

name alts desc homepage e-mail
cvs-root cvs-module

Table 2. General/Miscellaneous Descot Properties

Archive nodes contain file archive download information.
Generally, they may point directly to the location of an
Archive, such as a tarball. As such, these will usually be
end nodes in a Descot graph, because they will not contain
further information.

Single-file nodes are similar to Archive nodes, but
they point to single Scheme files instead of archives. Gener-
ally, single files do not need to be processed by Descot clients
further before being fed into a compatible implementation.

License nodes contain information about a License type,
such as ISC, BSD, GPL, or a proprietary license of some
sort. They may point somewhere else as the main reference,
and have only a short description of the actual license in
the graph, or they may contain the entire text of the li-
cense as the description. A short name should be provided
that servers can use when they want to display licensing in-
formation without presenting the entire description, usually
given on one line.

Person and Implementation nodes follow a similar pat-
tern, describing people and implementations, respectively.
People have names and e-mail addresses associated with
them, and may have additional information. Implementa-
tions generally have a web site and a name associated with
them.

SCM is a general class for “Source Control” based libraries.
That is, SCM is a sub-class of Retrieval-method like Archive
and Single-file are, but it describes a retrieval via some
source control module, like CVS. CVS is the sub-class of the
SCM class that describes CVS server modules particularly.
Generally, one would use the CVS module or some other
equivalent (such as for SVN or Darcs) rather than using
SCM, but SCM properties may be defined to give generic
information about a source module to a server that may
not recognize the particular type of source control used.

Every node may be associated with a particular name
which can be anything, and is not specific to the type.
Library names are generally strings, but they could be
extended to include other information or other types if a
server desired. Generally, however, it is recommended to
stick with the same types for existing classes, and change the
range of the name property only for new classes introduced
specifically for some specific server or purpose, so that other
Descot-compatible systems do not have to work much harder
on classes that are already defined.

For any given node, it may also happen that there are
alternate nodes that would work in place of the given node.
alts is expected to point to an rdf Alt node that will list
the alternates. For example, a library may be implemented
by a number of authors, and each library could be listed as
an alternate to the others.

desc is a property pointing to a string node that contains
a description of the node. This could be the license text in
the case of a License node, or may be a human-readable
description of a library for Library nodes.

homepage can be used where applicable to associate a
given homepage to a node. The homepage referenced should
be a Resource, and not, for example, a blank node.

The CVS node class also has two properties associated
with it: cvs-root and cvs-module. These point to strings

deps names license
creation modified contact
authors categories copyright-year
exports location implementation
copyright-owner version

Table 3. Descot Library Properties

which contain the root of the CVS server and the module
name for the library, respectively. This is enough informa-
tion, generally, to obtain the library via CVS, but servers
may wish to list additional information, such as the sup-
ported protocols for the CVS server.

email associates a string representation of an e-mail
address with a given Person class node. The author did not
use e-mail as a unique ID for people because e-mail addresses
do not map directly in a one-to-one fashion to people.
However, implementations may want to resolve conflicts of
people who have the same name by differentiating them by
their e-mail addresses.

The following properties all expect to have Library nodes
as their domains/subjects.

deps points to a List of Libraries upon which the subject
library is dependent.

names is a List of strings of short library names. These
are expected to be alternative short names frequently used
to identify the library, as opposed to the long name property
string, which identifies the normal title of the library.

exports is a List of Binding nodes which represent the
procedures and macros that the given library exports.

license points to a License node that is the license of
the given Library node.

authors is a List of Person nodes that represents the
authors of the library, but not necessarily the maintainer of
the Descot metainformation.

creation points to a date time string that is the date of
creation for the library metainformation, not necessarily the
creation date of the library itself.

modified points to a date time string that represents the
date and time of the last modification made to the library
metadata, and not necessarily the date and time of the last
update to the library itself.

contact points to a single person who has claimed re-
sponsibility for maintaining the metadata of a given library.
This field must exist, and the authors property is not a
substitute.

implementation points to an Implementation node,
which identifies the implementation or language for which
the code was designed to run. This could be a literal im-
plementation, or may be an R6RS Implementation node to
represent all R6RS compliant Scheme implementations, for
example.

version is a string that identifies the version of the
library. This could be a version number such as “3.5” or
it could be something like “-Current”. The later is useful for
storing the metadata of the latest snapshot of development
for a library, such as what one might find from a CVS server.

location points to a Retrieval-method node or a node
of a type that is a sub-class of Retrieval-method. This
node should tell a Descot client how to obtain the library
itself. Notice that this is a very extensible property, and
sophisticated servers may provide new Retrieval-method
sub-classes to describe the details of library retrieval. PLT’s

88 Scheme and Functional Programming, 2009

PLaneT, for example, may have a class for libraries that are
distributed through the PLaneT packaging system.

categories points to a List of strings that are categories
or tags for the given library. These tags are assumed to be
case-insensitive for all intents and purposes.

copyright-year and copyright-owner are two parts of
the Copyright information. copyright-year points to a year
string, while copyright-owner may point to a Person or a
List of Person nodes.

3.2 Server Protocol

Descot-compatible servers follow a simple set of rules that
allow them to interact with one another. Servers handle
three types of requests: mirroring, library/node requests,
and queries. Queries are handled in Section 3.3. This section
details only mirroring and node requests.

Every server must have a mirroring URI. When a request
for this URI comes into the server, the server must respond
with the RDF graph consisting of every library node in
the server’s store with one and only one branch. That
branch must be the modified property pointing to the last
modification time of the referenced library node. In this way,
a server which is mirroring the content of another server may
identify which libraries need to be updated, and pull only
the given information into its own store.

The format of transmission should be arranged in an ap-
propriate manner by the servers or server and client. No
specific format is required, and no format need be recog-
nized.

Servers and clients may also make node requests to a
server. These are requests for the relevant information about
a given node. For example, a client may wish to obtain
the metadata for a library for some URI. It does so by
accessing the URI and parsing the response from the server.
The method of access depends on the protocol specified
by the URI. HTTP will likely be a common protocol, but
others, such as FTP, Gopher, or HTTPS could also be used.
The response should be an RDF graph in either the format
requested by the client [server] or the attempt by the server
if it does not support the requested format. (Again, the way
to request a particular format is protocol dependent, and
not specified here.)

The graph returned by a server handling a node request
contains a subset of the entire store on the server. Its root or
starting node has the URI of the request. The server should
then walk the paths going out from the requested URI in
the store and return the graph that it walks. The server
should stop pursuing a particular path when it encounters a
node which has its own unique, accessible URI that can be
requested individually. That is, the returned graph contains
the descendants or the paths starting from the node with
the URI requested, stopping at nodes which themselves
have valid URIs. Blank nodes, then, are the only means by
which the depth of the graph may grow beyond one. When
encountering a blank node while walking the graph, a server
will descend into it and continue its walk, but otherwise, the
server will not descend into a node, which will have a valid
URI if it is not a blank node.

These two request methods provide enough structure for
servers and clients to communicate clearly and efficiently.
No other behavior is required of a Descot server, though
handling query requests is permitted and defined for any
Descot server. Most servers will not handle queries, and
instead, specific Descot servers will develop to mirror smaller

servers and index them to provide a place to search many
repositories at once.

3.3 Query Server

Since Descot uses RDF to describe its metadata, it may
also utilize the tools available to RDF graphs. SPARQL is
a query language and protocol for querying RDF graphs. If
a Descot server wishes to provide Querying, then it should
follow the protocols and language laid down in the SPARQL
specification [28, 7, 2]. Implementing query request handling
for a Descot server is not required.

Query-enabled servers enable lightweight clients to inter-
act in useful and interesting ways with servers. Many sys-
tems which allow multiple repositories to be used often re-
quire that clients cache data about the repositories that it
searches. This is fine when there are only a few repositories,
but in systems where every developer may potentially have
a repository, it may not make sense to cache all the data
on every client. While nothing stops a client from caching
server data from a Descot server, lightweight clients may
use query-enabled Descot servers that mirror other reposi-
tories to search and find libraries and code which may have
been obscured if the user of the client had to find and install
repository information manually.

Query-enabled servers may thus become hubs among the
web of Descot servers, providing users the benefit of a central
repository, without many of the disadvantages.

3.4 Server API

A Server API has been developed to assist designers in
writing Descot servers easily and quickly. They can also be
utilized by scripts to assist in dealing with Descot stores.
While the current Descot source code contains a number
of additional modules, the utilities, printing, and server
modules will generally help the most.

This code is currently available via revision control, and
a packaged release will be made once some of the features
have been completed. This API is the one used by the Descot
server that runs (currently only as a proof of concept) at
the Descot homepage [18]. The API is provided to assist
developers of servers and clients, and implementors may opt
to implement the Descot protocol and specification in other
ways.

The rdf-printing module provides three procedures for
printing RDF graphs in Turtle format.

write-rdf-triple->turtle takes an RDF triple and an
optional port argument, and writes out that triple in Turtle
form. write-rdf-triples->turtle and write-rdf-graph->turtle
work the same way but take a list of triples and an RDF
graph as their first argument respectively.

The descot-rdf-utilities module defines and exports
common RDF and Descot URIs for use in other applications.
It also defines the following procedures and macros.

store-categories : 〈graph〉 → 〈category list〉
Produces from an Descot RDF graph a list of all the cate-
gories found in the store.

libraries-in-category : 〈cat〉 → 〈library list〉
Produces a list of libraries that have a category 〈cat〉.
in-rdf-list : 〈store〉 〈node〉 → #〈void〉
in-rdf-list is a foof loop [6] iterator over RDF List nodes.
It allows one to iterate over RDF lists in the same way one
might iterate over a normal Scheme list.

Scheme and Functional Programming, 2009 89

The iterator is used in for clauses of foof loops, as in,
(for elem rest (in-rdf-list store list-head-node)).

parse-turtle-file : 〈file〉 [〈graph〉] → 〈graph〉
Parses a given 〈file〉 into a given 〈graph〉 or an empty graph
if none is given.

library-ids : 〈store〉 → 〈id list〉
library-title : 〈rdf-map〉 → 〈library name〉
library-names : 〈store〉 〈rdf-map〉 → 〈name list〉
library-description : 〈rdf-map〉 → 〈desc string〉
library-copyright : 〈store〉 〈rdf-map〉 → 〈copy pair〉
library-homepage : 〈rdf-map〉 → 〈uri〉
library-license-name : 〈store〉 〈rdf-map〉 → 〈name〉
library-authors : 〈store〉 〈rdf-map〉 → 〈author list〉
library-contact : 〈store〉 〈rdf-map〉 → 〈person pair〉
library-created : 〈rdf-map〉 → 〈date string〉
library-modified : 〈rdf-map〉 → 〈date string〉
library-version : 〈rdf-map〉 → 〈version string〉
library-implementation : 〈store〉 〈rdf-map〉 → 〈impl pair〉
library-location : 〈store〉 〈rdf-map〉 → 〈location〉
The above procedures are standard accesser procedures to
different elements of a Descot library node. They can be
used to quickly get pieces of the graph instead of walking
the graph explicitly. 〈store〉 refers to the Descot store, and
〈rdf-map〉 refers to a specific RDF map containing the child
nodes of a given library node.

The actual descot-server module available in the De-
scot source provides a generalized, format-neutral API for
handling server requests. Currently, it handles node re-
quests, mirroring requests, and provides conveniences for
handling submissions of new libraries into the existing store.

The Descot Server API uses a file system hierarchy to
store the RDF graph in a manner that makes it convenient
to retrieve server request information. The entire graph is
stored under a single 〈root〉 directory, and for any subject
node with a valid URI, there exists a single file which holds
the information necessary to serve a node request for that
URI. The path to this file is formed by the following scheme:

<root>/<scheme>/<domain>/<path>[#<fragment>]

where 〈domain〉 is the domain of the URI with the terms
reversed and separated by forward slashes rather than dots.
The API provides a procedure for generating this path from
a given URI:

descot-uri->store-path : 〈uri string〉 → 〈path string〉
and also defines a parameter descot-store to hold the root
location.

The API also defines reader and writer parameters for the
store. The reader parameter descot-api-reader contains a
procedure

reader : 〈fname〉 [〈graph〉] → 〈rdf graph〉
that will read the files in the store. This allows the format of
the store to be any format for which an user can provide a
proper reader. This parameter defaults to parse-srdf-file
from the srdf module (see the Appendix).

The descot-api-triples-writer parameter holds a pro-
cedure that will be used whenever a graph must be written
to a file. It defaults to write-rdf-triples->srdf and any
procedure that replaces the default should have the same sig-
nature (see the Appendix). This writer is also used when no
preferred format is detected for an incoming node request.
Since detection of format preference is not yet built into

the API, this parameter effectively controls all RDF output
from the API, and not just the format from the store.

The above parameters are used to separate the api from
the format of the repository. They are not expected to
change after initializing a server using this API.

write-descot-request : 〈subject uri〉 〈port〉 → #〈void〉
write-descot-request handles node requests for the server
and writes out the proper response to the given 〈port〉.
write-descot-updates : 〈port〉 → #〈void〉
write-descot-updates writes out the mirroring graph to
the given port.

write-descot-store : 〈graph〉 → #〈void〉
When new libraries are submitted to a server, normally they
will go through a vetting process, after which, they must be
stored in the main repository database. write-descot-store
allows a store to be written safely to the store and is the
main procedure to use when adding new data to the store.

Since the API does not yet provide enough detailed
access to make direct graph walking along the graph easy,
a convenience procedure is exported from the server API to
allow applications to read in the entire store for work.

read-descot-store : 〈root〉 → 〈RDF graph〉
It works with any subdirectory of the root location and the
root location itself as the 〈root〉 value, so one can selectively
graph pieces of a graph if necessary.

3.5 Example

The following is a complete example of a relatively self
contained graph with all the information necessary to serve
all the node requests. It is written in the SRDF format
defined in the Appendix.

(= authors
"http://descot.sacrideo.us/rdf/authors/")

(= impls
"http://descot.sacrideo.us/rdf/impls/")

(= licenses
"http://descot.sacrideo.us/rdf/licenses/")

(= bindings
"http://descot.sacrideo.us/rdf/bindings/")

(= dscts
"http://descot.sacrideo.us/10-rdf-schema#")

(= rdf
"http://www.w3.org/1999/02/22-rdf-syntax-ns#")
(= xsd

"http://www.w3.org/2001/XMLSchema#")
(= dsct

"http://descot.sacrideo.us/rdf/libs/system/")

((: dsct "malloc#chez")
((: rdf "type") (: dscts "Library"))
((: dscts "name")
(& "Garbage Collected Malloc" en))

((: dscts "names")
(($ "malloc") ($ "gc-malloc")))

((: dscts "desc")
($ "Create malloced regions of memory that

are handled by the garbage collector."))
((: dscts "exports") ((: bindings "gc-malloc")))
((: dscts "license")
(: licenses "public-domain"))

90 Scheme and Functional Programming, 2009

((: dscts "authors") ((: authors "dybvig")))
((: dscts "creation")
(^ "2009/03/08 23:33:10" (: xsd "dateTime")))

((: dscts "modified")
(^ "2009/05/12 00:41:44" (: xsd "dateTime")))

((: dscts "copyright-year")
(^ "2008" (: xsd "gYear")))

((: dscts "copyright-owner")
(: authors "dybvig"))

((: dscts "contact") (: authors "arcfide"))
((: dscts "version") ($ "1.0"))
((: dscts "location")
(* ((: rdf "type") (: dscts "CVS"))

((: dscts "cvs-root")
($ "anoncvs@anoncvs.sacrideo.us:/cvs"))

((: dscts "cvs-module") ($ "lib/malloc.ss"))))
((: dscts "implementation") (: impls "chez"))
((: dscts "categories") (($ "system"))))

((: licenses "public-domain")
((: rdf "type") (: dscts "Licenses"))
((: dscts "name") ($ "Public Domain")))

((: bindings "gc-malloc")
((: rdf "type") (: dscts "Binding"))
((: dscts "name") ($ "malloc"))
((: dscts "desc")
($ "Garbage Collected Malloc")))

((: authors "dybvig")
((: rdf "type") (: dscts "Person"))
((: dscts "name") ($ "R. Kent Dybvig"))
((: dscts "email") ($ "dyb@scheme.com"))
((: dscts "homepage") "http://www.scheme.com"))

((: authors "arcfide")
((: rdf "type") (: dscts "Person"))
((: dscts "name") ($ "Aaron W. Hsu"))
((: dscts "email") ($ "arcfide@sacrideo.us"))
((: dscts "homepage")
"http://www.sacrideo.us"))

((: impls "chez")
((: rdf "type") (: dscts "Implementation"))
((: dscts "name") ($ "Chez Scheme"))
((: dscts "homepage") "http://www.scheme.com"))

If a node request came it, it would come for one of the
top-level s-expressions defined above. The data transmitted
back to the requesting client would be equivalent to the data
contained in that top-level s-expression. That is, if a request
for

(: dsct "malloc#chez")

came in to a server, it would return only the data found in
the s-expression above that has

(: dsct "malloc#chez")

as the first element. The server would ignore the other top-
level s-expressions.

4. Related Work
Since Descot only describes a library and does not attempt
to make it portable across implementations or languages,

efforts to make portable code, such as those from Snow [12]
and especially module systems like R6RS libraries [29] con-
tribute invaluable features to a complete repository system.

Snow is only one of many repositories that exist in
Scheme, each with its own unique features and focus. These
include library suites such as SLIB [20] and implementation-
specific repositories such as those found for PLT [26],
Chicken [31], and Bigloo [30].

Other attempts at portable library repositories include
CSAN [9] and CxAN [27]. The latter is unique because it is
not a Scheme specific project.

Implementations often support libraries internally with-
out making them into separate libraries, or they may pack-
age libraries with their distributions, which makes it in-
teresting to deal with that information. Descot is general
enough to represent these internal libraries, which almost
all Scheme implementations have, even though they are not
generally considered repositories [22, 11, 25].

Other projects have created distributed networks of
repositories quite successfully, though not specifically fo-
cused on library code distribution. The Debian packaging
system [1], often known as apt, caches server information on
the clients to enable multiple repositories to be used by one
client. The client can then download the desired packages
and install them as appropriate. System such as the RPM-
based [10] yum [14] also behave in a similiar manner. An
user specifices a series of repositories to use, and the client
caches information about the software packages available
from the repositories listed. Sites such as RPMfind [4] also
make packages available via web browser. These clients will
often scan many repositories over all different distributions
to obtain their indexes.

While the above are similiar to Descot by their dis-
tributed nature, the packages they references are actual soft-
ware packages and contain all the binaries or source code in-
side them. The BSD family of operating systems (and Gen-
too, which follows a similar pattern [13]) uses a series of
files that contain metadata about how to build and install
a given software package. Descot’s metadata representation
more closely resembles these so called ports systems than the
packaging used by systems like apt or yum. When, say, an
OpenBSD user wishes to build a package, rather than install
it via binary package, the user would navigate to a prefilled
filesystem containing port metadata. The user would then
run a command that would fetch, build, and install the pack-
age [16]. Similar tools could be made for Descot repositories.

5. Conclusion
The Descot system described above provides the means
by which fragmented or diverse communities can cooperate
and leverage development efforts that previously existed in
isolation of one another. Since most communities do not
lack for tools or repositories of code, but rather, a means
of common access, Descot focuses entirely on fostering the
communication among existing systems, rather than trying
to rewrite existing tools and change previous workflows.
Since Descot is extensible and dynamic, it can fit into a wide
range of domains, and can adapt to handle the needs of a
community, rather than trying to fit different communities
or sub-cultures into a single methodology. Descot is built on
common, well documented technologies and so should easily
travel where less standards-based systems may not. Descot
provides an open, clearly specified infrastructure so that
communities can collaborate together and avoid redundant
work. It provides the convenience of central code distribution

Scheme and Functional Programming, 2009 91

without forcing large, top-down changes on a community
that may not respond well to such pressure.

6. Acknowledgments
The author would like to thank Kent Dybvig for his com-
ments, which led to improvements in the presentation this
this paper.

References
[1] Osamu Aoki. Debian Reference, June 2009. http://www.debian.org

/doc/manuals/debian-reference/.

[2] Dave Beckett and Jeen Broekstra. Sparql query results
xml format. W3c recommendation, W3C, January 2008.
http://www.w3.org/TR/rdf-sparql-XMLres/.

[3] David Beckett and Tim Berners-Lee. Turtle - terse rdf
triple language. W3c team submission, W3C, January 2008.
http://www.w3.org/TeamSubmission/turtle/.

[4] Fabrice Bellet. Rpmfind, June 2009. http://www.rpmfind.net.

[5] Dan Brickley and R. V. Guha. Rdf vocabulary description
language 1.0: Rdf schema. W3c recommendation, W3C,
February 2004. http://www.w3.org/RDF/.

[6] Taylor Campbell. foof loop, June 2009. http://mumble.net/
˜ campbell/darcs/foof-loop/loop.scm.

[7] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres.
Sparql protocol for rdf. W3c recommendation, W3C,
January 2008. http://www.w3.org/TR/rdf-sparql-protocol/.

[8] William Clinger and Jonathan Rees. Revised4 Report
on the Algorithmic Language Scheme, September 1991.
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r4rs.ps.gz.

[9] CSAN. Comprehensive scheme archive network, June 2009.
http://www.cliki.net/Community.

[10] Alexandre de Abreu. All you have to know about RPM,
March 2004. http://fedoranews.org/alex/tutorial/rpm/.

[11] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide. Ca-
dence Research Systems, July 2007. http://www.scheme.com/csug7/.

[12] Marc Feeley. Scheme Now! Documentation, June 2009.
http://snow.iro.umontreal.ca/?tab=Documentation.

[13] Gentoo Foundation. Gentoo linux, June 2009. http://www.gentoo.org.

[14] Michael Hideo. Red Hat Enterprise Linux 5 De-
ployment Guide. Red Hat Inc., Raleigh, NC, 5 edi-
tion, November 2008. http://www.redhat.com/docs/en-
US/Red Hat Enterprise Linux/5/html/Deployment
Guide/index.html.

[15] Jarkko Hietaniemi. Comprehensive perl archive network.
http://www.cpan.org.

[16] Nick Holland. The OpenBSD packages and ports system.
OpenBSD, May 2009. http://www.openbsd.org.

[17] Aaron W. Hsu. Descot rdf schema. Rdf schema, May 2009.
http://descot.sacrideo.us/10-rdf-schema.

[18] Aaron W. Hsu. Descot technical documentation. Program-
mer’s documentation, May 2009. http://descot.sacrideo.us.

[19] IEEE. 1178-1990 IEEE Standard for the Scheme Program-
ming Lanuage, 1990.

[20] Aubrey Jaffer. SLIB: The Portable Scheme Library, Febru-
ary 2008. http://people.csail.mit.edu/jaffer/slib toc.html.

[21] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 Report on the Algorithmic Language Scheme,
February 1998. http://www.schemers.org/Documents/Standards
/R5RS/r5rs.ps.

[22] Richard Kelsey, Jonathan Rees, and Mike Sperber. The In-
complete Scheme 48 Reference Manual for release 1.8, Jan-
uary 2008. http://www.s48.org/1.8/manual/manual.html.

[23] Oleg Kiselyov. Scheme hash, June 2009. http://okmij.org/ftp/Scheme.

[24] Frank Manola and Eric Miller. Rdf primer. W3c recommen-
dation, W3C, February 2004. http://www.w3.org/TR/rdf-

primer/.

[25] Massachusetts Institute of Technology. MIT/GNU Scheme
7.7.90+ Reference Manual, 2008. http://www.gnu.org/software/mit-
scheme/documentation/mit-scheme-ref/index.html.

[26] Jacob Matthews. PLaneT: Automatic package distribution.
Reference Manual PLT-TR2009-planet-v4.2, PLT Scheme
Inc., June 2009. http://plt-scheme.org/techreports/.

[27] Hans Oesterholt. Cxan, July 2004. http://cxan.sourceforge.net/.

[28] Eric Prud’hommeaux and Andy Seaborne. Sparql query
language for rdf. W3c recommendation, W3C, January
2008. http://www.w3.org/TR/rdf-sparql-query/.

[29] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton
van Straaten. Revised6 Report on the Algorithmic Language
Scheme, September 2007. http://www.r6rs.org/final/r6rs.pdf.

[30] Vladimir Tsichevski. Bigloo libraries, December 2003.
http://bigloo-lib.sourceforge.net/.

[31] Felix Winkelmann. The CHICKEN User’s Manual, April
2009. http://chicken.wiki.br/man/4/The User’s Manual.

92 Scheme and Functional Programming, 2009

Appendix: SRDF Format
SRDF is an s-expression based format for describing RDF
graphs. It is meant to be mostly equivalent in its form
to Turtle. Since the language is S-expression based, it is
easier for Scheme and Lisp parsers to parse it. Parsers
for other languages can also be written very easily. This
makes it particularly nice for use in automated systems or
in areas where S-expressions are the natural representation
format. SRDF is designed to work for most Scheme’s read
procedures.

SRDF documents are composed of a series of RDF triples
and, possibly, prefix definitions. Prefixes take the form (=
name "uri"), and associate a given Scheme symbol with a
URI string. Otherwise, the form is an RDF triple or a set of
triples.

Normal triples are just a list of three elements, each a
URI. Multiple triples with the same subject can be declared
in one expression by replacing the list that would hold the
single predicate and object with a list of such predicates
and objects. Likewise, one can specify more objects to be
associated with a given subject and predicate by doing the
same thing with the object list, and replacing the list tail
that would normally hold the object with a list of such
objects.

If the second element of a predicate pair contains a list of
objects, this represents a collection of objects, and is created
in the same way that a turtle collection syntax is created: by
associating a series of blank nodes with the right predicates
with each of the objects listed.

An object that differs from a list of objects that are each
associated with the subject and predicate. The following is
an instance of the former:

("subject-uri" "predicate-uri"
("object1" "object2" ...))

Whereas the following is an instance of the latter:

("subject-uri" "predicate-uri"
"object1"
"object2"
"object3")

Normal RDF triples take the form:

("subject-uri" "predicate-uri" "object-uri")

A blank node may be inlined into the graph by using a ‘*’
as the beginning symbol in an object context like so:

("subject" "pred" (* "pred" "object"))

Of course, blank nodes may have anything that is a valid
predicate cdr as its cdr so the following is also valid:

("subject" "pred"
(* ("pred1" "object1") ("pred2" "object2")))

URIs may be described by their full path names as strings, as
prefix combined paths, or as blank node paths. The following
are all valid URIs:

"http://some.domain/path/to#blah"
"blah"
(: prefix "blah")
(_ "uniqueid")

We use ‘:’ for prefixes and ‘ ’ for blank nodes. In addition
to URIs, we permit literals as valid cars for objects. Lit-
erals can be strings, numbers, booleans, or may be strings

with either languages or types associated with them. The
following are examples of languages and types, respectively:

($ "Language unspecified.")
(& "English Sentence lies here." en)
(^ "2008/01/03 14:00" (: xsd "date"))

The following is a fairly formal BNF grammar with the
exception of tokens such as strings, numbers, and booleans
being undefined and presumed to be defined lexical values.
Additionally, we define S-expression in terms of atoms and
pairs, so the BNF grammar is also defined in the “longhand”
notation for pairs and lists. This means that while the
BNF Grammar states something like ("subj" . ("pred"
. ("obj" . ()))) as the valid simplistic RDF triple, it is
also legal in practice to use the shorthand version of this:
("subj" "pred" "obj")

〈rdf sexp〉→ 〈rdf triple〉 | 〈rdf triple〉 〈rdf sexp〉
〈rdf triple〉→ ‘(’ 〈uri〉 ‘.’ 〈rdf subject tail〉 ‘)’

| ‘(’ ‘=’ name string ‘)’

〈rdf subject tail→ 〈rdf predicate〉
| 〈rdf predicate list〉

〈rdf pred list〉→ ‘()’
| ‘(’ 〈rdf predicate〉 ‘.’ 〈rdf pred list〉 ‘)’

〈rdf predicate〉→ ‘(’ 〈uri〉 ‘.’ 〈rdf object list〉 ‘)’

〈rdf object list〉→ ‘()’
| ‘(’ 〈rdf object〉 ‘.’ 〈rdf object list〉 ‘)’

〈rdf object〉→ 〈uri〉 | 〈literal〉
| 〈rdf object list〉 | 〈blank node list〉

〈blank node list〉→ ‘(’ ‘*’ ‘.’ 〈rdf subject tail〉 ‘)’

〈uri〉→ uri
| ‘(’ ‘:’ ‘.’ 〈uri list〉 ‘)’
| ‘(’ ‘ ’ name ‘)’

〈uri list〉→ ‘()’
| ‘(’ 〈uri name〉 ‘.’ 〈uri list〉 ‘)’

〈uri name〉→ uri | name

〈literal〉→ number | boolean
| ‘(’ ‘$’ string ‘)’
| ‘(’ ‘&’ string name ‘)’
| ‘(’ ‘ˆ’ string 〈uri〉 ‘)’

Scheme and Functional Programming, 2009 93

