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Abstract 

Our task was to develop and implement a system with processor, bus and sensors capable of 

controlling the RCV so that it can start in front of the garage door, or any other point on the 

parking lot for that matter, and self-drive to a parking lot achieving a desired final pose while 

avoiding obstacles on the way there. 

 

 According to the requirements, our algorithm has been designed to have two states, one is path 

tracking state and the other is obstacle avoidance state. For the path tracking state, the RCV 

follows the dynamically adjusting path created by a fuzzy logic controller based on the real-time 

GPS location and heading data. When an obstacle is detected by our own sonar ranging system 

securing the whole perimeter of the RCV, the state is switched from path tracking to obstacle 

avoidance. Another fuzzy logic algorithm is applied here to get around the obstacles based on the 

distance signals collected by 5 ultrasonic sensors. When the risk is no longer posed, the path 

tracking state will once again take over and lead the vehicle to the target parking lot. 

 

  We have successfully tested the path tracking state with the RCV and achieved the real-world 

autonomous parking outside of the Transport Labs. Our method has been verified to be effective 

for the obstacle avoidance task using the Prescan simulation environment. Due to a time limitation 

this state has not been tested on the RCV.  

 

 

 

 

What we’ve done: 

 Developed the cruise control and steering control loop in dSPACE 

 Developed the ultrasonic ranging system. 

 Built our own coordinate system with the Trimble GPS 

 Developed the algorithm based on fuzzy logic method and simulated with Prescan 

 Integrated all the subsystems above. 

 Successfully tested the autonomous parking in path tracking state.  
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Architecture: 

Here is the architecture of our system which includes three inputs and two outputs. GPS data gets 

into SpeedGoat (xPC) via serial port while ultrasonic sensor data is transmitted via CAN bus 1. 

RCV dSPACE box is connected to SpeedGoat with CAN bus 2. The receiving data is the real 

speed and wheel angle of RCV measured by encoders for monitoring and data logging. The 

sending data is the reference speed and reference wheel angle which are our control signal to RCV.  

 

GPS
Base Station

Rover

XpcProximity
sesnors

AVR 
Microcontroller RCV dSpace box

RCV Laptop

(RS232)

(CAN)ADC

Reference Speed
&Wheel Angle

(CAN)

Enable auto mode(LAN)

Speed & Wheel Angle
(CAN)

Host Laptop

Data logging(LAN)

 

 

  



3 

 

Cruise control and wheel angle control design 

Cruise control and wheel angle control blocks were built in the RCV’s dSPACE box. The picture 

below is the cruise control block, which is a PI control mechanism. A rate limiter is placed after 

the reference velocity input port in order to make RCV initialize smoothly and stop immediately. 

The purpose of the switch block is to reset the PI controller when the reference speed is set to zero. 

In addition, anti-windup function in PI controller is activated so that the problem of saturation is 

prevented.  

 

Cruise control loop 

 

 

The input of wheel angle control ranges from -30 degree to 30 degree. Thanks to Petter’s good 

work, the reference wheel angle is converted into four wheel steering angles after Ackermann 

calculation block.  

 

Wheel angle control loop 
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RCV Sonar ranging system 

General information 

This is a sonar ranging system that uses ultrasonic sensors to measure dissonance to objects on up 

to 20 locations and then communicates the data via CAN BUS. It is currently designed to use 

MAXBOTIX sonar rangers that send an analogue voltage as their data to the micro controllers on 

the main PCB, but it can also be redesigned from the EAGLE CAD files and built to use sensors 

with other means of communication (digital) using the same idea and power supply design. 

It is powered by the 24V rail on the car. 

 

Requirements: 

- OS: Windows 7 or newer, 64bit 

- AVR Studio (to program the AVR controllers and change CANBUS settings) 

- CAN KING for setting up and debugging 

 

 

Elements 

Here we will discuss the general architecture of the system. 

 

 

 

 

Main PCB (Green) – it is the “motherboard” of the system, providing power and I/O to the 

different replaceable computing components (AVR CAN microcontrollers). It is custom designed 
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for this specific application and if it breaks you will need to order a new PCB and build it yourself 

(SEK 5000). It has space for 4 AVR CANs – Front, Rear, Left and Right. You can choose any 

combination of them depending on your needs. Please observe the orientation of plugging the 

controllers according to the picture provided here. Each of the controllers has space for up to 5 

sensors. The AVR code is provided in the Transport Labs repository. 

 

AVR CAN 

(https://www.olimex.com/Products/AVR/Development/AVR-CAN/resources/AVR-CAN.pdf) (Red) 

– This controller is used to sequence the ranging sensors so that they don't interfere with 

each-other and to broadcast the information packet on the CAN BUS. It can be powered trough 

the CAN BUS too, but it is not recommended. Always use the provided power cables to the 

main PCB. 

 

Sonar rangers (http://www.maxbotix.com/Ultrasonic_Sensors/MB1202.htm) 

These are calibrated ultrasonic sensors with automatic ranging. The ones that are on the system at 

the time of writing this manual are the widest FOV available, though they can be exchanged with 

many other variations with analogue output from the same manufacturer – MAXBOTIX. They are 

sensitive to high moisture and water. Do not use them in the wet! If you need to drive the car in 

the aforementioned conditions please remove the sensors from the mounting PCBs 

 

 

 

The current sensor we're using is the MB1202 model with the widest possible view angle. The 

problem with that is that while it is very sensitive and accurate in controlled ideal conditions, in 

the real world it picks up a lot of disturbances from the environment. Also, since the field of view 

has the shape of a very steep and wide cone, it will often detect the floor unless it is perfectly 

smooth. This is why we needed to tilt the sensors up away from the ground, which lowered our 

detection precision close to the ground. This is why we recommend using sensors with less wide a 

field of view if available. 

 

Mounting PCBs – they are custom PCBs designed to mount the sonar rangers to the car with the 

provided clamps, nuts and bolts and to facilitate a cable interface with the main board. They are 

replaceable (~25 in total for spares). Depending on the type of sensor used, please make sure the 

angle of mounting of the sensor w.r.t. the ground is correct for the particular senor you're using 

https://www.olimex.com/Products/AVR/Development/AVR-CAN/resources/AVR-CAN.pdf
http://www.maxbotix.com/Ultrasonic_Sensors/MB1202.htm
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(see sonar sensor description) 

 

Box – the box has mounting holes for the main PCB. Mounting must happen without the 

micro-controllers plugged in. You must use the provided PCB stand offs in case there is any 

conductive dust or debris on the bottom of the case. The box has a side mounting system for the 

RCV seat rails and is designed to fit under the seats. Power comes from a proprietary power plug 

that must be attached to the main 24V battery. There is also an additional temporary output of 5V 

to power the 3D printed Arduino-based IMU that is on the car at the time of writing the manual. 

 

CAN BUS Communication  

Each of the controllers has its own CANBUS id and they all broadcast on the common ribbon 

cable. The messages they send are not synchronized between the controllers (i.e. the AVRCANs 

do not communicate between them) and have the following structure: 

 

  

 

In order to make the message fit the standard 8 byte size we have implemented a shared most 

significant bit – if  sensor #n has value above 8 bits (9 bits), the 8 least significant bits are left in 

the #n byte as usual, but the n-th bit of byte #9 is set to 1. The first byte is the id of the controller 

(F, R, L, R). It is your responsibility to check the code and make sure the ids match on the sonar 

ranging system side with the receiving (e.g. RCV, SpeedGoat) side.  
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Fuzzy Logic Algorithm: 

Based on the objective, our algorithm consists of two modes, one mode is path tracking state and 

the other one is obstacle avoidance state. In path tracking state, the car follows the path created by 

fuzzy logic controller to the given parking lot. When an obstacle is detected on the way to the 

parking lot, the path tracking state is switched to obstacle avoidance state immediately. It means 

another fuzzy logic controller takes over to get around the obstacles. After risk has been cleared, 

the path tracking state is back leading the car to the given parking lot. Considering that inertia 

would not let the car stop immediately, both speed and wheel angle are set to zero when the car 

position is within 30 cm around the target parking lot.  

 

Path tracking state: 

Inputs: X, Y, Heading;  

Outputs: Steering, Speed 

 

First of all, we built our own coordinate system as showed below. X positive direction is along 

with the wall of Transport Labs. Our heading is defined from -180 degree to 180 degree. Then the 

next step is to convert geodetic longitude and latitude into our pre-defined coordinate system. 

 

The LLA2FLAT function is used in conversion. The important factor is the clockwise degree from 

north to our positive X axis. With the help of Google Earth, this angle was measured 

approximately 56.5 degrees. As for the heading, it is easy to be solved by turning the compass 

heading with a certain angle, 57 degrees in our case. So far, all the inputs are ready.  

Y

X

Y

X

 

 

Fuzzy logic design is fuzzy and time-consuming. So our initial point was to make it as simple as 

possible i.e. a car always parks at the initial point of our coordinate system with the heading of -90 

degree. A feasible pattern of our fuzzy logic controller has been determined after dozens of trails. 

The output of the fuzzy logic controller is the reference heading, which ranges from -270 degree 
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to 90 degree. This range is strictly determinate as the difference angle of two adjacent arrows 

needs to be as exactly as 45 degrees e.g. combination of -90°and -45°are different from 

combination of 270°and -45°.  

 

One important thing to mention is that the width of the third membership in X direction implies 

how accurate the final pose is. If an accurate final heading is required, then a narrow triangle is 

necessary. As a result, it calls a high demand of the wheel angle. If you want to know more about 

it, please watch the four videos in the folder of Videos and pictures-simulation videos. 

 

“Narrow” refers that the range of the third membership in X is from -2 m to 2 m while “ wide” 

means the membership ranges from -4 m to 4 m. The numbers e.g. 23 and 32 are the limit value of 

the wheel angle. With the permutation and combination of these four variables, our simulator 

gives out four simulation results, from which we are able to see how important the third 

membership and the limit of the wheel angle are to the success of autonomous parking in our 

project. 

-25 0 25

50
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Parking at one predefined point with a certain angle is just a special case. In order to make it more 

general, arbitrary parking lot and pose should be taken into account. In the diagram below, z’ is the 

chosen parking lot and –Y’ is the final pose. Then a local coordinate system has been built, to 

which our fuzzy logic controller is possible to apply. The output of the fuzzy logic controller now 

is the heading in the local coordinate, which need to be converted into the global one for further 

calculation.  

Z

Y

X

Y' 

Z' 

X' 

 

Our flow chart of path tracking state algorithm is showed as below. Φ is the real heading and θ is 

the wheel angle (-30 degree to 30 degree).  

Coordinate 
Conversion

X

YY

Φr 
X

Φ  

PI Controller

θ 
Fuzzy Logic 
Controller

Coordinate 
Conversion

 

 

Obstacle avoidance state: 

There are seven ultrasonic sensors installed in the vehicle. Five of them have been used in the 

simulation i.e. three in front and the front one on left/right side. When any of front sensors detects 

an obstacle within 4.5 m or any of side sensors detects an obstacle within 2.4 m, obstacle 

avoidance state is activated.   
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For the fuzzy logic controller, there are five inputs from five ultrasonic sensors and two outputs, 

speed and steering (Wheel angle).  

 

FL

FM

FR

L1

R1

Switch

Fuzzy Logic 
Controller

1 or 0

Speed

Steering

 

 

In the movement, the most important sensor is the front middle. So three memberships are 

assigned to it. For the rest of sensors, each has two memberships. Currently there are 48 rules (see 
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fuzzy logic algorithm.xls) in total running in the fuzzy logic controller. Theoretically, more rules 

would make the movement more accurate and secure. On the other side, it would take more 

computation power and more time to make all rules work well. It is critical to make a balance 

between accuracy and complexity.  

 

Based on the principle of symmetry, left side sensors have the same memberships as the right ones. 

It also applies to the front left and right ones. All the membership diagrams are shown as follows. 

 

Input: 

 

Front Middle 

 

 

Front Left & Right 

 

 

Left & Right 

 

Output: 

There are two outputs, speed and wheel angle, of the fuzzy logic controller. Each one has 7 

memberships (VHB—very high backward, VHF—very high forward, VHL—very high left, VHR
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—very high right ). Speed ranges from -5 Km/h to 5 Km/h. Wheel angle ranges from -30 degree to 

30 degree.  

 

Speed 

 

 

Wheel Angle 

 

The reason why we include the backward speed is that backward motion might be a solution to the 

circumstance showed in the picture. A car goes in a dead end and all sensors warn that obstacles 

are in “Near” membership. There is no doubt that the ideal way to get out of this dilemma is go 

backward without steering. But this would cause some problems in some situations. 
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For example, if a car is standing at a certain position at the moment, two following rules are 

involved. One rule wants to go backward while the other intends to go forward. Different weights 

on rules might cause the car to stop. However, in most of our cases, there are usually more than 8 

rules involving in, which have bigger chances to find a balanced point (Stop). In views of this 

problem, we decided to remove all the backward demand out of our fuzzy logic rule list. So the 

car will stop when it finds itself trapped in a dead end for the security consideration.  

 

Two videos named “demo3” and “demo4” show how two fuzzy logic principles work in 

simulation. The fuzzy logic controller in the video “demo3” involves with backward mechanism. 

It attempted and went back many times before finding the way to get out of the dangerous area. In 

many unsuccessful cases, the car just stopped on the way backward. Obviously, “demo4” works 

much better the “demo3”. 

 

 

 

 

 

We have finished the functional simulation in Prescan. But we don’t have enough time to finish 

the test with RCV. Undoubtedly, some rules still need to be modified according to the performance 

in real test. 48 rules imply that the test is doomed to be tough.   

 

Simulation: 

Prescan simulator in smart mobility lab is used to visualize a car’s movement with the action of 

fuzzy logic controller. There are many types of virtual sensors that can be added in the car which 

would provide the source of input signals. Also, user is able to design the operation environment 

and make the simulation scene as similar as the real one. On the other side, the weakness of this 

simulator is also prominent. Firstly, the model of a car is based on the bicycle model instead of a 

four-wheel model. Secondly, all the sensors in Prescan are too perfect to reflect the defective 

performance of the sensors in real life, which caused us spending more time debugging and tuning 

the control parameters.  
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Data analysis  

GPS Settings: 10Hz update rate 

GPS coordinate tracking accuracy – there is very little data corruption with noise levels consistent 

of centimeter precision. This performance is still valid even in the beginning when the car is 

situated immediately next to building. Data fluctuation and outliers are kept to a very low 

minimum. In conclusion, the coordinate tacking of the GPS system is very reliable. 

 

Please note the constant rate of GPS data reporting (10Hz) and the result that stems from this fact 

– the higher the speed, the less dense the data is. This could potentially be detrimental to 

performance in high-speed applications.   

 

GPS heading accuracy  

Even though for an ideal setup one would need 2 rover units operating in a master-slave 

relationship in order to create a vector of heading, we achieved a reasonably usable heading with 

just one rover GPS unit. The problems that arise with using GPS for heading are evident in the 

low speed and stationary areas of the plot below – the data is unusable under a certain speed (2 

km/h). Once the speed falls below 0.5 km/h the data becomes random and needs to be filtered.  

 

Another problem was the near proximity of buildings and trees which aided the generally low 

accuracy and delayed reaction to direction change. This lag was our biggest problem. 

Unfortunately we did not seek ways to address these problems but with model predictive control 

and data filtration we believe the performance could be improved. We however do not recommend 
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using this system as a primary heading estimator in the same conditions. 

 

 

 

 

Fuzzy-logic controller output and filtered steering input 

The nature of the fuzzy logic dictates that the output should be somewhat smooth compared to the 

relay-like step control of a simple lookup table. This however does not factor in conditions like 

border-line states and fluctuating heading reading, which contributed to some very sharp and 

dangerous heading references. This was remedied by engineering a low-pass discrete filter which 

removed the spikes in the signal without adding any significant lag. 
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Steering input and actual steering angle 

Here we see the steering controller does a fantastic job of following the reference signal we assign. 

Of course, due to the poor low-speed steering capabilities of the RCV's suspension and actuators 

we were never able to reach what we estimated to be the minimum steering angle to maneuver 

within the desired unusually tight parking lot. Apart from that there was little-to-no lag added to 

the actuation by the steering controller. 
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Appendix: 

 

 

 

 

 

 

 

 

 

Trimble GPS user manual  
 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

Basic information 

Type: Trimble SPS 852 GNSS modular receiver 

Admin: admin 

Password: password 

Serial number of the Lab GPS unit: 5035K69898 

Serial number of the Scania GPS unit: 5039K70904  

 

Trimble Web:  

http://construction.trimble.com/products/site-positioning-systems/sps855-gnss-modular-receiver  

 

Contact person: 

Ingi from Sitech (ingi.gudmundsson@sitech-sverige.com) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://construction.trimble.com/products/site-positioning-systems/sps855-gnss-modular-receiver
mailto:ingi.gudmundsson@sitech-sverige.com
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Software  

WinFlash, which can be downloaded from the web above, is used to upgrade the Trimble GPS by 

installing the license (it can do more than upgrade).  

 

Choose “Trimble SPS x5x Receiver” and right “PC serial” port, and then click “Next”. In the 

operations, please choose “update receiver options”. 

 

 

 

Web configuration: 

Web configuration is able to do more than WinFlash can do. It is recommendable to configure the 

GPS units in the Web. 

1. Connect a GPS unit to a PC with a LAN cable. Make sure the setting (local area connection 

properties—internet protocol version 4—General—Obtain an IP address automatically) 

is enabled. 

2. Make sure DHCP is enabled. In the GPS interface, Enter—Ethernet Config—DHCP. 

3. Type “169.254.1.0” in browser and enter the admin and password. You will see the interface 

as follows. 
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How to save/upload a setting file 

You can save your setting by downloading the application file instead of making a bunch of 

screenshots. 

Receiver Configuration—Application Files—operation (download/upload files)—choose a 

file 

 

I/O Configuration: 

In our project, GPS data is transmitted via a Lemo cable. In NMEA list, you can enable the signals 

you want to obtain from GPS. GGA is the GPS coordinate and HDT is the heading. The meaning 

of other abbreviations can be found in the help session. 
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Radio: 

Make sure both Rover and Base station have the same radio frequency to communicate. 

 

 

How to set up a reference station 

For the setting file of our Base unit, you can find it in our back-up USB stick with the name of 

BaseConfig. Our base unit was set up on the roof of transport lab. Both GPS and radio antennas 

were connected to the GPS unit.  

 

Our reference coordinate, which is obtained from Google Earth, is pinpointed at one corner of the 

roof. Reference height is of no importance in our case (Don’t make it too big).  
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RTK mode should be Synchronous. Then you will see a word of “Trans” flash on the GPS screen, 

which means it is sending data.  

 

 

How to set up a rover:  

For the setting file of our Rover unit, you can find it in our back-up USB stick with the name of 

RoverConfig. Then connect two antennas to the Rover unit and you will see “Reci” flash on the 

GPS Screen.  

 

Precision: 

Our GPS’s theoretical precision is 7 centimeters as showed in Receiver option. Actually it is able 

to locate within 2 or 3 centimeters if it is fixed by satellites. As the following picture shows, it has 

many modes like No fix, fixed, float, Location, the meaning of which can be found in 

specification. If a GPS unit is placed in house or close to a building, then it would always show 

“float” instead of “fixed” or location. “H0.172” refers to current precision “theoretically 0.172 m”. 
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Real-time target computer: “Speedgoat” 

User Manual 
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General information 

This is a mobile real-time Matlab target machine manufactured by the Swiss company SpeedGoat 

GmbH and uses their own proprietary drivers within Matlab. It is programmed by creating a 

Simulink model which is then compiled and downloaded onto the SpeedGoat. Below are the 

detailed instructions on installation, use and debugging. 

 

Requirements: 

- OS: Windows 7 or newer, 64bit 

- Matlab 2014b or newer (because it contains a stand alone code compilation mode) 

- Kingston USB stick for kernel transfer 

- Wired LAN connection with the host PC (for when the stand alone mode is NOT used or for data 

logging and monitoring purposes) 

 

 

Support: 

There is already a support peson which has answered many questions regarding this specific unit.  

 

 

 

 

 

 

 

 

 

 

Installation instructions:  

In order to use the Speedgoat, Matlab needs to have the proprietary drivers from Speedgoat 

installed. At the time of publication the latest version for our unit is 8. To install this version 8 of 

the Speedgoat Tools and Drivers library, made for Simulink Real-Time and backwards compatible 

with xPC Target Releases R2009b-R2013b, please proceed as follows: 

 

 

Prerequisites 

- MATLAB with Simulink Real-Time or xPC Target license (included in most KTH licenses) 

- Administrator rights for MATLAB (Run MATLAB as an Administrator) 

- Compatible MEX C/C++ compiler installed and configured (for a list of compatible compilers 

see http://www.mathworks.com/support/compilers/). Before starting the installation you should 

check that your compiler is configured correctly by typing mex –setup at the MATLAB command 

prompt. 

 

Diego Kuratli 

Development Engineer and 

Team Lead Quality Engineering 

diego.kuratli@speedgoat.ch 

http://www.mathworks.com/support/compilers/
mailto:diego.kuratli@speedgoat.ch
mailto:diego.kuratli@speedgoat.ch
mailto:diego.kuratli@speedgoat.ch


25 

 

 

 

Installation procedure 

1) Download the library from www.speedgoat.ch/downloads/sglib/speedgoat_8.zip  

2) Extract the ZIP file to a temporary folder on your development computer e.g. 

C:\temp\speedgoat_8 

3) Open MATLAB and navigate to the extracted folder. 

4) Once you have found the speedgoat_setup.p file run it by typing speedgoat_setup at the 

command prompt. 

5) Follow the instructions. The complete procedure may take few minutes. 

6) Once finished, exit and restart MATLAB. 

 

Get started 

- Type speedgoat at the MATLAB command prompt to get started.  

- The main driver library is accessible by typing speedgoatlib at the MATLAB prompt. The library 

is also available in the Simulink library browser. 

- Use speedgoatkerneltransfer and the provided USB drive to configure and install a new kernel on 

to your Speedgoat real-time target machine. This function replaces speedgoatmachineboot from 

previous versions. 

- You can open Speedgoat Product Documentation by typing speedgoatdoc. Additional 

documentation is available online at www.speedgoat.ch/support. 

 

 

MathWorks Software Patches 

  

R2014a kernel patch 

For R2014a, Speedgoat strongly recommends to install a kernel patch resolving potential memory 

and graphics issues. To install please proceed as follows: 

1) Close and restart MATLAB (make sure to run MATLAB as an Administrator) 

2) Download the patch: 

www.speedgoat.ch/downloads/bugfix/MathWorks/R2014a_kernelpatch/Patch_R2014a.zip  

3) Extract the ZIP file in the MATLAB workspace 

4) In MATLAB, navigate to the extracted folder and locate the patch_installer.m script 

5) Run patch_installer and follow the displayed instructions 

6) Once the patch is installed, please restart MATLAB 

7) Generate and transfer a new kernel, using speedgoatkerneltransfer. (more info on this step later) 

Additional software patches required depending on specific use cases or target machine 

configurations only: 

www.speedgoat.ch/Resources/Support/TargetMachineSetup/index.html?software_updates_and_pa

tches_performance.htm 

http://www.speedgoat.ch/downloads/sglib/speedgoat_8.zip
http://www.speedgoat.ch/support
http://www.speedgoat.ch/downloads/bugfix/MathWorks/R2014a_kernelpatch/Patch_R2014a.zip
http://www.speedgoat.ch/Resources/Support/TargetMachineSetup/index.html?software_updates_and_patches_performance.htm
http://www.speedgoat.ch/Resources/Support/TargetMachineSetup/index.html?software_updates_and_patches_performance.htm
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Establishing connection: 

1) Start XPC Explorer (or Simulink Real Time Explorer in Matlab 2014b and up) with inputting 

“xpcexplr” in the Matlab command-window. 

  

On the top-left side under “MATLAB Session” there might be a target PC already defined. If you 

are sure it is not used by another person delete it and add a new Target PC using the button just 

above. You will need to then go to the properties page by clicking the “Properties” sub-category 

just underneath your “Target PC1” and input the following settings: 

Please keep in mind that you need to have your computer's wired network settings configured as 

to have your computer (Host PC) in the same LAN as the Speedgoat, but defined as a different 

peer, i.e. the first three numbers of the IP address should be the same, but the last number must be 

different for the Speedgoat and the Host PC:  

Speedgoat: XXX.XXX.XXX.a 

Host PC: XXX.XXX.XXX.b 

 

 

 

For our specific case, we used: 
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Our host PC had its network settings modified to have an IP of 192.168.7.4. 
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Kernel transfer 

 

In order to use the Speedgoat as a real-time target machine it needs a kernel from which to run off. 

This kernel must be transferred using the specific provided Kingston USB stick which is one of 

the very few that are supported on this machine. When you modify the settings in xPC Explorer, 

make sure that you save the configuration. For boot configuration you need to either choose 

Removable Disk or Stand Alone. More on these later. Do not create disk from here! - it is for 

normal xPCs, the Speedgoat needs its own tools. 

Then type speedgoatkerneltransfer in the command window. Use the tool to choose the 

appropriate setting and depending on what you have chosen you will have 2 or three files on the 

USB stick, for example: 

-       dos.sg 

-       xpckrnl.rtb 

Please verify that these files are in the USB stick, before connecting it to the target machine. 

 

Then, connect the USB stick into a free USB port of your target machine. During the booting time, 

the execution will stop at the DOS command line, showing a message “kernel transfer successful”. 

Then, you will have to remove the USB stick and reboot the target machine. If you don’t see the 

message, the kernel transfer failed. In that case, you can try to reboot again the target with the 

USB stick connected, or use another USB port. 

 

Operation 

Depending on the needs of the user, the kernel may be bare and just carry the basic networking 

and hardware settings done in XPC explorer (Simulink real time explorer in Matlab 2014b and up) 

or have the compiled code within itself. How to transfer kernels will be explained later. 

Normal mode: 

In the case of a bare kernel you will need to upload the Simulink program you have compiled 

additionally trough the LAN cable and you must do so every time the machine is started. In this 

case you need to have chosen and saved the option “Removable disk”. It is not suitable for 

autonomous operation. The benefit is that you only transfer the blank kernel once and then only 
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upload the software additionally very quickly over LAN, so it is useful for prototyping. After the 

machine has been successfully connected you can either have it uploaded automatically when the 

compilation of the code trough the “Build model” button in Simulink finishes, or you may 

sometimes get an error saying that it cannot find the target. This is often nothing to worry about, 

and means you need to upload the code manually. This is done by right-clicking on the real-time 

machine in your Simulink real-time Browser and clicking “Upload” , then choosing the .dlm file 

you have just compiled from the model. This could also be done if you want to change the code 

with another one you have already compiled at a different time.  

Standalone mode: 

If you need to have the Speedgoat somewhere where you will leave it to operate autonomously 

and will not make changes very often (e.g. in a car) you can use the stand alone mode. In this case 

you need to have chosen and saved the option “Standalone”. In this mode the kernel has the 

compiled code embedded in itself and thus the when the Speedgoat is started it begins code 

execution immediately and without the need for a host computer to start it manually. The 

disadvantage is that it is very clumsy and slow to transfer kernels every time you make small 

changes and thus should be used when the code is ready for longer periods of testing. 

 

Data logging: 

Data logging is done by having a File Scope in your model. Make sure you have a large enough 

sample size. It starts when the program is run so there might be a lot of unnecessary data in the 

beginning if you are using the standalone mode. The code for data extraction is on the KTH 

Transport Labs file server. The code stops the execution of the program and converts the data of 

some or all file scopes to a readable structure in your work space. Please note you might need to 

change the code according to your needs. Do not power off the Speedgoat before you extract 

the data. Depending on your settings you might lose it!  

Sample data logging extraction code (save as a *.m file and run): 

%% Code 

addpath(genpath(fullfile(pwd,'GCDC2012-Library'))); %Very important library for datalogging. 

%Please make sure you have this in your MATLAB path. 

%% Implementation:  

tg = xpc;  

stop(tg)                                    % Stop xPC Target Object (run the model) 

% Wait until model has finished running. 

while ~strcmpi(tg.Status,'stopped');        % Is the run complete? 

end; 

% Get data. 

%tg = xpc; 

for i=tg.Scopes(1:end)                         % Get file scope (Id: 2) 
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    sc = getscope(tg,i); 

    if strcmpi(sc.Type,'File'); 

         

        fsys = xpctarget.fs;                        % Connect to the target PC file system 

        h = fsys.fopen(sc.FileName);                % Open the log file 

        fsysData = fsys.fread(h);                   % Read the data 

        fsys.fclose(h);                             % Close the log file 

        current_name=sc.FileName(1:end-4); 

        Results.(genvarname(current_name)) = readxpcfile(fsysData);   % Convert uint8 log data to double 

and log under Scope name 

        Results.(genvarname(current_name)).sc=sc; 

        Results.(genvarname(current_name)).tg=tg; 

        clear fsys fsysData current_name h sc  

    end 

end 

 

 

 

 

Debugging: 

Please note the Speedgoat can only use I/O blocks from its own library in SMULINK, thus 

limiting your choice, which is bot a good and a bad thing. On the plus side you have a smaller and 

easier choice, but on the downside, these blocks may have bugs which you will bring with them. 

Problems and solutions: 

1) In the Autonomous RCV model files the CAN BUS message unpack block always reads the 

first element in the message as 0 no matter how long (bitwise) it was or how many other elements 

there were. We therefore had to modify what the RCV sent to go around this problem. Another 

way to fix this is to use the old “obsolete” blocks from version 2, but in other cases other bugs 

may appear. 

2) Another problem is the simulated real-time – it means that for every iteration the execution time 

must be lower than the discrete time you set in the model. That means that some delayed blocks 

may cause “CPU overflow” error message. This is either fixed by using an optimized block, 

loosening the sample time of the model or disabling the real-time check (not recommended!) What 

we did was to find that the task execution time is 0.12 ms while our fix-step of Simulink model is 

0.1 ms. This is done in the property window of xPC target. The overload problem was addressed 

after we changed our fix-step to 0.2 ms. 

3) When we monitored the signals obtained from dSPACE box (the main computer of the RCV), 

we found that the steering angle signal responds 3 seconds after we turn the steering wheel. The 

reason was that most of the CAN messages in dSPACE CAN bus are sent out every 30 ms. When 
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the sending time arrives, those messages are send out in a certain order according to the priority. 

The time interval between two different messages is less than 0.2 ms. When the Receive and Read 

Module retrieves our target messages in intervals of 0.2 ms, it cannot guarantee that the target 

message is captured all the time. That’s the source of the delay. There are two solutions. One is to 

decrease the retrieving period of the Receive and Read Module to 0.1 ms or even lower, but this 

was incompatible with our previous solution to increase the sampling time to 0.2ms. So we tuned 

the RCV's message broadcasting frequency for the messages we were interested in different from 

that of the other messages. 

 

 


