
An Implementation Of
The Annis 2 Query Language

Viktor Rosenfeld∗

Supervisor: Ulf Leser

April 23, 2010

We describe the Annis 2 Query Language and show how its features including operations
on distinct graphs over the same nodes can be implemented using a relational database as
a back-end. We provide a reference implementation on top of PostgreSQL and measure its
performance on consumer hardware.

∗rosenfel@informatik.hu-berlin.de

Contents

1 Introduction 5
1.1 Historical overview of Annis . 5
1.2 Goals and structure of this work . 6

2 Corpus Data Model 7
2.1 Overview . 7
2.2 Key concepts . 7
2.3 SQL schema . 8

3 Annis 2 Query Language 11
3.1 Introductory example . 11
3.2 Text span search terms . 12
3.3 Linguistic constraints . 12

3.3.1 Coverage . 12
3.3.2 Dominance . 12
3.3.3 Precedence . 14
3.3.4 Pointing relations . 14
3.3.5 Text span constraints . 15

3.4 Combining expressions with OR . 15
3.5 Meta data . 16
3.6 Query evaluation . 16
3.7 Query functions . 17
3.8 Pagination of ANNOTATE results . 18
3.9 Differences between ANNIS-QL 1 and AQL2 . 18

4 SQL Generation 20
4.1 Computation of derived node data during corpus import 20

4.1.1 Minimally and maximally covered tokens . 20
4.1.2 Root nodes in the original ODAG . 20
4.1.3 Identification of a node’s top-level corpus . 21

4.2 The SELECT and FROM clauses . 21
4.3 The WHERE clause: Translation of AQL2 language features 21

4.3.1 Text search . 21
4.3.2 Token search . 22
4.3.3 Annotation search . 22
4.3.4 Node search . 23
4.3.5 Coverage . 23
4.3.6 Precedence . 23
4.3.7 Dominance and pointing relations . 24
4.3.8 Root nodes . 29
4.3.9 Node arity . 29
4.3.10 Token arity . 29

4.4 Query alternatives . 30
4.5 Corpus selection . 30
4.6 Meta data filtering . 31
4.7 Query functions . 32

4.7.1 The COUNT function . 32
4.7.2 The ANNOTATE function . 32
4.7.3 The MATRIX function . 32

5 Related work 34
5.1 TIGERSearch . 34

2

5.2 Evaluating XPath queries using relational databases . 35

6 Evaluation and Optimization 36
6.1 Search boundaries for ranged operators . 36
6.2 Performance of the normalized corpus data model . 38
6.3 The materialized facts table . 38
6.4 Combined node lookup and node join . 39

6.4.1 Indexed attributes for search terms and linguistic constraints 42
6.4.2 Partial indexes . 43
6.4.3 Evaluation of different indexing strategies . 43

6.5 The MATRIX query function . 44
6.6 The ANNOTATE query function . 46
6.7 Rewriting queries with anchored regular expression searches 47
6.8 Influence of document size . 48

7 Conclusions and Outlook 50

A Annis 2 Query Language Grammar 52

B Internal DDDquery implementation 54
B.1 Supported DDDquery features and custom extensions . 54
B.2 Mapping from AQL2 to DDDquery . 55

C SQL Schema of the Corpus Data Model 57

D Experimental Setup 59
D.1 Test queries . 59
D.2 The Tiger corpus . 59
D.3 Test system . 61
D.4 PostgreSQL configuration . 61
D.5 Configuration of system resources . 61

References 63

List of Figures

1 Screenshot of the Annis 2 web application . 5
2 Relational schema of the corpus data model. 9
3 A match from the PCC3 corpus for the query example. 11
4 Syntax tree fragment demonstrating different dominance relationships between spans. . . 14
5 Annotation graph fragment demonstrating different precedence relationships between spans. 15
6 Using pointing relations to model information structure. 15
7 Annotation graph with pointing relations and multiple syntax trees. 24
8 Annotation graph partitioned by edge type. 25
9 Annotation graph partitioned by edge type and name. 26
10 Annotation graph components for each combination of edge type and name. 27
11 Effect of the inclusion optimization. 37
12 Join plan generated by PostgreSQL for query 9. 38
13 Performance of COUNT on the normalized source tables and the materialized facts table. 39
14 Execution plan generated by PostgreSQL for query 5 with nested loops joins enabled. . . 40
15 Execution plan generated by PostgreSQL for query 5 with nested loops joins disabled. . . 41
16 Comparison of average vs. best runtime. 45
17 Evaluation time of the MATRIX query function. 45
18 Influence of limit and context on ANNOTATE. 46
19 Comparison of COUNT vs. ANNOTATE. 47

3

20 Execution plan for unanchored regular expression searches. 47
21 Execution plan for anchored regular expression searches. 48
22 Performance of unanchored vs. anchored regular expressions. 48
23 Comparison of average vs. best runtime on the 1 GB Tiger instance. 49
24 Best runtime in five sequential runs on the 500 MB and 1 GB Tiger instances. 49

List of Tables

1 Coverage operations in AQL2. 12
2 Possible coverage relationships between spans. 13
3 Dominance operations in AQL2. 13
4 Precedence operations in AQL2. 14
5 Pointing relation operations in AQL2. 15
6 Unary linguistic constraints in AQL2. 16
7 Table attributes required for the evaluation of Annis 2 language features. 37
8 Size of the Tiger corpus on disk. 39
9 Indexed attributes for search terms and linguistic constraints. 42
10 Subset definitions for partial indexes. 43
11 Query evaluation times depending on indexing strategy. 44
12 Space requirements and indexing times for different indexing strategies. 44
13 Row count of the ANNOTATE function. 46
14 Performance of ANNOTATE compared to COUNT for slow queries. 46
15 DDDquery mappings for Annis search terms. 55
16 DDDquery axis mappings for binary Annis linguistic expression. 55
17 DDDquery mappings for unary Annis linguistic expressions. 56
18 Number of search terms and operations per query. 59
19 General information about the Tiger corpus. 59
20 Number of tuples for each table. 60
21 Number of distinct values for each node and edge annotation name. 60
22 Common annotation values for node annotations. 60
23 Test queries used in the experiments. 62

Listings

1 FROM clause generated for an Annis query. 22
2 SQL query template for Annis queries with multiple alternatives using UNION. 31
3 SQL query for the ANNOTATE function. 33
4 Table definitions for the SQL schema of the corpus data model. 57
5 PostgreSQL configuration . 61

4

1 Introduction

Annis 2 is a search engine and visualization tool for linguistic text corpora containing conflicting, multi-
modal annotations over the same texts [25]. Annotations can be key-value pairs attached to text spans
including support for multimedia elements, syntax graphs over a set of tokens in a text or arbitrary
links between spans. This work primarily discusses the Annis 2 back-end – the part of the system that
translates Annis queries into SQL. Its main contribution is support for distinct graph types over the
same nodes, i.e. the ability to construct graphs containing different types of edges over a set of tokens
and query for them either separately or collectively. We use this feature to implement both dominance
and arbitrary pointing relationships between text spans.

1.1 Historical overview of Annis

A predecessor of the system – now called Annis 1 – was developed within the Sonderforschungsbereich 632
at the University of Potsdam [25]. It became apparent that Annis 1 was not particularly suited for large
corpora because of its in-memory architecture and a desire to integrate the system with a database
emerged. At the same time, the Humboldt-University of Berlin was developing a SQL compiler for
DDDquery , the query language used by the DeutschDiachronDigital project [29, 2]. In an effort to reuse
code, a simple mapping from the Annis 1 query language to DDDquery was devised, so Annis 1 could
support a database back-end as fast as possible.

The time spent during the database port was used to simplify the Annis query language and extend it
with new features. The project was also joined by Karsten Hütter who developed a web frontend for a
linguistic search engine including an advanced AJAX query builder as part of his diploma thesis [18].
Today his work, of which a screen shot is shown in Figure 1, is the most visible part of the Annis 2
system as the user interacts with it directly.

Figure 1: Screenshot of the Annis 2 web application with a result for the query example in section 3.

5

1.2 Goals and structure of this work

The goals of this work are to formally define the concepts used within Annis 2, to develop an imple-
mentation of the Annis 2 Query Language (AQL2) on top of a relational database host (RDBMS) that
can be used interactively with large corpora, to study optimization techniques, and to provide detailed
performance measurements of the entire system.

We first provide a formal definition of the corpus model used by Annis including a mapping to a SQL
schema in section 2. Then, in section 3 we discuss the features of the Annis 2 Query Language including
query functions. In section 4 we provide a reference implementation of AQL2 on top of the open-source
RDBMS PostgreSQL. This section includes a detailed description on how graphs with multiple edge types
can efficiently be supported on SQL hosts. We briefly discuss related work on evaluating XPath queries
on relational databases and contrast Annis with TIGERSearch in section 5. The system is evaluated in
section 6 for its performance on current consumer hardware on a moderately large corpus. Finally, in
section 7 we summarize our findings and discuss on-going and future work on Annis.

In the appendix we briefly discuss the Internal DDDquery implementation and provide an Annis 2 Query
Language Grammar, the SQL Schema of the Corpus Data Model and a description of the Experimental
Setup including information on the Tiger corpus.

6

2 Corpus Data Model

2.1 Overview

The corpus data model defines a normalized representation of the information contained in an annotated
corpus. It is used as an intermediary format to import the information generated by various annotation
tools into the Annis service. During an import it is augmented with pre-computed, index-like information
to implement different operations on the corpus data.

Informally a corpus consists of one or more texts (primary data), such as a newspaper article, and
annotations on these texts (secondary data). Individual text spans are modeled as nodes which are
arranged in an ordered directed acyclic graph (ODAG). For each text an ordered subset of nodes define
the tokens of the text. Edges between nodes can carry arbitrary semantic meaning. Currently we
distinguish between edges that encode coverage, dominance and pointing relations between text spans.
Nodes, edges and corpora can be annotated with key-value pairs.

A corpus can also contain child corpora (called documents) which are arranged in a hierarchy.

2.2 Key concepts

Definition 1 (Primary data) Any raw text can be used as primary data for a corpus. A primary data
text has a unique identifier idtext and an informational name.

Definition 2 (Text span) The triplet (idtext, left, right) defines a text span. It is the substring from
left to right (inclusive) of the primary data text identified by idtext. Both left and right refer to character
positions of the primary data text, starting with 0.

Definition 3 (Token) Let t be a primary text and S a set of spans from t. A subset T ⊆ S is called
the tokens of t if the following conditions hold:

1. T is well-ordered under a relation ≤pos,

2. ∀i, j ∈ T : i <pos j ⇒ iright < jleft,

3. ∀i ∈ T : ¬∃j ∈ S : (ileft < jleft < iright) ∨ (ileft < jright < iright), and

4. ∀i, j ∈ T : (i <pos j ∧ ¬∃k ∈ T : i <pos k <pos j)⇒ ¬∃l ∈ S : iright ≤ lleft ∧ lright ≤ jleft

Informally, the token order relation ≤pos does not contradict the order implied by the position of the
spans as substrings of the text t (2); if i is a token then there exists no span with its left or right border
within i (3); and if i and j are two consecutive tokens then there exists no span between them (4).

The reasoning behind these admittedly complex requirements is that although Annis supports conflicting
annotations by different tools over the same text, all annotation features must refer to a shared token
layer.

Definition 4 (Annotation graph) Let T be a set of primary data texts. An annotation graph over T
is an ordered directed acyclic graph of text spans taken from T .

A node is defined by the tuple (span, name, annotations, continuous) where

• span is a text span,

• name is an informational name, optionally qualified with a namespace,

• annotations is a set of key-value pair annotations and

• continuous specifies whether the text span is gap-free or not.

An edge is defined by the tuple (source, destination, type, name, annotations) where

• source and destination are the edge’s nodes,

7

• type is a label that encodes the type of the edge,

• name is a label that partitions edges of a given type, optionally qualified with a namespace and

• annotations is a set of key-value pair annotations.

The distinction between edge type and name is an artifact of the query language which is discussed in
the next section. The edge type is determined by a linguistic constraint between two text spans. The
constraint can be qualified with an edge name to only select some of the edges it normally operates on.

Currently three different types of edges are supported:

• Coverage edges from a parent span to two or more child spans group the child spans, allowing the
construction of text spans with gaps in them.

• Dominance edges encode the syntax structure of text spans. Note that dominance implies coverage
but not vice versa.

• Pointing relation edges encode semantic relations between text spans.

Note that each span of a primary text can be referred to by more than one node in the annotation graph.
It is also worth pointing out that tokens are not necessarily leafs in the annotation graph. A trivial
example of a token represented by a non-terminal node in the graph is a token with an outgoing pointing
relation edge.

Definition 5 (Document, Corpus) A document is defined by the tuple (name, texts, graph, annotations)
where

• name is a informational name that has to be unique for root documents,

• texts is a set of primary data texts,

• graph is an annotation graph over texts,

• annotations is a set of key-value pair annotations (used as meta data).

Documents are arranged in a hierarchy with multiple roots. A root document is called a corpus.

2.3 SQL schema

In this section we will develop a SQL schema for (a variant of) the corpus data model. The schema
shown in Figure 2 represents the output format of the Annis converter.1 It is a very close adaptation
of the corpus data model with one particularity: for token spans the covered text is stored in the node
representing the span. The schema is described in detail below. In order to keep things simple we will
omit a few details, such as UNIQUE constraints. The complete schema, including the modifications made
during import, is listed in appendix C.

Documents and corpora are stored in a table corpus using the combined pre- and post-order scheme (see
below) to encode the document hierarchy. Meta data is stored in the table corpus_annotation.

corpus:
id primary key
name name of the corpus
pre pre-order value
post post-order value

1The Annis converter transforms data files of different linguistic tools to the relational format expected by Annis [32, 33].

8

Figure 2: Relational schema of the corpus data model.

corpus_annotation:
corpus_ref foreign key to corpus.id
namespace optional namespace of annotation key
name annotation key
value annotation value

Primary data texts are stored in a table text.

text:
id primary key
name informational name of the primary data text
text raw text data

Nodes of an annotation graph are stored in the tables node and node_annotation. The attributes text_ref,
left, right, continuous, namespace and name of the node table correspond to the respective constituents of
a node. The attribute corpus_ref is used to connect a node to a document and the attribute token_index
is used to encode the token order of the underlying primary text. Finally, the attribute span contains
the covered text for token spans; it could be computed from the other attributes but is supplied by the
Annis converter for convenience.

node:
id primary key
text_ref foreign key to text.id
corpus_ref foreign key to corpus.id
namespace optional namespace of the node’s name
name name of the node
left left text span border (inclusive)
right right text span border (inclusive)
token_index token position if the span (text_ref, left, right) is a single token, otherwise NULL
continuous true if the span (text_ref, left, right) is gap-free, otherwise false
span the covered text if the span is a token, otherwise NULL

9

node_annotation:
node_ref foreign key to node.id
namespace optional namespace of annotation key
name annotation key
value annotation value

To store the edges of the ODAG we use a combined pre/post-order scheme, originally developed as an
index structure for XML documents for efficient evaluation of XPath queries [15]: Starting from a root
node the graph is traversed depth-first and each node is assigned a pre-order value when the traversal
reaches the node before its children are visited and a post-order value after its children have been visited.
One counter is used for both the pre-order and the post-order traversal.

Because nodes can have multiple parents in an ODAG, any node except roots may be visited by the
traversal algorithm more than once and thus have multiple pre/post-order values. The traversal effec-
tively transforms an ODAG into a tree (or a forest) where nodes in different positions of the tree are
identified with each other. It is, however, easy to reconstruct the original ODAG from the tree as [28]
has shown.

As a consequence of this 1 : n relationship the pre/post-order values have to be decoupled from the nodes.
They are stored in the table rank. Each row in rank represents an (incoming) edge in the transformed
tree or a root node if parent is NULL. The edge type and name are not stored along with each edge;
instead the annotation graph is partitioned along distinct combinations of type and name by the Annis
converter and the connected components of the partitioned graph are then computed. These components
are stored in the table component. Finally, edge annotations are stored in the table edge_annotation.

The attribute parent of the rank table is not strictly needed to store the ODAG as it could be computed
from the other attributes. It is supplied by the Annis converter for convenience.

rank:
pre pre-order value and primary key
post post-order value
node_ref foreign key to node.id
component_ref foreign key to component.id
parent foreign key to rank.pre of the parent node, or NULL for roots

component:
id primary key
type edge type of this component
namespace optional namespace of the edges’ names
name name of the edges in this component

edge_annotation:
rank_ref foreign key to rank.pre
namespace optional namespace of annotation key
name annotation key
value annotation value

10

3 Annis 2 Query Language

The Annis 2 query language (AQL2) is similar to ANNIS-QL 1.0 [14], the query language used by the
original Annis system which in turn is based on NiteQl [12] and TIGERSearch [19]. The most significant
changes are support for edge annotations and linguistic constraints that operate on distinct graphs over
the same data. Annis 2 also fixes some non-intuitive behavior of text searches and of the precedence
operator in Annis 1.

3.1 Introductory example

Annis queries consist of search terms which select text spans by their attributes and linguistic constraints
which specify a required relationship between the selected spans. A query can optionally contain meta
annotations to restrict the documents that are searched by some arbitrary attribute.

An example is the easiest way to introduce these concepts:

1 cat="S" & node & pos="VVFIN" & node &

2 #1 >[func="OA"] #2 & #1 > #3 & #1 >[func="SB"] #4 &

3 #2 .* #3 & #3 .* #4 &

4 meta::l1="de"

The first line contains of four search terms. Each is assigned a number implicitly, so they can later be
referred to in the query.

The next two lines describe how these four spans should relate to each other. Each line contains a number
of linguistic constraints linking two spans. Line 2 states that the first span should dominate the other
spans with a further restriction on the dominance relationship for the second and fourth span. Line 3
states that the second span precedes the third and that this span in turn precedes the fourth.

Finally, the last line limits the search to a subset of documents in German. Search terms, linguistic
constraints and meta annotations are combined with & (boolean AND), and though they are shown here
in order they can be mixed freely.

An answer to this query is any 4-tuple of text spans from the database that satisfies the query conditions.
If searched against the PCC3 corpus this query will find sentences (cat="S") in which the direct object
(func="OA") occurs before the verb (pos="VVFIN") and the subject (func="SB") after the verb. Figure 3
shows one such match.

pos = VVFIN

Das forderten sie

cat = S

fun
c =

OA func =
SB

1:

2: 3: 4:

.

token position

Figure 3: A match from the PCC3 corpus for the query example. Spans are represented by nodes with
the covered text shown below for tokens. The number to the left of a span indicates its position
in the answer tuple. Also shown are the dominance relationships between spans (blue edges)
and the token order (token position axis).

A complete grammar for AQL2 is shown in appendix A.

11

3.2 Text span search terms

There are three ways to search for a text span:

• node simply selects any span in the database.

• tiger:cat="S" selects any span with the corresponding key-value pair annotation. The annotation
key consists of a namespace and a name separated by a colon. The namespace is optional; if omitted
(e.g. cat="S"), any annotation with the specified name will match regardless of its namespace. The
annotation value can be specified using a regular expression by enclosing it with forward slashes
instead of regular quotes (e.g. cat=/S.*/).2 The annotation value is optional as well; if omitted
(e.g. tiger:cat) any annotation with the specified key will match.

• "Mary", or alternatively tok="Mary", selects a token span that covers the corresponding text. Again,
a regular expression can be used to specify the covered text (e.g. /Mar(y|ie)/). The search term
tok will match any token span.

Search terms are numbered in the order they appear in the query, starting with 1.

3.3 Linguistic constraints

A linguistic constraint selects any pair of text spans that satisfy a certain relationship. The general
form is #i operator #j where i and j are search term references. Currently four types of operators are
supported: coverage, precedence, dominance and pointing relations.

Additionally, there are a few unary constraints that evaluate the properties of only one text span. These
are listed in Table 6 on page 16.

3.3.1 Coverage

The coverage operation lets the user specify whether and how two text spans must overlap. They are
only defined on spans of the same text, i.e. itext = jtext must hold for the spans i, j.

The definitions of all available coverage operations are listed in Table 1. Some examples are shown in
Table 2.

Table 1: Coverage operations in AQL2.

Operator Name Definition

#i _=_ #j Exact Cover ileft = jleft ∧ iright = jright
#i _i_ #j Inclusion ileft ≤ jleft ∧ iright ≥ jright
#i _l_ #j Left Align ileft = jleft
#i _r_ #j Right Align iright = jright
#i _ol_ #j Left Overlap ileft ≤ jleft ≤ iright ≤ jright
#i _or_ #j Right Overlap jleft ≤ ileft ≤ jright ≤ iright
#i _o_ #j Overlap ileft ≤ jright ∧ jleft ≤ iright

3.3.2 Dominance

The dominance operators > and $ let the user specify the relative position of two spans in a syntax tree.
Annis 2 allows multiple syntax trees over the same spans. These are distinguished in the model using
named edges and can be queried with >name or $name. By default Annis 2 will merge all syntax trees into

2The regular expression is evaluated by PostgreSQL which uses a POSIX-style syntax with a few extensions [24]. See
the PostgreSQL manual, section 9.7.3. POSIX Regular Expressions.

12

http://www.postgresql.org/docs/8.4/interactive/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Table 2: Possible coverage relationships between spans (not exhaustive).

Span
positions

Coverage relation
#1 _=_ #2 #1 _i_ #2 #1 _l_ #2 #1 _r_ #2 #1 _ol_ #2 #1 _or_ #2 #1 _o_ #2

1:
2: ! ! ! ! ! ! !

1:
2: ! !

1:
2: ! ! ! !

1:
2: ! !

1:
2: !

1:
2: ! ! ! !

1:
2: ! !

a unified tree which is used in dominance operations if no name is given. Table 3 shows the different
versions of > and $.

Table 3: Dominance operations in AQL2.

Operator Definition

#i > #j i directly dominates j (alias for #i >1 #j)
#i >* #j i indirectly dominates j
#i >n #j i dominates j with distance n
#i >n,m #j i dominates j with distance n ≤ k ≤ m
#i >@l #j j is the left-most child of i
#i >@r #j j is the right-most child of i
#i $ #j i and j share a parent
#i $* #j i and j share an ancestor

The direct dominance operators >, >@l, >@r and $ can optionally be qualified with a list of edge annotations
enclosed in brackets [and], so that Annis 2 will only select dominance edges that are appropriately
annotated. Like annotation search terms, the annotation key can be qualified with a namespace and the
annotation value can be omitted or given as a regular expression.

Figure 4 shows a syntax tree fragment demonstrating dominance between spans:

• The upper cat="PP" span directly dominates the token span "zum" with a label func="AC"

(#1 >[func="AC"] #3).

• It also indirectly dominates the token "die" (#1 >* #4 and #1 >2 #4).

• The token "Ukraine" is the right child of the lower cat="PP" span (#2 >@r #5).

• "die" and "Ukraine" are directly dominated by the same node with a label func="NK" on both
edges (#1 $ [func="NK"] #2).

• Finally, "zum" and "Ukraine" share an ancestor span in the syntax tree (#3 $* #5).

Dominance implies coverage, e.g. if #1 > #2 then #1 _i_ #2 and if #1 >@l #2 then #1 _l_ #2.

13

zum 1:0 für die Ukraine

cat = PP

fun
c =

AC

func
=

N
K

func =
NK

cat = PP

fun
c =

AC

fu
nc

=
N
K

func =
NK

3: 4: 5:

2:

1:

.

Figure 4: Syntax tree fragment demonstrating different dominance relationships between spans.

3.3.3 Precedence

The precedence operator . lets the user specify how many tokens two spans may be apart. Like coverage
operations, precedence is only defined on spans of the same text. Table 4 shows the different versions of
the precedence operator.

Table 4: Precedence operations in AQL2.

Operator Definition

#i . #j i directly precedes j (alias for #i .1 #j)
#i .* #j i indirectly precedes j
#i .n #j i precedes j with distance n
#i .n,m #j i precedes j with distance n ≤ k ≤ m

For token spans the precedence operator reflects their order in the annotation graph. Non-token spans
are not ordered in the annotation graph per se, however the order of tokens induces an order on spans
in an annotation graph.

Definition 6 (Left-most, right-most covered token) Let s be a span. Then smin is the left-most
and smax the right-most token covered by s.

If we assume that the token order is described by a relation ≤pos, we can apply the precedence operator
to non-token spans s and t by redefining ≤pos as s ≤pos t := smax ≤pos tmin.

Figure 5 shows an annotation graph fragment demonstrating precedence between spans:

• The token "zum" directly precedes the token "1:0" (#1 . #2).

• "zum" also indirectly precedes the span annotated with cat="PP" (#1 .* #3 and #1 .2 #3). Note
that the token "für" is the left-most child of cat="PP" in the embedded syntax tree. Because
dominance implies coverage, "für" is therefore the left-most token covered by cat="PP".

3.3.4 Pointing relations

The pointing relation operator -> allows queries for arbitrary links between two text spans. It follows
the form of the dominance operator > except that the name is mandatory and that there is no support
to query the left-most3 or right-most child. Table 5 shows the different variations of ->.

3“Left child” or “right child” would only make sense if there were a natural order on outgoing links.

14

zum 1:0 für die Ukraine

cat=PP

1: 2:

3:

.

token position

Figure 5: Annotation graph fragment demonstrating different precedence relationships between spans.

Table 5: Pointing relation operations in AQL2.

Operator Definition

#i ->name #j i directly points to j
#i ->name * #j i points to j, either directly or through intermediate nodes
#i ->name n #j i points to j with distance n
#i ->name n,m #j i points to j with distance n ≤ k ≤ m

Like >, the direct pointing relation operator -> can be qualified with a list of edge annotations enclosed
in brackets [and].

In Figure 6 pointing relations are used to encode the information structure of a text:

• The red link relates the pronoun He to Sasha Muniak which occurred previously in the text.

• The blue link indicates that the phrase Polish American further describes Sasha Muniak.

Its developer is a Polish American , Sasha Muniak . He had worked with . . .

IDENT

APPOS

Figure 6: Using pointing relations to model information structure.

3.3.5 Text span constraints

There are a few unary linguistic constraints that only operate on one search term. They are listed in
Table 6.

3.4 Combining expressions with OR

The introductory example has already shown how search terms and linguistic constraints are combined
with AND to build non-trivial queries. They can also be grouped with parentheses (and) and combined
with | (logical OR) to build more complex expressions such as the following query:

"the" & (("tree" & #1 . #2) | ("house" & #1 . #3))

This query could be stated in a more concise fashion using a regular expression search:

"the" & /tree|house/ & #1 . #2

However, the longer version using OR is much faster; see section 6.7 for details.

15

Table 6: Unary linguistic constraints in AQL2.

Operator Definition

#i:root i is a root node of an annotation graph
#i:arity = n i has n children
#i:arity = m,n i has m ≤ k ≤ n children
#i:tokenarity = n i covers n token
#i:tokenarity = m,n i covers m ≤ k ≤ m token

3.5 Meta data

Given a query, Annis 2 generally searches all documents of a corpus, but the search can be confined to
documents that have a specified meta annotation. The general form is meta::namespace:key="value"

which looks like an annotation search term prepended with meta::. As with annotation search terms,
the namespace and the value are optional and the value can be given as a regular expression. Note
that although the syntax is similar, meta annotation definitions do not count as search terms and are
skipped when evaluating search term references in linguistic expressions. They are also not considered
when evaluating ORs. A document will only be searched if all meta annotations in the query are satisfied
regardless of the alternative in which they appear.

3.6 Query evaluation

Annis 2 evaluates queries in the following fashion: Let q be an AQL2 query and C a set of corpora on
which q should be evaluated.

First, if q contains meta annotation constraints they are stripped from q. Let D be the set of documents
in C that satisfy every meta annotation constraint originally contained in q (or the set of all documents
in C if q did not originally contain any meta annotation constraints).

Then q is transformed into its disjunctive normal form q′ = q1 ∨ . . . ∨ qn and each alternative is checked
for validity.

Definition 7 (Valid query) Let q be a query, qi an alternative of the disjunctive normal form of q and
let qi contain k ≥ 2 search terms s1, . . . , sk and l ≥ 1 binary linguistic constraints c1, . . . , cl. Further,
let #r be the reference to the r-th search term in qi, and let ⊗ be a placeholder for an arbitrary binary
linguistic operator. Then qi is valid iff

∀si, sj : (∃cp : cp is of the form #i ⊗ #j)

∨

∃sr1 , . . . , srn , cr1 , . . . , crn+1
:

cr1 is of the form #i ⊗ #r1 or #r1 ⊗ #i ∧
cr2 is of the form #r1 ⊗ #r2 or #r2 ⊗ #r1 ∧

· · ·
crn is of the form #rn−1 ⊗ #rn or #rn ⊗ #rn−1 ∧

crn+1 is of the form #rn ⊗ #j or #j ⊗ #rn


A query alternative consisting of exactly one search term and no linguistic constraints is always valid.
The query q is valid iff all of its alternatives are valid.

Informally, if we consider the search terms of an alternative as the nodes and the binary linguistic
constraints as the (undirected) edges of a graph then the alternative is valid iff the corresponding graph
is connected.4

4This requirement is necessary because the behavior of Annis 1, which implicitly assumes that unconnected groups of

16

Finally, for each alternative qi and each document d ∈ D Annis 2 will try to assign a span from d to
each of the k span selection terms, so that each of the l linguistic constraints is satisfied.

Definition 8 (Satisfied constraint, Solution) Let q be a query, q′ its disjunctive normal form, and
qi an alternative of q′ with k search terms and l linguistic constraints c1, . . . , cl and let cj be of the form
#s ⊗ #t with 1 ≤ s, t ≤ k and ⊗ is a binary5 linguistic operator. Further, let d ∈ D be a document and T
be a k-tuple of spans from d. We identify #s and #t with the s-th and t-th component of T respectively.
Then T satisfies cj, iff the spans Ts and Tt are in the relationship described by ⊗. We call T a solution
for qi, iff T satisfies every cj in qi. We call T a solution for q, iff there exists an alternative qi of q′ for
which T is a solution.

Note that each alternative in q′ may have a different number of span selections terms. Therefore, the
size of a solution for q is not fixed, if its disjunctive normal form q′ consists of more than one alternative.
Annis 2 does not identify the alternative of which a tuple T is a solution but such identification is possible
if the annotation graph fragment over T is retrieved. This process is described in the next section.

3.7 Query functions

Knowing which spans are a solution to an Annis query is not all that interesting in itself. Researchers
are typically interested in context or aggregate information. To this end, Annis 2 defines query functions
that evaluate a query against a set of corpora and then retrieve additional information from the database
based on the solutions to the query.

Strictly speaking, query functions are not part of the Annis 2 query language. Instead, they encapsulate
the steps that have to be taken to further analyze the solutions to a query after the solutions have been
computed. Each query function corresponds to a analysis strategy supported by the Annis web interface.

Before we can discuss query functions we have to define a few more concepts.

Definition 9 (Preceding, following token) Let t be a token and let n ∈ N. Then t− n is the token
preceding t by n tokens and t+ n is the token following t by n tokens.

Definition 10 (Annotation graph fragment) Let T be a set of primary data texts, A = (V,E) an
annotation graph over T with nodes V and edges E and S a solution to a query from A in T . An
annotation graph fragment over S with left context l and right context r is the subgraph of A consisting
of the node set

V ′ =
⋃
s∈S
{v ∈ V : v overlaps a token from the interval [smin − l, smax + r]}

and the edge set
E′ = {(v, w) ∈ E : v, w ∈ V ′} .

Informally an annotation graph fragment contains all the tokens that are at most l tokens to the left or
r tokens to the right of a span in a query solution, any span that overlaps these tokens, and all the edges
in-between them.

Definition 11 (Annotation matrix) Let A be an annotation graph, q an AQL2 query, S the set of
solutions to q in A and let m be the maximum number of spans in a solution in S. The annotation
matrix of S is a matrix that is constructed in the following fashion:

spans overlap, is very costly to implement. A query with n search terms and no linguistic constraint would require the
addition of 2n alternative overlap constraints. The overlap operation is costly in itself (see section 6.1); to emulate the
behavior of Annis 1 is thus prohibitive.

5The process for unary operators is analogous: T satisfies an unary linguistic constraint of the form #s:⊗, iff the span
Ts has the property described by ⊗.

17

1. For each tuple position 1 ≤ p ≤ m, the annotation keys6 Kp of any span Tp at position p in a
solution T ∈ S are determined.

Kp =
⋃
T∈S
{k : k is an annotation key of the p-th span in T} .

2. The header of the matrix, i.e. the first row, is constructed by creating
∑m

p=1 ‖Kp‖ cells, one cell
for each tuple (p, k) with k ∈ Kp.

3. The body of the matrix, consisting of the following ‖S‖ rows, is constructed by creating a row for
each solution T ∈ S. If the span Tp is annotated with a key k ∈ Kp then the corresponding cell
contains the annotation value, otherwise it is empty.

Currently Annis 2 defines the following three query functions. Let q be an AQL2 query, C a set of
corpora on which q should be performed and S the set of solutions to q in C.

• COUNT (q, C) returns the number of solutions in S.

• ANNOTATE (q, C, l, r) returns for each solution s ∈ S the annotation graph fragment over s with
l tokens as left context and r tokens as right context.

• MATRIX(q, C) returns an annotation matrix for S in ARFF-Format [1].

3.8 Pagination of ANNOTATE results

The results returned by the ANNOTATE query function can quickly become very large because it
returns a complete annotation graph fragment for each tuple of spans matching the underlying query.
Not only is the height of the annotation graph fragment unknown, but the width of the fragment can
be arbitrarily extended by a user-defined context. Since the ANNOTATE function is designed to
be used interactively, returning the annotation graph fragments for every result is not sensible as the
amount of the information presented would easily overwhelm the user. The frontend therefore enforces
a pagination of the ANNOTATE results similar to a web search engine: only the first n results of the
query are displayed and the user can retrieve the next results if wanted. The number of results displayed
on a page is user-configurable.

Note that the Annis service supports the retrieval of all ANNOTATE results at once; however, as
section 6.6 shows, it is not optimized for this use case (the database handles this use case just fine).

3.9 Differences between ANNIS-QL 1 and AQL2

Although queries of the two languages look similar, there are quite a few differences:

• A text search only covers tokens. There is currently no possibility to perform a real full text search
in Annis 2. For example, in Annis 1 one can search for the phrase "the house"; in Annis 2 each token
has to be specified separately and linked with the precedence operator: "the" & "house" & #1 . #2.

• A text search has to match the entire text covered by a token. In Annis 1 a text search would
implicitly match substrings as well. To match a substring in Annis 2 one can use a regular expres-
sion.

• In Annis 1 one could search for spans by defining an annotation and the covered text in one
expression (key=value:"text"). This syntax was very confusing in practice and is no longer allowed.
The same search can be achieved with key="value" & "text" & #1 _=_ #2.

6For the purpose of this definition, the covered text of a span is considered an annotation of the span with the key
span.

18

• Annis 1 evaluates precedence in terms of the left and right text border of spans which results in non-
intuitive behavior. For example, to search for an adjective followed by the string tree, one would
have to write pos=ADJ & " tree" & #1 . #2. Note the space in " tree" which assumes that that all
tokens in the text are separated by exactly one space. The Annis 2 corpus model makes the tokeni-
sation that is present in the original data explicit and evaluates precedence in terms of the token
position. Thus, in Annis 2 the query can be written as expected: pos="ADJ" and "tree" & #1 . #2.

• There is no document search (doc=maz.*) in Annis 2. Using meta data to select documents is a
much more powerful alternative.

• Annis 1 implicitly assumes that text spans that are not used in any linguistic expression have to
overlap. For example, pos=VVINF & cat=S would be converted to
pos=VVINF & cat=S & #1 _o_ #2 before evaluation. In Annis 2, the first form is no longer pos-
sible because all search terms have to be connected to each other by a linguistic operation directly
or indirectly.

• Annis 1 interprets a single identifier as either a key or a value, e.g. pos would be expanded to
pos=* | *=pos. Annis 2 treats single identifiers as an existence query, i.e. it selects any span
annotated with the corresponding key, regardless of the annotation value.

• Annotation type sets are not supported by Annis 2.

• Annis 2 does not yet support NOT or XOR.

• Annis 2 only allows normal parentheses (and) to group expressions. Brackets [and] are used
to define edge labels.

19

4 SQL Generation

In this section we will describe how an AQL2 query is translated into a SQL query. For historical reasons
an Annis query is not translated directly to SQL, but translated to an intermediate DDDquery [29] first.
The mapping from AQL2 language features to DDDquery language features is described in appendix B.
Since it is almost trivial in nature, the rest of this section skips this intermediary step and assumes
that the Annis query is translated directly to SQL. The translation from AQL2 to DDDquery is briefly
described in appendix B.

We will first demonstrate how to build a SQL query that generates all the solutions for a given Annis
query from a list of corpora. Then, we will extend this general framework to include query functions as
described in section 3.7.

4.1 Computation of derived node data during corpus import

The evaluation of some operations requires information that is not explicitly present in the corpus schema
and which first has to be derived from other data contained therein. This information is fixed for each
node; it is therefore advisable to perform the computation only once during corpus import and cache the
results in the node and rank tables.

However, each additional column will generally slow down the evaluation of queries because for each
node PostgreSQL has to load more data from disk. A trade-off has then to be found between improving
the performance of a specific operation and the general performance on typical queries. For example, we
have decided against caching the node arity described in section 4.3.9 because we have not seen it used
in actual queries.

4.1.1 Minimally and maximally covered tokens

In section 3.3.3 we extended the token order relation ≤pos to non-token spans s and t by comparing the
right-most and left-most covered token smax and tmin:

s ≤pos t := smax ≤pos tmin

During import we set tmin := tmax := t for each token span t and compute smin and smax for each
non-token span s. We then extend the node table with the attributes left_token and right_token which
for each span s store the value of node.token_index of smin and smax respectively.

4.1.2 Root nodes in the original ODAG

In section 4.3.7.2 we describe how the original ODAG is partitioned to implement the dominance and
pointing relationship operators. This can create partitions rooted in a node that is a leaf in another
partition; in other words it creates many false roots. A true root in the original ODAG will be a root
node in any partition it appears in. The following SQL query finds all such nodes:

SELECT node_ref

FROM rank

GROUP BY node_ref

HAVING count(DISTINCT rank.parent) = 0;

During import we extend the rank table with the attribute root and set it to TRUE if the corresponding
node is selected by the above query and to FALSE if it is not.

20

4.1.3 Identification of a node’s top-level corpus

The corpus schema defined in section 2.3 links each node with the document that contains the corre-
sponding text span. If a search is restricted to a document d, all documents below d have to searched as
well; in section 4.5 we describe a general way to achieve just this.

However, the Annis frontend only exposes top-level corpora and each top-level corpus is imported in-
dividually. It is therefore easier and faster to extend the node table with an attribute toplevel_corpus
which is a foreign key to corpus.name and store in it the name of top-level corpus being imported.

4.2 The SELECT and FROM clauses

Internally, a span is identified by the primary key of its node in the database database, node.id. This
attribute is (mostly) meaningless to the Annis frontend but the SELECT clause is highly dependent on
the query function used, and right now we are only interested in generating solutions for a given query.

Consider a query without disjunctions, containing n search terms. For this query we access the node
table via n aliases in the FROM clause and select their id attributes in the SELECT clause. This strategy
generates one row in the result set for each solution to the query. We use the DISTINCT keyword to
ensure set semantics.

SELECT DISTINCT

node1.id, node2.id, ..., nodeN.id

FROM

node AS node1, node AS node2, ..., node AS nodeN

...

Recall that the tuple length is not necessarily the same for each solution if the query contains more than
one alternative. However, in the SQL fragment above we have fixed the number of columns and accessed
table aliases. We will defer the resolution of this conflict to section 4.4 and assume for the rest of this
section that the Annis query consists of only one alternative, unless otherwise noted.

The SELECT clause is now complete. The FROM clause on the other hand only reference the node table
which contains the necessary information to implement a node or text search and the precedence and
coverage operators. If the query contains an annotation search or any other linguistic constraint, the
tables node_annotation, rank, component and edge_annotation are needed.

If a query requires information from another table to implement an operation involving a search term,
the compiler will create a table alias for this table and join it to the corresponding node table alias. It is
sufficient to join each table only once to the node alias except for the edge_annotation table. The direct
dominance and pointing relation operators can be qualified with multiple edge labels and the compiler
has to create one edge_annotation table alias for every label.

Listing 1 shows the FROM clause that is generated for the query example in section 3.1.

4.3 The WHERE clause: Translation of AQL2 language features

In this section we will show how AQL2 language features translate to conditions in the WHERE clause.
For search terms and unary linguistic constraints we will assume that the appropriate tables are accessed
via an alias with index 1 in the FROM clause. For binary constraints we assume the existence of table
aliases with index 1 for the left-hand-side span and index 2 for the right-hand-side span.

4.3.1 Text search

A text search "Mary" or tok="Mary" is realized by comparing the text with the attribute node1.span.

21

Listing 1: FROM clause generated for the Annis query example in section 3.1.

FROM

node AS node1

JOIN node_annotation AS node_annotation1 ON (node_annotation1.node_ref = node1.id)

JOIN rank AS rank1 ON (rank1.node_ref = node1.id)

JOIN component AS component1 ON (rank1.component_ref = component1.id),

node AS node2

JOIN rank AS rank2 ON (rank2.node_ref = node2.id)

JOIN component AS component2 ON (rank2.component_ref = component2.id)

JOIN edge_annotation AS edge_annotation2_1 ON (edge_annotation2_1.rank_ref = rank2.pre),

node AS node3

JOIN node_annotation AS node_annotation3 ON (node_annotation3.node_ref = node3.id)

JOIN rank AS rank3 ON (rank3.node_ref = node3.id)

JOIN component AS component3 ON (rank3.component_ref = component3.id),

node AS node4

JOIN rank AS rank4 ON (rank4.node_ref = node4.id)

JOIN component AS component4 ON (rank4.component_ref = component4.id)

JOIN edge_annotation AS edge_annotation4_1 ON (edge_annotation4_1.rank_ref = rank4.pre)

node1.span = ’Mary’

Note that the span attribute contains the content of a text span for tokens only and is set to NULL for
non-tokens. This corresponds to the property of the text search that it can only be used for token spans.

To implement a text search with a regular expression like /Mar(y|ie)/ we use the PostgreSQL-specific
operator ~ which matches its left-hand side to a regular expression on the right-hand side.

node1.span ~ ’^Mar(y|ie)$’

Note that the regular expression is always explicitly anchored as required by the definition of the regular
expression text search in AQL2.

4.3.2 Token search

To search for any token we simply select those tuples from the node table where the attribute span is not
set to NULL:

node1.span IS NOT NULL

Alternatively, we can use the token_index attribute which is also set to NULL for any non-token span:

node1.token_index IS NOT NULL

4.3.3 Annotation search

To implement an annotation search we compare the components of the search term to the attributes
namespace, name and value of the node_annotation table. For example, a search for a span annotated
with tiger:cat="S" is realized by the following conditions:

node_annotation1.namespace = ’tiger’ AND

node_annotation1.name = ’cat’ AND

node_annotation1.value = ’S’

22

An annotation search with a regular expression is implemented in the same manner as a regular expression
text search; the regular expression is explicitly anchored and matched using the PostgreSQL pattern
matching operator ~ (tilde). If an optional part of an annotation search is missing then the constraint
on the corresponding table attribute is omitted as well.

4.3.4 Node search

The search term node places no constraint on the spans selected from the annotation graph. Accordingly,
it requires no conditions in the WHERE clause. Simply listing an alias to the node table in the FROM
clause is enough to implement a node search.

4.3.5 Coverage

Coverage operations are defined as a comparison of the left and right borders of two spans of the same
text. The span borders are stored in the attributes node.left and node.right and the text is referenced
by the foreign key node.text_ref. To implement a coverage operator, we substitute each span property
in the operator definitions in Table 1 in section 3.3.1 with the corresponding table attribute of the node
table (see section 2.3).

For example, the exact-cover constraint #i _=_ #j is realized by the following conditions:

node1.text_ref = node2.text_ref AND

node1.left = node2.left AND

node1.right = node2.right

4.3.6 Precedence

In Annis 2, precedence is defined in terms of tokens. The term #i . #j conveys that there should be no
token between the spans i and j, regardless of any possible whitespace that may exist between them in
the original primary text.7 Similarly, the term #i .n #j conveys that i and j should be exactly n tokens
apart (which is not possible to express in Annis 1 at all).

In section 3.3.3 we have shown how the token order relation ≤pos is extended to non-token spans s and
t by comparing the right-most and left-most covered token smax and tmin:

s ≤pos t := smax ≤pos tmin (1)

We can use Equation 1 to formally define the variants of the precedence operator listed in Table 4:

#i . #j ⇐⇒ imax = jmin − 1
#i .* #j ⇐⇒ i < j
#i .n #j ⇐⇒ imax = jmin − n
#i .n,m #j ⇐⇒ jmin −m ≤ imax ≤ jmin − n

(2)

The right-hand side of the defintions in Equation 2 can be translated to SQL using the attributes
left_token and right_token of the appropriate node table which were computed during corpus import.
Additionally, the comparison has to be restricted to spans of the same text. For example, the term
#i . #j is translated as follows:

node1.text_ref = node2.text_ref AND

node1.right_token = node2.left_token - 1

7This is substantially different from Annis 1; see section 3.9 for more information.

23

4.3.7 Dominance and pointing relations

Both dominance and pointing relations between two spans are modelled as an edge (or a path) between
the corresponding nodes in the annotation graph. The position of a node in a graph is in turn encoded
by (combined) pre- and post-order values, which are stored in the attributes pre and post of the rank
table.

We use the annotation graph shown in Figure 7 as a running example while discussing the implementation
of the dominance and pointing relation operators.

(a)
a

b e

d f g

c

x

secedge

IDENT

(b)
a

b e

c d f g

c′ d′

c′′

1 20

2

3 4 5

6 7

8

9 10

11 12 13

14

15 16

17

18

19

secedge

IDENT

Figure 7: Annotation graph with pointing relations and multiple syntax trees; (a) the original ODAG and
(b) the equivalent decomposed tree as seen by the pre/post-order traversal. Solid edges denote
a dominance relation named edge unless labeled otherwise.8 Dotted edges denote pointing
relations. A node v′ in the decomposed tree denotes a copy of a previously encountered node
v with different pre- and post-order values.

4.3.7.1 Basic strategy

For each node in a tree the pre- and post-order values partition the tree into four distinctive regions
which correspond to the ancestor, descendant, preceding and following axis in XPath [15]. To implement
dominance (and pointing relations) we only need to test for nodes along the descendant axis:

i dominates j ⇐⇒ j is a descendant of i
⇐⇒ ipre < jpre ∧ ipost > jpost
⇐⇒ ipre < jpre < ipost

(3)

The last transformation in Equation 3 is motivated by the usage of one counter for both pre-order and
post-order. If we substitute the corresponding table attributes we arrive at:

rank1.pre < rank2.pre AND

rank2.pre < rank1.post

Of course, for direct dominance we can exploit the attribute rank.parent which is conveniently provided
by the Annis converter:

rank1.pre = rank2.parent

8Dominance edges called edge and secedge are artifacts of a TIGERSearch-annotated corpus.

24

4.3.7.2 Separation of dominance and pointing relation edges in the annotation graph

However, the definition of the dominance relation in Equation 3 is incomplete, since it tests for the
existence of any path between two spans and disregards the semantic meaning of the edges along that
path. For example, in Figure 7 the span g does not dominate d′ because the edge between g and d′

encodes a pointing relation. Even if the first and the last edge of a path are dominance edges, there
might still be a pointing relation edge somewhere in the middle such as in the path from e to c′′. It is
therefore necessary to restrict Equation 3 in such a way that all edges along a path between two spans
are of the same type.

To this end, we partition the annotation graph into connected components such that each edge in a
particular component is of the same type. The implementation of the dominance relation can then be
completed by checking the edge type of the first (or last) edge and making sure that there is a component
that contains both spans. This can be expressed with the following conditions:

component1.type = ’d’ AND

component1.id = component2.id

The Annis converter computes the pre- and post-order values in such a way that Equation 3 holds,
iff there exists a component with both spans. The last condition can thus be omitted.

Figure 8 shows the components of the annotation graph in Figure 7. As expected there is no component
of dominance edges that contains a path from g to d′ or from e to c′′.

If the original annotation graph contains nodes that are connected to two or more parent nodes by
different edge types (e.g. the span d), then the partitioning strategy will create components that are
completely contained in another component in the partitioned graph (e.g. component (c) is contained
in (a) in Figure 8). These are pruned from the database by the Annis converter to save space.

(a)
a

b e

c d f g

c′

secedge

1 16

2

3 4 5

6 7

8

9 10

11 12 13 14

15

(b)
g

d′

x

x

IDENT

17

18 19

20

(c)
d′

c′′

x

x

Figure 8: Annotation graph partitioned by edge type. The components (a) and (c) contain only dom-
inance edges while (b) contains only pointing relation edges. Component (c) is pruned from
the database.

Edges in Annis have a second property that conveys semantic meaning, their name. While named
edges are rarely used in dominance relations, they are mandatory for pointing relations: the term
#i ->IDENT * #j requires that all edges on the path from i to j have the name IDENT.

Conceptionally, a name is nothing but a subtype. To ensure that all edges along a path have the same
name, we partition the graph along the distinct combinations of edge type and name. Figure 9 shows
the generated components for the annotation graph in Figure 7. We can now ensure that every edge
along a path has a certain name, by checking the name of the first (or last) edge:

component1.name = ’IDENT’

25

(a)
a

b

c d

c′

1

2

3 4 5

6 7

8

9

10

(b)
a

e

secedge

11

12 13

14

(c)
e

f g

15

16 17 18 19

20

(d)
g

d′

x

x

IDENT

21

22 23

24

(e)
d′

c′′

x

x

Figure 9: Annotation graph partitioned by edge type and name. Component (e) is pruned from the
database because it is contained in component (a).

4.3.7.3 The unnamed dominance operator variant

Annis 2 will merge all syntax trees of a given graph into one unified tree that is searched if the dominance
operator is used without a name. Consequently, the term #i >* #j only requires that edges on a path
from i to j are dominance edges. Their name is not only irrelevant but each edge can have a different
name as in the path from a to g in Figure 7. Unfortunately, when we partitioned the annotation graph
along edge names, we only retained paths where each edge has the same name.

The solution is to take the dominance components of the type-partitioned graph, set their name to NULL
and test for a path in any of these components. Figure 10 shows all the components that are created for
the annotation graph in Figure 7.

4.3.7.4 Length-restricted dominance operator variants

To implement the length-restricted variants of the dominance operator >n and >n,m, we need to be able
to measure the length of a path between two nodes. We can achieve this by computing the depth of each
node and only return those nodes i and j which are connected by a path of length

n = jdepth − idepth. (4)

At first glance, this approach poses three problems:

1. The depth of a node is defined as the distance from the root to the node. An annotation graph
can have multiple roots; which one should we choose?

2. For any two nodes i and j there may be multiple paths between i and j in the annotation graph,
each with a different length.

3. The partitioning described in section 4.3.7.2 can introduce many false roots, such as the node e
in Figure 10. As a consequence, the computation of the node depth will yield different results
depending on whether it is done before or after graph partitioning.

The first issue disappears once we have assigned pre- and post-order values to the nodes. If the original
annotation graph had multiple roots, the pre/post-order traversal generates a forest of trees and we can
compute the node depth for each tree individually.

The second issue is actually a feature of Annis. For example, we want to find the spans b and c as
solutions for the term #i > #j as well as #i >1 #j. This is possible because the pre/post-order traversal
effectively creates a copy of c to which we can assign a different depth.

26

(a)
a

b e

c d f g

c′

1 16

2

3 4 5

6 7

8

9 10

11 12 13 14

15

(b)
a

b

c d

c′

edge

ed
ge

edge
edge

17

18

19 20 21

22 23

24

25

26

(c)
e

f g

ed
ge

edge

27

28 29 30 31

32

(d)
a

e

secedge

33

34 35

36

(e)
g

d′

IDENT

37

38 39

40

(f)
d′

c′′

(g)
d′

c′′

edge

Figure 10: Annotation graph components for each edge type and name and the merged syntax tree.
Components (a) and (f) contain the merged syntax tree, components (b), (c) and (g) contain
dominance edges called edge, component (d) contains a secedge dominance edge and compo-
nent (e) an IDENT pointing relation. Components (f) and (g) are pruned from the database
because they are contained in (a) and (b) respectively.

Finally, the exact values for the node depth are irrelevant, since we’re only interested in the distance
between nodes.

It follows from these considerations that the depth of a node has to be stored in the rank table. During
import we extend the rank table with the attribute depth in which we store the depth for each node.
Substituting this attribute into Equation 4 we arrive at the following condition for the term #i >n #j:

rank1.depth = rank2.depth - n

The term #i >n,m #j is implemented in a similar fashion:

rank1.depth BETWEEN SYMMETRIC rank2.depth - n AND rank2.depth - m

4.3.7.5 Left-most and right-most dominance operator variants

To implement the dominance operators >@l and >@r we exploit the fact that the computation of the pre-
and post-order values follows the order of the children of a node. In other words, for each non-terminal i
and its left-most child l and right-most child r the following conditions hold:

ipre = lpre − 1
ipost = rpost + 1

(5)

In the original unpartitioned annotation graph the left-most (or right-most) child identified by Equation 5
could potentionally be connected to the parent node by a pointing relation edge. However, once the

27

annotation graph is partitioned along edge types, there can be no pointing relation edge in a dominance
component. Substituting the corresponding table attributes into Equation 5 we arrive at the following
condition for >@l:

rank1.pre = rank2.pre - 1

>@r is implemented in a similar fashion:

rank1.post = rank2.post + 1

4.3.7.6 Same parent and same ancestor dominance operator variants

The implementation of the dominance operator $ is simple as we explicitly store a pointer to the parent
of a node in the attribute rank.parent. Thus, two nodes share a parent if there exists a dominance
component for which the corresponding entries in the rank table have the same value in parent:

rank1.parent = rank2.parent

If two nodes s and t share a common ancestor c then the following Equation 6 must hold for both c and s
and c and t:

s and t share an ancestor ⇐⇒ ∃ node c : cpre < spre < cpost ∧ cpre < tpre < cpost
=⇒ s, t and c are connected (6)

We can express this relationship using a subquery in an EXISTS clause:

component1.id = component2.id AND

EXISTS (

SELECT 1 FROM rank AS ancestor WHERE

ancestor.component_ref = component1.id AND

ancestor.pre < rank1.pre AND rank1.pre < ancestor.post AND

ancestor.pre < rank2.pre AND rank2.pre < ancestor.post

)

4.3.7.7 Edge annotations

Dominance and pointing relation operations between parent and child spans (i.e. >, >@l, >@r, $ and ->)
may be qualified with a list of edge annotations to search for particular edges. The test for an edge
annotation is similar to a node annotation search using the edge_annotation table which contains a
foreign-key to the rank table. Because each tuple in rank is interpreted as an incoming edge, we have to
use the edge_annotation table alias created for the right-hand-side of the operator which is expressed by
the index 2 before the underscore.

edge_annotation2_1.namespace = ’tiger’ AND

edge_annotation2_1.name = ’func’ AND

edge_annotation2_1.value = ’OA’

Recall that we can qualify the dominance and pointing relation operator with multiple edge annotations.
We need to access a different edge_annotation table alias for each listed annotation. In the example
above we have assumed that we are looking for the first annotation in the list, denoted by the index 1
after the underscore.

The same parent operator $ is an exception to the rule that we have to test the right-hand-side of
the operator. For $ we want to make sure that both nodes are connected to a parent by accordingly
annotated edges. We thus need to test the edge_annotation aliases created for both nodes.

28

4.3.8 Root nodes

In the original unpartitioned annotation graph a root node is identified by its parent attribute being
set to NULL. Unfortunately, the partitioning of the annotation graph described in section 4.3.7.2 may
introduce many false roots, i.e. nodes which are a root node in one component and a leaf node in
another component. For example, in Figure 10 the node e is the root of component (c) and a leaf in
component (d).

To correctly implement the root operator #i:root, we must only consider nodes as roots which are a
root node in all components in which they appear. These are identified by the attribute root of the rank
table which is computed during corpus import. The term #i:root can thus be implemented by testing
the root attribute:

rank1.root IS TRUE

4.3.9 Node arity

The node arity, i.e. the number of children for a given node v, can be determined by counting the entries
in the rank table which point to v via the parent attribute. The term #i:arity=n can thus be implemented
as follows:

(SELECT count(DISTINCT children.pre)

FROM rank AS children

WHERE children.parent = rank1.pre) = n

The term #i:arity=n,m is implemented in a similar fashion:

(SELECT count(DISTINCT children.pre)

FROM rank AS children

WHERE children.parent = rank1.pre) BETWEEN SYMMETRIC n AND m

We have left out the restriction on a particular component in the SQL fragments above because we
assume that it is selected by another linguistic constraint in the Annis query.

4.3.10 Token arity

During corpus import we have identified the left-most and right-most covered token of a given span s
and stored their index in the attributes node.left_token and node.right_token respectively. We can use
these attributes to implement the token arity operator:

s covers n token ⇐⇒ n = smax − smin + 1 (7)

Transforming Equation 7 and substituting the corresponding table attributes, we arrive at the following
conditions for the term #i:tokenarity=n:

node1.text_ref = node2.text_ref AND

node1.left_token = node2.right_token - n + 1

Similarly, the term #i:tokenarity=n,m can be translated as follows:

node1.text_ref = node2.text_ref AND

node1.left_token BETWEEN SYMMETRIC

node2.right_token - n + 1 AND node2.right_token - m + 1

This concludes the SQL generation for a query with only one alternative. In the next section, we will
see how to transform queries that contain multiple query alternatives into SQL code.

29

4.4 Query alternatives

During the discussion of the SELECT and FROM clauses we have already alluded to an apparent short-
coming of the strategy to model a query solution as a tuple of node.id attributes: whereas the solutions
to a query with multiple alternatives may vary in size, the tuple size returned by a SELECT statement
is necessarily fixed.

Suppose that we have a query q consisting of two alternatives q1 containing n search terms and q2
containing m search terms and n < m. We will then need at least m aliases for the node table and any
other table that may be required to solve the alternative q2. Suppose further that we use the first n
table aliases for both alternatives and construct the query for q in the following fashion:

SELECT DISTINCT

node1.id, node2.id, ..., nodeM.id

FROM

node AS node1 JOIN ...,

node AS node2 JOIN ...,

...,

node AS nodeM JOIN ...

WHERE

(conditions for q1) OR

(conditions for q2)

This strategy causes two interrelated problems:

1. Let’s assume that we need to join an annotation table to the node table representing the span at
position p in the solutions for q1. Let’s assume further, that there exists no tuple in this annotation
table that could be joined against the nodes selected at position p for q2.9 Because of the semantics
of JOIN, an empty set will be selected for the candidates at position p which in turn will produce
an empty result for the entire alternative q2.

2. Because the conditions generated for q1 place no constraint on the table aliases with an index bigger
than n, the solutions returned for q1 will consist of the cartesian product of the actual solutions
and any span in the database for the tuple positions n+ 1 ≤ p ≤ m.

The first issue can be mitigated against by using a LEFT OUTER JOIN for annotation tables. However,
solving the second problem requires a case differentiation in the SELECT clause using CASE ... WHEN
... THEN statements which quickly gets very complicated the more alternatives a query has.

A much simpler solution is to pad the SELECT clause of q1 with NULL values and append the results for
q1 and q2 using UNION as shown in Listing 2.

4.5 Corpus selection

Until now we always searched the entire database when looking for solutions to a query. This is fine for
single-user systems but Annis was designed with many users in mind and the frontend only exposes those
corpora which a particular user is allowed to use. We thus need a way to filter for (top-level) corpora
which are referenced by the query (generated from the frontend) by their (unique) names.

If a query is to be performed against a document d then every document below d in the corpus hierarchy
has to be searched as well. The node table is connected to the corpus table via the corpus_ref foreign
key. To restrict the search to a particular document called name and all its children, we can use the
following condition for each node table alias i used in the query:

nodei.corpus_ref IN (SELECT child.id FROM corpus AS child, corpus AS doc

WHERE child.pre BETWEEN doc.pre AND doc.post

AND doc.name = ’name’)

9This case is arguably rare for node_annotation but it happens quite often for edge_annotation.

30

Listing 2: SQL query template for Annis queries with multiple alternatives using UNION.

SELECT DISTINCT

node1.id, node2.id, ..., nodeN.id, NULL, ..., NULL︸ ︷︷ ︸
m− n timesFROM

node AS node1 JOIN ...,

node AS node2 JOIN ...,

...,

node AS nodeN JOIN ...

WHERE

conditions for q1

UNION SELECT DISTINCT

node1.id, node2.id, ..., nodeM.id

FROM

node AS node1 JOIN ...,

node AS node2 JOIN ...,

...,

node AS nodeM JOIN ...

WHERE

conditions for q2

However, the frontend only exposes top-level corpora. During corpus import we have extended the node
table with an attribute toplevel_corpus which links each node v to the top-level corpus of the document
containing v. We can therefore implement the selection of corpora with a constraint on this attribute.

To enhance readability, we create a view of the node table containing only the nodes of the requested
corpus name and refer to this view instead of the node table in the query. We need to wrap the creation
of the view and the execution of the query inside a transaction so that multiple queries against the
database can be run concurrently without manually managing view names:

BEGIN;

CREATE VIEW node_v AS SELECT * FROM node WHERE node.toplevel_corpus = ’name’;
SELECT

node1.id, ...

FROM

node_v AS node1 ...

...

ROLLBACK;

4.6 Meta data filtering

For queries containing a meta data specification we only want to search documents below the requested
root document that are properly annotated. We can piggy-back this condition on the view created in
section 4.5. For example, the term meta::lang:l1="de" creates the following view:

CREATE VIEW node_v AS SELECT *
FROM node JOIN corpus_annotation AS corpus_annotation1

ON (node.corpus_ref = corpus_annotation1.corpus_ref)

WHERE node.toplevel_corpus = ’name’
AND corpus_annotation1.namespace = ’lang’

AND corpus_annotation1.name = ’l1’

AND corpus_annotation1.value = ’de’;

31

If the Annis query contains multiple meta data annotations, we have to join a separate corpus_annotation
table alias to the node table for every listed annotation.

The SQL generation for an Annis query is now complete. In the next section we will describe how the
query functions defined in section 3.7 are implemented.

4.7 Query functions

4.7.1 The COUNT function

The COUNT function is implemented by wrapping the original query as a subquery and counting the
solutions using count(*) in the outer query.

4.7.2 The ANNOTATE function

The ANNOTATE function can be implemented by using the SQL query generated for an Annis query q
as a subquery to generate the solutions S to q and then retrieve the overlapping tokens of the annotation
graph fragment over S in the outer query. For this to work we need to modify the SELECT clause of the
inner query to return the attributes needed to implement the overlapping operator:

SELECT DISTINCT

node1.id AS id1,

node1.text_ref AS text1, node1.left_token - left AS min1, node1.right_token + right AS max1,

node2.id AS id2,

node2.text_ref AS text2, node2.left_token - left AS min2, node2.right_token + right AS max2,

...,

nodeN.id AS idN,

nodeN.text_ref AS textN, nodeN.left_token - left AS minN, nodeN.right_token + right AS maxN

In the SQL fragment above, left and right specify how much context the annotation graph fragment
returned by ANNOTATE should contain. The outer query is depicted in Listing 3. Three features are
worth mentioning:

1. The attributes node.id of the spans in a query solution are concatenated to create a key which
groups all the spans of a retrieved annotation graph fragment (line 2).

2. We use OFFSET and LIMIT to retrieve only the annotation graph fragments for a subset of the query
solutions to enable the pagination feature of the frontend described in section 3.8 (line 7). This
requires that the result returned by the inner query is sorted which is achieved by the ORDER BY
clause.

3. The result of the outer query is ordered by the key identifying an annotation graph fragment and
the pre-order value to ease the reconstruction of the annotation graph in the application (line 24).

The result set returned by this query can be transformed into an annotation graph using an algorithm
that is similar to the gXDF reconstruction of a DDDquery result described in [28]. A simple walk through
the result set represents a pre-order traversal of the graph we want to reconstruct. We keep track of
the nodes and edges we have already seen as well as their annotations to skip through the result set if
possible. Once we encounter a new key, we know that the current annotation graph fragment is complete
and start a new one.

4.7.3 The MATRIX function

To implement the MATRIX function, we need to modify the SELECT clause to retrieve the node
annotations belonging to a span. If we simply retrieved the attributes of the node_annotation table for

32

Listing 3: SQL query used by the ANNOTATE function to retrieve the annotation graph fragments
over the solutions to a query q.

1 SELECT DISTINCT

2 (matches.id1 || ’,’ || ... || ’,’ || matches.idN) AS key,

3 facts.*
4 FROM

5 (

6 SQL query generated for q with modified SELECT clause
7 ORDER BY id1, ..., idN OFFSET offset LIMIT limit
8) AS matches,

9 (

10 node

11 JOIN rank ON (rank.node_ref = node.id)

12 JOIN component ON (rank.component_ref = component.id)

13 JOIN node_annotation ON (node_annotation.node_ref = node.id)

14 JOIN edge_annotation ON (edge_annotation.rank_ref = rank.pre)

15) AS facts

16 WHERE

17 (

18 facts.text_ref = matches.text1 AND

19 facts.left_token <= solutions.max1 AND facts.right_token >= solutions.min1

20) OR ... OR (

21 facts.text_ref = matches.textN AND

22 facts.left_token <= solutions.maxN AND facts.right_token >= solutions.minN

23)

24 ORDER BY key, facts.pre

each span, the result set would quickly grow very large. For example, if a query q contains n search
terms and each span has m annotations, we would need mn rows in the result set for one solution
alone. Furthermore, the set semantics of the original SQL query, i.e. one row representing one solution
to q, would be lost complicating the application code that has to parse the result set. A solution to
this problem is to aggregate the annotations for one span into an array using the PostgreSQL-specific
aggregate function array_agg:

SELECT

node1.id AS id1,

substr(text1.text, node1.left, node1.right - node1.left + 1) AS span1,

array_agg(DISTINCT coalesce(node_annotation1.namespace || ’:’, ’’) ||

node_annotation1.name || ’=’ || node_annotation1.value),

...

nodeN.id AS idN,

substr(textN.text, nodeN.left, nodeN.right - nodeN.left + 1) AS spanN,

array_agg(DISTINCT coalesce(node_annotationN.namespace || ’:’, ’’) ||

node_annotationN.name || ’=’ || node_annotationN.value)

...

GROUP BY id1, span1, ..., idN, spanN

We also retrieve the covered text for each span in accordance to the definition of the MATRIX function.
The coalesce function is used to ensure correct results in case the namespace attribute is set to NULL.

The result set of this query can be transformed into an annotation matrix using the algorithm described
in definition 11.

33

5 Related work

As we have mentioned in section 3, the Annis query language is influenced by NiteQl and TIGERSearch.
The NITE XML Toolkit uses Apache Xerces as its XML-processing backend [9, 3], but TIGERSearch
is implemented as a custom application written in Java. In this section, we will briefly compare
TIGERSearch to Annis. Because Annis queries are first translated to DDDquery , which is based on
XPath, we will also briefly discuss the research on evaluating XPath queries on relational database hosts.

5.1 TIGERSearch

The TIGERSearch query language was developed as part of the TIGER Treebank, a corpus of 40000
syntactically annotated sentences from German newspapers [8]. Similarly to Annis, it models sentences
as two-dimensional trees: the syntax structure of a sentence is encoded by parent-child relationships of
nodes and the word order is encoded by explicitly ordering the tree’s leaves. Additionally, the TIGER
data model allows for secondary edges between nodes if the syntax structure cannot be adequately
captured by a tree.

A major difference to Annis is that each text span is represented by exactly one node. This is most
obvious when multiple attributes of a span are queried at once. For example, the following Annis query
looks for the possessive form of the German article die: "der" & morph="Gen.Sg.Fem" & #1 _=_ #2. Using
TIGERSearch, this query can be shortened to: [word="der" & morph="Gen.Sg.Fem"]. TIGERSearch has
no need for coverage operations because it works on unambiguously annotated corpora, whereas Annis
supports corpora with conflicting annotations.

As with Annis, nodes are assembled into a graph template using dominance and precedence relations and
constraints such as node arity. TIGERSearch supports negation for attribute values and node relations.
Originally, it did not support universal quantification for negated values, but this was added as part of
the Stockholm TreeAligner, a search tool for parallel treebanks based on TIGERSearch [22, 30].

An interesting feature of TIGERSearch is that a subset of the query language is also used as the corpus
description language for the TIGER Treebank. This design strongly influences the implementation of
the query processor. It is based on logical programming languages, specifically on the resolution of Horn
clauses: given a graph g and a query q, TIGERSearch tests if it can find a set of nodes so that g ∪ q is
contradiction-free [21].

Before a corpus can be searched it must be preprocessed. This generates the index – a proprietary,
domain-specific column store. Each attribute value is stored in an attribute-specific list which is indexed
by the node id. Furthermore, attribute values are dictionary-encoded to reduce space. The index also
contains lists for other node properties, such as node arity and continuity and the node id of the left-most
and right-most leaf to allow a quick implementation of left-most and right-most dominance as well as
precedence. Finally, it contains the Gorn address of each node to quickly test for node dominance: a
node s dominates another node t if the Gorn address of s is a real prefix of the Gorn address of t [13].
This index is conceptionally similar to the materialized facts table introduced in section 6.3.

The discussion of the index data structure shows that the implementation of the precedence operator is
almost identical to Annis. The only difference is that TIGERSearch reduces precedence of non-terminal
nodes to the left-most leaves whereas Annis takes both the left-most and the right-most leaves into
account. The dominance operator is implemented differently in TIGERSearch and Annis, but both
concepts are just as expressive. Gorn addressing, originally developed to encode a tree structure can be
adapted to ODAGs in the same way as pre/post-order addressing was adapted for DDDquery : A node
which can be reached by more than one path from a root will have multiple Gorn addresses.

During the preprocessing phase of a corpus, TIGERSearch also generates statistics about the selectivity
of each attribute value by building an inverted list, pointing from an attribute value to the containing
graphs, for values below a configurable frequency.10 Then, before evaluating a query, it first determines

10In the TIGER Treebank, a corpus normally consists of multiple graphs, each representing a sentence.

34

the most restrictive query term and the graphs that are a match for this term. The evaluation of the
entire query is then limited to those graphs.

5.2 Evaluating XPath queries using relational databases

In recent years there has been a wealth of research regarding the efficient evaluation of XPath queries
on SQL hosts. Two different approaches can be identified: schema-based systems which use information
derived from a DTD or XML Schema definition to create a relational representation of the data stored
in XML documents and schema-oblivious systems which strive to find a relational representation of
XML documents independent of any particular schema [20]. The pre/post-order scheme proposed for
DDDquery [28] was originally developed as part of the XPath Accelerator [15] and is an example of a
schema-oblivious system. This is a good match to the requirement of Annis to store conflicting annotation
graphs from multiple annotation tools without a predefined tag set.

The key observation of the XPath Accelerator is that the pre- and post-order values of a node in a
XML tree partition the pre/post-plane of the document in four non-overlapping regions which directly
correspond to the major XPath axes ancestor, descendant, preceding and following. DDDquery retains
the ancestor and descendant axes but redefines the preceding and following axes to refer to the position
of a span in a linear text and not its position in a tree and/or graph over tokens from that text.

A number of index structures and join algorithms have been proposed to efficiently evaluate XPath
location steps along the ancestor and descendant axes, such as the use of Patricia keys to encode root-to-
leaf paths [11] or the Structural Join (also called Containment Query) to quickly find ancestor-descendant
relationships between two ordered lists of candidate nodes [31, 5, 10]. Unfortunately, most of these
schemes require changes to the underlying database kernel and thus were not feasible as part of the
Annis project.

Of particular interest is the Staircase Join algorithm [17]. An implementation11 exists for PostgreSQL
and many of its ideas can be expressed in purely relational terms [23, 16]. As it turns out, however, it
achieves its remarkable performance by exploiting the semi-join semantics of XPath. To compute the
result of a XPath location step starting from a set of context nodes C, not all nodes in C have to be
evaluated. Those that contribute no new nodes because their target nodes are contained in the target
nodes of another node in C can be pruned. The same is not true in a DDDquery expression. Here we are
not only interested in the target nodes of the last location step but potentially in any nodes that were
found along the entire DDDquery path expression. Nevertheless, some of the ideas in [16] can be adapted
for Annis, namely the use of partitioned B-Trees to narrow down candidate nodes while computing joins.

Fortunately, the mapping from Annis to DDDquery uses the descendant axis almost exclusively to define
operators that refer to a span’s position in a graph. Using a combined pre/post-order scheme, a step down
the descendant axis can be computed using a bounded range lookup on a single value which is efficiently
supported by B-Trees. The only operator that maps to the ancestor axis is the common-ancestor operator
which benefits from an early-out strategy and is further sped up by the explicit partitioning of the graph
into connected components.

The MonetDB/XQuery processor was also adapted to linguistic corpora based on multiple stand-off XML
documents much like PAULA [7, 6]. It can query documents larger than 1GB interactively but a direct
comparison with Annis is difficult because of differences in the underlying XML structure.

11The implementation is for PostgreSQL 7.4 which has been outdated for quite a while now. This reflects the ongoing
effort by the developers to implement efficient XPath processors on off-the-shelf SQL databases. A loop-lifted variant of
the Staircase Join is used in MonetDB/XQuery.

35

6 Evaluation and Optimization

The goal of this section is to analyze the performance of Annis 2 and improve it to a point where the
system can be used interactively. Specifically, we want to achieve an evaluation time of less than two
seconds for typical queries on a large corpus on current consumer hardware.

We used the 12 test queries listed in Table 23 on page 62 which were provided by users of the Annis
system. The queries were evaluated against the Tiger corpus, a fairly large and deep corpus that
includes edge annotations. Each query was run ten times with other queries randomly interspersed
within, simulating a random workload on a single corpus. Since the performance of a query is strongly
dependent on the contents of the PostgreSQL cache, we generated a new workload for each experiment
as to minimize the possibility of a favorable query order skewing the results.

The evaluation times reported in this section are averaged over ten runs and were measured by the Annis
client. They include the processing of the Annis query and generation of SQL code by the Annis compiler,
the evaluation of the SQL query by PostgreSQL, and the transfer and processing of the database result
set into an Annis data structure. In the case of COUNT queries, where the result is a single integer,
the last step is negligible. For the MATRIX and ANNOTATE queries in section 6.5 and section 6.6
it can generate significant overhead and may fail if the Java process has insufficient resources. Note that
the rendering of the result in the web frontend is not included in the reported evaluation times.

More information about the experimental setup and the Tiger corpus is provided in appendix D.

6.1 Search boundaries for ranged operators

Before we measure the performance of Annis we should ensure that the generated SQL query contains as
much information as can be derived from the original Annis query. Particularly, the linguistic operators
listed in the last column of Table 7 require a ranged constraint on a table attribute which is only bounded
in one direction. If possible, we should provide a second bound in order to minimize the number of tuples
that need to be searched by PostgreSQL.

We have already seen one such transformation for the dominance operator in section 4.3.7:

j is a descendant of i⇐⇒ ipre < jpre ∧ ipost > jpost (8a)
⇐⇒ ipre < jpre < ipost (8b)
⇐⇒ ipre < jpost < ipost

In Equation 8a the search on the pre (or post) attribute is bounded in only one direction whereas
Equation 8b provides both an upper and lower bound for the pre attribute.

The same transformation can be applied to the inclusion operator, however both left and right have to
be bounded:

i includes j ⇐⇒ ileft ≤ jleft ∧ iright ≥ jright

⇐⇒ ileft < jleft < iright ∧ ileft < jright < iright

Query 6 of our test set uses the inclusion operator but no improvements are measurable when using the
bounded implementation. However, the execution plan generated by PostgreSQL evaluates the inclusion
predicates as a filter on the join that computes the parent operator in the query. This is also the
top-most join and thus its input sets are already considerably restricted. If the query is simplified to
cat="VP" & tok & #1 _i_ #2 the effect of the optimization becomes apparent as shown in Figure 11.

Although right is unbounded in the left-overlap operator, PostgreSQL can efficiently perform the node
join on the bounded left attribute.

36

Table 7: Table attributes required for the evaluation of Annis 2 language features. An attribute may
be accessed using an equality or a ranged predicate depending on operator variant. The last
column lists operators which evaluate at least one unbounded table attribute.

Language feature Equality access Ranged access Unbounded access

Token search node.span

Text search node.span node.span13

Annotation search node_annotation.namespace,
node_annotation.name,
node_annotation.value

node_annotation.value13

Edge annotation edge_annotation.namespace,
edge_annotation.name,
edge_annotation.value

edge_annotation.value13

Coverage node.text_ref, node.left,
node.right

node.left, node.right _i_ _ol_ _or_ _o_

Precedence node.text_ref, node.left_token,
node.right_token

node.left_token,
node.right_token

.*

Dominance,
Pointing relations

rank.pre, rank.post, rank.parent,
rank.level, component.type,
component.name

rank.pre, rank.post,
rank.level

$*

Root rank.root

Node arity rank.parent

Token arity node.left_token, node.right_token

The common ancestor operator contains an unbounded search of either the pre or post attribute in a
correlated subquery. This is normally an indicator for bad performance but the subquery is guarded by
a constraint on component.id and can be skipped for the majority of node joins. If the subquery has to
be evaluated only the nodes in one component have to be checked.12

Finally, the indirect precedence operator and the general overlap operator cannot be bounded. When
evaluating the term #i .* #j, for a given span i, any span following i satisfies the precedence constraint.14
Similarly, when evaluating the term #i _o_ #j, a given span i only provides a lower boundary for the
jright and an upper boundary for jleft as Table 1 in section 3.3.1 shows.

Figure 11: Effect of the inclusion optimization on query 6 and the simplified version
cat="VP" & tok & #1 _i_ #2. In Tiger, 24962 nodes are annotated with cat="VP".

12On average, there are about 11 nodes per component in the Tiger corpus.
13In some cases PostgreSQL can use an index for a regular expression predicate. See section 6.7 for details.
14The system allows to arbitrarily restrict the distance of spans that are considered for indirect precedence; however,

in our test queries this did not provide a measurable speed-up, presumably because the database used other information
contained in the query to sufficiently reduce the number of candidates for j.

37

6.2 Performance of the normalized corpus data model

We obtained a baseline for the evaluation of different optimization strategies by creating a B-Tree index
for each attribute of the tables node, rank, component, node_annotation and edge_annotation and mea-
sured the performance of the COUNT query function. This initial test shows promising results: six of
the test queries finish in less than two seconds. Queries that contain dominance operations however take
significantly longer to complete and query 9 had to be aborted because it did not complete within 60
seconds.

The reason for this behavior becomes apparent if we analyze the join plan for query 9 which is shown
in Figure 12. PostgreSQL has to join 16 tables to evaluate a query with only four search terms. The
node table only contains the information necessary to evaluate a node or text search as well as coverage
and precedence operations. For an annotation search the node_annotation table has to be joined. If the
search term is referenced in a dominance or pointing relation operation both the rank and component
tables have to be joined. Finally, if the dominance or pointing relation operation is qualified with an
edge annotation, the edge_annotation table has to be joined as well.

As a result, to evaluate a single search term and the linguistic constraints that refer to it, PostgreSQL
has to evaluate the predicates for each table alias separately and then join potentially large intermediary
results.15

Figure 12: Join plan generated by PostgreSQL for query 9.

6.3 The materialized facts table

To reduce the number of joins we would like to access only one table alias for each search term of an
Annis query. This can be achieved by joining the tables node, rank, component, node_annotation and
edge_annotation and materializing the result as a facts table. To obtain a unique name for each attribute
of facts we prefixed its name with the name of the original source table if it is ambiguous.

Again, we created an index for each attribute of the facts table and compared the performance of COUNT
against the normalized source tables (Figure 13). The results are mixed: While the evaluation of queries
containing many dominance operations such as query 9 is accelerated considerably, queries that contain
regular expressions or many operations requiring only the node table such as query 1 are faster when
performed on the normalized source tables.

15The problem is aggravated by the use of a genetic query optimization algorithm by PostgreSQL for queries with more
than 12 tables in the FROM clause which can produce non-deterministic results.

38

The facts table negatively affects query performance in two ways: First, the size on disk of the Tiger
corpus is more than doubled as Table 8 shows. Secondly, each node is represented multiple times in the
facts table which increases the search space when computing search terms and linguistic constraints.16

Nevertheless, the materialized facts table is necessary to provide optimized indexes which we discuss in
the next section. The influence of regular expressions and their evaluation by PostgreSQL is discussed
in section 6.7.

Figure 13: Performance of COUNT on the normalized source tables and the materialized facts table.
Queries 5, 9 and 12 did not complete within 60 seconds.

Table 8: Size of the Tiger corpus on disk (in MB).

Total Tables Indexes

Source tables 1536 428 1099
facts table 3400 756 2638

6.4 Combined node lookup and node join

Let us review the execution plan generated by PostgreSQL for query 5 which is depicted in Figure 14.
Although the query contains four annotations searches, only one of them is matched by consulting an
index over the appropriate attributes. The others are computed by first finding all nodes that satisfy
a linguistic constraint – using the index over pre for the dominance operation and the indexes over
text_ref, left and right_token for coverage and precedence – and then filtering for those nodes that
match the second search term in the linguistic constraint. PostgreSQL effectively discards much of the
information contained in the query when computing intermediate result sets.

Disabling nested loop joins turns the situation upside down: As Figure 15 shows indexes are consulted
to match search terms and linguistic constraints are evaluated in joins. PostgreSQL still does not use
all the information provided in the query when scanning indexes and additionally a number of costly
hashing operations17 are introduced.

Consider a combined index over span, text_ref and left: It can be used to compute the result of a text
search and will return the tuples sorted in such a way that a merge join can be used to evaluate an
inclusion, left-align or left-overlap operation in the same query. Ideally, we would like to construct such
an index for any combination of search term and linguistic constraint to enable PostgreSQL to use as
much information as possible when scanning indexes.

16Generally the number of tuples in facts for each node is n × e × p where n is the number of node annotations, e the
number of edge annotations and p the number of parents of the node.

17Or sorting operations in other queries.

39

F
ig
ur
e
14
:E

xe
cu

ti
on

pl
an

ge
ne
ra
te
d
by

P
os
tg
re
SQ

L
fo
r
qu

er
y
5
w
it
h
ne
st
ed

lo
op

s
jo
in
s
en
ab

le
d.

40

F
ig
ur
e
15
:E

xe
cu
ti
on

pl
an

ge
ne
ra
te
d
by

P
os
tg
re
SQ

L
fo
r
qu

er
y
5
w
it
h
ne
st
ed

lo
op

s
jo
in
s
di
sa
bl
ed
.

41

6.4.1 Indexed attributes for search terms and linguistic constraints

Search terms in Annis are translated into value constraints on table attributes; linguistic constraints
generally into joins over columns specifying the position of the node in the graph or linear text. Both
node orders are partitioned – the entire corpus into texts and the annotation graphs over these texts into
components. Indexes therefore have to start with (a combination of) table attributes for a node lookup
and end with (a combination of) attributes matching conditions of a linguistic node join. Additionally,
index fragments implementing node joins should start with text_ref or component_id.18 Table 9 lists
the attributes indexed for search terms and linguistic constraints.

Table 9: Indexed attributes for search terms and linguistic constraints.

Language feature Indexed attributes

Text and token search span

Annotation search node_annotation_name / node_annotation_value or
node_annotation_name / node_annotation_name, node_annotation_value

Coverage text_ref, left / text_ref, right / text_ref, right, left

Precedence text_ref, right_token / text_ref, left_token− 1

Dominance and pre / parent / component_idpointing relations

An index prefixed with node_annotation_name and node_annotation_value can only match annotation
searches efficiently if the annotation value is provided in the query. For annotation searches such as
e.g. cat a second index over node_annotation_name is required. Alternatively, we could construct one
index prefixed with node_annotation_name and a second prefixed with node_annotation_value to reduce
the size of the latter. This is motivated by the distribution of node annotation values; the vast majority
uniquely identify the corresponding annotation name.

Prefixing the index sets with node_annotation_namespace will not improve performance. First of all,
in the Tiger corpus each annotation is prefixed with tiger, so this attribute does not influence the
selectivity of the query at all for this particular corpus. Secondly, if a query contains an annotation
search without a namespace these indexes cannot be used anyway. We thus need a second set of indexes
without node_annotation_namespace which more than doubles index construction time during corpus
import and the size used by the indexes on disk. Thirdly, even if every annotation search in a query
specifies a namespace, PostgreSQL will actually scan both versions of an index – in the same execution
plan! – a particularly unenlightened decision by the query planner which reduces the buffer cache size
substantially.19

Finally, we should note that edge annotations conceptionally are search terms as well; instead of nodes
they select edges. We can construct indexes prefixed with edge annotation attributes and ending with pre
or parent; these can be used by PostgreSQL in conjunction with the node annotation indexes to narrow
down candidate nodes for annotated edge operations in the query. Figure 15 contains an example of such
a bitmapped index access.

Precedence operations can use an index over text_ref and right_token. An index over text_ref and
left_token can only be used for the indirect precedence operator because PostgreSQL is unable to evaluate
the expression left_token−1 on it. Fortunately, PostgreSQL supports indexes over expressions containing

18PostgreSQL’s implementation of multicolumn B-Tree indexes is particularly efficient when the leading (left-most) n
columns are used in an equality predicate. If column n + 1 is used in an inequality or ranged predicate it is also used to
limit the portion of the index that has to be scanned. If an index is defined on more than n+ 1 columns the index is used
to check any predicates that refer to these columns, however the part of the index that has to be scanned is not reduced
by them.

19For query 8, PostgreSQL chose the index over pre prefixed with node_annotation_namespace to match
tiger:pos="PRELS" and the index without the namespace to match tiger:pos="NE".

42

Table 10: Subset definitions for partial indexes.

Search term WHERE clause

Text and token search span IS NOT NULL

Annotation search node_annotation_name = ’name’

Dominance operations edge_type = ’d’ /
edge_type = ’d’ and edge_annotation_name = ’name’

table attributes allowing us to construct an index over text_ref and left_token− 1. To make this index
usable for indirect precedence we have to change the implementation of the operator as follows:

node1.text_ref = node2.text_ref AND

node1.right_token <= node2.left_token - 1

The index on component_id does not need to be prefixed with table attributes for search terms because
it is only used to look up the (anonymous) common ancestor in said operation.

6.4.2 Partial indexes

PostgreSQL supports partial indexes, i.e. indexes over a subset of tuples that satisfy the conditions of
a WHERE clause [27]. Partial indexes are useful on attributes that are used in a value constraint in a
query and where the distribution of values is known in advance, such as attributes discriminating the
tuples of a table into two or more classes [26, 4].

The SQL queries generated by Annis present many opportunities to construct partial indexes which
are summarized in Table 10. Obviously, the edge_type attribute partitions the facts table into distinct
regions of which only one is of interest when evaluating dominance or pointing relation operations. This
is even useful for the Tiger corpus which does not contain pointing relations because it eliminates
coverage edges and unconnected nodes.20

The text and token search are only interested in tokens, i.e. nodes where span is not NULL. We could
configure the index to store NULLs last and reduce the section of the index that has to be scanned but
in that case a large part of the index will never be scanned and simply waste disk space.21

Finally, since there is typically only a limited set of annotation names in a corpus, we can create indexes
dedicated to a particular annotation name. If an index contains multiple annotation namespaces we
could further partition these into dedicated indexes for fully qualified names.

6.4.3 Evaluation of different indexing strategies

We created the following three sets of indexes and measured their performance on a random workload:

1. A value-only indexing strategy with indexes prefixed separately with node_annotation_name and
node_annotation_value containing 33 indexes.

2. A qualified indexing strategy where the index over node_annotation_value was additionally prefixed
with node_annotation_name.

3. A partial indexing strategy as described above containing 80 indexes.

Table 11 contains the average runtime of each query on a random workload for the different strategies.
Of the three approaches, the partial strategy is clearly the superior one. With the exception of queries
dominated by regular expression searches, it out-performs the evaluation time on the source tables or is

20This eliminates about 7% of the tuples in facts.
21About a third of the nodes in Tiger are non-tokens.

43

only a little slower. Eight of the queries complete in well under two seconds and query 6 is not much
slower with 2.6 seconds on average. The value-only and the qualified indexing strategy appear to affect
query performance equally. We suspect that the generally small difference in the runtimes for individual
queries is a consequence of the random nature of the experiment.

These findings are supported by the disk utilization during the experiment which is shown in Table 12.
The partial indexes require about the same space as the other indexes on disk, however the amount of
data read during the experiment is cut in half. It is worth pointing out that compared to the normalized
source tables, PostgreSQL had to read four times as much data during the experiment on the partial
indexes. This validates the approach of providing dedicated indexes for combined node lookup and join:
Although the number of indexes results in a higher frequency of buffer cache misses, the time spent in
joins is reduced considerably.

Finally, Figure 16 compares the average runtime of each query with the best time for five sequential runs
for the partial indexing strategy. Slow queries with regular expressions are somewhat faster but they
still perform poorly on the facts table.

Table 11: Average query evaluation times depending on indexing strategy (in ms). The best time is
listed in bold for each query. Missing values indicate queries where at least three runs did not
complete in 60 seconds.

Query Source tables facts table Value-only Qualified Partial

1 84 5061 755 904 315
2 1381 1749 1473 1599 142
3 28 181 134 105 37
4 128 1103 388 511 163
5 6183 12477 10203 1197
6 32209 18814 9108 10592 2624
7 3332 2783 1337 1204 361
8 40119 1735 537 1566 175
9 4030 2873 4026 1511
10 1344 13728 7533 5620 3494
11 1399 26850 14633 18352 3993
12 4218 38083 39670 9762

Table 12: Space requirements (in MB) and indexing times (in minutes) for different indexing strategies.
Also shown is the amount of data read from and written to the disk during the experiment.

Strategy Indexing time Disk space MB read MB written

Source tables 1:53 1099 1558 20
facts table 7:27 2638 8915 341
Value-only 22:23 4770 11962 616
Qualified 15:51 4450 12601 660
Partial 11:35 4593 6413 45

6.5 The MATRIX query function

Whereas COUNT returns a single number, the MATRIX function returns one row for each solution to
a query. A little variation in the row width is introduced by the number of nodes in the query and varying
sizes of text spans. As expected, the evaluation time of MATRIX grows linearly with the number of
solutions (Figure 17).

44

Figure 16: Comparison of the average runtime for each query in a random workload vs. the best runtime
in five sequential runs using the partial indexing strategy.

Figure 17: Evaluation time of the MATRIX query function depending on the number of solutions to
a query.

45

6.6 The ANNOTATE query function

For each solution to a query the ANNOTATE function returns multiple rows depending on the initial
number of tokens covered and the requested context. Accordingly, the result set for an entire query
can grow quite large as Table 13 shows for query 7; we observed multiple megabytes being transferred
over the network for typical queries. The nearly linear growth of the row count is mirrored by the time
required to evaluate the ANNOTATE function which is depicted in Figure 18. For large values of
context and limit the performance of the Annis service is dominated by the Java client and not the
database. PostgreSQL evaluated the query annotate tok with limit = 1000 and context = 100 in about
30 seconds, while the Annis client did not complete within five minutes.

Figure 18: Influence of limit and context on ANNOTATE.

This behavior is acceptable because the information returned by ANNOTATE is presented to the user
at once. Thus, a large value for limit is not a sensible use case. For small values, ANNOTATE does
not take much longer than counting all solutions as Figure 19 shows. The performance of slow queries
is actually improved a little which can be seen in Table 14 for query 12. Additionally, we observed
little variation between the average runtime on a random workload and the best of five sequential runs, a
finding that was accompanied by virtually no disk utilization during the entire ANNOTATE experiment.

Table 13: Rows in the result set of the ANNOTATE function for query 7 depending on the number of
annotated solutions and the requested context.

Solutions Context
0 10 20 30 40 50

25 2288 5517 8746 11925 14960 18035
50 6420 12921 19212 25354 31279 37249
75 9318 19056 28567 37852 46747 55635
100 11965 24995 37734 50179 62018 73798

Table 14: Values for limit for which ANNOTATE is faster than a full count of query 12 (9762 ms).

Limit Context
0 10 20 30

25 8692 8917 9254 9758
50 8748 9461
75 8790 9663
100 8915

46

Figure 19: Runtime of COUNT vs. ANNOTATE with limit = 25, context = 10 on a random workload
(middle) and the best runtime in five sequential runs (right).

6.7 Rewriting queries with anchored regular expression searches

PostgreSQL can use an index for a regular expression value constraint if the regular expression is anchored
at the beginning and starts with a single character. Of the regular expressions encountered among the
test queries only the annotation search pos=/N.*/ satisfies that condition.22

This explains the slow performance of query 12. To PostgreSQL it provides the same information as the
query below which is a complicated way of asking for tokens annotated with pos="NN".

lemma & tok & pos="NN" & #1 _=_ #2 & 2 _=_ #3

Eliminating unanchored regular expressions can provide a substantial performance improvement. For
example, in query 11 the text search /[19][09][0-9][0-9]/ is looking for dates between 1900 and 2099.
The query as stated in Table 23 results in an execution plan in which a slow scan on the facts table
is filtered for matching spans. This outer scan drives a nested loop to match pos=/N.*/ annotations
(Figure 20).

Figure 20: Execution plan for the unanchored regular expression search /[19][09][0-9][0-9]/.

We can rewrite the query using OR and enable PostgreSQL to scan an index for spans starting with 19

or 20 respectively (Figure 21):

pos=/N.*/ & (/19[0-9][0-9]/ & #1 . #2 | /20[0-9][0-9]/ & #1 . #3)

The second version performs much better as Figure 22 clearly shows. On a random workload it is
2.7 times faster and in sequential runs it completes in less than 150 milliseconds compared to more than
three seconds for the unanchored version.

22Annis anchors regular expressions implicitly.

47

Figure 21: Execution plan for the anchored regular expression searches /19[0-9][0-9]/ and /20[0-9][0-9]/.

Figure 22: Performance of unanchored vs. anchored regular expressions.

6.8 Influence of document size

In a final experiment we doubled the size of the Tiger corpus which resulted in a facts table containing
a little more than 8 million tuples and measured the performance of COUNT . The results are somewhat
discouraging. As Figure 23 shows only query 3 completed in less than two seconds on average and queries
containing many search terms with a low selectivity such as node, cat or unanchored regular expression
searches did not complete within 60 seconds.

We suspect that this slowdown is mainly caused by PostgreSQL not having enough resources to handle
a corpus of that size. This conclusion is supported by the amount of data read from disk during the
experiment: more than 40 GB.

Queries containing many search terms with a low selectivity did not benefit much from the buffer cache.
For example, query 5 contains two cat searches and required 42 and 35 seconds respectively to complete
two consecutive runs. This is a stark contrast to the performance of query 4 with its highly selective
"desto" and morph="Comp" search terms. While the first run required 21 seconds to complete the second
iteration finished in 165 milliseconds – a speedup by two orders of magnitude. As we can see in Figure 24,
the optimal performance of queries that do not contain search terms with a low selectivity is roughly
linear in the size of the corpus.

48

Figure 23: Comparison of the average runtime for each query in a random workload vs. the best runtime
in five sequential runs on the 1 GB Tiger instance. Query 11 was substituted with the
anchored version.

Figure 24: Best runtime in five sequential runs on the 500 MB and 1 GB Tiger instances.

49

7 Conclusions and Outlook

With the exception of queries dominated by unanchored regular expressions we achieved our goal set out
at the beginning of section 6. The interactive use case of the ANNOTATE function, where the user is
interested in retrieving some results fast, is well-supported since the evaluation of these queries is not
particularly sensitive to the contents of the buffer cache and only marginally slower than counting all
solutions. Annis can quickly present the first 25 results and then pre-fetch the next result set while the
COUNT query completes in the background.

We can identify four techniques which improved query performance:

• Partitioning the annotation graph into connected components eliminates duplicate subgraphs con-
tained in the rank table which are originally caused by nodes with multiple parents.

• The elimination of joins by materializing a facts table. In itself this causes many queries to perform
slower but it enables us to construct indexes which use information from all source tables. It is
worth pointing out that the XPath processors mentioned in section 5.2 also use a single (and much
narrower) facts table.

• The combination of node lookup and node join in one index scan. Although the large number of
combined indexes reduces the hit rate of the buffer cache, less time is spent in joins because the
number of candidate tuples is reduced.

• Optimizing the cache hit rate by providing indexes partitioned by annotation name. This reduces
the amount of data that has to be read from disk during the experiment by almost 50%.

With regards to DDDquery we found that it is not particularly suited to evaluate Annis queries for two
reasons:

• Edges are only weakly supported in DDDquery . For example, alignment links between text spans
are modeled as alignment nodes in [29] to which annotations can be attached. As a consequence
the number of parents of a node increases on average. This is not necessarily a bad choice. In the
original DDDquery data model it would cause an explosion of the rank table but as we have shown
it is possible to minimize the number of rank tuples that are attached to the same node.

• More importantly, the basic language feature of DDDquery – a path definition – is not expressive
enough to construct linguistic queries concisely. Annis queries are essentially subgraph templates
which can contain cycles if one ignores the type of the linguistic constraint. Expressing these
in terms of paths is cumbersome. We therefore chose to forego the implementation of advanced
DDDquery features such as regular path expressions and opted to simply list the nodes and edges
of the subgraph as done in AQL2.

For these reasons and because the intermediate translation of an AQL2 query to DDDquery causes a
significant implementation overhead, future releases will skip this step and directly translate from AQL2
to SQL.

The work on Annis is ongoing and we plan to add more features in the future. Concerning the Annis
service back-end we would like to mention the following ideas:

• Support for parallel corpora and alignment of text spans. This can be achieved by adding a new
alignment edge type and providing operators which query these edges. A prototype implementing
alignment links between nodes from separate texts using pointing relations is already working.

• We plan to generalize the two text orders contained in the model – characters for coverage and
tokens for precedence – and extend the precedence operator with a precedence level much like edge
operations can be qualified with a name. This would enable us to model subtokens such as syllables.
Additionally, it would allow us to specify the context level for the ANNOTATE query function;
instead of a context of n tokens we could retrieve the entire sentence or paragraph containing a
match.

50

• Annis 2 only supports strings as annotation values. For corpus annotations specifically, we would
like to support more data types in order to construct queries such as meta::speaker-age < 20. This
feature can be added easily using a SQL CAST expression.

• We want to add negation to the query language. This addition would be two-fold: Search terms
can be negated using the != operator. The negation of linguistic constraints, however, is much
more complex and requires the introduction of an (implicit) all quantifier.

• Queries that only require data contained in the node table could benefit significantly if they were
evaluated on this table alone and not the materialized facts table.

• Finally, we would like to add a full-text search to the query language as to easier search for phrases
without resorting to queries containing many precedence operations.

51

A Annis 2 Query Language Grammar

A grammar for the Annis 2 query language is reproduced below. Note that the language definition
imposes further constraints on valid queries as explained in definition 7.

〈query〉 ::= 〈expression〉

〈expression〉 ::=-- � 〈search term〉� 〈linguistic constraint〉 �� 〈meta constraint〉 �� 〈boolean expression〉 �� 〈expression group〉 �
� -�

〈search term〉 ::=-- � 〈node search〉� 〈annotation search〉 �� 〈text search〉 �� 〈token search〉 �
� -�

〈node search〉 ::= node

〈annotation search〉 ::= 〈annotation〉

〈annotation〉 ::=-- �〈namespace〉 :� �� 〈name〉 �= � " 〈pattern〉 "� / 〈regular expression〉 / ��� �
� -�

〈namespace〉 ::= A string containing alphabetic characters, digits and the symbols ‘_’, ‘-’ and ‘.’, starting
with a character, ‘_’ or ‘-’.

〈name〉 ::= See definition for 〈namespace〉 above.

〈pattern〉 ::= A string containing any character except ‘"’.

〈regular expression〉 ::= A string containing any character except ‘/’.

〈text search〉 ::=-- �� tok = ��� " 〈pattern〉 "� / 〈regular expression〉 / �� -�

〈token search〉 ::= tok

〈linguistic constraint〉 ::=-- -
- �〈search term reference〉 � 〈coverage〉� 〈precedence〉 �� 〈dominance〉 �� 〈pointing relation〉 �

� 〈search term reference〉

� 〈search term reference〉 : � 〈root〉� 〈arity〉 �� 〈token arity〉 �
� �

� -�

〈search term reference〉 ::=-- # 〈number〉 -�

〈coverage〉 ::=-- � _=_� _l_ �� _r_ �� _i_ �� _o_ �� _ol_ �� _or_ �

� -�

〈precedence〉 ::=-- . �� 〈operator range〉 �� * �
� -�

52

〈operator range〉 ::=-- � 〈number〉� 〈number〉 , 〈number〉 �� -�

〈dominance〉 ::=-- �> �� 〈edge name〉 ����� @l �� @r �
��� 〈annotation list〉 ��

� 〈operator range〉 �� * �
�

� $ �� 〈edge name〉 ���� 〈annotation list〉 �� * �
� �

� -�

〈edge name〉 ::= See definition for 〈namespace〉 above.

〈annotation list〉 ::=-- [

� �� 〈annotation〉 �] -�

〈pointing relation〉 ::=-- -> 〈edge name〉 �� 〈annotation list〉 �� * �
� -�

〈root〉 ::= root

〈arity〉 ::=-- arity = 〈operator range〉 -�

〈token arity〉 ::=-- tokenarity = 〈operator range〉 -�

〈meta constraint〉 ::=-- meta :: 〈annotation〉 -�

〈boolean expression〉 ::=-- 〈expression〉 � &� | �� 〈expression〉 -�

〈expression group〉 ::=-- (

� �� 〈expression〉 �) -�

53

B Internal DDDquery implementation

For historical reasons Annis 2 first transforms an AQL query into an intermediate DDDquery before
generating the final SQL output. The internal DDDquery implementation used by Annis is incomplete;
only a subset of the features that is required to implement Annis is supported.

Unfortunately the DDDquery corpus model is a poor match for some Annis features and we had to extend
DDDquery considerably in order to answer queries efficiently. In the end, the DDDquery language used
internally by Annis 2 transformed into a close resemblance of AQL2 proper, albeit with a different syntax.

A complete DDDquery grammar can be found in [29].

B.1 Supported DDDquery features and custom extensions

Annis partially implements most of the DDDquery feature set except for regular path expressions. In-
stead, a DDDquery can contain multiple paths that are grouped with logical AND and OR as described
in section 3.4.

The notion of a node type which DDDquery retains from its XPath roots is meaningless within the
Annis corpus model. Consequently, most features that make use of the node type, particularly different
DDDquery node tests, are missing in the internal DDDquery implementation.

All constituents of a DDDquery step are supported, including (nested) node set predicates, functions
and binding of node sets to variables and names.

The node test element is used in its generic form for each search term to select any node. The attribute
note test is used to filter a node set for annotation searches. Similarly, the node set selected by element
is filtered by text value or the isToken function for text and token searches.

Annis adds a variable node test in the form of $ni/axis::$nj that is used to connect the two previously
bound node sets $ni and $nj by any axis.23

The following DDDquery axis are implemented as defined in the DDDquery specification: attribute,
following, immediately-following, containing, overlapping-following and overlapping-preceding.

The matching-element axis is redefined as selecting any node that covers the same text as a node from
the context node set.

Additionally, the child and descendant axis can optionally be qualified with an edge type and edge name
in the form child[type] or child[type, name]. Similarly, the sibling axis can be qualified with an edge
name in the form sibling[name] (the sibling axis always selects dominance edges).

The descendant axis can further be qualified with an expected path length in the form descendant(n) or
descendant(n,m). The child axis can be qualified with a list of edge annotations in the form
child(namespace:name="value", ...).

Finally, Annis implements the following custom axis: overlapping, left-align, right-align and common-
ancestor. Their usage is explained in Table 16.

Annis makes use of the following custom DDDquery functions which are explained in Table 15 and
Table 17: isToken, isRoot, arity and tokenArity.

23In the original DDDquery specification the child axis is always implied in a step $ni/$nj.

54

B.2 Mapping from AQL2 to DDDquery

A DDDquery is build from an AQL2 query by substituting DDDquery path expressions for search terms
and linguistic constraints in the original Annis query. The logical structure of the query is retained.

Table 15 lists the DDDquery expressions substituted for Annis search terms. The DDDquery variable
$ni denotes the ith search term in the original Annis query. The node set returned by the DDDquery
node test is bound to $ni in order to refer to it later in DDDquery substitutions for linguistic expressions.

Table 15: DDDquery mappings for Annis search terms.

Annis search term DDDquery expression

Node search node element()#(ni)$ni

Annotation search namespace:name="value" element()#(ni)[@namespace:name="value"]$ni

Text search "Mary" element()#(ni)[. = "Mary"]$ni

Token search tok element()#(ni)[isToken()]$ni

A regular expression /Mary/ is translated as a DDDquery regular expression r"Mary" in a text or anno-
tation search.

Binary linguistic expressions #i operator #j are mapped by connecting the node sets referred to by the
DDDquery variables $ni and $nj with a operator-specific DDDquery axis step.

All substitutions follow the template #i operator #j → $ni/axis::$nj. Table 16 lists the operator-
specific DDDquery axis substituted for each linguistic operator.

Table 16: DDDquery axis mappings for binary Annis linguistic expression.

Operator Name DDDquery axis

Coverage
#i _=_ #j Exact Cover matching-element

#i _i_ #j Inclusion containing

#i _l_ #j Left Align left-align

#i _r_ #j Right Align right-align

#i _ol_ #j Left Overlap overlapping-following

#i _or_ #j Right Overlap overlapping-preceding

#i _o_ #j Overlap overlapping

Precedence
#i . #j Direct precedence immediately-following

#i .* #j Indirect precedence following

#i .n,m #j Ranged precedence following(n,m)

Dominance
#i >name #j Direct dominance child[d, name]

#i >name * #j Indirect dominance descendant[d, name]

#i >name n,m #j Ranged dominance descendant[d, name](n,m)

#i >@l #j Left dominance child[l]

#i >@r #j Right dominance child[r]

#i $name #j Sibling sibling[name]

#i $name * #j Common ancestor common-ancestor[name]

Pointing relations
#i ->name #j Direct link child[p, name]

#i ->name * #j Indirect link descendant[p, name]

55

Unary linguistic operators are implemented using the custom DDDquery functions listed in Table 17
which are attached to the node set referred to by the DDDquery variable $ni:

Table 17: DDDquery mappings for unary Annis linguistic expressions.

Annis term DDDquery expression

Root node #i:root $ni[isRoot()]

Arity #i:arity=n,m $ni[arity(n,m)]

Token arity #i:tokenArity=n,m $ni[tokenArity(n,m)]

Meta annotations meta::namespace:name="value" are mapped to the custom node type
meta(namespace:name="value").

56

C SQL Schema of the Corpus Data Model

Reproduced below are the table definitions of the SQL schema of the corpus data model defined in
section 2 along with the modifications made in section 4.

Listing 4: Table definitions for the SQL schema of the corpus data model.

CREATE TABLE corpus

(

id numeric(38) PRIMARY KEY,

name varchar(100) NOT NULL, -- unused

type varchar(100) NOT NULL, -- unused

version varchar(100), -- unused

pre numeric(38) NOT NULL UNIQUE,

post numeric(38) NOT NULL UNIQUE,

top_level boolean NOT NULL -- see section 4.5

);

CREATE TABLE corpus_annotation

(

corpus_ref numeric(38) NOT NULL REFERENCES corpus (id),

namespace varchar(100),

name varchar(1000) NOT NULL,

value varchar(2000),

UNIQUE (corpus_ref, namespace, name)

);

CREATE TABLE text

(

id numeric(38) PRIMARY KEY,

name varchar(1000), -- unused

text text -- unused

);

CREATE TABLE node

(

id numeric(38) PRIMARY KEY,

text_ref numeric(38) NOT NULL REFERENCES text (id),

corpus_ref numeric(38) NOT NULL REFERENCES corpus (id),

namespace varchar(100),

name varchar(100) NOT NULL,

"left" integer NOT NULL,

"right" integer NOT NULL,

token_index integer,

continuous boolean,

span varchar(2000),

toplevel_corpus numeric(38) NOT NULL REFERENCES corpus (id), -- see section 4.5

left_token integer NULL, -- see section 4.3.6

right_token integer NULL

);

57

Listing 4: Table definitions for the SQL schema of the corpus data model (continued).

CREATE TABLE node_annotation

(

node_ref numeric(38) REFERENCES node (id),

namespace varchar(150),

name varchar(150) NOT NULL,

value varchar(1500),

UNIQUE (node_ref, namespace, name)

);

CREATE TABLE rank

(

pre numeric(38) PRIMARY KEY,

post numeric(38) NOT NULL UNIQUE,

node_ref numeric(38) NOT NULL REFERENCES node (id),

component_ref numeric(38) NOT NULL REFERENCES component (id),

parent numeric(38) NULL REFERENCES rank (pre),

root boolean, -- see section 4.3.8

level numeric(38) NOT NULL -- see section 4.3.7.4

);

CREATE TABLE component

(

id numeric(38) PRIMARY KEY,

type char(1),

namespace varchar(255),

name varchar(255)

);

CREATE TABLE edge_annotation

(

rank_ref numeric(38) REFERENCES rank (pre),

namespace varchar(150),

name varchar(150) NOT NULL,

value varchar(1500),

UNIQUE (rank_ref, namespace, name)

);

58

D Experimental Setup

D.1 Test queries

Table 23 lists the test queries used in section 6. They can be characterized by the number of search
terms and the type and number of linguistic constraints referring to these terms (Table 18).

Table 18: Number of search terms and operations per query. Coverage and precedence are text opera-
tions; dominance and pointing relations are graph operations.

Query Solutions Search terms Text operations Graph operations
direct indirect direct indirect

1 13 3 2
2 26 3 1 1
3 1 2 1 1
4 8 4 2 1
5 156 4 3 1
6 976 3 1 1 1
7 297 3 1 2
8 131 4 3
9 666 4 2 3
10 169 2 1
11 860 2 1
12 3929 3 2

D.2 The Tiger corpus

The PAULA representation of the Tiger corpus is about 500 MB large. It contains annotations over a
little more than 625000 tokens from 1558 texts. Table 19 lists statistical information about the corpus
and Table 20 the row count for each table in the corpus data model.

Table 19: General information about the Tiger corpus.

Nodes 889476
Tokens 625778
Roots 155663
Edges 1556468
Node duplicates in rank 826008
Unconnected nodes 86918
Average number of nodes in a component 10.8
Average number of spans in a text 571

Tiger contains annotation values for four node annotation names and one edge annotation name. These
are listed in Table 21 along with the number of their distinct values. Table 22 lists annotation values
that are not unique to one node annotation name.

59

Table 20: Number of tuples for each table.

Table Tuples

text 1558
node 889476
node_annotation 2141032
rank 1715585
component 159016
edge_annotation 1556468

facts 4073090

Table 21: Number of distinct values for each node and edge annotation name.

Annotation name Distinct values

node annotations
cat 26
pos 54
morph 259
lemma 52174

edge annotations
func 44

Table 22: Common annotation values for node annotations.

Name Value Occurrences

lemma annotations
cat -- 2
cat AA 80
cat CO 261
cat CS 4143
cat PP 64144
cat S 50846
morph -- 216524
morph Gen 8
pos PDS 2262

cat annotations
lemma -- 84787
lemma AA 1
lemma CO 5
lemma CS 2
lemma PP 2
lemma S 6
morph -- 216524

pos annotations
lemma PDS 110

morph annotations
cat -- 2
lemma -- 84787
lemma Gen 12

60

D.3 Test system

All queries were performed on a 2.8 GHz Intel Core 2 Duo processor with 2 GB RAM running a standard
Ubuntu 9.10 Linux kernel and PostgreSQL 8.4.3. For the COUNT query function the Annis client ran
on the same machine; for the ANNOTATE and MATRIX functions we used a dedicated remote
PostgreSQL host to eliminate interference of the Annis Java process with the Linux disk cache.

D.4 PostgreSQL configuration

The default configuration of PostgreSQL uses system resources very sparsely. To improve the performance
of Annis it is necessary to change the settings listed in Listing 5 in the PostgreSQL configuration file
postgresql.conf. Most of the options shown in the excerpt below are commented out in postgresql.conf.
This means that PostgreSQL will use the default value for this option, i.e. the value as it appears in
the default postgresql.conf file. More information on these settings can be found in the PostgreSQL
manual [24].24

Listing 5: PostgreSQL configuration used throughout the experiments in section 6.

max_connections = 10

effective_cache_size = 1536MB # 75% of RAM; estimated size of OS disk cache

shared_buffers = 512MB # 25% of RAM; memory shared across all sessions

work_mem = 128MB # RAM / (2 x max_connections); memory used for *one*
sort, aggregate or hash operation inside a query plan

maintenance_work_mem = 512MB # RAM for maintenance operations during corpus import

checkpoint_segments = 30 # also affects corpus import

D.5 Configuration of system resources

PostgreSQL needs to access large areas of continuous RAM which can easily exceed the maximum size
allowed by the operating system. PostgreSQL will check the OS resource settings during startup and
exit with an error if they are not adequate.

Reproduced below are the commands to change the resource settings on Linux and OS X. More infor-
mation can be found in the PostgreSQL manual.25

On Linux:

sysctl -w kernel.shmmax=536870912 # bytes; corresponds to 512MB

This command takes effect immediately. To make the change permanent across system reboots, add it
to the file /etc/sysctl.conf.

On Mac OS X:

sysctl -w kern.sysv.shmmax=536870912 # bytes; corresponds to 512MB

sysctl -w kern.sysv.shmall=131072 # measured in 4 kB pages

These commands have to be added to the file /etc/sysctl.conf and OS X has to be rebooted for the
changes to take effect.

24Sections 18.4. Resource Consumption, 18.5. Write Ahead Log, 18.6. Query Planning and 28.4. WAL Configuration.
25Section 17.4. Managing Kernel Resources.

61

 http://www.postgresql.org/docs/8.4/interactive/runtime-config-resource.html
http://www.postgresql.org/docs/8.4/interactive/runtime-config-wal.html
http://www.postgresql.org/docs/8.4/interactive/runtime-config-query.html
http://www.postgresql.org/docs/8.4/interactive/wal-configuration.html
http://www.postgresql.org/docs/8.4/interactive/kernel-resources.html

T
ab

le
23
:T

es
t
qu

er
ie
s
us
ed

in
th
e
ex
pe

ri
m
en
ts
.

Q
ue
ry

H
it
s

D
es
cr
ip
ti
on

in
G
er
m
an

E
xa
m
pl
e

1
p
o
s
=
"
K
O
U
S
"

&
"
m
a
n
"

&
"
s
i
c
h
"

&

#
1

.
#
2

&
#
2

.
#
3

13
N
eb

en
sä
tz
e
m
it

Su
bj
ek
t
„m

an
“

un
d
ei
ne
m

R
efl
ex
iv
um

w
ei
lm

an
si
ch
,o

b
m
an

si
ch

2
c
a
t
=
"
S
"

&
p
o
s
=
"
P
T
K
V
Z
"

&
p
o
s
=
"
V
V
F
I
N
"

&

#
1

>
#
3

&
#
1
_
l
_

#
2

26
V
er
bz
w
ei
t-
Sä

tz
e
m
it

vo
ra
ng

es
te
llt
er

V
er
bp

ar
ti
ke
l

V
er
lo
re
n
gi
ng

da
be

i.
..
,F

es
t

st
eh
t,

da
ss

..
.

3
"
d
e
s
t
o
"

&
"
d
e
s
t
o
"

&
#
1

$
*

#
2

&
#
1

.
*

#
2

1
Je
-d
es
to
-S
at
z
m
it

zw
ei

D
es
to
-T
ei
ls
ät
ze
n

Je
är
m
er
,d

es
to

m
eh
r

E
in
ko
m
m
en

ge
ht

fü
rs

E
ss
en

dr
au

f
–
de

st
o
hö

he
r
de
r
re
la
ti
ve

B
ei
tr
ag

zu
r
G
A
P.

4
/
[
J
j
]
e
/

&
"
d
e
s
t
o
"

&
#
1

$
*

#
2

&

m
o
r
p
h
=
"
C
o
m
p
"

&
m
o
r
p
h
=
"
C
o
m
p
"

&

#
1

.
#
3

&
#
2

.
#
4

8
Je
-d
es
to
-S
ät
ze

m
it

de
n
da

zu
ge
hö

ri
ge
n
ko
m
pa

ra
ti
ve
n

A
dj
ek
ti
ve
n

Je
hö

he
r
m
an

ko
m
m
e,

de
st
o

ge
fä
hr
lic
he
r
w
ür
de
n
di
e

Fe
ls
vo
rs
pr
ün

ge

5

c
a
t
=
"
S
"

&
p
o
s
=
"
V
V
F
I
N
"

&
c
a
t

&
c
a
t

&

#
1

>
[
f
u
n
c
=
"
H
D
"
]

#
2

&

#
1

_
l
_

#
3

&

#
3

.
#
4

&
#
4

.
#
2

15
6

M
eh
rf
ac
he

V
or
fe
ld
be

se
tz
un

g
N
eg
at
iv

au
f
de
n
G
ew

in
n

w
ir
kt
en

si
ch

vo
r
al
le
m

W
ec
hs
el
ku

rs
sc
hw

an
ku

ng
en

au
s.

6
t
o
k

&
c
a
t
=
"
V
P
"

&
#
1

.
#
2

&

t
o
k

&
#
2
_
i
_

#
3

&
#
1

$
#
3

97
6

V
P

w
ir
d
du

rc
h
ei
n
T
ok
en

vo
n

de
r
üb

er
ge
or
dn

et
er

P
hr
as
e

un
te
rb
ro
ch
en

Fe
st

st
eh
e,

un
d
da

m
ei
nt

B
er
ek
et
id

em
P
ar
la
m
en
t

du
rc
ha

us
vo
rg
re
ife

n
zu

kö
nn

en
,

da
ss

..
.

7
c
a
t
=
"
S
"

&
c
a
t
=
"
N
P
"

&
c
a
t
=
"
N
P
"

&

#
1

>
[
f
u
n
c
=
"
O
A
"
]

#
2

&
#
1

>
[
f
u
n
c
=
"
S
B
"
]
#
3
&

#
2

.
*

#
3

29
7

Sä
tz
e,

in
de
ne
n
da

s
O
bj
ek
t
vo
r

de
m

Su
bj
ek
t
st
eh
t

N
ac
h
B
er
ic
ht
en

vo
n

A
ug

en
ze
ug

en
ve
rü
bt
e

de
n
A
ns
ch
la
g

ei
n
Se
lb
st
m
or
dk

om
m
an

do
.

8
p
o
s
=
"
N
E
"

&
c
a
t
=
"
S
"

&
p
o
s
=
"
P
R
E
L
S
"

&
p
o
s
=
"
V
V
F
I
N
"
&

#
2

>
[
f
u
n
c
=
"
H
D
"
]

#
4

&

#
1

$
#
2

&
#
3

$
#
4

13
1

E
ig
en
na

m
en
,d

ie
du

rc
h

R
el
at
iv
sä
tz
e
er
w
ei
te
rt

w
er
de
n,

m
it
de
n
da

zu
ge
hö

ri
ge
n

N
eb

en
sa
tz
vo
llv

er
be

n

D
ie
se

ge
or
gi
sc
he

P
ro
vi
nz

st
re
bt

di
e
V
er
ei
ni
gu

ng
m
it

N
or
do

ss
et
ie
n
an

,
da

s
zu

R
us
sl
an

d
ge
hö

rt
.

9
c
a
t
=
"
S
"

&
n
o
d
e

&
p
o
s
=
"
V
V
F
I
N
"

&
n
o
d
e

&

#
1

>
[
f
u
n
c
=
"
O
A
"
]

#
2

&
#
1

>
#
3

&
#
1

>
[
f
u
n
c
=
"
S
B
"
]
#
4
&

#
2

.
*

#
3

&
#
3

.
*

#
4

66
6

Sä
tz
e,

in
de
ne
n
da

s
di
re
kt
e

O
bj
ek
t
vo
r
un

d
da

s
Su

bj
ek
t

na
ch

de
m

V
er
b
st
eh
t

W
as

ab
er

be
zw

ec
kt
en

di
e
Si
eg
er
?

10
l
e
m
m
a
=
/
.
+
[
^
a
e
i
o
u
ä
ö
ü
]
c
h
e
n
/

&
p
o
s
=
"
N
N
"
&

#
1

_
=
_

#
2

16
9

V
er
kl
ei
ne
ru
ng

sf
or
m
en

B
än

dc
he
n,

K
äs
tc
he
n,

H
in
te
rt
ür
ch
en

11
p
o
s
=
/
N
.
*
/

&
/
[
1
2
]
[
0
9
]
[
0
-
9
]
[
0
-
9
]
/

&

#
1

.
#
2

86
0

N
om

in
a
ei
ns
ch
lie
ßl
ic
h

E
ig
en
na

m
en

vo
r
Ja

hr
es
za
hl
en

O
kt
ob

er
19
70
,

W
un

de
rl
ic
h/

Fa
br
i1

99
5

12
l
e
m
m
a
=
/
[
^
ä
ö
ü
]
+
/

&
t
o
k
=
/
.
+
[
ä
ö
ü
]
.
+
/

&
p
o
s
=
"
N
N
"
&

#
1

_
=
_

#
2

&
#
2
_
=
_

#
3

39
29

N
om

in
a
m
it

U
m
la
ut

in
de
r

P
lu
ra
lfo

rm
Zü

ge
,F

ra
ge
sä
tz
e,

E
nt
w
ür
fe

62

References

[1] ARFF Format Definition. http://weka.wikispaces.com/ARFF+%28book+version%29, Retrieved on
2009/10/16.

[2] DeutschDiachronDigital. http://www.deutschdiachrondigital.de/.

[3] The Apache Xerces Project. http://xerces.apache.org/.

[4] Srini Acharya, Cesar Galindo-Legaria, Milind Joshi, Babu Krishnaswamy, Stefano Stefani, and
Pawel Terlecki. Filtered indices and their use in flexible schema scenarios. In Proceedings of the
International Conference on Data Engineering, pages 1259–1266, Los Alamitos, CA, USA, 2008.
IEEE Computer Society.

[5] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M. Patel, Divesh Srivastava, and Yuqing
Wu. Structural joins: A Primitive for Efficient XML Query Pattern Matching. In Proceedings of
the International Conference on Data Engineering, pages 141–154. IEEE Computer Society Press;
1998, 2002.

[6] W. Alink, R. Bhoedjang, A. P. de Vries, and P. A. Boncz. Efficient XQuery Support For Stand-Off
Annotation. In Proceedings of International Workshop on XQuery Implementation, Experience and
Perspectives 2006 (3), pages 1 – 6. ACM Press, 2006.

[7] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. MonetDB/XQuery:
a fast XQuery processor powered by a relational engine. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, page 490. ACM, 2006.

[8] S. Brants, S. Dipper, P. Eisenberg, S. Hansen-Schirra, E. König, W. Lezius, C. Rohrer, G. Smith,
and H. Uszkoreit. TIGER: Linguistic interpretation of a German corpus. Research on Language &
Computation, 2(4):597–620, 2004.

[9] J. Carletta, S. Evert, U. Heid, and J. Kilgour. The NITE XML toolkit: data model and query
language. Language resources and evaluation, 39(4):313–334, 2005.

[10] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo Zaniolo. Efficient
Structural Joins on Indexed XML Documents. In Proceedings of the 28th international conference
on Very Large Data Bases, page 274. VLDB Endowment, 2002.

[11] B.F. Cooper, N. Sample, M.J. Franklin, G.R. Hjaltason, and M. Shadmon. A Fast Index for
Semistructured Data. In Proceedings of the 27th VLDB Conference, pages 341–350, 2001.

[12] Stefan Evert and Holger Voormann. NITE Query Language. To appear, 2002.

[13] S. Gorn. Explicit Definitions and Linguistic Dominoes. Systems and Computer Science, page 77,
1965.

[14] Michael Götze and Viktor Rosenfeld. ANNIS-QL 1.0 Spezifikation. SFB 632, draft edition, May
2008.

[15] T. Grust, M. Van Keulen, and J. Teubner. Accelerating XPath evaluation in any RDBMS. ACM
Transactions on Database Systems (TODS), 29(1):91–131, 2004.

[16] Torsten Grust, Jan Rittinger, and Jens Teubner. Why Off-the-Shelf RDBMSs are Better at XPath
Than You Might Expect. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, page 958. ACM, 2007.

[17] Torsten Grust, Marice van Keulen, Jens, and Teubner. Staircase join: Teach a Relational DBMS
to Watch its (Axis) Steps. In Proceedings of the 29th international conference on Very large data
bases-Volume 29, page 535. VLDB Endowment, 2003.

63

http://weka.wikispaces.com/ARFF+%28book+version%29
http://www.deutschdiachrondigital.de/
http://xerces.apache.org/

[18] Karsten Hütter. Entwicklung einer Benutzerschnittstelle für die Suche in linguistischen mehrebe-
nen Korpora unter Betrachtung softwareergonomischer Gesichtspunkte. Diplomarbeit, Humboldt-
Universität zu Berlin, 2008.

[19] Esther König, Wolfgang Lezius, and Holger Voormann. TIGERSearch User’s Manual. IMS, Uni-
versity of Stuttgart, Stuttgart, 2003.

[20] Rajesekar Krishnamurthy, Raghav Kaushik, and Jeffrey F. Naughton. XML-to-SQL Query Transla-
tion Literature: The State of the Art and Open Problems. Lecture notes in computer science, pages
1–18, 2003.

[21] Wolfgang Lezius. Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. PhD thesis, Universität
Stuttgart, 2002.

[22] T. Marek, J. Lundborg, and M. Volk. Extending the TIGER Query Language with Universal
Quantification. In Proceeding of KONVENS, pages 3–14, 2008.

[23] Sabine Mayer. Enhancing the Tree Awareness of a Relational DBMS: Adding Staircase Join to
PostgreSQL. Master’s thesis, Universitat Konstanz, 2004.

[24] PostgreSQL Global Development Group. PostgreSQL 8.4 Manual. http://www.postgresql.org/

docs/8.4/interactive/index.html.

[25] Universität Potsdam. Annis 2. http://www.sfb632.uni-potsdam.de/~d1/annis.

[26] P. Seshadri and A. Swami. Generalized Partial Indexes. In Proceedings of the Eleventh International
Conference on Data Engineering, pages 420–427, 1995.

[27] M. Stonebraker. The Case for Partial Indexes. ACM Sigmod Record, 18(4):11, 1989.

[28] Thorsten Vitt. Speicherung linguistischer Korpora in Datenbanken. Studienarbeit, Humboldt-
Universität zu Berlin. http://www2.informatik.hu-berlin.de/Forschung_Lehre/wbi/research/stud_
arbeiten/finished/2004/vitt_041114.pdf, 2004.

[29] Thorsten Vitt. DDDquery: Anfragen an komplexe Korpora. Diplomarbeit, Humboldt-
Universität zu Berlin. https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/teaching/

studienDiplomArbeiten/finished/2005/vitt_diplomarbeit.pdf, 2005.

[30] M. Volk, J. Lundborg, and M. Mettler. A Search Tool for Parallel Treebanks. In Proceedings of the
Linguistic Annotation Workshop, pages 85–92. Association for Computational Linguistics, 2007.

[31] Chun Zhang, Jeffrey F. Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On Supporting
Containment Queries in Relational Database Management Systems. In Proceedings of the 2001
ACM SIGMOD international conference on Management of data, page 436. ACM, 2001.

[32] Florian Zipser. Entwicklung eines Konverterframeworks für linguistisch annotierte Daten
auf Basis eines gemeinsamen (Meta-)modells. Diplomarbeit, Humboldt-Universität zu
Berlin. http://www.linguistik.hu-berlin.de/institut/professuren/korpuslinguistik/

mitarbeiter-innen/florian/pdf/diplomarbeit.pdf, 2009.

[33] Humboldt-Universität zu Berlin. SaltNPepper Wiki. https://korpling.german.hu-berlin.de/trac/
saltnpepper.

64

http://www.postgresql.org/docs/8.4/interactive/index.html
http://www.postgresql.org/docs/8.4/interactive/index.html
http://www.sfb632.uni-potsdam.de/~d1/annis
http://www2.informatik.hu-berlin.de/Forschung_Lehre/wbi/research/stud_arbeiten/finished/2004/vitt_041114.pdf
http://www2.informatik.hu-berlin.de/Forschung_Lehre/wbi/research/stud_arbeiten/finished/2004/vitt_041114.pdf
https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/teaching/studienDiplomArbeiten/finished/2005/vitt_diplomarbeit.pdf
https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/teaching/studienDiplomArbeiten/finished/2005/vitt_diplomarbeit.pdf
http://www.linguistik.hu-berlin.de/institut/professuren/korpuslinguistik/mitarbeiter-innen/florian/pdf/diplomarbeit.pdf
http://www.linguistik.hu-berlin.de/institut/professuren/korpuslinguistik/mitarbeiter-innen/florian/pdf/diplomarbeit.pdf
https://korpling.german.hu-berlin.de/trac/saltnpepper
https://korpling.german.hu-berlin.de/trac/saltnpepper

	Contents
	Introduction
	Historical overview of Annis
	Goals and structure of this work

	Corpus Data Model
	Overview
	Key concepts
	SQL schema

	Annis 2 Query Language
	Introductory example
	Text span search terms
	Linguistic constraints
	Coverage
	Dominance
	Precedence
	Pointing relations
	Text span constraints

	Combining expressions with OR
	Meta data
	Query evaluation
	Query functions
	Pagination of ANNOTATE results
	Differences between ANNIS-QL 1 and AQL2

	SQL Generation
	Computation of derived node data during corpus import
	Minimally and maximally covered tokens
	Root nodes in the original ODAG
	Identification of a node's top-level corpus

	The SELECT and FROM clauses
	The WHERE clause: Translation of AQL2 language features
	Text search
	Token search
	Annotation search
	Node search
	Coverage
	Precedence
	Dominance and pointing relations
	Root nodes
	Node arity
	Token arity

	Query alternatives
	Corpus selection
	Meta data filtering
	Query functions
	The COUNT function
	The ANNOTATE function
	The MATRIX function

	Related work
	TIGERSearch
	Evaluating XPath queries using relational databases

	Evaluation and Optimization
	Search boundaries for ranged operators
	Performance of the normalized corpus data model
	The materialized facts table
	Combined node lookup and node join
	Indexed attributes for search terms and linguistic constraints
	Partial indexes
	Evaluation of different indexing strategies

	The MATRIX query function
	The ANNOTATE query function
	Rewriting queries with anchored regular expression searches
	Influence of document size

	Conclusions and Outlook
	Annis 2 Query Language Grammar
	Internal DDDquery implementation
	Supported DDDquery features and custom extensions
	Mapping from AQL2 to DDDquery

	SQL Schema of the Corpus Data Model
	Experimental Setup
	Test queries
	The Tiger corpus
	Test system
	PostgreSQL configuration
	Configuration of system resources

	References

