
D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 1 of 62

ARTIST

FP7-317859

Advanced software-based seRvice provisioning and
migraTIon of legacy Software

Deliverable D9.6

Automated Deployment Strategies

Editor(s): Jesús Gorroñogoitia

Responsible Partner: ATOS

Status-Version: v1.0

Date: 31/03/2015

Distribution level (CO, PU): PU

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 2 of 62

Project Number: FP7-317859

Project Title: ARTIST

Title of Deliverable: Automated Deployment Strategies

Due Date of Delivery to the EC: 31/03/2015

Workpackage responsible for
the Deliverable:

WP9 - New software generation by forward
engineering

Editor(s): ATOS

Contributor(s): TUWIEN, SPIKES, ICCS, INRIA

Reviewer(s): Kleopatra Konstanteli (ICCS)

Approved by: All Partners

Recommended/mandatory
readers:

WP6, WP7, WP9, WP12

Abstract: This deliverable comprises automatically
executable transformations needed for deploying
the modernized applications in specific Cloud
infrastructures

Keyword List: Forward Engineering, Model Transformation,
Deployment

Licensing information: Generally EPL (open source), indicated otherwise.

The document itself is delivered as a description
for the European Commission about the released
software, so it is not public.

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 3 of 62

Document Description

Document Revision History

Version Date

Modifications Introduced

Modification Reason Modified by

v0.1
24/02/15 ToC, First draft version ATOS, TUWIEN, ICCS,

SPIKES, INRIA

v0.2 10/03/15 Contributions TUWIEN, ATOS

V0.3 11/03/15 Contributions TUWIEN, ICCS, ATOS

V0.4 12/03/15 Contributions TUWIEN, ATOS

V0.5 13/03/15 Peer-Review Version ATOS

V0.6 25/03/15 Peer-Review ICCS

V1.0 31/03/15 Final version ATOS, ICCS, TUWIEN

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 4 of 62

Table of Contents

Table of Contents .. 4

Table of Figures ... 5

Table of Tables .. 6

Terms and abbreviations ... 7

Executive Summary ... 9

1 Introduction .. 11

1.1 About this deliverable ... 11

1.2 Document structure .. 12

1.3 Fitting into the overall ARTIST solution ... 13

1.4 Main Innovations... 14

2 Cloud Target Selection Tool .. 16

2.1 Functional description ... 16

2.2 Technical description .. 17

2.2.1 Cloud Target Selection Tool Architecture ... 18

2.2.2 Components description ... 19

2.2.2.1 UML Model Service ... 19

2.2.2.2 View Data-Model ... 20

2.2.2.3 User Interface .. 21

2.2.3 Technical specification .. 23

3 Modelling Deployment in UML ... 23

3.1 CAML By-Example ... 24

3.2 Reusable Deployment Templates ... 25

3.3 Interoperability with Cloud Modelling Approaches and Standards 26

4 Deployment Tool ... 27

4.1 Functional description ... 27

4.2 Technical description .. 27

4.2.1 Deployment Tool architecture .. 27

4.2.2 Components description ... 29

4.2.2.1 Metamodels for Bridging the Technical Spaces .. 30

4.2.2.2 CloudML2DeploymentTarget Transformer ... 30

5 Delivery and usage .. 32

5.1 Package information ... 32

5.1.1 Cloud Target Selection Tool .. 32

5.1.2 Deployment Tool ... 33

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 5 of 62

5.2 Installation instructions ... 34

5.3 User Manual .. 34

5.3.1 Cloud Target Selection Tool .. 34

5.3.2 Deployment Tool ... 35

5.4 Licensing information .. 41

5.5 Download .. 41

6 Conclusions ... 42

7 References ... 43

APPENDIX A: Analysis of the state of the art .. 45

APPENDIX B: Analysis of deployment patterns and frameworks for selected Cloud providers . 46

Google App Engine .. 46

Amazon WS ... 47

Microsoft Azure ... 51

APPENDIX C: Analysis of platform-independent deployment patterns and entities 53

Platform independent meta-model for deployment patterns ... 54

Platform Domain Models for Cloud providers .. 58

Table of Figures

FIGURE 1 ARTIST OVERALL DEPLOYMENT PROCESS .. 13
FIGURE 2 CLOUD TARGET SELECTION TOOL USER INTERFACE .. 17
FIGURE 3 SUB TASKS PERFORMED DURING THE TARGET SELECTION PROCESS .. 18
FIGURE 4 PACKAGE DIAGRAM WITH RELATIONS OF UML MODEL SERVICE COMPONENT 19
FIGURE 5 CLASS DIAGRAM OF VIEW DATA-MODEL ... 21
FIGURE 6 GENERAL FEATURES VIEW .. 22
FIGURE 7 SERVICE FEATURES VIEW ... 22
FIGURE 8 PLUG-IN DEPENDENCIES FOR CLOUD TARGET SELECTION TOOL .. 23
FIGURE 9 ON-PREMISE DEPLOYMENT OF REFERENCE USE CASE .. 24
FIGURE 10 REFERENCE USE CASE DEPLOYED ONTO GOOGLE APP ENGINE .. 25
FIGURE 11 REUSABLE DEPLOYMENT TEMPLATE FOR AMAZON AWS .. 26
FIGURE 12 DEPLOYMENT TOOL PROCESS ... 27
FIGURE 13 DEPLOYMENT TOOL PROCESS. GENERATION OF THE APPLICATION DEPLOYMENT PSM 28
FIGURE 14 DEPLOYMENT TOOL PROCESS: ARTEFACTS GENERATION. .. 29
FIGURE 15 DEPLOYMENT TOOL COMPONENTS .. 29
FIGURE 16 ECORE-BASED METAMODELS AS A BRIDGE BETWEEN MODELWARE AND XMLWARE 30
FIGURE 17 CLOUDML2DEPLOYMENT TRANSFORMER .. 31
FIGURE 18 PACKAGE STRUCTURE .. 33
FIGURE 19 DEPLOYMENT TOOL SUB-PROJECTS .. 33
FIGURE 20 TOOLBAR OF THE VIEWS .. 35
FIGURE 21 DEPLOYMENT TOOL CONTEXTUAL MENU .. 36

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 6 of 62

FIGURE 22 DEPLOYMENT MODEL FOR DEWS USE CASE ... 37
FIGURE 23 DEPLOYMENT MODEL FOR LOB USE CASE ... 38
FIGURE 24 DEPLOYMENT TOOL DIALOG .. 39
FIGURE 25 GAE GENERATED DEPLOYMENT DESCRIPTORS FOR EACH MODULE OF DEWS USE CASE 39
FIGURE 26 GAE DEPLOYMENT DESCRIPTOR .. 39
FIGURE 27 AZURE GENERATED DEPLOYMENT DESCRIPTORS AND SCRIPTS FOR EACH MODULE OF LOB USE CASE 40
FIGURE 28 AZURE SERVICE DEFINITION DESCRIPTOR... 40
FIGURE 29 AZURE SERVICE CONFIGURATION DESCRIPTOR ... 40
FIGURE 30 AZURE SERVICE DESCRIPTION .. 41
FIGURE 31 AWS DEPLOYMENT SERVICES .. 48
FIGURE 32 COMPATIBLE CLIENTS FOR AWS DEPLOYMENT SERVICES .. 51
FIGURE 33 DEPLOYMENT PLATFORM-INDEPENDENT META-MODEL FOR CLOUD PROVIDER PERSPECTIVE 55
FIGURE 34 DEPLOYMENT PLATFORM-INDEPENDENT META-MODEL FOR APPLICATION PERSPECTIVE 57
FIGURE 35 CROSS-REFERENCING META-MODEL CONCEPTS FOR DEPLOYMENT .. 58
FIGURE 36 GOOGLE APP ENGINE PDM SNIPPET ... 59
FIGURE 37 AMAZON WEB SERVICE PDM SNIPPET .. 60
FIGURE 38 MICROSOFT AZURE PDM SNIPPET .. 61

Table of Tables

NO TABLE OF FIGURES ENTRIES FOUND.

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 7 of 62

Terms and abbreviations

ATL Atlas Transformation Language

AWS Amazon Web Services

CAML Cloud Application Modelling Language

CCUI Command and Console User Interface

DBMS Database Management System

DEWS Distance Early Warning System

DSL Domain Specific Language

EAR Enterprise Archive

EE Enterprise Edition

EMF Eclipse Modelling Framework

EPL Eclipse Public License

GAE Google App Engine

GUI Graphical User Interface

IaaS Infrastructure as a Service

JAR Java Archive

LoB Line of Business

M2M Model to Model

M2MT Model to Model Transformation

M2T Model to Text

MDTB Model Discovery Toolbox

MUTB Model Understanding Toolbox

OVF Open Virtualization Format

PaaS Platform as a Service

PDM Platform Description Model

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 8 of 62

PI Platform Independent

PSM Platform Specific Language

SDK Software Development Kit

UI User Interface

UML Unified Modelling Language

VM Virtual Machine

WAR Web Archive

WP Work Package

XMI XML Metadata Interchange

XML Extensible Markup Language

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 9 of 62

Executive Summary

Task 9.5 ‘Deployment patterns expressed as transformations’ manages one of the activities
required during the modernization phase of the ARTIST Methodology, performed on the
components of an application being migrated to the Cloud. Once the models (PSM) that
described the application components have been “cloudified” and optimized (resulting on
modernized models) and the corresponding target source code has been generated (out of
these modernized models), there is still an important task remaining, since the modernized
components need to be deployed into the target Cloud environment. This deployment process
is conducted and personalized by a set of descriptor files, which require to be generated for
the selected target Cloud environment. These descriptors customize the deployment process
by expressing concrete deployment needs on the target and configuring the required Cloud
services. Moreover, the modernized components can only be deployed, depending on the
target, when packaged into concrete deployment units, which are typically compliant with
strict deployment standards, which are Cloud or application dependent (like for instance WAR
or EAR files for J2EE platform deployment or OVF for VM packaging).
The deployment process itself is supported by the target Cloud environment, normally through
a target-dependent SDK, which offers UI tools that enable the deployment process. Most of
the deployment SDKs offer command-line scripts that enable the manual deployment process
(intended for advanced users), although many Cloud providers offer as well GUIs (either
standalone ones or integrated within popular IDEs or Web-accessible ones) that simplify the
deployment process for not-advanced users.
As a consequence, the task to deploy a modernized application (or certain components)
requires (for most of the Cloud environments, either infrastructure or platform) the
elaboration of a set of artefacts supporting the deployment process itself.
Before supporting this process, application owners need to identify the Cloud target provider
and its offerings, based on the selection of Cloud services, required by the application. In this
context, the Cloud Target Selection Tool, specified in this document, supports the application
owner in the identification of required Cloud services and their matching against the available
Cloud provides, described by the available CloudML@ARTIST models.
Moreover, this model-driven deployment approach relies on the availability of deployment
models for the application. These models include generic deployment specifications, based on
UML complemented with the platform-independent CloudML@ARTIST meta-model, and Cloud
provider specifications, (included in CloudML@ARTIST as well).
The deployment tool enables the semi-assisted generation of deployment artefacts, out of
these models, assuming that they already contain deployment information and requirements.
In a similar approach followed by T9.4 Target Generation, this tool produces these textual-
based deployment artefacts by obtaining the deployment requirements and configuration
from the models.
ARTIST focuses on the model-driven migration support for selected target Cloud providers,
namely Google App Engine (GAE), and Microsoft Azure. Nonetheless, the ARTIST model-driven
deployment support will be investigated towards achieving the most generic and extensible
deployment support possible, compatible with the specific characteristics of these Cloud
providers.

This document reports the specification, design and implementation of the Cloud Target
Selection and Deployment Tools, and also elaborates on the model-based specification of the
deployment. Additionally, it reports on the preliminary research analysis that was conducted

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 10 of 62

for the design and implementation of the tools, as well as the conceptual deployment
strategies identified during this research.

Modelling deployment in UML, using CloudML@ARTIST is explained by example, using the
ARTIST Petstore use case. Deployment for the other ARTIST use cases (i.e. DEWS and Spikes
LoB) is modelled as well, as described in the user manual section of the Deployment Tool.
Reusable deployment templates for concrete Cloud providers and the interoperability of the
ARTIST deployment modelling approach with others are further elaborated.

Cloud Target Selection Tool and Deployment Tool specifications (both functional and technical)
are provided, including components and implementation details. For both tools, a walk-
through user guide is provided. For the Deployment Tool, this user guide describes its usage to
generate deployment descriptors for the Google App Engine and the Microsoft Azure Cloud
platforms, for DEWS and LoB use cases, respectively.

The implementation of the Deployment Tool provides specific support for deployment on
Google App Engine and Microsoft Azure, the default target Cloud platforms of choice for
ARTIST use cases. No specific implementation support for Amazon Web Services (AWS) was
implemented, despite it was included in the preliminary analysis, mainly for the following two
reasons:

 AWS support has not being required by ARTIST use cases for deployment

 Deployment in AWS is already supported by the Cloud platform deployment
framework of ModaCloud, based on CloudML. ARTIST provides a translator from
CloudML@ARTIST to CloudML@ModaCloud, whereby deployment models for AWS
created within ARTIST can be translated and used to support AWS deployment using
the ModaCloud framework.

Nonetheless, the ARTIST deployment approach is founded on solid and generic enough model-
driven techniques, underpinning a common deployment modelling language, which enables
the adaptation, with little effort on implementation, of the Deployment Tool to support other
Cloud target environments.

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 11 of 62

1 Introduction

1.1 About this deliverable

The modelling of the application deployment to the Cloud takes place during modernisation
phase of the ARTIST Methodology. It happens once the models that described the application
components have been modernised and optimized, and their source code, compatible with the
target Cloud offering, has been generated (from these modernised models). Then, there is still
an important activity remaining, since the application components need to be deployed into
the target Cloud environment.

The deployment activity is supported and configured by a set of deployment descriptors. These
descriptors personalized the deployment process by expressing concrete deployment
configurations for the target Cloud environment and by configuring the required services.
Additionally, the modernized components are deployed, depending on the target, bundled
within specific deployment units, which are compliant with formal deployment standards,
some of them Cloud specific (OVF for VM packaging), but other application specific (EAR for
J2EE platform).

The deployment process is typically Cloud provider specific, driven by vendor specific
procedures and mechanisms, although supported by SDKs, which offer tools that simplify the
deployment process, including GUIs, either standalone or integrated with popular IDEs or
Web-accessible. Most of these deployment tools also offer command-line scripts, targeting
advance users, enabling a manual deployment process.

In the particular case of Cloud infrastructure providers, there are public common libraries that
offer a common SDK supporting deployment on a wide range of providers through the same
interface, such as Apache jClouds1 or libCloud2 .Up to our knowledge, there is no similar
initiative concerning Cloud platforms, although some attempts to standardize a common Cloud
platform interface have already been started (i.e. CAMP3).
As a consequence, the task to deploy a modernized application (or certain components)
requires (for most of the Cloud environments, either infrastructure or platform) the
elaboration of a set of artefacts supporting the deployment process itself:

● One or more deployment descriptors, which are typically Cloud provider specific.
● One or more deployment units (i.e. bundles), which are either application- (e.g.

framework) or Cloud provider-specific.
● One or more deployment scripts (i.e. invocations of a deployment SDK).

Before supporting the deployment process itself, application owners requires identifying the
Cloud target provider and its offering, based on the selection of Cloud services required by the
application. In this context, the Cloud Target Selection Tool supports the application owner in
the identification of required Cloud services and the matching of these requirements against
the available Cloud provides, identified by the CloudML@ARTIST models available.
Moreover, the Model-Driven deployment approach, described in this document, relies on the
availability of deployment models for the application. These models include generic
deployment specifications, based on UML complemented with CloudML@ARTIST, and
specifications Cloud provider specifications, based on CloudML@ARTIST.

1
 http://jclouds.apache.org/

2
 http://libcloud.apache.org/

3
 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp

http://www.artist-project.eu/
http://jclouds.apache.org/
http://libcloud.apache.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 12 of 62

T9.5 ‘Deployment patterns expressed as transformations’ enables the semi-assisted
generation of these deployment artefacts, as introduced in the previous enumeration, out of
these deployment models. In a similar approach followed by T9.4 ‘Target Generation’, this task
produces these textual-based deployment artefacts, by inspecting the deployment
requirements and configuration for the modernized application.

However, T9.5 does NOT support the deployment process itself: this task does not provide a
homogeneous and universal deployment SDK supporting a wide range of target Cloud
environments. Nevertheless, T9.5 can provide (for some selected target Cloud environments
offering a command-line SDK) some tailored scripts which, once executed by end-users, deploy
the modernized application (or concrete components) into the target Cloud environment. It is
implied that the end-user has previously installed an operative target Cloud deployment
framework.

In a wider context, the deployment of complex distributed applications on the Cloud has been
increasingly receiving attention in the last years [1]. ARTIST focuses on the model-driven
migration support for selected target Cloud providers, namely Google App Engine (GAE) and
Microsoft Azure. Nonetheless, the ARTIST model-driven deployment support will be
investigated towards achieving the most generic and extensible deployment support possible,
compatible with the specific characteristics of these Cloud providers.

This document reports the specification, design and implementation of the Cloud Target
Selection Tool and the Deployment Tool. It also depicts the CloudML@ARTIST approach to
model deployment requirements. Additionally, it reports on the preliminary research analysis
that was conducted for the design and implementation of these tools, as well as the
conceptual deployment strategies identified during this research.

The implementation of the Deployment Tool provides specific support for deployment on
Google App Engine and Microsoft Azure, the default target Cloud platforms of choice for
ARTIST use cases. No specific implementation support for Amazon Web Services (AWS) was
implemented, despite although it was included in the preliminary analysis, mainly for the
following two reasons:

 AWS support seems not being required by ARTIST use cases for deployment

 Deployment in AWS is already supported by the Cloud platform deployment
framework of ModaCloud [27], based on CloudML. ARTIST provides a translator from
CloudML@ARTIST to CloudML@ModaCloud [28], whereby deployment models for
AWS created within ARTIST can be translated and use to support AWS deployment
using the ModaCloud framework.

1.2 Document structure

This document is structured as follows. Section 2 provides the functional and technical
specification of the Cloud Target Selection Tool, which enables users to determine the most
suitable target Cloud offering where to deploy the migrated application, based on browsing
the services offered by the Cloud provider. Section 3 describes the operational approach for
deployment modelling based on CloudML@ARTIST and UML. Section 4 provides the functional
and technical specification of the Deployment Tool, which enables the users to create required
deployment descriptors and scripts from deployment models, for selected target Cloud
offerings. Section 5 provides details for the delivery and usage of the Cloud Target Selection

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 13 of 62

and Deployment tools, as well as their user manuals. Section 6 concludes the document
outlining the main results of this work, and foreseen future work and improvements.
APPENDIX A reports the analysis of survey conducted on the state of the art on model-driven
support for deployment to Cloud. APPENDIX B reports on the analysis of the deployment
strategies for the reference Cloud offerings: Google App Engine, Amazon Web Services and
Microsoft Azure. APPENDIX C reports the research conducted aiming at detecting platform
independent deployment patterns (from the analysed ones) as well as designing a platform
independent meta-model for expressing conceptually these deployment patterns. Based on
this meta-model, platform description models (PDMs) for reference Cloud offerings were
derived.

1.3 Fitting into the overall ARTIST solution

In the following, we describe from a functional point of view how the Deployment Tool fits into
the overall ARTIST migration tool suite. The Deployment Tool is developed in the context of
WP9 and considered as part of the forward engineering process. Models reverse-engineered
by the MDTB and the MUTB – both are provided by WP8 – and modernized by the MCF are
considered as input of modelling the deployment. In fact, the component viewpoint is of
primarily interest for producing deployment models. Components are materialized by artefacts
that are deployed onto a Cloud environment. Hence, the quality of the reverse-engineered and
modernized components plays a crucial role. Only if they are appropriately designed, the
quality of the deployment models will be sufficient and useful to generate deployment scripts
required for initiating the resource provisioning at the target cloud environment. While
producing deployment models is considered to be mainly a manual task, the generation of
deployment scripts for a certain cloud environment is supported by dedicated model
transformations. To select an appropriate cloud provider and guide the developer through this
complex decision making process, the Cloud Target Selection tool is provided. It builds on
information captured by CloudML@ARTIST developed in WP7.

Figure 1 ARTIST Overall Deployment process

Figure 1 outlines the overall ARTIST deployment process. By using the Cloud Target Selection
tool (cf. Section 2), users can determine the Cloud providers that better fits their requirements
expressed by selecting the Cloud services they are looking for. Once the Cloud target has been
selecting, they can use CloudML@ARTIST to model the concrete deployment requirements and
topology for their application components (cf. Section 3). Finally, they can use the deployment
tool to generate target-specific deployment descriptors from the former models (cf. Section 4).

Cloud Target
Selection

Deployment
Modelling

Deployment

Descriptors

Generation

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 14 of 62

1.4 Main Innovations

The main focus of this deliverable is to report on the languages, techniques, and components
applied to produce cloud-based deployment models, select suitable Cloud providers that offers
required services and generate the deployment descriptors required to deliver to Cloud the
migrated application. Main innovations in this respect can be summarized as follows.

Cloud Target Selection. The main innovations of Cloud Target Selection tool lie in the
challenge of exploiting the CloudML@ARTIST model structure and can be concluded as follows:

 It contains a fully extensible mechanism which supports the filtering of the information
contained within the meta-models and providing it to the end user in a human-
consumable format through a user-friendly environment. From the extensibility point
of view, extensions can be easily made in order to support even more perspectives of
the existing underlying models, or extensions of them. E.g. legal aspects, and
benchmark results.

 The information exchange taking place through the interaction with the user, does not
require but a minimum set of knowledge about the elements described and defined in
the meta-models. This means that, in the future, potential changes in the cloud
providers’ descriptions or even in the definitions of general cloud environments in the
context of CloudML@ARTIST meta-model, will not result in non-compatibility with the
tool. On the contrary, new features can automatically be detected and take their place
in the equation solving the problem of selecting cloud target.

 It allows the user to express their requirements against the target cloud environments,
thus fully utilizing and exploiting all the benefits coming from the construction of
CloudML@ARTIST modelling language.

 Users’ expression of cloud requirements immediately and automatically result in
reports and suggestions about the best matching supported provider. Otherwise, this
task, even with the use of the same meta-models, would take a lot of time and effort
while it would absolutely require a good level of modelling knowledge in general and
in particular about the specific meta-models under use.

Modelling Cloud-based Deployments in UML. Current cloud modelling approaches [2] address
the diversity of cloud environments by introducing a considerable set of modelling concepts in
terms of novel domain-specific languages. At the same time, general-purpose languages, such
as UML, provide modelling concepts to represent software, platform and infrastructure
artefacts from different viewpoints where the deployment view is of particular relevance for
specifying the distribution of application components on the targeted cloud environments. The
generic nature of UML's deployment language calls for a cloud-specific extension to capture
the plethora of cloud services at the modelling level. For that reason we developed the Cloud
Application Modelling Language (CAML) as part of CloudML@ARTIST to enable cloud-based
deployments to be specified directly in UML. This is especially beneficial for migration
scenarios where reverse-engineered UML models are tailored towards a selected cloud
environment as it is advocated by ARTIST.

Deployment Tools for the Cloud. As it is described in this document (see APPENDIX A and B),
the existence of a plethora of Cloud providers, with their offerings and services, imposes a
diversity of deployment approaches, interfaces and services. Initiatives to harmonize this
diversity, offering a common deployment interface have focused mainly on supporting the

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 15 of 62

Cloud infrastructure, but only recently standardization initiatives to harmonize the deployment
on the platform have started. In this work, we show how a common modelling language
supporting deployment specifications (UML combined with CloudML@ARTIST) can be
exploited to generate the required deployment descriptors for a selection of Cloud providers
(i.e. Google App Engine, Microsoft Azure), by developing model-to-model transformations,
which convert deployment models, compliant to UML-CloudML@ARTIST into those compliant
to the specific Cloud meta-models describing those descriptors. A set of model-to-text
serializers, also developed in this work, generate the descriptors. This approach is generic, and
can be extended to support the deployment into any other Cloud provider, with low effort.

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 16 of 62

2 Cloud Target Selection Tool

The Cloud Target Selection tool is an Eclipse plugin aiming at guiding the user through the
complex process of making the final decision for the target platform of the migration of their
application or application components. This tool targets developers who have a good insight of
the application's technical and functional needs, but little knowledge about the services or the
benefits coming from the cloud platform providers. This case is quite common for developers
with little experience on cloud, or with much experience on a single cloud vendor's platform,
as the tasks of browsing through the countless documentation sheets and web-pages, as well
as of modelling and combining the resulting information, in order to get to the final decision,
are confusing and time consuming.

2.1 Functional description

The Cloud Target Selection Tool aims at exploiting the information lying in the meta-models, in
order to make a suggestion about the target platform that best fits the needs of the application
to be migrated. More precisely, the functionality of the tool, as a whole, can be summarised in
three main activities:

• It supports the visualization of the main features and service characteristics of the
target platforms, as they have been identified and modelled in the context of ARTIST
project.

• It allows the selection of the ones - of the above features - that are considered to be
important offerings for the specific application's needs, through a user-driven process.
This way, the user can actually set the target platform standards for hosting the
components of the application.

• It performs a matching process between the user's selection and the actual real-world
target platform offerings, so as to indicate the best fitting solution among the available
choices.

As described in Figure 2, the actions to be performed from the user’s perspective are:

• Action 1: Open the Eclipse views showing features and services.

• Action 2: Select the desired ones from the tree-structures of these views.

• Action 3: Indicate the candidate cloud providers among the supported ones by the
CloudML@ARTIST.

• Action 4: Ask for a validation to be performed over the selections made in previous
steps.

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 17 of 62

Figure 2 Cloud Target Selection tool User Interface

2.2 Technical description

The Cloud Target Selection Tool is implemented as an Eclipse plug-in. In this respect, Eclipse
libraries are used in order to provide the user interface which is essential for the tool to
become functional and fulfil its purpose, as a user-driven decision making engine. In addition,
a profile querying mechanism has been developed, with the support of the UML2 Java library
(see Section 2.2), in order to exchange information between the CloudML@ARTIST meta-
models [11] and the user interface. All Java classes composing this tool are developed in order
to contribute into the following tasks (see Figure 3):

1. Read the core meta-model providing all the profiles/stereotypes that are applicable on
the target cloud platform meta-models.

2. Transform the information coming from task 1 and visualize it using tree-structures
including checkboxes for enabling the user to make selections.

3. Obtain the user's selection through the checkboxes.

4. Transform user's selection into a UML-compatible format by forming and populating
query structures specifically created for this purpose.

5. Perform queries to each of the meta-models representing the target cloud platforms.

6. Validate the results of the queries by assigning scores to each target cloud platform
according to the level of compatibility with the user's requirements as set in step 4.

7. Report the results to the user.

Each of these tasks, except for the cloud features visualization (Task 2), and the report of the
validation results (Task 7), are hidden from the end-user.

http://www.artist-project.eu/

D9.6 – Automatic Deployment Strategies Version: v1.0, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 18 of 62

Figure 3 Sub tasks performed during the target selection process

2.2.1 Cloud Target Selection Tool Architecture

The Java classes created in the context of the Cloud Target selection tool are placed in four
different packages, following a conceptual grouping process. Each package plays a different role
in the architecture, as a whole. All the packages to be described are sub-folders of the general
source package: “eu.artist.migration.cloudselection”.

• UML Model Service: This package is responsible for any action connected with UML-
related tasks. Such tasks include UML file handling, model querying, memory handling
(total control of loading and unloading UML resources) and transformation of the
query results into forms or structures accessible by any other package with no
dependencies by the UML Java library. In addition, it is responsible for making the
validation of user's requirements in a match-making process between the requests to
the models and the corresponding responses.

• User Interface: This package (including two sub-packages) contains all classes which
compose the user interface, dedicated to interact with the end user. Every information
exchange between the tool and the user is defined and controlled through this
component.

View Data-model: This component represents the data structure which is visualized so
as to be accessed by the end user through the views. It provides a model which acts as
a bridge between the user-accessible and the UML-formatted information. While it
does not contain any definition of tasks to be performed, it is used to store
information, which will eventually be used by every other component of the tool.

http://www.artist-project.eu/

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 19 of 62

2.2.2 Components description

2.2.2.1 UML Model Service

This component is involved in any task that includes UML file handling or interaction with UML
resources and model elements. More precisely, user actions that trigger classes from this
package are (referring to the corresponding user actions as described in section 2.1):

Action 1: When the user demands for a view to open, this component is accessed in order to:

• Load the UML resources (R1 in Figure 4)

• Perform a search over these resources in order to find services and features to display
to the user. During this search, applied instances of the stereotypes
“CommonFeatures” and “Service” are to be found.

• Translate the results into “view data-model elements” (R2 in Figure 4).

Action 4: When the user asks for a validation to be made, this component:

• Gets as input all the user requests (R1 in Figure 4).

• Translates these requests into UML-compatible requests. This step requires the
definition of structures for allowing different types of model queries to be generated
and stored.

• Loads, one by one, the UML resources of the potential cloud target platforms. For each
loaded resource, the component performs the queries resulting from the previous
steps of the action, and after having obtained and stored the results, unloads, one by
one, the UML resources. So for each resource the action chain is: load-validate-unload.

• Processes the query results in order to make the final suggestion.

Figure 4 Package diagram with relations of UML model service component

A very important feature of the UML Model Service component is the fact that it performs the
search over the core UML file, in a generic way. This means that the Java classes are unaware of
the structure of the UML models to be queried in the highest possible degree. The only
information hardcoded in the classes is about the name of the two stereotypes investigated
(“CommonFeatures” and “Service”) and about one Enumeration (“HighLevelEvaluation”),
which is the datatype of some properties. This means that possible changes in the cloud meta-
model will not necessarily indicate changes to the Cloud Target Selection tool. Furthermore, it
provides the tool with the benefit of extensibility (in the future, more profiles can be used as
input for constructing different views containing different types of features for the user to
select, without affecting the implementation for the already included profiles).

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 20 of 62

Another issue to be discussed is the way the scores are assigned to each target platform,
according to the query results. The score assigning process is different for the detected types of
queries and answers:

• Type1 - High-level evaluation features queries. These queries aim at validating over
features which are of type “HighLevelEvaluation”. This is an enumeration allowing
three values: “poor”, “average”, “extensive”. If the user requests for such a feature then
the score assignment is defined as:

◦ case poor, score = 0

◦ case average, score = 0.5

◦ case extensive, score = 1

• Type2 - Boolean feature queries. These queries aim at indicating whether a feature or
service exists or not. The possible answers are translated into scores as:

◦ if exists, score = 1

◦ if does not exist, score = 0

• Type3 - Multivalued element queries. These queries apply in the case of service-based
evaluation (and could apply in other views too, if extended). Again they indicate
whether a feature exists, but the features are grouped into service categories. For
instance, in case of Infrastructure as a Service, the Storage Service may support a
number of storage types such as raw storage, volume storage and block blobs. If the
user selects n features of a specific service type, and the potential target platform
provides m of them (m<=n) then: score = m/n

In any case, 0<=score<=1 for every single query.

Final score for every potential platform will be: (s1+s2+…+sn)/n, where si the score for the ith
query.

2.2.2.2 View Data-Model

The Data model component is used by all the other components of the tool, while it is
independent from them. As shown in Figure 5, it contains the basic class which is the
“ModelElement”. Every other class extends it. While most classes do not have functional
differences among them, the declaration of so many distinct elements is essential, in order for
the tree-viewer of the graphical user interface to be aware of how to present each item, and
for the UML parsing component to be aware of how to search for each one of them in the
models, in case user selects it. In other words, the whole component serves as the “encoding”
and “decoding” mechanism between the specific UML entities, and the data generically for
user consuming.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 21 of 62

Figure 5 Class Diagram of View Data-Model

2.2.2.3 User Interface

The user interface has two main features: views and handlers.

Views

This component contains all the classes that handle communication between the tool and the
user, which is enabled through a graphical user interface. This GUI relies mostly on the tools
provided by Eclipse for plug-in development. For the time being, two very important views are
available (following a twofold interpretation of the core meta-model of CloudML@ARTIST).
Each one of them presents a tree-view, containing information coming from the core meta-
model parsing.

• The first view (Figure 6) comes from the applied stereotype “CommonFeature”. With
regard to the query types as discussed in Section 2.2.2.1, it contains features of Type1
(e.g. monitoring, support, API), Type2 (e.g. scaleup, supportsOCCI) and Type3 (e.g.
Scope).

• The second view comes from all the applied stereotypes which extend the stereotype
“Service” and are shown in (Figure 7). This view contains only features of Type3.
However, apart from the selectable features, it exploits the view data-model in such
say, so as to contain information about the grouping of the applied stereotypes into
different profiles (IaaS and PaaS are UML profiles included in the core profile).

In addition to these two views, there is a third one which is responsible for presenting all the
available providers. It also enables the selection of some among these providers which will be
the subjects of the research to be performed later on in the tool’s usage.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 22 of 62

Figure 6 General Features view

Figure 7 Service Features view

Handlers

In order to exploit the potentials provided by the view, four handlers have been designed and
developed. Some of them can be used to handle events such as pressing one of the buttons
appearing on the right upper corner of each view, or executing a command incorporated to the
menu. The implemented handlers are:

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 23 of 62

• ProvidersFileHandler: Handles the opening of the view containing the list of the
available providers.

• ValidateCommonsHandler: Initiates the process of making the validation for the
selections in the “general features” view.

• ValidateServiceHandler: Initiates the process of making validation for the selections in
the “Service Features” view.

• ResultsHandler: Shows the result to the user.

2.2.3 Technical specification

The Cloud Target Selection tool has been implemented as an Eclipse plugin and has been tested
against Eclipse Java EE IDE, version Kepler Service Release. It requires Java v7. It extends the
Eclipse IDE by implementing commands and views as well as contributing to the main menu. In
addition, it uses uml2 resources4 in order to parse UML profiles. Another plugin used is the
CloudML@ARTIST plugin which is responsible for providing the metamodel on which the target
selection is based. As a result, the required plug-ins are shown in Figure 8.

Figure 8 Plug-in dependencies for Cloud Target Selection Tool

3 Modelling Deployment in UML

General-purpose languages, such as UML, provide modelling concepts to represent software,
platform, and infrastructure artefacts from different viewpoints where the deployment view is
of particular relevance for specifying the distribution of software components on the targeted
cloud environments. Providing extensions to UML that satisfy current cloud modelling
requirements appears beneficial, especially when cloud-oriented migration scenarios [3] need
to be supported where reverse-engineered UML models are tailored towards a selected cloud
environment. For that reason, we have proposed the Cloud Application Modelling Language
(CAML) [4][5], that enables cloud-based deployment topologies to be represented directly in
UML and their refinement towards a concrete cloud environment. Features of existing cloud
environments are captured by dedicated UML profiles. Thereby, a clear separation is achieved
between cloud-environment independent and cloud-environment specific deployment models
[6], which is in accordance with the PIM/PSM concept. In our case, the “platform” refers to the
cloud environment. We developed profiles for three major cloud environments: Amazon
AWS5, Google Cloud Platform6, Microsoft Azure7. Inspired from common cloud computing
literature [7][8][9], recent cloud modelling approaches [10] and cloud programming
approaches8, we developed CAML's model library that facilitates developing base deployment
topologies to which cloud environment profiles are applied. The benefits of realizing CAML as
an internal language of UML are threefold: (i) UML provides a rich base language for the

4
 http://eclipse.org/modeling/mdt/?project=uml2

5
 Amazon AWS: http://aws.amazon.com

6
 Google Cloud Platform: http://cloud.google.com

7
 Microsoft Azure: http://azure.microsoft.com

8
 Deltacloud: https://deltacloud.apache.org and jclouds: http://jclouds.apache.org

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 24 of 62

deployment viewpoint, (ii) “cloudifying” UML models is facilitated without the need to re-
model existing applications, and (iii) profiles in UML allow hiding details of cloud provider
offerings from models and dynamically switching between them by (un-/re-)applying
respective cloud environment profiles. CAML is considered as part of the CloudML@ARTIST
[11].

3.1 CAML By-Example

To emphasize the benefits of employing UML as the host language for realizing CAML, we give
an overview of UML's structural viewpoints that support representing application deployments
by means of the ARTIST reference use case9. We take the viewpoint of the software
components and their deployment. Figure 9a depicts some components of our application, an
excerpt of their realizing classes and the manifestation of these components by deployable
artefacts. A possible on-premise deployment for them is presented in Figure 9b. It covers
instances of the two deployable artefacts and connects them to a Java-based middleware and
a relational DBMS, which are in turn deployed onto a node with specified (virtual) machine
characteristics. The model elements of the deployment are instances of the custom types
defined in the component viewpoint, cf. Figure 9a, and the deployment viewpoint, cf. ¡Error!
No se encuentra el origen de la referencia.c, respectively. To exploit modern cloud features,
deployment models need to be expressive enough to capture them. This is exactly the purpose
of CAML. Because it is realized in terms of lightweight extensions to UML, CAML models are
applicable to UML models and so to our modelled reference use case as depicted in Figure 9.

To demonstrate how CAML is applied, Figure 10 presents a possible deployment topology and
refinement towards the Google App Engine of our introduced use case, cf. Figure 9. In a first
step, we modelled the deployment topology. It consists of two automatically scaled cloud
nodes and a key-value cloud storage for managing the application data in an eventually
consistent way.

Figure 9 On-premise deployment of reference use case

9
 It is based on the Petstore Application as introduced in ARTIST deliverable D9.1 [12]

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 25 of 62

As the cloud nodes are specified as platform-level offering, we directly deployed the
application components onto them. Then, in a second step, we applied the Google App Engine
profile and the respective stereotypes to refine the deployment model towards concrete cloud
offerings provided by the Google App Engine. As a result, the modelled cloud nodes refer to
the “F1” and “F4” instance types that host a Java-based middleware. The configuration
attached to these cloud nodes constrains the maximum number of idle cloud nodes. Finally,
Google App Engine's key-value data-store is employed for the required cloud storage
capabilities.

Figure 10 Reference use case deployed onto Google App Engine

3.2 Reusable Deployment Templates

As CAML is based on UML, its reuse mechanisms can be applied for cloud application
deployments. This is particularly useful for providing frequently occurring deployment patterns
as predefined UML templates. To show their usefulness and give first evidence of CAML's
expressivity, we developed several templates as reusable deployment blueprints, most of
them are based on Amazon's best practices10. We modelled their inherent topology with
CAML's cloud library and refined them with stereotypes from the cloud profile dedicated to
Amazon. To demonstrate the use of a blueprint, we show how our reference use case is bound
to a template, which refers in our case to a 2-tier web architecture [9]. To reuse the predefined
template, the deployable artefacts need to be bound to the template parameters. Figure 11
depicts the component viewpoint of our reference use case and the respective CAML
template. It consists of two cloud nodes that refer to the “M3Medium” offering of Amazon.
Their location is required to be in Europe while the operation system needs to be Linux. For
reliability reasons, they are placed in different availability zones. Requests that arrive at the
cloud nodes are first handled by a load balancing service, which enables a higher fault
tolerance of the application. The number of running cloud nodes is automatically managed by
Amazon as expressed by the scalability strategy. Only the minimum number of running cloud
nodes and their adjustment is configured. Both cloud nodes are connected to a cloud storage
that in turn is replicated to improve data availability. Finally, as Amazon cloud nodes operate
at the infrastructure level, the required middleware for our reference application is defined. In
fact, we directly reused it from the on-premise deployment given in Figure 9.

10

 Amazon Architecture Center: https://aws.amazon.com/architecture

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 26 of 62

Figure 11 Reusable Deployment Template for Amazon AWS

3.3 Interoperability with Cloud Modelling Approaches and Standards

One major aspect in model-based engineering is to place models as first-class entities in the
engineering process. Ideally, they should be turned into executable or interpretable artefacts.
Regarding the deployment viewpoint, it appears desirable to translate the respective models
into descriptors and scripts that are passed to provisioning engines for cloud environments.
For instance, a Google App Engine based deployment requires specific descriptors for defining
the assignment of application modules to a concrete instance type. This assignment can be
derived from a CAML model as discussed in Section ¡Error! No se encuentra el origen de la
referencia.. At the same time, there are ongoing efforts in standardizing the specification of
cloud-based application deployments. The recently accepted TOSCA standard aims at
supporting portable cloud applications. With the notion of management plans, emerging
TOSCA-compliant engines are capable to interpret such deployment topologies and initiate the
provisioning of defined service templates [13]. Also, in the ModaClouds project, a provisioning
engine for CloudML is developed [14]. Clearly, this is also of practical value for CAML models.
For that reason, we have developed dedicated model transformations to enable
interoperability between these languages.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 27 of 62

4 Deployment Tool

4.1 Functional description

This section introduces the functional scope of the Deployment Tool and its deployment
support and collects the main requirements that drive its design and development.

From a functional point of view, the techniques and tools developed in this task (in
collaboration with the T9.2 CloudML specification, from the application perspective, and the
T9.4 Target Generation) offer to the end-user the following features:

● Ability to express deployment requirements and information on the modernized
models that describes the migrated application (or specific components)

○ Ability to express deployment units (i.e. separate deployment units
corresponding to deployable components)

○ Ability to express deployment patterns/topologies (i.e. to specify the
deployment layout of components,)

○ Ability to express both platform and infrastructure requirements (i.e. services
or frameworks)

● Ability to generate the deployment descriptors, for the entire application or for
individual components, for the selected target Cloud environment.

○ Deployment descriptors are editable and modifiable by end user using third-
party editors (i.e. Eclipse XML Editors)

● Ability to package deployment units, for the entire application or for individual
components, compliant with the frameworks they were developed for (platform) or
with the VM specification format (infrastructure). This feature requires that compilable
units have been created before using the Target Generation Tool (T9.4)

○ Deployment units can be open, browsed and modified using third party tools
(i.e. Jar/Zip editors for WAR, EAR or VMWare OVF Tool, etc.).

● Ability to generate deployment scripts that launch the deployment process on the
selected target Cloud environment. These scripts require the availability of a
command-line interface provided by the SDK of the selected target Cloud
environment.

4.2 Technical description

4.2.1 Deployment Tool architecture

The model-driven approach for automating Cloud deployment strategies, implemented in the
Deployment tool is depicted below in Figure 12.

Figure 12 Deployment Tool process

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 28 of 62

Conceptually, this is a two-steps process. In the first step an application deployment PSM is
computed for the concrete target Cloud provider. In the second step, the deployment artefacts
are generated from former deployment PSM. Let’s further specify these two steps separately.

The following Figure 13 depicts the steps to generate the application deployment PSM.

Figure 13 Deployment Tool process. Generation of the application deployment PSM

In this first step, the Deployment Tool generates a model (PSM) for deploying the application
in a selected target Cloud provider. This model will contain all the information required to
generate the deployment artefacts for the selected target Cloud provider. This process
requires the following input elements:

● An UML deployment model (PSM) of the application. This model, apart from
describing the application itself (and its constituting components), distributed in an
deployment layout (i.e. UML nodes), contains additional deployment information
(specified by using CloudML@ARTIST profiles) about:

○ Selected target Cloud environment for deployment.
○ Required Cloud target-specific services or frameworks (e.g. see deployment

meta-model description in Appendix C) that require to be configured during
the deployment.

○ Deployment requirements that can be likely communicated in a platform
independent way (expressed using CloudML@ARTIST, see PI meta-model in
Appendix C). If the user needs to specify platform specific deployment
requirements, she can do it, using the CloudML@ARTIST profile available for
the selected target Cloud environment.

As depicted in the ¡Error! No se encuentra el origen de la referencia., this model is fed into
the Deployment Tool (conceptualized in the picture as a M2M deployment pattern or a set of
M2M deployment patterns). The purpose of this first step is to produce a platform specific
deployment model for the application that personalises all the deployment requirements
according to the selected target Cloud environment. In order words, a set of M2M
transformations convert an instance of UML deployment meta-model (annotated with
CloudML@ARTIST profiles) into one or more instances (compliant to one or more cloud-target-
specific meta-models) that describe the deployment of the application into the concrete cloud-
target offering.

DT
(M2MT)

CloudML @ARTIST
Deployment

(PSM)

Cloud-target
Deployment (PSM)

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 29 of 62

In the second step (see Figure 14 below), the Deployment Tool applies a set of M2T
transformations to the application deployment model (PSM) to obtain the target specific
deployment descriptors. Additionally, the Deployment Tool can pack these descriptors with
the migrated compilation units (provided as input) to generate deployment units (not depicted
in the picture). Besides, a similar technique based on M2T transformations can be used to
generate target-specific deployment scripts, which are functionally described in previous
sections.

Figure 14 Deployment Tool process: Artefacts generation.

Figure 15 Deployment Tool components

The main Deployment Tool components are depicted in Figure 15. The CloudML2Deployment
Target Transformer processes the first step of the deployment descriptors generation
described in Figure 13, while the Deployment Target Serializer obtains the serialized
deployment descriptors as described in Figure 14. Both components exchange the cloud-
target-specific deployment models obtained in the first step.

4.2.2 Components description

Generating deployment scripts for Google App Engine and Microsoft Azure from a deployment
model expressed in CloudML@ARTIST/CAML, requires overcoming the different encodings and

DT
(M2TT)

Cloud-target
Deployment (PSM)

Cloud-target Deployment
Descriptors/Scripts

Deployment
Tool

CloudML2DeploymentTarget
Transformer

DeploymentTarget Serializer

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 30 of 62

providing a conceptual mapping of the various concepts. The latter is the basis for
implementing a transformation to automate the generation of pertinent deployment scripts.
First, we describe how we bridge the different encodings by providing an Ecore-based
metamodel as a bridging technology (see Section 4.2.2.1). Then, we introduce the mappings
we have implemented in terms of model-to-model transformations where the target
metamodels of them are the bridging metamodels (see Section 4.2.2.2).

4.2.2.1 Metamodels for Bridging the Technical Spaces

To generate deployment scripts for Google App Engine and Microsoft Azure from a
deployment model, we are confronted with two technical spaces: Modelware and XMLware.
Basially, the deployment scripts need to be encoded in the correct format, which is XML,
whereas the common format for encoding models is XMI as standardized by the OMG.
Moreover, they need to conform to the respective XML schemas provided by both Google App
Engine and Microsoft Azure. These XML schemas provide all the concepts to which
correspondences from the concepts of CloudML@ARTIST/CAML need to be identified and
implemented in terms of transformations. Directly implementing a transformation that
produces deployment scripts in XML format would require overcoming two challenges at once.
Hence, we advocate a two-step approach, where in a first a model-to-model transformation is
applied to translate between concepts of CloudML@ARTIST/CAML and the target cloud
environment. Then, in a second step, the produced model of the model-to-model
transformation is translated into the encoding expected by the cloud environment. To achieve
such a two-step approach an Ecore-based metamodel is used as a bridge between the two
technical spaces [15][16]. In fact, an Ecore-based metamodel can be automatically generated
from an XML schema while the parser and printer to translate between the technical spaces is
provided by EMF. Figure 16 summaries the use of Ecore-based metamodels as a bridging
technology. The generated metamodel can be used as the target for model-to-model
transformations. This is exactly the approach we followed to implement the transformations of
our deployment tool as discussed in Section 4.2.2.2.

Figure 16 Ecore-based metamodels as a bridge between Modelware and XMLware

4.2.2.2 CloudML2DeploymentTarget Transformer

This section describes the M2M transformer that converts an UML deployment model into a
set of cloud-target-specific (Google App Engine, Microsoft Azure) deployment models (one of
each available cloud-target-specific meta-models), which are finally serialized by the Descriptor
Serializer (see Section 4.2.2.1).

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 31 of 62

Figure 17 CloudML2Deployment Transformer

Figure 17 depicts the process performed by CloudML2DeploymentTarget Transformer
components, in terms of inputs and outputs of the ATL M2MT target module.

This module takes as input:

 The deployment model designed by the user, which is an instance of the UML meta-
model, and has been annotated with stereotypes taken from the CloudML@ARTIST
DSL.

 The CloudML@ARTIST profiles that are manage by the module, particularly those
providing a deployment vocabulary.

This module produces, as output:

 The specific deployment models for the selected cloud target. These models are
concrete instances of the cloud-target-specific meta-models. In particular, Google App
Engine requires one concrete deployment descriptor for Java-based applications (i.e.
appengine-web), whose concrete model is an instance of the Google App Engine
AppEngineWeb metamodel. Microsoft Azure requires different service descriptors:
configuration, definition and description, whereby three different models (as instances
of Microsoft Azure service configuration, definition and description) are created.

In practice, different ATL modules are specialized to create one single output deployment
descriptor model. As such, to generate the different Microsoft Azure descriptors, different ATL
modules are invoked in sequence.

The following code snippet contains the ATL module declaration for the CloudM2GAE
transformation, which describes the input and out signature of the module:

ATL

M2MT
Target

Module

UML Deployment
Model

CloudML@ARTIST
Profiles

Target Deployment
Models

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 32 of 62

As seen in the module declaration, this M2MT creates a Google App Engine appengine-web
model from an UML model, using the CloudML@ARTIST profile for Google App Engine, the
core profile and the security profile.

The following ATL rule defines the mapping between an CloudNode instance (of type GAE) in
the CloudML@ARTIST input deployment model and the AppengineWebAppType element in
the output cloud-target-specific deployment model:

Similar ATL M2MT modules have been created to generate cloud-target-specific models from
CloudML@ARTIST, for Microsoft Azure service deployment descriptors: service configuration,
service definition and service description.

When some elements of the cloud-target-specific meta-models cannot be derived from the
CloudML@ARTIST, default values have been set up, based on the analysis of the specification.
It is up the Deployment Tool user to modify these default values when it is required.

5 Delivery and usage

5.1 Package information

5.1.1 Cloud Target Selection Tool

Figure 18 shows file structure of the plug-in. The contained files are:

 src - All java files included

 icons - Image files accessed at runtime

 META-INF - The plug-in manifest file

 build.properties - Defines all properties needed to run the plugin

 plugin.xml - Description of extending the eclipse platform

 Readme.txt - Installation and usage instructions

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 33 of 62

Figure 18 Package structure

5.1.2 Deployment Tool

The Deployment Tool components are packaged either as Eclipse plugins or Eclipse projects.
These plugins are shown in the next Figure 19:

Figure 19 Deployment tool sub-projects

 eu.artist.migration.deployment project implements the UI of the Deployment Tool and
its contributions to the Eclipse workbench. It launches the Deployment Tool
generators selected by the user on a concrete deployment model.

 eu.artist.migration.deployment.azure.service.configuration provides the Microsoft
Azure service configuration metamodel, its Java entities and EMF-based helper classes
to serialize the Azure service configuration descriptor (*.cscfg).

 eu.artist.migration.deployment.azure.service.definition provides the Microsoft Azure
service definition metamodel, its Java entities and EMF-based helper classes to
serialize the Azure service definition descriptor (*.csdef).

 eu.artist.migration.deployment.azure.service.description provides the Microsoft Azure
service description metamodel, its Java entities and EMF-based helper classes to
serialize the Azure service descriptor script (*.ps).

 eu.artist.migration.deployment.azure.transformation provides Java helpers and ATL
M2M transformations to migrate from deployment model instances of

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 34 of 62

CloudML@ARTIST to the Azure service configuration, definition, description
metamodels.

 eu.artist.migration.deployment.features packages all Deployment Tool plugins as a
single Eclipse feature.

 eu.artist.migration.deployment.gae.appengine.web.app provides the Google App
Engine web app definition metamodel, its Java entities and EMF-based helper classes
to serialize the Google App Engine web application descriptor (appengine-web.xml).

 eu.artist.migration.deployment.gae.transformation provides Java helpers and ATL
M2M transformations to migrate from deployment model instances of
CloudML@ARTIST to the Google App Engine web application definition metamodel.

5.2 Installation instructions

The Cloud Target Selection Tool plug-in has been tested on of Eclipse Kepler SR2. Java v7 is
required. Before installing this tool, the user should download and install the UML2 plugin as
well as the CloudML@ARTIST plugin11. The next step is to copy the Cloud Target Selection Tool
plugins on the “dropins” folder of the Eclipse installation.

The Deployment Tool is bundle as a zip file that contains the Deployment Tool feature and its
plugins. In order to install them, just unzip DT.zip into the Eclipse folder and start Eclipse.
Alternatively, Deployment Tool can be installed through the ARTIST update site. Go to “Help-
>Install New Software”, select ARTIST in the “Work with” combo. If ARTIST update site is not
available, click on “Add->Archive” and browse your local file system to locate the ARTIST
update site you have downloaded from the ARTIST web site.

Once the site has been loaded, in the ARTIST category, select “Deployment Tool” and install it.

5.3 User Manual

5.3.1 Cloud Target Selection Tool

In order to ensure the success of the tool's installation, the user should try selecting: Window >
Show View > Other...

In the opening dialog with the available views, there should be a new category added under
the label: Cloud Target Selection. There the user can select between the two available (or
more, upon extension) views. Double selection is also feasible. The selected views will open
but nothing will be displayed. Having managed to get to this point means that the installation
has been successful and the user can make the following steps in order to make use of the
plug-in:

1. Go to one of the open views. There, on the upper right corner a toolbar appears,
containing a set of icons each one of them representing a specific action, which is
shown simply by rolling the mouse over each icon:

11

 D7.2.3 Cloud services modelling and performance analysis framework, ARTIST EU Project

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 35 of 62

Figure 20 Toolbar of the views

2. By selecting the first icon (Figure 20A) a view will appear showing the list of supported
providers to select from. These will be the candidate target platforms for the cloud
target selection process.

3. The user can select any of the shown items which represent services and cloud
features. The eraser button (Figure 20B), can seem helpful by unselecting every object
and clearing the view.

4. When the feature selection process is finished, the validation process can begin by
pressing the “play” button (Figure 20C). The validation will take place among the
selected providers. If the user hasn’t made a selection, all the supported providers will
be checked (default configuration).

5. The results will appear on screen as scores for each of the selected providers.

6. Steps 2 to 5 can be repeated any number of times the user desires (with different input
in each repetition) in order to gain a satisfying insight about the offerings of each cloud
platform.

5.3.2 Deployment Tool

Deployment Tool can be used on deployment model instances of the CloudML@ARTIST. Figure
22 and Figure 23 below show deployment models for DEWS and LoB use cases respectively.
These models can be created by hand using any Eclipse UML visual editor compatible with
UML2 Ecore, such as Papyrus, by applying CloudML@ARTIST deployment meta-model and
specific Cloud deployment profiles.

Browse your workspace, on the Navigation or Package Explorer view, and locate the
deployment model you want to generate deployment descriptors from. Right-click and select
the “Deployment Tool->Generate Deployment Descriptors” entry in the pop-up contextual
menu (see Figure 21). A Deployment Tool dialog appears.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 36 of 62

Figure 21 Deployment Tool contextual menu

In the dialog (see Figure 24), select the Cloud deployment target, that is, the Cloud offering
you want to generate the descriptors for. Optionally, you can specify the target location where
to place the generated descriptors. If so, click on “Browse” button and select the target project
in the pop-up project selection dialog. When finished, accept the dialog to generate the
descriptors. After few seconds required descriptors are generated and a modal dialog informs
the user about the location of those files.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 37 of 62

Figure 22 Deployment model for DEWS use case

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 38 of 62

Figure 23 Deployment model for LoB use case

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 39 of 62

Figure 24 Deployment Tool Dialog

As an example, next figure (Figure 25) shows the generated Google App Engine descriptors for
each module in the DEWS deployment model. For each module, one customized “appengine-
web.xml” descriptor is generated.

Figure 25 GAE generated deployment descriptors for each module of DEWS use case

Figure 26 shows the generated Google App Engine descriptor for the CCUI module.

Figure 26 GAE deployment descriptor

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 40 of 62

Similarly, Figure 27 shows the Microsoft Azure generated deployment descriptors and scripts
for the LoB deployment model. Two deployment descriptors (i.e. service configuration and
definition) and one script (i.e. service description) are generated.

Figure 27 Azure generated deployment descriptors and scripts for each module of LoB use case

Figure 28, Figure 29 and Figure 30 show the generated Microsoft Azure service definition,
service configuration descriptors and the service description script, respectively.

Figure 28 Azure service definition descriptor

Figure 29 Azure Service configuration descriptor

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 41 of 62

Figure 30 Azure service description

5.4 Licensing information

Both Cloud Target Selection Tool and the Deployment Tool are released under the Eclipse
Public License (EPL)12, which is a known as a “commercial-friendly” open source license. This
should facilitate the future potential reuse and integration of these tools by external partners.

5.5 Download

The sources of the Cloud Target Selection Tool and the Deployment Tool are available in the
public Github ARTIST repository13 at the following location:

source/Tooling/migration/modernization/deployment

12

 https://www.eclipse.org/legal/epl-v10.html
13

 https://github.com/artist-project/ARTIST

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 42 of 62

6 Conclusions

This document introduces the theoretical, functional and technical framework for the ARTIST
deployment strategies to the Cloud, which enables the specification of the application
deployment requirements, the selection of suitable Cloud target environments and the
automation of the deployment support. In the document, we elaborate on the scope and
motivation for model-driven automated deployment strategies, in the context of the ARTIST
methodology, during the modernisation activity of the migration phase. We elaborate the
functional scope of the modelling language, the Cloud Target Selection Tool and the
Deployment Tool, focusing on the model-driven specification of deployment models, the
selection of the Cloud target environment and the generation of required deployment
descriptors. For practical reasons, we restrict the deployment support for those target Cloud
providers required by ARTIST use cases, namely Google App Engine and Microsoft Azure,
although the proposed model-driven automated deployment approach is generic enough as to
be easily extended to support any other Cloud infrastructure or platform provider.

We have analysed and reported on similar or related model-driven deployment strategies
conducted in the scientific research (see APPENDIX A). On the basis of these findings and
aligned to other ARTIST techniques on model-driven modernisation of non-cloud-compatible
applications, we have proposed in this document a two-stages model-driven approach that
makes intensive usage of CloudML@ARTIST modelling support and both M2M and M2T
transformation techniques, in order to generate the artefacts required to deploy a “cloudified”
application (see Section 4.2.1).

We have also analysed in detail the current deployment patterns and frameworks supported
by the target ARTIST Cloud providers (see APPENDIX B), identifying their main deployment
concepts and entities. Based on this analysis, we have created a platform independent (PI)
meta-model (see Appendix C), which describes the main deployment concepts and entities and
their relationships, both from the Cloud provider and application owner perspective,
regardless of any platform specific concern. Using this PI meta-model, we have instantiate
platform domain models for each of the three ARTIST selected target Cloud providers (see
Appendix C).

This PI meta-model identifies an information model for Cloud deployment. This information
model has influenced the development of the CloudML@ARTIST, in order to enable ARTIST to
provide model-driven automated deployment support (see section 2). In this regards, we have
identified entities on the deployment meta-model already included in the CloudML@ARTIST
and other entities that should be included in future releases of this profile.

We have described a generic and wide enough modelling approach to specify Cloud
deployment requirements and specifications at model level, and their concretization for
specific Cloud offerings, making use of reusable deployment templates (see Section 3.2)

We have also provided the functional and technical specifications of the two ARTIST tools
supporting the deployment to Cloud: the Cloud Target Selection Tool (see section 2) and the
Deployment Selection Tool (see Section 4). The former relies on the Cloud specific profiled
meta-models shipped within CloudML@ARTIST. Therefore, by adding new CloudML@ARTIST
meta-models describing other Cloud providers, the Cloud Target Selection Tool will be
seamlessly extended to support them as well. The latter can be easily extended as well, with
little effort, to generate deployment descriptors for additional Cloud offerings, since its
approach is generic enough and relies on the homogenous modelling support provided by
CloudML@ARTIST.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 43 of 62

7 References

[1] G. Baryannis and P. Garefalakis, “Lifecycle management of service-based applications on
multi-clouds: a research roadmap,” in MultiCloud conf., 2013, pp. 13–20.

[2] Bergmayr, A., Grossniklaus, M., Wimmer, M., Kappel, G.: Cloud Modelling Languages by
Example, In: SOCA (2014)

[3] Bergmayr, A., Bruneliere, H., C´anovas Izquierdo, J.L., Gorroñogoitia, J., Kousiouris,
G.,Kyriazis, D., Langer, P., Menychtas, A., Orue-Echevarria Arrieta, L., Pezuela, C., Wimmer,
M.: Migrating Legacy Software to the Cloud with ARTIST. In: CSMR (2013)

[4] D9.2 – Modelling languageand editor for defining target specifications ARTIST Project
[5] Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., Kappel, G.: UML-based Cloud

Application Modelling with Libraries, Profiles and Templates. In: CloudMDE Workshop @
MoDELS (2014)

[6] Ardagna, D., Nitto, E.D., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria, F., Casale, G.,
Matthews, P., Nechifor, C.S., Petcu, D., Gericke, A., Sheridan, C.: MODAClouds: A Model-
Driven Approach for the Design and Execution of Applications on Multiple Clouds.In: MISE
Workshop (2012)

[7] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson,
D.A., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. CACM 53(4) (2010)

[8] Badger, M.L., Grance, T., Patt-Corner, R., Voas, J.M.: Cloud Computing Synopsis and
Recommendations. Tech. rep., NIST Computer Security Division (2012)

[9] Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns -
Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2014)

[10] Bergmayr, A., Grossniklaus, M., Wimmer, M., Kappel, G.: Cloud Modelling Languages by
Example, In: SOCA (2014)

[11] D7.2.1 - Cloud services modelling and performance analysis framework, ARTIST Project
[12] D9.1 State of the art in modelling languages and model transformation techniques, ARTIST

Project
[13] Binz, T., Breitenb¨ucher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated

Deployment and Management of Cloud Applications. In: Advanced Web Services (2014)
[14] Ferry, N., Song, H., Rossini, A., Chauvel, F., and Solberg, A.: CloudMF: Applying MDE to

Tame the Complexity of Managing Multi-Cloud Applications. In: UCC (2014)
[15] Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between Modelling

and Java. In: Proc. SLE. pp. 374–383 (2010)
[16] Bergmayr, A., Grossniklaus, M., Wimmer, M., Kappel, G.: JUMP-From Java Annotations to

UML Profiles. In: Proc. MoDELS. pp. 552-568 (2014)
[17] G. Edwards, G. Deng, D. C. Schmidt, A. Gokhale, and B. Natarajan, “Model-driven

configuration and deployment of component middleware publish/subscribe services,” in
GPCE conf., 2004, vol. 3286, pp. 337–360

[18] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, and P. Fraternali, “Model-driven design and
deployment of service-enabled web applications,” ACM Trans. Internet Technol., vol. 5, no.
3, pp. 439–479, Aug. 2005.

[19] S. Ceri, P. Fraternali, R. Acerbis, A. Bongio, S. Butti, F. Ciapessoni, C. Conserva, R. Elli, D.
Elettronica, P. Milano, and P. L. Da Vinci, “Architectural Issues and Solutions in the
Development of Data-Intensive Web Applications,” in VLDB conf., 2003.

[20] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability modelling to support
customization and deployment of multi-tenant-aware Software as a Service applications,”
in PESOS workshop, 2009, pp. 18–25.

[21] Czarnecki, K., and U. Eisenecker, Generative Programming: Methods, Tools, and
Applications, , Reading, MA, USA, Addison-Wesley, pp. 864, 2000

[22] Software Product Lines: Practices and Patterns. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 44 of 62

[23] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards Model-Driven
Provisioning, Deployment, Monitoring, and Adaptation of Multi-cloud Systems,” in CLOUD
conf., 2013, pp. 887–894.

[24] A. Papaioannou and K. Magoutis, “An Architecture for Evaluating Distributed Application
Deployments in Multi-clouds,” in CloudCom conf., 2013, pp. 547–554.

[25] C. Quinton and N. Haderer, “Towards multi-cloud configurations using feature models and
ontologies,” in MultiCloud conf., 2013, pp. 21–26.

[26] A. Gunka and H. Kühn, “Moving an Application to the Cloud – A n Evolutionary Approach,”
pp. 35–42, 2013.

[27] D4.3.2 MODACloudML IDE. MODACloud Project
[28] CloudML@ARTIST to MODACloudML translation. ARTIST internal report.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 45 of 62

APPENDIX A: Analysis of the state of the art

The deployment of web applications using MDE techniques has been tackled by several works
in the last years. For instance, in [17], authors propose a model-based approach to configure
and deploy publish/subscribe services in QoS-enabled component middleware based on
CORBA. The proposal defines the language EQAL (Event QoS Aspect Language), which is used
to configure and deploy services in QoS-enabled component middlewares. Thus, this work is
coupled to a particular technology (publish/subscribe middleware in CORBA) and requires
developers to define the EQAL definition to deal with their particular applications. Instead, we
propose a more generic approach dealing with CloudML and particularizing for a set of
concrete Cloud providers. Furthermore, our deployment process relies on a modernized
application and a set of requirements which allows the generation of deployment definitions.

The works presented in [18] and [19] describe a high-level language and methodology for
designing and deploying Web applications using Web services. The language allows designing
web applications and web services as well as their deployment. In the former case, the
deployment is done in the WebRatio14 Architecture whereas the latter can be deployed in any
web service container. As it can be seen, this approach is mainly focused on web service
architectures whereas we are targeting a broader deployment context considering different
Cloud vendors.

An approach for the deployment of multitenant-aware Software-as-a-Service (SaaS)
applications is presented in [20], where feature models are proposed to model SaaS
application configurations and to generate the corresponding deployment scripts. Feature
models [21] are mainly used in software product lines [22] to define a family of products. A
family of products has different variation points, which allow the definition of a configuration
for a particular product of such family. The approach therefore allows modelling a family of
SaaS applications and includes a set of variation points to configure them. The resulting
feature model configuration can then be used to deploy the application. Similar to our
proposal, this approach allows generating the deployment scripts for the application.
However, the variation points are too high level features (e.g., “availability”, “environment” or
“data separation”) and are not focused on the different features provided by Cloud providers,
as in our approach.

While the previous works can provide some interesting ideas to our proposal, their target is
not actually the deployment of web applications in Cloud providers. In this sense, there is a
shortage of works aiming at Cloud-based solutions and we have only found some approaches
created in the context of projects such as Paasage15 or ModaClouds16.

Paasage is focused on cloud-based software development and run-time adjustments according
to changing execution characteristics. Some of the works developed in the context of this
project are related to our proposal. Thus, the work presented in [23] describes a classification
of the state-of-the-art of Cloud solutions to help developers to face the heterogeneity among
Cloud providers diversity, which hinders the proper exploitation of the full potential of Cloud
computing. Additionally, in [24] an architecture to evaluate distributed application
deployments in several Cloud providers is presented. The architecture allows developers to
better characterize the Cloud needs of their applications and therefore answer important

14

 http://www.webratio.com
15

 www.paasage.eu
16

 www.modaclouds.eu

http://www.webratio.com/
http://www.paasage.eu/
http://www.modaclouds.eu/

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 46 of 62

decisions about which deployment options works best in terms of performance, reliability, cost
and combinations thereof. The work presented in [25] describes an approach based on feature
modelling and ontologies to handle cloud variability and then manage and create cloud
configurations. These works can help within the context of the ARTIST project to better
characterize multi-cloud environments as well as some of the requirements to be considered
when deploying applications to the Cloud. However, they do not address the problem of
generating a deployment for a concrete application to the Cloud.

MODAClouds proposes, similar to ARTIST, a model-based migration approach. However, in
MODAClouds the migration of cloud-based software between cloud providers and their
interoperability is primarily focused rather than the migration of legacy software to cloud-
based software as a means of software modernization. Concerning the works in the context of
Cloud deployment, the approach presented in [26] tackles the problem of deploying non-
cloud-based applications into the Cloud, however, it does not consider an automatic approach
as we propose.

APPENDIX B: Analysis of deployment patterns and frameworks
for selected Cloud providers

This section analyses the deployment patterns, techniques and frameworks supported by a set
of selected Cloud providers of interest for the ARTIST use cases.

Google App Engine

The Google App Engine supports several different programming languages, i.e., Java, PHP,
Python and Go. As a result, the deployment of an application may differ according to the
programming language used to implement it. The analysis results presented in the following
are restricted to Java-based application.
Google App Engine offers two main procedures supporting the deployment of an application:

● App Engine Java SDK, which offers command line tools supporting the deployment.
● Google Eclipse plugin which offers Eclipse IDE wizards supporting the deployment.

Deploying a Java-based application requires mainly to upload all the application artefacts, e.g.,
code bundles, configuration files, libraries, etc., to the Google App Engine. To upload a Java-
based application one may either use “appcfg” command provided by the App Engine Java SDK
or the Google Eclipse plugin. This plug-in comes basically with a UI for the “appcfg” command.
When using Java for the development, the applications need to be packaged according to the
“war-structure” as defined by the JEE specification. In addition to standard JEE configurations,
several Google App Engine specific deployment descriptor are available. Some of them are
required while others are optional. In this respect, it is important to consider that the Google
App Engine offers generally two different kinds of instance types for which specific descriptors
need to be provided. So called Backend Instances are offered by the Google App Engine mainly
to support long-running background processes that are exempted from the 60 second deadline
for HTTP requests to Default Instances. For a detailed comparison of the two instance kinds,
the given table provides a good overview (e.g., backends do not automatically scale, they are
billed for uptime rather than CPU usage, etc.).

● Deployment of applications to Default Instances (Application Configuration)
○ A Google App Engine Java application must have a descriptor called

appengine-web.xml in its WAR, in the WEB-INF directory. This descriptor,

https://developers.google.com/appengine/docs/java/backends/

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 47 of 62

which refers to the application configuration, needs at least to specify the
application ID and its version.

○ Ecore-based meta-model for an overview in github.
● Backends Configuration

○ To add backend instances to an application, a descriptor called backends.xml is
required. At least a name needs to be specified for a backend instance.

○ Ecore-based meta-model for an overview in github.
● Index Configuration

○ To go beyond indexes automatically defined by Google App Engine, custom
indexes can be specified by a dedicated descriptor called datastore-
indexes.xml. An index is basically defined over given properties of entities of a
particular kind. The properties are either in ascending or descending order.

○ Ecore-based meta-model for an overview in github.

Amazon WS

Amazon provides services at Infrastructure and Platform level. Usually, Infrastructure and
Platform services are accessed via Management Console while SDKs, command-line tools and
APIs are provided for access at programming level.

In general there are four ways to interact with Amazon Web Services (AWS):

● Management Console is a graphical user interface enabling user access to Amazon
Web Services. Most service features are supported by Management Console, but not
all of them.

● AWS Command Line Interface (CLI) is a text-based tool which manages multiple AWS
services. There are also other command line tools that enable connection to and
communication with AWS services but each of them manages a single service.

● Software Development Kits (SDKs): SDKs provide a way to programmatically access
Amazon's services simply by adding class libraries to the application's code and using
them in order to communicate with the desired service features.

● Low-Level APIs: Query, REST and SOAP APIs. Query and REST APIs use the standard
components of HTTP request messages but in a different way. Their difference is that
REST APIs use the HTTP methods in order to describe the action to be performed while
in Query APIs the action is described through parameter values (together with the data
the action will be performed on). On the other hand, SOAP APIs use SOAP xml
documents constructed as another layer on top of the HTTP protocol.

Deploying an application

There are four possible ways to deploy an application. Starting from Elastic Beanstalk (see
Figure 31 below) and [descending] following the direction to the right, the user gains control of
the deployment and execution management but gives up in automation. Access to these
deployment tools is given via Management Console and SDKs or CLI.

https://github.com/artist-project/ARTIST-Modeling/tree/master/Application%20Provider%20Metamodel/CloudModelingLanguage_v1/Deployment/GAEDeploymentAnalysis
https://github.com/artist-project/ARTIST-Modeling/tree/master/Application%20Provider%20Metamodel/CloudModelingLanguage_v1/Deployment/GAEDeploymentAnalysis
https://github.com/artist-project/ARTIST-Modeling/tree/master/Application%20Provider%20Metamodel/CloudModelingLanguage_v1/Deployment/GAEDeploymentAnalysis

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 48 of 62

Figure 31 AWS Deployment Services

Elastic Beanstalk is a service used for development, testing and deployment. In terms of
deployment, Elastic Beanstalk provides a PaaS-like deployment solution as the user doesn't
have to know anything about AWS infrastructure in order to deploy the application. Having
built the application, deploying it becomes very easy, simply by downloading the application
package (zip or war files), choosing names and urls, and selecting between two types of
environments (loadbalanced and single VM environments). For Java application, Java AWS SDK
can be used in order for the application to be developed, built and run locally in the Eclipse
IDE, before the Elastic Beanstalk deployment. In the same way, .NET SDK can be used together
with AWS toolkit for VisualStudio in order to develop and run application locally. User can also
make environment configurations using configuration templates, Must be noted that, in order
to use an RDS (Relational Database System) instance together with the deployed application,
the instance must be created and configured before deployment (can also be done through
Elastic Beanstalk). This service also enables updating a deployed application. Application's
versions and environment configurations are stored in S3 (Simple Storage Service).
Restrictions: Elastic Beanstalk supports specific container types (Infrastructure topology and
software stack to be used for a specific environment). For Java applications the supported
container types include Amazon Linux running Apache Tomcat, whereas for .NET applications
Windows Server running IIS 8 or IIS 7.5.

OpsWorks is a service designed to enforce management through the whole application's
lifecycle. The main features of OpsWorks are:

1. Stacks. A stack is a set of instances that user wants to be managed collectively because
they serve the same purpose (e.g. serve all functionalities of an application).

2. Layers. A layer in a stack expresses the functionality of instances included in this layer
and defines all the packages, the applications and the configurations that are essential
for these instances. For example an instance belonging to a loadbalancing layer should
be able to distribute incoming traffic to application servers.

3. Instances. An instance is an EC2 (Elastic Compute Cloud) instance determined to serve
the above mentioned functionalities defined by a stack layer.

The whole process of getting an application running using OpsWorks is completed in the
according steps:

1. Creation of a stack.
2. Definition of stack layers. There are some pre-built layers that support standard

application frameworks. However, user can define his own stack layers. In addition, as
far as working with databases is concerned, while pre-built layers include only MySQL,
user can install any other database on EC2 instances using custom layers or chef

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 49 of 62

recipes (e.g. Cassandra, PostgreSQL). In addition, Chef recipes can be used in order to
establish a connection to an existing RDS instance or DynamoDB table. Application
layers:

a. Ruby on Rails, PHP, Node.js, Java and Nginx
b. Data Layers: MySQL and Memcached
c. Utility Layers: Ganglia and HAProxy

3. Assign instances to the layers. This step is about creating the instances with the chosen
configurations.

4. Application deployment. In this step user must specify where the code is placed
(supported repositories: Git, SVN, HTTP and S3), and any additional deployment tasks
such as database configuration.

It must be noted that OpsWorks uses chef integration framework in order to automate the
deployment of applications. More specifically, OpsWorks uses OpsCode Chef cookbooks for all
the deployment installation and configuration of tasks, such as scripts execution. As
mentioned at the second step of application deployment, there are pre-built cookbooks, but in
order to define a specific stack layer, these cookbooks can be extended or overwritten through
the implementation of custom cookbooks. A cookbook consists of:

1. Attributes files (files containing attributes to be used by recipes and templates).
2. Template files (templates that recipes use to create other files such as configuration

files).
3. Recipes (Ruby applications that define every task needed to configure a system).

Recipes can be executed automatically by being attached at a layers lifecycle or manually by
running the corresponding CLI command.

Restrictions: At the moment OpsWorks supports only Amazon Linux and Ubuntu 12.04 LTS
among custom AWS AMIs (Amazon Machine Images).

CloudFormation is a provisioning and deployment service based on JSON formatted text files
called templates. Templates are used to describe the AWS infrastructure needed for the
execution of an application as well as the inter-connection between them. When the JSON file
is created, it is used as the base for a stack creation. A stack is the set of all the initiated
resources.
The top level JSON Objects contained in the template files are:

1. Description: A text description for the template usage.
2. Parameters: A set of inputs used to customize the template per deployment.
3. Resources: The set of AWS resources needed and the relationships between them.
4. Outputs: A set of values to be made visible to the stack creator.
5. AWSTemplateFormatVersion: Date of the tool version to be used (if not created, the

latest version is assumed)
CloudFormation provides an IaaS deployment solution helping mostly with resource
provisioning. However, the management of resources and the execution of the application is
still under users' control.
One of CloudFormation's interesting features is the allowance of scripts to be executed at the
initial boot of the instantiated resource. In addition, some helping scripts are available, which,
among other functions, automate the essential download and installation of files and
packages, as well as with signalling the stack creation workflow that the application is up and
running. So, the main steps for deploying an application in an existing or an under construction
stack are to get application package onto a downloadable location, include userdata in the
CloudFormation JSON file and execute them using the corresponding helper script, provide
location to download source files and zips in the metadata section.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 50 of 62

There are some differences between deployment in linux and Windows based AMIs but the
main concept remains the same.
(Note: CloudFormation is also accessible via AWS Toolkit for Visual Studio and Eclipse as a user
friendly solution)

Manual deployment by infrastructure resource accessing and managing (direct use of
services)
Amazon EC2 instances are the virtual machine instances that form the fundamental compute
block of a deployment environment. Instances are created from AMIs which contain a pre-
defined operating environment. User has also the choice of creating and uploading his own
AMI. There are many EC2 instance types, according to user's needs for size, computing power
etc. Except for APIs and CLI, all instance configurations can be made through the supporting
Management Console.
In order to use Amazon EC2 service, one must take under consideration the following features:

1. Key pairs
2. Temporary and persistent storage volumes
3. Physical locations for resources (regions and Availability zones)
4. Security groups that function as a firewall
5. Elastic IP addresses
6. tags (metadata assigned to EC2 resources)

So, using this strategy, every infrastructure component used for the deployment (compute,
storage, networking, load balancing, etc.) must be configured manually.

Next table in Figure 32 describes all the possible ways for accessing the majority of Amazon
Web Services, including the most important ones in terms of infrastructure provisioning,
management and automating the application deployment.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 51 of 62

Figure 32 Compatible clients for AWS Deployment Services

Microsoft Azure

There are three ways to access a Windows Azure environment to perform management tasks,
such as deploying and removing roles and managing other services:

● The first is through the Windows Azure Management Portal, where a single Microsoft
account has access to everything in the portal.

● The second is by using the Windows Azure Service Management API, where API
certificates are used to access to all the functionality exposed by the API.

● The third is to use the Windows Azure Management PowerShell cmdlets.

The Windows Azure PowerShell cmdlets use the Windows Azure Service Management REST
API to communicate with Windows Azure. The communication is secured with a management
certificate, which is downloaded and installed on the client machine as part of the Windows
Azure PowerShell cmdlets installation. This means you are not prompted for credentials when
you use these cmdlets.

There is a fourth way, which is implementing your own deployment via code. A number of
SDK's have been created, using these same Management API's, for different languages (PHP,
Java, Python, Ruby, Node.js, etc.).

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 52 of 62

Subscription
The Windows Azure Service Management API uses mutual authentication of management
certificates over SSL to ensure that a request made to the service is secure. No anonymous
requests are allowed. The subscription (with a subscription-id and an associated certificate) is
a unique user account on Windows Azure and is a very important concept since you cannot
execute any task without it.

A Publish Settings file is an XML file which contains information about your subscription. It
contains information about all subscriptions associated with a user’s Live Id (i.e. all
subscriptions for which a user is either an administrator or a co-administrator) as well as the
certificates. This allows easing deployment through Visual Studio or other tools that are able to
work with these.

IaaS

The preferred way to deploy your infrastructure is through PowerShell. There are two kinds of
files relevant here:

● Deployment scripts. Scripts like these setup the deployment. The main concepts being
created and/or configured are:

○ Affinity Group: This is a logical construct associated with a geo-region and
defined at the subscription level.

○ Availability Sets: An Availability Set is a logical group to signify the need for
Windows Azure to prevent a single point of failure for all VMs included in the
set.

○ Storage Account: A storage account provides the access to Windows Azure
storage within a geographic region. There are three types of storage: Blob,
Queue, and Table in Windows Azure.

○ Cloud Service: This is a logical container including application code and
configurations. For Windows Azure IaaS, each VM is deployed to a service,
however a service can contain multiple VMs. Placing multiple VMs into a
service makes these VMs connected and visible to one another.

○ Virtual Network: Define settings of the Virtual Network (typically through a
dedicated file).

○ Virtual Machine

○ Load Balancer

● The Network Configuration file, which describes Virtual Network configuration
settings. The default extension is .netcfg.

○ VirtualNetworkConfiguration specifies Virtual Network and DNS values

Sidenote: You can also further automate the deployment and removal of additional instances
based on demand using a framework such as the Enterprise Library Autoscaling Application
Block. This allows to set so-called rules for dynamically changing the configuration of your
system:

● Constraint rules enable you to set minimum and maximum values for the number of
instances of a role or set of roles based on a timetable.

● Reactive rules allow you to adjust the number of instances of a target based on
aggregate values derived from data points collected from your Windows Azure
environment or application.

PaaS

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 53 of 62

To deploy an application to Windows Azure Cloud Services three files are involved:

● The Service Package file that contains all your application’s files which can be
generated using the Cspack.exe command-line utility or through Visual Studio.

● The Service Definition file describes the service model. It defines the roles included
with the service and their endpoints, and declares configuration settings for each role.
The default extension for the service definition file is .csdef. The main concepts
defined here are those of:

○ Web Role (Web Application Programming)

○ Worker Role (Background processing)

● The Service Configuration file specifies the number of instances to deploy for each
role and provides values for any configuration settings declared in the service
definition file. The default extension for the service configuration file is .cscfg. The
most important concepts here are:

○ Role (specifies the number of role instances to deploy for each role in the
service, the values of any configuration settings, and the thumbprints for any
certificates associated with a role).

○ NetworkConfiguration (deployment of cloud services in Virtual Networks, also
important here are configurations related to access control).

Typically, multiple Service Configuration files are used. For example, one for testing locally on
the Azure emulator, and a number of additional ones for deploying onto the Azure cloud
subscription (either test/staging/production environments).

In addition, also a number of configuration settings, such as connection strings and
authentication information for the application, are still stored using the Web.config file. This
follows the same paradigm as before with the on-premise versions of the web applications.

Since it is not easy to edit the Web.config file when an application is deployed to Windows
Azure Cloud Services (i.e. you must redeploy the entire application when values need to be
changed), a lot of the times some application configuration settings are moved from the
Web.config file to the service configuration file. However, this gives problems since some
components cannot read settings from this service configuration file. Therefore, typically a
number of scripts are built to make those configuration changes on the fly.

You can deploy an application by uploading the files using the Windows Azure Management
Portal, by using the Publish Windows Azure Application wizard in Visual Studio, or the
automated way by using Windows Azure PowerShell cmdlets. Both the Visual Studio wizard
and the PowerShell cmdlets authenticate with your subscription by using a management
certificate instead of a Microsoft account. The automated deployment of an application in
production is in most cases handled in multiple stages. The first stage uses an MSBuild script to
compile and package the application for deployment to Windows Azure. This build script uses
a custom MSBuild task to edit the configuration files for a cloud deployment, adding the
production storage connection details. The second stage uses a Windows PowerShell script
with some custom cmdlets to perform the deployment to Windows Azure.

APPENDIX C: Analysis of platform-independent deployment
patterns and entities

From the platform dependent analysis produced in the previous section, this one proposes a
platform independent description of the deployment patterns and entities.

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 54 of 62

Platform independent meta-model for deployment patterns

This section elaborates a platform independent meta-model that supports the specification of
deployment patterns and requirements. These concepts will contribute to the extension of
CloudML@ARTIST to support deployment needs.
Deployment platform independent concepts and entities have been derived from the analysis
of the deployment patterns and frameworks supported by the target Cloud providers,
conducted in APPENDIX B. From this analysis, we have provided two meta-models, one from
the provider perspective (see Figure 33) and another one from the application owner
perspective (see Figure 34), which contain deployment concepts, entities and their
relationships among both meta-models. Technically these meta-models have been
implemented as instances of the EMF Ecore meta-meta-model17. Both deployment PI meta-
models are located in the ARTIST-Tooling Github repository at:
https://github.com/artist-project/ARTIST-
Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/m
odel/PIMeta-modelv0.3

The color schema used for entities in these meta-models has the following meaning:

● Pink colored concepts are those already included in CloudML@ARTIST
● Blue colored concepts are those Cloud provider related concepts NOT included in

CloudML@ARTIST
● Yellow colored concepts are those application owner related concepts NOT included in

CloudML@ARTIST

17

 http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-

summary.html#details

https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3
https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3
https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html#details
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html#details

WD9.6. – Automated Deployment Strategies Version: v1.0 – Final, Date: 31/03/2014

Project Title: ARTIST Contract No. FP7-317859
 www.artist-project.eu

Page 55 of 62

Figure 33 Deployment platform-independent meta-model for Cloud provider perspective

D9.6. – Automated Deployment Strategies Version: v0.1 – Draft, Date: 24/02/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 56 of 62

The PI meta-model for Cloud-provider-perspective support for deployment describes all those
deployment concepts and entities concerning the Cloud provider (see Figure 33). A
CloudProvider offers several CloudOfferings, whose possible types are CloudPlatformOffering
(e.g. PaaS) and CloudInfrastructureOffering (e.g. IaaS). Although typically the relation between
CloudProvider and CloudOffering is 1:1, we support the provider can offer more than one
offering. A CloudOffering is a collection of offered CloudServices and software Frameworks.
Framework types are:

● ApplicationFrameworks: typically required third party frameworks, including not only
runtime libraries but other runtime applications required by the application to be
deployed (i.e. Spring, Wordpress).

● ApplicationLanguageFrameworks: baseline runtime frameworks supporting the
execution of the deployed application specific to the language the application was
implemented with (i.e. J2SE, .NET)

The CloudServices are those Cloud provider specific individual services that constitute the
offering portfolio. These CloudServices could be of type:

● CloudHardwareServices are virtualised services offering hardware utilities (e.g. IaaS),
such as computing, storage, network or memory.

● CloudSoftwareServices are platform services offering software capabilities to deployed
applications, such as security, persistence, application containers, etc.

For each CloudService in its offering, the CloudProvider typically offers one or more
CloudServiceClients to its customers, as facilities to be installed and used on the customer side
(i.e. local computer), enabling one or more ServiceInterfaces (i.e. API, CLI, IDE, Web, etc).
Additionally, the customer usage of each CloudService is optionally configured by zero or more
ServiceConfigurationDescriptors. Any Descriptor includes a set of DescriptorEntries
(characterised by a unique key) which can reference their parent in order to support tree-
based nested configuration structures. A DescriptorEntry also contains a reference to the
CloudML@ARTIST stereotype property that references this entry value in an application model
properly annotated with deployment requirements.
A particular kind of CloudSoftwareService is the CloudDeploymentService, which supports the
deployment of applications into the CloudOffering. This service is configured by one or several
DeploymentDescriptors. Different kinds of DeploymentDescriptors have been identified:

● ApplicationDeploymentDescriptor: typically describes the deployment configuration
for an application into a CloudPlatformOffering

● InfrastructureDeploymentDescriptor: typically describes the deployment configuration
for a virtual image into a CloudInfrastructureOffering. This descriptor enables the
configuration of a set of CloudInfrastructureVirtualImages, optionally grouped into
CloudInfrastructureVirtualClusters.

● DeploymentTemplate: reusable pre-configured DeploymentDescriptor for some typical
usages that can be further customised by the user.

A DeploymentDescriptor can reuse optionally predefined and reusable DeploymentRecipes,
which automates the installation of predefined frameworks, typically into
CloudInfrastructureVirtualImages.
Another kind of ServiceConfigurationDescriptor is the EnvironmentDescriptor, which enables
the specification of the environment within the application is running, through the setting of
environment variables.

Finally this meta-model also includes a set of enumerations that provide concrete instances for
some entities referenced in the meta-model.

D9.6. – Automated Deployment Strategies Version: v0.1 – Draft, Date: 24/02/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 57 of 62

The PI meta-model - application-owner-perspective support for deployment - describes all
those deployment concepts and entities concerning the application owner (Figure 34).
A CloudApplication comprises a set of ApplicationComponents (kind or CloudApplications as
well). This distinction is only required to support composability on deployment. Either the
application itself or the individual components can be deployed separately, depending on the
owner needs. Each CloudApplication can be configured by some ApplicationDescriptors
(subtypes of Descriptor).

Figure 34 Deployment platform-independent meta-model for application perspective

Those descriptors (i.e. web.xml for J2EE applications) characterise the application itself but not
the deployment configuration (e.g. ApplicationDeploymentDescriptor such as the Google App
Engine application.xml). In order to support its deployment, each CloudApplication can be
bundle into one or more CloudApplicationDeploymentUnits, whose types could be either a
CloudApplicationPlatformDeploymentUnit (e.g. intended for deployment into a platform,
PaaS) or a CloudApplicationInfrastructureDeploymentUnit (e.g. intended for deployment into
an infrastructure, IaaS). Examples of platform and infrastructure deployment unit types are
given in corresponding enumerations.

The existing relations between concepts of both meta-models are not explicitly renderer in
these above figures, due to functional limitations on EMF framework, but are they explicitly
included in both meta-models and commenting in the following (see Figure 35).

D9.6. – Automated Deployment Strategies Version: v0.1 – Draft, Date: 24/02/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 58 of 62

Figure 35 Cross-referencing meta-model concepts for deployment

As shown in Figure 35, the deployment platform-independent meta-model for application
perspective imports and references concepts defined in the meta-model for Cloud provider
perspective. In particular, a CloudApplication may require third party ApplicationFrameworks
and CloudServices offered by the CloudOffering, where will be hosted. The
CloudApplicationDeploymentUnit is configured by DeploymentDescriptors and also configures
required CloudServices through ServiceConfigurationDescriptors. These CloudApplication and
CloudApplicationDeploymentUnit properties are referencing these mentioned concepts, which
are defined in the other meta-model.

Platform Domain Models for Cloud providers

This section elaborates the concrete PDM instances (conforming to the deployment PI meta-
model) corresponding to the selected target Cloud providers: Google App Engine, Amazon
Web Services and Microsoft Azure.

Google App Engine PDM
An initial version of the Google App Engine deployment PDM instance is located in the ARTIST-
Tooling Github repository at:
https://github.com/artist-project/ARTIST-
Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/m
odel/PIMeta-modelv0.3/CloudOfferingPDM/

https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3
https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3
https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3

D9.6. – Automated Deployment Strategies Version: v0.1 – Draft, Date: 24/02/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 59 of 62

Figure 36 Google App Engine PDM snippet

Amazon Web Service PDM
An initial version of the Amazon Web Service deployment PDM instance is located in the
ARTIST-Tooling Github repository at:
https://github.com/artist-project/ARTIST-
Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/m
odel/PIMeta-modelv0.3/CloudOfferingPDM/

https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3
https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3
https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3

D9.6. – Automated Deployment Strategies Version: v0.1 – Draft, Date: 24/02/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 60 of 62

Figure 37 Amazon Web Service PDM snippet

This is the model describing the Amazon Cloud Provider. Amazon provides the AWS
composing, thus, a set of offerings most of which are categorized as Cloud Infrastructure
Offerings (not all of them, though). At the moment, four major Cloud Offerings are included:

● “Compute and networking” offers the main AWS service, EC2 which provides the
means for configuring and controlling the computing resources, as well as a set of
other related services working with EC2 while covering scalability and networking
aspects.

● “Database and Data Management” and “Storage and Data Management” offer data
related services at platform and infrastructure level respectively.

● “Deployment and Management” offers the three services which facilitate and, in some
level, automate the deployment on AWS infrastructure (CloudFormation, OpsWorks
and Elastic Beanstalk) as well as CloudWatch, which enables monitoring and thus
controlling the deployed AWS resources.

D9.6. – Automated Deployment Strategies Version: v0.1 – Draft, Date: 24/02/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 61 of 62

AWS offers a variety of choices for deploying an application, the easiest of which is the Elastic
Beanstalk deployment, imposing however a set of constraints. Either using one of the
deployment services or the AWS infrastructure directly (EC2, S3, Elastic LoadBalancing, Auto
Scaling), there is a number of service clients which enable communication with AWS: SDKs
(including Java, .Net, Python, Ruby and PHP), CLI tools and the Management Console (web-
based user interface). In addition Eclipse and Visual Studio toolkits have been developed which
facilitate the development as well as the deployment by permitting communication with some
AWS resources, incorporating .NET and Java SDKs and providing support for some deployment
services.

Azure PDM
An initial version of the Microsoft Azure deployment PDM instance is located in the ARTIST-
Tooling Github repository at:
https://github.com/artist-project/ARTIST-
Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/m
odel/PIMeta-modelv0.3/CloudOfferingPDM/

Figure 38 Microsoft Azure PDM snippet

https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3
https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3
https://github.com/artist-project/ARTIST-Tooling/tree/master/migration/modernization/eu.artist.migration.modernisation.dt.model/model/PIMetamodelv0.3/CloudOfferingPDM/AzurePDMv0_3

D9.6. – Automated Deployment Strategies Version: v0.1 – Draft, Date: 24/02/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 62 of 62

This model describes Microsoft as the Cloud Provider. There are basically two Cloud Offerings
defined: Windows Azure and Windows Azure Pack. The former relates to the public cloud
offering while the latter refers to the on-premise private cloud offering.

The main offering of Microsoft is Windows Azure. This offering contains about 18 software
services: Web Sites, Mobile Services, Cloud Services, SQL Database, HDInsight, Cache, Recovery
Manager, Media Services, Service Bus, Notification Hubs, Scheduler, Biztalk Services, Active
Directory, MFA, ExpressRoute, Virtual Network and Traffic Manager. Furthermore it contains
three services categorized as hardware services: Virtual Machines, Storage and Backup. In
Azure, there are many ways/clients to deploy your application. These are defined in the
Deployment Service. One can use the well-known developer tools (IDEs) such as Visual Studio
and/or WebMatrix to deploy and/or upload (via FTP) the application. For Java-based
applications, there is also a plugin created for the Eclipse environment. Most of the times, the
easiest way to deploy is via the Management Portal. However, automating deployment would
probably benefit most from the SDK (available in CSharp, Ruby, Python, Java) and the
Management tools that are provided either as a set of Powershell commandlets or a true CLI.
Deploying an application typically involves two Application Deployment Descriptors, the
Service Definition File and the Service Configuration File, and one (optional) Infrastructure
Deployment Descriptor, the Network Configuration File. In simple applications these files do
not contain much (only basic information such as the Name, Role Name, Number of Instances,
Size of VM and so on) and are usually automatically generated by the developer tools. All the
clients are internally using the publicly available Management API (JSON/REST Service).

The Azure Pack offers a limited set of Azure technologies / services for your own data center.
These services are Web Sites, Service Bus, Virtual Machines, Virtual Network and SQL
Database. All these services are consistent with their Azure (public cloud) counterparts. The
deployment service consists of 2 clients being put forward here, the Service Management API
and the Management Portal18.

18

 Although not explicitly stated in documentation, also the other deployment mechanisms such as via

the development environments can also be used.

