Chapter

58 Building an Application

This chapter describes how you can use the Cadvanced SDL to C
Compiler to generate applications and especially how to design the
environment functions. Thesefunctionsallowsyou connect the SDL
system with the environment of the system.

You should read chapter 57, The Cadvanced/Cbasic SDL to C Com-
piler beforereading this chapter to understand the general behav-
ior of the Cadvanced SDL to C Compiler. Much of what you need

to know to generate an application may befound there, and that in-
formation isnot repeated here.

July 2003 Telelogic Tau 4.5 User’ sManual 2695

Chapter 58 Building an Application

Introduction

2696

The Basic Idea

An application generated with the Cadvanced SDL to C Compiler can
be viewed as having three parts:

e The SDL system
e The physical environment of the system

* Theenvironment functions, where you connect the SDL system
with the environment of the system

In the SDL system process transitions are executed in priority order,
signals are sent from one process to another initiating new transitions,
timer signals are sent, and so on. These are examples of internal actions
that only affect the execution of the SDL system. An SDL system com-
municates with its environment by sending signals to the environment
and by receiving signals from the environment.

The physical environment of an application consists of an operating
system, afile system, the hardware, a network of computers, and so on.
In this world other actions than just signal sending are required. Exam-
ples of actionsthat an application wants to perform are:

Toread or to write on afile

To send or receive messages over a network

To respond on interrupts

To read and to write information on hardware ports or on sockets

The environment functions are the place where the two worlds, the SDL
system and the physical environment, meet. Here signals sent from the
SDL system to the environment can induce al kinds of eventsin the
physical environment, and events in the environment might cause sig-
nals to be sent into the SDL system. Y ou have to provide the environ-
ment functions, as the Cadvanced SDL to C Compiler has no knowl-
edge of the actions that should be performed.

Telelogic Tau 4.5 User's Manual July 2003

I ntroduction

July 2003

Physical
Environment

Environment
Functions

SDL signal
interface

Interface containing:

Read and write on files

Read and write on ports
Read and write on sockets
Communication over network
Handling of interrupts,

and so on...

Figure 490: Sructure of an application

In adistributed system an application might consist of several commu-
nicating SDL systems. Each SDL system will become one executable
program. It might execute either as an operating system process, com-
municating with other operating system processes, or it might execute
in aprocessor of its own, communicating over anetwork with other pro-
cessors. There may, of course, also be combinations of these cases. Let
us for the sake of simplicity call the operating system processes or pro-
cessors for nodes communicating over a network. In the case of com-
municating operating system (OS) processes, the network will bethefa-
cilities for process communication provided by the OS.

There are no problems in building an application consisting of several
nodes communicating over a network using the Cadvanced SDL to C
Compiler. However, you have to implement the communication be-
tween the nodes in the environment functions.

Note:

All nodesin anetwork do not need to be programs generated by the
Cadvanced SDL to C Compiler from SDL systems. Aslong asa
node can communicate with other nodes, it might be implemented
using any technique.

Telelogic Tau 4.5 User's Manual 2697

Chapter 58 Building an Application

2698

The PId values (references to process instances), areaproblemin adis-
tributed world containing several communicating SDL systems. We
still want, for example, “Output To Sender” to work, even if Sender re-
fersto aprocessinstancein another SDL system. To copewith thiskind
of problem, aglobal node number has been introduced as a component
inaPld value. The globa node number, which isauniqueinteger value
assigned to each node, identifies the node where the current processin-
stance resides, while the other component in the Pld valueis aloca
identification of the process instance within the node (SDL system).

The partitioning of an application into an SDL system and the environ-
ment functions has additional advantages. It separates exter nal actions
into the logical decision to perform the action (the decision to send a
signal to theenvironment) and theimplementation detailsof theaction
(treating the signal in the environment functions). Thiskind of separa-
tion reduces the compl exity of the problem and allows separate testing.
It also allows parallel development of the logic (the SDL system) and
the interface towards the environment (the environment functions).
When the signal interface between the SDL system and its environment
issettled, it is possible to continue both the activitiesin parallel.

Libraries

Two libraries, Application and ApplicationDebug, are provided to gen-
erate applications. Both userea time (see“ Time” on page 2576 in
chapter 57, The Cadvanced/Cbasic SDL to C Compiler and perform
calls to environment functions (see section “ The Environment Func-
tions” on page 2702). The difference isthat ApplicationDebug includes
the monitor system while Application does not include the monitor sys-
tem.

When an application is developed, it is usually appropriate to first sim-
ulate and debug the SDL system or systems without its environment.
One of the libraries Smulation or Real TimeSmulation may then be
used. You first simulate each SDL system on its own and can then sim-
ulate the systems together (if you have communicating systems) using
thefacility of communicating simulations. After that you probably want
to debug the application with the environment functions. This may be
performed with the library ApplicationDebug. Y ou may then generate
the application with the library Application.

Thelibrary Validation allowsyou to build validators from the code gen-
erated by the Cadvanced SDL to C Compiler. A Validator hasauser in-

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

terface and executing principles that are similar to a Simulator. The
technical approach is however different; aValidator is based on atech-
nigue called state space exploration and operates on structures called
behavior trees. Itspurposeisto validate an SDL system in order to find
errors and to verify its consistency against Message Sequence Charts.

Reference Section

July 2003

Representation of Signals and Processes

In thisfirst section, the representation of signals and processesis pre-
sented. The symbol table, which is a representation of the static struc-
ture of the system, will also be discussed. The information given here
will be used in the next part of this section where the environment func-
tions, which should be provided by the user, are described.

Types Representing Signals

A signal isrepresented by a C struct containing general information
about the signal followed by the parameter s carried by the signal.

— | xSignalNode Pre
Reference xSignalNode Suc

to signal SDL_PId Receiver
SDL_PId Sender
xIdNode NameNode
int Prio

first signal parameter
second signal parameter

Figure 491: Data structure representing a signal

A genera typedef xsignalrec for asignal without parametersand for
apointer to such asignal, xsignalNode, are given below. These types
may befoundinthefile scttypes.h. Thesetypesmay be used for type
casting of any signal to access the general components.

typedef struct xSignalRec *xSignalNode;
typedef struct xSignalRec
xSignalNode Pre;
xSignalNode Suc;

SDL_PId Receiver;
SDL_PId Sender;
xIdNode NameNode ;

Telelogic Tau 4.5 User's Manual 2699

Chapter 58 Building an Application

2700

int Prio;
} xSignalRec;

A xsignalRec contains the following components:

* pre and suc. These components are used to link the signal inthein-
put port list of the receiving process instance. The input port isim-
plemented as adoublelinked list. When asignal has been consumed
and the information contained in the signal is no longer needed, the
signal will bereturned to an avail list to bere-used in future outputs.
Thecomponent sucisusedtolink thesignal intotheavail list, while
pre Will be (xsignalNode) 0 aslong asthesigna isintheavail list.

* Receiver. Thereceiving processinstance.
* sender. The sending process instance.

* NameNode. This component isapointer to the node in the symbol
table that represents the signal type. The symbol table is atree with
information about the SDL system and contains, among other
things, one node for each signal type that is defined within the SDL
system.

* prio. Thiscomponent represents the priority of the signal and is
used in connection with continuous signals.

In the generated code there will be types to represent the parameters of
the signals according to the following example:

Example 410: Generated C Code for Signal Definition
Assume the following signal definitionsin SDL:

SIGNAL

S1 (Integer),

S2,

S3 (Integer, Boolean, OwnType) ;

then the C code below will be generated:

typedef struct {
SIGNAL_VARS
SDL_Integer Paraml;
} yPDef zOf S1;
typedef yPDef z0f S1 *yPDP_z0f S1;

typedef struct {
SIGNAL_VARS
SDL_Integer Paraml;
SDL_Boolean Param2;

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

z09 OwnType Param3;
} yPDef zOh S3;
typedef yPDef zOh S3 *yPDP_ zOh S3;
where sTeNAL_VARS isamacro defined in scttypes . h that is expand-
ed to the common componentsin asignal struct.

For each signal with parameters there are two generated types, a struct
type and a pointer type. The struct type contains one component for
each parameter in the signal definition and the components will be
named param1, Param2 and so on. The components will be placed in
the same order in the struct as the parameters are placed in the signal
definition.

Note:
There are no generated types for asignal without parameters.

Types Representing Processes

A Pld valueisastruct consisting of two components, aglobal node
number, whichisaninteger (seea so “ Function xGlobalNodeNumber”
on page 2722 and “The Basic Idea’ on page 2696) and alocal Pld val-
ue, which is a pointer.

typedef xLocalPIdRec *xLocalPIdNode;

typedef struct {
int GlobalNodeNr;
xLocalPIdNode LocalPId;
} spDL_PId;

The global node number identifies the SDL system that the processin-
stance belongs to, while thelocal Pld value identifies the process in-
stance within the system. Thelocal Pld pointer value should not be ref-
erenced outside the SDL system where it is defined.

By introducing aglobal nhode number inthe Pld values, these values are
possible to interpret throughout an application consisting of several

SDL systems. Y ou can also define your own Pld valuesin non-SDL de-
fined parts of the application and still use communication with signals.

The variable spr._NuLL, which represents a null value for Plds and
which is defined in the runtime library and available through the file
scttypes.h, contains zero in both the global node number and the lo-

Telelogic Tau 4.5 User's Manual 2701

Chapter 58 Building an Application

2702

cal PId component. Note that the global node number should be greater
than zero in al Pld values except spL, NULL.

The Symbol Table

The symbol tableisatree built up during the initialization phase in the
execution of the generated program and contains information about the
static structure of the SDL system. The symbol table contains, for ex-
ample, nodes which represent signal types, blocks, channels, process
types, and procedures. The C typethat are used to represent for example
signals in the symbol tableis given below.

typedef struct xSignalIdStruct *xSignalIdNode;
typedef struct xSignalIdStruct {

/* components */

} xSignalIdRec;

Itisthe nodesthat represent the signal types, for signals sent to and from
the environment of the SDL system, that are of major interest in connec-
tion with the environment functions. For each signal type there will be
a symbol table node. That node may be referenced using the name
ysign_ followed by the signal name with prefix. Such references may
be used in, for example, xoutEnv to find the signal type of the signal
passed as parameter.

In some cases the symbol table nodes for channels from the environ-
ment to ablock in the system are of interest to refer to. Inasimilar way
asfor signals such nodes may be referenced using the name ychan_ fol-
lowed by the channel name with prefix.

The Environment Functions

An SDL system communicates with its environment by sending signals
to the environment and by receiving signals from the environment. As
no information about the environment is given in the SDL system, the
Cadvanced SDL to C Compiler cannot generate the actions that should
be performed when, for instance, asignal is sent to the environment. In-
stead you have to provide afunction that performs this mapping be-
tween asignal sent to the environment and the actions that then should
be performed. Examples of such actions are writing a bit pattern on a
port, sending information over anetwork to another computer and send-
ing information to another OS process using some OS primitive.

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

Y ou should provide the following functions to represent the environ-
ment of the SDL system:

xInitEnv and xCloseEnv, Which are called during initialization
and termination of the application

xoutEnv Which should treat signals sent to the environment

xInEnv Which should treat signals sent into the SDL system from
the environment

There are two ways to get a skeleton for the env functions:

You can copy thefile sctenv.c from the directory
<installation directory>/sdt/sdtdir/<machine depen-
dent dir>/INCLUDE

where <machinedependent dir> isfor example sunosssdtdir on
SunOS5, hppasdtdir on HP,and wini3se in Windows. (In Win-
dows, / should bereplaced by \ inthe path above.)

Thisfile also contains some trace mechanisms that may be used to
trace the execution in atarget computer. This trace can, however,
only be used if you have the source code for the run-timelibrary (in-
cluded in the Cadvanced SDL to C Compiler) and can produce a
new object library with the appropriate switches.

Y ou can generate a skeleton by using the Generate environment
functions option inthe Makedialog in the Organizer. Invery simple
cases you might obtain executable env functions by just tuning the
macros in this generated file, but in the general case you must useit
asaskeleton and edit it. Remember then to copy thefilesothatitis
not overwritten when code is generated the next time.

An advantage with the generated env functionsis that the SDL to C
Compiler knowsabout the signal interface to beimplemented in theenv
functions, and can therefore insert code or macros for all signalsin the
interface. To cal culate thisinformation is not that easy, especialy if par-
titioning (generating code for a part of a system) is used.

Telelogic Tau 4.5 User's Manual 2703

Chapter 58 Building an Application

2704

Note:

A make template file is generated every time you generate an envi-
ronment file. This file contains make information for the environ-
ment file and possibly for data encoding and decoding files. If you
need to change this skeleton file, then remember to copy it soitis
not overwritten next time an environment file is generated. The file
can be used as make template in the Organizer’ s generate options.
Notethat you may haveto generatethefilefirst, beforeyou can

select it in the Organizer.

The env functions are thoroughly discussed below, but first we will in-
troduce the system interface header file which considerably simplifies
writing the environment functions.

System Interface Header File

The system interface header file contains code for objects that are de-
fined in the system diagram. Included are all type definitions and other
external definitions that are needed in order to implement external C
code. These object definitions simplify the implementation of the envi-
ronment functions. Therefore the system interface header fileis also
known the environment header file. Thisfileis generated if:

» Codeis generated for the complete system.

» The Generate environment header file option is selected in the
Make dialog in the Organizer (see “ Code Generation Options’ on
page 120 in chapter 2, The Organizer).

The default name of the generated interface header fileis

<system file name>.ifc.
The system interface header file, has the following structure:
» Macrosfor al synonymsthat are trandated to macros.

» All typedefinitions generated from newtypes and syntypes. Thisin-
cludes #TYPE and #HEADING sectionsin #aDT directivesand in
#copE directives.

« External definitionsof variablesfor all synonymsthat aretranslated
to variables.

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

» For each signal defined in the system diagram there will be an ex-
tern definition for the xsignal1drec variable representing the sig-
nal.

» For each signal with parameters defined in the system diagram,
there will be definitions of the typesyppef signalName and
yPDP_SignalName, i.€. Of the types used to represent asignal.

» For each remote procedure (that can be sent to or from the environ-
ment), code will be generated exactly as for two signals named
pCALL_procedurenameandpREPLY_procedurenam&

» For each channel defined in the system diagram there will be extern
definitions for the xChannel 1drec representing the channel.

Together with these definitions, macros that simplify the translation of
SDL namesto C names are aso be generated.

Names of SDL Objects in C

Due to differencesin naming rulesin SDL and C, prefixing is used to
make C identifiers unique (see section “ Names and Prefixesin Gener-
ated Code” on page 2663 in chapter 57, The Cadvanced/Cbasic SDL to
C Compiler). These prefixes, however, may change when you update
your SDL diagrams and cannot be predicted. Therefore you should not
use the prefixed object names in the environment functions. Instead
macros, generated in the system interface header file, assist you by map-
ping static names to the prefixed names. This means that you must re-
generate the system interface header file each time you regenerate code
for the system. The good part isthat you do not have to make any chang-
esin the environment functions, as the interface names are static.

Example 411: Macro in the system interface header file

If an SDL signal called Siglisdefinedinthe system, thefollowing mac-
roiscreated:

extern XCONST struct xSignalIdStruct ySigR z5 Sigl;
#ifndef Sigl
#define Sigl (&ySigR z5 Sigl)
#endif
Thismacro allowsyou to refer to the x1aNode by using the static name

sig1 rather than the prefixed name, ysigR _z5 Sigil.

Telelogic Tau 4.5 User's Manual 2705

Chapter 58 Building an Application

2706

Macros generate static names for the following SDL types:
« Synonyms (both translated to macros and variables).

* Newtypes and Syntypes. If the newtypeistranslated to an enumer-
ation type, dl theliteralsareavailable directly in C using their SDL
names.

* xSignalIdNode representing signals. (No ysigN_ prefix).

* xChannelIdNode representing channels. (Use prefix xIn_ or
xOUT_ t0 access the incoming or outgoing direction of the channel).

* TheypPDP_SignalName pointer type. Thistype may be referred to
using the name yPDP_signalName, Where SignalName iSthe SDL
name.

Note:

Y ou must always generate the system interface header file before
editing or generating the environment functions.

Avoiding name clashes

In SDL it is alowed to give the same nameto different objects. Thisis
not allowed in C. For instance, in SDL you can giveasignal and aNew-
type the same name. In order to distinguish between the namesin the
system interface header file, you must define static unambiguous
names. Using the Env. Header File Generation tab in the Targeting Ex-
pert, you can do this by using available general identifiers. The identi-
fiersare:

* s3n-Thisidentifier isthe SDL name
* 3s- Thisidentifier isthe SDL name of the scope.

* sdlobject - Inorder toidentify thetype of object, you can typethe
object name as a prefix, e.g. signal, literal, etc.

Any combination of theidentifiers can be used and they are all optional .
However, in order to create a useful system interface header file, itis
recommended that the sn identifier is aways included. Leaving the
field empty means that no objects of that typeisincluded in the system
interface header file at all.

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

Note:

If you select toinclude all objects and use the sn identifier only, the
system interface header file will become compatible with earlier
versions.

Example 412: Name Mapping in an system interface header file ——

If thesignal signal1 isinthe system system2 you should type thefol-
lowing in the Signal field in the TAEX.

sig_%n_%s
The result in the system interface header file will be:

sig Signall System2

This approach helps you to avoid name clashesin theifc file. Literals,
for example, are often given the same name when defined in different
types. The following example shows how this can be solved.

Example 413: Avoiding Name Clashes
In an SDL system the following two newtypes are defined:

NewType s
literals red, green

NewType t
literals red, yellow

Astheliteral red appearsin both newtypes, the C code cannot distin-
guish between them. However, by using the identifiersin the literals
field,

lit_%n_%s
the literals are given the following names:

lit_red_ s
lit red t

Thus we will avoid a possible name clash.

Telelogic Tau 4.5 User's Manual 2707

Chapter 58 Building an Application

2708

Structure of File for Environment Functions

The file containing the environment functions should have the follow-
ing structure:

#include "scttypes.h"
#include "file with macros for external synonyms"
#include "systemfilename.ifc"

void xInitEnv XPP((void))

}

void xCloseEnv XPP((void))

{
}

#ifndef XNOPROTO
void xOutEnv (xSignalNode *S)
#else
void xOutEnv (S)
xSignalNode *S;
#endif
{
}

#ifndef XNOPROTO
void xInEnv (SDL_Time Time_ for next event)
#else
void xInEnv (Time for next event)
SDL_Time Time for next event;
#endif

{
}

int xGlobalNodeNumber XPP ((void))

{
}

The last function, xGlobalNodeNumber, Will be discussed later, see
“Function xGlobalNodeNumber” on page 2722. The usage of the mac-
ros xpp and xnoproTO makes the code possible to compile both with
compilersthat can handle prototypes and with compilersthat cannot. If
you do not need this portability, you can reduce the complexity of the
function headings somewhat. In the minor examples in the remaining
part of this section, only versions with prototypes are shown.

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

Functions xInitEnv and xCloseEnv

There are two functions among the environment functions that handle
initialization and termination of the environment. These functions, as
well asthe other environment functions, should be provided by the user.

void xInitEnv (void);

void xCloseEnv (void);

In the implementation of these functions you can place the appropriate
code needed to initialize and terminate the software and the hardware.
Thefunction x1nitEnv will becalled during the start up of the program
asfirst action, while the xc1oseEnv will be called in the function
sp1,_Halt. Calling spr_Halt isthe appropriate way to terminate the
program. The easiest way to call sp1,_Halt istoincludethecal ina
#copkE directiveinaTASK. spL_Halt ispart of theruntimelibrary and
has the following definition:

void SDL_Halt (void);
Note:

xInitEnv Will becalled beforethe SDL systemisinitialized, which
meansthat no referencesto the SDL system are allowed in thisfunc-
tion. To, for example, send signalsinto the system during theinitial -
ization phase, the #ma1N directive should be used (see “Initializa-
tion — Directive #MAIN” on page 2668 in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler). Thisdirective code can be used
after theinitialization of the SDL system, but before any transitions
are executed.

Function xOutEnv

Each timeasignal is sent from the SDL system to the environment of
the system, the function xoutEnv will be called.

void xOutEnv (xSignalNode *S) ;

The xoutEnv function will have the current signal as parameter, so you
have al the information contained in the signal at your disposal when
you implement the actions that should be performed. The signal con-
tainsthe signal type, the sending and receiving processinstance and the
parameters of the signa. For more information about the types used to
represent signals and processes, see section “ Types Representing Sig-
nals’ on page 2699 and “ Types Representing Processes’ on page 2701.

Telelogic Tau 4.5 User's Manual 2709

Chapter 58 Building an Application

2710

Note that the parameter of xoutEnv isan addressto xsignalNode, that
is, an addressto a pointer to astruct representing the signal. The reason
for thisis that the signal that is given as parameter to xoutEnv should
be returned to the pool of available memory before return is made from
the xout Env function. Thisis made by calling the function
xReleaseSignal, Which takes an address to an xsignalNode as pa-
rameter, returnsthe signal to the pool of available memory, and assigns
0 to the xsignalNode parameter. Thus, there should be a call

xReleaseSignal (S) ;

before returning from xoutEnv. The xReleaseSignal functionisde-
fined as follows:

void xReleaseSignal (xSignalNode *S) ;

In the function xout Env you may use the information in the signal that
is passed as parameters to the function. First it is usually suitable to de-
termine the signal type of the signal. Thisisbest performed by if state-
ments containing expressions of the following form, assuming the use
of the system interface header file and that the signal hasthename sig1
inSDL:

(*S) ->NameNode == Sigl
Suitable expressionsto reach the Receiver, the sender, and the signal
parameters are:

*3S) ->Receiver
*S) ->Sender
(

(
(
(
(

yPDP_Sigl) (*S)) -> Paraml
(yPDP_Sigl) (*S)) -> Param2
(and so on)

sender Will always refer to the sending process instance, while
Receiver iseither areference to a process in the environment or the
value xEnv. xEnv isaPld value that refersto an environment process
instance, whichisused to represent the general concept of environment,
without specifying an explicit process instance in the environment.

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

Note:

It isnot possible to calculate the PId value for a processin the envi-
ronment, the value has to be taken from an incoming signal (sender
or signal parameter). Thisisthe normal procedurein SDL to estab-
lish direct communication between two processes in the same SDL
system.

Receiver will refer to the processxenv if the Pld expression in an output
TO refersto xenv, or if the signal was sent in an output without aTO
clause and the environment was selected as receiver in the scan for re-
ceivers.

Remote procedure calls to or from the environment should in the envi-
ronment functions be treated atwo signals, apCALL procedurename
andapREPLY_procedurenameand.

Recommended Structure of the xOutEnv Function

Y ou can, of course, write the xout Env function asyou wish —the struc-
ture discussed below may be seen as an example — but also asa guide-
line of how to design xoutEnv functions.

Example 414: Structure of xOutEnv Function
void xOutEnv (xSignalNode *S)

if ((*S)->NameNode == Sigl) {

/* perform appropriate actions */
xReleaseSignal (S) ;

return;

if ((*S)->NameNode == Sig2) {

/* perform appropriate actions */
xReleaseSignal (S) ;

return;

/* and so on */

}

Telelogic Tau 4.5 User's Manual 2711

Chapter 58 Building an Application

2712

Function xInEnv

To makeit possibleto receive signalsfrom the environment and to send
them into the SDL system, the user provided function xInEnv is repeat-
edly called during the execution of the system (see section “ Program
Structure” on page 2723). During such a call you should scan the envi-
ronment to seeif anything has occurred which should trigger asignal to
be sent to a process within the SDL system.

void xInEnv (SDL_Time Time_ for next event) ;

To implement the sending of asignal into the SDL system, two func-
tions are available: xcetsignal, which isused to obtain adata area
suitable to represent the signal, and spL._output, which sends the sig-
nal to the specified receiver according to the semantic rules of SDL.
These functions will be described |ater in this subsection.

The parameter Time for next_event Will contain the time for the
next event scheduled in the SDL system. The parameter will either be
0, which indicates that there is a transition (or atimer output) that can
be executed immediately, or be greater than Now, indicating that the
next event isatimer output scheduled at the specified time, or be avery
large number, indicating that thereisno scheduled action in the system,
that is, the system iswaiting for an external stimuli. Thislargevalue can
be found in the variable xSysD . xMaxTime.

Y ou should scan the environment, perform the current outputs, and re-
turn asfast as possible if Time has past Time for next event.

If Time has not past Time_for next event, you have achoiceto ei-
ther return from the x1nEnv function at once and have repeated calls of
xInEnv, OF stay in the xInEnv until something triggers a signa output
(asignal sent to the SDL system) or until Time has past

Time for next event.

Note:

We recommend always to return from the x1nEnv function as fast
aspossibleto ensurethat it will work appropriately together with the
monitor (during debugging). Otherwise, thekeyboard polling, that
is, typing <RETURN> in order to interrupt the execution, will not
work.

The function xGetSignal, which is one of the service functions suit-
ableto use when asignal should be sent, returns apointer to adataarea

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

that represents asignal instance of the type specified by thefirst param-
eter.

xSignalNode xGetSignal

(xSignalIdNode SType,
SDL_PId Receiver,
SDL_PId Sender);

The components Receiver and sender inthe signal instance will also
be given the values of the corresponding parameters.

sType. This parameter should be a reference to the symbol table
node that represents the current signal type. Using the systeminter-
face header file, such a symbol table node may be referenced using
the signal name directly.

Receiver. Thisparameter should either beaPld valuefor aprocess
instance within the system, or the value xNotDefP1d. The value
xNotDefP1d isused to indicate that the signal should be sent asan
output without TO clause, whileif aPld value is given the output,
it istreated as an output with TO clause. Note that PId values for
process instancesin an SDL system cannot be cal culated, but have
to be captured from theinformation (sender or parameter) carried by
signals coming from the system. Thisis the normal procedurein
SDL to establish direct communication.

sender. Sender should either be aPld value representing a process
instance in the environment of the current SDL system or the value
xEnv. xEnv iSaPld value that refersto an environment process in-
stance, which is used to represent the genera concept of the SDL
environment, without specifying an explicit processinstance in the
environment.

Thefunction spr_output takesareferenceto asignal instance and
outputs the signal according to the rules of SDL.

void SDL_Output
(xSignalNode S,
xIdNode ViaList[]);

s. This parameter should be areference to asignal instance with all
componentsfilled in.

viaList. This parameter is used to specify if aVIA clauseisoris
not part of the output statement. Thevalue (x1dNode *)o (anull
pointer), is used to represent that no VIA clauseis present. For in-
formation about how to build avialist, please see below.

Telelogic Tau 4.5 User's Manual 2713

Chapter 58 Building an Application

We now have enough information to be able to write the codeto send a
signal. Suppose we want to send asignal S1, without parameters, from
xEnv into the system without an explicit receiver (without TO). The
code will then be:

Example 415: C Code to Send a Signal to the Environment

SDL_Output (xGetSignal (S1, xNotDefPId, xEnv),
(xIdNode *)0) ;

If S2, with two integer parameters, should be sent from xEnv to the pro-
cess instance referenced by the variable P, the code will be:

xSignalNode OutputSignal; /* local variable */

OutputSignal = xGetSignal (S2, P, XEnv);
((yPDP_S2)OutputSignal) ->Paraml = 1;
((yPDP_S2)OutputSignal) ->Param2 = 2;
SDL_Output (OutputSignal, (xIdNode *)0);

For the details of how to reference the parameters of asignal see the
subsection “ Types Representing Signals’ on page 2699.

Tointroduceavialist in the output requires avariable, which should be
an array of x1dNode, that contains referencesto the symbol table nodes
representing the current channels (or signal routes) in the vialist. In
more detail, we need avariable

ViaList xIdNode [N] ;

where N should bereplaced by thelength of thelongest vialist we want
to represent plus one. The components in the variable should then be
given appropriate values, such that component 0 is a reference to the
first channel (its symbol table node) in the vialist, component 1isaref-
erence to the second channel, and so on. Thelast component with aref-
erence to a channel must be followed by a component containing anull
pointer (the value (x1dNode) 0). Components after the null pointer will
not be referenced. Below isan example of how to createavialist of two
channels, C1 and C2.

2714 Teldlogic Tau 4.5 User's Manual July 2003

Refer ence Section

Example 416: Via List of two Channels.

ViaList xIdNode [4];
/* longest via has length 3 */

/* this via has length 2 */

ViaList [0] = (xIdNode)=xIN C1;
ViaList [1] = (xIdNode)xIN C2;
ViaList [2] = (xIdNode)O;

The variable viarist may then be used asaviaList parameterina
subsequent call to spr._output.

Guidelines for the xInEnv Function

It is more difficult to give a structure for the x1nEnv function, than for
the xout Env function discussed in the previous subsection. A xInEnv
functionwill in principle consist of anumber of i £ statementswherethe
environment is investigated. When some information is found that
meansthat asignal isto be sent to the SDL system, then the appropriate
code to send asignal (see above) should be executed.

The structure given in the example below may serve as an idea of how
to design the x1nEnv function.

Example 417: Structure of xInEnv Function

void xInEnv (SDL_Time Time for next event)

{

xSignalNode S;

if (Sigl should be sent to the system) ({
SDL_Output (xGetSignal (Sigl, xNotDefPId,
xEnv), (xIdNode *)O0) ;

if (Sig2 should be sent to the system) ({
S = xGetSignal (Sigl, xNotDefPId, xEnv);
((xPDP_S8ig2)S) ->Paraml = 3;
((xPDP_Sig2)S) ->Param2 = SDL_True;
SDL_Output (S, (xIdNode *)O0) ;

/* and so on */

Thisbasic structure can be modified to suit your own needs. Theif state-
ments could, for example, be substituted for while statements. The sig-
nal types might be sorted in some “priority order” and a return can be

July 2003 Telelogic Tau 4.5 User's Manual 2715

Chapter 58 Building an Application

2716

introduced last in the if statements. This means that only one signal is
sent during a xInknv call, which reduces the latency.

Alternative to OutEnv - Directive #EXTSIG

To speed up an application it is sometimes possible to use the directive
#EXTSIG instead of the xout Env function. The decisionto use #ExTs1G
or xoutEnv may be taken individually for each signal type.

The usage of the #ExTs1¢ directive is described in the section “ Modi-
fying Outputs — Directive #EXTS G, #ALT, #TRANSFER’ on page
2668 in chapter 57, The Cadvanced/Cbasic SDL to C Compiler. Thisin-
formation is not repeated here.

By using the #ExTs1c directive the following overhead can be avoided:
e Cdling sp1,_output (thelibrary function for outputs)

e sDL_output determines that the signal isto be sent to the environ-
ment

* 3DL_Output calsxoutEnv

* xOutEnv executes nested “if” statements to determine the signal
type.

Including the Environment Functions in the SDL System
Design

Apart from having the environment functions on afile of their own, it
is of course possible to include these function directly into the system
diagram in a #copE directive.

Example 418: Including Environment Functions in SDL System

/ *#CODE

#BODY

... code for the environment functions ...
*/

In this case you cannot use the system interface header file, but instead
you have all the necessary declarations already at your disposal, asthe
functionswill be part of the SDL system. The only problem you will en-
counter isthe prefixing of SDL names when they are translated to C.

The #spt directive should be used to handle this problem (or the #xaME

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

directive), see sections “ Accessing SDL Names in C Code — Directive
#SDL" on page 2654 and " Specifying Names in Generated Code — Di-
rective #NAME” on page 2667 in chapter 57, The Cadvanced/Chasic
SDL to C Compiler. The following table shows how to obtain C names
for some SDL objects of interest:

(Synonym name)

(Newtype or syntype name)
ySigN #(Signal name)
yPDP_# (Signal name)
yChaN_# (Channel name)

SDL Data Encoding and Decoding, ASCII coder

Communication between nodes often requires data encoding and de-
coding between node internal representations and a common format in
aprotocol buffer. The sending node writes information in the common
format and the receiving node reads information from the common for-
mat. Dataencoding isthe transformation from anode internal represen-
tation into a common format and data decoding is the transformation
from a common format into a node internal representation.

Supported common formats are:

« BER
* PER
* ASCII

BER (Basic Encoding Rules) is specified in ITU standard X.690 and
PER (Packed Encoding Rules) isspecified in ITU standard X.691. BER
and PER are based on ASN.1 specifications of data types and can only
be used for types specified in ASN.1 specifications. See chapter 59,
ASN.1 Encoding and De-coding in the SDL Suite and chapter 8, Tutori-
al: Using ASN.1 Data Types.

ASCII isaformat where the dataiis represented as ASCII characters. It
is easy to read and analyze. The ASCII format is specified in appendix
A.

Example 419 ASCIl common format

newtype Person struct
nm Charstring;
nr Integer;
fm Boolean;

Telelogic Tau 4.5 User's Manual 2717

Chapter 58 Building an Application

2718

endnewtype Person;
dcl boss Person := (.’Joe’,5,false.);

ASCII format:{‘Joe’,5,F}

The ASCII coder uses the same buffer management and error manage-
ment as the BER and PER coders, see chapter 59, ASN.1 Encoding and
De-coding in the SDL Quite.

Type description nodes for SDL types

SDL data encoders and data decoders need information about types and
signals, information that is stored in type descriptions nodes. Type de-
scription nodes for an SDL system are generated if the Generate SDL
coder option is selected in the organizer, see chapter 2, The Organizer,
or in the targeting expert, see chapter 60, The Targeting Expert. Decla-
rations to access the type nodes are in the system interface header files
andinafilewiththename <system file name> cod.h. Typenodes
canbefound in any generated c-filefrom asystem or apackage and also
inthe <system file name> cod.c file

A type description node for SDL isimplemented as a static variable
with the type information. The variable can be accessed by using the
name ySDL_<type name> or ySDL_<signal_name>, where
<type_name> and <signal_name> are the names used in the interface
header file. See “Names of SDL Objectsin C” on page 2705 for more
information.

Encoding signal and signal parameters into a buffer

Y ou can use an encode function to encode signal parametersinto a buff-
er. Thereisoneencoding function for each common format. For ASCII,
it isaccessed by using the macro ASCII_ENCODE. An encoding func-
tion hasabuffer reference asthefirst parameter, apointer to atype node
as the second parameter and a pointer to the variable to encode as the
third. The encoding function returns an integer value, which is 0 if the
encoding was successful and error codeif it was not. M ore details about
encoding functions, the buffer reference, type nodesand error codes can
be found in chapter 59, ASN.1 Encoding and De-coding in the SDL
Quite.

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

Function declarations arein the file “ascii/ascii.h”
(“asciilascii.h” on Windows platforms) inthecoder directory.

Example 420 ASCII encoding of signal parameters

In SDL:
SIGNAL Sigl (Integer, Person,Boolean) ;

In xOutEnv:
BufInitWriteMode (buf) ;
result = ASCII_ENCODE(buf,

(tSDLTypeInfo *)&ySDL Integer,

(void *)&((yPDP_Sigl) (*S))->Paraml)) ;
if (result!=0) /* handle error */;
result = ASCII_ENCODE(buf,

(tSDLTypeInfo *)&ySDL Person

(void *)&((yPDP_Sigl) (*S))->Param2)) ;
if (result!=0) /* handle error */;
result = ASCII_ENCODE(buf,

(tSDLTypeInfo *)&ySDL Boolean

(void *)&((yPDP_Sigl) (*S))->Param3)) ;
if (result!=0) /* handle error */;
BufCloseWriteMode (buf) ;

Example 421 ASCII encoding of whole signal (all signal parameters)

In SDL:
SIGNAL Sigl (Integer, Person,Boolean) ;

In xOutEnv:
BufInitWriteMode (buf) ;
result = ASCII_ ENCODE (buf,
(tSDLTypeInfo *)&ySDL Sigl,
(void *) (*S)) ;
if (result!=0) /* handle error */;
BufCloseWriteMode (buf) ;

Note:

The names of the type nodes in the examples, the second parameter
in ASCII_ENCODE, depend on the settings for generating system
interface header files.

Decoding into signal parameters from a buffer

Y ou can use adecode function to decode from abuffer into asignal pa-
rameter. There is one decoding function for each common format. For
ASCII, it isaccessed by using the macro ASCII_DECODE. A decode
function has abuffer reference asthefirst parameter, apointer to atype

July 2003 Telelogic Tau 4.5 User's Manual 2719

Chapter 58 Building an Application

node as the second parameter and a pointer to the variable to decode as
the third. The decoding function returns an integer value, which is O if
the decoding was successful and an error codeif it wasnot. More details
about decoding functions, the buffer reference, type nodes and error
codes can befound in chapter 59, ASN.1 Encoding and De-coding in the
DL Suite.

Function declarations arein thefile “ascii/ascii.h”
(“asciilascii.h” on Windows platforms) inthecoder directory.

Example 422 ASCII decoding into signal parameters

In SDL:
SIGNAL Sigl (Integer, Person,Boolean) ;

In xInEnv:
BufInitReadMode (buf) ;
result = ASCII_ DECODE (buf,

(tSDLTypeInfo *)&ySDL_ Integer,

(void *)&((yPDP_Sigl) (S))->Paraml)) ;
if (result!=0) /* handle error */;
result = ASCII DECODE (buf,

(tSDLTypeInfo *)&ySDL Person

(void *)&((yPDP_Sigl) (S)) ->Param2)) ;
if (result!=0) /* handle error */;
result = ASCII DECODE (buf,

(tSDLTypeInfo *)&ySDL Boolean

(void *) & ((yPDP_Sigl) (S))->Param3)) ;
if (result!=0) /* handle error */;
BufCloseReadMode (buf) ;

Example 423 ASCII decoding of whole signal (all signal parameters)

In SDL:
SIGNAL Sigl (Integer, Person,Boolean) ;

In xInEnv:
BufInitReadMode (buf) ;
result = ASCII_DECODE(buf,
(tSDLTypeInfo *)&ySDL_Sigl,
(void *)S);
if (result!=0) /* handle error */;
BufCloseReadMode (buf) ;

2720 Teldlogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

Note:

The names of the type nodes in the examples, the second parameter
in ASCII_DECODE, depend on the settings for generating system
interface header files.

Encoding and decoding signal identifier for ASCII encoding

When sending signals between nodesit isoften important to put asignal
identifier first in the buffer. The signal identifier must be aunique iden-
tifier of the signa in the distributed system. Decoding isthen atwo step
process, first decode signal identifier and find signal information and
second decode signal parameters.

Y ou can use any representation of signal identifiersin the environment
functions.

For SDL typesthereis aspecial signal id type node that supports char-
acter string signal ids. The type node can be used for ASCII encoding.

Example 424 Using signal identifier

In SDL:
SIGNAL Sigl (Integer) ;

In xOutEnv:
void xOutEnv (xSignalNode *S)

{

char * signallId;

BufInitWriteMode (buf) ;
if ((*S)->NameNode == Sigl) {
/* encode signal id into buffer */
signalId="Sigl”;
result = ASCII_ ENCODE (buf,
(tSDLInfo *)&ySDL_Signalld,
(void *)signalld) ;
if (result!=0) /* handle error */;
/* encode signal parameter */
result = ASCII_ENCODE(buf,
(tSDLTypeInfo *)&ySDL_Sigl,
(void *) (*38));
if (result!=0) /* handle error */;

/* send buffer using protocol*/
/* release memory */

xReleaseSignal (S) ;
return;

Telelogic Tau 4.5 User's Manual 2721

Chapter 58 Building an Application

2722

BufCloseWriteMode (buf) ;

}

In xInEnv:
void xInEnv (SDL_Time Time for next event) {
char SId[100];

BufInitReadMode (buf) ;
/* decode signal id */
result = ASCII_DECODE(buf,
(tSDLTypeInfo *)&ySDL_SignallId,
SId));
if (result!=0) /* handle error */;
/* signal Sigl in buffer */
if (strcmp(SId,"Sigl"))
S=xGetSignal (Sigl,xNotDefPId, xEnv) ;
result = ASCII_ DECODE (buf,
(tSDLTypeInfo *)&ySDL Sigl,
(void *)S);
if (result!=0) /* handle error */;
SDL_Output (S, (xIdNode *)0) ;

BufCloseReadMode (buf) ;

Function xGlobalNodeNumber

Y ou should also provide a function, xG1obalNodeNumber, With no pa-
rameters, which returns an integer that is unique for each executing sys-
tem.

int xGlobalNodeNumber (void)

The returned integer should be greater than zero and should be unique
among the communicating SDL systemsthat constitutes an application.
If the application consists of only one application then this number is of
minor interest (it still hasto be set). The global node number isused in
Pld valuesto identify the node (OS process/ processor) that the process
instance belongsto. Pld values are thereby universally accessible and
you may, for example, in asimple way make “ Output To Sender” work
between processesin different SDL systems (OS processes/ proces-
sors).

When an application consisting of several communicating SDL systems
isdesigned, you have to map the global node number to the current OS
process or processor, to be able to transmit signals addressed to non-lo-

Telelogic Tau 4.5 User's Manual July 2003

Refer ence Section

July 2003

cal Pldsto the correct OS process or processor. Thiswill be part of the
xOutEnv function.

Program Structure

The generated code will contain two important types of functions, the
initialization functions and the PAD functions. The PAD functionsim-
plement the actions performed by processes during transitions. There
will be oneinitialization function in each generated. ¢ file. In thefile
that represents the system thisfunction will havethenameyinit. Each
process in the system will be represented by a PAD function, which is
called when a process instance of the current instance set is to execute
atransition.

The example below shows the structure of themain, MainInit, and
MainLoop functions.

Example 425: Start up structure

void main (void)

xMainInit () ;
xMainLoop () ;

}

void xMainInit (void)
xInitEnv () ;
Init of internal data structures in the
runtime library;
yInit();

}

void xMainLoop (void)

while (1) {
xInEnv(...);
if (Timer output is possible)
SDL_OutputTimerSignal () ;
else if (Process transition is possible)
Call appropriate PAD function;

}
}

Thefunction xMainToop containsan endlessloop. The appropriate way
to stop the execution of the program isto call the runtime library func-
tion sor,_nalt. Thecal of this C function should normally beincluded
in an appropriate task, using the directive #copke. spr, Halt which has
the following structure:

Telelogic Tau 4.5 User's Manual 2723

Chapter 58 Building an Application

2724

void SDL_Halt (void)

{

xCloseEnv () ;
exit (0) ;

To complete this overview, which emphasizes the usage of the environ-
ment functions, we have to deal with the xoutEnv function. Within
PAD functions, the runtime library function spr,_output iscalled to
implement outputs of signals. When sp1._output identifiesthereceiver
of asignal to be a process instance that is not part of the current SDL
system, spr,_output Will call the xoutEnv function.

Dynamic Errors

In the library for applications SDL runtime errors will not be reported.
Theapplicationwill just perform some appropriate actionsand continue
to execute. These actionsarein almost all cases the same as the actions
at dynamic errors described in the “Dynamic Errors’ on page 2121 in
chapter 50, The SDL Smulator.

» Output warnings: If asignal issent to NULL or to a stopped pro-
cess instance, or if no receiver isfound in an output without a “to”
clause, the signal will not be sent, that is, the output statement isa
null action. If asignal is sent to a process instance and thereis no
path between the sender and the receiver, the signal will be sent any-
way (actually, no check will be performed).

« If theerror wasadecision error, that is, no path exists for the cur-
rent decision value, the execution of the program will continuein an
unpredictableway. To avoid these kind of problemsyou should al-
wayshaveelsepathsin decisions (if not all valuesinthe current data
type are covered in other paths).

» |f theerror occurred during animport or view action, a data area of
the correct size containing zero in al positionsis returned.

» No checksof assignment or index out of rangewill be performed.
Thismeansthat if an array index is out of bounds, then the corre-
sponding C array will be indexed out of its bounds.

» No checks when accessing struct, #UNION, or choice components
are performed. No checks are performed when de-referencing a
pointer value (Ref generator). These operations will just be execut-
ed.

Telelogic Tau 4.5 User's Manual July 2003

Example Section

» If thedynamic error occurred within an SDL expression, the oper-
ator that found the error will return adefault value and the evalua-
tion of the expression is continued. The default values returned de-
pend on the result type of the operator and are given in the section
“Default Values’ on page 2604 in chapter 57, The Cadvanced/Cba-
sic DL to C Compiler.

Example Section

July 2003

In this section a complete example of an application is presented. The
applicationissimple but it still contains most of the problemsthat arise
when the Cadvanced SDL to C Compiler is used to generate applica-
tions. All source code for this example, together with the running appli-
cation are delivered with the runtime libraries for application genera-
tion. Note that the exampleis developed for SunOS5 and HP-UX.
The exampleisnot updated to use encoding and decoding support.

The Example

We want to devel op an application that consists of several communi cat-
ing UNIX processes. Each UNIX process should a so be connected to
the keyboard and the screen. When a complete line is typed on the key-
board (when <returns ispressed) in one of the UNIX processes, that
line should be sent to and printed by all the UNIX processes, including
the one where the line was entered. If aline starting with the character
“. isentered in any UNIX processthen all the UNIX processes should
terminate immediately.

There are some observations we can make from this short description.

» Firstly, all the UNIX processes should behave exactly the same,
which meansthat the behavior can be described in one SDL system
and one application can be generated. This application should be
ableto communicate with other instances of itself and should simul-
taneously be started in as many instances as we want communicat-
ing UNIX processes.

» Secondly, each UNIX process needs accessto the terminal. To sim-
plify the connection between a UNIX process and the terminal, we
assume that each instance of the application is started from its own
window (its own shell tool). In this way the underlying window
manager will solve the problem of directing input typed on the key-

Telelogic Tau 4.5 User's Manual 2725

Chapter 58 Building an Application

2726

board to the correct application, as well as making it possible for
you to distinguish between output from different applications.

e Thirdly, the UNIX processes have to be connected so they can com-
municate with each other. We have decided to use sockets as com-
munication media, and to let the UNIX processesform aring. This
means that when a UNIX process receives a message containing a
line, it should print the line and send the message on to the next
UNIX processin thering, if it did not itself originally send the line

message.

The SDL System

The SDL system with a behavior as outlined above is very simple. It
contains, for example, only one process. The system can receive three
types of signals, Termlnput from the terminal, and Message and
Terminate from the SDL system that is the previous node in the ring.
The system will respond by sending Display to the terminal and
Message and Terminateto the SDL system next inthering. The signals
Termlnput and Display take aline (which is read from the terminal or
should be printed on the terminal) as parameter. The signal Message
takes aline and a Pld value (the original sender in the ring) as parame-
ter, while the signal Terminate takes a Pld value (the original sender in
the ring) as parameter.

The diagrams for the SDL system may be found in “Appendix C: The
SDL System” on page 2747. In the section “ Where to Find the Exam-

ple” on page 2734, references to where to find the source code for this
example are given.

Simulating the Behavior

At this stage of the development of the application, when the SDL sys-
tem is completed but the environment functions are not implemented, it
istimeto simulate the SDL system to debug it at the SDL level. The
runtime library Smulation is appropriate in this case for smulation.

There are six cases that should be tested:

» |If Termlnput (with aline not starting with a period) is sent to the
system, it should respond by sending a Message signal to the envi-
ronment. Thefirst parameter in this signal should be equal to the pa-

Telelogic Tau 4.5 User's Manual July 2003

Example Section

rameter in the received Termlnput signal. The second parameter
should be the Pld value of the sending process.

e If Terminput (with aline starting with a period) is sent to the sys-
tem, it should respond by sending a Terminate signal to the environ-
ment. The parameter should be the PId value of the sending process.

» |f Message (with aPld parameter not equal to the receiving process)
is sent to the system, it should respond by sending a copy of the
Message signal to the environment. It should also send Display to
the environment with the received line as parameter.

» |f Message (with aPld parameter equal to the receiving process) is
sent to the system, it should respond by just sending aDisplay signal
to the environment with the received line as parameter.

o If Terminate (with a Pld parameter not equal to the receiving pro-
cess) is sent to the system, it should respond by sending a copy of
the Terminate signal to the environment. The execution of the pro-
gram should then terminate.

e If Terminate (with a Pld parameter equal to the receiving process)
is sent to the system, the program should just stop executing.

Let us now verify that the SDL system behaves according to this. Inthe
two executions of the simulation shown below, the cases described
above are tested in the same order as they are listed.

Example 426: Execution Trace of Generated Application
Start program Phone.sim.sct:

Command : set-trace 6
Default trace set to 6

Command : next-transition

%% TRANSITION START

* PId : PhonePr:1
* State : start state
* Now : 0.0000

%x NEXTSTATE idle

Command : output-via
Signal name : TermInput
Parameter 1 (charstring) : ‘hello’
Channel name :
Signal TermInput was sent to PhonePr:1 from env:l
Process scope : PhonePr:1

July 2003 Telelogic Tau 4.5 User's Manual 2727

Chapter 58 Building an Application

2728

Command : next-transition

*%% TRANSITION START

* PId : PhonePr:1

* State : idle

* Input : TermInput

* Sender : env:1l

* Now : 0.0000

* Parameter(s) : ‘hello’
* DECISION Value: true

* DECISION Value: false

*

OUTPUT of Message to env:1l
* Parameter(s) : ‘hello’,
x NEXTSTATE idle

Command : output-via TermInput

PhonePr:1

N7

Signal TermInput was sent to PhonePr:1 from env:1

Process Scope : PhonePr:1
Command : next-transition

*%% TRANSITION START

PId : PhonePr:1
State : idle
Input : TermInput
Sender : env:1l

Now : 0.0000

Parameter(s) : ‘.’
DECISION Value: true
DECISION Value: true
OUTPUT of Terminate to env:

Parameter (s) : PhonePr:1

% NEXTSTATE idle

* ok F E X X X X X X X

Command : output-via Message

1

Parameter 1 (charstring) : ‘hello’

Parameter 2 (pid) : env
Channel name

Signal Message was sent to PhonePr:1 from env:1l

Process scope : PhonePr:1
Command : next-transition

%% TRANSITION START
PId : PhonePr:1
State : idle
Input : Message
Sender : env:1l
Now : 0.0000
Parameter(s) : ‘hello’,
DECISION Value: false
OUTPUT of Message to env:1
Parameter(s) : ‘hello’,
OUTPUT of Display to env:1l
Parameter(s) : ‘hello’

* ok F E X X X X X X X

Telelogic Tau 4.5 User's Manual

env:1

env:1

July 2003

Example Section

*** NEXTSTATE idle

Command : output-via Message
Parameter 1 (charstring) : ‘hello’
Parameter 2 (pid) : PhonePr:1
Channel name
Signal Message was sent to PhonePr:1 from env:1
Process scope : PhonePr:1

Command : next-transition

%% TRANSITION START

PId : PhonePr:1

State : idle

Input : Message

Sender : env:1l

Now : 0.0000

Parameter(s) : ‘hello’, PhonePr:1

*
*
*
*
*
*
* DECISION Value: true
* OUTPUT of Display to env:1l
* Parameter(s) : ‘hello’
*%**x NEXTSTATE idle
Command : output-via Terminate

Parameter 1 (pid) : env
Channel name
Signal Terminate was sent to PhonePr:1 from env:1
Process scope : PhonePr:1

Command : next-transition

*%% TRANSITION START

* PId : PhonePr:1
* State : idle
* Input : Terminate
* Sender : env:1l
* Now : 0.0000
* Parameter(s) : env:1
* DECISION Value: false
* OUTPUT of Terminate to env:1
* Parameter(s) : env:1
* TASK Halt

Example 427

Start program Phone.sim.sct!

Command : set-trace 6
Default trace set to 6

Command : next-transition
*%% TRANSITION START

* PId : PhonePr:1
* State : start state

July 2003 Telelogic Tau 4.5 User's Manual 2729

Chapter 58 Building an Application

2730

* Now : 0.0000
**x* NEXTSTATE idle

Command : output-via Terminate
Parameter 1 (pid) : PhonePr:1
Channel name :
Signal Terminate was sent to PhonePr:1 from env:1
Process scope : PhonePr:1

Command : next-transition

*%% TRANSITION START

* PId : PhonePr:1

* State : idle

* Input : Terminate

* Sender : env:1l

* Now : 0.0000

* Parameter (s) : PhonePr:1
* DECISION Value: true

* TASK Halt

By running the system with the SDL monitor, asin the examples above,
you may debug the system at the SDL level. The overall behavior of the
system can thus be tested.

Itis possibleto start two instances of the simulation and have the simu-
lators communicate with each other. Then Message and Terminate sig-
nals sent to the environment in one of the simulationswill appear assig-
nals coming from the environment in the other.

Note:

Do not forget the monitor command Start-SDL-Env to make the
simulation programs start communicating.

The Environment

In the environment functions we use the socket facility in UNIX to im-
plement the communication between the executing programs. In the
current example, theimplementation isdeveloped for SunOS 5and
HP-UX.

To simplify the examplewe assumethat each instance of the application
isstarted in awindow of itsown (ashell tool window under for instance
X Windows, where UNIX commands can be entered). This means that
we will have no problems with the interpretation of stdin and stdout
in the programs.

Telelogic Tau 4.5 User's Manual July 2003

Example Section

The name of the socket for incoming messages for a certain instance of
the application will be the string “Phone” concatenated with the UNIX
process number for the current program. The socket will be created in
thedirectory /tmp. Each application instance will print this number dur-
ing the initiaization and will then ask for the process number of the ap-
plication instance where it should send its messages. Y ou have to enter
these numbers in such away asto form aring among the applications.

The Environment Functions

The environment functions, which may be found in the file

PhoneEnv . c, are shown in section “ Appendix D: The Environment
Functions’ on page 2750. Thefileis developed according to the struc-
ture discussed in the previous part of this chapter and uses the system
interface header file generated from the SDL system.

Asthe phoneEnv. c fileincludes scttypes.h and uses some C mac-
ros, it should be compiled using the same compiler options asthe C file
for the SDL system. For information about how to extend the generated
make file to handle also non-generated files, please see “ M akefile Op-
tions” on page 122 in chapter 2, The Organizer.

In the code for the environment functions a number of UNIX functions
areused. Their basic behavior isdescribed below. For any detailsplease
see the UNIX manuals available from Sun Microsystems.

Function name | Functionality

getpid Returnsthe UNIX process number for the current
program.

socket Returns a new, unnamed socket.

bind Binds a socket to anamein the file system.

listen Startslisten for other programstrying to connect
to this socket.

connect Should be called by other programs that want to
establish a connection to the current socket.

accept Accepts a connection request.

July 2003 Telelogic Tau 4.5 User's Manual 2731

Chapter 58 Building an Application

2732

Function name | Functionality

select Returns 1 if anything readable can be found in
any of the specified file descriptors, where afile
descriptor can represent afile, a socket, and the
terminal (stdin and stdout).

read, write Reads or writes on afile (afile descriptor).
close Closes afile.
unlink Removes afile.

If we now look at the code for the environment functions (see “ Appen-
dix D: The Environment Functions” on page 2750), we see that
xInitEnv mainly performs the following actions:

* It creates two unnamed sockets, one for messagein
(connection socket) and one for messages out (out_Socket).

e Itbinds connection Socket to thefile system (in the /tmp direc-
tory) and starts listen for connections.

e It printsits UNIX process number.

* Itreadsthe UNIX process number of the processwhereto send mes-
sages.

» |t attemptsto connect to the socket of the process where to send
messages.

» |t accepts the connection from the process that will send messages
here.

In xCloseEnv the created sockets are closed and removed.

The x1nEnv and xout Env functions follow the guidelines for these
functions given in the reference section. In xInEnv the select function
is used to determine if any messages are ready to be received from the
terminal (stdin) or from theincoming socket. An available messageis
then read and the information is converted to an SDL signal, which is
sent to the SDL system using the sp1,_output function. In xoutEnv a
test on the NameNodein the signa is used to determine the signal type.
Depending on the signal type the appropriate information is written ei-
ther on the outgoing socket or on the terminal (stdout).

Telelogic Tau 4.5 User's Manual July 2003

Example Section

July 2003

Debugging

Thefirst part of the debugging activity is, of course, when the SDL sys-
tem is simulated and examined through the monitor system. Now we
also want to include the environment functions during debugging. The
intention of the library ApplicationDebug is to use the monitor and the
environment functions together.

When the environment functions (x1nEnv) read information from the
keyboard there is, however, a problem in using x1nEnv together with
the monitor. In our system, for instance, aline typed on the keyboard
may either beamonitor command or alinetypedtothe SDL system. As
both the monitor and xInEnv are polling for linesfrom stdin, the in-
terpretation of atyped line depends on which onefirst finds the line.

A better way isto eliminate thisindeterministic behavior by not polling
for typed linesin xInEnv. Instead, you may use the monitor command:

Output-Via TermInput ’‘the line’
to simulate aline typed on the keyboard. In thisway all the other parts
of the environment functions can be tested under the monitor. If you en-
close the sections in xI1nEnv handling keyboard polling between
#ifndef XMONITOR and #endif thiscodeisremoved when the moni-
tor is used; that isif the library ApplicationDebug is used (see the code
for xInEnv in “Appendix D: The Environment Functions’ on page
2750).

A C source code debugger is of course also useful when debugging the
environment functions. Theinitialization phase, xInitEnv, isprobably
the most difficult part to get working correctly in our system. All the

source code for thisfunction isavailable, and a C debugger can be used.

While debugging generated code from SDL at the C level, it is dways
easy to find the currently executing SDL symbol, by using the SDT ref-
erences (see “Syntax” on page 911 in chapter 19, SDT References) in
the C code and the Go To Source menu choice in the Edit menu in the
Organizer. For more details please see “ Go To Source” on page 99 in
chapter 2, The Organizer.

Running the Application

To have an application of the Phone system you now only need to make
anew executing program with the library Application.

Telelogic Tau 4.5 User's Manual 2733

Chapter 58 Building an Application

2734

When you run the Phone system, start the program from two (or more)
shell tools (on UNIX). Each instance of the program will then print:

My Pid: 2311
Connect me to:

Y ou should answer these questions in such away that aring is formed
by the programs. When the initialization is completed for a program it
prints:

*kkkxkkk*x Welcome to SDT Phone System ***x*****
phone ->

The program is now ready to receive lines printed on the keyboard and
messages sent from other programs. A Display signal received from an-
other program is printed as follows:

display -> the line received in Display signal

Where to Find the Example
All files concerning this example may be found in the directory:

<installation directory>/sdt/examples/phone
Usethesefilesif you only want to look at the sourcefilesand if you are
using a Sun workstation you could try the executing versions of the pro-
gram. Otherwise you should copy the files to one of your own directo-
ries. Please be sure not to change the original files.

In the directory you will find the following files:

Filename Purpose

Phone. sdt The system file

Phone.ssy Represents the SDL system

PhoneBl. sbk Represents the SDL block

PhonePr. spr Represents the SDL process

phone.pr The generated PR file after GR to PR
phone.c The generated C file after C code generation
phone.ifc The generated .ifc file

Telelogic Tau 4.5 User's Manual July 2003

Example Section

Filename Purpose
PhoneEnv.c Contains the environment functions
Phone.m The make file for HP-UX

Phone.solaris.m | The make file for SunOS 5

July 2003 Telelogic Tau 4.5 User's Manual 2735

Chapter 58 Building an Application

Appendix A: Formats for ASCII

2736

The ASCII encoding function, ASCII_ENCODE, encodesthe SDL sig-
nal parametersand variablesas ASCI| characters before adding into the
buffer. The output into the buffer isillustrated with a number of exam-
ples.

Braces{ } are used for most data types and show where the data types
start and stop. Signal parameters start and stop with braces.

Commais used to delimit.

For moreinformation about datatypes see“ Using SDL Data Types” on
page 42 in chapter 2, Data Types.

Array, CArray
Array iSused to define afixed number of elements.

Array takestwo generator parameters, an index sort and a component
sort.

Example 428: Using Array
newtype Al Array (b, Integer) endnewtype;
dcl Var Array Al;

task Var_ Array := (. 3 .);

Output to the buffer: {3,3,3}

Bag

Bag isamost the same as rowerset. The only differenceisthat Bag
containsthe samevaueseveral times. Bag can beused asan abstraction
of other data types.

Bag takes one generator parameter, the item sort.

Example 429: Using Bag

newtype Bl Bag(Integer) endnewtype;

dcl Var Bag B1;

Telelogic Tau 4.5 User's Manual July 2003

Appendix A: Formatsfor ASCI|

task Var_Bag := (. 7, 4, 7 .);

Output to the buffer: {2:7,1:4}

Example 430: Using Bag (old-style SDL operator code generation) —
newtype Bl Bag(Integer) endnewtype;
dcl Var Bag B1;

task Var Bag := Incl(7, Incl(4, Incl(7, Empty)));

Output to the buffer: {2:7,1:4}

Bit
Bit can only take two values, 0 and 1.

Example 431: Using Bit
decl Var Bit Bit;

task Var Bit := 1;

Output to the buffer: 1

Bit_String
Bit_String isused to represent a sequence of bits.

Example 432: Using Bit_String

decl Var Bit Bit_String;

task Var Bit := Mkstring(I20(1101));

Output to the buffer: ‘1101’

Boolean
Boolean can only take two values, False and True.

Example 433: Using Boolean

dcl Var Boolean Boolean;

July 2003 Telelogic Tau 4.5 User's Manual 2737

Chapter 58 Building an Application

2738

task Var_ Boolean := TRUE;

Output to the buffer: T
If var Boolean issetto FALSE, the output to the buffer will be F.

Character
Character iSused to represent the ASCII characters.

Example 434: Using Character

dcl Var Character Character;

task Var Character := ‘M’

Output to the buffer: M

CharStar, Pld, UnionC, Userdef, VoidStar, VoidStarStar

The user has to define encoding/decoding procedures for these types,
see“ Appendix B: User defined ASCI| encoding and decoding” on page

2745. If no encoding/decoding procedure is defined, then there will be
no output to buffer.

For threaded integrations, the PId value will be encoded/decoded by
coding the memory address as an integer.

CharString, IA5String, NumericString, PrintableString, VisibleString
These string types are used to represent sequences of characters.

Example 435: Using Charstring
decl Var Charstring Charstring;

task Var Charstring := ‘Hello world’

Output to the buffer: ‘Hello world’
Choice, Union

Choi ce representsthe ASN.1 concept CHOICE and can also be seen as
a C union with an implicit tag field.

Telelogic Tau 4.5 User's Manual July 2003

Appendix A: Formatsfor ASCI|

July 2003

Example 436: Using Choice
newtype C Choice
cl Character;
c2 Boolean;
endnewtype;
dcl Var_ Choice C;

task Var_Choice := c2:true;

Output to the buffer: {1,T}, where 1isan implicit tag.

Duration, Time

Time iSused to denote‘apoint intime and buration isused to denote
‘atimeinterval’.

A value of sort Time represents apoint of timein therea world. The
Time unitisusualy 1 second.

Example 437: Using Time
dcl Var Time Time;

task Var Time := 1;

Output to the buffer: {1,0}. The first field is seconds and the second
field is nano-seconds.

Enum
Enum contains only the values enumerated in a sort.

Example 438: Using Enum

newtype E /*Enum*/

literals el, e2, e3;
endnewtype;

dcl Var Enum E;

task Var Enum := e2;

Output to the buffer: 1

Telelogic Tau 4.5 User's Manual 2739

Chapter 58 Building an Application

2740

Float
Float isequivalent tofloatin C.

Example 439: Using Float

dcl Var Float Float;

task Var Float := 3.14159;

Output to the buffer: 3.1415901€0 (always 7 decimals)

GPowerset, Object_ldentifier, String

Growerset iSused as an abstraction of other datatypes. cPowerset
takes one generator parameter, the item sort.

Object Identifier iSaseguence of Natural values.

String canbeusedto buildlistsof itemsof thesametype. string has
two generator parameters, the component sort and the name of an empty
string.

Example 440: Using GPowerset
newtype GP Powerset (Integer) endnewtype;
dcl Var_ GPowerset GP;

task Var GPowerset := Incl(7, Incl(4, Empty));

Output to the buffer: { 3,4}

Object Identifier and string areused inthe same way as Grow-
erset.

Inherits, Syntype

Syntype and Inherits create anew type, that has the same properties
as an existing type, by inheriting the type or make a syntype of the type.

Example 441: Using Syntype
syntype newinteger = Integer endsyntype;

dcl Var Newinteger newinteger;

Telelogic Tau 4.5 User's Manual July 2003

Appendix A: Formatsfor ASCI|I

July 2003

task Var Newinteger := 2

Output to the buffer: 2

Integer, Longlnt, Shortint, UnsignedInt, UnsignedLonglnt,
UnsignedShortint, Natural

Integer IS USed to represent mathematical integers.

Natural isasyntypeof Integer.

Example 442: Using Integer

dcl Var Integer Integer;

task Var Integer := 1

Output to the buffer: 1

Null
The sort nu11 only contains one value, Null.

Example 443: Using Null
dcl Var Null Null;

task Var Null := Null;

Output to the buffer: 0

Octet
octet isused to represent eight-bit values.

Example 444: Using Octet
dcl Var Octet Octet;

task Var Octet := I20(12);

Output to the buffer: Oc

Octet_String
Octet_ String represents a sequence of octet values.

Telelogic Tau 4.5 User’s Manual

2741

Chapter 58 Building an Application

2742

Octet_String aways contains an equal number of characters, since
every octet takes two characters.

Example 445: Using Octet_String

dcl Var OctetString Octet String;

task Var OctetString := Mkstring(I20(12)) ;

Output to the buffer: ‘Oc’

ORef, Own, Ref
OrRef, own andRef are used to define pointer types.

Example 446: Using Ref
newtype R Ref (rl) endnewtype;
dcl Var Ref R;

task Var Ref := (. (. 1, 2, ‘Telelogic’ .) .);

Output to the buffer: {{1,2, Telelogic'}}

Powerset

pPowerset takesone generator parameter, the item sort, and imple-
ments a powerset over that sort. Powerset can be used as an abstrac-
tion of other data types.

Example 447: Using Powerset

newtype P Powerset (pl) endnewtype;
dcl Var_ Powerset P;

task Var Powerset := (. 4, 3 .);

Output to the buffer: *00110000000000000000000000000000°

The bits are an equal multiple of sizeof (unsigned long) .

Example 448: Using Powerset (old-style SDL operator code
generation)

newtype P Powerset (pl) endnewtype;

Telelogic Tau 4.5 User's Manual July 2003

Appendix A: Formatsfor ASCI|

dcl Var_ Powerset P;

task Var Powerset := Incl(4, Incl(3, Empty));

Output to the buffer: *00110000000000000000000000000000°

The bits are an equal multiple of sizeof (unsigned long) .

Real
Real isused to represent the mathematical real values.

Example 449: Using Real

dcl Var Real Real;

task Var Real := 1.0;

Output to the buffer: 1.0000000000000e0 (always 13 decimals)

Signalld
Signalld isused to describethe signal ID.

Signalld isasequence with characters.

Example 450: Using Signalld
decl Var Signalld Signalld;

task Var Signalld := ‘Sigl’;

Output to the buffer: ‘Sigl’

Struct
struct canbe used to make an aggregate of datathat belong together.

Example 451: Using Struct

newtype S struct
sl integer;
s2 integer;
s3 charstring;
endnewtype;

July 2003 Telelogic Tau 4.5 User's Manual 2743

Chapter 58 Building an Application

dcl Var Struct S;

task Var Struct := (. 1, 2, ‘Telelogic’ .);

Output to the buffer: {1,2,’ Telelogic'}

2744 Teldlogic Tau 4.5 User's Manual July 2003

Appendix B: User defined ASCII encoding and decoding

Appendix B: User defined ASCIIl encoding
and decoding

July 2003

The types CharStar, Pld, UnionC, Userdef, VoidStar, VoidStarStar do
not have anatural transformation to ASCII format. The desired encod-
ing probably differs from application to application. The ASCII encod-
ing procedure and the ASCI 1 decoding procedures do not encode or de-
code these types, but they can invoke user written proceduresfor encod-
ing and decoding them.

For threaded integrations, the PId value will be encoded/decoded by
coding the memory address as an integer.

If you want to add encoding for these types, then do the following steps:

» Implement a C-function for encoding with input and output param-
eters compatible with tEncodeFunc, which is declared in file
“coderucf.h”. The encode functionsin “ coderascii.c” can be used as
an example.

» Set static variable AsciiUserEncode to your encode function in
xInitEnv.

If you want to add decoding for these types, then do the following steps:

» Implement a C-function for decoding with input and output param-
eters compatible with tDecodeFunc, which is declared in file
“coderucf.h”. The decode functionsin “coderascii.c” can be used as
an example.

e Set static variable AsciiUserDecode to your decode function in
xInitEnv.

Example 452 User defined ASCII encoding

int MyAsciiEncoder (tBuffer Buf,
tSDLTypeInfo* TypeNode,
void* Value)

{

/* my error handling code for one or more of
CharStar, Pid, UnionC, Userdef, VoidStar, VoidStarStar +/

/* return 1 if it was succesful,
return 0 if it failed */

In xInitEnv:

Telelogic Tau 4.5 User's Manual 2745

Chapter 58 Building an Application

AsciiUserEncode = MyAsciiEncoder;

2746 Teldlogic Tau 4.5 User's Manual July 2003

Appendix C: The SDL System

Appendix C: The SDL System

July 2003

)

System Phone STENAL 1(1)
----------- 3 TermInput (Charstring),
! RN Display (Charstring),
H 1 Message (Charstring, Pid),
v} Terminate (Pid);

SIGNALLIST ToTerm = Display;

SIGNALLIST FrTerm = Terminput; .

SIGNALLIST ToSocket = Message, Terminate;

SIGNALLIST FrSocket = Message, Terminate;

Term_Com
- PhoneBlI Socket_Com
ToT FrT
|:(© erm):”:(' erm)] [(FrSocket)] [(ToSocket)]
Figure 492: The system Phone
2747

Telelogic Tau 4.5 User’s Manual

Chapter 58 Building an Application

Term_Com

2748

Block PhoneBI

R1

PhonePr(1,1)

R2

1(1)

(ToTerm)] [(FrTerm)]

[(FrSocket)]

[(ToSocket)

Figure 493: The block PhoneBlI

Telelogic Tau 4.5 User's Manual

Socket_Com

July 2003

Appendix C: The SDL System

Process PhonePr 1(2)
N DCL
i H Line Charstring,
] ActMessage Charstring:='XX >> ",
Senderld Pid,;
: Message
Terminate
(Senderld)< (SActMessaé
enderld)
t
(true) (tue)
(false)
(false)

Terminate

(Senderld)

VIA R2

(false)
i Message(Liqe, "Halt’ ;
Terminate(SKlf) . Display
Self) [*#CODE
VA R2 > VIA R2 > SDL Haltgy+| |ActMessa
Figure 494: The process PhonePr

July 2003 Telelogic Tau 4.5 User's Manual 2749

Chapter 58 Building an Application

Appendix D: The Environment Functions

This section contains the environment functions included in the exam-
ple. Note that this example is not updated to use the ASCII encoder.

/****+***
00 sctEnv.c for SimplePhoneSys
**/
#include "scttypes.h"

#include <stdio.h>

#include "phone.ifc"

#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#ifdef AIXV3CC

#include <sys/select.h>
#endif

#include <sys/un.h>

#include <unistd.h>
#define getdtablesize() ((int) sysconf (_SC_OPEN_MAX))

int Out_Socket, In_Socket;
struct sockaddr un Connection Socket Addr;
struct sockaddr_un Connected_Socket_ Addr;

#ifdef ULTRIXCC

#define PRINTF (s) \
printf(s); \
/* flush output to get a prompt */ \
fflush(stdout)

#else

#define PRINTF (s) printf (s)

#endif

#ifdef XENV
/*#if !defined (XPMCOMM) && defined (XENV)*/

Y e e R
xGlobalNodeNumber extern

___ */
#ifndef XNOPROTO
int
xGlobalNodeNumber (void)
#else
int
xGlobalNodeNumber ()
#endif
static int ProcId = -1;

if (ProcId < 0)
ProcId = getpid();
return (ProcId);

/*#endif*/

2750 Teldlogic Tau 4.5 User's Manual July 2003

Appendix D: The Environment Functions

xInitEnv extern

#ifndef XNOPROTO
void

xInitEnv(void)
#else

void

xInitEnv ()
#endif

fd_set readfds;

int addr_size;

int Connection_ Socket;
char TmpStr[132];
struct timeval ¢t;

t.tv_sec = 60;
t.tv_usec = 0;

if ((Connection_ Socket = socket (PF_UNIX,SOCK STREAM,0)) < 0

PRINTF ("\nError: No Connection Socket available!\n");
SDIL,_Halt () ;

if ((Out_Socket = socket (PF_UNIX,SOCK STREAM,0)) < 0) {
PRINTF ("\nError: No Out_Socket available!\n");
SDL_Halt () ;

}

sprintf (Connection Socket Addr.sun path,
"/tmp/Phone%d", xGlobalNodeNumber ()) ;
Connection_Socket_ Addr.sun family = PF_UNIX;

if (0 > bind(Connection Socket, &Connection Socket Addr,
strlen(Connection_ Socket Addr.sun path)+2)) {
PRINTF ("\nError: Bind did not succeed!\n") ;
SDL_Halt () ;

listen(Connection Socket, 3);

sprintf (TmpStr, "\nMy Pid: %d\n", xGlobalNodeNumber()) ;
PRINTF (TmpStr) ;
PRINTF ("\nConnect me to: ");

FD_ZERO (&readfds) ;
FD_SET (1, &readfds) ;
FD_SET (Connection_Socket, &readfds) ;

if (0 < select(getdtablesize(), &readfds,
(fd_set*)0, (fd_set*)0, &t)) {
if (FD_ISSET(1l, &readfds)) {

(void) gets (TmpStr) ;
sscanf (TmpStr, "%s", TmpStr);
sprintf (Connected Socket Addr.sun path, "/tmp/Phone%s",

TmpStr) ;
Connected_Socket Addr.sun family = PF_UNIX;
if (connect (Out_Socket, (struct sockaddr

*) &Connected_Socket_Addr,
strlen (Connected Socket Addr.sun path)+2) < 0) {
PRINTF ("Error from connect\n") ;
SDIL,_Halt () ;

FD_ZERO (&readfds) ;
FD_SET (Connection_ Socket, &readfds) ;

if (0 < select(getdtablesize(), &readfds, (fd_set*)oO,
(£d_set*)0, &t))
if (FD_ISSET(Connection_ Socket, &readfds)) {

addr_size =

July 2003 Telelogic Tau 4.5 User's Manual 2751

Chapter 58 Building an Application

strlen(Connection_Socket Addr.sun_path)+2;
In Socket = accept (Connection Socket,
&Connection_Socket_ Addr,
&addr_size) ;

} else
PRINTF ("\nError: Timed out\n") ;
SDL_Halt () ;
else if (FD_ISSET(Connection_Socket, &readfds)) {

addr_size = strlen(Connection Socket Addr.sun path)+2;
In_Socket = accept (Connection_Socket,
&Connection Socket Addr,
&addr_size) ;
FD_ZERO (&readfds) ;
FD_SET (1, &readfds) ;
if (0 < select(getdtablesize(), &readfds,
(£d_set*)0, (fd set*)0, &t)) {
if (FD_ISSET(1, &readfds))
(void)gets (TmpStr) ;
sscanf (TmpStr, "%$s", TmpStr) ;
sprintf (Connected_Socket_ Addr.sun_ path,
"/tmp/Phone%s",
TmpStr) ;
Connected_Socket Addr.sun family = PF_UNIX;
if (connect (Out_Socket, (struct sockaddr
*) &Connected_Socket_Addr,
{ strlen (Connected Socket Addr.sun path)+2) <
0)
PRINTF ("Error from connect\n") ;
SDL_Halt () ;

} else
PRINTF ("\nError: Timed out\n") ;
SDL_Halt () ;

}

} else
PRINTF ("\nError: Timed out\n") ;
SDL_Halt () ;

}

PRINTF ("\n\n****xxxx*%%+* Welcome to SDT Phone System
************\nll) ;

PRINTF ("\nphone -> ");

Y e
xCloseEnv extern

#ifndef XNOPROTO
void

xCloseEnv (void)
#else

void
xCloseEnv ()
#endif

close (Out_Socket) ;

close (In_Socket) ;

unlink (Connected_Socket Addr.sun path) ;
unlink (Connection Socket Addr.sun path) ;
PRINTF ("\nClosing this session.\n");

2752 Teldlogic Tau 4.5 User's Manual July 2003

Appendix D: The Environment Functions

/*___+ ___
xInEnv extern

___ */

#ifndef XNOPROTO

void

xInEnv(SDL_Time Time_ for_ next event)

#else

void

xInEnv(Time for next event)
SDL_Time Time_ for_next_ event;

#endif
struct timeval t;
fd_set readfds;
char *Instr;
int NrOfReadChars;
char SignalName = '\0’;
xSignalNode yOutputSignal;
int i=0;
char chr = "\0’;
t.tv_sec = 0;

t.tv_usec = 1000;
FD_ZERO (&readfds) ;
#ifndef XMONITOR
FD_SET (1, &readfds) ;
#endif
FD_SET (In_Socket, &readfds) ;
if (select(getdtablesize(), &readfds,0,0,&t) > 0) {
#ifndef XMONITOR
/*SDL-signal TermInput */
if FD_ISSET (1, &readfds) ({

Instr = (char *)xAlloc(132);
Instr([0]="L";
Instr++;

(void)gets (Instr) ;
yOutputSignal = xGetSignal (TermInput, xNotDefPId, xEnv);
xAss_SDL_Charstring(
& ((yPDP_TermInput) (OUTSIGNAL DATA_ PTR))->Paraml, --
Instr,XASS) ;
SDL_Output (yOutputSignal, (xIdNode *)NIL) ;
xFree ((void**) &Instr) ;

}
#endif
if FD ISSET(In Socket, &readfds) {
Instr = (char *)xAlloc(151) ;
do
read (In_Socket, &chr, 1);
Instr([i++] = chr;
} while (chrt!='\0’);
sscanf (Instr, "$c", &SignalName) ;

if (SignalName == 'M’) {
/* SDL-signal Message */
yOutputSignal = xGetSignal (Message, xNotDefPId, xEnv) ;
sscanf (
Instr+1,
"$d $x%n",
& (((yPDP_Message) (OUTSIGNAL_DATA PTR)) -
>Param2.GlobalNodeNr) ,
& (((yPDP_Message) (OUTSIGNAL_DATA PTR)) -
>Param2.LocalPId),
&NrOfReadChars) ;
xAss_SDL_Charstring(
& ((yPDP_Message) (OUTSIGNAL DATA PTR))->Paraml,
(Instr+NrOfReadChars+2) ,XASS) ;

July 2003 Telelogic Tau 4.5 User's Manual 2753

Chapter 58 Building an Application

SDL_Output (yOutputSignal, (xIdNode *)NIL) ;

else if (SignalName == ‘T’)
/* SDL-signal Terminate */
yOutputSignal = xGetSignal (Terminate, xNotDefPId,
xEnv) ;
sscanf (
Instr+1,
ngd g$x",
& (((yPDP_Terminate) (OUTSIGNAL_DATA_PTR)) -
>Paraml.GlobalNodeNr) ,
& (((yPDP_Terminate) (OUTSIGNAL DATA PTR)) -
>Paraml.LocalPId)) ;
SDL_Output (yOutputSignal, (xIdNode*)O0) ;

xFree ((void**) &Instr) ;

}
}
Y e
xOutEnv extern
___ */
#ifndef XNOPROTO
void
xOutEnv (xSignalNode *S)
#else
void

XOutEnv(S)
xSignalNode *S;
?endif

char Outstr[150];

/* SDL-signal Message */
if ((*S)->NameNode == Message)
sprintf (Outstr,
"M %d %x %.*s",
((yPDP_Message) ((*S)
((yPDP_Message) ((*S)

)) ->Param2.GlobalNodeNr,
)
strlen (((yPDP_] Message
)
tr

)

) ->Param2.LocalPId,
) ((*S)))->Paraml),
) ->Paraml) ;
le

((yPDP_Message) ((*S)
(Outstr)+l);

write (Out_Socket, Outstr,
xReleaseSignal (S) ;
return;

/* SDL-signal Terminate */

if ((*S)->NameNode == Terminate) ({
sprintf (Outstr,
"Tosd %x",
((yPDP_Terminate) ((*S))) ->Paraml.GlobalNodeNr,
((yPDP_Terminate) ((*S))) ->Paraml.LocalPId) ;

write (Out_Socket, Outstr, strlen(Outstr)+1);
xReleaseSignal (S) ;
return;

/* SDL-signal Display */

if ((*S)->NameNode == Display) ({
sprintf (Outstr, "\ndisplay ->%.*s",
strlen(((yPDP_Display) ((*S)))->Paraml),

((yPDP_Display) ((*S)))->Paraml+1) ;
PRINTF (Outstr) ;
PRINTF ("\nphone -> ");
xReleaseSignal (S) ;
return;

}

}
#endif

2754 Teldlogic Tau 4.5 User's Manual July 2003

	58 Building an Application
	Introduction
	The Basic Idea
	Libraries

	Reference Section
	Representation of Signals and Processes
	Types Representing Signals
	Types Representing Processes
	The Symbol Table

	The Environment Functions
	System Interface Header File
	Structure of File for Environment Functions
	Functions xInitEnv and xCloseEnv
	Function xOutEnv
	Function xInEnv
	Alternative to OutEnv - Directive #EXTSIG
	Including the Environment Functions in the SDL System Design
	SDL Data Encoding and Decoding, ASCII coder
	Function xGlobalNodeNumber
	Program Structure

	Dynamic Errors

	Example Section
	The Example
	The SDL System
	Simulating the Behavior
	The Environment
	The Environment Functions
	Debugging

	Running the Application
	Where to Find the Example

	Appendix A: Formats for ASCII
	Appendix B: User defined ASCII encoding and decoding
	Appendix C: The SDL System
	Appendix D: The Environment Functions

