
July 2003 Telelo

Chapter
58 Building an Application
This chapter describes how you can use the Cadvanced SDL to C
Compiler to generate applications and especially how to design the
environment functions. These functions allows you connect the SDL
system with the environment of the system.

You should read chapter 57, The Cadvanced/Cbasic SDL to C Com-
piler before reading this chapter to understand the general behav-
ior of the Cadvanced SDL to C Compiler. Much of what you need
to know to generate an application may be found there, and that in-
formation is not repeated here.
gic Tau 4.5 User’s Manual ,um-st1 2695

Chapter 58 Building an Application
Introduction

The Basic Idea
An application generated with the Cadvanced SDL to C Compiler can
be viewed as having three parts:

• The SDL system

• The physical environment of the system

• The environment functions, where you connect the SDL system
with the environment of the system

In the SDL system process transitions are executed in priority order,
signals are sent from one process to another initiating new transitions,
timer signals are sent, and so on. These are examples of internal actions
that only affect the execution of the SDL system. An SDL system com-
municates with its environment by sending signals to the environment
and by receiving signals from the environment.

The physical environment of an application consists of an operating
system, a file system, the hardware, a network of computers, and so on.
In this world other actions than just signal sending are required. Exam-
ples of actions that an application wants to perform are:

• To read or to write on a file
• To send or receive messages over a network
• To respond on interrupts
• To read and to write information on hardware ports or on sockets

The environment functions are the place where the two worlds, the SDL
system and the physical environment, meet. Here signals sent from the
SDL system to the environment can induce all kinds of events in the
physical environment, and events in the environment might cause sig-
nals to be sent into the SDL system. You have to provide the environ-
ment functions, as the Cadvanced SDL to C Compiler has no knowl-
edge of the actions that should be performed.
2696 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Introduction
In a distributed system an application might consist of several commu-
nicating SDL systems. Each SDL system will become one executable
program. It might execute either as an operating system process, com-
municating with other operating system processes, or it might execute
in a processor of its own, communicating over a network with other pro-
cessors. There may, of course, also be combinations of these cases. Let
us for the sake of simplicity call the operating system processes or pro-
cessors for nodes communicating over a network. In the case of com-
municating operating system (OS) processes, the network will be the fa-
cilities for process communication provided by the OS.

There are no problems in building an application consisting of several
nodes communicating over a network using the Cadvanced SDL to C
Compiler. However, you have to implement the communication be-
tween the nodes in the environment functions.

Figure 490: Structure of an application

Note:

All nodes in a network do not need to be programs generated by the
Cadvanced SDL to C Compiler from SDL systems. As long as a
node can communicate with other nodes, it might be implemented
using any technique.

Interface containing:
Read and write on files
Read and write on ports
Read and write on sockets
Communication over network
Handling of interrupts,
and so on...

Environment
 Functions

 SDL
System

 Physical
Environment

SDL signal
interface
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2697

Chapter 58 Building an Application
The PId values (references to process instances), are a problem in a dis-
tributed world containing several communicating SDL systems. We
still want, for example, “Output To Sender” to work, even if Sender re-
fers to a process instance in another SDL system. To cope with this kind
of problem, a global node number has been introduced as a component
in a PId value. The global node number, which is a unique integer value
assigned to each node, identifies the node where the current process in-
stance resides, while the other component in the PId value is a local
identification of the process instance within the node (SDL system).

The partitioning of an application into an SDL system and the environ-
ment functions has additional advantages. It separates external actions
into the logical decision to perform the action (the decision to send a
signal to the environment) and the implementation details of the action
(treating the signal in the environment functions). This kind of separa-
tion reduces the complexity of the problem and allows separate testing.
It also allows parallel development of the logic (the SDL system) and
the interface towards the environment (the environment functions).
When the signal interface between the SDL system and its environment
is settled, it is possible to continue both the activities in parallel.

Libraries
Two libraries, Application and ApplicationDebug, are provided to gen-
erate applications. Both use real time (see “Time” on page 2576 in
chapter 57, The Cadvanced/Cbasic SDL to C Compiler and perform
calls to environment functions (see section “The Environment Func-
tions” on page 2702). The difference is that ApplicationDebug includes
the monitor system while Application does not include the monitor sys-
tem.

When an application is developed, it is usually appropriate to first sim-
ulate and debug the SDL system or systems without its environment.
One of the libraries Simulation or RealTimeSimulation may then be
used. You first simulate each SDL system on its own and can then sim-
ulate the systems together (if you have communicating systems) using
the facility of communicating simulations. After that you probably want
to debug the application with the environment functions. This may be
performed with the library ApplicationDebug. You may then generate
the application with the library Application.

The library Validation allows you to build validators from the code gen-
erated by the Cadvanced SDL to C Compiler. A Validator has a user in-
2698 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
terface and executing principles that are similar to a Simulator. The
technical approach is however different; a Validator is based on a tech-
nique called state space exploration and operates on structures called
behavior trees. Its purpose is to validate an SDL system in order to find
errors and to verify its consistency against Message Sequence Charts.

Reference Section

Representation of Signals and Processes
In this first section, the representation of signals and processes is pre-
sented. The symbol table, which is a representation of the static struc-
ture of the system, will also be discussed. The information given here
will be used in the next part of this section where the environment func-
tions, which should be provided by the user, are described.

Types Representing Signals

A signal is represented by a C struct containing general information
about the signal followed by the parameters carried by the signal.

A general typedef xSignalRec for a signal without parameters and for
a pointer to such a signal, xSignalNode, are given below. These types
may be found in the file scttypes.h. These types may be used for type
casting of any signal to access the general components.

typedef struct xSignalRec *xSignalNode;
typedef struct xSignalRec {
 xSignalNode Pre;
 xSignalNode Suc;
 SDL_PId Receiver;
 SDL_PId Sender;
 xIdNode NameNode;

Figure 491: Data structure representing a signal

xSignalNode Pre
xSignalNode Suc
SDL_PId Receiver
SDL_PId Sender
xIdNode NameNode
int Prio

Reference
to signal

first signal parameter
second signal parameter
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2699

Chapter 58 Building an Application
 int Prio;
} xSignalRec;

A xSignalRec contains the following components:

• Pre and Suc. These components are used to link the signal in the in-
put port list of the receiving process instance. The input port is im-
plemented as a double linked list. When a signal has been consumed
and the information contained in the signal is no longer needed, the
signal will be returned to an avail list to be re-used in future outputs.
The component Suc is used to link the signal into the avail list, while
Pre will be (xSignalNode)0 as long as the signal is in the avail list.

• Receiver. The receiving process instance.

• Sender. The sending process instance.

• NameNode. This component is a pointer to the node in the symbol
table that represents the signal type. The symbol table is a tree with
information about the SDL system and contains, among other
things, one node for each signal type that is defined within the SDL
system.

• Prio. This component represents the priority of the signal and is
used in connection with continuous signals.

In the generated code there will be types to represent the parameters of
the signals according to the following example:

Example 410: Generated C Code for Signal Definition –––––––––––––

Assume the following signal definitions in SDL:

SIGNAL
 S1(Integer),
 S2,
 S3(Integer, Boolean, OwnType);

then the C code below will be generated:

typedef struct {
 SIGNAL_VARS
 SDL_Integer Param1;
} yPDef_z0f_S1;
typedef yPDef_z0f_S1 *yPDP_z0f_S1;

typedef struct {
 SIGNAL_VARS
 SDL_Integer Param1;
 SDL_Boolean Param2;
2700 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
 z09_OwnType Param3;
} yPDef_z0h_S3;
typedef yPDef_z0h_S3 *yPDP_z0h_S3;

where SIGNAL_VARS is a macro defined in scttypes.h that is expand-
ed to the common components in a signal struct.

––

For each signal with parameters there are two generated types, a struct
type and a pointer type. The struct type contains one component for
each parameter in the signal definition and the components will be
named Param1, Param2 and so on. The components will be placed in
the same order in the struct as the parameters are placed in the signal
definition.

Types Representing Processes

A PId value is a struct consisting of two components, a global node
number, which is an integer (see also “Function xGlobalNodeNumber”
on page 2722 and “The Basic Idea” on page 2696) and a local PId val-
ue, which is a pointer.

typedef xLocalPIdRec *xLocalPIdNode;

typedef struct {
 int GlobalNodeNr;
 xLocalPIdNode LocalPId;
} SDL_PId;

The global node number identifies the SDL system that the process in-
stance belongs to, while the local PId value identifies the process in-
stance within the system. The local PId pointer value should not be ref-
erenced outside the SDL system where it is defined.

By introducing a global node number in the PId values, these values are
possible to interpret throughout an application consisting of several
SDL systems. You can also define your own PId values in non-SDL de-
fined parts of the application and still use communication with signals.

The variable SDL_NULL, which represents a null value for PIds and
which is defined in the runtime library and available through the file
scttypes.h, contains zero in both the global node number and the lo-

Note:

There are no generated types for a signal without parameters.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2701

Chapter 58 Building an Application
cal PId component. Note that the global node number should be greater
than zero in all PId values except SDL_NULL.

The Symbol Table

The symbol table is a tree built up during the initialization phase in the
execution of the generated program and contains information about the
static structure of the SDL system. The symbol table contains, for ex-
ample, nodes which represent signal types, blocks, channels, process
types, and procedures. The C type that are used to represent for example
signals in the symbol table is given below.

typedef struct xSignalIdStruct *xSignalIdNode;
typedef struct xSignalIdStruct {
 /* components */
} xSignalIdRec;

It is the nodes that represent the signal types, for signals sent to and from
the environment of the SDL system, that are of major interest in connec-
tion with the environment functions. For each signal type there will be
a symbol table node. That node may be referenced using the name
ySigN_ followed by the signal name with prefix. Such references may
be used in, for example, xOutEnv to find the signal type of the signal
passed as parameter.

In some cases the symbol table nodes for channels from the environ-
ment to a block in the system are of interest to refer to. In a similar way
as for signals such nodes may be referenced using the name yChaN_ fol-
lowed by the channel name with prefix.

The Environment Functions
An SDL system communicates with its environment by sending signals
to the environment and by receiving signals from the environment. As
no information about the environment is given in the SDL system, the
Cadvanced SDL to C Compiler cannot generate the actions that should
be performed when, for instance, a signal is sent to the environment. In-
stead you have to provide a function that performs this mapping be-
tween a signal sent to the environment and the actions that then should
be performed. Examples of such actions are writing a bit pattern on a
port, sending information over a network to another computer and send-
ing information to another OS process using some OS primitive.
2702 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
You should provide the following functions to represent the environ-
ment of the SDL system:

• xInitEnv and xCloseEnv, which are called during initialization
and termination of the application

• xOutEnv which should treat signals sent to the environment

• xInEnv which should treat signals sent into the SDL system from
the environment

There are two ways to get a skeleton for the env functions:

• You can copy the file sctenv.c from the directory
<installation directory>/sdt/sdtdir/<machine depen-

dent dir>/INCLUDE

where <machine dependent dir> is for example sunos5sdtdir on
SunOS 5, hppasdtdir on HP, and wini386 in Windows. (In Win-
dows, / should be replaced by \ in the path above.)
This file also contains some trace mechanisms that may be used to
trace the execution in a target computer. This trace can, however,
only be used if you have the source code for the run-time library (in-
cluded in the Cadvanced SDL to C Compiler) and can produce a
new object library with the appropriate switches.

• You can generate a skeleton by using the Generate environment
functions option in the Make dialog in the Organizer. In very simple
cases you might obtain executable env functions by just tuning the
macros in this generated file, but in the general case you must use it
as a skeleton and edit it. Remember then to copy the file so that it is
not overwritten when code is generated the next time.

An advantage with the generated env functions is that the SDL to C
Compiler knows about the signal interface to be implemented in the env
functions, and can therefore insert code or macros for all signals in the
interface. To calculate this information is not that easy, especially if par-
titioning (generating code for a part of a system) is used.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2703

Chapter 58 Building an Application
The env functions are thoroughly discussed below, but first we will in-
troduce the system interface header file which considerably simplifies
writing the environment functions.

System Interface Header File

The system interface header file contains code for objects that are de-
fined in the system diagram. Included are all type definitions and other
external definitions that are needed in order to implement external C
code. These object definitions simplify the implementation of the envi-
ronment functions. Therefore the system interface header file is also
known the environment header file. This file is generated if:

• Code is generated for the complete system.

• The Generate environment header file option is selected in the
Make dialog in the Organizer (see “Code Generation Options” on
page 120 in chapter 2, The Organizer).

The default name of the generated interface header file is
<system_file_name>.ifc.

The system interface header file, has the following structure:

• Macros for all synonyms that are translated to macros.

• All type definitions generated from newtypes and syntypes. This in-
cludes #TYPE and #HEADING sections in #ADT directives and in
#CODE directives.

• External definitions of variables for all synonyms that are translated
to variables.

Note:

A make template file is generated every time you generate an envi-
ronment file. This file contains make information for the environ-
ment file and possibly for data encoding and decoding files. If you
need to change this skeleton file, then remember to copy it so it is
not overwritten next time an environment file is generated. The file
can be used as make template in the Organizer’s generate options.
Note that you may have to generate the file first, before you can
select it in the Organizer.
2704 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
• For each signal defined in the system diagram there will be an ex-
tern definition for the xSignalIdRec variable representing the sig-
nal.

• For each signal with parameters defined in the system diagram,
there will be definitions of the types yPDef_SignalName and
yPDP_SignalName, i.e. of the types used to represent a signal.

• For each remote procedure (that can be sent to or from the environ-
ment), code will be generated exactly as for two signals named
pCALL_procedurename and pREPLY_procedurename.

• For each channel defined in the system diagram there will be extern
definitions for the xChannelIdRec representing the channel.

Together with these definitions, macros that simplify the translation of
SDL names to C names are also be generated.

Names of SDL Objects in C

Due to differences in naming rules in SDL and C, prefixing is used to
make C identifiers unique (see section “Names and Prefixes in Gener-
ated Code” on page 2663 in chapter 57, The Cadvanced/Cbasic SDL to
C Compiler). These prefixes, however, may change when you update
your SDL diagrams and cannot be predicted. Therefore you should not
use the prefixed object names in the environment functions. Instead
macros, generated in the system interface header file, assist you by map-
ping static names to the prefixed names. This means that you must re-
generate the system interface header file each time you regenerate code
for the system. The good part is that you do not have to make any chang-
es in the environment functions, as the interface names are static.

Example 411: Macro in the system interface header file –––––––––––

If an SDL signal called Sig1 is defined in the system, the following mac-
ro is created:

extern XCONST struct xSignalIdStruct ySigR_z5_Sig1;
#ifndef Sig1
#define Sig1 (&ySigR_z5_Sig1)
#endif

This macro allows you to refer to the xIdNode by using the static name
Sig1 rather than the prefixed name, ySigR_z5_Sig1.

––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2705

Chapter 58 Building an Application
Macros generate static names for the following SDL types:

• Synonyms (both translated to macros and variables).

• Newtypes and Syntypes. If the newtype is translated to an enumer-
ation type, all the literals are available directly in C using their SDL
names.

• xSignalIdNode representing signals. (No ySigN_ prefix).

• xChannelIdNode representing channels. (Use prefix xIN_ or
xOUT_ to access the incoming or outgoing direction of the channel).

• The yPDP_SignalName pointer type. This type may be referred to
using the name yPDP_SignalName, where SignalName is the SDL
name.

Avoiding name clashes

In SDL it is allowed to give the same name to different objects. This is
not allowed in C. For instance, in SDL you can give a signal and a New-
type the same name. In order to distinguish between the names in the
system interface header file, you must define static unambiguous
names. Using the Env. Header File Generation tab in the Targeting Ex-
pert, you can do this by using available general identifiers. The identi-
fiers are:

• %n - This identifier is the SDL name

• %s - This identifier is the SDL name of the scope.

• sdlobject - In order to identify the type of object, you can type the
object name as a prefix, e.g. signal, literal, etc.

Any combination of the identifiers can be used and they are all optional.
However, in order to create a useful system interface header file, it is
recommended that the %n identifier is always included. Leaving the
field empty means that no objects of that type is included in the system
interface header file at all.

Note:

You must always generate the system interface header file before
editing or generating the environment functions.
2706 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
Example 412: Name Mapping in an system interface header file ––––

If the signal Signal1 is in the system System2 you should type the fol-
lowing in the Signal field in the TAEX.

sig_%n_%s

The result in the system interface header file will be:

sig_Signal1_System2

––

This approach helps you to avoid name clashes in the ifc file. Literals,
for example, are often given the same name when defined in different
types. The following example shows how this can be solved.

Example 413: Avoiding Name Clashes –––––––––––––––––––––––––

In an SDL system the following two newtypes are defined:

NewType s
literals red, green

NewType t
literals red, yellow

As the literal red appears in both newtypes, the C code cannot distin-
guish between them. However, by using the identifiers in the literals
field,

lit_%n_%s

the literals are given the following names:

lit_red_s
lit_red_t

Thus we will avoid a possible name clash.

––

Note:

If you select to include all objects and use the %n identifier only, the
system interface header file will become compatible with earlier
versions.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2707

Chapter 58 Building an Application
Structure of File for Environment Functions

The file containing the environment functions should have the follow-
ing structure:

#include "scttypes.h"
#include "file with macros for external synonyms"
#include "systemfilename.ifc"

void xInitEnv XPP((void))
{
}

void xCloseEnv XPP((void))
{
}

#ifndef XNOPROTO
void xOutEnv (xSignalNode *S)
#else
void xOutEnv (S)
 xSignalNode *S;
#endif
{
}

#ifndef XNOPROTO
void xInEnv (SDL_Time Time_for_next_event)
#else
void xInEnv (Time_for_next_event)
 SDL_Time Time_for_next_event;
#endif
{
}

int xGlobalNodeNumber XPP((void))
{
}

The last function, xGlobalNodeNumber, will be discussed later, see
“Function xGlobalNodeNumber” on page 2722. The usage of the mac-
ros XPP and XNOPROTO makes the code possible to compile both with
compilers that can handle prototypes and with compilers that cannot. If
you do not need this portability, you can reduce the complexity of the
function headings somewhat. In the minor examples in the remaining
part of this section, only versions with prototypes are shown.
2708 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
Functions xInitEnv and xCloseEnv

There are two functions among the environment functions that handle
initialization and termination of the environment. These functions, as
well as the other environment functions, should be provided by the user.

void xInitEnv (void);

void xCloseEnv (void);

In the implementation of these functions you can place the appropriate
code needed to initialize and terminate the software and the hardware.
The function xInitEnv will be called during the start up of the program
as first action, while the xCloseEnv will be called in the function
SDL_Halt. Calling SDL_Halt is the appropriate way to terminate the
program. The easiest way to call SDL_Halt is to include the call in a
#CODE directive in a TASK. SDL_Halt is part of the runtime library and
has the following definition:

void SDL_Halt (void);

Function xOutEnv

Each time a signal is sent from the SDL system to the environment of
the system, the function xOutEnv will be called.

void xOutEnv (xSignalNode *S);

The xOutEnv function will have the current signal as parameter, so you
have all the information contained in the signal at your disposal when
you implement the actions that should be performed. The signal con-
tains the signal type, the sending and receiving process instance and the
parameters of the signal. For more information about the types used to
represent signals and processes, see section “Types Representing Sig-
nals” on page 2699 and “Types Representing Processes” on page 2701.

Note:

xInitEnv will be called before the SDL system is initialized, which
means that no references to the SDL system are allowed in this func-
tion. To, for example, send signals into the system during the initial-
ization phase, the #MAIN directive should be used (see “Initializa-
tion – Directive #MAIN” on page 2668 in chapter 57, The Cad-
vanced/Cbasic SDL to C Compiler). This directive code can be used
after the initialization of the SDL system, but before any transitions
are executed.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2709

Chapter 58 Building an Application
Note that the parameter of xOutEnv is an address to xSignalNode, that
is, an address to a pointer to a struct representing the signal. The reason
for this is that the signal that is given as parameter to xOutEnv should
be returned to the pool of available memory before return is made from
the xOutEnv function. This is made by calling the function
xReleaseSignal, which takes an address to an xSignalNode as pa-
rameter, returns the signal to the pool of available memory, and assigns
0 to the xSignalNode parameter. Thus, there should be a call

xReleaseSignal(S);

before returning from xOutEnv. The xReleaseSignal function is de-
fined as follows:

void xReleaseSignal (xSignalNode *S);

In the function xOutEnv you may use the information in the signal that
is passed as parameters to the function. First it is usually suitable to de-
termine the signal type of the signal. This is best performed by if state-
ments containing expressions of the following form, assuming the use
of the system interface header file and that the signal has the name Sig1
in SDL:

(*S)->NameNode == Sig1

Suitable expressions to reach the Receiver, the Sender, and the signal
parameters are:

(*S)->Receiver
(*S)->Sender
((yPDP_Sig1)(*S)) -> Param1
((yPDP_Sig1)(*S)) -> Param2

(and so on)

Sender will always refer to the sending process instance, while
Receiver is either a reference to a process in the environment or the
value xEnv. xEnv is a PId value that refers to an environment process
instance, which is used to represent the general concept of environment,
without specifying an explicit process instance in the environment.
2710 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
Receiver will refer to the process xEnv if the PId expression in an output
TO refers to xEnv, or if the signal was sent in an output without a TO
clause and the environment was selected as receiver in the scan for re-
ceivers.

Remote procedure calls to or from the environment should in the envi-
ronment functions be treated a two signals, a pCALL_procedurename
and a pREPLY_procedurename signal.

Recommended Structure of the xOutEnv Function

You can, of course, write the xOutEnv function as you wish – the struc-
ture discussed below may be seen as an example – but also as a guide-
line of how to design xOutEnv functions.

Example 414: Structure of xOutEnv Function ––––––––––––––––––––

void xOutEnv (xSignalNode *S)
{
 if ((*S)->NameNode == Sig1) {
 /* perform appropriate actions */
 xReleaseSignal(S);
 return;
 }
 if ((*S)->NameNode == Sig2){
 /* perform appropriate actions */
 xReleaseSignal(S);
 return;
 }
 /* and so on */
}

––

Note:

It is not possible to calculate the PId value for a process in the envi-
ronment, the value has to be taken from an incoming signal (sender
or signal parameter). This is the normal procedure in SDL to estab-
lish direct communication between two processes in the same SDL
system.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2711

Chapter 58 Building an Application
Function xInEnv

To make it possible to receive signals from the environment and to send
them into the SDL system, the user provided function xInEnv is repeat-
edly called during the execution of the system (see section “Program
Structure” on page 2723). During such a call you should scan the envi-
ronment to see if anything has occurred which should trigger a signal to
be sent to a process within the SDL system.

void xInEnv (SDL_Time Time_for_next_event);

To implement the sending of a signal into the SDL system, two func-
tions are available: xGetSignal, which is used to obtain a data area
suitable to represent the signal, and SDL_Output, which sends the sig-
nal to the specified receiver according to the semantic rules of SDL.
These functions will be described later in this subsection.

The parameter Time_for_next_event will contain the time for the
next event scheduled in the SDL system. The parameter will either be
0, which indicates that there is a transition (or a timer output) that can
be executed immediately, or be greater than Now, indicating that the
next event is a timer output scheduled at the specified time, or be a very
large number, indicating that there is no scheduled action in the system,
that is, the system is waiting for an external stimuli. This large value can
be found in the variable xSysD.xMaxTime.

You should scan the environment, perform the current outputs, and re-
turn as fast as possible if Time has past Time_for_next_event.

If Time has not past Time_for_next_event, you have a choice to ei-
ther return from the xInEnv function at once and have repeated calls of
xInEnv, or stay in the xInEnv until something triggers a signal output
(a signal sent to the SDL system) or until Time has past
Time_for_next_event.

The function xGetSignal, which is one of the service functions suit-
able to use when a signal should be sent, returns a pointer to a data area

Note:

We recommend always to return from the xInEnv function as fast
as possible to ensure that it will work appropriately together with the
monitor (during debugging). Otherwise, the keyboard polling, that
is, typing <RETURN> in order to interrupt the execution, will not
work.
2712 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
that represents a signal instance of the type specified by the first param-
eter.

xSignalNode xGetSignal
 (xSignalIdNode SType,
 SDL_PId Receiver,
 SDL_PId Sender);

The components Receiver and Sender in the signal instance will also
be given the values of the corresponding parameters.

• SType. This parameter should be a reference to the symbol table
node that represents the current signal type. Using the system inter-
face header file, such a symbol table node may be referenced using
the signal name directly.

• Receiver. This parameter should either be a PId value for a process
instance within the system, or the value xNotDefPId. The value
xNotDefPId is used to indicate that the signal should be sent as an
output without TO clause, while if a PId value is given the output,
it is treated as an output with TO clause. Note that PId values for
process instances in an SDL system cannot be calculated, but have
to be captured from the information (sender or parameter) carried by
signals coming from the system. This is the normal procedure in
SDL to establish direct communication.

• Sender. Sender should either be a PId value representing a process
instance in the environment of the current SDL system or the value
xEnv. xEnv is a PId value that refers to an environment process in-
stance, which is used to represent the general concept of the SDL
environment, without specifying an explicit process instance in the
environment.

The function SDL_Output takes a reference to a signal instance and
outputs the signal according to the rules of SDL.

void SDL_Output
 (xSignalNode S,
 xIdNode ViaList[]);

• S. This parameter should be a reference to a signal instance with all
components filled in.

• ViaList. This parameter is used to specify if a VIA clause is or is
not part of the output statement. The value (xIdNode *)0 (a null
pointer), is used to represent that no VIA clause is present. For in-
formation about how to build a via list, please see below.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2713

Chapter 58 Building an Application
We now have enough information to be able to write the code to send a
signal. Suppose we want to send a signal S1, without parameters, from
xEnv into the system without an explicit receiver (without TO). The
code will then be:

Example 415: C Code to Send a Signal to the Environment–––––––––

SDL_Output(xGetSignal(S1, xNotDefPId, xEnv),
 (xIdNode *)0);

If S2, with two integer parameters, should be sent from xEnv to the pro-
cess instance referenced by the variable P, the code will be:

xSignalNode OutputSignal; /* local variable */
...
OutputSignal = xGetSignal(S2, P, xEnv);
((yPDP_S2)OutputSignal)->Param1 = 1;
((yPDP_S2)OutputSignal)->Param2 = 2;
SDL_Output(OutputSignal, (xIdNode *)0);

––

For the details of how to reference the parameters of a signal see the
subsection “Types Representing Signals” on page 2699.

To introduce a via list in the output requires a variable, which should be
an array of xIdNode, that contains references to the symbol table nodes
representing the current channels (or signal routes) in the via list. In
more detail, we need a variable

ViaList xIdNode[N];

where N should be replaced by the length of the longest via list we want
to represent plus one. The components in the variable should then be
given appropriate values, such that component 0 is a reference to the
first channel (its symbol table node) in the via list, component 1 is a ref-
erence to the second channel, and so on. The last component with a ref-
erence to a channel must be followed by a component containing a null
pointer (the value (xIdNode)0). Components after the null pointer will
not be referenced. Below is an example of how to create a via list of two
channels, C1 and C2.
2714 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
Example 416: Via List of two Channels. –––––––––––––––––––––––––

ViaList xIdNode[4];
/* longest via has length 3 */
...
/* this via has length 2 */
ViaList[0] = (xIdNode)xIN_C1;
ViaList[1] = (xIdNode)xIN_C2;
ViaList[2] = (xIdNode)0;

––

The variable ViaList may then be used as a ViaList parameter in a
subsequent call to SDL_Output.

Guidelines for the xInEnv Function

It is more difficult to give a structure for the xInEnv function, than for
the xOutEnv function discussed in the previous subsection. A xInEnv
function will in principle consist of a number of if statements where the
environment is investigated. When some information is found that
means that a signal is to be sent to the SDL system, then the appropriate
code to send a signal (see above) should be executed.

The structure given in the example below may serve as an idea of how
to design the xInEnv function.

Example 417: Structure of xInEnv Function –––––––––––––––––––––

void xInEnv (SDL_Time Time_for_next_event)
{
 xSignalNode S;

 if (Sig1 should be sent to the system) {
 SDL_Output (xGetSignal(Sig1, xNotDefPId,
 xEnv), (xIdNode *)0);
 }
 if (Sig2 should be sent to the system) {
 S = xGetSignal(Sig1, xNotDefPId, xEnv);
 ((xPDP_Sig2)S)->Param1 = 3;
 ((xPDP_Sig2)S)->Param2 = SDL_True;
 SDL_Output (S, (xIdNode *)0);
 }
 /* and so on */
}

––

This basic structure can be modified to suit your own needs. The if state-
ments could, for example, be substituted for while statements. The sig-
nal types might be sorted in some “priority order” and a return can be
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2715

Chapter 58 Building an Application
introduced last in the if statements. This means that only one signal is
sent during a xInEnv call, which reduces the latency.

Alternative to OutEnv - Directive #EXTSIG

To speed up an application it is sometimes possible to use the directive
#EXTSIG instead of the xOutEnv function. The decision to use #EXTSIG
or xOutEnv may be taken individually for each signal type.

The usage of the #EXTSIG directive is described in the section “Modi-
fying Outputs – Directive #EXTSIG, #ALT, #TRANSFER” on page
2668 in chapter 57, The Cadvanced/Cbasic SDL to C Compiler. This in-
formation is not repeated here.

By using the #EXTSIG directive the following overhead can be avoided:

• Calling SDL_Output (the library function for outputs)

• SDL_Output determines that the signal is to be sent to the environ-
ment

• SDL_Output calls xOutEnv

• xOutEnv executes nested “if” statements to determine the signal
type.

Including the Environment Functions in the SDL System
Design

Apart from having the environment functions on a file of their own, it
is of course possible to include these function directly into the system
diagram in a #CODE directive.

Example 418: Including Environment Functions in SDL System–––––

/*#CODE
#BODY
... code for the environment functions ...
*/

––

In this case you cannot use the system interface header file, but instead
you have all the necessary declarations already at your disposal, as the
functions will be part of the SDL system. The only problem you will en-
counter is the prefixing of SDL names when they are translated to C.
The #SDL directive should be used to handle this problem (or the #NAME
2716 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
directive), see sections “Accessing SDL Names in C Code – Directive
#SDL” on page 2654 and “Specifying Names in Generated Code – Di-
rective #NAME” on page 2667 in chapter 57, The Cadvanced/Cbasic
SDL to C Compiler. The following table shows how to obtain C names
for some SDL objects of interest:

#(Synonym name)
#(Newtype or syntype name)
ySigN_#(Signal name)
yPDP_#(Signal name)
yChaN_#(Channel name)

SDL Data Encoding and Decoding, ASCII coder

Communication between nodes often requires data encoding and de-
coding between node internal representations and a common format in
a protocol buffer. The sending node writes information in the common
format and the receiving node reads information from the common for-
mat. Data encoding is the transformation from a node internal represen-
tation into a common format and data decoding is the transformation
from a common format into a node internal representation.

Supported common formats are:

• BER

• PER

• ASCII

BER (Basic Encoding Rules) is specified in ITU standard X.690 and
PER (Packed Encoding Rules) is specified in ITU standard X.691. BER
and PER are based on ASN.1 specifications of data types and can only
be used for types specified in ASN.1 specifications. See chapter 59,
ASN.1 Encoding and De-coding in the SDL Suite and chapter 8, Tutori-
al: Using ASN.1 Data Types.

ASCII is a format where the data is represented as ASCII characters. It
is easy to read and analyze. The ASCII format is specified in appendix
A.

Example 419 ASCII common format –––––––––––––––––––––––––––

newtype Person struct
 nm Charstring;
 nr Integer;
 fm Boolean;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2717

Chapter 58 Building an Application
endnewtype Person;

dcl boss Person := (.’Joe’,5,false.);

ASCII format:{‘Joe’,5,F}

––

The ASCII coder uses the same buffer management and error manage-
ment as the BER and PER coders, see chapter 59, ASN.1 Encoding and
De-coding in the SDL Suite.

Type description nodes for SDL types

SDL data encoders and data decoders need information about types and
signals, information that is stored in type descriptions nodes. Type de-
scription nodes for an SDL system are generated if the Generate SDL
coder option is selected in the organizer, see chapter 2, The Organizer,
or in the targeting expert, see chapter 60, The Targeting Expert. Decla-
rations to access the type nodes are in the system interface header files
and in a file with the name <system_file_name>_cod.h. Type nodes
can be found in any generated c-file from a system or a package and also
in the <system_file_name>_cod.c file.

A type description node for SDL is implemented as a static variable
with the type information. The variable can be accessed by using the
name ySDL_<type_name> or ySDL_<signal_name>, where
<type_name> and <signal_name> are the names used in the interface
header file. See “Names of SDL Objects in C” on page 2705 for more
information.

––

Encoding signal and signal parameters into a buffer

You can use an encode function to encode signal parameters into a buff-
er. There is one encoding function for each common format. For ASCII,
it is accessed by using the macro ASCII_ENCODE. An encoding func-
tion has a buffer reference as the first parameter, a pointer to a type node
as the second parameter and a pointer to the variable to encode as the
third. The encoding function returns an integer value, which is 0 if the
encoding was successful and error code if it was not. More details about
encoding functions, the buffer reference, type nodes and error codes can
be found in chapter 59, ASN.1 Encoding and De-coding in the SDL
Suite.
2718 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
Function declarations are in the file “ascii/ascii.h”
(“ascii\ascii.h” on Windows platforms) in the coder directory.

Example 420 ASCII encoding of signal parameters –––––––––––––––

In SDL:
SIGNAL Sig1(Integer,Person,Boolean);

In xOutEnv:
BufInitWriteMode(buf);
result = ASCII_ENCODE(buf,
 (tSDLTypeInfo *)&ySDL_Integer,
 (void *)&((yPDP_Sig1)(*S))->Param1));
if (result!=0) /* handle error */;
result = ASCII_ENCODE(buf,
 (tSDLTypeInfo *)&ySDL_Person
 (void *)&((yPDP_Sig1)(*S))->Param2));
if (result!=0) /* handle error */;
result = ASCII_ENCODE(buf,
 (tSDLTypeInfo *)&ySDL_Boolean
 (void *)&((yPDP_Sig1)(*S))->Param3));
if (result!=0) /* handle error */;
BufCloseWriteMode(buf);

Example 421 ASCII encoding of whole signal (all signal parameters)

In SDL:
SIGNAL Sig1(Integer,Person,Boolean);

In xOutEnv:
BufInitWriteMode(buf);
result = ASCII_ENCODE(buf,
 (tSDLTypeInfo *)&ySDL_Sig1,
 (void *)(*S));
if (result!=0) /* handle error */;
BufCloseWriteMode(buf);

Decoding into signal parameters from a buffer

You can use a decode function to decode from a buffer into a signal pa-
rameter. There is one decoding function for each common format. For
ASCII, it is accessed by using the macro ASCII_DECODE. A decode
function has a buffer reference as the first parameter, a pointer to a type

Note:

The names of the type nodes in the examples, the second parameter
in ASCII_ENCODE, depend on the settings for generating system
interface header files.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2719

Chapter 58 Building an Application
node as the second parameter and a pointer to the variable to decode as
the third. The decoding function returns an integer value, which is 0 if
the decoding was successful and an error code if it was not. More details
about decoding functions, the buffer reference, type nodes and error
codes can be found in chapter 59, ASN.1 Encoding and De-coding in the
SDL Suite.

Function declarations are in the file “ascii/ascii.h”
(“ascii\ascii.h” on Windows platforms) in the coder directory.

Example 422 ASCII decoding into signal parameters –––––––––––––

In SDL:
SIGNAL Sig1(Integer,Person,Boolean);

In xInEnv:
BufInitReadMode(buf);
result = ASCII_DECODE(buf,
 (tSDLTypeInfo *)&ySDL_Integer,
 (void *)&((yPDP_Sig1)(S))->Param1));
if (result!=0) /* handle error */;
result = ASCII_DECODE(buf,
 (tSDLTypeInfo *)&ySDL_Person
 (void *)&((yPDP_Sig1)(S))->Param2));
if (result!=0) /* handle error */;
result = ASCII_DECODE(buf,
 (tSDLTypeInfo *)&ySDL_Boolean
 (void *)&((yPDP_Sig1)(S))->Param3));
if (result!=0) /* handle error */;
BufCloseReadMode(buf);

––

Example 423 ASCII decoding of whole signal (all signal parameters)

In SDL:
SIGNAL Sig1(Integer,Person,Boolean);

In xInEnv:
BufInitReadMode(buf);
result = ASCII_DECODE(buf,
 (tSDLTypeInfo *)&ySDL_Sig1,
 (void *)S);
if (result!=0) /* handle error */;
BufCloseReadMode(buf);

––
2720 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
Encoding and decoding signal identifier for ASCII encoding

When sending signals between nodes it is often important to put a signal
identifier first in the buffer. The signal identifier must be a unique iden-
tifier of the signal in the distributed system. Decoding is then a two step
process, first decode signal identifier and find signal information and
second decode signal parameters.

You can use any representation of signal identifiers in the environment
functions.

For SDL types there is a special signal id type node that supports char-
acter string signal ids. The type node can be used for ASCII encoding.

Example 424 Using signal identifier

In SDL:
SIGNAL Sig1(Integer);

In xOutEnv:
void xOutEnv (xSignalNode *S)
{
 char * signalId;

 BufInitWriteMode(buf);
 if ((*S)->NameNode == Sig1) {
 /* encode signal id into buffer */
 signalId=”Sig1”;
 result = ASCII_ENCODE(buf,
 (tSDLInfo *)&ySDL_SignalId,
 (void *)signalId);
 if (result!=0) /* handle error */;
 /* encode signal parameter */
 result = ASCII_ENCODE(buf,
 (tSDLTypeInfo *)&ySDL_Sig1,
 (void *)(*S));
 if (result!=0) /* handle error */;

 /* send buffer using protocol*/

 /* release memory */

 xReleaseSignal(S);
 return;
 }

Note:

The names of the type nodes in the examples, the second parameter
in ASCII_DECODE, depend on the settings for generating system
interface header files.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2721

Chapter 58 Building an Application
 BufCloseWriteMode(buf);
}

In xInEnv:
void xInEnv (SDL_Time Time_for_next_event) {
 char SId[100];

 BufInitReadMode(buf);
 /* decode signal id */
 result = ASCII_DECODE(buf,
 (tSDLTypeInfo *)&ySDL_SignalId,
 SId));
 if (result!=0) /* handle error */;
 /* signal Sig1 in buffer */
 if (strcmp(SId,"Sig1")) {
 S=xGetSignal(Sig1,xNotDefPId, xEnv);
 result = ASCII_DECODE(buf,
 (tSDLTypeInfo *)&ySDL_Sig1,
 (void *)S);
 if (result!=0) /* handle error */;
 SDL_Output(S, (xIdNode *)0);
 }
 BufCloseReadMode(buf);
}

––

Function xGlobalNodeNumber

You should also provide a function, xGlobalNodeNumber, with no pa-
rameters, which returns an integer that is unique for each executing sys-
tem.

int xGlobalNodeNumber (void)

The returned integer should be greater than zero and should be unique
among the communicating SDL systems that constitutes an application.
If the application consists of only one application then this number is of
minor interest (it still has to be set). The global node number is used in
PId values to identify the node (OS process / processor) that the process
instance belongs to. PId values are thereby universally accessible and
you may, for example, in a simple way make “Output To Sender” work
between processes in different SDL systems (OS processes / proces-
sors).

When an application consisting of several communicating SDL systems
is designed, you have to map the global node number to the current OS
process or processor, to be able to transmit signals addressed to non-lo-
2722 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Reference Section
cal PIds to the correct OS process or processor. This will be part of the
xOutEnv function.

Program Structure

The generated code will contain two important types of functions, the
initialization functions and the PAD functions. The PAD functions im-
plement the actions performed by processes during transitions. There
will be one initialization function in each generated.c file. In the file
that represents the system this function will have the name yInit. Each
process in the system will be represented by a PAD function, which is
called when a process instance of the current instance set is to execute
a transition.

The example below shows the structure of the main, MainInit, and
MainLoop functions.

Example 425: Start up structure –––––––––––––––––––––––––––––––
void main (void)
{
 xMainInit();
 xMainLoop();
}

void xMainInit (void)
{
 xInitEnv();
 Init of internal data structures in the
 runtime library;
 yInit();
}

void xMainLoop (void)
{
 while (1) {
 xInEnv(...);
 if (Timer output is possible)
 SDL_OutputTimerSignal();
 else if (Process transition is possible)
 Call appropriate PAD function;
 }
}

––

The function xMainLoop contains an endless loop. The appropriate way
to stop the execution of the program is to call the runtime library func-
tion SDL_Halt. The call of this C function should normally be included
in an appropriate task, using the directive #CODE. SDL_Halt which has
the following structure:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2723

Chapter 58 Building an Application
void SDL_Halt (void)
{
 xCloseEnv();
 exit(0);
}

To complete this overview, which emphasizes the usage of the environ-
ment functions, we have to deal with the xOutEnv function. Within
PAD functions, the runtime library function SDL_Output is called to
implement outputs of signals. When SDL_Output identifies the receiver
of a signal to be a process instance that is not part of the current SDL
system, SDL_Output will call the xOutEnv function.

Dynamic Errors
In the library for applications SDL runtime errors will not be reported.
The application will just perform some appropriate actions and continue
to execute. These actions are in almost all cases the same as the actions
at dynamic errors described in the “Dynamic Errors” on page 2121 in
chapter 50, The SDL Simulator.

• Output warnings: If a signal is sent to NULL or to a stopped pro-
cess instance, or if no receiver is found in an output without a “to”
clause, the signal will not be sent, that is, the output statement is a
null action. If a signal is sent to a process instance and there is no
path between the sender and the receiver, the signal will be sent any-
way (actually, no check will be performed).

• If the error was a decision error, that is, no path exists for the cur-
rent decision value, the execution of the program will continue in an
unpredictable way. To avoid these kind of problems you should al-
ways have else paths in decisions (if not all values in the current data
type are covered in other paths).

• If the error occurred during an import or view action, a data area of
the correct size containing zero in all positions is returned.

• No checks of assignment or index out of range will be performed.
This means that if an array index is out of bounds, then the corre-
sponding C array will be indexed out of its bounds.

• No checks when accessing struct, #UNION, or choice components
are performed. No checks are performed when de-referencing a
pointer value (Ref generator). These operations will just be execut-
ed.
2724 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example Section
• If the dynamic error occurred within an SDL expression, the oper-
ator that found the error will return a default value and the evalua-
tion of the expression is continued. The default values returned de-
pend on the result type of the operator and are given in the section
“Default Values” on page 2604 in chapter 57, The Cadvanced/Cba-
sic SDL to C Compiler.

Example Section
In this section a complete example of an application is presented. The
application is simple but it still contains most of the problems that arise
when the Cadvanced SDL to C Compiler is used to generate applica-
tions. All source code for this example, together with the running appli-
cation are delivered with the runtime libraries for application genera-
tion. Note that the example is developed for SunOS 5 and HP-UX.
The example is not updated to use encoding and decoding support.

The Example
We want to develop an application that consists of several communicat-
ing UNIX processes. Each UNIX process should also be connected to
the keyboard and the screen. When a complete line is typed on the key-
board (when <Return> is pressed) in one of the UNIX processes, that
line should be sent to and printed by all the UNIX processes, including
the one where the line was entered. If a line starting with the character
“.” is entered in any UNIX process then all the UNIX processes should
terminate immediately.

There are some observations we can make from this short description.

• Firstly, all the UNIX processes should behave exactly the same,
which means that the behavior can be described in one SDL system
and one application can be generated. This application should be
able to communicate with other instances of itself and should simul-
taneously be started in as many instances as we want communicat-
ing UNIX processes.

• Secondly, each UNIX process needs access to the terminal. To sim-
plify the connection between a UNIX process and the terminal, we
assume that each instance of the application is started from its own
window (its own shell tool). In this way the underlying window
manager will solve the problem of directing input typed on the key-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2725

Chapter 58 Building an Application
board to the correct application, as well as making it possible for
you to distinguish between output from different applications.

• Thirdly, the UNIX processes have to be connected so they can com-
municate with each other. We have decided to use sockets as com-
munication media, and to let the UNIX processes form a ring. This
means that when a UNIX process receives a message containing a
line, it should print the line and send the message on to the next
UNIX process in the ring, if it did not itself originally send the line
message.

The SDL System
The SDL system with a behavior as outlined above is very simple. It
contains, for example, only one process. The system can receive three
types of signals, TermInput from the terminal, and Message and
Terminate from the SDL system that is the previous node in the ring.
The system will respond by sending Display to the terminal and
Message and Terminate to the SDL system next in the ring. The signals
TermInput and Display take a line (which is read from the terminal or
should be printed on the terminal) as parameter. The signal Message
takes a line and a PId value (the original sender in the ring) as parame-
ter, while the signal Terminate takes a PId value (the original sender in
the ring) as parameter.

The diagrams for the SDL system may be found in “Appendix C: The
SDL System” on page 2747. In the section “Where to Find the Exam-
ple” on page 2734, references to where to find the source code for this
example are given.

Simulating the Behavior
At this stage of the development of the application, when the SDL sys-
tem is completed but the environment functions are not implemented, it
is time to simulate the SDL system to debug it at the SDL level. The
runtime library Simulation is appropriate in this case for simulation.

There are six cases that should be tested:

• If TermInput (with a line not starting with a period) is sent to the
system, it should respond by sending a Message signal to the envi-
ronment. The first parameter in this signal should be equal to the pa-
2726 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example Section
rameter in the received TermInput signal. The second parameter
should be the PId value of the sending process.

• If TermInput (with a line starting with a period) is sent to the sys-
tem, it should respond by sending a Terminate signal to the environ-
ment. The parameter should be the PId value of the sending process.

• If Message (with a PId parameter not equal to the receiving process)
is sent to the system, it should respond by sending a copy of the
Message signal to the environment. It should also send Display to
the environment with the received line as parameter.

• If Message (with a PId parameter equal to the receiving process) is
sent to the system, it should respond by just sending a Display signal
to the environment with the received line as parameter.

• If Terminate (with a PId parameter not equal to the receiving pro-
cess) is sent to the system, it should respond by sending a copy of
the Terminate signal to the environment. The execution of the pro-
gram should then terminate.

• If Terminate (with a PId parameter equal to the receiving process)
is sent to the system, the program should just stop executing.

Let us now verify that the SDL system behaves according to this. In the
two executions of the simulation shown below, the cases described
above are tested in the same order as they are listed.

Example 426: Execution Trace of Generated Application ––––––––––
Start program Phone.sim.sct:

Command : set-trace 6
Default trace set to 6

Command : next-transition

*** TRANSITION START
* PId : PhonePr:1
* State : start state
* Now : 0.0000
*** NEXTSTATE idle

Command : output-via
Signal name : TermInput
 Parameter 1 (charstring) : ‘hello’
Channel name :
Signal TermInput was sent to PhonePr:1 from env:1
Process scope : PhonePr:1
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2727

Chapter 58 Building an Application
Command : next-transition

*** TRANSITION START
* PId : PhonePr:1
* State : idle
* Input : TermInput
* Sender : env:1
* Now : 0.0000
* Parameter(s) : ‘hello’
* DECISION Value: true
* DECISION Value: false
* OUTPUT of Message to env:1
* Parameter(s) : ‘hello’, PhonePr:1
*** NEXTSTATE idle
Command : output-via TermInput ‘.’ -
Signal TermInput was sent to PhonePr:1 from env:1
Process Scope : PhonePr:1

Command : next-transition

*** TRANSITION START
* PId : PhonePr:1
* State : idle
* Input : TermInput
* Sender : env:1
* Now : 0.0000
* Parameter(s) : ‘.’
* DECISION Value: true
* DECISION Value: true
* OUTPUT of Terminate to env:1
* Parameter(s) : PhonePr:1
*** NEXTSTATE idle

Command : output-via Message
 Parameter 1 (charstring) : ‘hello’
 Parameter 2 (pid) : env
Channel name :
Signal Message was sent to PhonePr:1 from env:1
Process scope : PhonePr:1

Command : next-transition

*** TRANSITION START
* PId : PhonePr:1
* State : idle
* Input : Message
* Sender : env:1
* Now : 0.0000
* Parameter(s) : ‘hello’, env:1
* DECISION Value: false
* OUTPUT of Message to env:1
* Parameter(s) : ‘hello’, env:1
* OUTPUT of Display to env:1
* Parameter(s) : ‘hello’
2728 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example Section
*** NEXTSTATE idle

Command : output-via Message
 Parameter 1 (charstring) : ‘hello’
 Parameter 2 (pid) : PhonePr:1
Channel name :
Signal Message was sent to PhonePr:1 from env:1
Process scope : PhonePr:1

Command : next-transition

*** TRANSITION START
* PId : PhonePr:1
* State : idle
* Input : Message
* Sender : env:1
* Now : 0.0000
* Parameter(s) : ‘hello’, PhonePr:1
* DECISION Value: true
* OUTPUT of Display to env:1
* Parameter(s) : ‘hello’
*** NEXTSTATE idle

Command : output-via Terminate
 Parameter 1 (pid) : env
Channel name :
Signal Terminate was sent to PhonePr:1 from env:1
Process scope : PhonePr:1

Command : next-transition

*** TRANSITION START
* PId : PhonePr:1
* State : idle
* Input : Terminate
* Sender : env:1
* Now : 0.0000
* Parameter(s) : env:1
* DECISION Value: false
* OUTPUT of Terminate to env:1
* Parameter(s) : env:1
* TASK Halt

Example 427 –––
Start program Phone.sim.sct:

Command : set-trace 6
Default trace set to 6

Command : next-transition

*** TRANSITION START
* PId : PhonePr:1
* State : start state
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2729

Chapter 58 Building an Application
* Now : 0.0000
*** NEXTSTATE idle

Command : output-via Terminate
 Parameter 1 (pid) : PhonePr:1
Channel name :
Signal Terminate was sent to PhonePr:1 from env:1
Process scope : PhonePr:1

Command : next-transition

*** TRANSITION START
* PId : PhonePr:1
* State : idle
* Input : Terminate
* Sender : env:1
* Now : 0.0000
* Parameter(s) : PhonePr:1
* DECISION Value: true
* TASK Halt

––

By running the system with the SDL monitor, as in the examples above,
you may debug the system at the SDL level. The overall behavior of the
system can thus be tested.

It is possible to start two instances of the simulation and have the simu-
lators communicate with each other. Then Message and Terminate sig-
nals sent to the environment in one of the simulations will appear as sig-
nals coming from the environment in the other.

The Environment
In the environment functions we use the socket facility in UNIX to im-
plement the communication between the executing programs. In the
current example, the implementation is developed for SunOS 5 and
HP-UX.

To simplify the example we assume that each instance of the application
is started in a window of its own (a shell tool window under for instance
X Windows, where UNIX commands can be entered). This means that
we will have no problems with the interpretation of stdin and stdout
in the programs.

Note:

Do not forget the monitor command Start-SDL-Env to make the
simulation programs start communicating.
2730 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example Section
The name of the socket for incoming messages for a certain instance of
the application will be the string “Phone” concatenated with the UNIX
process number for the current program. The socket will be created in
the directory /tmp. Each application instance will print this number dur-
ing the initialization and will then ask for the process number of the ap-
plication instance where it should send its messages. You have to enter
these numbers in such a way as to form a ring among the applications.

The Environment Functions

The environment functions, which may be found in the file
PhoneEnv.c, are shown in section “Appendix D: The Environment
Functions” on page 2750. The file is developed according to the struc-
ture discussed in the previous part of this chapter and uses the system
interface header file generated from the SDL system.

As the PhoneEnv.c file includes scttypes.h and uses some C mac-
ros, it should be compiled using the same compiler options as the C file
for the SDL system. For information about how to extend the generated
make file to handle also non-generated files, please see “Makefile Op-
tions” on page 122 in chapter 2, The Organizer.

In the code for the environment functions a number of UNIX functions
are used. Their basic behavior is described below. For any details please
see the UNIX manuals available from Sun Microsystems.

Function name Functionality

getpid Returns the UNIX process number for the current
program.

socket Returns a new, unnamed socket.

bind Binds a socket to a name in the file system.

listen Starts listen for other programs trying to connect
to this socket.

connect Should be called by other programs that want to
establish a connection to the current socket.

accept Accepts a connection request.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2731

Chapter 58 Building an Application
If we now look at the code for the environment functions (see “Appen-
dix D: The Environment Functions” on page 2750), we see that
xInitEnv mainly performs the following actions:

• It creates two unnamed sockets, one for message in
(Connection_Socket) and one for messages out (Out_Socket).

• It binds Connection_Socket to the file system (in the /tmp direc-
tory) and starts listen for connections.

• It prints its UNIX process number.

• It reads the UNIX process number of the process where to send mes-
sages.

• It attempts to connect to the socket of the process where to send
messages.

• It accepts the connection from the process that will send messages
here.

In xCloseEnv the created sockets are closed and removed.

The xInEnv and xOutEnv functions follow the guidelines for these
functions given in the reference section. In xInEnv the select function
is used to determine if any messages are ready to be received from the
terminal (stdin) or from the incoming socket. An available message is
then read and the information is converted to an SDL signal, which is
sent to the SDL system using the SDL_Output function. In xOutEnv a
test on the NameNode in the signal is used to determine the signal type.
Depending on the signal type the appropriate information is written ei-
ther on the outgoing socket or on the terminal (stdout).

select Returns 1 if anything readable can be found in
any of the specified file descriptors, where a file
descriptor can represent a file, a socket, and the
terminal (stdin and stdout).

read, write Reads or writes on a file (a file descriptor).

close Closes a file.

unlink Removes a file.

Function name Functionality
2732 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example Section
Debugging

The first part of the debugging activity is, of course, when the SDL sys-
tem is simulated and examined through the monitor system. Now we
also want to include the environment functions during debugging. The
intention of the library ApplicationDebug is to use the monitor and the
environment functions together.

When the environment functions (xInEnv) read information from the
keyboard there is, however, a problem in using xInEnv together with
the monitor. In our system, for instance, a line typed on the keyboard
may either be a monitor command or a line typed to the SDL system. As
both the monitor and xInEnv are polling for lines from stdin, the in-
terpretation of a typed line depends on which one first finds the line.

A better way is to eliminate this indeterministic behavior by not polling
for typed lines in xInEnv. Instead, you may use the monitor command:

Output-Via TermInput ’the line’

to simulate a line typed on the keyboard. In this way all the other parts
of the environment functions can be tested under the monitor. If you en-
close the sections in xInEnv handling keyboard polling between
#ifndef XMONITOR and #endif this code is removed when the moni-
tor is used; that is if the library ApplicationDebug is used (see the code
for xInEnv in “Appendix D: The Environment Functions” on page
2750).

A C source code debugger is of course also useful when debugging the
environment functions. The initialization phase, xInitEnv, is probably
the most difficult part to get working correctly in our system. All the
source code for this function is available, and a C debugger can be used.

While debugging generated code from SDL at the C level, it is always
easy to find the currently executing SDL symbol, by using the SDT ref-
erences (see “Syntax” on page 911 in chapter 19, SDT References) in
the C code and the Go To Source menu choice in the Edit menu in the
Organizer. For more details please see “Go To Source” on page 99 in
chapter 2, The Organizer.

Running the Application
To have an application of the Phone system you now only need to make
a new executing program with the library Application.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2733

Chapter 58 Building an Application
When you run the Phone system, start the program from two (or more)
shell tools (on UNIX). Each instance of the program will then print:

My Pid: 2311
Connect me to:

You should answer these questions in such a way that a ring is formed
by the programs. When the initialization is completed for a program it
prints:

******** Welcome to SDT Phone System ********
phone ->

The program is now ready to receive lines printed on the keyboard and
messages sent from other programs. A Display signal received from an-
other program is printed as follows:

display -> the line received in Display signal

Where to Find the Example
All files concerning this example may be found in the directory:

<installation directory>/sdt/examples/phone

Use these files if you only want to look at the source files and if you are
using a Sun workstation you could try the executing versions of the pro-
gram. Otherwise you should copy the files to one of your own directo-
ries. Please be sure not to change the original files.

In the directory you will find the following files:

File name Purpose

Phone.sdt The system file

Phone.ssy Represents the SDL system

PhoneBl.sbk Represents the SDL block

PhonePr.spr Represents the SDL process

phone.pr The generated PR file after GR to PR

phone.c The generated C file after C code generation

phone.ifc The generated .ifc file
2734 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Example Section
PhoneEnv.c Contains the environment functions

Phone.m The make file for HP-UX

Phone.solaris.m The make file for SunOS 5

File name Purpose
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2735

Chapter 58 Building an Application
Appendix A: Formats for ASCII
The ASCII encoding function, ASCII_ENCODE, encodes the SDL sig-
nal parameters and variables as ASCII characters before adding into the
buffer. The output into the buffer is illustrated with a number of exam-
ples.

Braces { } are used for most data types and show where the data types
start and stop. Signal parameters start and stop with braces.

Comma is used to delimit.

For more information about data types see “Using SDL Data Types” on
page 42 in chapter 2, Data Types.

Array, CArray

Array is used to define a fixed number of elements.

Array takes two generator parameters, an index sort and a component
sort.

Example 428: Using Array ––––––––––––––––––––––––––––––––––––

newtype A1 Array(b, Integer) endnewtype;

dcl Var_Array A1;

task Var_Array := (. 3 .);

Output to the buffer: {3,3,3}

Bag

Bag is almost the same as Powerset. The only difference is that Bag
contains the same value several times. Bag can be used as an abstraction
of other data types.

Bag takes one generator parameter, the item sort.

Example 429: Using Bag –––––––––––––––––––––––––––––––––––––

newtype B1 Bag(Integer) endnewtype;

dcl Var_Bag B1;
2736 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix A: Formats for ASCII
task Var_Bag := (. 7, 4, 7 .);

––

Output to the buffer: {2:7,1:4}

Example 430: Using Bag (old-style SDL operator code generation) –

newtype B1 Bag(Integer) endnewtype;

dcl Var_Bag B1;

task Var_Bag := Incl(7, Incl(4, Incl(7, Empty)));

––

Output to the buffer: {2:7,1:4}

Bit

Bit can only take two values, 0 and 1.

Example 431: Using Bit ––––––––––––––––––––––––––––––––––––––

dcl Var_Bit Bit;

task Var_Bit := 1;

––

Output to the buffer: 1

Bit_String

Bit_String is used to represent a sequence of bits.

Example 432: Using Bit_String ––––––––––––––––––––––––––––––––

dcl Var_Bit Bit_String;

task Var_Bit := Mkstring(I20(1101));

––

Output to the buffer: ‘1101’

Boolean

Boolean can only take two values, False and True.

Example 433: Using Boolean –––––––––––––––––––––––––––––––––

dcl Var_Boolean Boolean;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2737

Chapter 58 Building an Application
task Var_Boolean := TRUE;

––

Output to the buffer: T

If Var_Boolean is set to FALSE, the output to the buffer will be F.

Character

Character is used to represent the ASCII characters.

Example 434: Using Character ––––––––––––––––––––––––––––––––

dcl Var_Character Character;

task Var_Character := ‘M’

––

Output to the buffer: M

CharStar, PId, UnionC, Userdef, VoidStar, VoidStarStar

The user has to define encoding/decoding procedures for these types,
see “Appendix B: User defined ASCII encoding and decoding” on page
2745. If no encoding/decoding procedure is defined, then there will be
no output to buffer.

For threaded integrations, the PId value will be encoded/decoded by
coding the memory address as an integer.

CharString, IA5String, NumericString, PrintableString, VisibleString

These string types are used to represent sequences of characters.

Example 435: Using Charstring –––––––––––––––––––––––––––––––

dcl Var_Charstring Charstring;

task Var_Charstring := ‘Hello world’

––

Output to the buffer: ‘Hello world’

Choice, Union

Choice represents the ASN.1 concept CHOICE and can also be seen as
a C union with an implicit tag field.
2738 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix A: Formats for ASCII
Example 436: Using Choice ––––––––––––––––––––––––––––––––––

newtype C Choice
 c1 Character;
 c2 Boolean;
endnewtype;

dcl Var_Choice C;

task Var_Choice := c2:true;

––

Output to the buffer: {1,T}, where 1 is an implicit tag.

Duration, Time

Time is used to denote ‘a point in time’ and Duration is used to denote
‘a time interval’.

A value of sort Time represents a point of time in the real world. The
Time unit is usually 1 second.

Example 437: Using Time ––––––––––––––––––––––––––––––––––––

dcl Var_Time Time;

task Var_Time := 1;

––

Output to the buffer: {1,0}. The first field is seconds and the second
field is nano-seconds.

Enum

Enum contains only the values enumerated in a sort.

Example 438: Using Enum –––––––––––––––––––––––––––––––––––

newtype E /*Enum*/
 literals e1, e2, e3;
endnewtype;

dcl Var_Enum E;

task Var_Enum := e2;

––

Output to the buffer: 1
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2739

Chapter 58 Building an Application
Float

Float is equivalent to float in C.

Example 439: Using Float ––––––––––––––––––––––––––––––––––––

dcl Var_Float Float;

task Var_Float := 3.14159;

––

Output to the buffer: 3.1415901e0 (always 7 decimals)

GPowerset, Object_Identifier, String

GPowerset is used as an abstraction of other data types. GPowerset
takes one generator parameter, the item sort.

Object_Identifier is a sequence of Natural values.

String can be used to build lists of items of the same type. String has
two generator parameters, the component sort and the name of an empty
string.

Example 440: Using GPowerset –––––––––––––––––––––––––––––––

newtype GP Powerset(Integer) endnewtype;

dcl Var_GPowerset GP;

task Var_GPowerset := Incl(7, Incl(4, Empty));

––

Output to the buffer: {3,4}

Object_Identifier and String are used in the same way as GPow-
erset.

Inherits, Syntype

Syntype and Inherits create a new type, that has the same properties
as an existing type, by inheriting the type or make a syntype of the type.

Example 441: Using Syntype –––––––––––––––––––––––––––––––––

syntype newinteger = Integer endsyntype;

dcl Var_Newinteger newinteger;
2740 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix A: Formats for ASCII
task Var_Newinteger := 2

––

Output to the buffer: 2

Integer, LongInt, ShortInt, UnsignedInt, UnsignedLongInt,
UnsignedShortInt, Natural

Integer is used to represent mathematical integers.

Natural is a syntype of Integer.

Example 442: Using Integer ––––––––––––––––––––––––––––––––––

dcl Var_Integer Integer;

task Var_Integer := 1

––

Output to the buffer: 1

Null

The sort Null only contains one value, Null.

Example 443: Using Null –––––––––––––––––––––––––––––––––––––

dcl Var_Null Null;

task Var_Null := Null;

––

Output to the buffer: 0

Octet

Octet is used to represent eight-bit values.

Example 444: Using Octet ––––––––––––––––––––––––––––––––––––

dcl Var_Octet Octet;

task Var_Octet := I20(12);

––

Output to the buffer: 0c

Octet_String

Octet_String represents a sequence of Octet values.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2741

Chapter 58 Building an Application
Octet_String always contains an equal number of characters, since
every octet takes two characters.

Example 445: Using Octet_String ––––––––––––––––––––––––––––––

dcl Var_OctetString Octet_String;

task Var_OctetString := Mkstring(I20(12));

––

Output to the buffer: ‘0c’

ORef, Own, Ref

ORef, Own and Ref are used to define pointer types.

Example 446: Using Ref –––––––––––––––––––––––––––––––––––––

newtype R Ref(r1) endnewtype;

dcl Var_Ref R;

task Var_Ref := (. (. 1, 2, ‘Telelogic’ .) .);

––

Output to the buffer: {{1,2,’Telelogic’}}

Powerset

Powerset takes one generator parameter, the item sort, and imple-
ments a powerset over that sort. Powerset can be used as an abstrac-
tion of other data types.

Example 447: Using Powerset ––––––––––––––––––––––––––––––––

newtype P Powerset(p1) endnewtype;

dcl Var_Powerset P;

task Var_Powerset := (. 4, 3 .);

––

Output to the buffer: ‘00110000000000000000000000000000’

The bits are an equal multiple of sizeof(unsigned long).

Example 448: Using Powerset (old-style SDL operator code
generation) ––

newtype P Powerset(p1) endnewtype;
2742 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix A: Formats for ASCII
dcl Var_Powerset P;

task Var_Powerset := Incl(4, Incl(3, Empty));

––

Output to the buffer: ‘00110000000000000000000000000000’

The bits are an equal multiple of sizeof(unsigned long).

Real

Real is used to represent the mathematical real values.

Example 449: Using Real ––––––––––––––––––––––––––––––––––––

dcl Var_Real Real;

task Var_Real := 1.0;

––

Output to the buffer: 1.0000000000000e0 (always 13 decimals)

SignalId

SignalId is used to describe the signal ID.

SignalId is a sequence with characters.

Example 450: Using SignalId –––––––––––––––––––––––––––––––––

dcl Var_SignalId SignalId;

task Var_SignalId := ‘Sig1’;

––

Output to the buffer: ‘Sig1’

Struct

Struct can be used to make an aggregate of data that belong together.

Example 451: Using Struct –––––––––––––––––––––––––––––––––––

newtype S struct
 s1 integer;
 s2 integer;
 s3 charstring;
endnewtype;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2743

Chapter 58 Building an Application
dcl Var_Struct S;

task Var_Struct := (. 1, 2, ‘Telelogic’ .);

––

Output to the buffer: {1,2,’Telelogic’}
2744 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix B: User defined ASCII encoding and decoding
Appendix B: User defined ASCII encoding
and decoding

The types CharStar, PId, UnionC, Userdef, VoidStar, VoidStarStar do
not have a natural transformation to ASCII format. The desired encod-
ing probably differs from application to application. The ASCII encod-
ing procedure and the ASCII decoding procedures do not encode or de-
code these types, but they can invoke user written procedures for encod-
ing and decoding them.

For threaded integrations, the PId value will be encoded/decoded by
coding the memory address as an integer.

If you want to add encoding for these types, then do the following steps:

• Implement a C-function for encoding with input and output param-
eters compatible with tEncodeFunc, which is declared in file
“coderucf.h”. The encode functions in “coderascii.c” can be used as
an example.

• Set static variable AsciiUserEncode to your encode function in
xInitEnv.

If you want to add decoding for these types, then do the following steps:

• Implement a C-function for decoding with input and output param-
eters compatible with tDecodeFunc, which is declared in file
“coderucf.h”. The decode functions in “coderascii.c” can be used as
an example.

• Set static variable AsciiUserDecode to your decode function in
xInitEnv.

Example 452 User defined ASCII encoding ––––––––––––––––––––––

int MyAsciiEncoder(tBuffer Buf,
 tSDLTypeInfo* TypeNode,
 void* Value)
{
 /* my error handling code for one or more of
 CharStar, PId, UnionC, Userdef, VoidStar, VoidStarStar */
 /* return 1 if it was succesful,
 return 0 if it failed */
}

In xInitEnv:
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2745

Chapter 58 Building an Application
AsciiUserEncode = MyAsciiEncoder;

––
2746 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix C: The SDL System
Appendix C: The SDL System

Figure 492: The system Phone

System Phone 1(1)
SIGNAL
TermInput (Charstring),
Display (Charstring),
Message (Charstring, Pid),
Terminate (Pid);

SIGNALLIST ToTerm = Display;
SIGNALLIST FrTerm = TermInput;
SIGNALLIST ToSocket = Message,Terminate;
SIGNALLIST FrSocket = Message,Terminate;

PhoneBlTerm_Com

(FrTerm)(ToTerm)

Socket_Com

(ToSocket)(FrSocket)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2747

Chapter 58 Building an Application
Figure 493: The block PhoneBl

Block PhoneBl 1(1)

PhonePr(1,1) R2

(ToSocket)

R1

(FrTerm)(ToTerm) (FrSocket)

Term_Com Socket_Com
2748 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix C: The SDL System
Figure 494: The process PhonePr

Process PhonePr 1(1)

DCL
Line Charstring,
ActMessage Charstring:=’XX >> ’,
SenderId Pid;

idle

idle

TermInput
(Line)

Length
(Line)>0

Line(1)=’.’

Terminate(Self)
VIA R2

-

Message(Line,
Self)
VIA R2

idle

Terminate
(SenderId)

SenderId=
Self

Terminate
(SenderId)
VIA R2

’Halt’
/*#CODE

SDL_Halt();*/

Message
(ActMessage,
SenderId)

SenderId=
Self

Message
(ActMessage,
SenderId)
VIA R2

Display
(ActMessage)

-

(true)

(true) (false)

(false)
(false)

(true)
(false)

(true)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2749

Chapter 58 Building an Application
Appendix D: The Environment Functions
This section contains the environment functions included in the exam-
ple. Note that this example is not updated to use the ASCII encoder.

/****+***
00 sctEnv.c for SimplePhoneSys
**/
#include "scttypes.h"
#include <stdio.h>

#include "phone.ifc"

#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#ifdef AIXV3CC
#include <sys/select.h>
#endif
#include <sys/un.h>

#include <unistd.h>
#define getdtablesize() ((int) sysconf(_SC_OPEN_MAX))

int Out_Socket, In_Socket;
struct sockaddr_un Connection_Socket_Addr;
struct sockaddr_un Connected_Socket_Addr;

#ifdef ULTRIXCC
#define PRINTF(s) \
 printf(s); \
 /* flush output to get a prompt */ \
 fflush(stdout)
#else
#define PRINTF(s) printf(s)
#endif

#ifdef XENV

/*#if !defined(XPMCOMM) && defined(XENV)*/
/*---+---
 xGlobalNodeNumber extern
---*/
#ifndef XNOPROTO
 int
xGlobalNodeNumber(void)
#else
 int
xGlobalNodeNumber()
#endif
{
 static int ProcId = -1;

 if (ProcId < 0)
 ProcId = getpid();
 return (ProcId);
}
/*#endif*/
2750 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix D: The Environment Functions
/*---+---
 xInitEnv extern
---*/
#ifndef XNOPROTO
 void
xInitEnv(void)
#else
 void
xInitEnv()
#endif
{
 fd_set readfds;
 int addr_size;
 int Connection_Socket;
 char TmpStr[132];
 struct timeval t;

 t.tv_sec = 60;
 t.tv_usec = 0;

 if ((Connection_Socket = socket(PF_UNIX,SOCK_STREAM,0)) < 0
) {
 PRINTF("\nError: No Connection_Socket available!\n");
 SDL_Halt();
 }
 if ((Out_Socket = socket(PF_UNIX,SOCK_STREAM,0)) < 0) {
 PRINTF("\nError: No Out_Socket available!\n");
 SDL_Halt();
 }

 sprintf(Connection_Socket_Addr.sun_path,
 "/tmp/Phone%d", xGlobalNodeNumber());
 Connection_Socket_Addr.sun_family = PF_UNIX;
 if (0 > bind(Connection_Socket, &Connection_Socket_Addr,
 strlen(Connection_Socket_Addr.sun_path)+2)) {
 PRINTF("\nError: Bind did not succeed!\n");
 SDL_Halt();
 }
 listen(Connection_Socket, 3);

 sprintf(TmpStr, "\nMy Pid: %d\n", xGlobalNodeNumber());
 PRINTF(TmpStr);
 PRINTF("\nConnect me to: ");

 FD_ZERO(&readfds);
 FD_SET(1,&readfds);
 FD_SET(Connection_Socket,&readfds);
 if (0 < select(getdtablesize(), &readfds,
 (fd_set*)0, (fd_set*)0, &t)) {
 if (FD_ISSET(1, &readfds)) {
 (void)gets(TmpStr);
 sscanf(TmpStr, "%s", TmpStr);
 sprintf(Connected_Socket_Addr.sun_path, "/tmp/Phone%s",
 TmpStr);
 Connected_Socket_Addr.sun_family = PF_UNIX;
 if (connect(Out_Socket, (struct sockaddr
*)&Connected_Socket_Addr,
 strlen(Connected_Socket_Addr.sun_path)+2) < 0) {
 PRINTF("Error from connect\n");
 SDL_Halt();
 }
 FD_ZERO(&readfds);
 FD_SET(Connection_Socket,&readfds);
 if (0 < select(getdtablesize(), &readfds, (fd_set*)0,
 (fd_set*)0, &t)) {
 if (FD_ISSET(Connection_Socket, &readfds)) {
 addr_size =
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2751

Chapter 58 Building an Application
strlen(Connection_Socket_Addr.sun_path)+2;
 In_Socket = accept(Connection_Socket,
&Connection_Socket_Addr,
 &addr_size);
 }
 } else {
 PRINTF("\nError: Timed out\n");
 SDL_Halt();
 }
 }
 else if (FD_ISSET(Connection_Socket, &readfds)) {
 addr_size = strlen(Connection_Socket_Addr.sun_path)+2;
 In_Socket = accept(Connection_Socket,
&Connection_Socket_Addr,
 &addr_size);
 FD_ZERO(&readfds);
 FD_SET(1,&readfds);
 if (0 < select(getdtablesize(), &readfds,
 (fd_set*)0, (fd_set*)0, &t)) {
 if (FD_ISSET(1, &readfds)) {
 (void)gets(TmpStr);
 sscanf(TmpStr, "%s", TmpStr);
 sprintf(Connected_Socket_Addr.sun_path,
"/tmp/Phone%s",
 TmpStr);
 Connected_Socket_Addr.sun_family = PF_UNIX;
 if (connect(Out_Socket, (struct sockaddr
*)&Connected_Socket_Addr,
 strlen(Connected_Socket_Addr.sun_path)+2) <
0) {
 PRINTF("Error from connect\n");
 SDL_Halt();
 }
 }
 } else {
 PRINTF("\nError: Timed out\n");
 SDL_Halt();
 }
 }
 } else {
 PRINTF("\nError: Timed out\n");
 SDL_Halt();
 }

 PRINTF("\n\n************ Welcome to SDT Phone System
************\n");
 PRINTF("\nphone -> ");
}

/*---+---
 xCloseEnv extern
---*/
#ifndef XNOPROTO
 void
xCloseEnv(void)
#else
 void
xCloseEnv()
#endif
{
 close(Out_Socket);
 close(In_Socket);
 unlink(Connected_Socket_Addr.sun_path);
 unlink(Connection_Socket_Addr.sun_path);
 PRINTF("\nClosing this session.\n");
}

2752 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Appendix D: The Environment Functions
/*---+---
 xInEnv extern
---*/
#ifndef XNOPROTO
 void
xInEnv(SDL_Time Time_for_next_event)
#else
 void
xInEnv(Time_for_next_event)
 SDL_Time Time_for_next_event;
#endif
{
 struct timeval t;
 fd_set readfds;
 char *Instr;
 int NrOfReadChars;
 char SignalName = ’\0’;
 xSignalNode yOutputSignal;
 int i = 0;
 char chr = ’\0’;

 t.tv_sec = 0;
 t.tv_usec = 1000;
 FD_ZERO(&readfds);
#ifndef XMONITOR
 FD_SET(1,&readfds);
#endif
 FD_SET(In_Socket,&readfds);
 if (select(getdtablesize(),&readfds,0,0,&t) > 0) {
#ifndef XMONITOR
 /*SDL-signal TermInput */
 if FD_ISSET(1, &readfds) {
 Instr = (char *)xAlloc(132);
 Instr[0]=’L’;
 Instr++;
 (void)gets(Instr);
 yOutputSignal = xGetSignal(TermInput, xNotDefPId, xEnv);
 xAss_SDL_Charstring(
 &((yPDP_TermInput)(OUTSIGNAL_DATA_PTR))->Param1, --
Instr,XASS);
 SDL_Output(yOutputSignal, (xIdNode *)NIL);
 xFree((void**)&Instr);
 }
#endif
 if FD_ISSET(In_Socket, &readfds) {
 Instr = (char *)xAlloc(151);
 do {
 read(In_Socket, &chr, 1);
 Instr[i++] = chr;
 } while (chr!=’\0’);
 sscanf(Instr, "%c", &SignalName);

 if (SignalName == ’M’) {
 /* SDL-signal Message */
 yOutputSignal = xGetSignal(Message, xNotDefPId, xEnv);
 sscanf(
 Instr+1,
 "%d %x%n",
 &(((yPDP_Message)(OUTSIGNAL_DATA_PTR))-
>Param2.GlobalNodeNr),
 &(((yPDP_Message)(OUTSIGNAL_DATA_PTR))-
>Param2.LocalPId),
 &NrOfReadChars);
 xAss_SDL_Charstring(
 &((yPDP_Message)(OUTSIGNAL_DATA_PTR))->Param1,
 (Instr+NrOfReadChars+2),XASS);
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 2753

Chapter 58 Building an Application
 SDL_Output(yOutputSignal, (xIdNode *)NIL);
 }
 else if (SignalName == ’T’) {
 /* SDL-signal Terminate */
 yOutputSignal = xGetSignal(Terminate, xNotDefPId,
xEnv);
 sscanf(
 Instr+1,
 "%d %x",
 &(((yPDP_Terminate)(OUTSIGNAL_DATA_PTR))-
>Param1.GlobalNodeNr),
 &(((yPDP_Terminate)(OUTSIGNAL_DATA_PTR))-
>Param1.LocalPId));
 SDL_Output(yOutputSignal, (xIdNode*)0);
 }
 xFree((void**)&Instr);
 }
 }
}

/*---+---
 xOutEnv extern
---*/
#ifndef XNOPROTO
 void
xOutEnv(xSignalNode *S)
#else
 void
xOutEnv(S)
 xSignalNode *S;
#endif
{
 char Outstr[150];

 /* SDL-signal Message */
 if ((*S)->NameNode == Message) {
 sprintf(Outstr,
 "M %d %x %.*s",
 ((yPDP_Message)((*S)))->Param2.GlobalNodeNr,
 ((yPDP_Message)((*S)))->Param2.LocalPId,
 strlen(((yPDP_Message)((*S)))->Param1),
 ((yPDP_Message)((*S)))->Param1);
 write(Out_Socket, Outstr, strlen(Outstr)+1);
 xReleaseSignal(S);
 return;
 }
 /* SDL-signal Terminate */
 if ((*S)->NameNode == Terminate) {
 sprintf(Outstr,
 "T %d %x",
 ((yPDP_Terminate)((*S)))->Param1.GlobalNodeNr,
 ((yPDP_Terminate)((*S)))->Param1.LocalPId);
 write(Out_Socket, Outstr, strlen(Outstr)+1);
 xReleaseSignal(S);
 return;
 }
 /* SDL-signal Display */
 if ((*S)->NameNode == Display) {
 sprintf(Outstr, "\ndisplay ->%.*s",
 strlen(((yPDP_Display)((*S)))->Param1),
 ((yPDP_Display)((*S)))->Param1+1);
 PRINTF(Outstr);
 PRINTF("\nphone -> ");
 xReleaseSignal(S);
 return;
 }
}
#endif
2754 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	58 Building an Application
	Introduction
	The Basic Idea
	Libraries

	Reference Section
	Representation of Signals and Processes
	Types Representing Signals
	Types Representing Processes
	The Symbol Table

	The Environment Functions
	System Interface Header File
	Structure of File for Environment Functions
	Functions xInitEnv and xCloseEnv
	Function xOutEnv
	Function xInEnv
	Alternative to OutEnv - Directive #EXTSIG
	Including the Environment Functions in the SDL System Design
	SDL Data Encoding and Decoding, ASCII coder
	Function xGlobalNodeNumber
	Program Structure

	Dynamic Errors

	Example Section
	The Example
	The SDL System
	Simulating the Behavior
	The Environment
	The Environment Functions
	Debugging

	Running the Application
	Where to Find the Example

	Appendix A: Formats for ASCII
	Appendix B: User defined ASCII encoding and decoding
	Appendix C: The SDL System
	Appendix D: The Environment Functions

