Rapid Development of Error-Free Architectural Simulators using Dynamic
Runtime Testing

Sasa Tomi¢ Adrian Cristal

Osman Unsal

Mateo Valero

Barcelona Supercomputing Center, Spain
{firstname.lastname } @bsc.es

Abstract

Architectural simulator platforms are particularly com-
plex and error-prone programs that aim to simulate all
hardware details of a given target architecture. The devel-
opment of a stable cycle-accurate architectural simulator
can easily take several man-years. Discovering and fixing
all visible errors in the simulator often requires significant
effort, much higher than for writing the simulator in the first
place. In addition, there are no guarantees that all pro-
gramming errors will be eliminated, no matter how much
effort is put into it.

This paper presents dynamic runtime testing, a method-
ology for rapid development and accurate error detection
in architectural cycle-accurate simulators. In dynamic run-
time testing, the simulator execution is dynamically com-
pared with a simple and functionally equivalent emulator.
A possible error is detected if any instruction produces dif-
ferent results in the simulator and the emulator.

Dynamic testing can help the developers of architectural
simulators to get a reliable and accurate verification of
functional correctness. Based on our experience, dynamic
testing reduced the simulator modification time from 12-
18 person-months to 3-4 person-months, and it only mod-
estly reduced the simulator performance (in our case under
20%).

1. Introduction

The proposals for hardware changes are typically first
implemented and evaluated on architectural cycle-accurate
simulators. These simulators aim to accurately represent
the functionality, the interaction, and the timing of all func-
tional blocks of the real hardware. As such, architectural
simulators are typically very complex and error-prone. A
non-working simulator can unnecessarily delay the evalua-
tions of architectural proposals. Incorrect simulator evalua-
tions can take future product development in a wrong direc-

tion, or create other unnecessary development costs. Simu-
lator developers often invest significant effort in thoroughly
testing and verifying the simulators, attempting to confront
the errors.

It is commonly estimated by many hardware and soft-
ware companies that verification will take between 50 and
70 percent of the total product cost [6, 8]. For large or
mission-critical projects, verification can take as much as
90 percent of the total cost. Verification and debugging are
often seen as the most difficult problems in today’s complex
hardware and software systems. This is especially the case
with the products that require continual modifications both
before and after being released. Traditional testing methods
(for example, unit testing [11]) require a significant amount
of programming effort to provide good confidence in sim-
ulator correctness. However, architectural simulators are
often changed rapidly and extensively, used to evaluate a
certain idea or approach, and after that the changes are dis-
carded. Thus, testing of architectural simulators is often
performed irregularly and unsystematically.

In contrast with simulators, architectural emulators (for
example, QEMU [1]) are not concerned with the details of
hardware architecture. The functionality of the emulators
typically consists of: (1) decoding instructions, (2) execut-
ing them, and (3) updating the simulated memory. The ob-
jective of the emulators is to provide the functional equiv-
alent of the target architecture and not to provide the per-
formance estimates for the target architecture. Emulators
are typically used to make virtual machines and to do cross-
platform software development. Since emulators are much
simpler than the simulators, they are generally easier to de-
bug and validate than simulators and, therefore, much more
stable. Still, executions on an architectural simulator and an
emulator have to produce identical final results.

In this paper, we present a technique for discovering the
unintentional functional errors, or bugs, in the architectural
cycle-accurate simulators. We propose a dynamic runtime
testing methodology, which leverages the execution of an
emulator to verify the functional correctness of the archi-
tectural simulator. The key idea of dynamic testing is to

execute the simulator and the emulator side-by-side, and to
compare their execution as often as possible, preferably af-
ter every instruction execution. Any difference in their ex-
ecution indicates a possible bug in the simulator and needs
to be carefully examined. The functional correctness of the
simulator is tested dynamically during entire simulator exe-
cution, in every simulator execution, and during entire sim-
ulator lifetime. In Section 2, we explain how dynamic test-
ing can be applied to practically any architectural simula-
tor, either to an entire simulator, or to a specific functional
block of the simulator. Then we show several use cases of
the methodology: hardware transactional memory, coherent
multi-level caches, and out-of-order processors.

After dynamic testing reports a potential bug, a simula-
tor developer has enough data to find it and fix it, quickly
and efficiently. In Section 3, we explain our preferred de-
bugging methods — execution tracing and an interactive de-
bugger tool.

In Section 4, we evaluate the performance impact of dy-
namic runtime testing, applied to the cycle-accurate simu-
lators of coherent multi-level caches and Hardware Trans-
actional Memory (HTM). The overhead of dynamic testing
is modest (10-20%) in our implementations, since the base
simulators of caches and HTMs are much more complex
than their functionally equivalent emulators. The overhead
of dynamic testing could be even smaller than in our im-
plementations, if a highly complex base simulator (e.g., a
pipelined out-of-order architectural processor simulator) is
dynamically tested with a well-optimized architectural em-
ulator. While fast cycle-accurate architectural simulators
can simulate around 2 MIPS (million instructions per sec-
ond), their functionally equivalent emulators can even pro-
vide a near-native execution speed [1]. Even if we assume
a 10 times slowdown in an emulator, on a modern machine
this is more than 1000 MIPS, which is 500 times faster than
the complex base simulator. Thus, the overhead of such a
configuration could be less than 1%.

In Section 5, we share our experiences with using dy-
namic testing. Dynamic testing helped us to rapid develop,
testing, and verify several architectural cycle-accurate sim-
ulators. Consequently, our simulator development became
more productive and more efficient. In particular, dynamic
testing provided us the following advantages over other sim-
ulator testing methods:

1. Faster simulator testing, since we did not need to create
a complex and extensive test suite,

2. Faster simulator debugging, since we could pinpoint a
precise moment and the circumstances that lead to a
bug, instead of only discovering that a bug appeared,
and

3. Faster simulator development, since we had more con-
fidence and freedom to develop the simulator, knowing

f

_.-~assert™.

input

simple
emulator
(without timing)

detailed cycle-accurate
simulator

output input

'.«"‘asserf“-,‘

..equal .-

... dynamic
testing l

Figure 1. An overview of dynamic testing.
The tested simulator (black) and the function-
ally identical emulator (red) have to be pro-
duced the same output during entire simu-
lator execution. Any difference indicates a
likely bug.

that any introduced bug will immediately appear.

In addition, the method could help to recover the simulator
from a certain type of bugs, by falling back to the execu-
tion results of the emulator. This can improve the overall
reliability of the simulator (although not its correctness).

Dynamic runtime testing is related to the classical back-
to-back software-testing methodology [14]. Classical back-
to-back testing consists of comparing the execution of two
independent and functionally equivalent programs. The
programs are compared: (1) statically (for example, by
reading the source code), (2) with specially designed func-
tional test cases, and (3) with random test cases. However,
in back-to-back testing methodology the developers need
to dedicate significant time to creating a large collection of
test cases. In contrast, dynamic runtime testing is a small
and one-time development effort.

2. Detecting Bugs Using Dynamic Testing

Conventional debugging methods help discover how and
why a bug occurred, but offer very little help to discover
whether and where a bug occurred. Assertions [7] in the
program may detect some bugs. However, not only they
pollute the source code and require a significant effort from
the developer, but they also catch only the execution cases
which the developer believes are definitely incorrect. In ad-
dition, an assertion may fail millions of cycles after a bug
occurred, and the bug could have propagated through many

intermediate values.

If an assertion failed, or the execution gives an incorrect
result, the developer becomes aware of a bug. However,
he could start looking for the bug anywhere in the recent
execution. To find the bug fast, a developer has to rely on his
intuition and on his previous programming and debugging
experience. Therefore, finding bugs is often seen more of
an art than a science.

The simulators are used for developing and evaluating
novel hardware designs, and this adds to the simulators an
additional source of bugs. A flaw in the hardware design can
cause incorrect simulator functionality, similarly to an ordi-
nary software bug. However, subtle hardware design bugs
are often uncovered only in a detailed hardware simulation.

A particular complexity of finding bugs is that many
bugs appear benign at the moment they happen (for exam-
ple, a value is 2 instead of 3), and may (or may not) affect
the execution millions of instructions later. A wrong vari-
able value may affect the execution in different ways. The
execution may: (1) fail, (2) terminate with the incorrect re-
sult, or (3) terminate with the correct result. The bugs that
do not manifest, that is, where executions still correctly ter-
minate, are the most difficult to detect. This kind of bugs
is equally important, since wrong values might make an ex-
ecution shorter or longer than it should be (for example,
wrong number of loop iterations).

Dynamic testing (illustrated in Figure 1) can help dis-
cover whether and where a functional bug in the simulator
occurred. It can be applied both to the entire simulator (ex-
ample in Section 2.4), or only a certain functional block
of the simulator (examples in Sections 2.1 and 2.2). Dy-
namic testing consists of comparing the outputs of a func-
tional block of a simulator, with the outputs of a function-
ally equivalent emulator of the same block. The compari-
son is done with every executed operation, and all outputs
have to be identical. Although any type of output from a
block can be compared, we were comparing the values of
the memory accesses.

The procedure for implementing dynamically testing is
the following. Emulator integration. We make and inte-
grate a functionally-equivalent emulator of the tested func-
tional block. The block emulator should not provide any
timing estimations, and instead it should focus on being
simple, well performing, and functionally correct. Emu-
lator validation. We disable the block simulator and redi-
rect its input (e.g., operations and memory values) to the
block emulator. All applications should terminate correctly
with the emulator, without giving any errors or warnings.
Simulator-emulator comparison. Finally, we re-enable
the block simulator and share its input with the block emu-
lator. In our implementations, we sequentially execute each
operation with the block simulator and then on the block
emulator, giving them the same input. We were not ex-

ecuting the simulator and the emulator in parallel (multi-
threaded), although it can be done. Parallel execution would
unnecessarily complicate the code in our case and would
not significantly change the simulator performance. If there
is any difference in the output from the dynamically tested
functional block of the simulator and the emulator (e.g.,
they write different values to memory), the simulator has to
notify the developer and provide an exact state when the dif-
ference appeared. If there is no difference, a developer has
high confidence that his simulator-based evaluations were
functionally correct. In this case, any potentially remaining
bugs in the simulator did not manifest in the executions.

It is possible that some bugs remain in the emulator af-
ter the emulator-validation phase. However, the bugs in the
simulator and the emulator will most likely produce dif-
ferent outputs at some point of the executions, in the later
phase of simulator-emulator comparison. These uncommon
bugs can be eliminated in this phase.

In the following sections, we demonstrate dynamic test-
ing with several real-world use cases.

2.1. Use Case:
Memory

Hardware Transactional

In our past work, our group implemented and evalu-
ated several proposals for Hardware Transactional Memory
(HTM). Transactional Memory [5] is an optimistic concur-
rency mechanism, which allows different threads to execute
speculatively the same critical section, in a “transaction”. In
case a speculation is successful, the transaction “commits”.
Otherwise, we say that there is a conflict between transac-
tions, and the transaction is aborted — that is, the speculative
changes are rolled back and the transaction is re-executed.

The most bug-prone part in our HTM implementations
was the clearing of speculative states for cache lines, during
transaction commit and abort procedures. For better per-
formance or efficiency, an HTM implementation may par-
tially clean the speculative states [10], or to group-change
the permissions of all speculatively modified lines [4]. Our
simple HTM emulator has to avoid the complexity of these
proposals and to provide a correct, reference HTM imple-
mentation. Figure 2 illustrates one solution. We store spec-
ulatively modified cache lines in a map from the C++ Stan-
dard Template Library (STL), and the speculative reads in
an STL set. The STL map associates a cache line address
with a copy of cache line data. The STL map and STL set
have practically unlimited capacity, and this further simpli-
fies the HTM emulator. All HTM emulator operations are
performed instantly and reliably.

The presented simple HTM emulator can be used to test
HTMs with both eager and lazy version management, since
all HTMs satisfy the following two invariants. First, all
reads have to return either: (1) the last value speculatively

processor core

1 read /| write, begin tx
/| abort tx, commit tx
.--"assert .,
______ > s
PP ..equal .~
output input e loutput input

simple HTM emulator
without timing

cycle-accurate HTM
timing simulator

‘ STL set ‘ STL map read set | write set |
o input KT T write/commit A1 read
Tt (output) (input)

_... dynamic testing

extensions shared memory

Figure 2. Dynamic runtime testing applied
to HTMs. All reads are compared between
the HTM simulator and the HTM emulator,
and must return the same value. Optionally,
writes/commits could be compared as well.

written in the current transaction, or (2) the non-speculative
value speculatively written outside of a transaction. Second,
the non-speculative writes to the shared memory have to be
equal to either: (1) a speculative value that a transaction
commits, or (2) a non-speculative value written outside of
a transaction. It was sufficient for us to test only the values
of memory reads. Figure 3 shows the pseudo-code of our
implementation of dynamic testing for HTMs.

During the execution, a simulated processor core sends
(1) the memory accesses and (2) the transactional events, to
both the HTM simulator and the HTM emulator. The value
of every read is compared between the two HTMs, and any
difference indicates a likely bug in HTM simulator, and is
logged together with more details on the simulator state (for
example, simulator clock). Based on these logs, the devel-
oper can debug the simulator, knowing the location and the
time the potential bug appeared. After eliminating the bug,
he needs to repeat the evaluations and check for remaining
or newly created bugs. The process is repeated until dy-
namic testing reports an execution without any difference
between the HTM simulator and the HTM emulator. At this
point, any potentially remaining simulator bugs do not im-
pact the simulator functionality. The timing estimation of
the simulator may still be incorrect, since dynamic testing
does not guarantee the detection of timing estimation bugs.

2.2. Use Case: Coherent Multi-level Caches

Coherent multi-level caches are functionally simple, al-
though implementation-wise they can be very complex. The

TRANSACTIONAL READ

data = HTM.write_set[txid].get(addr) or caches.get(addr)
data_functional = FunctionalHTM.write_set[txid].get(addr) or shr_mem.get(addr)
if (data_functional != data) {

FATAL_ERROR("incorrect HTM value: %x instead of %x", data, data_functional);
// also print the simulator cycle, state, and the accessed address, and then exit

TRANSACTIONAL WRITE

if not HTM.write_set[txid].has(addr):
HTM.write_set[txid].fetch_from_caches(addr)

HTM.write_set[txid].update(addr) with data

if not FunctionalHTM.write_set[txid].has(addr):
FunctionalHTM.write_set[txid].fetch_from_shr_mem(addr)

FunctionalHTM.write_set[txid].update(addr) with data

ABORT

FunctionalHTM.abort_instantly(txid) //instantly clears the write_set & restarts
HTM.initiate_abort(txid) // rollback & restart; may take many cycles

COMMIT

FunctionalHTM.abort_conflicting_transactions(txid) // detect & resolve conflicts
FunctionalHTM.commit_to_shr_mem(txid) //instantly publishes specul. changes

// regular HTM: starts conflict detection/resolution/committing specul. changes

// this may take many cycles
HTM.initiate_commit(txid)

Figure 3. Pseudocode of the actual imple-
mentation of dynamic testing for HTM

bugs usually appear in the coherence protocol, which causes
an incorrect value to appear in the system, and eventually be
written back to the simulator main memory.

In dynamic testing methodology, we test the following
invariants: (1) every read from a location needs to return
the last value written (non-speculatively) by any core to the
same location, and (2) every write-back from the caches to
the simulator memory needs to have the last written value.
The given invariants are satisfied at all times, by all types
of coherent caches: bus-based, directory-based, broadcast-
based or other, with any cache-interconnection topology
and interconnection type.

Figure 4 illustrates the application of dynamic testing to
coherent multi-level caches. The simple cache emulator
consists of a single data structure, an STL map, accessed
by all processor cores. The cycle-accurate simulator for
the coherent multi-level caches is a collection of C++ ob-
jects (one object per cache structure) that: (1) track the ac-
cess mode and the ownership of the cache lines, (2) track
the values (data) of the cache lines, and (3) calculate the
access latency of each access. The objects of the cycle-
accurate cache simulator communicate by exchanging mes-
sages, and each communication increments the total latency
of the cache access. For testing the cache access latency,
we used an extensive set of unit tests, since dynamic testing
tests only the functional correctness.

The memory accesses are sent from the processor to the
cache simulator and the emulator. If the cache simulator or
the emulator do not have the requested line, they fetch it
from the main memory of the simulator, which always has

processor core(s)

T read write

assert™.

input

cycle-accurate :

output ! y"linput 1 s cohe_rent
Sabhbtbbbtbbbtb bt . : multi-level
: : \ caches
A
interconnect
output Ainput

Last Level Cache

tine eviction initial line read
. - | (output) (input)

L-+“assert ..
R > —
*..equal .-

_... dynamic testing C g
extensions l

simulator memory

Figure 4. Dynamic runtime testing applied to
coherent multi-level caches. The cache lines
fetched and evicted by the (1) the cache em-
ulator (STL map) and (2) the cycle-accurate
coherent caches, must have the same value.

all cache lines.

In Figure 5, we show the pseudo-code of our implemen-
tation of dynamic testing for the cache simulator. A read
returns the requested value and checks that the value is the
same in both the simulator and the emulator. A write up-
dates the values in two caches without doing any checks.
If the cache simulator needs to evict a line, the same loca-
tion is also removed from the cache emulator, and the data
in the two cache lines are checked to be identical. If the
data is identical, it is stored in the simulated main mem-
ory. Otherwise, the difference is reported to the developer
since it indicates a probable bug in the implementation of
the coherent multi-level caches. Having the exact point of
the execution where the difference appeared, the debugging
of the cache-coherence protocol is much simpler.

2.3. Use Case: Out-of-Order Simulator

Dynamic testing can also be applied to the entire cycle-
accurate Out-Of-Order (OOO) processor simulator. The
biggest problem with the OOO processor simulators are
their hard-to-find bugs which occasionally appear, some-
times in particularly long simulations. Worse than that is
that these bugs may affect the execution millions of in-
structions after they happen, thus making debugging almost
impossible. Dynamic testing could detect these bugs in-
stantly, as they happen. In Figure 6, we present a schematic

READ

// cycle-accurate cache simulator. Multi-level
data = processor[cpuid]->L1->read_data(address, size, &latency);

// cache emulator. Single-level
data_functional = functional_cache.read_data(address, size);
if (data_functional != data) {

FATAL_ERROR("incorrect cache value: %x instead of %x", data, data_functional);
// also print the simulator cycle, state, and the accessed address, and then exit

WRITE

// cycle-accurate cache simulator. Multi-level
processor[cpuid]->L1->write_data(address, size, data, &latency);

// cache emulator. Single-level
functional_cache.write_data(address, size, data);

LINE EVICT (from the last-level-cache, LLC)

// LLC evicts the line with address "address" and data "data"
data_functional = functional_cache.read_data(address, size);
if (data_Ffunctional != data) {

FATAL_ERROR("incorrect data in evicted line address: %x", address);
// also print the simulator cycle, state, and the accessed address, and then exit

Figure 5. Pseudocode of the dynamic testing
for the coherent multi-level caches

overview of a proposed dynamic testing configuration for
the OOQO simulators.

This use case is slightly different from previous exam-
ples of dynamic testing, since here we have only one input
and one output. Still, the dynamic testing can be applied the
same way as in the previous examples. To dynamically test
the OOO simulator, we can compare its memory writes with
the memory writes of a processor emulator. Having identi-
cal memory writes during the entire simulation provides a
strong confidence in the correctness of the cycle-accurate
00O processor simulator.

Since processor emulators are much faster than the
cycle-accurate OOO simulators (two or more orders of mag-
nitude), the dynamic testing should not significantly affect
the speed of the simulator. Cycle-accurate OOO simulators
are inherently slower from the emulators since they sim-
ulate the functionality and the interaction of all hardware
elements physically present in OOO processors, while pro-
cessor emulators typically only decode instructions, execute
them, and then update the simulated memory.

2.4. Other Use Cases

Similarly to the given examples of dynamic testing, the
same principle could be used to improve the functional cor-
rectness of other cycle-accurate hardware simulators, and
to simplify their debugging without significantly reducing
their performance. In general, a tested hardware simula-
tor should evaluate an extension or a modification repre-
sentable by a simple, functional emulator. For example,
dynamic runtime testing can be used for: single-processor
multi-level memory hierarchy, incoherent multi-level mem-

T Fetch | ROB |
read -
(input) : Decode
___________________ ' Execute .
i simple processor : Writeback cycle-accurate
i emulator H out-of-order
LS —— R / ; processor
input A \ output Commit simulator
"""""" writeback
(output)
* assert"\:
.equal .-
read
. dynamic testing

xtension .
extensions simulator memory

Figure 6. Dynamic runtime testing applied to
the entire Out-of-Order simulator.

ory hierarchy, system-on-chip simulators, on-chip routing
protocols, or pipelined processors.

3. Finding and Fixing Simulator Bugs

After dynamic testing reports a potential bug in the simu-
lator, a developer needs to find the source of the bug (or de-
bug) the simulator using conventional debugging methods.
Common debugging methods are: (1) using a conventional
debugging tool, or a debugger, for example gdb [12], and
(2) execution traces.

Debugger allows a developer to stop the simulator ex-
ecution at the moment he finds the most appropriate, and
then to examine the state of the simulator memory and the
architectural registers. This allows the developer to explore
the simulator state in details, and even to test the output of
particular simulator functions, or to set some memory val-
ues manually. Debuggers in general have a property of ad-
vancing “forward in time”. Unfortunately, this means that if
a developer misses the point of failure, he generally has to
stop the simulator execution, restart it, and then wait until
the execution comes to the same point.

Although not necessary for debugging, a checkpoint sup-
port in gdb [13] helps for debugging long simulator exe-
cutions. Checkpointing allows a developer to save a snap-
shot of the simulator state, and to restore it later. Restor-
ing a checkpoint rolls back the simulator execution to a
point where the checkpoint was made (excluding the in-
put/output operations). Effectively, restoring a checkpoint
allows a developer to go back in time and avoid a com-
plete re-execution of the simulator. However, the devel-
oper still needs to make a checkpoint at the right moment
of execution. Gdb internally implements checkpoints by

“fork”’ing the execution, and currently the use of check-
points is not recommended for debugging multi-threaded
programs. Since most architecture simulators (including
our simulator) are single-threaded, this is not an issue.
However, given the increasing popularity of multi-core plat-
forms, the future versions of gdb will likely improve their
support for debugging multi-threaded programs.

Trace-based debugging consists of instrumenting the
simulator code, in order to print to a trace file a part of sim-
ulator context important to the developer. The developer in-
struments the code while he is developing the simulator. If a
developer during debugging realizes that he needs more in-
formation from what he has in the trace, he needs to change
the simulator code and re-execute the complete simulation.
This makes the trace-based debugging somewhat more rigid
from a debugger-based debugging, since a developer cannot
stop the execution at some point and analyze the simulator
execution more deeply. On a positive side, the trace-based
debugging naturally allows a developer to analyze applica-
tion execution forward and back in time.

Traces may contain any amount of information, although
a developer needs to take care and make a careful balance
between: (1) the readability of traces, (2) the amount of in-
formation in the traces, and (3) the size of the traces. Printed
trace lines are usually stored in files, to facilitate the poste-
rior analysis of the execution. Due to the common length of
simulations, trace files can easily occupy tens or hundreds
of gigabytes. Therefore, the developer needs to have a good
knowledge of text processing tools, and having fast devel-
opment machines.

In our development, we typically combined the two de-
bugging methods, by starting with tracing, and switching to
the debugger as needed, for more difficult bugs. After our
dynamic testing reports a possible bug, that is, an incorrect
value of a variable (say, X), we turn on verbose tracing and
re-execute the simulation. To find earlier uses of the loca-
tion X, we analyze the traces from the given execution point
backwards. A bug typically occurs in the last access to X,
and less frequently it occurs 2-3 accesses before. A bug of-
ten becomes obvious after analyzing the memory accesses
and the simulator events, and fixing the bug is usually a sim-
ple task. To use a debugger, we can make a debugger check-
point right before the bug, since we know exactly where the
bug appeared in the execution. After finding the bug and
fixing it, it is desirable to re-run the entire benchmark suite,
since fixing the bug might uncover or create other bugs.

4. Evaluation

In this section, we show the performance impact of dy-
namic testing on simulator performance (execution time).
We have used the M5 full-system simulator [2] as a base
architectural simulator, and extended it to implemented

I With cache testing [T With HTM and cache testing

i 1.4
1S
S 12 ||
s
2 10 -
=}
@ 08 |
x
[0}
s 06 -
N
= 0.4 1
©
g 0.2 -
o
=2

0.0 L

1 2 4 8 16 32
Simulated processor cores

Figure 7. Dynamic testing impact to the sim-
ulator speed during Operating System (OS)
booting. The average simulator speed is nor-
malized to the one without dynamic testing.

MESI-directory coherent multi-level caches, and several
HTM proposals.

We carried out all simulations on modern Intel Xeon
X86_64 processors, taking care of minimizing the I/O and
other system calls, which may non-deterministically affect
the simulator performance. As a result, all simulator ex-
ecutions have more than 98% CPU utilization on average.
We have measured the execution time of the simulator for
all applications from the STAMP transactional benchmark
suite [3], and for 1, 2, 4, 8, 16, and 32 simulated proces-
sor cores. The simulator is single-threaded, and to simulate
multi-core processors, the simulator sequentially processes
events of each simulated processor core or device. We have
repeated each execution three times to reduce the effect of
wrong measurements in single executions caused by ran-
dom, uncontrollable events, and then calculated an average
execution time.

Figure 7 shows the impact to the time needed to simulate
the booting of the Operating System. We have grouped the
simulator executions by the simulated number of proces-
sor cores, normalized the execution time to the simulator
without dynamic testing, and then calculated the geometric
mean. The results indicate that dynamic testing reduces the
simulator speed by 20% on average, with a very small stan-
dard deviation. Since there are no transactions during the
booting of the OS, there is almost no penalty for doing the
empty calls to the HTM testing code.

Figure 8 shows the performance impact of dynamic test-
ing during application execution. We have grouped the sim-
ulator executions by the simulated application, normalized
the execution time to the simulator without dynamic test-
ing, and then calculated the geometric mean. According to
the evaluation, dynamic testing reduces the execution time
between 10% and 20%, which is relatively less than dur-
ing the OS booting. The reason is that the basic simulator is

I With cache testing [With HTM and cache testing

1.2 F

Normalized execution time

Simulated application

Figure 8. Dynamic testing impact to the sim-
ulator speed during application execution.
The average simulator speed is normalized to
the one without dynamic testing.

now more complex and simulates an HTM protocol. We can
see that, while dynamic HTM testing does introduce some
overhead, the total increase in the simulator execution time
is generally below 20%.

In both testing examples, dynamic runtime testing would
extend a 10 hour simulation to less than 12 hours on aver-
age. Taking into account that writing the simulator and the
simulator test suite may take many person-months, we con-
sider the performance impact of dynamic testing to be more
than acceptable.

S. Our Experience With Dynamic Runtime
Testing

It is commonly believed that the earlier a defect is found,
the cheaper it is to fix it [9]. Our experience is certainly in
accordance with this popular belief. We have developed the
dynamic testing methodology out of necessity. Making a
cycle-accurate architectural simulator is certainly not easy
and, as any other software development, it is very prone to
errors.

The original cache coherence protocol in M5 simulator is
bus-based, which does not scale well beyond 8 cores (or 16
cores as a maximum). We have replaced the base M5 cache
coherence with MESI directory-coherence protocol, known
to scale well even with more than 64 processor cores. Our
directory-based coherent caches hold both line addresses
and data, which means that a bug in the cache-coherence
protocol would cause wrong data to be provided by caches.
Thanks to using dynamic testing, we were able to complete
the implementation of caches in under 3 months, and to
have much stronger confidence in the correctness of our im-

plementation.

For our first two HTM simulators, we implemented did
not rely on the dynamic testing methodology. The target of
the two simulators was validating the results presented by
LogTM [10] and TCC [4]. After more than 12 man-months
spent on simulator development we had to cancel the de-
velopment, since some simulations were still not terminat-
ing correctly, or were giving wrong results. The execution
traces had hundreds of gigabytes, and finding errors in them
was nearly impossible.

Dynamic testing methodology in our following simula-
tors allowed us to significantly reduce the time needed to
transition from an idea to getting the evaluation results. The
benefits from dynamic testing are two-fold. First, since we
knew exactly where a bug appeared in the simulator exe-
cution, we could quickly detect and eliminate all obvious
simulator bugs. This reduced the simulator development
time from 12-18 man-months to 3-4 man-months. Second,
dynamic testing methodology improved our confidence in
the results of our evaluations, since we had a proof that our
HTM simulators were functionally correct.

Three of our HTM simulators have lazy version man-
agement and one has eager version management. Although
the functionality of these HTMs is different, they all have
similar functional-HTM equivalents. A fundamental differ-
ence between the eager and the lazy HTM is the decision on
when to abort a conflicting transaction. In both implementa-
tions, a transaction can keep its speculatively modified val-
ues private, in a per-transaction buffer, and these speculative
values can become public when the transaction commits.

6. Conclusions

To increase the stability of cycle-accurate architectural
simulators, developers often put at least as much effort in
testing and debugging, as in writing the code. Still, errors
may occur in the simulators even with the most rigorous
testing. Tests rarely cover whole 100% of the source code,
and even more rarely 100% of all possible execution paths.
The number of the possible combinations of execution paths
grows nearly exponentially with the size of the source code
(assuming that a number of conditional branches is constant
over the source code).

Academic development of architectural simulators is
in even more difficult situation than the industrial. In
academia, the development teams working on simulators
are much smaller than in the industry, and the simulator
changes and evaluations are typically done quickly and with
short deadlines. This discourages these development teams
from writing extensive test suites for the simulators. As a
consequence, if the tests exist, they are typically sparse and
unsystematic.

Dynamic runtime testing is an alternative approach,
where the functional correctness of the simulator is verified
automatically with every simulator execution. This allows
developers to change the simulator rapidly, and still be able
to find bugs quickly and be confident that the simulator ex-
ecutes correctly. The simulator reports any potential bugs,
together with the exact time and the circumstances that lead
to the bug. The method imposes a minor reduction in sim-
ulator performance and, in our case, we have managed to
reduce the total time for simulator development and evalua-
tion from 12-18 person-months to 3-4 person-months.

References

[1] F. Bellard. Qemu, a fast and portable dynamic translator. In
Proceedings of the USENIX Annual Technical Conference,
FREENIX Track, pages 41-46, 2005.

[2] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and
S. Reinhardt. The M5 simulator: Modeling networked sys-
tems. IEEE Micro, 26(4):52-60, 2006.

[3] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi-
processing. In IISWC °08: Proceedings of The IEEE
International Symposium on Workload Characterization,
September 2008.

[4] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen,
C. Kozyrakis, and K. Olukotun. Transactional coherence
and consistency: Simplifying parallel hardware and soft-
ware. IEEE Micro, 24(6), Nov-Dec 2004.

[5] T. Harris, J. Larus, and R. Rajwar. Transactional Memory,
2nd Edition. Morgan and Claypool Publishers, 2nd edition,
2010.

[6] M. J. Harrold. Testing: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering, ICSE
’00, pages 61-72, New York, NY, USA, 2000. ACM.

[7] C. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576-580, 1969.

[8] R.Jindal and K. Jain. Verification of transaction-level sys-
temc models using rtl testbenches. In Formal Methods and
Models for Co-Design, 2003. MEMOCODE’03. Proceed-
ings. First ACM and IEEE International Conference on,
pages 199-203. IEEE, 2003.

[9] C. Kaner, J. Bach, and B. Pettichord. Lessons learned in
software testing: a context-driven approach. Wiley, 2002.

[10] K. E.Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In In pro-
ceedings of the HPCA-12, pages 254-265, Feb. 2006.

[11] P. Runeson. A survey of unit testing practices. IEEE Softw.,
23:22-29, July 2006.

[12] R. Stallman and R. Pesch. The gnu source-level debugger.
User Manual, Edition 4.12, for GDB version, 4.

[13] R. Stallman, R. Pesch, S. Shebs, et al. Debugging with GDB.
Free Software Foundation, 1993.

[14] M. Vouk. Back-to-back testing. Information and software
technology, 32(1):34—45, 1990.

