Changing the rules of business™

ILOG CPLEX 9.0
Getting Started

October 2003

Copyright © 1987-2003, ILOG, S. A. —All rights reserved.

Preface

Chapter 1

Table of Contents

Introducing ILOG CPLEX e 9
What IS ILOG CPLEX? . .. e 10
ILOG CPLEX COMPONENLSttt ettt e e e e e e e 11
OPtiMIZEr OPLIONSot e e e 12
Data Entry Options e e 13
Solving an LP with ILOG CPLEX o 13
Using the Interactive Optimizer e 14
Concert Technology for C++ USEISt e e e 14
Concert Technology for NET USEIS i e e e 15
Concert Technology for Java USers.ottt e 16
Using the Callable Library e e e e e 16
What You Need to KNOWo 18
What's in This Manual e 19
Notation in this Manual 19
Related DOCUMENTAtiONo 20
Setting Up ILOG CPLEX. e e 25
Installing ILOG CPLEX e 26
Setting Up LICENSING ..ot e 28
Using the Component Libraries e 28

ILOG CPLEX 9.0 — GETTING STARTED 3

CONTENTS

Chapter 2

Interactive Optimizer Tutorial i 33
Starting ILOG CPLEX 34
Using Help ..o 34
Entering a Problem 36
Entering the Example Problem 36
Usingthe LP Format e e e e e 37
Entering Data 39
Displaying a Problem. 40
Displaying Problem StatiStiCs. e 41
Specifying Item Ranges 42
Displaying Variable or Constraint Names 42
Ordering Variables e 43
Displaying CONSIraintsSo 44
Displaying the Objective Function e 44
Displaying BoUNAS 44
Displaying a Histogram of NonZero COoUNtS.ottt 44
Solving a Problem e 45
Solving the Example Problem e 45
SOIUtION OPLIONS. . . o .t 47
Displaying Post-Solution Information. 48
Performing Sensitivity Analysis e 49
Writing Problem and Solution Files 50
Selectinga Write File Format. e 51
Wrting LP Files . . .o e e 51
Writing Basis Files 52
Using Path Names 52
Reading Problem Files e 53
Selecting a Read File Format. e 53
Reading LP Files e 54
Using File EXIENSIONS.o e e 54
Reading MPS Files 55

ILOG CPLEX 9.0 — GETTING STARTED

Chapter 3

CONTENTS

Reading Basis Files 55
Setting ILOG CPLEX Parametersot e e e e e e e e 56
Adding Constraints and BouNdst 57
Changing a Problem 58
Changing Constraint or Variable Names 59
Changing SeNSe.o e 59
Changing BoUNdS. e 60
RemMoVINg BOUNAS e 60
Changing Coefficients e 61
Deleting . . ot 61
Executing Operating System Commandst 63
Quitting ILOG CPLEX e 63
Concert Technology Tutorial for C++Users 65
The Design of CPLEX in Concert Technology 66
Compiling and Linking ILOG CPLEX in Concert Technology Applications............ 67
Testing Your Installation on UNIDX e e 67
Testing Your Installation on WIindOws 67
InCase of Problems 67
The Anatomy of an ILOG Concert Technology Application 68
Constructing the Environment: lIOENV e 68
Creating a Model: lloModel e 69
Solving the Model: HoCpIeX e 71
QUENYING RESUIS . . . o 72
Handling ErrOrSo e 72
Building and Solvinga Small LP Model in C++. e 73
General Structure of an ILOG CPLEX Concert Technology Application 74
Modeling by ROWS e 75
Modeling by Columns. e 75
Modeling by Nonzero Elements 76
Complete Program 76
Writing and Reading Models and Files 80

ILOG CPLEX 9.0 — GETTING STARTED 5

CONTENTS

Chapter 4

Chapter 5

Selecting an Optimizer e 81
Reading a Problem from a File: Exampleilolpex2.cpp........... ... 82
Reading the Model from a File. e e e e 82
Selecting the OptimIzZer 82
Accessing Basis Information 82
Querying Quality MEaASUIESo e 83
Complete Program e 83
Modifying and ReOptimizingo e 86
Modifying an Optimization Problem: Exampleilolpex3.cpp 86
Setting ILOG CPLEX Parameterst e e 88
Modifying an Optimization Problem 88
Starting from a Previous Basis 88
Complete Program. e 88
Concert Technology Tutorial for JavauUsers. 91
Compiling ILOG CPLEX Applications in ILOG Concert Technology 91
IN Case Problems ArSet 92
The Design of ILOG CPLEX in ILOG Concert Technology. 93
The Anatomy of an ILOG Concert Technology Application......................... 94
Create the Model 95
Solve the Model 96
Querythe ReSUIS e 97
Building and SolvingaSmall LP ModelinJava............... ... 97
Modeling by ROWS oo 99
Modeling by ColUMNS.o 99
Modeling by NONZEroSo e 100
Complete Code of LPeXL.java.t e e 100
Concert Technology Tutorial for NETUsers. 105
What You Need to Know: Prerequisites.t 106
What YoOUu Will BE DOING . ..ot e e e e e 107
DesCribe. . o 107

ILOG CPLEX 9.0 — GETTING STARTED

Chapter 6

CONTENTS

MOl . . . 108
SOOIV e o 108
DS CribE 108
Building a Small LP Problem in C# e 109
MOl . . . 109
SOOIV Lo e 113
Example: LPeXd.CS. . ..o 115
Callable Library Tutorial. e 119
The Design of the ILOG CPLEX Callable Library 119
Compiling and Linking Callable Library Applications 120
Building Callable Library Applications on UNIX Platforms 121
Building Callable Library Applications on Win32 Platforms 121
Building Applications that Use the ILOG CPLEX Parallel Optimizers 122
HOW ILOG CPLEX WOIKSt e e e e e 122
Opening the ILOG CPLEX ENVIrONMENtt e e e 122
Instantiating the Problem Object e 123
Populating the Problem Object 123
Changing the Problem Object 123
Creating a Successful Callable Library Application. 124
Prototype the Model. 124
Identify the Routinestobe Called i 125
Test Procedures inthe Application i e e 125
Assemble the Data. e 125
Choose an OpPtIMIZEr e e 126
Observe Good Programming Practices e 126
Debug Your Program e 126
Test Your AppliCation. 127
Use the EXampPleso o e 127
Building and Solving a Small LP Model in C.......... 127
Complete Program 129
Reading a Problem from a File: Example lpex2.c 138

ILOG CPLEX 9.0 — GETTING STARTED 7

CONTENTS

Complete Program 139
Adding Rows to a Problem: Example Ipex3.C i 147
Complete Program e e 148
Performing Sensitivity Analysis e 153
.. 157

ILOG CPLEX 9.0 — GETTING STARTED

Introducing ILOG CPLEX

This preface introduces ILOG CPLEX 9.0. It includes sections about:
What Is1LOG CPLEX? on page 10

Solving an LP with ILOG CPLEX on page 13

What You Need to Know on page 18

What'sin This Manual on page 19

Notation in this Manual on page 19

O 0o o o o o

Related Documentation on page 20

ILOG CPLEX 9.0 — GETTING STARTED 9

WHAT Is ILOG CPLEX?

What Is ILOG CPLEX?

ILOG CPLEX isatool for solving linear optimization problems, commonly referred to as
Linear Programming (LP) problems, of the form:

Maximize (or Minimize) C1X1 + CoXo +...+ cpXp
subject to a1Xq + aq1oXo +...+ ainXn -~ bl
Ao1X1 + ApXp F.t QX ~ by

Am1Xy + AmpXe t.ot @mpXp ~ by
with these bounds 1 <x1=Uq

where ~ can be <, 2, or =, and the upper bounds u; and lower bounds I; may be positive
infinity, negative infinity, or any real number.

The elements of data you provide asinput for thisLP are:
Objective function coefficients €1, Cy, «ov, Cpy

Constraint coefficients a1, A1, -.-, Ay

amn1, Am2,s - Ay
Right-hand sides by, by, ..., by

Upper and lower bounds Uy, Uy, ..., Ugandly, Iy, ooy Iy

The optimal solution that ILOG CPLEX computes and returnsis:

Variables X1, Xo, vy X

ILOG CPLEX dso can solve severa extensionsto LP;

0O Network Flow problems, a special case of LP that CPLEX can solve much faster by
exploiting the problem structure.

0O Quadratic Programming (QP) problems, where the LP objective function is expanded to
include quadratic terms.

0O Quadraticaly Constrained Programming (QCP) problems that include quadratic terms
among the constraints.

10 ILOG CPLEX 9.0 — GETTING STARTED

WHAT Is ILOG CPLEX?

Mixed Integer Programming (M1P) problems, where any or all of the LP or QP variables
are further restricted to take integer valuesin the optimal solution and where MIPitself is
extended to include constructs like Special Ordered Sets (SOS) and semi-continuous
variables.

ILOG CPLEX Components

CPLEX comesin three forms to meet awide range of users needs:

ad

The CPLEX Interactive Optimizer is an executable program that can read a problem
interactively or from filesin certain standard formats, solve the problem, and deliver the
solution interactively or into text files. The program consists of thefile cpl ex. exe on
Windows platforms or cpl ex on UNIX platforms.

Concert Technology isaset of C++, Java, and .NET classlibraries offering an APl that
includes modeling facilities to allow the programmer to embed CPLEX optimizersin
C++, Java, or .NET applications. Table 1. lists the files that contain the libraries.

Table1l Concert Technology Libraries

Microsoft Windows | UNIX
Cit il ocpl ex.!ib I?bilocpl ex.a
concert.lib li bconcert.a
Java cplex.jar cplex.jar
| LOG. CPLEX. dl |
2 S | LOG. CONCERT. dI |

The ILOG Concert Technology libraries make use of the Callable Library (described
next).

The CPLEX CallableLibraryisacC library that allows the programmer to embed
ILOG CPLEX optimizersin applications written in C, Visual Basic, FORTRAN, or any
other language that can call C functions.The library isprovided in filescpl ex. I i b and
cpl ex. dl I on Windows platforms, and in| i bcpl ex. a, | i bepl ex. so, and

l'i bepl ex. sl on UNIX platforms.

In this manual, the phrase CPLEX Component Librariesis used to refer equally to any of
these libraries. While all of the libraries are callable, the term CPLEX Callable Library as
used here refers specifically to the C library.

Compatible Platforms

ILOG CPLEX is available on Windows and UNIX platforms. The programming interface
works the same way and provides the same facilities on all platforms.

ILOG CPLEX 9.0 — GETTING STARTED 11

WHAT IS

12

ILOG CPLEX?

Installation Requirements

If you have not yet installed ILOG CPLEX on your platform, please consult Chapter 1,
Setting Up ILOG CPLEX. It containsinstructions for installing ILOG CPLEX.

Optimizer Options

This manual explains how to use the LP algorithms that are part of ILOG CPLEX. The QPR,
QCP, and MIP problem-types are based on the L P concepts discussed here, and the
extensions to build and solve such problems are explained in the ILOG CPLEX User’s
Manual. Some users may not have accessto all algorithms. Such users should consult their
ILOG account manager or the ILOG support web site to determine to which algorithms they
have access.

Default settingswill result in a call to an optimizer that is appropriate to the class of problem
you are solving. However you may wish to choose a different optimizer for special purposes.
An LP or QP problem can be solved using any of the following CPLEX optimizers: Dual
Simplex, Primal Simplex, Barrier, and perhaps also the Network Optimizer (if the problem
contains an extractable network substructure). Pure network models are all solved by the
Network Optimizer. QCP models are all solved the Barrier optimizer. MIP models are all
solved by the Mixed Integer Optimizer, which in turn may invoke any of the LP or QP
optimizersin the course of its computation. Table 2 summarizes these possible choices.

Table2 Optimizers

LP Network | QP QCP MIP
Dual Optimizer yes yes
Primal Optimizer yes yes
Barrier Optimizer yes yes yes
Mixed Integer Optimizer yes
Network Optimizer Note 1 |yes Note 1
Note 1: The problem must contain an extractable network substructure.

The choice of optimizer or other parameter settings may have a very large effect on the
solution speed of your particular class of problem. The ILOG CPLEX User's Manual
describes the optimizers, provides suggestions for maximizing performance, and notes the
features and algorithmic parameters unique to each optimizer.

Using the Parallel Optimizers

On a computer with multiple CPUs, the Barrier Optimizer and the MIP Optimizer are each
capable of running in parallel, that is, they can apply these additional CPUs to the task of

ILOG CPLEX 9.0 — GETTING STARTED

SOLVING AN LP wiTH ILOG CPLEX

optimizing the model. The number of CPUs used by an optimizer is controlled by the user;

under default settings these optimizersrunin serial (single CPU) mode. When solving small
models, such asthosein this document, the effect of parallelism will generally be negligible.
On larger models, the effect is ordinarily beneficial to solution speed. See the section Using
Parallel Optimizersinthe ILOG CPLEX User's Manual for information on using CPLEX on
aparallel computer.

Data Entry Options

CPLEX provides several options for entering your problem data. When using the Interactive
Optimizer, most users will enter problem data from formatted files. CPLEX supports the
industry-standard MPS (Mathematical Programming System) file format as well as CPLEX
LPformat, arow-oriented format many users may find more natural. Interactive entry (using
CPLEX LPformat) isaso apossibility for small problems.

Data entry options are described briefly in this manual. File formats are documented in the
reference manual 1LOG CPLEX File Formats.

Concert Technology and Callable Library users may read problem data from the same kinds
of filesasin the Interactive Optimizer, or they may want to pass data directly into CPLEX to
gain efficiency. These options are discussed in a series of examples that begin with Building
and Solving a Small LP Model in C++, Building and Solving a Small LP Model in Java, and
Building and Solving a Small LP Model in C for the CPLEX Callable Library users.

Solving an LP with ILOG CPLEX

To help you learn which CPLEX component best meets your needs, this section briefly
demonstrates how to create and solve an LP model, using four different interfacesto
CPLEX. Full details of writing a practical program are in the chapters containing the
tutorials.

The problem to be solved is:

Maximize X1 + 2% + 3X3
subject to X + X + X3 £20

Xg — 3 + X3 <30
with these bounds 0=<x=40

OSXZS +o00

OSX3S + 00

ILOG CPLEX 9.0 — GETTING STARTED 13

SOLVING AN LP wiTH ILOG CPLEX

Using the Interactive Optimizer

The following sample is screen output from a CPLEX Interactive Optimizer session where
the model of an example is entered and solved. CPLEX> indicates the CPLEX prompt, and
text following this prompt is user input.

Wl come to CPLEX Interactive Qptimzer 9.0.0

with Sinplex, Mxed Integer & Barrier Optimzers
Copyright (c) ILOG 1997-2003
CPLEX is a registered trademark of |LOG

Type 'help' for a list of available comands.
Type 'help' followed by a conmand name for nore
i nformati on on commands.

CPLEX> enter exanple
Enter new problem['end' on a separate |line term nates]:
maximze x1 + 2 x2 + 3 x3
subject to -x1 + x2 + x3 <= 20
x1 - 3 x2 + x3 <=30
bounds
0 <= x1 <= 40
0 <= x2
0 <= x3
end
CPLEX> optim ze
Tried aggregator 1 tinmne.
No LP presol ve or aggregator reductions.
Presolve tine = 0.00 sec.

Iteration log .

Iteration: 1 Dual infeasibility = 0. 000000
Iteration: 2 Dual objective = 202. 500000
Dual sinplex - Optimal: Objective = 2.0250000000e+002
Solution time = 0.01 sec. Iterations = 2 (1)

CPLEX> di spl ay solution variables x1-x3

Vari abl e Nane Sol uti on Val ue
x1 40. 000000
X2 17. 500000
x3 42. 500000
CPLEX> qui t

Concert Technology for C++ Users

Hereisa C++ program using CPLEX in Concert Technology to solve the example. An
expanded version of this exampleis discussed in detail in Chapter 3, Concert Technology
Tutorial for C++ Users.

#incl ude <ilcplex/il ocpl ex. h>
| LOSTLBEG N

int

14 ILOG CPLEX 9.0 — GETTING STARTED

SOLVING AN LP wiTH ILOG CPLEX

main (int argc, char **argv)

Il oEnv env;
try {
Il oModel nodel (env);
I'l oNunVar Array x(env);
x. add(!l 1 oNunVar (env, 0.0, 40.0));
x. add(|1 oNunVar (env));
X. add(|1 oNunVar (env));
nodel . add(Il oMaxi m ze(env, x[0] + 2 * x[1] + 3 * x[2]));
nmodel . add(- x[0] + x[1] + x[2] <= 20);
nodel . add(x[0] - 3 * x[1] + x[2] <= 30);

I'l oCpl ex cpl ex(nodel);

if (!cplex.solve()) {
env.error() << "Failed to optimze LP." << endl;
throw-1);

Il oNumArray val s(env);

env.out () << "Solution status = " << cplex.getStatus() << endl;
env.out () << "Solution value = " << cpl ex. get Obj Val ue() << endl;
cpl ex. get Val ues(val s, var);

env.out() << "Values =" << vals << endl;

}
catch (Il oException& e) {

cerr << "Concert exception caught: " << e << endl;
}
catch (...) {
cerr << "Unknown exception caught" << endl;
}
env. end();
return O;

} // END main

Concert Technology for .NET Users

Thereisan interactive tutorial, based on that same example, for .NET users of
ILOG CPLEX in Chapter 5, Concert Technology Tutorial for .NET Users.

ILOG CPLEX 9.0 — GETTING STARTED 15

SOLVING AN LP wiTH ILOG CPLEX

Concert Technology for Java Users

HereisaJavaprogram using ILOG Concert Technology to solve the example. An expanded
version of this example is discussed in detail in Chapter 4, Concert Technology Tutorial for
Java Users.

inport il og.concert.*;
inport ilog.cplex.*;

public class Exanple {
public static void main(String[] args) {

try {
Il oCpl ex cplex = new Il oCpl ex();

doubl e[] Ib = {0.0, 0.0, 0.0};
doubl e[] ub = {40.0, Doubl e. MAX_VALUE, Doubl e. MAX_VALUE}
Il oNunVar[] x = cplex.nunVarArray(3, |b, ub)

doubl e[] objvals = {1.0, 2.0, 3.0};
cpl ex. addvaxi m ze(cpl ex. scal Prod(x, objvals));

cpl ex. addLe(cpl ex. sun(cpl ex. prod(-1.0, x[0]),
cplex.prod(1.0, x[1]),
cplex.prod(1.0, x[2])), 20.0)

cpl ex. addLe(cpl ex. sun(cpl ex. prod(1.0, x[0]),
cplex.prod(-3.0, x[1]),
cplex.prod(1.0, x[2])), 30.0)

if (cplex.solve()) {
cplex.out().println("Solution status
cplex.out().println("Solution val ue

" + cplex.getStatus())
" + cpl ex. get Qvj Val ue());

doubl e[] val = cpl ex. get Val ues(x);
int ncols = cpl ex.getNcol s();
for (int j =0; j < ncols; +4j)
cplex.out().printIn("Colum: " +j + " Value =" + val[j]);

cpl ex. end();

catch (11 oException e) {
Systemerr.println("Concert exception '" + e + "' caught")
}
}
}

Using the Callable Library

Hereisa C program using the CPLEX Callable Library to solve the example. An expanded
version of this exampleis discussed in detail in Chapter 6, Callable Library Tutorial.
#i ncl ude <il cpl ex/ cpl ex. h>

#i ncl ude <stdlib. h>
#i ncl ude <string. h>

16 ILOG CPLEX 9.0 — GETTING STARTED

#def i ne NUVRONB 2
#defi ne NUMOOLS 3

#defi ne NUMNZ 6

i nt

main (int argc, char **argv)

{
i nt status = 0;
CPXENVptr env = NULL;
CPXLPptr |Ip = NULL;
doubl e obj [NUMCCOLS];
doubl e | b[NUMCCLS] ;
doubl e ub[NUMCCLS] ;
double x[NUMCCLS];
i nt r mat beg[NUVRONB] ;

int
doubl e
doubl e
char

int
doubl e

rmat i nd[NUMN\Z] ;
rmat val [NUM\Z] ;
r hs[NUMRONE] ;

sense[NUMRONE] ;

sol stat;
obj val ;

env = CPXopenCPLEX (&status);
if (env == NULL) {

char

fprintf (stderr,

errmsg[1024] ;

SOLVING AN LP wITH

CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "9%", errnsg);
got o TERM NATE;

}

| p = CPXcreateprob (env, &status, "lpexl");

(Ip

fprintf (stderr,

NULL) {

got o TERM NATE;

"Failed to create LP.\n");

}
CPXchgobj sen (env, |p, CPX MAX);
obj[0] = 1.0; obj[1] = 2.0; obj[2] =
Ib[0] = 0.0; Ib[1] = 0.0; Ib[2] =
ub[0] = 40.0; ub[1] = CPX_INFBOUND, wub[2] =
status = CPXnewcol s (env, |p, NUMCOLS, obj, Ib,
if (status) {
fprintf (stderr, "Failed to populate problem\n");
got o TERM NATE;
}
rmat beg[0] = 0;
rmatind[0] = O; rmatind[1] = 1; rmatind[2] = 2;
rmatval [0] = -1.0; rmatval[1] = 1.0; rmatval[2] = 1.0;
rmat beg[1] = 3;
rmatind[3] = 0; rmatind[4] = 1; rmatind[5] = 2;
rmatval [3] = 1.0; rmatval[4] = -3.0; rmatval[5] = 1.0;
ILOG CPLEX 9.0 — GETTING STARTED

ILOG CPLEX

"Coul d not open CPLEX environnent.\n");

3.0;
0.0;
CPX_| NFBOUND;

ub, NULL, NULL);

sense[0] = 'L";
rhs[0] = 20.0;
sense[1] ="'L";
rhs[1] = 30.0;

17

WHAT You NEED TO KNOW

status = CPXaddrows (env, Ip, 0, NUMROAB, NUMNZ, rhs, sense, rmatbeg,
rmatind, rmatval, NULL, NULL);
if (status) {
fprintf (stderr, "Failed to popul ate problem\n");
got o TERM NATE;
}

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, "Failed to optimze LP.\n");
got o TERM NATE;

}

status = CPXsolution (env, Ip, &solstat, &objval, x, NULL, NULL, NULL);
if (status) {

fprintf (stderr, "Failed to obtain solution.\n");

got o TERM NATE;

}
printf ("\nSolution status = %\ n", solstat);

printf ("Solution value = %\n", objval);
printf ("Solution =[9%, %, %]\n\n", x[0], x[1], x[2]);
TERM NATE:

if (Ip!=NJL) {
status = CPXfreeprob (env, & p);
if (status) {
fprintf (stderr, "CPXfreeprob failed, error code %.\n", status);

if (env !=NUL) {
status = CPXcl oseCPLEX (&env);
if (status) {
char errnsg[1024];
fprintf (stderr, "Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "9%", errmnsg);
}
}

return (status);

} /* END main */

What You Need to Know
In order to use ILOG CPLEX effectively, you need to be familiar with your operating
system, whether UNIX or Windows.

This manual assumes you already know how to create and manage files. In addition, if you
are building an application that uses the Component Libraries, this manual assumes that you
know how to compile, link, and execute programs written in a high-level language. The

18 ILOG CPLEX 9.0 — GETTING STARTED

WHAT'S IN THIS MANUAL

Callable Library iswritten in the C programming language, while Concert Technology is
available for users of C++, Java, and the .NET framework. This manual also assumes that
you already know how to program in the appropriate language and that you will consult a
programming guide when you have questions in that area.

What’s in This Manual

Chapter 1, Setting Up ILOG CPLEX tells how to install CPLEX.

Chapter 2, Interactive Optimizer Tutorial, explains, step by step, how to use the Interactive
Optimizer: how to start it, how to enter problems and data, how to read and savefiles, how to
modify objective functions and constraints, and how to display solutions and analytical
information.

Chapter 3, Concert Technology Tutorial for C++ Users, describes the same activities using
the classes in the C++ version of the CPLEX Concert Technology Library.

Chapter 4, Concert Technology Tutorial for Java Users, describes the same activities using
the classes in the Java version of the CPLEX Concert Technology Library.

Chapter 5, Concert Technology Tutorial for .NET Users, describes the same activities using
.NET facilities.

Chapter 6, Callable Library Tutorial, describes the same activities using the routinesin the
ILOG CPLEX Callable Library.

All tutorials use examples that are delivered with the standard distribution.

Notation in this Manual

To make this manual easier to use, we've followed afew conventionsin notation and names.
O Important ideas areitalicized the first time they appear.

O Textthat is entered at the keyboard or displayed on the screen and commands and their
options available through the Interactive Optimizer appear int hi s t ypef ace, for
example, set preprocessing aggregator n.

O Entriesthat you must fill in appear int hi s t ypef ace; for example, write fil enane.

O Thenames of C routines and parametersin the ILOG CPLEX Callable Library begin
with CPX; the names of C++ classesin the CPLEX Concert Technology Library begin
with 11 o; and both appear int hi s t ypef ace, for example, CPXcopyobj names or

Il oCpl ex.

ILOG CPLEX 9.0 — GETTING STARTED 19

RELATED DOCUMENTATION

0O The names of Java classes beginwith 1| o and appear int hi s t ypef ace, for example,
Il oCpl ex.

0O The name of aclass or method in C#.NET iswritten as concatenated words with the first
letter of each word in upper case, for example, | nt Var or I nt Var. Vi si t Chi | dren.
Generally, accessors begin with the key word Get . Accessors for Boolean members
begin with I s. Modifiers begin with Set .

0O Combinations of keys from the keyboard are hyphenated. For example, control-c
indicates that you should press the control key and the ¢ key simultaneously. The symbol
<r et ur n> indicates end of line or end of data entry. On some keyboards, the key is
labeled enter or Enter.

Related Documentation

20

In addition to this introductory manual, the standard distribution of ILOG CPLEX comes
with the ILOG CPLEX User’s Manual and the ILOG CPLEX Reference Manuals. All ILOG
documentation is available in an online version in hypertext mark-up language (HTML). Itis
delivered with the standard distribution of the product and accessible through conventional
HTML browsers.

0O ThelLOG CPLEX User’s Manual explains the relationship between the Interactive
Optimizer and the Component Libraries. It enlarges on aspects of linear programming
with ILOG CPLEX and shows you how to handle quadratic programming (QP)
problems, quadratically constrained programming (QCP) problems, and mixed integer
programming (MIP) problems. It tells you how to control ILOG CPLEX parameters,
debug your applications, and efficiently manage input and output. It also explains how to
use parallel CPLEX optimizers.

0O ThelLOG CPLEX Callable Library and C++ API Reference Manual documents the
Callable Library routines and their arguments, as well as the C++ API of the Concert
Technology classes, methods, and functions. This manual aso includes additional
documentation about error codes, solution quality, and solution status.

0O ThelLOG CPLEX Java API Reference Manual supplies detailed definitions of the
Concert Technology interfaces and CPLEX Java classes. It is available online asHTML
and Microsoft compiled HTML help (.CHM).

O ThelLOG CPLEX C#.NET Reference Manual documents the C#.NET APl for CPLEX.

0O Thereference manual ILOG CPLEX Parameters contains atable of parameters that can
be modified by parameter routines.

0O Thereference manua ILOG CPLEX File Formats contains alist of file formats that
ILOG CPLEX supports and details about using them in your applications.

ILOG CPLEX 9.0 — GETTING STARTED

RELATED DOCUMENTATION

O Thereference manual ILOG CPLEX Interactive Optimizer contains the commands of the
Interactive Optimizer, along with the command options and links to examples of their
usein the ILOG CPLEX User’s Manual.

Asyou work with ILOG CPLEX on along-term basis, you should read the complete User’s
Manual to learn how to design models and implement solutions to your own problems.
Consult the reference manual s for authoritative documentation of the Component Libraries,
their application programming interfaces (APIs), and the Interactive Optimizer.

ILOG CPLEX 9.0 — GETTING STARTED 21

RELATED DOCUMENTATION

22 ILOG CPLEX 9.0 — GETTING STARTED

Part |

Setting Up

This part shows you how to set up ILOG CPLEX and how to check your installation. It
includes information for users of Microsoft and UNIX platforms.

Setting Up ILOG CPLEX

You install ILOG CPLEX intwo steps: first, install the files from the distribution medium (a
CD or an FTPsite) into adirectory on your local file system; then activate your license.

At that point, all of the features of CPLEX become functional and are available to you. The
chapters that follow this one provide tutorials in the use of each of the Technologies that
ILOG CPLEX provides. the ILOG Concert Technology Tutorials for C++, Java, and .NET
users, and the Callable Library Tutorial for C and other languages.

This chapter provides guidelines for:

O Installing ILOG CPLEX

O Setting Up Licensing

0O Using the Component Libraries
Important: Please read these instructionsin their entirety before beginning the
installation. Remember that most ILOG CPLEX distributions will operate correctly only

on the specific platform and operating system version for which they are designed. If you
upgrade your operating system, you may need to obtain a new ILOG CPLEX distribution.

ILOG CPLEX 9.0 — GETTING STARTED 25

2]
@
=
<.
Q
C
o
O
T
—
m
X

INSTALLING ILOG CPLEX

Installing ILOG CPLEX

The stepstoinstall ILOG CPLEX involveidentifying the correct distribution file for your
particular platform, and then executing a command that uses that distribution file. The
identification step is explained in the booklet that comes with the CD-ROM, or is provided
with the FTP instructions for download. Once the correct distribution fileis at hand, the
installation proceeds as follows.

Installation on UNIX

On UNIX systems ILOG CPLEX 9.0 isinstalled in a subdirectory named cpl ex90, under
the current working directory where you perform the installation.

Use the cd command to move to the top level directory into which you want to install the
cpl ex subdirectory. Then type this command:

gzip -dc < path/cplex.tgz | tar xf -
where pat h isthe full path name pointing to the location of the ILOG CPLEX distribution
file (either on the CD-ROM or on adisk where you performed the FTP download). On
UNIX systems, both ILOG CPLEX and ILOG Concert Technology are installed when you
execute the above command.
Installation on Windows

Before you install ILOG CPLEX, you need to identify the correct distribution file for your
platform. There are instructions on how to identify your distribution in the booklet that
comes with the CD-ROM or with the FTP instructions for download. This booklet also tells
how to start the ILOG CPLEX installation on your platform.

Directory Structure

After completing the installation, you will have adirectory structure like the onein
Figure 1.1.

Be suretoread ther eadne. ht m carefully for the most recent information about the
version of ILOG CPLEX you have installed.

26 ILOG CPLEX 9.0 — GETTING STARTED

INSTALLING ILOG CPLEX

concert
include
I_ ilconcert
lib

|—<platform>

|— <lib format>

2]
@
=
<.
Q
C
o
O
T
—
m
X

I_ <CONCERT LIBRARY>

cplex
— bin
|—<platform>
I— <EXECUTABLE FILES> (Interactive Optimizer, .dll and .so files)
I examples
data
src
<platform>
|_ <lib format>
) I— Makefile or MSVC++ project files
I include
|_ ilcplex
L lib

I

<platform>

|_ <lib format>

|_<CPLEX LIBRARY>

Figurel.l Installation Directory Structures

ILOG CPLEX 9.0 — GETTING STARTED 27

SETTING UP LICENSING

Setting Up Licensing

ILOG CPLEX 9.0 runs under the control of the ILOG License Manager (ILM). Before you
can run ILOG CPLEX, or any application that callsit, you must have established avalid
licensethat ILM can read. Licensing instructions are provided in the ILOG License Manager
User’s Guide & Reference, which isincluded with the standard ILOG CPLEX product
distribution. The basic steps are:

1. Install ILM. Normally you obtain ILM distribution media from the same place that you
obtain ILOG CPLEX.

2. Runthei hosti d program, which isfound in the directory where you install ILM.

3. Communicate the output of step 2 to your local ILOG sales administration department.
They will send you alicense key in return.

4. Create afile on your system to hold this license key, and set the environment variable
I LOG LI CENSE_FI LE so that ILOG CPLEX will know where to find the license key.
(The environment variable need not be used if you install the license key in a platform-
dependent default file location.)

Using the Component Libraries

28

After you have completed the installation and licensing steps, you can verify that everything
isworking by running one or more of the examples that are provided with the standard
distribution.

Verifying Installation on UNIX

On aUNIX system, go to the subdirectory exanpl es/ machi ne/ | i bf or mat that matches
your particular platform, and in it you will find afile named Makef i | e. Execute one of the
examples, for instance | pex1. ¢, by doing

make | pexl

| pex1l -r #thisexample takes one argument, either -r,-c, or-n
If your interest isin running one of the C++ examples, try

make il ol pex1

il ol pex1l -r #thisisthesameas! pex1 and takesthe same arguments.
If your interest isin running one of the Java examples, try

make LPex1.cl ass
java -Djava.library.path=../../../bin/<platfornm: \
-classpath ../../../libl/cplex.jar: LPexl -r

ILOG CPLEX 9.0 — GETTING STARTED

USING THE COMPONENT LIBRARIES

Any of these examples should return an optimal objective function value of 202.5.

Verifying Installation on Windows

On aWindows machine, you can follow asimilar process using the facilities of your
compiler interface to compile and then run any of the examples. A project file for each
exampleis provided, in aformat for Microsoft Visual Studio 6 and Visual Studio .NET.

In Case of Errors

If an error occurs during the make or compile step, then check that you are able to access the
compiler and the necessary linker/loader files and system libraries. If an error occurs on the
next step, when executing the program created by make, then the nature of the error message
will guide your actions. If the problemisin licensing, consult the ILOG License Manager
User's Guide and Reference for further guidance. For Windows users, if the program has
trouble locating cpl ex90. dl | or | LOG CPLEX. dI | , make surethe DLL isstored either in
the current directory or in adirectory listed in your PATH environment variable.

2]
@
=
<.
Q
C
o
O
U
—
m
X

The UNIX Makef i | e, or Windows project file, contains useful information regarding
recommended compiler flags and other settings for compilation and linking.

Compiling and Linking Your Own Applications

The source files for the exampl es and the makefiles provide guidance for how your own
application can call ILOG CPLEX. The following chapters give more specific information
on the necessary header files for compilation, and how to link ILOG CPLEX and Concert
Technology libraries into your application.

O Chapter 3, Concert Technology Tutorial for C++ Users contains information and
platform-specific instructions for compiling and linking the Concert Technology Library,
for C++ users.

O Chapter 4, Concert Technology Tutorial for Java Users contains information and
platform-specific instructions for compiling and linking the Concert Technology Library,
for Java users.

O Chapter 5, Concert Technology Tutorial for .NET Users offers an example of a C£NET
application.

O Chapter 6, Callable Library Tutorial contains information and platform-specific
instructions for compiling and linking the Callable Library.

ILOG CPLEX 9.0 — GETTING STARTED 29

USING THE COMPONENT LIBRARIES

30 ILOG CPLEX 9.0 — GETTING STARTED

Part Il

Tutorials

This part provides tutorials to introduce you to each of the components of ILOG CPLEX.
O Interactive Optimizer Tutorial on page 33

Concert Technology Tutorial for C++ Users on page 65

a

0O Concert Technology Tutorial for Java Users on page 91
O Concert Technology Tutorial for .NET Users on page 105
a

Callable Library Tutorial on page 119

Interactive Optimizer Tutorial

=
~—+
S
)

19ziwndo aAnoeIalu|

This step-by-step tutorial introduces the major features of the ILOG CPLEX Interactive
Optimizer. In this chapter, you will learn about:

Sarting ILOG CPLEX on page 34;

Using Help on page 34;

Entering a Problem on page 36;

Displaying a Problem on page 40;

Solving a Problem on page 45;

Performing Sensitivity Analysis on page 49;
Writing Problem and Solution Files on page 50;
Reading Problem Files on page 53;

Setting ILOG CPLEX Parameters on page 56;
Adding Constraints and Bounds on page 57;
Changing a Problem on page 58;

Executing Operating System Commands on page 63;
Quitting ILOG CPLEX on page 63.

O oo oo o oo oo oo O

ILOG CPLEX 9.0 — GETTING STARTED 33

STARTING

ILOG CPLEX

Starting ILOG CPLEX

To start the ILOG CPLEX Interactive Optimizer, at your operating system prompt type the
command:

cpl ex
A message similar to the following one appears on the screen:

Wl come to CPLEX Interactive Optimzer 9.0.0

with Sinplex, Mxed Integer & Barrier Optinm zers
Copyright (c) ILOG 1997-2003
CPLEX is a registered trademark of |LOG

Type help for a list of available comands.
Type help followed by a command nane for nore
i nformati on on commands.

CPLEX>

The last line, CPLEX>, isthe prompt, indicating that the product is running and is ready to
accept one of the available ILOG CPLEX commands. Usethehel p command to seealist of
these commands.

Using Help

34

ILOG CPLEX accepts commandsin several different formats. You can type either the full
command name, or any shortened version that uniquely identifies that name. For example,
enter hel p after the CPLEX> prompt, as shown:

CPLEX> hel p

You will seealist of the ILOG CPLEX commands on the screen.

Since all commands start with a unique letter, you could also enter just the single |etter h.
CPLEX> h

ILOG CPLEX does not distinguish between upper- and lower-case | etters, so you could
enter h, H, hel p, or HELP. All of these variationsinvoke the hel p command. The samerules
apply toal ILOG CPLEX commands. You need only type enough letters of the command to
distinguish it from all other commands, and it does not matter whether you type upper- or
lower-case letters. This manual uses lower-case letters.

ILOG CPLEX 9.0 — GETTING STARTED

USING HELP

After you type the hel p command, alist of available commands with their descriptions
appears on the screen, like this:

add add constraints to problem

bar opt sol ve using barrier algorithm

change change the probl em

di spl ay di spl ay problem solution, or paraneter settings
enter enter a new probl em

hel p provide information on CPLEX comrands

m popt solve a nmixed integer program

net opt sol ve the probl em usi ng network nethod
optimze solve the problem

pri mopt sol ve using the prinal nethod

qui t | eave CPLEX

read read problemor basis information froma file
set set parameters

tranopt sol ve using the dual nethod

wite wite problemor solution info. to afile
xecut e execute a conmmand fromthe operating system

=
~—+
S
)

Enter enough characters to uniquely identify comrands & options.
Commands can be entered partially (CPLEX will pronpt you for
further information) or as a whole.

19ziwndo aAnoeIalu|

To find out more about a specific command, type hel p followed by the name of that
command. For example, to learn more about the pri nopt command type:

hel p pri nopt
Typing the full name is unnecessary. Alternatively, you can try:
hp

The following message appears to tell you more about the use and syntax of the pri nopt
command:

The PRI MOPT command sol ves the current probl em using
a primal sinplex method or crosses over to a basic solution
if a barrier solution exists.

Syntax: PR MOPT

A problem nmust exist in menory (fromusing either the
ENTER or READ command) in order to use the PR MOPT
command.

Sensitivity information (dual price and reduced-cost
information) as well as other detailed information about

the solution can be viewed using the D SPLAY command,
after a solution is generated.

Summary
The syntax for the hel p command is:

hel p conmand nane

ILOG CPLEX 9.0 — GETTING STARTED 35

ENTERING A PROBLEM

Entering a Problem

36

Most users with larger problems enter problems by reading data from formatted files. That
practiceis explained in Reading Problem Files on page 53. For now, you will enter asmaller
problem from the keyboard by using the ent er command. The processis outlined
step-by-step in these topics:

O Entering the Example Problem on page 36;
0O Using the LP Format on page 37;
O Entering Data on page 39.

Entering the Example Problem

As an example, this manual uses the following problem:

Maximize X, + 2% + 3%3
subject to X+ X + X3 £20
Xp — 3 + X3 €30

with these bounds 0<x <40
0 < X2 < +oo
0 < X3 < 400

This problem has three variables (x4, X,, and X3) and two less-than-or-equal-to constraints.

Theent er command is used to enter a new problem from the keyboard. The procedure is
amost as simple as typing the problem on a page. At the CPLEX> prompt type:

enter
A prompt appears on the screen asking you to give a name to the problem that you are about
to enter.
Naming a Problem

The problem name may be anything that is allowed as a file name in your operating system.
If you decide that you do not want to enter a new problem, just press the <r et ur n> key
without typing anything. The CPLEX> prompt will reappear without causing any action. The
same can be done at any CPLEX> prompt. If you do not want to compl ete the command,
simply pressthe <r et ur n> key. For now, type in the name exanpl e at the prompt.

Enter nane for problem exanple
The following message appears.
Enter new problem['end on a separate line termnates]:

and the cursor is positioned on a blank line below it where you can enter the new problem.

ILOG CPLEX 9.0 — GETTING STARTED

ENTERING A PROBLEM

You can also type the problem name directly after the ent er command and avoid the
intermediate prompt.

Summary
The syntax for entering aproblem is:

enter probl em nanme

Using the LP Format

Entering anew problemis basically like typing it on a page, but there are afew rulesto
remember. These rules conform to the ILOG CPLEX LPfile format and are documented in
the reference manual ILOG CPLEX File Formats. LP format appears throughout this
tutorial.

The problem should be entered in the following order:

=
~—+
S
)

1. Objective Function

2. Constraints

19ziwndo aAnoeIalu|

3. Bounds

Objective Function

Before entering the objective function, you must state whether the problem is a
minimization or maximization. For this example, you type:

maxi m ze

x1 + 2x2 + 3x3

You may typeni ni mi ze or maxi mi ze on the same line as the objective function, but you
must separate them by at least one space.

Variable Names

In the example, the variables are named simply x1, x2, x3, but you can give your variables
more meaningful names such ascar s or gal | ons. The only limitations on variable names
in LP format are that the names must be no more than 255 characters long and use only the
aphanumeric characters (a-z, A-Z, 0-9) and certain symbols; ! "#$% & (),.;?7@_‘"{}
~. Any line with more than 510 characters is truncated.

A variable name cannot begin with a number or a period, and there is one character
combination that cannot be used: the letter e or E alone or followed by a number or another
e, since this notation is reserved for exponents. Thus, a variable cannot be named e24 nor
e9cat s nor eel s nor any other name with this pattern. This restriction applies only to
problems entered in LP format.

ILOG CPLEX 9.0 — GETTING STARTED 37

ENTERING A PROBLEM

38

Constraints

Once you have entered the objective function, you can move on to the constraints. However,
before you start entering the constraints, you must indicate that the subsequent lines are
constraints by typing:

subject to
or
st

These terms can be placed alone on aline or on the same line as the first constraint if
separated by at |east one space. Now you can type in the constraints in the following way:

st
-x1 + x2 + x3 <= 20
x1 - 3x2 + x3 <= 30

Constraint Names

In this simple example, it is easy to keep track of the small number of constraints, but for
many problems, it may be advantageous to name constraints so that they are easier to
identify. You can do so in ILOG CPLEX by typing a constraint name and a colon before the
actual constraint. If you do not give the constraints explicit names, ILOG CPLEX will give
them the default namesc1, c2, . . . , cn.Intheexample, if you want to call the
constraintst i me and | abor, for example, enter the constraints like this:

st
time: -x1 + x2 + x3 <= 20
labor: x1 - 3x2 + x3 <= 30

Constraint names are subject to the same guidelines as variable names. They must have no
more than 16 characters, consist of only allowed characters, and not begin with a number, a
period, or the letter e followed by a positive or negative number or another e.

Objective Function Names

The objective function can be named in the same manner as constraints. The default name
for the objective function is obj . ILOG CPLEX assigns this name if no other is entered.

Bounds

Finally, you must enter the lower and upper bounds on the variables. If no bounds are
specified, ILOG CPLEX will automatically set the lower bound to 0 and the upper bound to
+o0. You must explicitly enter bounds only when the bounds differ from the default values.
In our example, the lower bound on x1 is 0, which is the same as the default. The upper
bound 40, however, is not the default, so you must enter it explicitly. You must type bounds
on a separate line before you enter the bound information:

bounds
x1 <= 40

ILOG CPLEX 9.0 — GETTING STARTED

ENTERING A PROBLEM

Since the bounds on x2 and x3 are the same as the default bounds, there is no need to enter
them. You have finished entering the problem, so to indicate that the problem is complete,

type:
end

onthelast line.

The CPLEX> prompt returns, indicating that you can again enter alLOG CPLEX command.

Summary

Entering aproblem in ILOG CPLEX is straightforward, provided that you observe afew
simplerules:

0 Thetermsnaxi m ze or mi ni M ze must precede the objective function; the term
subj ect t o must precede the constraints section; both must be separated from the
beginning of each section by at least one space.

=
~—+
S
)

0O Theword bounds must be alone on aline preceding the bounds section.

0O Onthefina line of the problem, end must appear.

19ziwndo aAnoeIalu|

Entering Data

You can use the <r et ur n> key to split long constraints, and ILOG CPLEX till interprets
the multiple lines as asingle constraint. When you split a constraint in this way, do not press
<r et ur n> in the middle of avariable name or coefficient. The following is acceptable:

time: -x1 + x2 + <return>
x3 <= 20 <return>
labor: x1 - 3x2 + x3 <= 30 <return>

The entry below, however, isincorrect since the <r et ur n> key splits avariable name.

time: -x1 + x2 + x <return>
3 <= 20 <return>
labor: x1 - 3x2 + x3 <= 30 <return>

If you typealinethat ILOG CPLEX cannot interpret, a message indicating the problem will
appear, and the entire constraint or objective function will be ignored. You must then
re-enter the constraint or objective function.

Thefinal thing to remember when you are entering a problem is that once you have pressed
<r et ur n>, you can no longer directly edit the characters that precede the <r et ur n>. As
long as you have not pressed the <r et ur n> key, you can use the <backspace> key to go
back and change what you typed on that line. Once <r et ur n> has been pressed, thechange
command must be used to modify the problem. The change command is documented in
Changing a Problem on page 58.

ILOG CPLEX 9.0 — GETTING STARTED 39

DISPLAYING A PROBLEM

Displaying a Problem
Now that you have entered a problem using ILOG CPLEX, you must verify that the problem
was entered correctly. To do so, usethe di spl ay command. At the CPLEX> prompt type:
di spl ay

A list of the items that can be displayed then appears. Some of the options display parts of
the problem description, while others display parts of the problem solution. Options about
the problem solution are not available until after the problem has been solved. The list looks
like this:

Di splay Options

iis display infeasibility diagnostics (IS constraints)
pr obl em di spl ay problem characteristics

sensitivity display sensitivity analysis

settings di spl ay paraneter settings

sol ution di splay existing solution

Di spl ay what:

If you type pr obl emin reply to that prompt, that option will list a set of problem
characterigtics, like this:

Di spl ay Probl em Options:

al | display entire problem

bi nari es di splay binary vari abl es

bounds di splay a set of bounds

constraints di splay a set of constraints or node supply/demand val ues
general s di spl ay general integer variables

hi st ogr am di splay a hi stogramof row or colum counts

i ntegers di splay integer variables

names di spl ay nanmes of variables or constraints

gpvari abl es di splay quadratic variables

seni - conti nuous display sem -continuous and seni-integer variables
so0s di spl ay special ordered sets

stats di spl ay problemstatistics

vari abl e display a colum of the constraint matrix

Di spl ay whi ch problemcharacteristic

Enter the option al | to display the entire problem.

Maxi m ze
obj: x1 + 2 x2 + 3 x3
Subj ect To
cl: - x1 + X2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds
0 <= x1 <= 40
Al other variables are >= 0

40 ILOG CPLEX 9.0 — GETTING STARTED

DISPLAYING A PROBLEM

The default namesobj , c1, c2, are provided by ILOG CPLEX.

If that is what you want, you are ready to solve the problem. If there is a mistake, you must
use the change command to modify the problem. The change command is documented in
Changing a Problem on page 58.

Summary

Display problem characteristics by entering the command:

di spl ay probl em

Displaying Problem Statistics

When the problem is as small as our example, it is easy to display it on the screen; however,
many real problems are far too large to display. For these problems, the st at s option of the
di spl ay probl emcommand is helpful. When you select st at s, information about the

attributes of the problem appears, but not the entire problem itself. These attributes include:

O the number and type of constraints
0O variables
0O nonzero constraint coefficients
Try thisfeature by typing:
di splay problemstats
For our example, the following information appears:

Probl em nane: exanpl e

Vari abl es 3 [Nneg: 2, Box: 1]
Ohj ecti ve nonzer os 3
Li near constraints : 2 [Less: 2]

Nonzer os : 6

RHS nonzer os 2

Thisinformation tells us that in the example there are two constraints, three variables, and
six nonzero constraint coefficients. The two constraints are both of the type
less-than-or-equal-to. Two of the three variables have the default nonnegativity bounds

(0 < x < +00) and one is restricted to a certain range (a box variable). In addition to a
constraint matrix nonzero count, there is a count of nonzero coefficients in the abjective
function and on the right-hand side. Such statistics can help to identify errorsin a problem
without displaying it in its entirety.

You can see more information about the values of the input datain your problem if you set
the dat acheck parameter before you type the di spl ay command. (Parameters are
explained Setting ILOG CPLEX Parameters on page 56 later in thistutorial.) To set the
dat acheck parameter, type the following for now:

set read datacheck yes

ILOG CPLEX 9.0 — GETTING STARTED 41

=
~—+
S
)

19ziwndo aAnoeIalu|

DISPLAYING A PROBLEM

42

With this setting, the command di spl ay pr obl em st at s shows this additional
information:

Vari abl es : Mn LB 0. 000000 Max LB 40. 00000
(bj ecti ve nonzeros : Mn 1. 000000 Max 3. 000000
Li near constraints
Nonzer os : Mn ;1. 000000 Max . 3.000000
RHS nonzer os : Mn : 20. 00000 Max : 30. 00000

Another way to avoid displaying an entire problem is to display a specific part of it by using
one of the following three options of the di spl ay pr obl emcommand:

O nanes, documented in Displaying Variable or Constraint Names on page 42, can be
used to display a specified set of variable or constraint names;

O constrai nts, documented in Displaying Constraints on page 44, can be used to
display a specified set of constraints;

0O bounds, documented in Displaying Bounds on page 44, can be used to display a
specified set of bounds.

Specifying ltem Ranges

For some options of the di spl ay command, you must specify theitem or range of items
you want to see. Whenever input defining arange of itemsisrequired, ILOG CPLEX
expectstwo indices separated by a hyphen (the range character -). The indices can be names
or matrix index numbers. You simply enter the starting name (or index number), a hyphen
(=), and finaly the ending name (or index number). ILOG CPLEX automatically sets the
default upper and lower limits defining any range to be the highest and lowest possible
values. Therefore, you have the option of leaving out either the upper or lower name (or
index number) on either side of the hyphen. To see every possible item, you would simply
enter —.

Displaying Variable or Constraint Names

You can display avariable name by using the di spl ay command with the options
pr obl em nanes vari abl es. If youdo not enter theword vari abl es, ILOG CPLEX
prompts you to specify whether you wish to see a constraint or variable name.

Type:
di spl ay probl em narmes vari abl es

In response, ILOG CPLEX prompts you to specify a set of variable names to be displayed,
likethis:

Di spl ay which variabl e name(s):

Specify these variables by entering the names of the variables or the numbers corresponding
to the columns of those variables. A single number can be used or arange such as 1- 2. All

ILOG CPLEX 9.0 — GETTING STARTED

DISPLAYING A PROBLEM

of the names can be displayed at once if you type a hyphen (the character -). Try this by
entering a hyphen at the prompt and pressing the <r et ur n> key.

Di spl ay which variable nane(s): -

In the example, there are three variables with default names. ILOG CPLEX displays these
three names:

x1 x2 x3

If you want to see only the second and third names, you could either enter the range as 2- 3
or specify everything following the second variable with 2- . Try this technique:

di spl ay probl em names vari abl es

Di spl ay which variabl e nane(s): 2- 5;

X2 x3 §

If you enter a number without a hyphen, you will see asingle variable name: Py =
o ™

di spl ay probl em names vari abl es 8_ 'e)

Di spl ay which variable nane(s): 2 R °

x2 §'
Summary o

O You can display variable names by entering the command:
di spl ay probl em names vari abl es
O You can display constraint names by entering the command:

di spl ay probl em nanes constraints

Ordering Variables

In the example problem thereis a direct correlation between the variable names and their
numbers (x1 isvariable 1, x2 isvariable 2, etc.); that is not always the case. The internal
ordering of the variablesis based on their order of occurrence when the problem is entered.
For example, if x2 had not appeared in the objective function, then the order of the variables
would bex1, x3, x2.

You can seethe internal ordering by using the hyphen when you specify the range for the
vari abl es option. The variables are displayed in the order corresponding to their internal
ordering.

All of the options of thedi spl ay command can be entered directly after the word di spl ay
to eliminate intermediate steps. The following command is correct, for example:

di spl ay probl em nanmes variables 2-3

ILOG CPLEX 9.0 — GETTING STARTED 43

DISPLAYING A PROBLEM

Displaying Constraints

To view asingle constraint within the matrix, use the command and the constraint number.
For example, type the following:

di spl ay problemconstraints 2
The second constraint appears:

c2: x1 - 3 x2 + x3 <= 30

Displaying the Objective Function

When you want to display only the objective function, you must enter its name (obj by
default) or an index number of 0.

di spl ay problemconstraints
Di spl ay which constraint nane(s): 0
Maxi mi ze

obj: x1 + 2 x2 + 3 x3

Displaying Bounds

To see only the bounds for the problem, type the following command (don’t forget the
hyphen):

di spl ay probl em bounds -
Theresultis:

0 <= x1 <= 40
Al other variables are >= 0.

Summary
The genera syntax of thedi spl ay command is:

display option [option2] identifier [identifier2]

Displaying a Histogram of NonZero Counts

For large models, it can sometimes be helpful to see summaries of nonzero counts of the
columns or rows of the constraint matrix. Thiskind of display is known as a histogram.
There are two commands for displaying histograms: one for columns, one for rows.

di spl ay probl em histogramc

di spl ay problem histogramr

44 ILOG CPLEX 9.0 — GETTING STARTED

SOLVING A PROBLEM

For the small examplein this tutorial, the column histogram looks like this:
Col umm counts (excluding fixed variabl es):

Nonzero Count: 2
Nunber of Col umms: 3

It tells you that there are three columns each having two nonzeroes, and no other columns.
Similarly, the row histogram of the same small problem looks like this:

Row counts (excluding fixed variables):

Nonzer o Count: 3
Nunber of Rows: 2

=1

: . @

It tells you that there are two rows with three nonzeroes in each of them. o
(9]

Of course, in amore complex model, there would usually be awider variety of nonzero g =
counts than those histograms show. Hereisan example in which there are sixteen columns [g
where only one row is non zero, 756 columns where two rows are non zero, and so forth. 25
Col umn count's (excl uding fixed variabl es): =
Nonzero Count : 1 2 3 4 5 6 15 16 o
Nurber of Col urms: 16 756 1054 547 267 113 2 1 =

If there has been an error during entry of the problem, perhaps a constraint coefficient having
been omitted by mistake, for example, summaries like these, of a model where the structure
of the constraint matrix is known, may help you find the source of the error.

Solving a Problem

The problem is now correctly entered, and ILOG CPLEX can be used to solveit. This
exampl e continues with the following topics:

O Solving the Example Problem on page 45;
O Solution Options on page 47,
O Displaying Post-Solution Information on page 48.

Solving the Example Problem

Theopti m ze command tells ILOG CPLEX to solve the LP problem. ILOG CPLEX uses
the dual simplex optimizer, unless another method has been specified by setting the
L PVETHOD parameter.

Entering the Optimize Command
At the CPLEX> prompt, type the command:

ILOG CPLEX 9.0 — GETTING STARTED 45

SOLVING A PROBLEM

46

optimze
Preprocessing

First, ILOG CPLEX triesto simplify or reduce the problem using its presolver and
aggregator. If any reductions are made, a message will appear. However, in our small
example, no reductions are possible.

Monitoring the lteration Log

Next, an iteration log appears on the screen. ILOG CPLEX reports its progress as it solves
the problem. The solution process involves two stages:

O during Phasel, ILOG CPLEX searches for afeasible solution
O inPhasell, ILOG CPLEX searches for the optimal feasible solution.

Theiteration log periodically displays the current iteration number and either the current
scaled infeasibility during Phase I, or the objective function value during Phase I1. Once the
optimal solution has been found, the objective function value, solution time, and iteration
count (total, with Phase | in parentheses) are displayed. Thisinformation can be useful for
monitoring the rate of progress.

Theiteration log display can be modified by theset si npl ex di spl ay command to
display differing amounts of data while the problem is being solved.

Reporting the Solution

After it finds the optimal solution, ILOG CPLEX reports:
O the objective function value

O the problem solution time in seconds

O thetotal iteration count

0O thePhasel iteration count (in parentheses)

Optimizing our example problem produces a report like the following one (although the
solution times vary with each computer):

Tried aggregator 1 tine.

No presol ve or aggregator reductions.

Presolve Tinme = 0.00 sec.

Iteration Log . .

Iteration: 1 iZ)uaI infeasibility = 0. 000000
Iteration: 2 Dual objective = 202. 500000
Dual sinplex - Optimal: bjective = 2. 0250000000e+02
Solution Tine = 0.00 sec. Iterations =2 (1)

CPLEX>

ILOG CPLEX 9.0 — GETTING STARTED

SOLVING A PROBLEM

In our example, ILOG CPLEX finds an optimal solution with an objective value of 202.5in
two iterations. For this simple problem, 1 Phase | iteration was required.

Summary
To solve an LP problem, use the command:

optimze

Solution Options

Here are some of the basic optionsin solving linear programming problems. Although the
tutorial example does not make use of these options, you will find them useful when
handling larger, more realistic problems.

O Filing Iteration Logs on page 47;
0O Re-Solving on page 47;

=
~—+
S
)

O Using Alternative Optimizers on page 47,

O Interrupting the Optimization Process on page 48.

19ziwndo aAnoeIalu|

For detailed information about performance options, refer to the ILOG CPLEX User’s
Manual.

Filing Iteration Logs

Every time ILOG CPLEX solves a problem, much of the information appearing on the
screen isalso directed into alog file. Thisfile is automatically created by ILOG CPLEX
with the name cpl ex. | og. If thereisan existing cpl ex. | og filein the directory where
ILOG CPLEX islaunched, ILOG CPLEX will append the current session datato the
existing file. If you want to keep aunique log file of a problem session, you can change the
default name with theset | ogfi | e command. (See the ILOG CPLEX User’'s Manual.)
Thelog file iswritten in standard ASCII format and can be edited with any text editor.

Re-Solving

You may re-solve the problem by reissuing the opt i mi ze command. ILOG CPLEX restarts
the solution process from the previous optimal basis, and thus requires zero iterations. If you
do not wish to restart the problem from an advanced basis, usetheset advance command
to turn off the advanced start indicator.

Remember that a problem must be present in memory (entered viathe ent er command or
read from afile) before you issue the opt i mi ze command.
Using Alternative Optimizers

In addition to the opt i m ze command, ILOG CPLEX can use the primal simplex optimizer
(pri mopt command), the dual simplex optimizer (t r anopt command), the barrier
optimizer (bar opt command) and the network optimizer (net opt command). Many

ILOG CPLEX 9.0 — GETTING STARTED 47

SOLVING A PROBLEM

48

problems can be solved faster using these alternative optimizers, which are documented in
more detail in the ILOG CPLEX User’s Manual. If you want to solve a mixed integer
programming problem, the opt i mi ze command is equivalent to the i popt command.

Interrupting the Optimization Process

Our short example was solved very quickly. However, larger problems, particularly mixed
integer problems, can take much longer. Occasionally it may be useful to interrupt the
optimization process. ILOG CPLEX allows such interruptionsif you usecontrol - c. (The
cont rol and c keys must be pressed simultaneously.) Optimization is interrupted, and
ILOG CPLEX issues a message indicating that the process was stopped and displays
progress information. If you issue another optimization command in the same session,
ILOG CPLEX will resume optimization from where it was interrupted.

Displaying Post-Solution Information

Once an optimal solution isfound, ILOG CPLEX can provide many different kinds of
information for viewing and analyzing the results. Thisinformation is accessed viathe
di spl ay command and viasomewr i t e commands.

Information about the following is available with the di spl ay sol uti on command:
objective function value;

solution values,

slack values;

reduced costs;

dual values (shadow prices);

O 0o o o o o

basic rows and columns.

For information on thewr i t e commands, see Writing Problem and Solution Files on
page 50. Sensitivity analysis can also be performed in analyzing results, as explained in
Performing Sensitivity Analysis on page 49.

For example, to view the optimal value of each variable, enter the command:
di spl ay solution variables —

In response, the list of variable names with the solution value for each variable is displayed,
like this:

Vari abl e Nane Sol uti on Val ue
x1 40. 000000
X2 17. 500000
x3 42. 500000

To view the slack values of each constraint, enter the command:

di spl ay solution slacks -

ILOG CPLEX 9.0 — GETTING STARTED

PERFORMING SENSITIVITY ANALYSIS

The resulting message indicates that for this problem the slack variables are al zero.

Al slacks in the range 1-2 are 0.

To view the dual values (sometimes called shadow prices) for each constraint, enter the
command:

di splay solution dual -

Thelist of constraint names with the solution value for each constraint appears, like this:

Constrai nt Nane Dual Price
cl 2. 750000
c2 0. 250000
Summary

Display solution characteristics by entering a command with the syntax:

display solution identifier

=
~—+
S
)

19ziwndo aAnoeIalu|

Performing Sensitivity Analysis

Sensitivity analysis of the objective function and right-hand side provides meaningful
insight about ways in which the optimal solution of a problem changesin response to small
changes in these parts of the problem data

Sensitivity analysis can be performed on the following:

0 objective function;

O right-hand side values;

0 bounds.

To view the sensitivity analysis of the objective function, enter the command:
di splay sensitivity obj -

For our example, ILOG CPLEX displays the following ranges for sensitivity analysis of the
objective function:

OBJ Sensitivity Ranges

Vari abl e Nane Reduced Cost Down Current Up
x1 3. 5000 -2.5000 1. 0000 +Hinfinity
X2 zero -5.0000 2. 0000 3. 0000
X3 zero 2.0000 3.0000 +infinity

ILOG CPLEX displays each variable, itsreduced cost and the range over which its objective
function coefficient can vary without forcing a change in the optimal basis. The current
value of each objective coefficient is also displayed for reference. Objective function

ILOG CPLEX 9.0 — GETTING STARTED 49

WRITING PROBLEM AND SOLUTION FILES

sensitivity analysisis useful to determine how sensitive the optimal solution isto the cost or
profit associated with each variable.

Similarly, to view sensitivity analysis of the right-hand side, type the command:
display sensitivity rhs -

For our example, ILOG CPLEX displays the following ranges for sensitivity analysis of the
right-hand side (RHS):

RHS Sensitivity Ranges

Constraint Nane Dual Price Down Current Up
cl 2.7500 -36.6667 20.0000 +infinity
c2 0.2500 -140.0000 30.0000 100. 0000

ILOG CPLEX displays each constraint, its dual price, and arange over which its right-hand
side coefficient can vary without changing the optimal basis. The current value of each RHS
coefficient is also displayed for reference. Right-hand side sensitivity information is useful
for determining how sensitive the optimal solution and resource values are to the availability
of those resources.

ILOG CPLEX can also display lower bound sensitivity ranges with the command
display sensitivity |Ib

and upper bound sensitivity with the command
di splay sensitivity ub

Summary

Display sensitivity analysis characteristics by entering a command with the syntax:

display sensitivity identifier

Writing Problem and Solution Files

50

The problem or its solution can be saved by using thewr i t e command. This command
writes the problem statement or a solution report to afile.

The tutorial example continues in the topics:
O Selecting a Write File Format on page 51;
O Wiriting LP Files on page 51;

O Writing Basis Files on page 52;

0O Using Path Names on page 52.

ILOG CPLEX 9.0 — GETTING STARTED

WRITING PROBLEM AND SOLUTION FILES

Selecting a Write File Format

When you type thewr i t e command in the Interactive Optimizer, ILOG CPLEX displaysa
menu of options and prompts you for afile format, like this:

File Type Qptions:

bas I NSERT fornat basis file

bi n Bi nary solution file

dpe Binary format for dual - perturbed problem

dua MPS format of explicit dual of problem

enb MPS format of (enbedded) network

iis Irreduci bly inconsistent set (LP format) —
Ip LP format problemfile =1
mn DI MACS m n-cost network-flow format of (enbedded) network @
nps MPS format problemfile g
nmst MP start file - =
net CPLEX network format of (enbedded) network = (<D
ord Integer priority order file = o
ppe Binary format for prinal-perturbed problem o S
pre Bi nary format for presol ved probl em =
qap Quadratic coefficient matrix file §
rew MPS format problemwith generic names (ND
sav Binary matrix and basis file =
sS0s Speci al ordered sets file

tre Br anch- and- bound treesave file

t xt Text solution file

vec Vector solution format file

File type:

0 TheBASformat isused for storing basis information and is introduced in Writing Basis
Files on page 52. See also Reading Basis Files on page 55.

0O TheLPformat was discussed in Using the LP Format on page 37. Using thisformat is
explained in Writing LP Files on page 51 and Reading LP Files on page 54.

0 The MPSformat is covered in Reading MPS Files on page 55.

Reminder: All these file formats are documented in more detail in the reference manual
ILOG CPLEX File Formats.

Writing LP Files
When you enter thewr i t e command. the following message appears:
Narre of file to wite:

Enter the problem name "example”, and ILOG CPLEX will ask you to select from alist of
options. For this example, choose LP. ILOG CPLEX displays a confirmation message, like
this:

ILOG CPLEX 9.0 — GETTING STARTED 51

WRITING PROBLEM AND SOLUTION FILES

52

Problemwitten to file 'exanple'.

If you would like to save the file with a different name, you can simply usethewri t e
command with the new file name as an argument. Try this, using the name exanpl e2. This
time, you can avoid intermediate prompts by specifying an LP problem type, like this:

wite exanple2 |Ip

Another way of avoiding the prompt for afile format is by specifying thefile type explicitly
in the file name extension. Try the following as an example:

wite exanple.lp

Using afile extension to indicate the file type is the recommended naming convention. This
makes it easier to keep track of your problem and solution files.

When thefiletypeis specified by the file name extension, ILOG CPLEX ignores subsequent
file type information issued within thewr i t e command. For example, ILOG CPLEX
responds to the following command by writing an LP format problem file;

wite exanple.lp nps

Writing Basis Files

Another optional file format is BAS. Unlike the LP and MPS formats, thisformat is not used
to store a description of the problem statement. Rather, it is used to store information about
the solution to a problem, information known as a basis. Even after changes are made to the
problem, using a prior basis to jump-start the optimization can speed solution time
considerably. A basis can be written only after a problem has been solved. Try this now with
the following command:

wite exanpl e. bas
In response, ILOG CPLEX displays a confirmation message, like this:
Basis witten to file 'exanple.bas'.

When avery large problem is being solved by the primal or dual simplex optimizer, afile
with the format extension . xxx isautomatically written after every 50,000 iterations (a
frequency that can be adjusted by theset si npl ex basi si nt er val command). This
periodically written basis can be useful asinsurance against the possibility that along
optimization may be unexpectedly interrupted due to power failure or other causes, because
the optimization can then be restarted using this advanced basis.

Using Path Names

A full path name may also be included to indicate on which drive and directory any file
should be saved. The following might be avalid wr i t e command if the disk drive on your
system contains aroot directory named pr obl ens:

wite /probl ens/exanple.lp

ILOG CPLEX 9.0 — GETTING STARTED

READING PROBLEM FILES

Summary

The general syntax for thewr i t e command is:
wite filenane file_formt
or
wite filenane.file_extension

wherefi | e_ext ensi on indicates the format in which the file is to be saved.

Reading Problem Files

When you are using ILOG CPLEX to solve linear optimization problems, you may
frequently enter problems by reading them from files instead of entering them from the
keyboard.

=
~—+
S
)

Continuing the tutorial from Writing Problem and Solution Files on page 50, the topics are:
0 Selecting a Read File Format on page 53

19ziwndo aAnoeIalu|

Reading LP Files on page 54
Using File Extensions on page 54
Reading MPS Files on page 55

o 0o o o

Reading Basis Files on page 55

Selecting a Read File Format

When you typether ead command in the Interactive Optimizer, ILOG CPLEX displaysthe
following prompt about file formats on the screen:

File Type Qptions:

bas I NSERT format basis file

I'p LP format problemfile

mn DI MACS m n-cost network-flow format file
nps MPS format problemfile

st MP start file

net CPLEX Network-flow format file
ord Integer priority order file

qp Quadratic coefficient matrix file
sav Binary matrix and basis file

sSo0s Speci al ordered sets file

tre Br anch- and- bound treesave file
vec Vector solution format file

File Type Options:

ILOG CPLEX 9.0 — GETTING STARTED 53

READING PROBLEM FILES

54

Reminder: All these file formats are documented in more detail in the reference manual
ILOG CPLEX File Formats.

Reading LP Files
At the CPLEX> prompt type:

read
The following message appears requesting a file name:
Nane of file to read:
Four files have been saved at this point in our tutorial:
exanpl e
exanpl e2
exanple.lp
exanpl e. bas
Specify the file named exanpl e that you saved while practicing thewr i t e command.

You recall that the example problem was saved in LP format, so in response to the file type
prompt, enter:

I'p
ILOG CPLEX displays a confirmation message, like this:

Probl em ' exanpl e' read
Read Time = 0.03 sec

The example problem is now in memory, and you can manipulate it with ILOG CPLEX
commands.

Tip: Theintermediate prompts for ther ead command can be avoided by entering the
entire command on one line, like this:

read exanple |p

Using File Extensions

If the file name has an extension that corresponds to one of the supported file formats,
ILOG CPLEX automatically readsit without your having to specify the format. Thus, the
following command automatically reads the problem file exanpl e. | p in LP format:

read exanple.lp

ILOG CPLEX 9.0 — GETTING STARTED

READING PROBLEM FILES

Reading MPS Files

ILOG CPLEX can also read industry-standard MPS formatted files. The problem called
afiro. nps (provided inthe ILOG CPLEX distribution) serves as an example. If you
include the. nps extension in the file name, ILOG CPLEX will recognize the file as being
in MPS format. If you omit the extension, you must specify that the fileis of the type MPS.

read afiro nps
Once the file has been read, the following message appears:

Sel ected obj ective sense: MNM ZE
Sel ected objective nane: obj

Sel ected RHS nane: rhs
Problem ‘afiro’ read.
Read tine = 0. 01 sec.

ILOG CPLEX reports additional information when it reads M PS formatted files. Since these
files can contain multiple objective function, right-hand side, bound, and other information,

ILOG CPLEX displays which of theseis being used for the current problem. See the ILOG

CPLEX User’s Manual to learn more about special considerations for using MPS formatted
files.

=
~—+
S
)

19ziwndo aAnoeIalu|

Reading Basis Files

In addition to other file formats, ther ead command is aso used to read basisfiles. These
files contain information for ILOG CPLEX that tells the simplex method where to begin the
next optimization. Basis files usually correspond to the result of some previous optimization
and help to speed re-optimization. They are particularly helpful when you are dealing with
very large problemsif small changes are made to the problem data.

Writing Basis Files on page 52 showed you how to save a basisfile for the exanpl e after it
was optimized. For thistutorial, first read the exanpl e. | p file. Then read this basisfile by
typing the following command:

read exanpl e. bas
The message of confirmation:
Basi s ' exanpl e. bas' read.

indicates that the basis file was successfully read. If the advanced basis indicator is on, this
basis will be used as a starting point for the next optimization, and any new basis created
during the session will be used for future optimizations. If the basis changes during a
session, you can saveit by using thewr i t e command.

Summary

The general syntax for the read command is:

read filenane file_format

ILOG CPLEX 9.0 — GETTING STARTED 55

SETTING ILOG CPLEX PARAMETERS

or
read filenane.fil e_extension

wherefi | e_ext ensi on corresponds to one of the allowed file formats.

Setting ILOG CPLEX Parameters

ILOG CPLEX users can vary parameters by means of the set command. This command is
used to set ILOG CPLEX parameters to values different from their default values. The
procedure for setting a parameter is similar to that of other commands. Commands can be
carried out incrementally or all in one line from the CPLEX> prompt. Whenever a parameter
isset to anew value, ILOG CPLEX inserts acomment in the log file that indicates the new
value.
Setting a Parameter
To see the parameters that can be changed, type:

set

The parameters that can be changed are displayed with a prompt, like this:

Avai | abl e Paraneters:

advance set indicator for advanced starting information

barrier set paraneters for barrier optinization

cl ockt ype set type of clock used to neasure tine

defaults set all paraneter values to defaults

logfile set file to which results are printed

| prret hod set method for |inear optimzation

mp set paraneters for nixed integer optinization

net wor k set paranmeters for network optimizations

out put set extent and destinations of outputs

pr epr ocessi ng set paraneters for preprocessing

gpret hod set method for quadratic optimzation

read set probl emread paraneters

sifting set paraneters for sifting optimzation

si npl ex set paraneters for prinmal and dual sinplex optinizations
t hr eads set default parallel thread count

tinmelimt set time limt in seconds

wor kdi r set directory for working files

wor knem set menory avail able for working storage (in nmegabytes)

Paraneter to set:

If you pressthe <r et ur n> key without entering a parameter name, the following messageis
displayed:

No paraneters changed.

56 ILOG CPLEX 9.0 — GETTING STARTED

ADDING CONSTRAINTS AND BOUNDS

Resetting Defaults

After making parameter changes, it is possible to reset all parameters to default values by
issuing one command:

set defaults

Thisresets all parametersto their default values, except for the name of the log file.

Summary
The genera syntax for theset command is:
set paraneter option new_ val ue
Displaying Parameter Settings
The current values of the parameters can be displayed with the command:

di splay settings al

=
~—+
S
)

A list of parameters with settings that differ from the default values can be displayed with
the command:

19ziwndo aAnoeIalu|

di spl ay settings changed

For a description of al parameters and their default values, see the reference manual
ILOG CPLEX Parameters.

ILOG CPLEX also accepts customized system parameter settings via a parameter
specification file. See the reference manual ILOG CPLEX File Formats for a description of
the parameter specification file and its use.

Adding Constraints and Bounds

If you wish to add either new constraints or bounds to your problem, use the add command.
This command is similar to the ent er command in the way it is used, but it has one
important difference: theent er command is used to start abrand new problem, whereas the
add command only adds new information to the current problem.

Suppose that in the example you need to add a third constraint:
X1 + 2X2 + 3X3 =50
You may do either interactively or from afile.

Adding Interactively

Type the add command, then enter the new constraint on the blank line. After validating the
constraint, the cursor moves to the next line. You are in an environment identical to that of
the ent er command after having issued subj ect t o. At this point you may continue to

ILOG CPLEX 9.0 — GETTING STARTED 57

CHANGING A PROBLEM

add constraints or you may type bounds and enter new bounds for the problem. For the
present example, type end to exit the add command. Your session should look like this:

add

Enter new constraints and bounds [‘end term nates]:
x1 + 2x2 + 3x3 >= 50

end

Probl em addi ti on successf ul

When the problem is displayed again, the new constraint appears, like this:
di spl ay problemall

Maxi m ze

obj: x1 + 2 x2 + 3 x3

Subj ect To

cl: - x1 + X2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
c3: x1 + 2 x2 + 3 x3 >= 50
Bounds

0 <= x1 <= 40

Al other variables are >= 0.
end

Adding from a File

Alternatively, you may read in new constraints and bounds from afile. If you enter afile
name after the add command, ILOG CPLEX will read afile matching that name. Thefile
contents must comply with standard ILOG CPLEX LP format. ILOG CPLEX does not
prompt for afile nameif none is entered. Without afile name, interactive entry is assumed.

Summary

The general syntax for theadd command is:
add

or

add filename

Changing a Problem

58

Theent er and add commands allow you to build a problem from the keyboard, but they do
not allow you to change what you have built. You make changes with the change command.

The change command can be used for:
0 Changing Constraint or Variable Names
0 Changing Sense

0 Changing Bounds and Removing Bounds

ILOG CPLEX 9.0 — GETTING STARTED

CHANGING A PROBLEM

0O Changing Coefficients
O Deleting entire constraints or variables

Start out by changing the name of the constraint that you added with the add command. In
order to see alist of change options, type:

change
The elements that can be changed are displayed like this:

Change options:

bounds change bounds on a variable -
coefficient change a coefficient =
del ete del ete sone part of the problem @
nane change a constraint or variable name)
obj ective change obj ective function val ue 4949
pr obl em change probl emtype S <
gpterm change a quadratic objective term =] @
rhs change a right-hand side or network supply/demand val ue o _Q
sense change objective function or a constraint sense - =
type change variabl e type §

N
Change to make: @

Changing Constraint or Variable Names
Enter nane at the Change t o make: prompt to change the name of a constraint:
Change to nake: name

The present name of the constraint is ¢3. In the example, you can change the name to newd
to differentiate it from the other constraints using the following entries:

Change a constraint or variable name [‘¢c’ or ‘Vv']: ¢

Present name of constraint: c3

New nane of constraint: newd
The constraint ‘c3 now has name ‘newd’.

The name of the constraint has been changed.

The problem can be checked with adi spl ay command (for example,
di spl ay probl em constraints new3) to confirm that the change was made.

This same technique can also be used to change the name of avariable.

Changing Sense

Next, change the sense of the new3 constraint from > to < using the sense option of the
change command. At the CPLEX> prompt, type:

change sense

ILOG CPLEX 9.0 — GETTING STARTED 59

CHANGING A PROBLEM

60

ILOG CPLEX prompts you to specify aconstraint. There are two ways of specifying this
congtraint: if you know the name (for example, news), you can enter the name; if you do not
know the name, you can specify the number of the constraint. In this example, the number is
3for the news constraint. Try the first method and type:

Change sense of which constraint: new3
Sense of constraint 'new3d' is '>='.

ILOG CPLEX tellsyou the current sense of the selected constraint. All that is left now isto
enter the new sense, which can be entered as <=, >=, or =. You can a so type smply
< (interpreted as <) or > (interpreted as>). Theletters| , g, and e arealso interpreted as <, >,
and = respectively.

New sense ['<='" or '>=' or '=']: <=

Sense of constraint 'new3' changed to '<='.

The sense of the constraint has been changed.

The sense of the objective function may be changed by specifying the objective function
name (its default is obj) or the number O when ILOG CPLEX prompts you for the
congtraint. You are then prompted for a new sense. The sense of an objective function can
take the value maxi mumor mi ni numor the abbreviation max or mi n.

Changing Bounds

When the exampl e was entered, bounds were set specifically only for the variable x1. The
bounds can be changed on this or other variables with the bounds option. Again, start by
selecting the command and option.

change bounds

Select the variable by name or number and then select which bound you would like to
change. For the example, change the upper bound of variable x2 from +oco to 50.

Change bounds on which variable: x2
Present bounds on variable x2: The indicated variable is >= 0.

Change | ower or upper bound, or both [‘]’, ‘U, or ‘b]: u
Change upper bound to what [‘+inf’ for no upper bound]: 50
New bounds on variable ‘x2': 0 <= x2 <= 50

Removing Bounds

To remove abound, set it to +oo or —o. Interactively, use the identifiersi nf and - i nf
instead of the symbols. To change the upper bound of x2 back to +o, use the oneline
command:

change bounds x2 u inf
You receive the message:

New bounds on variable 'x2': The indicated variable is >= 0.

ILOG CPLEX 9.0 — GETTING STARTED

CHANGING A PROBLEM

The bound is now the same as it was when the problem was originally entered.

Changing Coefficients

Up to this point all of the changes that have been made could be referenced by specifying a
single constraint or variable. In changing a coefficient, however, a constraint and a variable
must be specified in order to identify the correct coefficient. As an example, change the
coefficient of x3 in the new3 constraint from 3 to 30.

Asusual, you must first specify which change command option to use;
change coefficient

You must now specify both the constraint row and the variable column identifying the
coefficient you wish to change. Enter both the constraint name (or number) and variable
name (or number) on the same line, separated by at |east one space. The constraint nameis
new3 and the variable is number 3, so in response to the following prompt, type new3 and 3,
like this, to identify the one to change:

=
~—+
S
)

Change which coefficient [‘constraint’ ‘variable]: new3d 3
Present coefficient of constraint ‘new3d’, variable ‘3 is 3.000000.

19ziwndo aAnoeIalu|

Thefinal step isto enter the new value for the coefficient of x3.

Change coefficient of constraint ‘newd’, variable ‘3 to what: 30
Coefficient of constraint ‘newd’, variable ‘'3 changed to 30. 000000

Objective & RHS Coefficients

To change a coefficient in the objective function, or in the right-hand side, use the
corresponding change command option, obj ect i ve or r hs. For example, to specify the
right-hand side of constraint 1 to be 25.0, a user could could enter the following (but for this
tutorial, do not enter this now):

change rhs 1 25.0

Deleting

Another option to the change command isdel et e. This option is used to remove an entire
constraint or avariable from aproblem. Return the problem to its original form by removing
the constraint you added earlier. Type:

change del ete

ILOG CPLEX 9.0 — GETTING STARTED 61

CHANGING A PROBLEM

62

ILOG CPLEX displaysalist of delete options.
Del ete Options:

constraints del ete range of constraints

vari abl es del ete range of variabl es

equal ity del ete range of equality constraints
greater-than del ete range of greater-than constraints
| ess-t han del ete range of |ess-than constraints

At thefirst prompt, specify that you want to delete a constraint.
Del etion to make: constraints

At the next prompt, enter a constraint name or number, or arange as you did when you used
the di spl ay command. Since the constraint to be deleted is named new3, enter that name:

Del et e which constraint(s): new3
Constraint 3 del eted.

Check to be sure that the correct range or number is specified when you perform this
operation, since constraints are permanently removed from the problem. Indices of any
constraints that appeared after adeleted constraint will be decremented to reflect the removal
of that constraint.

The last message indicates that the operation is complete. The problem can now be checked
to seeif it has been changed back to its original form.

di spl ay problemall

Maxi m ze

obj: x1 + 2 x2 + 3 x3

Subj ect To

cl: - x1 + X2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds

0 <= x1 <= 40

Al other variables are >= 0.

When you remove a constraint with the del et e option, that constraint no longer existsin
memory; however, variables that appear in the deleted constraint are not removed from
memory. If avariable from the deleted constraint appears in the objective function, it may
still influence the solution process. If that is not what you want, these variables can be
explicitly removed using the del et e option.

Summary

The genera syntax for the change command is:

change option identifier [identifier2] new val ue

ILOG CPLEX 9.0 — GETTING STARTED

EXECUTING OPERATING SYSTEM COMMANDS

Executing Operating System Commands

The execute command (xecut e) issimple but useful. It executes operating system
commands outside of the ILOG CPLEX environment. By using xecut e, you avoid having
to save a problem and quit ILOG CPLEX in order to carry out a system function (such as
viewing a directory, for example).

Asan example, if you wanted to check whether all of the files saved in the last session are
really in the current working directory, the following ILOG CPLEX command shows the
contents of the current directory in a UNIX operating system, using the UNIX command | s:

xecute |s -| =4
total 7448 @
“r--r--r-- 1 3258 Jul 14 10:34 afiro.nmps 2
- FWXT - XT - X 1 3783416 Apr 22 10:32 cpl ex Ei =
STWr--T-- 1 3225 Jul 14 14:21 cplex.log =4 é
STWr--T-- 1 145 Jul 14 11: 32 exanpl e = 0
STWr--T-- 1 112 Jul 14 11: 32 exanpl e. bas L S
STWr--T-- 1 148 Jul 14 11:32 exanple.lp =
STWr--T-- 1 146 Jul 14 11:32 exanpl e2 g.

@

After the command is executed, the CPLEX> prompt returns, indicating that you are still in
ILOG CPLEX. Most commands that can normally be entered from the prompt for your
operating system can aso be entered with the xecut e command. The command may be as
simple aslisting the contents of adirectory or printing the contents of afile, or ascomplex as
starting atext editor to modify afile. Anything that can be entered on one line after the
operating system prompt can also be executed from within ILOG CPLEX. However, this
command differs from other ILOG CPLEX commandsin that it must be entered on asingle
line. No prompt will be issued. In addition, the operating system may fail to carry out the
command if insufficient memory is available. In that case, no message isissued by the
operating system, and the result is areturn to the CPLEX> prompt.

Summary
The general syntax for the xecut e command is:

xecute command |ine

Quitting ILOG CPLEX
When you are finished using ILOG CPLEX and want to leave it, type:
quit

If a problem has been modified, be sure to save thefile beforeissuing aqui t command.
ILOG CPLEX will not prompt you to save your problem.

ILOG CPLEX 9.0 — GETTING STARTED 63

QUITTING ILOG CPLEX

64 ILOG CPLEX 9.0 — GETTING STARTED

Concert Technology Tutorial for C++ Users

Thistutorial showsyou how to write C++ programs using CPLEX with Concert Technology.
In this chapter you will learn about:

O The Design of CPLEX in Concert Technology on page 66

Compiling and Linking ILOG CPLEX in Concert Technology Applications on page 67
The Anatomy of an ILOG Concert Technology Application on page 68

Building and Solving a Small LP Model in C++ on page 73

g o
S S
= 9
D o
®
ah:—r
= 3
O o
+ =
4+ 5
(o]
S o
D Q
@
M<

Writing and Reading Models and Files on page 80
Selecting an Optimizer on page 81
Reading a Problem from a File: Example ilolpex2.cpp on page 82

Modifying and Reoptimizing on page 86

O 0o o o o o o odg

Modifying an Optimization Problem: Example ilolpex3.cpp on page 86

ILOG CPLEX 9.0 — GETTING STARTED 65

THE DESIGN OF CPLEX IN CONCERT TECHNOLOGY

The Design of CPLEX in Concert Technology

66

A clear understanding of C++ objectsisfundamental to using ILOG Concert Technology
with ILOG CPLEX to build and solve optimization models. These objects can be divided
into two categories.

1. Modeling objects are used to define the optimization problem. Generally an application
creates multiple modeling objects to specify one optimization problem. Those objects
aregrouped into an | | oModel object representing the complete optimization problem.

2. 11 0Cpl ex objects are used to solve the problems that have been created with the
modeling objects. An | oCpl ex object reads a model and extractsits datato the
appropriate representation for the ILOG CPLEX optimizer. Thenthel | oCpl ex object
is ready to solve the model it extracted and be queried for solution information.

Thus, the modeling and optimization parts of a user-written application program are
represented by a group of interacting C++ objects created and controlled within the
application. Figure 3.1 shows a picture of an application using ILOG CPLEX with
ILOG Concert Technology to solve optimization problems.

User-Written Application

Concert Technology
modeling objects [~ —— "R — — — — — — -

\J

CPLEX database

Figure3.1 A View of ILOG CPLEX with ILOG Concert Technology

The ILOG CPLEX database includes the computing environment, its communication
channels, and your problem objects.

This chapter gives abrief tutorial illustrating the modeling and solution classes provided by
ILOG Concert Technology and ILOG CPLEX. More information about the algorithm class
Il oCpl ex and its nested classes can be found in the ILOG CPLEX User’s Manual and
ILOG CPLEX Reference Manual.

ILOG CPLEX 9.0 — GETTING STARTED

CGOMPNEING AND LINKING ILOG CPLEX IN CONCERT TECHNOLOGY APPLI-

Compiling and Linking ILOG CPLEX in Concert Technology Applications

To exploit a C++ library like ILOG CPLEX in ILOG Concert Technology, you need to tell
your compiler whereto find the ILOG CPLEX and Concert include files (that is, the header
files), and you also need to tell the linker whereto find the ILOG CPLEX and Concert
libraries. The sample projects and makef i | es illustrate how to carry out these crucial steps
for the examplesin the standard distribution. They use relative path names to indicate to the
compiler where the header files are, and to the linker where the libraries are.

Testing Your Installation on UNIX
To run the test, follow these steps.

1. First check the readme.html file in the standard distribution to locate the right
subdirectory containing amakef i | e appropriate for your platform.

2. Go to that subdirectory.

3. Thenusethe samplemakef i | e located there to compile and link the examplesthat came
in the standard distribution.

4. Execute one of the compiled examples.

Testing Your Installation on Windows

To run the test on a Windows platform, first consult ther eadme. ht ni filein the standard
distribution. That file will tell you where to find another text file that contains information
about your particular platform. That second file will have an abbreviated name that
corresponds to a particular combination of machine, architecture, and compiler. For
example, if you are working on a personal computer with Windows NT and Microsoft
Visual C++ compiler, version 6, then ther eadme. ht i file will direct you to the

msvc. ht nl filewhere you will find detailed instructions about how to create a project to
compile, link, and execute the examples in the standard distribution.

g o
S S
= 9
D o
®
ah:—r
= 3
O o
+ =
4+ 5
(o]
S o
D Q
@
M<

The examples have been tested repeatedly on all the platforms compatible with
ILOG CPLEX, soif you successfully compile, link, and execute them, then you can be sure
that your installation is correct.

In Case of Problems

If you encounter difficulty when you try thistest, then thereis aproblem in your installation,
and you need to correct it before you begin real work with ILOG CPLEX.

For example, if you get a message from the compiler such as

ilolpex3.cpp 1. Can’t find include file ilcplex/ilocplex.h

ILOG CPLEX 9.0 — GETTING STARTED 67

THE ANATOMY OF AN ILOG CONCERT TECHNOLOGY APPLICATION

then you need to verify that your compiler knows where you have installed ILOG CPLEX
and itsinclude files (that is, its header files).

If you get a message from the linker, such as
Id: -lcplex: No such file or directory

then you need to verify that your linker knows wherethe ILOG CPLEX library islocated on
your system.

If you get a message such as
ilm CPLEX: no license found for this product

or

ilm CPLEX: invalid encrypted key "MJVUXTDIV82" in
"fusr/ilog/ilmaccess.ilm;run ilnctheck

then there is a problem with your license to use ILOG CPLEX. Review the ILOG License
Manager User’'s Guide and Reference to see whether you can correct the problem. If not,
call thetechnical support hotline and repeat the error message there.

If you successfully compile, link, and execute one of the examplesin the standard
distribution, then you can be sure that your installation is correct, and you can begin to use
ILOG CPLEX in ILOG Concert Technology seriously.

The Anatomy of an ILOG Concert Technology Application

68

ILOG Concert Technology isa C++ class library, and therefore ILOG Concert Technology
applications consist of interacting C++ objects. This section gives a short introduction to the
most important classes that are usually found in a complete ILOG Concert Technology
CPLEX application.

Constructing the Environment: lloEnv

An environment, that is, an instance of I | oEnv istypically the first object created in any
Concert Technology application.

You construct an | | oEnv object by declaring avariable of type | | oEnv. For example, to
create an environment named env, you do this:

Il oEnv env; .
Note: The environment object created in an ILOG Concert Technology application is

different from the environment created in the ILOG CPLEX C library by calling the routine
CPXopenCPLEX.

ILOG CPLEX 9.0 — GETTING STARTED

THE ANATOMY OF AN ILOG CONCERT TECHNOLOGY APPLICATION

The environment object is of central importance and needs to be available to the constructor
of al other ILOG Concert Technology classes because (among other things) it provides
optimized memory management for objects of ILOG Concert Technology classes. This
provides a boost in performance compared to using the system memory management
system.

Asisthe case for most ILOG Concert Technology classes, | | oEnv isahandle class. This
means that the variable env is a pointer to an implementation object, which is created at the
sametime asenv in the above declaration. One advantage of using handlesisthat if you
assign handle objects, all that is assigned is a pointer. So the statement

Il oEnv env2 = env;

creates a second handle pointing to the implementation object that env already points to.
Hence there may be an arbitrary number of | | oEnv handle objects al pointing to the same
implementation object. When terminating the ILOG Concert Technology application, the
implementation object must be destroyed as well. This must be done explicitly by the user
by calling

env. end();

for just ONE of the I | oEnv handles pointing to the implementation object to be destroyed.
Thecall toenv. end isgenerally the last ILOG Concert Technology operation in an
application.

Creating a Model: lloModel

After creating the environment, a Concert application is ready to create one or more
optimization models. Doing so consists of creating a set of modeling objects to define each
optimization model.

g o
S S
= 9
D o
®
ah:—r
= 3
O o
+ =
4+ 5
(o]
S o
D Q
@
M<

Modeling objects, like I | oEnv abjects, are handles to implementation objects. Though you
will be dealing only with the handle objects, it is the implementation objects that contain the
data that specifies the optimization model. If you need to remove an implementation object

from memory, you need to call the end method for one of its handle objects.

Modeling objects are also known as extractables because it is the individual modeling
objectsthat are extracted one by one when you extract an optimization model to I | oCpl ex.
So, extractables are characterized by the possibility of being extracted to agorithms such as
I'1 oCpl ex. Infact, they all areinherited from the class | | oExt r act abl e. In other words,
Il oExt ract abl e isthe base class of all classes of extractables or modeling objects.

The most fundamental extractable classis| | oMbdel . Objects of this class are used to define
acomplete optimization model that can later be extracted to an| | oCpl ex object. You create
amodel by constructing avariable of type | | ovbdel . For example, to construct a modeling
object named nodel , within an existing environment named env, you would do the
following:

ILOG CPLEX 9.0 — GETTING STARTED 69

THE ANATOMY OF AN ILOG CONCERT TECHNOLOGY APPLICATION

70

Il oMbdel rnodel (env);

At this point, it isimportant to note that the environment is passed as a parameter to the
constructor. There isalso a constructor that does not use the environment parameter, but this
constructor creates an empty handle, the handle corresponding to a NULL pointer. Empty
handles cannot be used for anything but for assigning other handles to them. Unfortunately,
it isacommon mistake to try to use empty handles for other things.

Oncean | oMbdel object has been constructed, it is popul ated with the extractabl es that
define the optimization model. The most important classes here are:
I'l oNunvar representing modeling variables;

Il oRange defining constraints of the form | <= expr <= u, where expr isa
linear expression; and

I'l oObj ective representing an objective function.
You create objects of these classes for each variable, constraint, and objective function of
your optimization problem. Then you add the objects to the model by calling
nodel . add(obj ect) ;

for each extractable obj ect . There is no need to explicitly add the variable objectsto a
model, as they are implicitly added when they are used in the range constraints (instances of
I I oRange) or the objective. At most one objective can be used in amodel with I | oCpl ex.

Modeling variables are constructed as objects of class| | oNunvar , by defining variables of
typel | oNunvar . Concert Technology provides several constructors for doing this; the most
flexible version, for example, is:

Il oNunVar x1(env, 0.0, 40.0, |LOFLQAT);

This definition creates the modeling variable x 1 with lower bound 0.0, upper bound 40.0 and
type | LOFLQAT, which indicates the variable is continuous. Other possible variable types
include | LO NT for integer variables and | LOBOOL for Boolean variables.

For each variable in the optimization model a corresponding object of class| | oNunVar
must be created. Concert Technology provides awealth of waysto help you construct all the
I 1 oNunvar objects.

Once al the modeling variables have been constructed, they can be used to build
expressions, which in turn are used to define objects of class| | oObj ect i ve and
Il oRange. For example,

Il oChj ective obj = IloMnimze(env, x1 + 2*x2 + 3*x3);

This creates the extractable obj of typel | oObj ect i ve which represents the objective
function of the example presented in Introducing ILOG CPLEX.

Consider in more detail what thisline does. The function I | oM ni ni ze takesthe
environment and an expression as arguments, and constructsanew | | oObj ect i ve abject

ILOG CPLEX 9.0 — GETTING STARTED

THE ANATOMY OF AN ILOG CONCERT TECHNOLOGY APPLICATION

from it that defines the objective function to minimize the expression. This new object is
returned and assigned to the new handle obj .

After an objective extractable is created, it must be added to the model. As noted above this
isdonewith theadd method of | | oMbdel . If thisisall that the variable obj isneeded for, it
can be written more compactly, like this:

nodel . add(1 | oM ni m ze(env, x1 + 2*x2 + 3*x3));

Thisway there isno need for the program variable obj and the program is shorter. If in
contrast, the abjective function is needed later, for example, to change it and reoptimize the
model when doing scenario analysis, the variable obj must be created in order to refer to the
objective function. (From the standpoint of algorithmic efficiency, the two approaches are
comparable.)

Creating constraints and adding them to the model can be done just as easily with the
following statement:

nodel . add(-x1 + x2 + x3 <= 20);

Thepart-x1 + x2 + x3 <= 20 createsan object of class| | oRange that isimmediately
added to the model by passing it to the method I | oModel : : add. Again, if areferenceto the
I I oRange object is needed later, an | | oRange handle object must be stored for it. Concert
Technology provides flexible array classesfor storing data, such asthese | | oRange objects.
Aswith variables, Concert Technology provides avariety of constructors that help create
range constraints.

While those exampl es use expressions with modeling variables directly for modeling, it
should be pointed out that such expressions are themselves represented by yet another
Concert Technology class, I | oExpr . Like most Concert Technology objects, I | oExpr
objects are handles. Consequently, the method end must be called when the object isno
longer needed. The only exceptions are implicit expressions, where the user does not create
an || oExpr object, such aswhen writing (for example) x1 + 2*x2. For such implicit
expressions, the method end should not be called. The importance of theclass | | oExpr
becomes clear when expressions can no longer be fully spelled out in the source code but
need instead to be built up in aloop. Operators like += provide an efficient way to do this.

g o
S S
= 9
D o
®
ah:—r
= 3
O o
+ =
4+ 5
(o]
S o
D Q
@
U)‘<

Solving the Model: lloCplex

Once the optimization problem has been created in an | | oMbdel object, it istimeto create
thel | oCpl ex object for solving the problem. Thisis done by creating a variable of type
I'1 oCpl ex. For example, to create an object named cpl ex, do the following:

Il oCpl ex cpl ex(env);

again using the environment env as parameter. The ILOG CPLEX object can then be used to
extract the model to be solved. This can be done by calling cpl ex. ext r act (nodel) .

ILOG CPLEX 9.0 — GETTING STARTED 71

THE ANATOMY OF AN ILOG CONCERT TECHNOLOGY APPLICATION

72

However, experienced Concert users recommend a shortcut that performs the construction of
the cpl ex object and the extraction of the model in oneline:

I'l oCpl ex cpl ex(nodel) ;

Thisworks because the modeling object nodel contains within it the reference to the
environment named env.

After thisline, object cpl ex isready to solve the optimization problem defined by nodel .
Solving the model is done by calling:

cpl ex. sol ve();

This method returnsan | | oBool value, where | | oTr ue indicates that cpl ex successfully
found afeasible (yet not necessarily optimal) solution, and I | oFal se indicates that no
solution was found. More precise information about the outcome of the last call to the
method sol ve can be obtained by calling:

cpl ex. get Status();

The returned value tells you what ILOG CPLEX found out about the model: whether it
found the optimal solution or only afeasible solution, whether it proved the model to be
unbounded or infeasible, or whether nothing at all has been determined at this point. Even
more detailed information about the termination of the solve call is available through
method | | oCpl ex: : get Cpl exSt at us.

Querying Results

After successfully solving the optimization problem, you probably are interested in
accessing the solution. The following methods can be used to query the solution value for a
variable or a set of variables:

Il oNum | | oCpl ex: : get Val ue(|| oNunVar var) const;
void |1 oCpl ex: :getVal ues(ll oNumArray val,
const |l oNunVarArray var) const;

For example:
Il oNumval 1 = cpl ex. get Val ue(x1);

stores the solution value for the modeling variable x1 in variable val 1. Other methods are
available for querying other solution information. For example, the objective function value
of the solution can be accessed using:

Il oNum obj val = cpl ex. get Ohj Val ue();

Handling Errors

Concert Technology provides two lines of defense for dealing with error conditions, suited
for addressing two kinds of errors. Thefirst kind covers simple programming errors.

ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MODEL IN C++

Examples of thiskind are: trying to use empty handle objects or passing arrays of
incompatible lengths to functions.

Thiskind of error isusually an oversight and should not occur in a correct program. In order
not to pay any runtime cost for correct programs asserting such conditions, the conditions
are checked using asser t statements. The checking is disabled for production runs if
compiled with the - DNDEBUG compiler option.

The second kind of error is more complex and cannot generally be avoided by correct
programming. An example is memory exhaustion. The data may simply require too much
memory, even when the program is correct. Thiskind of error is always checked at runtime.
In cases where such an error occurs, Concert Technology throws a C++ exception.

In fact, Concert Technology provides ahierarchy of exception classesthat all derive from the
common base class| | oExcept i on. Exceptions derived from this class are the only kind of
exceptions that are thrown by Concert Technology. The exceptions thrown by | | oCpl ex
objects all derivefrom class| | oAl gorithm : Excepti on or |l oCpl ex: : Excepti on.

To gracefully handle exceptions in a Concert Technology application, include all of the code
inatry/ cat ch clause, like this:

Il oEnv env;

try {

...

} catch (11 oException& e) {

cerr << "Concert Exception: " << e << endl;
} catch (...) {

cerr << "Qher Exception" << endl

}

env. end();

g o
S S
= 9
D o
®
ah:—r
= 3
O o
+ =
4+ 5
(o]
S o
D Q
@
U)‘<

Note: The construction of the environment comes before thet r y/ cat ch clause. In case of
an exception, env. end must still be called. To protect against failure during the
construction of the environment, another t ry/ cat ch clause may be added.

If code other than Concert Technology code is used in the part of that sample denoted by
..., dal other exceptions will be caught with the statement cat ch(. . .) . Doing so is good
practice, as it assures that no exception is unhandled.

Building and Solving a Small LP Model in C++

A complete example of building and solving asmall LP model can now be presented. This
example demonstrates:

0O General Sructure of an ILOG CPLEX Concert Technology Application on page 74

ILOG CPLEX 9.0 — GETTING STARTED 73

BUILDING AND SOLVING A SMALL LP MoDEL IN C++

74

O Modeling by Rows on page 75
0O Modeling by Columns on page 75
O Modeling by Nonzero Elements on page 76

Examplei | ol pex1. cpp, which isone of the example programsin the standard

ILOG CPLEX distribution, is an extension of the example presented in Introducing

ILOG CPLEX. It shows three different ways of creating an ILOG Concert Technology LP
model, how to solveit using I | oCpl ex, and how to access the solution. Here isthe problem
that the example optimizes:

Maximize X, + 2% + 3X3
subject to X + X, + X3 <20

Xp — 3 + X3 <30
with these bounds 0=<x=40

0<xy<+0o

OSX3S + 00

General Structure of an ILOG CPLEX Concert Technology Application

Thefirst operation is to create the environment object env, and the last operation is to
destroy it by calling env. end. Therest of the codeisenclosedinat ry/ cat ch clauseto
gracefully handle any errors that may occur.

First the example creates the model object and, after checking the correctness of command
line parameters, it creates empty arrays for storing the variables and range constraints of the
optimization model. Then, depending on the command line parameter, the example calls one
of the functions popul at ebyr ow, popul at ebycol um, or popul at ebynonzer o, tofill
the model object with a representation of the optimization problem. These functions return
the variable and range objects in the arrays var and con which are passed to them as
parameters.

After the model has been populated, the | | oCpl ex algorithm object cpl ex is created and
themodel isextracted to it. Thefollowing call of the method sol ve invokesthe optimizer. If
it fails to generate a solution, an error message is issued to the error stream of the
environment, cpl ex. error (), and theinteger -1 is thrown as an exception.

I oCpl ex provides the output streamsout for general logging, war ni ng for warning
messages, and er r or for error messages. They are preconfigured to cout , cerr, andcerr
respectively. Thus by default you will see logging output on the screen when invoking the
method sol ve. This can be turned off by calling

cpl ex. set Qut (env. get Nul | Strean()), that is, by redirecting the out stream of the
I1 oCpl ex object cpl ex to the null stream of the environment.

ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MODEL IN C++

If asolution isfound, solution information is output through the channel, env. out whichis
initialized to cout by default. The output operator << is defined for type

Il oAl gorithm : Status asreturned by the call to cpl ex. get St at us. It isaso defined
for I | oNumAr r ay, the ILOG Concert Technology class for an array of numerical values, as
returned by the callsto cpl ex. get Val ues, cpl ex. get Dual s, cpl ex. get Sl acks, and
cpl ex. get ReducedCost s. In general, the output operator is defined for any

ILOG Concert Technology array of elementsif the output operator is defined for the
elements.

The functions named popul at eby* are purely about modeling and are completely
decoupled from the algorithm I | oCpl ex. In fact, they don’'t use the cpl ex object, whichis
created only after executing one of these functions.

Modeling by Rows

The function popul at ebyr ow creates the variables and adds them to the array x. Then the
objective function and the constraints are created using expressions over the variabl es stored
in x. Therange constraints are also added to the array of constraints c. The objective and the
constraints are added to the model.

Modeling by Columns

Function popul at ebycol unm can be viewed as the transpose of popul at ebyr ow While
for simple examples like this one population by rows may seem the most straightforward
and natural approach, there are some model s where modeling by column isamore natural or
more efficient approach.

When modeling by columns, range objects are created with their lower and upper bound
only. No expression is given—which isimpossible since the variables are not yet created.
Similarly, the objective function is created with only its intended optimization sense, and
without any expression. Next the variables are created and installed in the already existing
ranges and objective.

g o
S S
= 9
D o
®
ah:—r
= 3
O o
+ =
4+ 5
(o]
S o
D Q
@
M<

The description of how the newly created variables are to be installed in the ranges and
objective is by means of column expressions, which are represented by the class

I 1 oNunCol unm. Column expressions consist of objects of class| | oAddNunvar linked
together with operator +. These | | oAddNunVar objects are created using operator() of the
classes| | oOnj ecti ve and | | oRange. They define how to install a new variable to the
invoking objective or range objects. For example, obj (1. 0) createsan | | oAddNunVar
capable of adding a new modeling variable with alinear coefficient of 1.0 to the expression
in obj . Column expressions can be built in loops using operator +=.

Column expressions (objects of class| | oNunCol umm) are handle objects, like most other
Concert Technology objects. The method end must therefore be called to delete the
associated implementation object when it isno longer needed. However, for implicit column

ILOG CPLEX 9.0 — GETTING STARTED 75

BUILDING AND SOLVING A SMALL LP MoDEL IN C++

76

expressions, whereno | | oNunCol unm object is explicitly created, such as the ones used in
this example, the method end should not be called.

The column expression is passed as a parameter to the constructor of class| | oNunvar . For
examplethe constructor | | oNunmvar (obj (1.0) + c[0](-1.0) + c[1](1.0), 0.0,
40. 0) creates anew modeling variable with lower bound 0.0, upper bound 40.0 and, by
default, type | LOFLOAT, and adds it to the objective obj with alinear coefficient of 1.0, to
therange c[0] with alinear coefficient of -1.0 and to c[1] with alinear coefficient of 1.0.
Column expressions can be used directly to construct numerical variables with default
bounds[0, Il olnfinity] andtypel LOFLOAT, asin the following statement:

x. add(obj (2.0) + c[0](1.0) + c[1](-3.0));

wherel | oNunvar does not need to be explicitly written. Here, the C++ compiler recognizes
that an1 | oNunVar object needsto be passed to the add method and therefore automatically
callsthe constructor | | oNunvar (I | oNunCol unm) in order to create the variable from the

column expression.

Modeling by Nonzero Elements

Thelast of the three functions that can be used to build the model ispopul at ebynonzer o.
It creates objects for the objective and the ranges without expressions, and variabl es without
columns. Then methods | | oQhj ect i ve: : set Coef and| | oRange: : set Coef areusedto
set individual nonzero values in the expression of the objective and the range constraints. As
usual, the objective and ranges must be added to the model.

Complete Program
The complete program follows. You can also view it online in thefilei | ol pex1. cpp.

e e *o CH+ -*-
/1 File: exanples/src/ilol pexl.cpp

/1 Version 9.0

I e LA LT PP PP TR
/1 Copyright (C 1999-2003 by |LOG

// Al R ghts Reserved.

// Permssion is expressly granted to use this exanple in the

/1 course of devel oping applications that use |LOG products.

L e e L PP TP
/1

/1 ilolpexl.cpp - Entering and optim zing a problem Denonstrates different
/1 methods for creating a problem The user has to choose the met hod

/1 on the command |ine

/1

/1 ilolpexl -r generates the probl em by adding rows

/1 ilolpexl -c generates the probl em by addi ng col ums

/1 ilolpexl -n generates the problemby adding a list of coefficients

#i ncl ude <ilcplex/ilocpl ex. h>

ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MODEL IN C++

| LOSTLBEG N

static void
usage (const char *prognane),

popul at ebyr ow (1l oModel nodel, IloNunVarArray var, |l oRangeArray con),
popul at ebycol um (11 ovbdel nodel, |1oNunVarArray var, |loRangeArray con),
popul at ebynonzero (11 oMbdel nodel, |loNunVarArray var, |l oRangeArray con);
i nt
nain (int argc, char **argv)
{
I'l oEnv env;
try {

Il oMbdel nodel (env);

if ((argc !'=2) |
(argv[1][0] !="*-"") [
(strchr (“rcn”, argv[1][1]) == NULL)) {
usage (argv[O0]);
throw-1);

}

Il oNunVar Array var (env);

I | oRangeArray con(env); E' (@)
g °
. Q 5
swtch(:ar,gv[l][l]) {) 8
case ‘r': = 3
popul at ebyrow (nodel, var, con); e 4
br eak; O 3
case ‘c': T3
+ >
popul at ebycol um (rnodel, var, con); c 2
br eak; n 9
. LI m ‘Q
case ‘n’: a <

popul at ebynonzero (nodel, var, con);

br eak;

}
Il oCpl ex cpl ex(nodel) ;
/1 Optimze the probl emand obtain solution.

if (!cplex.solve()) {
env.error() << “Failed to optimze LP" << endl;

throw -1);
}
Il oNunmArray val s(env);
env.out() << “Solution status = “ << cplex.getStatus() << endl;
env.out () << “Solution value =" << cplex.gethjValue() << endl;
cpl ex. get Val ues(val s, var);
env.out() << “Val ues =" << vals << endl;

cpl ex. get Sl acks(val s, con);
env.out() << “Slacks

<< val s << endl;

ILOG CPLEX 9.0 — GETTING STARTED 77

BUILDING AND SOLVING A SMALL LP MoDEL IN C++

78

cpl ex. get Dual s(val s,

env.out() << “Duals
cpl ex. get ReducedCost s(val s, var);
env.out () << “Reduced Costs = “ << vals << endl;

con);

= “ << vals << endl;

cpl ex. export Model (“I pex1.1p”);

}
catch (11 oException& e) {
cerr << “Concert exception caught: “ << e << endl;
}
catch (...) {
cerr << “Unknown exception caught” << endl;
}
env. end();
return O;

} // END main

static void usage (const char *prognane)

{

cerr
cerr
cerr
cerr
cerr
cerr

<<
<<
<<

“

“

“

<<

<<
<<

“

“

Usage: “ << prognane << “ -X' << endl;
where X is one of the follow ng options:” << endl;
r generate problemby row << endl;
c generate probl em by col um” << endl;
n generate probl em by nonzero” << endl;
Exiting...” << endl;

} /1 END usage

/1 To popul ate by row, we first create the variables, and then use themto
Il create the range constraints and objective.

static void

popul at ebyrow (11 oMdel nodel,

{

Il oEnv env = nodel . get Env();

X. add(|1 oNunVar (env,

x. add(|1 oNunVar (env));
x. add(|1 oNunVar (env));
nodel . add(|1 oMaxi m ze(env, x[0] + 2 * x[1] + 3 * x[2]));

Il oNunmVar Array x, |l oRangeArray c)

0.0, 40.0));

c.add(- x[0] + x[1] + x[2] <= 20);

c. add(
nodel . add(c);

x[0] - 3 * x[1] + x[2] <= 30);

} /1 END popul at ebyr ow

/1 To populate by colum, we first create the range constraints and the

/1 objective,

ILOG CPLEX 9.0 —

and then create the variables and add themto the ranges and

GETTING STARTED

BUILDING AND SOLVING A SMALL LP MODEL IN C++

/1 objective using colunn expressions.

static void

popul at ebycol um (|1 oModel nodel, |loNunVarArray x, |loRangeArray c)
{

Il oEnv env = nodel . get Env();

Il oCbj ective obj = Il oMaxi m ze(env);

c.add(!l oRange(env, -llolnfinity, 20.0));

c.add(!l oRange(env, -llolnfinity, 30.0));

x. add(l 1 oNunVar (obj (1.0) + c[0](-1.0) +
x. add(!l oNunVar (obj (2.0) + c[0](1.0) +
X. add(|1 oNunVar (obj (3.0) + c[0](1.0) +

[1](1.0), 0.0, 40.0));
[1](-3.0)));
11(1.0)))

cl

Cc
C

nodel . add(obj);
nodel . add(c);

} 1/ END popul at ebycol urm

/1 To popul ate by nonzero, we first create the rows, then create the
/1 colums, and then change the nonzeros of the matrix 1 at a tinme.

2o

static void o g
popul at ebynonzero (11 oMddel nodel, |loNunVarArray X, |loRangeArray c) 5- 8
t - =
Il oEnv env = nodel . get Env(); © 4
o3

Il oQoj ective obj = Il oMaxi m ze(env); I g
c.add(!l oRange(env, -llolnfinity, 20.0)); c 2
c.add(!l oRange(env, -llolnfinity, 30.0)); % ‘8

a <

x. add(|1 oNunVar (env, 0.0, 40.0));
x. add(|1 oNunVar (env));
X. add(|1 oNunVar (env));

obj . set Coef (x[0], 1.0);
obj . set Coef (x[1], 2.0);
obj . set Coef (x[2], 3.0);

c[0] . set Coef (x[0], -1

c[0].setCoef (x[1], 1.0);
c[0].setCoef (x[2], 1
c[1].set Coef (x[0], 1.0);
c[1].set Coef (x[1], -3
c[1].setCoef(x[2], 1

nodel . add(obj);

nodel . add(c);
} /1 END popul at ebynonzero

ILOG CPLEX 9.0 — GETTING STARTED 79

WRITING AND READING MODELS AND FILES

Writing and Reading Models and Files

In examplei | ol pex1. cpp, onelineis still unexplained:
cpl ex. export Model ("1 pex1.1p");

This statement causes cpl ex to write the model it has currently extracted to thefile called
| pex1. | p. Inthiscase, the file will be writtenin LP format. (Use of that format is
documented in the reference manual ILOG CPLEX File Formats.)Other formats supported
for writing problems to afile are MPS and SAV (also documented in the reference manual
ILOG CPLEX File Formats). |11 oCpl ex decides which file format to write based on the
extension of the file name.

I'1 oCpl ex also supports reading of files through one of itsi npor t Model methods. A call
tocpl ex. i nport Model (model, "file.lp") causes|LOG CPLEX to read a problem

fromthefilefil e. | p and add al the datain it to nodel asnew objects. (Again, MPS and
SAV format files are also supported.) In particular, ILOG CPLEX creates an instance of

Il oObj ective for the objective function found infil e. | p,

I | oNunvar for each variablefoundinfil e. | p, except

I'l oSem Cont Var for each semi-continuous or semi-integer variable found infil e. | p,
I | oRange for eachrow foundinfile.l p,

Il 0SCS1 for each SOS of type 1 foundinfil e. | p, and

I | 0SOS2 for each SOS of type 2 found infil e. | p.

If you also need access to the modeling objects created by i npor t Model , two additional
signatures are provided:

voi d |1 oCpl ex: :inportMdel (11 oMdel & m
const char* fil enare,
Il oChj ective& obj,
Il oNunVar Array vars,
Il oRangeArray rngs) const;

and

voi d Il oCpl ex: : i nport Model (11 ohodel & m
const char* filenane,
Il oQoj ective& obj,
Il oNunVar Array vars,
Il oRangeArray rngs,
Il 0SCS1Array sosl,
Il 0SOS2Array sos2) const;

80 ILOG CPLEX 9.0 — GETTING STARTED

SELECTING AN OPTIMIZER

They provide additional parameters so that the newly created modeling objects will be
returned to the caller. Example programi | ol pex2. cpp gives an example of how to use
method i npor t Model .

Selecting an Optimizer

I'1 oCpl ex treats all problemsit solves as Mixed Integer Programming (MIP) problems.
The algorithm used by 1 | oCpl ex for solving MIP is known as branch & cut (referred to in
some contexts as branch & bound) and is documented in more detail in the ILOG CPLEX
User’'sManual. For thistutorial, it is sufficient to know that this algorithm consists of
solving a sequence of LPs or QPsthat are generated in the course of the algorithm. Thefirst
LP or QP to be solved is known as the root, while all the others are referred to as nodes and
are derived from the root or from other nodes. If the model extracted to thecpl ex objectisa
pure LP or QP (no integer variables), then it will be fully solved at the root.

Asmentioned in Optimizer Options on page 12, various optimizer options are provided for
solving LPs and QPs. While the default optimizer works well for awide variety of models,
I'1 oCpl ex allowsyou to control which option to use for solving the root and for solving the

nodes, respectively, by the following lines:

void Il oCpl ex: : setParan(|| oCpl ex:: Root Al g, al g)
void |1 oCpl ex::setParanm(l1 oCpl ex:: NodeAl g, al g)

where | | oCpl ex: : Al gori t hmisan enumeration type. It defines the following symbols

with their meaning:

11 oCpl ex:
11 oCpl ex: :
11 oCpl ex::
11 oCpl ex::
11 oCpl ex: :

11 oCpl ex::
11 oCpl ex: :

: Aut oAl g

Dual

Pri mal
Barrier
Net wor k

Sifting

Concurrent

allow ILOG CPLEX to choose the algorithm
use the dual simplex agorithm

=
—
o
=
=
—
o
=
@]
+
+
C
(%]
)
=
[%2]

use the primal ssimplex algorithm
use the barrier algorithm

use the network simplex algorithm for the embedded
network

use the sifting algorithm

allow ILOG CPLEX to use multiple algorithms on
multiple computer processors

For QP models, only the Aut oAl g, Dual , Pri mal , Barri er, and Net wor k algorithms are

applicable.

The optimizer option used for solving pure LPs and QPsis controlled by setting the root
algorithm parameter. Thisis demonstrated next, in examplei | ol pex2. cpp.

ILOG CPLEX 9.0 — GETTING STARTED 81

O
o
>
o
@
=
=
)
o
=
>
)
o
Q
<

READING A PROBLEM FROM A FILE: EXAMPLE ILOLPEX2.CPP

Reading a Problem from a File: Example ilolpex2.cpp

82

This example shows how to read an optimization problem from afile, and solve it with a
specified optimizer option. It prints solution information, including a Simplex basis, if
available. Finaly it prints the maximum infeasibility of any variable of the solution.

Thefile to read and the optimizer choice are passed to the program viacommand line
parameters. For example, this command:

il ol pex2 exanple.nps d
reads the file exanpl e. nps and solves the problem with the dual simplex optimizer.
Examplei | ol pex2 demonstrates:
0O Reading the Model from aFile
O Selecting the Optimizer
0O Accessing Basis Information
0O Querying Quality Measures

The general structure of thisexampleisthe sameasfor examplei | ol pex1. cpp. It startsby
creating the environment and terminates with destroying it by calling the end method. The
codein betweenisenclosed int ry/ cat ch statements for error handling.

Reading the Model from a File

Themodel is created by reading it from the file specified as the first command line argument
ar gv[1] . Thisisdone using the method i nport Model of anl1 oCpl ex object. Here the
I'1 oCpl ex object isused as amodel reader rather than an optimizer. Calling i npor t Model
does not extract the model to the invoking cpl ex object. This must be done later by acall to
cpl ex. extract (nodel) . The objectsobj , var, and r ng are passed to i npor t Model SO
that later on when results are queried the variables will be accessible.

Selecting the Optimizer

The selection of the optimizer option is done in the switch statement controlled by the
second command line parameter. A call to set Par an{ || oCpl ex: : Root Al g, al g)
selectsthedesired | | oCpl ex: : Al gori t hmoption.

Accessing Basis Information

After solving the model by calling the method sol ve, the results are accessed in the same
way asini | ol pex1. cpp, with the exception of basisinformation for the variables. It is
important to understand that not all optimizer options compute basisinformation, and thus it
cannot be queried in all cases. In particular, basisinformation is not available when the

ILOG CPLEX 9.0 — GETTING STARTED

READING A PROBLEM FROM A FILE: EXAMPLE ILOLPEX2.CPP

model is solved using the barrier optimizer (I 1 oCpl ex: : Bar ri er) without crossover
(parameter I 1 oCpl ex: : Bar CrossAl g settol | oCpl ex: : NoAl g).

Querying Quality Measures

Finally, the program prints the maximum primal infeasibility or bound violation of the
solution. To cope with the finite precision of the numerical computations done on the
computer, | | oCpl ex allows some tolerances by which (for instance) optimality conditions
may be violated. A long list of other quality measuresis available.

Complete Program
The complete program follows. You can also view it online in thefilei | ol pex2. cpp.

e *o CH+ -*-
/1 File: exanples/src/ilol pex2.cpp

// Version 9.0
e e T R
/1 Copyright (C 1999-2003 by |ILOG

// Al R ghts Reserved.

/! Permssion is expressly granted to use this exanple in the

/1 course of devel opi ng applications that use |LOG products. g 0O

e S S

I 5 2

/1 ilolpex2.cpp - Reading in and optinizing a problem —_

/1 g 4

/1 To run this exanple, command |ine arguments are required. O o
. . . + =

Il i.e., ilolpex2 filename nethod + 5

/1 where c 2

/1 filename is the nane of the file, with .nps, .lp, or .sav extension %8

Il method is the optimnization nethod o =<

/1 o] def aul t

/1 p primal sinplex

/1 d dual si npl ex

/1 h barrier with crossover

/1 b barrier w thout crossover

/1 n network wi th dual sinplex cleanup

/1 S sifting

/1 c concurrent

/| Exanpl e:

/1 ilolpex2 exanple.nmps o

/1

#i ncl ude <ilcplex/il ocpl ex. h>
| LOSTLBEG N

static void usage (const char *prognane);
i nt

main (int argc, char **argv)

ILOG CPLEX 9.0 — GETTING STARTED 83

READING A PROBLEM FROM A FILE: EXAMPLE ILOLPEX2.CPP

Il oEnv env;

try {
Il oModel nodel (env);
Il oCpl ex cpl ex(env);

if ((argc !'=3) |
(strchr (“podhbnsc”, argv[2][0]) == NULL)) {
usage (argv[O0]);
throw-1);

switch (argv[2][0]) {

case ‘0’ :
cpl ex. set Paran{ |1 oCpl ex: : Root Al g, Il oQCplex:: AutoAl g);
br eak;

case ‘p’:
cpl ex. set Paran(|| oCpl ex: : Root Al g, |1 oCplex::Prinal);
br eak;

case ‘d:
cpl ex. set Paran(|1 oCpl ex: : Root Al g, |1 0Cpl ex:: Dual);
br eak;

case ‘b’ :
cpl ex. set Paran(|1 oCpl ex: : Root Al g, |loCplex::Barrier);
cpl ex. set Paran(|1 oCpl ex: : Bar O ossAl g, |1 0oCplex:: NoAl g);
br eak;

case ‘h':
cpl ex. set Paran(|1 oCpl ex:: Root Al g, Il oCplex::Barrier);
br eak;

case ‘n’:
cpl ex. set Paran(|1 oCpl ex: : Root Al g, Il 0oCpl ex:: Network);
br eak;

case 's’:
cpl ex. set Paran(11 oCpl ex:: Root Al g, Il oCplex::Sifting);
br eak;

case ‘c':
cpl ex. set Paran(11 oCpl ex: : Root Al g, |1 0oCpl ex:: Concurrent);
br eak;

defaul t:
br eak;

}

Il otojective obj;

Il oNunVar Array var (env);

Il oRangeArray rng(env);

cpl ex. i nport Model (rodel , argv[1], obj, var, rng);

cpl ex. extract (nodel) ;

if (!cplex.solve()) {
env.error() << “Failed to optimze LP" << endl;
throw-1);

84 ILOG CPLEX 9.0 — GETTING STARTED

READING A PROBLEM FROM A FILE: EXAMPLE ILOLPEX2.CPP

Il oNumArray val s(env);
cpl ex. get Val ues(val s, var);

env.out () << “Solution status = “ << cplex.getStatus() << endl;
env.out() << “Solution value = *“ << cpl ex. get Chj Val ue() << endl;
env.out() << “Solution vector = “ << vals << endl;

try { /1 basis may not exist

Il oCpl ex: : Basi sStatusArray cstat(env);

cpl ex. get Basi sSt at uses(cstat, var);

env.out() << “Basis statuses = “ << cstat << endl;
} catch (...) {

}

env.out () << “Maxi mum bound violation = “
<< cplex.getQuality(lloCplex::MaxPrimal I nfeas) << endl;

}
catch (Il oException& e) {
cerr << “Concert exception caught: “ << e << endl;
}
catch (...) {
cerr << “Unknown exception caught” << endl;
}
env. end(); Z o
return 0; o g
} // END nain 5 8
—
S o
static void usage (const char *prognane) e} g
{ f3
cerr << “Usage: “ << prognane << “ filenane algorithnf << endl; c 2
cerr << * where filenane is a file with extension “ << endl; m‘g
cerr << * MPS, SAV, or LP (lower case is allowed)” << endl; g <
cerr << * and algorithmis one of the letters” << endl;
cerr << *“ default” << endl;

o]
cerr << * p primal sinplex” << endl;
cerr << d dual sinplex *“ << endl;
cerr << *“ b barrier “ << endl;
cerr << * h barrier with crossover” << endl;
cerr << * n network sinplex” << endl;
cerr << *“ s sifting” << endl;
cerr << c concurrent” << endl;
cerr << “ Exiting..."” << endl;
} // END usage

ILOG CPLEX 9.0 — GETTING STARTED 85

MODIFYING AND REOPTIMIZING

Modifying and Reoptimizing

In many situations, the solution to amodel is only the first step. One of the important
features of Concert Technology is the ability to modify and then re-solve the model even
after it has been extracted and solved one or more times.

A look back to examplesi | ol pex1. cpp andi | ol pex2. cpp reveasthat models have
been modified all along. Each time an extractable is added to amodel, it changes the model.
However, those examples made all such changes before the model was extracted to

ILOG CPLEX.

Concert Technology maintainsa link between themodel and all | | oCpl ex objectsthat may
have extracted it. Thislink is known as notification. Each time a modification of the model
or one of its extractables occurs, the change is notified to the | | oCpl ex objects that
extracted the model. They then track the modification in their internal representations.

Moreover, | | oCpl ex triesto maintain as much information from a previous solution asis
possible and reasonable, when the model is modified, in order to have a better start when
solving the modified model. In particular, when solving LPs or QPs with a simplex method,
Il oCpl ex attempts to maintain a basis which will be used the next time the method sol ve
isinvoked, with the aim of making subsequent solves go faster.

Modifying an Optimization Problem: Example ilolpex3.cpp

This example demonstrates:
O Setting ILOG CPLEX Parameters on page 88
0O Modifying an Optimization Problem on page 88

0O Sarting from a Previous Basis on page 838

86 ILOG CPLEX 9.0 — GETTING STARTED

MODIFYING AN OPTIMIZATION PROBLEM: EXAMPLE ILOLPEX3.CPP
Here isthe problem examplei | ol pex3 solves:
Minimize c*X
subject to Hx=d
Ax=b
1<x<
where H= (-10101000) d= (-3)
(1-1010000) (1)
(01-1001-10) (4)
(000-10-101) (3)
(0000-101-1) (-5)
A= (21-2-12-1-2-3) b= (4)
(1-323-1211) (-2)
c= (9142-82812)
| = (00000000O0) E'O
u= (50 50 50 50 50 50 50 50)) §
L o
The constraints Hx=d represent a pure network flow. The example solves this problemin S i
two steps: Q§
1. ThelLOG CPLEX Network Optimizer is used to solve + 3
- % o
Minimize C*X o Q
subject to Hx=d
1<x<u

2. Theconstraints Ax=b are added to the problem, and the dual simplex optimizer is used to
solve the full problem, starting from the optimal basis of the network problem. The dual
simplex method is highly effective in such a case because this basis remains dua feasible
after the slacks (artificial variables) of the added constraints are initialized as basic.

Notice that the 0 valuesin the data are omitted in the example program. ILOG CPLEX
makes extensive use of sparse matrix methods and, although ILOG CPLEX correctly
handles any explicit zero coefficients given to it, most programs solving models of more
than modest size benefit (in terms of both storage space and speed) if the natural sparsity of
the model is exploited from the very start.

Before the model is solved, the network optimizer is selected by setting the Root Al g
parameter to thevalue | | oCpl ex: : Net wor k, asshown in examplei | ol pex2. cpp. The

ILOG CPLEX 9.0 — GETTING STARTED 87

MODIFYING AN OPTIMIZATION PROBLEM: EXAMPLE ILOLPEX3.CPP

88

simplex display parameter | | oCpl ex: : Si nDi spl ay is set so that the simplex algorithm
issues logging information as it executes.

Setting ILOG CPLEX Parameters

I'1 oCpl ex provides avariety of parameters that allow you to control the solution process.
They can be categorized as Boolean, integer, numerical, and string parameters and are
represented by the enumeration types| | oCpl ex: : Bool Param | | oCpl ex: : | nt Par am
I'1 oCpl ex: : NunPar am and | | oCpl ex: : St ri ngPar am respectively.

Modifying an Optimization Problem

After the simple modél is solved and the resulting objective value is passed to the output
channel cpl ex. out , the remaining constraints are created and added to the model. At this
time the model has already been extracted to cpl ex. Asaconsequence, whenever the model
ismodified by adding a constraint, this addition isimmediately reflected in the cpl ex object
via notification.

Starting from a Previous Basis

Before solving the modified problem, examplei | ol pex3. cpp sets the optimizer option to
Il oCpl ex: : Dual , asthisisthe algorithm that can generally take best advantage of the
optimal basis from the previous solve after the addition of constraints.

Complete Program

The complete program follows. You can aso view it onlinein thefilei | ol pex3. cpp.

A e I T ¥ CH+ -*-
/1 File: exanples/src/ilol pex3.cpp
/1 Version 9.0

/1 Copyright (C 1999-2003 by |LOG

// Al R ghts Reserved.

/1 Permssion is expressly granted to use this exanple in the
/1 course of devel oping applications that use |LOG products.

/1 ilol pex3.cpp, exanple of adding constraints to solve a problem

/1 Modified exanpl e from Chvatal, “Linear Progranm ng”, Chapter 26.
/1 mnimze c*x

/1 subject to Hx =d

/1 Ax = b

/1 | <= x <=u
/1 wher e

/1

/I' H=(-1 01 0 1 00 0) d=¢(-3)

ILOG CPLEX 9.0 — GETTING STARTED

MODIFYING AN OPTIMIZATION PROBLEM: EXAMPLE ILOLPEX3.CPP

Ny
—_~ e~~~
O OO
OO Rk
oOor o
okor
= OOOo
O rFr PO
roro
P PP OO
—— — —
—_~ e~~~
awhPE
— — — —

- -
- -
>
I
——
RN
'
w P
w P
'
RN
'
N -
'
RN
'
P ow
——
N A

[N

Z
o
—_~—~
o O ©

o

o
oOonN
o O ™
oOonN
o O ™

u
oOonN
— — —

// Treat the constraints with A as the conplicating constraints, and
/1 the constraints with H as the “sinple” problem

// The idea is to solve the sinple problemfirst, and then add the
/1 constraints for the conplicating constraints, and solve with dual.

#i ncl ude <ilcplex/il ocpl ex. h>

| LOSTLBEG N

int main() Z o
{ | o S
Il oEnv env; = 0
try { =3
Il oMbdel nodel (env, “chvatal ”); © 4
o3
Il oNunVar Array x(env, 8, 0, 50); I g
nodel . add(1 | oM ni m ze(env, -9*x[0] + x[1] + 4*x[2] + 2*x[3] c 2
-8*x[4] + 2*x[5] + 8*x[6] + 12*x[7])); » O
nodel . add(- x[0] + x[2] + X[4] = -3); [<

nodel . add(x[0] - x[1] + x[3] = 1);

nodel . add(x[1] - x[2] + X[5] - x[6] == 4);

nodel . add(- x[3] - X[5] + x[7] == 3);

nodel . add(- x[4] + x[6] - x[7] == -5);

I'l oCpl ex cpl ex(nodel) ;

cpl ex. set Paran(|1 oCpl ex: : Si nDi spl ay, 2);

cpl ex. set Paran(|1 oCpl ex: : Root Al g, |1 0Cpl ex:: NetworKk) ;

cpl ex. sol ve();

cplex.out() << “After network optim zation, objectiveis *“
<< cpl ex. get (bj Val ue() << endl;

nodel . add(2*x[0] + 1*x[1] - 2*x[2] - 1*x[3] +

2*x[4] - 1*x[5] - 2*x[6] - 3*x[7] == 4);
nmodel . add(1*x[0] - 3*x[1] + 2*x[2] + 3*x[3] -
1*x[4] + 2*x[5] + 1*x[6] + 1*x[7] == -2);

cpl ex. set Paran(11 oCpl ex: : Root Al g, Il 0oCplex::Dual);
cpl ex. sol ve();

ILOG CPLEX 9.0 — GETTING STARTED 89

MODIFYING AN OPTIMIZATION PROBLEM: EXAMPLE ILOLPEX3.CPP

Il oNumArray val s(env);

cpl ex. get Val ues(val s, x);

cplex.out() << “Solution status “ << cplex.getStatus() << endl;
cplex.out() << “Chjective value “ << cpl ex. get Chj Val ue() << endl;
cplex.out() << “Solution is: “ << vals << endl;

cpl ex. export Model (“I pex3. sav”);
}
catch (Il oException& e) {
cerr << “Concert exception caught:

“

<< e << endl;

}
catch (...) {
cerr << “Unknown exception caught” << endl;
}
env. end();
return O;

} // END main

90 ILOG CPLEX 9.0 — GETTING STARTED

Concert Technology Tutorial for Java Users

Thischapter isan introduction to using ILOG CPLEX through ILOG Concert Technology in
the Java programming language. It gives you an overview of atypical application program,
and highlights procedures for:

O Creating a model

O Solving that model

O Querying results after solving
O Handling error conditions

ILOG Concert Technology allows your application to call ILOG CPLEX directly, through
the Java Native Interface (JNI). This Javainterface supplies arich meansfor you to use Java
objects to build your optimization model.

0O
o
—

S a
T o
;:
<

C =
v 5
@ o
v o
«Q
<

Thel | oCpl ex classimplementsthe ILOG Concert Technology interface for creating
variables and constraints. It also provides functionality for solving Mathematical
Programing (M P) problems and accessing solution information.

Compiling ILOG CPLEX Applications in ILOG Concert Technology

When compiling a Java program that uses ILOG Concert Technology, you need to inform
the Java compiler where to find the file cpl ex. j ar containing the ILOG CPLEX Concert

ILOG CPLEX 9.0 — GETTING STARTED 91

COMPILING

92

ILOG CPLEX APPLICATIONS IN ILOG CONCERT TECHNOLOGY

Technology class library. To do this, you add the cpl ex. j ar fileto your classpath. Thisis
most easily done by passing the command-line option

-classpath <path_to_cplex.jar>

to the Java compiler j avac. If you need to include other Java class libraries, you should add
the corresponding j ar filesto the classpath aswell. Ordinarily, you should also include the
current directory '. ' to be part of the Java classpath.

At execution time, the same classpath setting is needed. Additionally, since ILOG CPLEX is
implemented via NI, you need to instruct the Java Virtual Machine (JVM) whereto find the
shared library (or dynamic link library) containing the native code to be called from Java.
This may be done with the command line option

-Djava.library. path=<path_to_shared_library>
tothej ava command. Note that, unlikethe cpl ex. j ar file, the shared library is system

dependent; thus the exact pathname, of the location for the library to be used, differs
depending on the platform you are using.

Pre-configured compilation and runtime commands are provided in the standard distribution,
through the UNIX makefiles and Windows"j avamake" file for Nmake. However, these
scripts presume a certain relative location for the files mentioned above, and for application
development most users will have their source files in some other location.

Below are suggestions for establishing build procedures for your application.

1. First check ther eadne. ht 1 filein the standard distribution, under the Supported
Platforms heading to locate the machi ne and | i bf or mat entry for your UNIX
platform, or the compiler and library format combination for Windows.

2. Go to the subdirectory in the exanpl es directory where ILOG CPLEX isinstalled on
your machine. On UNIX, thiswill be machi ne/ | i bf or mat , and on Windows it will be
conpi | er\ i bf or mat . This subdirectory will contain amaekefi | e or j avamake
appropriate for your platform.

3. Then use these files to compile the examples that came in the standard distribution by
calling make execute_j ava (UNIX) or nmake -f javamake execute (Windows).

4. Carefully note the locations of the needed files, both during compilation and at run time,
and convert the relative path names to absolute path names for use in your own working
environment.

In Case Problems Arise

If aproblem occurs in the compilation phase, make sure your java compiler is correctly set
up and that your classpath includesthe cpl ex. j ar file.

If compilation is successful and the problem occurs when executing your application, there
are three likely causes:

ILOG CPLEX 9.0 — GETTING STARTED

THE DESIGN OF ILOG CPLEX IN ILOG CONCERT TECHNOLOGY

1. If you get amessage likej ava. | ang. Nod assDef FoundEr r or your classpath is not
correctly set up. Make sureyou use- cl asspat h <path_t o_cpl ex. j ar > inyour
j ava command.

2. If youget amessagelikej ava. | ang. Unsat i sfi edLi nkEr r or you need to set up the
path correctly so that the VM can locate the ILOG CPLEX shared library. Make sure
you use the following option in your j ava command:

-Djava.library. path=<path_to_shared_library>

3. If you get amessagelikeilm: CPLEX: no |icense found for this product or
ilm CPLEX: invalid encrypted key "MJVUXTDIV82" in
“fusr/ilog/ilm access.iln run il nmheck thenthereisaproblem with your
license to use ILOG CPLEX. Review the ILOG License Manager User’'s Guide and
Reference to see whether you can correct the problem. If you have verified your system
and license setup but continue to experience problems, contact ILOG Technical Support
and report the error messages.

The Design of ILOG CPLEX in ILOG Concert Technology

User-Written Application

| Concert Technology

| modeling interfaces lloCplex

0O
o
—

S a
T o
;:
<

C =
v 5
@ o
v o
«Q
<

CPLEX database

Figure4.1 AView of ILOG CPLEX in ILOG Concert Technology

ILOG CPLEX 9.0 — GETTING STARTED 93

THE ANATOMY OF AN ILOG CONCERT TECHNOLOGY APPLICATION

Figure 4.1 illustrates the design of ILOG Concert Technology and how a user program uses
it. ILOG Concert Technology defines a set of interfaces for modelling objects. Such
interfaces do not actually consume memory (thisis the reason the box in the figure has a
dotted outline). When a user creates an ILOG Concert Technology modelling object using
ILOG CPLEX, an object iscreated in the ILOG CPLEX database that implements the
interface defined by ILOG Concert Technology. However, a user application never accesses
such objects directly but only communicates with them through the interfaces defined by
ILOG Concert Technology.

Theonly ILOG Concert Technology objects directly created and accessed by a user are
objectsfrom class| | oCpl ex. This classimplements two interfaces, | | oMobdel er and
I 1 oMPModel er, that allow you to create modelling objects. The class| | oCpl ex aso
provides methods to solve models and query solutions.

The Anatomy of an ILOG Concert Technology Application

To usethe ILOG CPLEX Javainterfaces, you need to import the appropriate packages into
your application. Thisis done with the lines:

i mport ilog.concert.*;
i mport il og.cplex.*;

Asfor every Javaapplication, an ILOG CPLEX application isimplemented as amethod of a
class. In this discussion, the method will be the static mai n method. Thefirst task isto create
an || oCpl ex object. It is used to create all the modeling objects needed to represent the
model. For example, an integer variable with bounds 0 and 10 is created by calling

cpl ex.intVar (0, 10),wherecpl ex isthel | oCpl ex object.

Since Java error handling in ILOG CPLEX uses exceptions, you should include the
ILOG Concert Technology part of an applicationin at r y/cat ch statement. All the
exceptions thrown by any ILOG Concert Technology method are derived from

Il oException. Thus!l | oExcepti on should be caught in the cat ch statement.

In summary, hereis the structure of a Java application that calls ILOG CPLEX:

inport ilog.concert.*;
inport ilog.cplex.*;
static public class Application {
static public main(String[] args) {
try {
Il oCpl ex cplex = new Il oCpl ex();
/1 create nodel and solve it
} catch (11 oException e) {
Systemerr.println("Concert exception caught: " + e);
}
}
}

94 ILOG CPLEX 9.0 — GETTING STARTED

THE ANATOMY OF AN ILOG CONCERT TECHNOLOGY APPLICATION

Create the Model

Thel | oCpl ex object provides the functionality to create an optimization model that can be
solved with I | oCpl ex. Theinterface functions for doing so are defined by the

ILOG Concert Technology interfacel | ovbdel er and itsextension | | oMPMbdel er. These
interfaces define the constructor functions for modeling objects of the following types,
which can be used with I | oCpl ex:

I 1 oNunmvar modeling variables

Il oRange ranged constraints of the type Ib <= expr <= ub
Il oObj ective optimization objective

I'1 oNunExpr expression using variables

Modeling variables are represented by objects implementing the | | oNunvar interface
defined by ILOG Concert Technology. Here is how to create three continuous variables, all
with bounds 0 and 100:

Il oNunvar[] x = cpl ex. numvarArray(3, 0.0, 100.0);
Thereisawealth of other functionsfor creating arrays or individual modeling variables. The
documentation for | | oMbdel er and | | oMPMbdel er will give you the complete list.

Modeling variables are typically used to build expressions, of typel | oNunExpr, for usein
constraints or the objective function of an optimization model. For example the expression:
x[0] + 2*x[1] + 3*x[2]
can be created like this:
Il oNunmExpr expr = cpl ex.sum(x[0], cplex.prod(2.0, x[1]),
cplex.prod(3.0, x[2]));
Another way of creating an object representing the same expression isto use an
Il oLi near NunExpr expression. Here is how:
I I oLi near NunExpr expr = cpl ex. |inearNunExpr();
expr.addTerm(1.0, x[0]);
expr.addTerm(2.0, x[1]);
expr.addTerm(3.0, x[2]);

The advantage of using | | oLi near NunExpr over the first way is that you can more easily
build up your linear expression in aloop, which iswhat is typically needed in more complex
applications. Interface | | oLi near NunExpr isan extension of | | oNunExpr, and thus can
be used anywhere an expression can be used.

0O
o
—

S a
T o
;:
<

C =
v 5
@ o
v o
«Q
<

As mentioned before, expressions can be used to create constraints or an objective function
for amodel. Here is how to create a minimization objective for the above expression:

Il oObj ective obj = cplex.mnnimze(expr);

ILOG CPLEX 9.0 — GETTING STARTED 95

THE ANATOMY OF AN ILOG CONCERT TECHNOLOGY APPLICATION

96

In addition to creating an objective, 1 | oCpl ex must be instructed to use it in the model it
solves. Thisis done by adding the objectiveto | | oCpl ex via
cpl ex. add(obj);

Every modeling object that isto be used in amodel must be added to the I | oCpl ex object.
The variables need not be explicitly added as they are treated implicitly when used in the
expression of the objective. More generally, every modeling object that is referenced by
another modeling object which itself has been added to | | oCpl ex, isimplicitly added to
Il oCpl ex aswell.

There isashortcut notation for creating and adding the objectiveto | | oCpl ex:
cpl ex. addM ni m ze(expr);
Since the objective is not otherwise accessed, it does not need to be stored in the variable
obj .
Adding constraints to the model isjust as easy. For example, the constraint
-x[0] + x[1] + x[2] <= 20.0
can be added by calling:
cpl ex. addLe(cpl ex. sun(cpl ex. negati ve(x[0]), x[1], x[2]), 20);

Again, many methods are provided for adding other constraint types, including equality
constraints, greater than or equal to constraints, and ranged constraints. Internally, they are
all represented as| | oRange objects with appropriate choices of bounds, which iswhy all
these methods return | | oRange objects. Also, note that the expressions above could have
been created in many different ways, including the use of I | oLi near NunExpr.

Solve the Model

So far you have seen some methods of | | oCpl ex for creating models. All such methods are
defined in the interfaces | | oMbdel er and its extension | | oMPModel er . However,

I'1 oCpl ex not only implements these interfaces but also provides additional methods for
solving amodel and querying its results.

After you have created a model as explained in the previous section, the I | oCpl ex object
cpl ex isready to solve the the problem, which consists of the model and all the modeling
objects that have been added to it. Invoking the optimizer then is as simple as calling the
method sol ve.

The method sol ve returns a Boolean value indicating whether the optimization succeeded
in finding a solution. If no solution was found, f al se isreturned. If t r ue isreturned, then
ILOG CPLEX found afeasible solution, though it is not necessarily an optimal solution.
More precise information about the outcome of the last call to the method sol ve can be
obtained by calling | | oCpl ex. get St at us.

ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MODEL IN JAVA

The returned value tells you what ILOG CPLEX found out about the model: whether it
found the optimal solution or only afeasible solution, whether it proved the model to be
unbounded or infeasible, or whether nothing at al has been determined at this point. Even
more detailed information about the termination of the solver cal is avail able through the
method | | oCpl ex. get Cpl exSt at us

Query the Results

If the sol ve method succeeded in finding a solution, you will then want to access that

solution. The objective value of that solution can be queried using a statement like this:
doubl e objval = cpl ex. get Cbj Val ue();

Similarly, solution values for all the variablesin the array x can be queried by calling:

doubl e[] xval = cpl ex. get Val ues(x);

More solution information can be queried from I | oCpl ex, including slacks and, depending
on the algorithm that was applied for solving the model, duals, reduced cost information,
and basis information.

Building and Solving a Small LP Model in Java

The example LPex1. j ava, part of the standard distribution of ILOG CPLEX, isaprogram
that builds a specific small LP model and then solves it. This example follows the general
structure found in many ILOG CPLEX Concert Technology applications, and demonstrates
three main ways to construct a model:

. Modeling by Rows on page 99;

. Modeling by Columns on page 99; (07
= 5
. Modeling by Nonzeros on page 100. g9
. . . . K=t
Example LPex1. j ava isan extension of the example presented in Entering the Example 2 7
Problem on page 36: g o
>
(%]
Maximize X; + 2% + 3X3 o 3
» o
subject to X, + X + X3 <20 e
Xp — 3% + X3 <30
with these bounds 0<x;<40
0< X2 <+
0< X3 <+

After an initial check that avalid option string was provided as a calling argument, the
program begins by enclosing all executable statements that follow in at ry/ cat ch pair of

ILOG CPLEX 9.0 — GETTING STARTED 97

BUILDING AND SOLVING A SMALL LP MODEL IN JAVA

98

statements. In case of an error ILOG CPLEX Concert Technology will throw an exception
of typel | oExcept i on, which the catch statement then processes. In this simple example,
an exception triggers the printing of aline stating Concert exception ‘e’ caught,
where ‘€' isthe specific exception.

First create the model object cpl ex by executing the following statement:
11 oCplex cplex = new Il oCpl ex();

At this point, the cplex object represents an empty model, that is a model with no variables,
constraints or other content. The model is then populated in one of several ways depending
on the command line argument. The possible choices are implemented in the methods

. popul at eByRow
. popul at eByCol um
. popul at eByNonzer o

All these methods pass the same three arguments. The first argument isthe cpl ex object to
be populated. The second and third arguments correspond to the variables (var) and range
congtraints (r ng) respectively; the methods will writetovar [0] andr ng[0] an array of al
the variables and constraints in the model, for later access.

After the model has been created in the cpl ex object, it isready to be solved by calling
cpl ex. sol ve. The solution log will be output to the screen; thisis because | | oCpl ex
prints all logging information to the Qut put St r eam cpl ex. out , which by default is
initialized to Syst em out . You can change this by calling the method cpl ex. set Qut . In
particular, you can turn off logging by setting the output stream to nul | , that is, by calling
cpl ex. set Qut (nul 1) . Similarly, I | oCpl ex issues warning messages to

cpl ex. war ni ng, and cpl ex. set War ni ng can be used to change (or turn off) the

Qut put St r eamthat will be used.

If the sol ve method finds a solution for the active model, it returnst r ue. The next section
of code accesses the solution. The method cpl ex. get Val ues(var[0]) returnsan array
of primal solution values for al the variables. Thisarray is stored asdoubl e[] x. The
valuesin x are ordered such that x[j] isthe primal solution value for variablevar [0] [] .
Similarly, the reduced costs, duals, and slack values are queried and stored in arraysd;j , pi ,
and sl ack, respectively. Finally, the solution status of the active model and the objective
value of the solution are queried with the methods | | oCpl ex. get St at us and

I'1 oCpl ex. get bj Val ue, respectively. The program then concludes by printing the values
that have been obtained in the previous steps, and terminates after calling cpl ex. end to
free the memory used by the model object; the cat ch method of I | oExcept i on provides
screen output in case of any error conditions along the way.

The remainder of the example source code is devoted to the details of populating the model
object, mentioned above, and the following three sections provide details on how the
methods work.

ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MODEL IN JAVA

Modeling by Rows

The method popul at eBy Row creates the model by adding the finished constraints and
objective function to the active model, one by one. It does so by first creating the variables
with the method cpl ex. nunVar Ar r ay. Then the minimization objective function is
created, and added to the active model, with the method | | oCpl ex. addM ni ni ze. The
expression that defines the objective function is created by a method,

I'1 oCpl ex. scal Prod, that forms ascalar product using an array of objective coefficients
times the array of variables. Finally, each of the two constraints of the model are created and
added to the active model with the method I | oCpl ex. addLe. For building the constraint
expression, the methods| | oCpl ex. sumand | | oCpl ex. pr od are used, as acontrast to the
approach used in constructing the objective function.

Modeling by Columns

While for many examples population by rows may seem most straightforward and natural,
there are some models where population by columnsis amore natural or more efficient
approach to implement. For example, problems with network structure typically lend
themselves well to modeling by column. Readers familiar with matrix algebra may view the
method popul at eByCol unm as the transpose of popul at eBy Row

Range objects are created for modeling by column with only their lower and upper bound.
No expressions are given; building them at this point would be impossible since the
variables have not been created yet. Similarly, the objective function is created only with its
intended optimization sense, and without any expression.

Next the variables are created and installed in the existing ranges and objective. These newly
created variables are introduced into the ranges and the objective by means of column
objects, which are implemented in the class | | oCol umm. Objects of this class are created
with the methods | | oCpl ex. col umm, and can be linked together with the method

Il oCol urm. and to form aggregate | | oCol umm objects.

An |1 oCol umm object created with the method | | oCpl ex. col unm contains information
about how to use this column to introduce a new variable into an existing modeling object.
For exampleif obj isan || oCbj ecti ve object, cpl ex. col um(obj, 2.0) createsan

I 1 oCol unm object containing the information to install a new variable in the expression of
thel | oObj ecti ve object obj with alinear coefficient of 2. 0. Similarly, for an 1| oRange
congtraint r ng, the method call cpl ex. col um(rng, -1.0) createsan| | oCol um
object containing the information to install anew variable into the expression of r ng, asa
linear term with coefficient - 1. 0.

When using a modeling by column approach, new columns are created and installed as
variablesin all existing modeling objects where they are needed. To do thiswith

ILOG Concert Technology you create an | | oCol unm object for every modeling object in
which you want to install a new variable, and link them together with the method

ILOG CPLEX 9.0 — GETTING STARTED 99

0O
o
—

S a
T o
;:
<

C =
v 5
@ o
v o
«Q
<

CoMPLETE CODE OF LPEX1.JAVA

I'1 oCol umm. and. For example, the first variable in popul at eByCol umm is created like
this:

var[0][0] = nodel . nunVar (nmodel . col uim(obj, 1.0).and(
nodel . col um(r0, -1.0).and(
nmodel . col um(r1, 1.0))),
0.0, 40.0);

The three methods nodel . col unm create | | oCol unm objects for installing a new variable
inthe objectiveobj andintheconstraintsr 0 andr 1, with linear coefficients 1. 0, - 1. 0, and
1. 0, respectively. They are all linked to an aggregate column object using the method and.
This aggregate column object is passed as the first argument to the method nunvar, along
with the bounds 0. 0 and 40. 0 asthe other two arguments. The method nunvar now creates
anew variable and immediately installsit in the modeling objectsobj , r 0, andr 1 as defined
by the aggregate column object. Once installed, the new variableis returned and stored in
var[0][0].

Modeling by Nonzeros

The last of the three functions for building the model is popul at eByNonzer o. This
function creates the variables with only their bounds, and the empty constraints, that is,
ranged constraints only with lower and upper bound but with no expression. Only after that
are the expressions constructed, in a manner similar to the ones already described, using
these existing variables; they areinstalled in the existing constraints with the method

I | oRange. set Expr.

Complete Code of LPex1.java

100

/1l File: exanpl es/src/LPexl.java

/1 Version 9.0
b L TP
/1 Copyright (C 2001-2003 by |LOG

// Al R ghts Reserved.

// Permssion is expressly granted to use this exanple in the

/1 course of devel opi ng applications that use |LOG products.

I R e
/1

/1 LPexl.java - Entering and optimzing an LP probl em

/1

/| Denonstrates different methods for creating a problem The user has to
/1 choose the nethod on the command |ine:

/1

/1 java LPex1 -r generates the probl em by addi ng constraints
/1 java LPex1l -c generates the probl em by adding vari abl es
/1 java LPex1l -n generates the probl em by addi ng expressions

ILOG CPLEX 9.0 — GETTING STARTED

CoMPLETE CODE OF LPEX1.JAVA

/1
inport il og.concert.*;

i nport ilog.cplex.*;

public class LPexl {
static void usage() {

System out . printl n(“usage: LPex1 <option>");
System out. println(“options: -r buil d nodel row by row’);
Systemout . println(“options: -C bui I d nodel colum by col um”);
Systemout . println(“options: -n bui I d nodel nonzero by nonzero”);
}
public static void main(String[] args) {
if (args.length !=1 || args[0].charAt(0) !="‘-") {
usage() ;
return;
}
try {

/1 COreate the nodel er/sol ver object
Il oCpl ex cplex = new Il oCpl ex();

Il oNunVar[][] var
Il oRange[][] rng

= new |l oNunVvar[1][];
= new |l oRange[1] [];
/1 Eval uate conmmand |ine option and call appropriate popul ate nethod.

arrays /1 The created ranges and variables are returned as el erent 0 of

// var and rng.
switch (args[0].charAt(1)) {
case ‘r’': popul at eByRow(cpl ex, var, rng);

/1 wite nodel to file
cpl ex. export Model (“I pex1.1p”);

br eak;
case ‘c’: popul at eByCol um(cpl ex, var, rng); (@)
br eak; - S
case ‘n’': popul at eByNonzero(cpl ex, var, rng); = 8
br eak; ; =
default: usage(); < 4
. L @
return; o
C =
} 0 35
& o
» o
Q
<

// solve the nodel and display the solution if one was found
if (cplex.solve()) {

doubl e[] x = cpl ex. get Val ues(var[0]);
doubl e[] dj = cpl ex. get ReducedCost s(var[0]);
doubl e[] pi = cpl ex. get Dual s(rng[0]);

doubl e[] sl ack cpl ex. get Sl acks(rng[0]);

cpl ex.output().println(“Solution status = “ + cplex.getStatus());

ILOG CPLEX 9.0 — GETTING STARTED 101

CoMPLETE CODE OF LPEX1.JAVA

cplex.output().printin(“Solution value = *“ + cpl ex.getoj Val ue());

int ncols = cplex.getNcol s();

for (int j =0; j <ncols; ++) {
cplex.output().printin(“Colum: “ +j +
“ Value = *“ + x[j] +
“ Reduced cost =*“ + dj[j]);
}
int nrows = cplex.get N\Fows();
for (int i =0; i <nrows; ++i) {
cplex.output().printin(“Row : “ + i +
“ Slack = “ + slack[i] +
Pi = +pi[i]);
}
}
cpl ex. end();
}
catch (Il oException e) {
Systemerr.println(“Concert exception ‘" + e + “‘ caught”);
}
}
[/ The follow ng nethods all populate the problemw th data for the
foll ow ng
/1 linear program
/1
/1 Maxi m ze
/1 x1 + 2 x2 + 3 x3
/1 Subj ect To
/1 - x1 + x2 + x3 <= 20
/1 x1 - 3 x2 + x3 <= 30
/1 Bounds
/1 0 <= x1 <= 40
/1 End
/1

// using the |l oMPNbdel er API

static void popul at eByRow(| | oMPMbdel er nodel ,
IloNunVar[][] var,
Il oRange[][] rng) throws Il oException {

doubl e[] Ib = {0.0, 0.0, 0.0};

doubl e[] ub = {40.0, Double. MAX_VALUE, Doubl e. MAX_VALUE};
Il oNunVar[] x = nodel.nunVarArray(3, |b, ub);

var[0] = x;

doubl e[] objvals = {1.0, 2.0, 3.0};
nodel . addMaxi m ze(nodel . scal Prod(x, objvals));

rng[0] = new || oRange[2];
rng[0] [0] = nodel . addLe(nodel . sun(nodel . prod(-1.0, x[0]),
model . prod(1.0, x[1])

102 ILOG CPLEX 9.0 — GETTING STARTED

CoMPLETE CODE OF LPEX1.JAVA

nodel . prod(1.0, x[2])), 20.0);
rng[0][1] = nodel . addLe(nodel . sun(nodel . prod(1.0, x[0]),

model . prod(-3.0, x[1]),

nodel . prod(1.0, x[2])), 30.0);

}

static voi d popul at eByCol um(|| oMPNbdel er nodel ,
Il oNunVar[][] var,
Il oRange[][] rng) throws Il oException {
Il oChj ective obj = nodel . addMaxi m ze();

rng[0] = new || oRange[2] ;
rng[0] [O] nodel . addRange(- Doubl e. MAX_VALUE, 20.0);
rng[0] [1] nodel . addRange(- Doubl e. MAX_VALUE, 30.0);

rng[0][O];
rngl 0] [1];

Il oRange r0 =
Il oRange rl1 =
var[0] = new Il oNunVar|[3];

var[0][0] = nodel . nunVar (nodel . col um(obj, 1.0).and(

model . col um(r0, -1.0).and(
nodel . col um(r 1, 1.0))),
0.0, 40.0);

var[0][1] = nodel . nunVar (model . col um(obj, 2.0).and(
nodel . col um(r 0, 1. 0). and(
model . colum(r1, -3.0))),

0.0, Doubl e. MVAX_VALUE);

var[0][2] = nodel . nunVar (nodel . col um(obj, 3.0).and(
nodel . col um(r O, 1. 0). and(
model . col um(r1, 1.0))),
0.0, Doubl e. MVAX_VALUE);

}

static voi d popul at eByNonzero(|| oMPModel er nodel ,
Il oNunVar[][] var,
Il oRange[][] rng) throws |l oException {
doubl e[] Ib = {0.0, 0.0, 0.0};
doubl e[] ub = {40.0, Double. MAX VALUE, Doubl e. MAX VALUE};
Il oNunVar[] x nmodel . nunVar Array(3, |b, ub);
var[0] = x;

0O
o
—

S a
T o
;:
<

C =
v 5
@ o
v o
«Q
<

doubl e[] objvals = {1.0, 2.0, 3.0};
nodel . add(nodel . maxi m ze(nodel . scal Prod(x, objvals)));

rng[0] = new || oRange[2];

rng[0] [0] = nodel . addRange(- Doubl e. MAX_VALUE, 20.0);
rng[0] [1] = nodel . addRange(- Doubl e. MAX_VALUE, 30.0);
rng[0] [O] . set Expr (model . sun(nodel . prod(-1.0, x[0]),
nodel . prod(1.0, x[1]),
model . prod(1.0, x[2])));
rng[0] [1] . set Expr (model . sun(nodel . prod(1.0, x[0]),

ILOG CPLEX 9.0 — GETTING STARTED 103

CoMPLETE CODE OF LPEX1.JAVA

nodel . prod(-3.0, x[1]),
model . prod(1.0, x[2])));

104 ILOG CPLEX 9.0 — GETTING STARTED

Concert Technology Tutorial for
NET Users

This chapter introduces ILOG CPLEX through ILOG Concert Technology in the .NET
framework. It gives you an overview of atypical application, and highlights procedures for:

0O Creating a model

O Populating the model with data, either by rows, by columns, or by nonzeros
0 Solving that model

0 Displaying results after solving

This chapter concentrates on an example using C#.NET. There are also exampl es of
VB.NET (Visual Basicinthe .NET framework) delivered with ILOG CPLEX in

your CPLEXhone\ exanpl es\i 86_2000_7. 1\ vb. Because of their .NET framework,
those VB.NET examples differ from the traditional Visual Basic examples that may already
be familiar to some ILOG CPLEX users. Thetraditional Visual Basic examples are available
inyour CPLEXhone\ exanpl es\ nsvcé\ vb.

)
S 3
(o]
O o
* I
Z
m 2
>
%3
o
)
u «a
<

ILOG CPLEX 9.0 — GETTING STARTED 105

WHAT YOou NEED TO KNOW: PREREQUISITES

Note: This chapter consists of a tutorial based on a procedure-based learning strategy. The
tutorial is built around a sample problem, available in a file that can be opened in an
integrated development environment, such as Microsoft Visual Sudio. As you follow the
steps in the tutorial, you can examine the code and apply concepts explained in the
tutorials. Then you compile and execute the code to analyze the results. Ideally, as you
work through the tutorial, you are sitting in front of your computer with ILOG Concert
Technology for .NET users and ILOG CPLEX already installed and available in your
integrated devel opment environment.

What You Need to Know: Prerequisites

106

This tutorial requires aworking knowledge of C#NET.

If you are experienced in mathematical programming or operations research, you are
probably already familiar with many concepts used in this tutorial. However, little or no
experience in mathematical programming or operations research is required to follow this
tutorial.

You should have ILOG CPLEX and ILOG Concert Technology for .NET usersinstalled in
your development environment before starting this tutorial. In your integrated development
environment, you should be able to compile, link, and execute a sample application
provided with ILOG CPLEX and ILOG Concert Technology for .NET users before starting
the tutorial.

To check your installation before starting the tutorial, open
your CPLEXhone\ exanpl es\i 86_2000_7. 1\ f or mat \ exanpl es. net. sl n

in your integrated development environment, where your CPLEXhome indicates the place
you installed ILOG CPLEX on your platform, and f or mat indicates one of these
possibilities: st at _nda, st at _nt a, or vb. Anintegrated development environment, such as
Microsoft Visua Studio, will then check for the DLLs of ILOG CPLEX and ILOG Concert
Technology for .NET users and warn you if they are not availableto it.

Another way to check your installation isto load the project for one of the samples delivered
with your product. For example, you might load the following project into Microsoft Visual
Studio to check a C# exampl e of the diet problem:

your CPLEXhone\ exanpl es\i 86_2000_7. 1\ format\ Di et. cspr 0j

ILOG CPLEX 9.0 — GETTING STARTED

WHAT You WiLL BE DOING

What You Will Be Doing

ILOG CPLEX can work together with ILOG Concert Technology for .NET users, aC#NET
library that allows you to model optimization problemsindependently of the algorithms used
to solve the problem. It provides an extensible modeling layer adapted to a variety of
algorithms ready to use off the shelf. Thismodeling layer enables you to change your model,
without completely rewriting your application.

_.,O
S S
(]
O o
* 3
Z
m g
>
%3
o
e 5
v Q
<

To find a solution to a problem by means of ILOG CPLEX with ILOG Concert Technology
for .NET users, you use a three-stage method: describe, model, and solve.

Thefirst stage is to describe the problem in natural language.

The second stage is to use the classes and interfaces of ILOG Concert Technology for .NET
users to model the problem. The model is composed of data, decision variables, and
constraints. Decision variables are the unknown information in a problem. Each decision
variable has a domain of possible values. The constraints are limits or restrictions on
combinations of values for these decision variables. The model may also contain an
objective, an expression that can be maximized or minimized.

Thethird stage isto use the classes of ILOG Concert Technology for .NET usersto solve the
problem. Solving the problem consists of finding a value for each decision variable while
simultaneously satisfying the constraints and maximizing or minimizing an objective, if one
isincluded in the model.

In these tutorials, you will describe, model, and solve a simple problem that also appears
elsawherein C, C++, and Java versions of this manual:

. Building and Solving a Small LP Model in C on page 127
. Building and Solving a Small LP Model in C++ on page 73
. Building and Solving a Small LP Model in Java on page 97

Describe

Thefirst step isfor you to describe the problem in natural language and answer basic
questions about the problem.

0O What isthe known information in this problem? That is, what data is available?

0O What isthe unknown information in this problem? That is, what are the decision
variables?

0O What arethe limitationsin the problem? That is, what are the constraints on the decision
variables?

0O What isthe purpose of solving this problem? That is, what is the objective function?

ILOG CPLEX 9.0 — GETTING STARTED 107

DESCRIBE

Note: Though the Describe step of the process may seemtrivial in a simple problem like
this one, you will find that taking the time to fully describe a more complex problem s vital
for creating a successful application. You will be able to code your application more
quickly and effectively if you take the time to describe the model, isolating the decision
variables, constraints, and objective.

Model

The second stage is for you to use the classes of ILOG Concert Technology for .NET users
to build amodel of the problem. The model is composed of decision variables and
constraints on those variables. The model of this problem also contains an objective.

Solve

Thethird stageisfor you to use an instance of the class Cpl ex to search for asolution and to
solve the problem. Solving the problem consists of finding a value for each variable while
simultaneoudly satisfying the constraints and minimizing the objective.

Describe

108

Theam inthistutorial isto to seethree different waysto build amodel: by rows, by
columns, or by nonzeros. After building the model of the problem in one of those ways, the
application optimizes the problem and displays the solution.

Describe the Problem
Write a natural language description of the problem and answer these questions:
0O What is known about the problem?
0O What are the unknown pieces of information (the decision variables) in this problem?
0O What are the limitations (the constraints) on the decision variables?
g

What is the purpose (the objective) of solving this problem?

ILOG CPLEX 9.0 — GETTING STARTED

MODEL

Building a Small LP Problem in C#

Hereis a conventional formulation of the problem that the example optimizes:

Maximize X1 + 2Xo +3x3
subject to —Xp + Xp + X3 <20

X1 — 3% + X3 < 30
with these bounds 0<x;<40

0=<Xxp<+00

0< X3 < +o00

0O What are the decision variablesin this problem?
X1, X2, X3

O What are the constraints?

X1 + Xo + X3 <20
Xy — 3Xp + X3 < 30
0<x1=40
0 <Xy < +00
0<x3<+

0O What isthe objective?

Maximize X1 + 2xp +3x3

Model

After you have written a description of the problem, you can use classes of ILOG Concert
Technology for .NET userswith ILOG CPLEX to build amodel.

Open the file

Open thefile your CPLEXhone\ exanpl es\ src\t ut ori al s\ LPex1l esson. cs inyour
integrated development environment, such as Microsoft Visua Studio.

ILOG CPLEX 9.0 — GETTING STARTED 109

_.,O
S S
(]
O o
* 3
Z
m g
>
%3
o
e 5
v Q
<

MODEL

110

Create the model object

Go to the comment Step 3 in that file, and add this statement to create the Cpl ex model for
your application.

Cpl ex cplex = new Cpl ex();

That statement creates an empty instance of the class Cpl ex. In the next steps, you will add
methods that make it possible for your application populate the model with data, either by
rows, by columns, or by nonzeros.

Populate the model by rows

Now go to the comment Step 4 in that file, and add these lines to create amethod to popul ate
the empty model with data by rows.

internal static void Popul at eByRow(| MPModel er nodel ,
I NunVar[][] var,

I Range[][] rng) {

doubl e[] Ib ={0.0, 0.0, 0.0};

doubl e[] ub = {40.0, System Doubl e. MaxVal ue, System Doubl e. MaxVal ue};
INumVar[] x = nodel.NunVarArray(3, |b, ub);

var[0] = x;

doubl e[] objvals = {1.0, 2.0, 3.0};
nmodel . AddVaxi m ze(nodel . Scal Prod(x, objvals));

rng[0] = new | Range[2] ;

rng[0] [0] = nodel . AddLe(nodel . Sun{ nodel . Prod(-
model . Prod(
nodel . Prod(

rng[0] [1] = nodel . AddLe(nodel . Sun(nodel . Prod(
nodel . Prod(-
model . Prod(

x[0]),
x[1]),
x[2])), 20.0);
x[0]),
x[1]),
x[2])), 30.0);

il el
coooee

Those lines populate the model with data specific to this particular example. However, you
can seefromitsuse of theinterface | MPMbdel er how to add ranged constraintsto amodel.
I MPModel er isthe Concert Technology interface typically used to build math programming
(MP) matrix models. You will seeitsuse againin Step 5 and Step 6.

ILOG CPLEX 9.0 — GETTING STARTED

MODEL

Populate the model by columns

Go to the comment Step 5 in the file, and add these lines to create a method to populate the
empty model with data by columns.

internal static void Popul at eByCol uim(| MPModel er nodel ,
I NunVar[][] var,

I'Range[][] rng) {
| Qbj ective obj = nodel . AddVaxi m ze();

_.,O
S S
(]
O o
* 3
Z
m g
>
%3
o
e 5
v Q
<

rng[0] = new | Range[2] ;

rng[0] [0] = nodel . AddRange(- Syst em Doubl e. MaxVal ue, 20.0);
rng[0] [1] = nodel . AddRange(- Syst em Doubl e. MaxVal ue, 30.0);
IRange r0 = rng[0][0];
IRange r1 = rng[0][1];

var[0] = new | NunVar [3];

var[0][0] = model . NunVar (model . Col um(obj, 1.0).And(
nmodel . Col um(r0, -1.0).And(
nmodel . Col um(r1, 1.0))),
0.0, 40.0);

var[0][1] = model . NunVar (model . Col um(obj, 2.0).And(
nodel . Col um(r 0, 1. 0). And(
model . Col um(r1, -3.0))),
0.0, System Doubl e. MaxVal ue) ;

var[0][2] = model . NunVar (model . Col um(obj, 3.0).And(
nodel . Col um(r 0, 1. 0). And(
nmodel . Col um(r1, 1.0))),
0.0, System Doubl e. MaxVal ue) ;

Again, those lines popul ate the model with data specific to this problem. From them you can
see how to use the interface | MPMbdel er to add columns to an empty model.

While for many examples population by rows may seem most straightforward and natural,
there are some models where population by columnsis amore natural or more efficient
approach to implement. For example, problems with network structure typically lend
themselves well to modeling by column. Readers familiar with matrix algebra may view the
method popul at eByCol unm as the transpose of popul at eBy Row

In this approach, range objects are created for modeling by column with only their lower and
upper bound. No expressions over variables are given because building them at this point
would be impossible since the variables have not been created yet. Similarly, the objective
function is created only with its intended optimization sense, and without any expression.

Next the variables are created and installed in the existing ranges and objective. These newly
created variables are introduced into the ranges and the objective by means of column
objects, which are implemented in the class | Col urm. Objects of this class are created with
the methods Cpl ex. Col umm, and can be linked together with the method | Col uim. And to
form aggregate | Col unm objects.

ILOG CPLEX 9.0 — GETTING STARTED 111

MODEL

An1 Col unm object created with the method | Cpl ex. Col unm contains information about
how to use this column to introduce a new variable into an existing modeling object. For
exampleif obj isan| bj ecti ve object, cpl ex. Col uim(obj, 2.0) createsan

I Col umm object containing the information to install a new variable in the expression of the
| Qbj ecti ve object obj with alinear coefficient of 2. 0. Similarly, for an | Range
congtraint r ng, the method call cpl ex. Col um(rng, -1.0) createsan| Col unm object
containing the information to install a new variable into the expression of r ng, asalinear
term with coefficient - 1. 0.

In short, when you use a modeling-by-column approach, new columns are created and
installed as variablesin all existing modeling objects where they are needed. To do thiswith
ILOG Concert Technology, you create an | Col unm object for every modeling object in
which you want to install anew variable, and link them together with the method

| Col umm. And.

Populate the model by nonzeros

Go to the comment Step 6 in the file, and add these lines to create a method to populate the
empty model with data by nonzeros.

internal static void Popul at eByNonzero(| MPModel er nodel ,
I NumVar[][] var,

IRan}ge[][] rng) {

doubl e[] Ib ={0.0, 0.0, 0.0

doubl e[] ub = {40.0, System Doubl e. MaxVal ue, System Doubl e. MaxVal ue};
INumVar[] x = nodel.NunVarArray(3, |b, ub);

var[0] = x;

doubl e[] objvals = {1.0, 2.0, 3.0};
nmodel . Add(model . Maxi m ze(nodel . Scal Prod(x, objvals)));

rng[0] = new | Range[2] ;
rng[0] [0] = nodel . AddRange(- Syst em Doubl e. MaxVal ue, 20.0);
rng[0] [1] = nodel . AddRange(- Syst em Doubl e. MaxVal ue, 30.0);

rng[0] [O] . Expr = nodel . Sun{ nodel . Prod(-1.0, x[0]),
nodel . Prod(1.0, x[1]),
model . Prod(1.0, x[2]));

rng[0] [1]. Expr = nodel . Sun{ nodel . Prod(1.0, x[0]),
model . Prod(-3.0, x[1]),
nmodel . Prod(1.0, x[2]));

In those lines, you can see how to populate an empty model with dataindicating the
nonzeros of the constraint matrix. Those linesfirst create objects for the objective and the
ranges without expressions. They also create variables without columns; that is, variables
with only their bounds. Then those lines create expressions over the objective, ranges, and
variables and add the expressions to the model.

112 ILOG CPLEX 9.0 — GETTING STARTED

SOLVE

Add an interface

Go to the comment Step 7 in the file, and add these lines to create a method that tells a user
how to invoke this application.

internal static void Usage() {
System Consol e. Wi t eLi ne(“usage: LPex1 <option>");
System Consol e. WitelLine(“options: -r bui |l d nodel row by row');
System Consol e. WitelLine(“options: -c bui I d nodel col um by col um”);
System Consol e. WitelLi ne(“options: -n bui I d nodel nonzero by nonzero”);

_.,O
S S
(]
O o
* 3
Z
m g
>
%3
o
e 5
v Q
<

}

Add a command evaluator

Go to the comment Step 8 in thefile, and add these lines to create a switch statement that
evaluates the command that a user of your application might enter.

switch (args[0O].ToCharArray()[1]) {

case ‘r’: Popul at eByRow(cpl ex, var, rng);
br eak;

case ‘c’: Popul at eByCol um(cpl ex, var, rng);
br eak;

case ‘n’: Popul at eByNonzero(cpl ex, var, rng);
br eak;

default: Usage();
return;

}

Solve

After you have declared the decision variables and added the constraints and objective
function to the model, your application is ready to search for a solution.

Search for a solution
Go to Step 9 in thefile, and add this line to make your application search for a solution.

if (cplex.Solve()) {

ILOG CPLEX 9.0 — GETTING STARTED 113

SOLVE

Display the solution

Go to the comment Step 10 in the file, and add these lines to enable your application to
display any solution found in Step 9.

doubl e[] x = cpl ex. Get Val ues(var[0]);
doubl e[] dj cpl ex. Get ReducedCost s(var[0]);
doubl e[] pi cpl ex. Get Dual s(rng[0]);
doubl e[] sl ack cpl ex. Get Sl acks(rng[0]);

cplex. Qutput (). WiteLine(“Solution status = *“
+ cplex. Get Status());

cplex. Qutput (). WiteLine(“Solution value ="
+ cpl ex. Qbj Val ue) ;

int ncols = cplex.Ncols;
for (int j =0; j <ncols; ++) {
cplex. Qutput (). WiteLine(“Colum: *

+
+" Value = *
+ x[j]
+" Reduced cost = “
+di[il);

}

int nrows = cpl ex. Nrows;

for (int i =0; i < nrows; ++i) {

cplex. Qutput (). WiteLine(“Row

+ i
+" Slack = *
+ slack[i]
+ P ="
+pifi]);

}

Save the model to a file

If you want to save your model to afilein LP format, go to the comment Step 11 in your
application file, and add thisline.

cpl ex. Export Model (“1 pex1.1p”);

If you have followed the steps in this tutoria interactively, you now have acomplete
application that you can compile and execute.

114 ILOG CPLEX 9.0 — GETTING STARTED

ExaAmMPLE: LPEXx1.cs

Example: LPex1.cs

O
R e R L g o
/'l File: exanpl es/src/LPexl.cs = 3
/1 Version 9.0 Qe
e z 5
/1 Copyright (C 2001-2003 by |LOG m g
/I Al Rights Reserved. =4S
// Permssion is expressly granted to use this exanple in the % g
/1 course of devel opi ng applications that use |LOG products. O
2 n «Q

<
/1
/1 LPexl.cs - Entering and optim zing an LP problem
/1

/| Denonstrates different methods for creating a problem The user has to
/1 choose the nethod on the command |ine:

/1

/1 LPex1 -r generates the problem by adding constraints
/1 LPex1 -c generates the probl em by addi ng vari abl es
/1 LPex1l -n generates the probl em by addi ng expressions
/1

usi ng | LOG CONCERT;
usi ng | LOG CPLEX;

public class LPex1 {
internal static void Usage() {
Syst em Consol e. Wi t eLi ne(“usage: LPex1 <option>");
System Consol e. WiteLine(“options: -r build nmodel row by row');
Syst em Consol e. Wi teLi ne(“options: -c build nodel colum by colum”);
System Consol e. Wi telLi ne(“options: -n build nodel nonzero by nonzero”);

}

public static void Main(string[] args) {
if (args.Length !'=1 || args[0].ToCharArray()[0] !="-"") {
Usage() ;
return;

}

try {
// Create the nodel er/sol ver object
Cpl ex cpl ex = new Cpl ex();

INumVar[][] var = new | Nunvar[1][];
I Range[][] rng = new | Range[1][];

// Evaluate command |ine option and call appropriate popul ate met hod.

arrays /1 The created ranges and variables are returned as el enent O of

/1 var and rng.
switch (args[0].ToCharArray()[1]) {

ILOG CPLEX 9.0 — GETTING STARTED 115

ExaAamMPLE: LPEX1.cCs

case ‘r’: Popul at eByRow cpl ex, var, rng);
br eak;

case ‘c’': Popul at eByCol um(cpl ex, var, rng);
br eak;

case ‘n’: Popul at eByNonzero(cpl ex, var, rng);
br eak;

default: Usage();
return;

}

/!l wite nodel to file
cpl ex. Export Model (“1 pex1.1p”);

/'l solve the nodel and display the solution if one was found
if (cplex.Solve()) {

doubl e[] x = cpl ex. Get Val ues(var[0]);
doubl e[] dj = cpl ex. Get ReducedCost s(var[0]);
doubl e[] pi = cpl ex. Get Dual s(rng[0]);

doubl e[] sl ack cpl ex. Get Sl acks(rng[0]);

cplex. Qutput (). WiteLi ne(“Sol ution status
cplex. Qut put (). WiteLine(“Sol ution val ue

“ + cplex.GetStatus());
“ + cpl ex. Obj Val ue) ;

int ncols = cplex.Ncol s;
for (int j =0; j <ncols; ++) {
cpl ex. Qutput (). Wi teLi ne(“Col um:
j +" Value = *“
x[j]
Reduced cost = *“
difil);

+H QT

}

int nrows = cpl ex. Nrows;
for (int i =0; i < nrows; ++i) {
cplex.Qutput(). WiteLine(“Row : “ + i

+" Slack = *
+ slack[i]
+ Pio="
+pi[il);

}

cpl ex. End() ;
}
catch (1 LOG CONCERT. Exception e) {
System Consol e. WitelLi ne(“Concert exception ‘" + e + “* caught”);

}

/1 The follow ng nethods all popul ate the probl em
/1 with data for the follow ng |inear program

/1

/1 Maxi m ze

116 ILOG CPLEX 9.0 — GETTING STARTED

ExaAmMPLE: LPEXx1.cs

/1 x1 + 2 x2 + 3 x3

/1 Subj ect To

/1 - x1 + x2 + x3 <= 20
/1 x1 - 3 x2 + x3 <= 30
/1 Bounds

/1 0 <= x1 <= 40

/1 End

/1

// using the | MPMbdel er API

internal static void Popul at eByRow(| MPModel er nodel ,
I NunVar[][] var,
IRange[][] rng) {

{0.0, 0.0, 0.0};

{40.0,

Syst em Doubl e. MaxVal ue,

Syst em Doubl e. MaxVal ue};
INumVar[] x = nodel.NunVarArray(3, |b, ub);
var[0] = x;

_.,O
S S
(]
O o
* 3
Z
m g
>
%3
o
e 5
v Q
<

doubl e[] |
doubl e[] u

o T
nn

doubl e[] objvals = {1.0, 2.0, 3.0};
nodel . AddVaxi m ze(nodel . Scal Prod(x, objvals));

rng[0] = new | Range[2] ;

rng[0] [0] = nodel . AddLe(nodel . Sun(nodel . Prod(-1.0, x[0]),

nodel . Prod(1.0, x[1]),

nodel . Prod(1.0, x[2])), 20.0);
rng[0][1] = nodel . AddLe(nodel . Sun(nodel . Prod(1.0, x[0]),

nodel . Prod(-3.0, x[1]),

nmodel . Prod(1.0, x[2])), 30.0);

}

internal static void Popul at eByCol uim(| MPModel er nodel ,
INunVar[][] var,

IRange[][] rng) {
| Qbj ective obj = nodel. AddMaxi m ze();

rng[0] = new | Range[2] ;

rng[0] [0] = nodel . AddRange(- Syst em Doubl e. MaxVal ue, 20.0);
rng[0] [1] = nodel . AddRange(- Syst em Doubl e. MaxVal ue, 30.0);
IRange r0O = rng[0][O];
IRange r1 = rng[0][1];

var[0] = new | NunVar|[3];

var[0][0] = nodel . NunVar (model . Col um(obj, 1.0).And(
nodel . Col um(r0, -1.0).And(
nodel . Col um(r1, 1.0))),
0.0, 40.0);

var[0][1] = nodel . NunVar (rodel . Col umm(obj, 2.0). And(
nmodel . Col uim(r 0, 1. 0). And(
model . Col um(r1, -3.0))),
0.0, System Doubl e. MaxVal ue);

ILOG CPLEX 9.0 — GETTING STARTED 117

ExaAamMPLE: LPEX1.cCs

var[0][2] = nodel . NunVar (model . Col um(obj, 3.0).And(
nodel . Col um(r 0, 1. 0). And(
nodel . Col um(r 1, 1.0))),
0.0, System Doubl e. MaxVal ue) ;
}

internal static void Popul at eByNonzero(| MPWodel er nodel ,
I Nunvar[][] var,
IRange[][] rng) {
doubl e[] Ib = {0.0, 0.0, 0.0};
doubl e[] ub = {40.0,
Syst em Doubl e. MaxVal ue,
Syst em Doubl e. MaxVal ue};
I NunVar[] x = nodel.NunVarArray(3, |b, ub);
var[0] = x;

doubl e[] objvals = {1.0, 2.0, 3.0};
nodel . Add(model . Maxi m ze(nodel . Scal Prod(x, objvals)));

rng[0] = new | Range[2] ;

rng[0] [0] = nodel . AddRange(- Syst em Doubl e. MaxVal ue, 20.0);
rng[0] [1] = nodel . AddRange(- Syst em Doubl e. MaxVal ue, 30.0);
rng[0] [0] . Expr = nodel . Sun{ nodel . Prod(-1.0, x[0]),

nmodel . Prod(1.0, x[1]),

nodel . Prod(1.0, x[2]));
rng[0][1] . Expr = nodel . Sun{nodel . Prod(1.0, x[0]),

nmodel . Prod(-3.0, x[1]),

nodel . Prod(1.0, x[2]));

118 ILOG CPLEX 9.0 — GETTING STARTED

Callable Library Tutorial

Thistutorial shows how to write programs that use the ILOG CPLEX Callable Library. In
this chapter you will learn about:

d

O 0o o o o o O

The Design of the ILOG CPLEX Callable Library on page 119
Compiling and Linking Callable Library Applications on page 120
How ILOG CPLEX Works on page 122

Creating a Successful Callable Library Application on page 124
Building and Solving a Small LP Model in C on page 127

Reading a Problem from a File: Example |pex2.c on page 138
Adding Rows to a Problem: Example |pex3.c on page 147
Performing Sensitivity Analysis on page 153

The Design of the ILOG CPLEX Callable Library

Figure 6.1 shows a picture of the ILOG CPLEX world. The ILOG CPLEX Callable Library
together with the ILOG CPLEX database make up the ILOG CPLEX core. The core
becomes associated with your application through Callable Library routines. The

ILOG CPLEX 9.0 — GETTING STARTED 119

=
~—+
o
)

Areiqi7 a|qe|red

COMPILING AND LINKING CALLABLE LIBRARY APPLICATIONS

ILOG CPLEX environment and all problem-defining data are established inside the
ILOG CPLEX core.

User-Written Application

A

A4

ILOG CPLEX Callable Library

A
Y

ILOG CPLEX database

Figure6.1 A View of theILOG CPLEX Callable Library
The ILOG CPLEX Callable Library includes several categories of routines:

ad

optimization and result routines for defining a problem, optimizing it, and getting the
results;

utility routines for addressing application programming matters,

problem modification routines to change a problem once it has been created within the
ILOG CPLEX database;

problem query routines to access information about a problem once it has been created,;

file reading and writing routines to move information from the file system into your
application or out of your application to the file system;

parameter setting and query routines to access and modify the values of control
parameters maintained by ILOG CPLEX.

Compiling and Linking Callable Library Applications

120

Each Callable Library isdistributed asasingle library filel i bcpl ex. a or cpl ex90. | i b.
Use of thelibrary fileis similar to that with. o or . obj files. Simply substitute the library
fileinthe link procedure. This procedure simplifies linking and ensures that the smallest
possible executable is generated.

ILOG CPLEX 9.0 — GETTING STARTED

COMPILING AND LINKING CALLABLE LIBRARY APPLICATIONS

The following compilation and linking instructions assume that the example source
programs and ILOG CPLEX Callable Library files are in the directories associated with a
default installation of the software. If thisisnot true, additional compile and link flags would
be required to point to the locations of the includefile cpl ex. h, and Callable Library files
respectively.

Note: Theinstructions below were current at the time of publication. As compilers, linkers
and operating systems are released, different instructions may apply. Be sure to check the
Release Notes that come with your ILOG CPLEX distribution for any changes. Also check
the ILOG CPLEX web page (ht t p: / / www. i | og. com pr oduct s/ cpl ex).

Building Callable Library Applications on UNIX Platforms
To compile and execute an example (I pex1) do the following:

% cd exanpl es/ machi ne/ | i bf or mat
% make | pex1 # to conpile and execute the first CPLEX exanple

In that command, machi ne indicates the name of the subdirectory corresponding to your
type of machine, and 1 i bf or mat indicates your particular platform.

A list of all the examplesthat can be built thisway isto be found in the makefile by looking
for C_EX (C examples), or you can view thefileslisted in exanpl es/ src.

The makefile contains recommended compiler flags and other settings for your particular
computer, which you can find by searching in it for "Compiler options' and use in your
applications that call ILOG CPLEX.

Building Callable Library Applications on Win32 Platforms

Building an ILOG CPLEX application using Microsoft Visual C++ Integrated Devel opment
Environment, or the Microsoft Visual C++ command line compiler are explained here.

Microsoft Visual C++ IDE

To make an ILOG CPLEX Callable Library application using Visual C++, first create or
open aproject in the Visual C++ Integrated Development Environment (IDE). Project files
are provided for each of the examples found in the directory

exanpl es\ nsvc6\ <l i bf or mat > and exanpl es\ nsvc6\ <l i bf or mat >. For details on
the build process, refer to the information file msvc. ht ml , which isfound in the top of the
installed ILOG CPLEX directory structure.

I Note: The distributed application must be able to locate | LOG. CPLEX. dI | at runtime.

ILOG CPLEX 9.0 — GETTING STARTED 121

=
~—+
o
)

Areiqi7 a|qe|red

How ILOG CPLEX WORKS

Microsoft Visual C++ Command Line Compiler

If the Visual C++ command line compiler is used outside of the IDE, the command should
resembl e the following example. The example command assumes that the file

cpl ex90. |'i b isinthe current directory with the source file| pex1. ¢, and that thelinein
the sourcefile"#i ncl ude <il cpl ex/ cpl ex. h>" correctly points to the location of the
include file or else has been modified to do so (or that the directories containing these files
have been added to the environment variables LI B and | NCLUDE respectively).

cl Ipexl.c cplex90.1ib

This command will create the executablefilel pex1. exe.

Using Dynamic Loading

Some projects require more precise control over the loading and unloading of DLLs. For
information on loading and unloading DLLs without using static linking, please refer to the
compiler documentation or to a book such as Advanced Windows by Jeffrey Richter from
Microsoft Press. If thisis not a requirement, the static link implementations mentioned
above are easier to use.

Building Applications that Use the ILOG CPLEX Parallel Optimizers

When you are compiling and linking programs that use the ILOG CPLEX Parallel
Optimizers, it is especially important to review the relevant flags for the compiler and linker.
Thesearefound inthe makef i | e provided with UNIX distributions or in the sample project
files provided with Windows distributions. It is also agood idea to review the section on
Using Parallel Optimizersin the ILOG CPLEX User’s Manual for important details
pertaining to each specific parallel optimizer.

How ILOG CPLEX Works

122

When your application uses routines of the ILOG CPLEX Callable Library, it must first
open the ILOG CPLEX environment, then create and populate a problem object before it
solves a problem. Before it exits, the application must aso free the problem object and
release the ILOG CPLEX environment. The following sections explain those steps.

Opening the ILOG CPLEX Environment

ILOG CPLEX requires anumber of internal data structuresin order to execute properly.
These data structures must be initialized before any call to the ILOG CPLEX Callable
Library. Thefirst call to the ILOG CPLEX Callable Library is always to the function
CPXopenCPLEX. Thisroutine checksfor avalid ILOG CPLEX license and returns a pointer
to the ILOG CPLEX environment. This pointer isthen passed to every ILOG CPLEX
Callable Library routine, except CPXsg.

ILOG CPLEX 9.0 — GETTING STARTED

How ILOG CPLEX WORKS

The application devel oper must make an independent decision as to whether the variable
containing the environment pointer isaglobal or local variable. Multiple environments are
alowed, but extensive opening and closing of environments may create significant overhead
on the licensor and degrade performance; typical applications make use of only one
environment for the entire execution, since asingle environment may hold as many problem
objects as the user wishes. After all callsto the Callable Library are complete, the
environment is released by the routine CPXcl oseCPLEX. This routine indicates to

ILOG CPLEX that al callsto the Callable Library are complete, any memory allocated by
ILOG CPLEX isreturned to the operating system, and the use of the ILOG CPLEX license
is ended for this run.

Instantiating the Problem Object

A problemobject isinstantiated (created and initialized) by ILOG CPLEX whenyou call the
routine CPXcr eat epr ob. It is destroyed when you call CPXf r eepr ob. ILOG CPLEX
allows you to create more than one problem object, although typical applications will use
only one. Each problem object is referenced by a pointer returned by CPXcr eat epr ob and
represents one specific problem instance. All Callable Library functions (except parameter
setting functions and message handling functions) require a pointer to a problem object.

Populating the Problem Object

The problem object instantiated by CPXcr eat epr ob represents an empty problem that
contains no data; it has zero constraints, zero variables, and an empty constraint matrix. This
empty problem object must be populated with data. This step can be carried out in several
ways.

0O The problem object can be populated by assembling arrays of data and then calling
CPXcopy! p to copy the datainto the problem object. (For example, see Building and
Solving a Small LP Model in C on page 127.)

O Alternatively, you can populate the problem object by sequences of callsto the routines
CPXnewcol s, CPXnewr ows, CPXaddcol s, CPXaddr ows, and CPXchgcoef | i st ; these
routines may be called in any order that is convenient. (For example, see Adding Rows to
a Problem: Example Ipex3.c on page 147.)

O If thedataaready exist in afile using MPS format or LP format, you can use
CPXr eadcopypr ob to read the file and copy the data into the problem object. (For
example, see Reading a Problem from a File: Example |pex2.c on page 138.)

Changing the Problem Object

A major consideration in the design of ILOG CPLEX isthe need to efficiently re-optimize
modified linear programs. In order to accomplish that, ILOG CPLEX must be aware of

ILOG CPLEX 9.0 — GETTING STARTED 123

=
~—+
o
)

Areiqi7 a|qe|red

CREATING A SUCCESSFUL CALLABLE LIBRARY APPLICATION

changes that have been made to alinear program since it was last optimized. Problem
maodification routines are available in the Callable Library.

Do not change the problem by changing the original problem data arrays and then making a
call to CPXcopy! p. Instead, change the problem using the problem modification routines,
alowing ILOG CPLEX to make use of as much solution information as possible from the
solution of the problem before the modifications took place.

For example, suppose that a problem has been solved, and that the user has changed the
upper bound on avariable through an appropriate call to the ILOG CPLEX Callable Library.
A re-optimization would then begin from the previous optimal basis, and if that old basis
were still optimal, then that information would be returned without even the need to refactor
the old basis.

Creating a Successful Callable Library Application

124

Callable Library applications are created to solve awide variety of problems. Each
application shares certain common characteristics, regardless of its apparent uniqueness.
The following steps can help you minimize development time and get maximum
performance from your programs:

1. Prototype the Model

2. |dentify the Routines to be Called

3. Test Proceduresin the Application

4. Assemble the Data

5. Choose an Optimizer

6. Observe Good Programming Practices
7. Debug Your Program

8. Test Your Application

9. Usethe Examples

Prototype the Model

Create a small version of the model to be solved. An algebraic modeling languageis
sometimes helpful during this step.

ILOG CPLEX 9.0 — GETTING STARTED

CREATING A SUCCESSFUL CALLABLE LIBRARY APPLICATION

Identify the Routines to be Called

By separating the application into smaller parts, you can easily identify the tools needed to
complete the application. Part of this process consists of identifying the Callable Library
routines that will be called.

In some applications, the Callable Library isasmall part of alarger program. In that case,
the only ILOG CPLEX routines needed may be for:

0O problem creation;
0O optimizing;
0O obtaining results.

In other casesthe Callable Library is used extensively in the application. If so, Callable
Library routines may also be needed to:

0O modify the problem;

0 set parameters;

0O determineinput and output messages and files;
0O query problem data.

Test Procedures in the Application

It is often possible to test the procedures of an application in the ILOG CPLEX Interactive
Optimizer with asmall prototype of the model. Doing so will help identify the Callable
Library routinesrequired. Thetest may also uncover any flawsin procedure logic before you
invest significant development effort.

Trying the ILOG CPLEX Interactive Optimizer is an easy way to determine the best
optimization procedure and parameter settings.

Assemble the Data

You must decide which approach to populating the problem object is best for your
application. Reading an MPS or LP file may reduce the coding effort but can increase the
run-time and disk-space requirements of the program. Building the problem in memory and
then calling CPXcopy! p avoids time consuming disk-file reading. Using the routines
CPXnewcol s, CPXnewr ows, CPXaddcol s, CPXaddr ows, and CPXchgcoef i st canlead
to modular code that may be more easily maintained than if you assemble all model datain
one step.

Another consideration isthat if the Callable Library application readsan MPSor LP
formatted file, usually another application is required to generate that file. Particularly in the
case of MPSfiles, the data structures used to generate the file could almost certainly be used

ILOG CPLEX 9.0 — GETTING STARTED 125

=
~—+
o
)

Areiqi7 a|qe|red

CREATING A SUCCESSFUL CALLABLE LIBRARY APPLICATION

126

to build the problem-defining arrays for CPXcopy! p directly. The result would be less
coding and a faster, more efficient application. These observations suggest that formatted
files may be useful when prototyping your application, while assembling the arraysin
memory may be a useful enhancement for a production version.

Choose an Optimizer

Once a problem object has been instantiated and populated, it can be solved using one of the
optimizers provided by the ILOG CPLEX Callable Library. The choice of optimizer
depends on the problem type.

0O LPand QP problems can be solved by:
. the primal simplex optimizer;
. thedua simplex optimizer; and
. thebarrier optimizer;
0O LP problems can also be solved by:
. thesifting optimizer; and
. the concurrent optimizer.

LP problems with a substantial network, can also be solved by a special network
optimizer.

O If the problem includes integer variables, branch & cut must be used.
There are also many different possible parameter settings for each optimizer. The default

values will usually be the best for linear programs. Integer programming problems are more
sensitive to specific settings, so additional experimentation will often be useful.

Choosing the best way to solve the problem can dramatically improve performance. For
more information, refer to the sections about tuning L P performance and trouble-shooting
MIP performance in the ILOG CPLEX User’'s Manual.

Observe Good Programming Practices

Using good programming practices will save devel opment time and make the program easier
to understand and modify. A list of good programming practicesis provided in the ILOG
CPLEX User’'s Manual.

Debug Your Program

Your program may not run properly the first time you build it. Learn to use a symbolic
debugger and other widely available tools that support the creation of error-free code. Use

ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MobDEL IN C

the list of debugging tips provided in the ILOG CPLEX User’s Manual to find and correct
problemsin your Callable Library application.

Test Your Application

Once an application works correctly, it still may have errors or featuresthat inhibit execution
speed. To get the most out of your application, be sure to test its performance as well asits
correctness. Again, the ILOG CPLEX Interactive Optimizer can help. Since the Interactive
Optimizer uses the same routines as the Callable Library, it should take the same amount of
time to solve a problem as a Callable Library application.

Usethe CPXwr i t epr ob routine with the SAV format to create a binary representation of the
problem object, then read it in and solve it with the Interactive Optimizer. If the application
sets optimization parameters, use the same settings with the I nteractive Optimizer. If your
application takes significantly longer than the I nteractive Optimizer, performance within
your application can probably be improved. In such a case, possible performance inhibitors
include fragmentation of memory, unnecessary compiler and linker options, and coding
approaches that slow the program without causing it to give incorrect results.

Use the Examples

The ILOG CPLEX Callable Library is distributed with a variety of examplesthat illustrate
the flexibility of the Callable Library. The C source of all examplesis provided in the
standard distribution. For explanations about the examples of quadratic programming
problems (QPs), mixed integer programming problems (MI1Ps) and network flows, see the
ILOG CPLEX User’s Manual. Explanations of the following examples of LPs appear in this
manual:

I pex1. ¢ illustrates various ways of generating a problem object.

I pex2. ¢ demonstrates how to read a problem from afile, optimize it viaa
choice of severa means, and obtain the solution.

| pex3. ¢ demonstrates how to add rows to a problem object and reoptimize.

It isagood ideato compile, link, and run all of the examples provided in the standard
distribution.

Building and Solving a Small LP Model in C

The example | pex1. ¢ showsyou how to use problem maodification routines from the
ILOG CPLEX Cadllable Library in three different ways to build amodel. The application in
the exampl e takes a single command line argument that indicates whether to build the

=
~—+
o
)

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 127

BUILDING AND SOLVING A SMALL LP MobDEL IN C

128

constraint matrix by rows, columns, or nonzeros. After building the problem, the application
optimizes it and displays the solution. Here is the problem that the example optimizes:

Maximize Xg + 2%, + 3X3
subject to X, + X, + X3 <20

Xp — 3 + X3 <30
with these bounds 0=<x=40

0<xy<+0o

OSX3S + 00

Before any ILOG CPLEX Callable Library routine can be called, your application must call
the routine CPXopenCPLEX to get a pointer (called env) to the ILOG CPLEX environment.
Your application will then pass this pointer to every Callable Library routine. If this routine
fails, it returns an error code. This error code can be translated to a string by the routine
CPXgeterrorstring.

After the ILOG CPLEX environment isinitialized, the ILOG CPLEX screen indicator
parameter (CPX_PARAM SCRI ND) isturned on by the routine CPXset i nt par am This
causes all default ILOG CPLEX output to appear on the screen. If this parameter is not set,
then ILOG CPLEX will generate no viewable output on the screen or in afile.

At this point, the routine set pr obl endat a is called to create an empty problem object.
Based on the problem-building method selected by the command-line argument, the
application then calls aroutine to build the matrix by rows, by columns, or by nonzeros. The
routine popul at ebyr owfirst calls CPXnewcol s to specify the column-based problem data,
such as the objective, bounds, and variables names. The routine CPXaddr ows isthen called
to supply the constraints. The routine popul at ebycol umm first calls CPXnewr ows to
specify the row-based problem data, such as the right-hand side values and sense of
constraints. The routine CPXaddcol s isthen called to supply the columns of the matrix and
the associated column bounds, names, and objective coefficients. The routine

popul at ebynonzer o calls both CPXnewr ows and CPXnewcol s to supply al the problem
data except the actual constraint matrix. At this point, the rows and columns are well
defined, but the constraint matrix remains empty. The routine CPXchgcoef | i st isthen
caled tofill in the nonzero entries in the matrix.

Once the problem has been specified, the application optimizes it by calling the routine
CPXI popt . Its default behavior isto use the ILOG CPLEX Dual Simplex Optimizer. If this
routine returns a nonzero result, then an error occurred. If no error occurred, the application
allocates arrays for solution values of the primal variables, dual variables, slack variables,
and reduced costs; then it obtains the solution information by calling the routine

CPXsol ut i on. Thisroutine returns the status of the problem (whether optimal, infeasible,
or unbounded, and whether atime limit or iteration limit was reached), the objective value
and the solution vectors. The application then displays thisinformation on the screen.

ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MobDEL IN C

As adebugging aid, the application writes the problem to aILOG CPLEX LP file (hamed

| pex1. | p) by calling the routine CPXwr i t epr ob. Thisfile can be examined to determine
whether any errors occurred in the set pr obl endat a or CPXcopy! p routines.

CPXwr i t epr ob can be called at any time after CPXcr eat epr ob has created the | p pointer.

Thelabel TERM NATE: isused as a place for the program to exit if any type of failure occurs,
or if everything succeeds. In either case, the problem object represented by | p isreleased by
the call to CPXf r eepr ob, and any memory alocated for solution arraysisfreed. The
application then calls CPXcl oseCPLEX; it tells ILOG CPLEX that al callsto the Callable
Library are complete. If an error occurs when thisroutine is called, then acall to

CPXget er r or st ri ngis needed to determine the error message, since CPXcl oseCPLEX
causes no screen output.

Complete Program

The complete program follows. You can also view it onlinein thefilel pex1. c.

/* __ */
/* File: exanples/src/lpexl.c */
/* Version 9.0 */
/* __ */
/* Copyright (C 1997-2003 by |LOG */
/* Al R ghts Reserved. */
/* Permssion is expressly granted to use this exanple in the */
/* course of devel opi ng applications that use |LOG products. */
/* __ */

/* Ipexl.c - Entering and optim zing a problem Denonstrates different
nethods for creating a problem The user has to choose the nethod
on the command |ine:

| pexl -r generates the problem by adding rows
| pexl -c generates the probl em by addi ng col ums
I pexl -n generates the problemby adding a |list of coefficients

*/

/* Bring in the CPLEX function declarations and the Clibrary
header file stdio.h with the follow ng single include. */

#i ncl ude <il cpl ex/ cpl ex. h>
#include <stdlib. h>

/* Bring in the declarations for the string functions */
#i ncl ude <string. h>
/* Include declaration for functions at end of program*/

static int
popul at ebyr ow (CPXENVptr env, CPXLPptr |p),

ILOG CPLEX 9.0 — GETTING STARTED 129

=
~—+
o
)

Areiqi7 a|qe|red

BUILDING AND SOLVING A SMALL LP MobDEL IN C

popul at ebycol um (CPXENVptr env, CPXLPptr |p),
popul at ebynonzero (CPXENVptr env, CPXLPptr |p);

static void

free_and_nul | (char **ptr),
usage (char *prognane);
i nt
nmain (int argc, char **argv)

{

/* Declare and allocate space for the variables and arrays where we

will store the optimzation results including the status,

obj ective

val ue, variabl e val ues, dual val ues, row slacks and vari abl e

reduced costs. */

int sol stat;
double objval;

double *x = NULL;
double *pi = NULL;
doubl e *slack = NULL;
double *dj = NULL;

CPXENVpt r env = NULL;

CPXLPpt r I'p = NULL;

i nt status = 0;

i nt i, s

int cur_nunrows, cur_nuntol s;

/* Check the command |ine argunents */

if ((argc !'=2) |
(argv[1][0] !="-"") [

(strchr (“rcn”, argv[1][1]) == NULL)) {

usage (argv[O0]);
got o TERM NATE;
}

/* Initialize the CPLEX environment */

env = CPXopenCPLEX (&status);

/* 1f an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error nmessage. Note that CPXopenCPLEX produces no out put,

so the only way to see the cause of the error is to use
the errors will

CPXgeterrorstring. For other CPLEX routines,

be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errnsg[1024];

130 ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MobDEL IN C

fprintf (stderr, “Could not open CPLEX environnment.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “9%”, errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRI ND, CPX_QN);
if (status) {
fprintf (stderr,
“Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;
}

/* Turn on data checking */

status = CPXsetintparam (env, CPX_PARAM DATACHECK, CPX_QN);
if (status) {
fprintf (stderr,
“Failure to turn on data checking, error %l.\n", status);
got o TERM NATE;

/* Create the problem */
I p = CPXcreateprob (env, &status, “lpexl”);

/* A returned pointer of NULL may nean that not enough nenory
was avail able or there was some other problem |In the case of
failure, an error nessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the paraneter CPX_PARAM SCRI ND causes the error message to
appear on stdout. */

if (Ip==NUuL) {
fprintf (stderr, “Failed to create LP.\n");
got 0 TERM NATE;

/* Now popul ate the problemw th the data. For building |arge
probl ens, consider setting the row, colum and nonzero growth
paraneters before performng this task. */

switch (argv[1][1]) {
case ‘r’:
status
br eak;
case ‘c’':
status = popul at ebycol um (env, |p);

br eak;

case ‘n’:

popul at ebyrow (env, |p);

=
~—+
o
)

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 131

BUILDING AND SOLVING A SMALL LP MobDEL IN C

status = popul at ebynonzero (env, |p);
br eak;

}

if (status) {
fprintf (stderr, “Failed to populate problem\n”);
got o TERM NATE;

}

/* Optimze the probl emand obtain solution. */

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, “Failed to optimze LP.\n");
got o TERM NATE;

/* The size of the problem shoul d be obtained by asking CPLEX what
the actual size is, rather than using sizes fromwhen the problem
was built. cur_nunrows and cur_nuntols store the current nunber
of rows and col ums, respectively. */

cur_nuntows = CPXgetnuntows (env, |p);
cur_nuntol s = CPXget nuntol s (env, |p);

x = (double *) malloc (cur_nuntols * sizeof(double));
slack = (double *) malloc (cur_nunrows * sizeof (double));
dj = (double *) malloc (cur_nuntols * sizeof (double));

pi = (double *) malloc (cur_nunrows * sizeof (double));
if (x == NULL ||
slack == NULL ||
dj == NULL ||
pi == NULL) {
status = CPXERR_NO_MEMORY;
fprintf (stderr, “Could not allocate nenory for solution.\n");
got o TERM NATE;
}

status = CPXsolution (env, Ip, &solstat, &bjval, x, pi, slack, dj);
if (status) {

fprintf (stderr, “Failed to obtain solution.\n");

got o TERM NATE;

}

/* Wite the output to the screen. */

printf (“\nSolution status = %\ n", solstat);

printf (“Solution value = %\n\n", objval);
for (i =0; i < cur_nunrows; i++) {

printf (“Row %l: Slack = %d0f Pi = 9%0f\n", i, slack[i], pi[i]);
}

132 ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MobDEL IN C

for (j =0; j < cur_nuntols; j++) {
printf (“Colum %: Value = %0f Reduced cost = %40f\n",
ioox[il, dilil);
}

/* Finally, wite a copy of the problemto a file. */

status = CPXwiteprob (env, Ip, “lpexl.1p”, NULL);

if (status) {
fprintf (stderr, “Failed to wite LP to disk.\n");
got o TERM NATE;

}

TERM NATE:
/* Free up the solution */

free_and_null ((char **) &x);
free_and_null ((char **) &slack);
free_and_null ((char **) &dj);
free_and_null ((char **) &pi);

/* Free up the problemas allocated by CPXcreateprob, if necessary */

if (Ip!=NUL) {
status = CPXfreeprob (env, & p);
if (status) {
fprintf (stderr, “CPXfreeprob failed, error code %l.\n", status);

}

/* Free up the CPLEX environment, if necessary */

if (env != NULL) {
status = CPXcl o0seCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (status) {
char errmsg[1024];
fprintf (stderr, “Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “9%", errmsg);

}

=
~—+
o
)

return (status);

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 133

BUILDING AND SOLVING A SMALL LP MobDEL IN C

134

} /* END main */

/* This sinple routine frees up the pointer *ptr,

static void
free_and_null (char **ptr)
{
if (*ptr !'= NULL) {
free (*ptr);
*ptr = NULL;
}
} /* END free_and_null */

static void
usage (char *prognane)
{
fprintf (stderr,”Usage: % -X\ n", prognane);
fprintf (stderr,”

fprintf (stderr,” r
fprintf (stderr,” c
fprintf (stderr,” n

fprintf (stderr,” Exiting...\n");
} /* END usage */

/* These functions all populate the problemwth d
|'i near program

Maxi m ze
obj: x1 + 2 x2 + 3 x3
Subj ect To
cl: - x1 + x2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds
0 <= x1 <= 40
End

*/

#defi ne NUVRONS 2
#defi ne NUMCOLS 3
#defi ne NUMNZ 6

/* To popul ate by row, we first create the col ums
rows. */

static int
popul at ebyrow (CPXENVptr env, CPXLPptr |p)
{

int status = 0;

and sets *ptr to NULL */

where X is one of the follow ng options: \n");
generate problemby romn”);
generate probl em by col utm\n”);
generate probl emby nonzero\n”);

ata for the follow ng

, and then add the

ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MobDEL IN C

doubl e obj [NUMCCOLS];
double | b[NUMOOLS];
doubl e ub[NUMCCLS] ;

char *col name[NUMCOLS] ;
int r mat beg[NUMRO] ;
i nt rmat i nd[NUMN\Z] ;

doubl e rmatval [NUM\Z] ;
doubl e r hs[NUMRONE] ;

char sense[NUMRONE] ;
char *r owname[NUVROWE] ;

CPXchgobj sen (env, Ip, CPX MAX); /* Problemis maxinization */

/* Now create the new colums. First, populate the arrays. */

obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;
Ib[0] = 0.0; Ib[1] = 0.0; Ib[2] = 0.0;
ub[0] = 40.0; ub[1] = CPX_INFBOUND, ub[2] = CPX_| NFBOUND;
col nane[0] = “x1"; colname[1] = “x2"; col name[2] = “x3";

status = CPXnewcol s (env, |p, NUMCOLS, obj, Ib, ub, NULL, colnane);
if (status) goto TERM NATE;

/* Now add the constraints. */

rmat beg[0] = O; rownane[0] = “cl1”;

rmatind[0] = O; rmatind[1] = 1; rmatind[2] = 2; sense[0] = ‘L";
rmatval [0] = -1.0; rmatval[1] = 1.0; rnmatval[2] = 1.0; rhs[OQ] = 20.0;
rmat beg[1] = 3; rownane[1] = “c2";

rmatind[3] = 0; rmatind[4] = 1; rmatind[5] = 2; sense[1] = ‘L’;
rmatval [3] = 1.0; rmatval [4] = -3.0; rmatval[5] = 1.0; rhs[1] = 30.0;

status = CPXaddrows (env, |p, 0, NUVROAB, NUM\Z, rhs, sense, rnatbeg,
rmatind, rmatval, NULL, rownane);
if (status) goto TERM NATE;
TERM NATE:

return (status);

} /* END popul at ebyrow */

/* To popul ate by colum, we first create the rows, and then add the
colums. */

=
~—+
o
)

static int

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 135

BUILDING AND SOLVING A SMALL LP MobDEL IN C

popul at ebycol utm (CPXENVptr env, CPXLPptr |p)

{
i nt status = 0;
doubl e obj [NUMCCLS] ;
doubl e | b[NUMCOLS];
doubl e ub[NUMCCLS] ;
char *col name[NUMCOLS] ;
i nt mat beg[NUMCCOLS] ;
int mat i nd[NUMN\Z] ;
doubl e mat val [NUMN\Z] ;
doubl e rhs[NUMRONE] ;
char sense[NUMRONB] ;
char *r ownane[NUVROWS] ;
CPXchgobj sen (env, |Ip, CPX MAX); /* Problemis naxinization */
/* Now create the new rows. First, popul ate the arrays. */
rownane[0] = “c1”;
sense[0] =L,
rhs[0] = 20.0;
rownane[1] = “c2”;
sense[1] =L
rhs[1] = 30.0;
status = CPXnewows (env, |p, NUMROAB, rhs, sense, NULL, rownane);
if (status) got o TERM NATE;
/* Now add the new colums. First, popul ate the arrays. */
obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;
mat beg[0] = O; mat beg[1] = 2; mat beg[2] = 4;
matind[0] = O; matind[2] = O; matind[4] = O;
matval [0] = -1.0; matval[2] = 1.0; matval [4] = 1.0;
matind[1] = 1; matind[3] = 1; matind[5] = 1;
matval [1] = 1.0; matval [3] = -3.0; matval [5] = 1.0;
I'b[0] = 0.0; Ib[1] = 0.0; Ib[2] = 0.0;
ub[0] = 40.0; ub[1] = CPX_| NFBOUND, ub[2] = CPX_| NFBOUND,
col nane[0] = “x1"; colnane[1l] = “x2"; col nane[2] = “x3";
status = CPXaddcols (env, |p, NUMCOLS, NUWMNZ, obj, natbeg, matind,
matval, |b, ub, col nange);
if (status) goto TERM NATE;
TERM NATE:

return (status);

136 ILOG CPLEX 9.0 — GETTING STARTED

BUILDING AND SOLVING A SMALL LP MobDEL IN C

} /* END popul at ebycol uim */

/* To popul ate by nonzero, we first create the rows, then create the
colums, and then change the nonzeros of the matrix 1 at a time. */

static int
popul at ebynonzero (CPXENVptr env, CPXLPptr Ip)
{

i nt status = 0;

doubl e obj [NUMCOLS] ;
doubl e | b[NUMCOLS];
doubl e ub[NUMCCLS] ;

char *col narme[NUMCOLS] ;
doubl e rhs[NUMRONE] ;

char sense[NUVMRONE] ;
char *r ownare[NUVROWS] ;
i nt row i st [NUMNZ] ;

i nt col I'i st[NUMNZ] ;

double vallist[NUMNZ];
CPXchgobj sen (env, |Ip, CPX MAX); /* Problemis naxinization */

/* Now create the new rows. First, populate the arrays. */

rownane[0] = “c1”;
sense[0] =L
r hs[0] = 20.0;
rownane[1] = “c2”;
sense[1] =L
rhs[1] = 30.0;

status = CPXnewows (env, |p, NUMROAS, rhs, sense, NULL, rownane);
if (status) got o TERM NATE;

/* Now add the new colums. First, populate the arrays. */

obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;
Ib[0] = 0.0; Ib[1] = 0.0; Ib[2] = 0.0;
ub[0] = 40.0; ub[1] = CPX_INFBOUND, ub[2] = CPX_| NFBOUND,
col nane[0] = “x1"; colname[1] = “x2"; col name[2] = “x3";

status = CPXnewcol s (env, |p, NUMCOLS, obj, Ib, ub, NULL, colnane);
if (status) goto TERM NATE;

/* Now create the list of coefficients */

=
~—+
o
)

rowist[0] = 0; collist[0] = O; val list[0] = -1.0;

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 137

READING A PROBLEM FROM A FILE: EX

rowist[1] = 0; collist[1] =
rowist[2] = 0; collist[2] =
rowist[3] = 1; collist[3] =
rowlist[4] = 1; collist[4] =
rowist[5] = 1; collist[5] =

status = CPXchgcoeflist (env,
if (status) goto TERM NATE;
TERM NATE:

return (status);

} /* END popul at ebynonzero */

AMPLE LPEX2.C

1; vallist[1] = 1.0;
2; vallist[2] = 1.0;
0; vallist[3] = 1.0;
1; vallist[4] = -3.0;
2; val list[5] = 1.0;
Ip, 6, rowist, collist, vallist);

Reading a Problem from a File: Example Ipex2.c

The previous example, | pex1. ¢, shows away to copy problem datainto a problem object

as part of an application that calls rout

ines from the ILOG CPLEX Callable Library.

Frequently, however, afile already exists containing alinear programming problem in the
industry standard MPS format, the ILOG CPLEX LP format, or the ILOG CPLEX binary
SAV format. In example | pex2. ¢, ILOG CPLEX file-reading and optimization routines

read such afile to solve the problem.

Examplel pex2. ¢ usescommand line arguments to determine the name of the input file and

the optimizer to call.

Usage: | pex2 fil enane optim zer

Where: fi | enanme isafile with extension MPS, SAV, or LP (lower case is alowed), and

opti mi zer isone of the

def aul t
primal sinplex
dual si npl ex

barrier w thout
sifting

O W T T o oo T O

concurrent

For example, this command:

138

network with dual

following letters:

si npl ex cl eanup

barrier with crossover

crossover

ILOG CPLEX 9.0 — GETTING STARTED

READING A PROBLEM FROM A FILE: EXAMPLE LPEX2.C

| pex2 exanpl e.nps d
reads the file exanpl e. nps and solves the problem with the dual simplex optimizer.

To illustrate the ease of reading a problem, the example uses the routine

CPXr eadcopypr ob. This routine detects the type of the file, reads the file, and copiesthe
datainto the ILOG CPLEX problem object that is created with a call to CPXcr eat epr ob.
The user need not be concerned with the memory management of the data. Memory
management is handled transparently by CPXr eadcopypr ob.

After calling CPXopenCPLEX and turning on the screen indicator by setting the
CPX_PARAM SCRI ND parameter to CPX_ON, the example creates an empty problem object
with acall to CPXcr eat epr ob. Thiscall returns a pointer, | p, to the new problem object.
Then the dataisread in by the routine CPXr eadcopypr ob. After the datais copied, the
appropriate optimization routineis called, based on the command line argument.

After optimization, the status of the solution is determined by a call to CPXget st at . The
cases of infeasibility or unboundedness in the model are handled in asimple fashion here; a
more complex application program might treat these cases in more detail. With these two
cases out of the way, the program then calls CPXsol ni nf o to determine the nature of the
solution. Once it has been determined that a solution in fact exists, then acall to

CPXget obj val ismade, to obtain the objective function value for this solution and report it.

Next, preparations are made to print the solution value and basis status of each individual
variable, by allocating arrays of appropriate size; these sizes are determined by callsto the
routines CPXget nuncol s and CPXget nunt ows. Notethat abasisis not guaranteed to exist,
depending on which optimizer was selected at run time, so some of these steps, including the
call to CPXget base, are dependent on the solution type returned by CPXsol ni nf o.

The primal solution values of the variables are obtained by acall to CPXget x, and then these
values (along with the basis statuses if available) are printed, in aloop, for each variable.
After that, acall to CPXget dbl qual i t y providesameasure of the numerical roundoff error
present in the solution, by obtaining the maximum amount by which any variable's lower or
upper bound is violated.

After the TERM NATE: label, the data for the solution (x, cst at , and r st at) are freed.
Then the problem object is freed by CPXf r eepr ob. After the problem isfreed, the
ILOG CPLEX environment isfreed by CPXcl oseCPLEX.

Complete Program
The complete program follows. You can also view it onlinein thefilel pex2. c.
/ K o o o o o e */

/* File: exanples/src/lpex2.c */
/* Version 9.0 */
/* __ */
/* Copyright (C 1997-2003 by |LOG */
/* Al Rights Reserved. */

ILOG CPLEX 9.0 — GETTING STARTED 139

=
~—+
o
)

Areiqi7 a|qe|red

READING A PROBLEM FROM A FILE: EXAMPLE LPEX2.C

140

/* Permssion is expressly granted to use this exanple in the */
/* course of devel oping applications that use |LOG products. */
/* __ */

/* I pex2.c - Reading in and optimzing a problem*/

/* To run this exanple, command |ine argunments are required.

i.e., | pex2 filename et hod
wher e
filename is the nane of the file, with .nps, .lp, or .sav extension
nethod is the optimzation nmethod
o] def aul t
p primal sinpl ex
d dual si npl ex
n network with dual sinplex cleanup
h barrier with crossover
b barrier wthout crossover
S sifting
c concur r ent

Exanpl e:
| pex2 exanple.nps o
*/

/* Bring in the CPLEX function declarations and the Clibrary
header file stdio.h with the follow ng single include. */

#i ncl ude <ilcpl ex/cpl ex. h>

/* Bring in the declarations for the string and character functions
and nall oc */

#i ncl ude <ctype. h>
#include <stdlib. h>
#i ncl ude <string. h>

/* Include declarations for functions in this program*/

static void
free_and_null (char **ptr),
usage (char *prognane);

int
nmain (int argc, char *argv[])
{
/* Declare and all ocate space for the variables and arrays where we will
store the optimzation results including the status, objective val ue,
maxi mum bound vi ol ation, variabl e values, and basis. */

i nt sol nstat, sol nmet hod, sol ntype;

doubl e objval, maxviol;

double *x = NULL;

i nt *cstat = NULL;

ILOG CPLEX 9.0 — GETTING STARTED

READING A PROBLEM FROM A FILE: EXAMPLE LPEX2.C

i nt *rstat = NULL;

CPXENVpt r env = NULL;

CPXLPpt r I'p = NULL;

i nt status = 0;

int i

int cur_nuntows, cur_nuntol s;
i nt et hod;

char *basi snsg;

/* Check the command |ine arguments */

if ((argc !'=3) |
(strchr (“podhbnsc”, argv[2][0]) == NULL)) {
usage (argv[O0]);
got o TERM NATE;

}

/* Initialize the CPLEX environment */
env = CPXopenCPLEX (&status);

/* If an error occurs, the status value indicates the reason for
failure. Acall to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errmsg[1024];
fprintf (stderr, “Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “9%", errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX ON);
if (status) {
fprintf (stderr,
“Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;

}

/* Create the problem using the filenane as the probl em nane */
I p = CPXcreateprob (env, &status, argv[1]);

/* A returned pointer of NULL may nean that not enough nenory

ILOG CPLEX 9.0 — GETTING STARTED

141

=
~—+
o
)

Areiqi7 a|qe|red

READING A PROBLEM FROM A FILE: EXAMPLE LPEX2.C

was avail able or there was sonme other problem In the case of
failure, an error nessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the paraneter CPX_PARAM SCRI ND causes the error message to
appear on stdout. Note that nost CPLEX routines return

an error code to indicate the reason for failure. */

if (Ip==NJL) {
fprintf (stderr, “Failed to create LP.\n");
got o TERM NATE;

}

/* Now read the file, and copy the data into the created Ip */

status = CPXreadcopyprob (env, Ip, argv[1], NULL);

if (status) {
fprintf (stderr, “Failed to read and copy the problemdata.\n");
got o TERM NATE;

}

/* Qptimze the probl emand obtain solution. */

switch (argv[2][0]) {

case ‘0’ :
met hod = CPX_ALG AUTOMATI C,
br eak;

case ‘p’:
met hod = CPX_ALG PRI MAL;
br eak;

case ‘d':
met hod = CPX_ALG DUAL;
br eak;

case ‘n':
nmet hod = CPX_ALG NET;
br eak;

case ‘h':
met hod = CPX_ALG BARRI ER;
br eak;

case ‘b’:
met hod = CPX_ALG BARRI ER;
status = CPXsetint param (env, CPX_PARAM BARCROSSALG CPX ALG NONE);
if (status) {

fprintf (stderr,
“Failed to set the crossover nethod, error %.\n",

status);
got o TERM NATE;

}
br eak;

case ‘s’:
nmet hod = CPX_ALG Sl FTI NG
br eak;

case ‘c’:

met hod = CPX_ALG_CONCURRENT;

142 ILOG CPLEX 9.0 — GETTING STARTED

READING A PROBLEM FROM A FILE: EXAMPLE LPEX2.C

br eak;

defaul t:
met hod = CPX_ALG _NONE;
br eak;

}

status = CPXsetint param (env, CPX_PARAM LPMETHOD, net hod);
if (status) {
fprintf (stderr,
“Failed to set the optimzation nethod, error %.\n", status);
got o TERM NATE;

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, “Failed to optimze LP.\n");
got o TERM NATE;

}

sol nstat = CPXgetstat (env, Ip);

if (sol nstat == CPX_STAT_UNBOUNDED) {
printf (“Mdel is unbounded\n”);
got o TERM NATE;

}

else if (solnstat == CPX_STAT_I NFEASI BLE) {
printf (“Mdel is infeasible\n");
got o TERM NATE;

}

else if (solnstat == CPX_STAT_| NFor UNBD) {
printf (“Mbdel is infeasible or unbounded\n”);
got o TERM NATE;

}

status = CPXsol ninfo (env, |p, &sol nmethod, &solntype, NULL, NULL);
if (status) {

fprintf (stderr, “Failed to obtain solution info.\n");

got o TERM NATE;

printf (“Solution status %, solution nmethod %\ n", solnstat, solnnethod);

if (solntype == CPX NO SOLN) {
fprintf (stderr, “Solution not available.\n");
got o TERM NATE;

}

status = CPXgetobjval (env, |Ip, &objval);

if (status) {
fprintf (stderr, “Failed to obtain objective value.\n");
got o TERM NATE;

=
~—+
o
)

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 143

READING A PROBLEM FROM A FILE: EXAMPLE LPEX2.C

printf (“Cojective value % 10g.\n", objval);

/* The size of the problem shoul d be obtained by asking CPLEX what
the actual size is. cur_nunrows and cur_nuntols store the
current nunber of rows and col ums, respectively. */

cur_nuntol s CPXget nuntol s (env, |p);
cur_nuntows = CPXgetnuntows (env, |p);

/* Retrieve basis, if one is available */

if (solntype == CPX BASIC SOLN) {
cstat = (int *) malloc (cur_nuntol s*sizeof (int));
rstat = (int *) malloc (cur_nunrtows*sizeof(int));
if (cstat == NULL || rstat == NULL) {
fprintf (stderr, “No menory for basis statuses.\n");
got o TERM NATE;

}

status = CPXgetbase (env, Ip, cstat, rstat);

if (status) {
fprintf (stderr, “Failed to get basis; error %l. \n", status);
got o TERM NATE;

}
}
el se {

printf (“No basis available\n");
}

/* Retrieve solution vector */

X = (double *) nmalloc (cur_nuntol s*sizeof (doubl e));
if (x == NuL) {
fprintf (stderr, “No menory for solution.\n");
got o TERM NATE;
}

status = CPXgetx (env, Ip, x, 0, cur_nuntols-1);

if (status) {
fprintf (stderr, “Failed to obtain prinmal solution.\n");
got o TERM NATE;

/* Wite out the solution */

for (j =0; j <cur_nuntols; j++) {
printf (“Colum %: Value = 9%7.109", j, x[jl]);
if (cstat !'= NULL) {
switch (cstat[j]) {
case CPX AT_LONER

144 ILOG CPLEX 9.0 — GETTING STARTED

READING A PROBLEM FROM A FILE: EXAMPLE LPEX2.C

basi snsg = “Nonbasi c at | ower bound”;
br eak;
case CPX_BASIC
basi snsg = “Basic”;
br eak;
case CPX_AT_UPPER
basi snsg = “Nonbasi ¢ at upper bound”;
br eak;
case CPX_FREE_SUPER
basi snsg = “Superbasic, or free variable at zero”;
br eak;
defaul t:
basi snsg = “Bad basis status”;
br eak;
}
printf (“ 9", basisnsg);
}
printf (“\n”);

}

/* D splay the nmaxi num bound viol ation. */

status = CPXgetdbl quality (env, |p, &maxviol, CPX_MAX_ PRI MAL_| NFEAS);
if (status) {

fprintf (stderr, “Failed to obtain bound violation.\n");

got o TERM NATE;

}

printf (“Maximum bound violation = 9%47.10g\n", naxviol);
TERM NATE:
/* Free up the basis and solution */
free_and_null ((char **) &cstat);
free_and_null ((char **) &rstat);
free_and_null ((char **) &x);
/* Free up the problem if necessary */
if (Ip!=NUL) {
status = CPXfreeprob (env, & p);

if (status) {
fprintf (stderr, “CPXfreeprob failed, error code %l.\n", status);

}
/* Free up the CPLEX environment, if necessary */

if (env != NULL) {
status = CPXcl o0seCPLEX (&env);

=
~—+
o
)

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 145

READING A PROBLEM FROM A FILE:

146

EXAMPLE LPEX2.C

/* Note that CPXcl oseCPLEX produces no output,

so the only way to see the cause of the error is to use
For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

CPXgeterrorstring.

if (status) {

char errnsg[1024];

fprintf (stderr, “Could not close CPLEX environnent.\n");

CPXgeterrorstring (env,
fprintf (stderr, “9%",

}
return (status);

} /* END main */

status, errnsg);
errmnsg);

/* This sinple routine frees up the pointer *ptr,

static void
free_and_null (char **ptr)
{
if (*ptr !'= NULL) {
free (*ptr);
*ptr = NULL;
}
} /* END free_and_null */

static void

usage (char *prognamne)

{
fprintf (stderr,”Usage:
fprintf (stderr,”
fprintf (stderr,”
fprintf (stderr,”
fprintf (stderr,” 0
fprintf (stderr,” p
fprintf (stderr,” d
fprintf (stderr,” n
fprintf (stderr,” b
fprintf (stderr,” h
fprintf (stderr,” S
fprintf (stderr,” c
fprintf (stderr,” Exitin

} /* END usage */

ILOG CPLEX 9.0

defaul t\n");

and sets *ptr to NULL */

% filenane al gorithmn”, prognane);

where filename is a file with extension \n");
MPS, SAV, or LP (lower case is allowed)\n");

and algorithmis one of the letters\n");

primal sinplex\n”);
dual sinplex\n");
network sinplex\n");

barrier\n”);

barrier with crossover\n”);

sifting\n”);

concurrent\n”);

GETTING STARTED

ADDING Rows TO A PROBLEM: EXAMPLE LPEX3.C

Adding Rows to a Problem: Example Ipex3.c

Thisexampleillustrates how to develop your own solution algorithmswith routines from the
Callable Library. It aso shows you how to add rows to a problem object. Hereisthe problem
example| pex3 solves:

Minimize C*X
subject to Hx=d
Ax=b
1<x<u
where H= (-10101000) d= (-3)
(1-1010000) (1)
(01-1001-10) (4)
(000-10-101) (3)
(0000-101-1) (-5)
A= (21-2-12-1-2-3) b= (4)
(1-323-1211) (-2)
c= ((9142-82812)
I = (000000O00O0)
u= (50 50 50 50 50 50 50 50)

The constraints Hx=d represent a pure network flow. The example solves this problemin
two steps:

1. ThelLOG CPLEX Network Optimizer is used to solve

Minimize C*X
subject to Hx =d
I<x<u

2. Theconstraints Ax=b are added to the problem, and the dual simplex optimizer is used to
solve the new problem, starting at the optimal basis of the simpler network problem.

The data for this problem consists of the network portion (using variable names beginning
with theletter H) and the complicating constraints (using variable names beginning with the
letter A).

The examplefirst calls CPXopenCPLEX to create the environment and then turns on the
ILOG CPLEX screen indicator (CPX_PARAM_SCRI ND). Next it sets the simplex display
level (CPX_PARAM SI MDI SPLAY) to 2 to indicate iteration-by-iteration output, so that the

=
~—+
o
)

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 147

ADDING Rows TO A PROBLEM: EXAMPLE LPEX3.C

148

progress of each iteration of the hybrid optimizer can be observed. Setting this parameter to
2 is not generally recommended; the example does so only for illustrative purposes.

The example creates a problem object by a call to CPXcr eat epr ob. Then the network data
iscopied viaacall to CPXcopyl p. After the network datais copied, the parameter
CPX_PARAM LPMETHOD isset to CPX_ALG NET and the routine CPXI popt iscalled to
solve the network part of the optimization problem using the network optimizer. The
objective value of this problemis retrieved by CPXget obj val .

Then the extrarows are added by calling CPXaddr ows. For convenience, the total number of
nonzeros in the rows being added is stored in an extra element of the array r mat beg, and
this element is passed for the parameter nzcnt . The name arguments to CPXaddr ows are
NULL, since no variable or constraint names were defined for this problem.

After the CPXaddr ows call, parameter CPX_PARAM LPMETHOD is set to CPX_ALG _DUAL
and the routine CPXI popt iscalled to re-optimize the problem using the dual simplex
optimizer. After re-optimization, CPXsol ut i on is called to determine the solution status,
the objective value, and the primal solution. NULL is passed for the other solution values,
since they are not printed by this example.

At the end, the problem iswritten as a SAV file by CPXwr i t epr ob. Thisfile can then be
read into the ILOG CPLEX |nteractive Optimizer to analyze whether the problem was
correctly generated. Using a SAV fileis recommended over MPS and LPfiles, as SAV files
preserve the full numeric precision of the problem.

After the TERM NATE: label, CPXf r eepr ob releases the problem object, and
CPXcl oseCPLEX releases the ILOG CPLEX environment.

Complete Program

The complete program follows. You can also view it onlinein thefilel pex3. c.

/* __ */
/* File: exanples/src/lpex3.c */
/* Version 9.0 */
/* __ */
/* Copyright (C 1997-2003 by |LOG */
/* Al Rights Reserved. */
/* Permssion is expressly granted to use this exanple in the */
/* course of devel opi ng applications that use |LOG products. */
/* __ */

/* | pex3.c, exanple of using CPXaddrows to solve a problem*/

/* Bring in the CPLEX function declarations and the Clibrary
header file stdio.h with the follow ng single include. */

#i ncl ude <il cpl ex/ cpl ex. h>

/* Bring in the declarations for the string functions */

ILOG CPLEX 9.0 — GETTING STARTED

ADDING Rows TO A PROBLEM: EXAMPLE LPEX3.C

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

/* Modified exanple from Chvatal, “Linear Programming”, Chapter 26.
* mnimze c*x
* subject to Hx =d

* AXx = b

* I <=x<=u

* wher e

*

* H=(-10 1 0 1 0 0 0) d=¢(-3)
* (1-1 01 0 0 0 0) (1)
* (0 1-1 00 1-1 0) (4)
* (00 0-1 0-1 0 1) (3)
* (000 0-20 1-1) (-5)
*

* A=(2 1-2-1 2-1-2-3) b=(4)
* (1-3 2 3-1 2 1 1) (-2)
*

* ¢=(-9 1 4 2-8 2 812)

* |l =(0 00O OO0 O0 O0)

* u = (50 50 50 50 50 50 50 50)

* Treat the constraints with A as the conplicating constraints, and
* the constraints with H as the “sinple” problem

* The idea is to solve the sinple problemfirst, and then add the
* constraints for the conplicating constraints, and solve w th dual.

#define COLSORIG 8

#define ROANBSUB 5

#defi ne NZSUB (2*COLSARI §

#defi ne ROANSCOWP 2

#define NzCOWP (RONBCOVP* COLSORI §
#define ROANSTOT (ROABSUB+RONSCOWP)
#define NZTOT (NZOCOVP+NZSUB)

i nt
mai n()
{
/* Data for original problem Arrays have to be big enough to hold
probl em plus additional constraints. */

=
~—+
o
)

doubl e Hrhs[ROABTOT] ={ -3, 1, 4, 3, -5};
doubl e H b[COLSOR G ={0 0 0 0 0, 0 0 0}

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 149

ADDING Rows TO A PROBLEM: EXAMPLE LPEX3.C

150

doubl e Hub[OOLSORI G = { 50, 50, 50, 50, 50, 50, 50, 50 };

doubl e Hcost[COLSOR G ={ -9, 1, 4, 2, -8, 2, 8, 121};

char Hsense[RONBTOT] ={'F, 'E, 'E, 'E, 'E };

i nt Hratbeg[CALSORIG = { 0, 2, 4, 6, 8, 10, 12, 14};

int Hratcnt[COLSORIG = { 2, 2, 2, 2, 2, 2, 2, 2};

i nt Hat i nd[NZTOT] ={0 1, 1, 2, 0, 2, 1, 3,
0, 4, 2, 3, 2, 4, 3, 4},

doubl e Hmat val [NZTOT] ={-1.0 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0,
1.0, -1.0, 2.0, -1.0, -1.0, 1.0, 1.0, -1.0 };

/* Data for CPXaddrows cal |l */

doubl e Ar hs[RONSCOWP] ={ 4, -2};

char Asense[RONBCOWP] ={ ‘E, '‘E };

/*

Note - use a trick for rnmatbeg by putting the total nonzero count in
the last element. This is not required by the CPXaddrows call. */

i nt Ar mat beg[RONBCOVP+1] = { 0, 8, 16};

int Ar mat i nd[NZCOWP] ={0 1 2 3, 45 6, 7,
0, 1, 2, 3, 4 5 6, 7 };

doubl e Ar mat val [NZCOWP] ={ 2.0 1.0, -2.0, -1.0,
2.0, -1.0, -2.0, -3.0,
1.0, -3.0, 2.0, 3.0,
-1.0, 2.0, 1.0, 1.0},

doubl e x[COLSOR G ;

CPXENVpt r env = NULL;

CPXLPpt r I p = NULL;

int i

i nt status, |pstat;

doubl e obj val ;

/* Initialize the CPLEX environment */

env = CPXopenCPLEX (&status);

/*

}

/*

If an error occurs, the status value indicates the reason for
failure. Acall to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors wll
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

(env == NULL) {

char errnsg[1024];

fprintf (stderr, “Could not open CPLEX environnment.\n");
CPXgeterrorstring (env, status, errmsg);

fprintf (stderr, “9%”, errmnsg);

got o TERM NATE;

Turn on output to the screen */

ILOG CPLEX 9.0 — GETTING STARTED

ADDING Rows TO A PROBLEM: EXAMPLE LPEX3.C

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX ON);
if (status) {
fprintf (stderr,
“Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;

}

status = CPXsetintparam (env, CPX_PARAM S| MD SPLAY, 2);

if (status) {
fprintf (stderr,”Failed to turn up sinplex display level.\n");
got o TERM NATE;

}

/* Create the problem*/
Ip = CPXcreateprob (env, &status, “chvatal”);

if (Ip==NJL) {
fprintf (stderr,”Failed to create subproblemn”);
status = 1;
got o TERM NATE;

}

/* Copy network part of problem */

status = CPXcopylp (env, Ip, COLSORIG ROABSUB, CPX M N, Hcost, Hrhs,
Hsense, Hmatbeg, Hmatcnt, Hmatind, Hmatval,
H b, Hub, NULL);

if (status) {
fprintf (stderr, “CPXcopylp failed.\n");
got o TERM NATE;

status = CPXsetint param (env, CPX_PARAM LPMETHOD, CPX_ALG NET);
if (status) {
fprintf (stderr,
“Failed to set the optimzation nethod, error %.\n", status);
got o TERM NATE;

}

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, “Failed to optimze LP.\n");
got o TERM NATE;

}

status = CPXgetobjval (env, |p, &objval);
if (status) {
fprintf (stderr,”CPXgetobjval failed\n”);

=
~—+
o
)

Areiqi7 a|qe|red

ILOG CPLEX 9.0 — GETTING STARTED 151

ADDING Rows TO A PROBLEM: EXAMPLE LPEX3.C

152

got o TERM NATE;
}

printf (“After network optimzation, objective is % 10g\n”, objval);
/* Now add the extra rows to the problem */

status = CPXaddrows (env, |p, 0, ROABCOW, Armatbeg[RONSCOVP],
Arhs, Asense, Arnatbeg, Armatind, Arnatval,
NULL, NULL);
if (status) {
fprintf (stderr,”CPXaddrows failed.\n");
got o TERM NATE;
}

/* Because the problemis dual feasible with the rows added, using
the dual sinplex nmethod is indicated. */

status = CPXsetintparam (env, CPX_PARAM LPMETHOD, CPX_ALG DUAL);
if (status) {
fprintf (stderr,
“Failed to set the optimzation nethod, error %l.\n", status);
got o TERM NATE;
}

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, “Failed to optimze LP.\n");
got o TERM NATE;

}

status = CPXsolution (env, Ip, & pstat, &objval, x, NULL, NULL, NULL);
if (status) {

fprintf (stderr,”CPXsolution failed.\n");

got o TERM NATE;
}

printf (“Solution status %\ n”,|pstat);

printf (“Qpjective value %\n", objval);

printf (“Solution is:\n");

for (j =0; j < CALSORG j++) {
printf (“x[%] = %\n",j,x[j]);

}

/* Put the problemand basis into a SAVfile to use it in the
* Interactive Optimzer and see if problemis correct */

status = CPXwiteprob (env, |p, “lpex3.sav”, NULL);
if (status) {
fprintf (stderr, “CPXwiteprob failed.\n");
got o TERM NATE;

ILOG CPLEX 9.0 — GETTING STARTED

PERFORMING SENSITIVITY ANALYSIS

TERM NATE:
/* Free up the problemas allocated by CPXcreateprob, if necessary */

if (Ip!=NUL) {
status = CPXfreeprob (env, & p);
if (status) {
fprintf (stderr, “CPXfreeprob failed, error code %l.\n", status);

}

/* Free up the CPLEX environment, if necessary */

if (env != NULL) {
status = CPXcl o0seCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (status) {
char errmsg[1024];
fprintf (stderr, “Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “9%", errmsg);

}
return (status);

} /* END nain */

Performing Sensitivity Analysis

In Performing Sensitivity Analysis on page 49, thereis a discussion of how to perform
sengitivity analysisin the Interactive Optimizer. As with most interactive features of

ILOG CPLEX, thereisadirect approach to this task from the Callable Library. This section
modifies the example| pex1. c on page 127 to show how to perform sensitivity analysis
with routines from the Callable Library.

To begin, make acopy of | pex1. c, and edit this new source file. Among the declarations
(for example, immediately after the declaration for dj) insert these additional declarations:

doubl e *l owerc
doubl e *I owerr

NULL, *upperc
NULL, *upperr

NULL;
NULL;

ILOG CPLEX 9.0 — GETTING STARTED 153

=
~—+
o
)

Areiqi7 a|qe|red

PERFORMING SENSITIVITY ANALYSIS

At some point after the call to CPXI popt , (for example, just before the call to
CPXwr i t epr ob), perform sensitivity analysis on the objective function and on the
right-hand side coefficients by inserting this fragment of code:

upper c (doubl e *) malloc (cur_nuntols * sizeof (double));

| owerc = (double *) malloc (cur_nuntols * sizeof(double));

status = CPXobjsa (env, Ip, 0, cur_nuntols-1, |owerc, upperc);

if (status) {
fprintf (stderr, “Failed to obtain objective sensitivity.\n");
got o TERM NATE;

printf (“\nQbjective coefficient sensitivity:\n");
for (j =0; j < cur_nuntols; j++) {

printf (“Colum %l: Lower = %40g Upper = %0g\n”,
} j, lowerc[j], upperc[j]);

upperr = (double *) malloc (cur_nuntrows * sizeof (double));
lowerr = (double *) malloc (cur_nunrows * sizeof (double));
status = CPXrhssa (env, |p, O, cur_nuntows-1, |owerr, upperr);
if (status) {
fprintf (stderr, “Failed to obtain RHS sensitivity.\n");
got o TERM NATE;

printf (“\nRight-hand side coefficient sensitivity:\n");
for (i =0; i < cur_nuntows; i++) {
printf (“Row %l: Lower = %0g Upper = %0g\n",
i, lowerr[i], upperr[i]);
}

This sampleisfamiliarly known as “throw away” code. For production purposes, you
probably want to observe good programming practices such as freeing these allocated arrays
at the TERM NATE label in the application.

A bound value of 1e*2° (CPX_| NFBOUND) istreated asinfinity within ILOG CPLEX, so this
isthe value printed by our sample code in cases where the upper or lower sensitivity range
on arow or column isinfinite; a more sophisticated program might print a string, such
as-inf or +i nf, when negative or positive CPX_| NFBOUND is encountered as a value.

Similar code could be added to perform sensitivity analysis with respect to bounds via
CPXboundsa.

154 ILOG CPLEX 9.0 — GETTING STARTED

Part |l

Index

Index

A automatic (Aut oAl g) 81

creating object 71, 74
and Concert method 100
application

accessing
basic rows and columns of solution 48

basisinformation 82

dual values 49

dual values (Interactive Optimizer) 48
objective function value 48

reduced cost in Java 97

reduced costs in Interactive Optimizer 48
slack values 48

solution values 48, 72

add Interactive Optimizer command 57

syntax 58

add(obj) Concert method 96
adding

bounds 57

constraint to model 87
constraints 57

from afile 58

interactively 57

objective (shortcut) 96
objective function to model 71

and Callable Library 11

and Concert Technology 11

compiling and linking Callable Library 120
compiling and linking Component Libraries 29
compiling and linking Concert Technology 67
development steps 124

error handling 72, 126

bar opt Interactive Optimizer command 47
barrier optimizer

availability 47
selecting 81

BASfileformat 52, 55
basis

accessing information 82
basisinformation 97
periodically written 52

rowsto a problem 147
addLe Concert method 99

starting from previous 88
see also advanced basis

addM ni m ze Concert method 96, 99 basisfile
advanced basis reading 55
advanced start indicator 47 writing 52

using 52
algorithm

Boolean parameter 88
Boolean variable

ILOG CPLEX 9.0 — GETTING STARTED 157

INDE X

representing in model 70
bound
adding 57
changing 60
default values 38
displaying 44
entering in LP format 38
removing 60
sensitivity analysis 50, 154
box variable 41
branch & bound 81
branch & cut 81

C

Callable Library 119 to 154
application development steps 124
compiling and linking applications 120
conceptual design 119
CPLEX operation 122
description 11
distribution file 120
error handling 126
example model 16
opening CPLEX 122
see also individual CPXxxx routines
change Interactive Optimizer command 58
bounds 60
change options 59
coefficient 61
del ete 61
delete options 62
obj ective 61
rhs 61
sense 59
syntax 62
changing
bounds 60
coefficients 61
constraint names 59
objective in Interactive Optimizer 61
parameters 56, 88
problem 58
righthand side (rhs) in Interactive Optimizer 61
sense 59

158 ILOG CPLEX 9.0

variable names 59
choosing
optimizer 47, 81, 126
classlibrary 92
classpath 93
command line option 92
coefficient
changing 61
column
expressions 75
command
executing from operating system 63
input formats 34
Interactive Optimizer list 35
compiler
-DNDEBUG option 73
error messages 67
Microsoft Visual C++ Command Line 122
using with CPLEX 67
compiling
applications 29
Callable Library applications 120
Concert Technology applications 67
Component Libraries
defined 11
running examples 28
verifying installation 28
Concert Technology Library 65 to 90
C++ classes 68
C++ objects 66
compiling and linking applications 67
CPLEX designin 66
description 11
error handling 72
example model 14
running examples 67
see alsoindividual lloxxx routines
constraint
adding 57, 87
changing names 59
changing sense 59
creating 75
default names 38
deleting 61
displaying 44

GETTING STARTED

displaying names 42

displaying nonzero coefficients 41

displaying number of 41

displaying type 41

entering in LP format 38

name limitations 38

naming 38

range 75

representing in model 70
constraints

adding to amodel 96
continuous variable

representing 70
CPLEX

compatible platforms 11

Component Libraries 11

description 10

directory structure 26

installing 26

licensing 28

problem types 10

quitting 63

setting up 25

starting 34

technologies 11
cpl ex command 34
cpl ex. j ar (location) 91
cpl ex. | og file47
CPXaddcol s routine 123, 125, 128
CPXaddr ows routine 123, 125, 128, 148
CPXboundsa routine 154
CPXchgcoef | i st routine 123, 125, 128
CPXcl oseCPLEX routine 123, 129, 139, 148
CPXcopyl! p routine 123, 124, 125, 126, 129, 148
CPXcr eat epr ob routine 123, 139, 148
CPXf r eepr ob routine 123, 129, 139, 148
CPXget errorstringroutine 128,129
CPXget obj val routine 148
CPXI popt routine 128, 148, 154
CPXns g routine 122
CPXnewcol s routine 123, 125, 128
CPXnewr ows routine 123, 125, 128
CPXopenCPLEX routine 122, 128, 139, 147
CPXr eadcopypr ob routine 123, 139
CPXset i nt par amroutine 128

ILOG CPLEX 9.0

INDE X

CPXsol uti on routine 128, 148
CPXwr i t epr ob routine 127, 129, 148, 154
creating

agorithm object 71, 74

automatic log file 47

binary problem representation 127

constraint 75

environment 147

environment object 68, 74

model (Concert Technology) 95

model (I | oModel) 69

model objects 74

objective function 75, 80

optimization model 69, 70

problem files 50

problem object 123, 148

SOS 80

variable 80

D

data
entering 39
entry options 13
deleting
constraints 61
problem options 62
variables 61
directory installation structure 26
di spl ay Interactive Optimizer command 40, 59
options 40
pr obl em40
bounds 44
constraints 44
names 42,43
options 40
stats 41
syntax 41
sensitivity 49
syntax 50
settings 57
sol ution 48
syntax 49
specifying item ranges 42
syntax 44

GETTING STARTED

159

INDE X

displaying

basic rows and columns 48

bounds 44
constraint names 42
constraints 44

nonzero constraint coefficients 41

number of constraints 41
objective function 44
optimal solution 46
parameter settings 57
post-solution information
problem 40

problem options 40
problem part 42

problem statistics 41

48

sensitivity analysis 49, 153

type of constraint 41
variable names 42
variables 41

dual simplex optimizer
as default 45
availability 47
finding a solution 128
selecting 81

dual values
accessing 49

accessing (Interactive Optimizer) 48

accessing (Java) 97

E

ent er Interactive Optimizer command 36

bounds 38
maxi m ze 37
mnimze 37
subj ect to 38,57
syntax 37

entering
bounds 38
constraint names 38
constraints 38
example problem 36
item ranges 42
keyboard data 39
objective function 37, 38

160

ILOG CPLEX 9.0

objective function names 38

problem 36, 37

problem name 36

variable bounds 38

variable names 37
environment object

creating 68, 74

destroying 69

memory management and 69
equality constraints

add to amodel 96
error

invalid encrypted key 93

no license found 93

NoClassDefFoundError 93

UnsatisfiedLinkError 93
error handling

compiler 67

license manager 68

linker 68

programming errors 72

runtime errors 73

testing installation 29, 67
example

adding rows to aproblem 147

entering a problem 36

entering and optimizing aproblem in C 127
entering and optimizing a problem in C# 109

il ol pex2. cpp 82
il ol pex3. cpp 86
| pex1. c 127
| pex1. cs 109
| pex2. c 138
| pex3. c 147
modifying an optimization problem 86
reading a problem file 138
reading a problem from afile 82
running Callable Library 121
running Component Libraries 28
running Concert Technology 67
running from standard distribution 121
solving a problem 45
exception handling 73
executing operating system commands 63
export Model method

GETTING STARTED

I | oCpl ex class 80
expression
column 75

F

Fal se 96
feasible solution 96
file format
read options 53
write options 51
file name
extension 52, 54, 80

G

get Cpl exSt at us 97
get Cpl exSt at us method
Il oCpl ex class 72
get Dual s method
Il oCpl ex class 75
get Obj Val ue method
Il oCpl ex class72
get ReducedCost s method
Il oCpl ex class 75
get Sl acks method
Il oCpl ex class 75
get St at us 96
get St at us method
Il oCpl ex class 72, 75
get Val ue method
Il oCpl ex class 72
get Val ues method
Il oCpl ex class 75
getting
see accessing

greater than equal to constraints

add to amodel 96

H

handle class
definition 69
empty handle 70
handling

ILOG CPLEX 9.0

INDE X

errors 72,126
exceptions 73

hel p Interactive Optimizer command 34
syntax 35

histogram 44

ILM see ILOG License Manager
I | oAddNunVar class75
Il oAl gorithm : Exception class73
Il oAl gorithm : St at us enumeration 75
I I oCol utm. and method 100
I I oCpl ex class

add modeling object 96

addLe method 99

addM ni m ze method 99

Concert Technology 66

export Model method 80

get Cpl exSt at us method 72

get Dual s method 75

get Cbj Val ue method 72

get ReducedCost s method 75

get Sl acks method 75

get St at us method 72, 75

get Val ue method 72

get Val ues method 75

i mpor t Model method 80, 82

Java9l

nunVar Ar r ay method 99

pr od method 99

scal Prod method 99

set Par ammethod 81

set Root Al gori t hmmethod 82

sol ve method 72, 74, 82, 86

solving with 71

summethod 99
I oCpl ex: : Al gori t hmenumeration 81
I 1 oCpl ex: : Bool Par amenumeration 88
Il oCpl ex: : Excepti on class73
I 1 oCpl ex: : I nt Par amenumeration 88
I 1 oCpl ex: : NunPar amenumeration 88
Il oCpl ex: : Stri ngPar amenumeration 88
|| oEnv 68
I | oEnv class 68

GETTING STARTED 161

INDE X

end method 69
I | oException class73
I | oExpr class71
I | oExt ract abl e class69
ILOG License Manager (ILM) 28
| LOG_LI CENSE_FI LE environment variable 28
I I oLi near NunExpr 95
Il oM ni m ze function 70
| | oModel class
add method 70, 71
col um method 100
extractable 69
nunVar method 100
rolein Concert 66
I | oNumAr r ay class 75
I I oNuntCol umm class 75
I | oNunExpr 95
I | oNunExpr class 95
I I oNunVar class 76
columns and 76
reading files and 80
role in Concert Technology 70
rolein model 95
Il oObj ecti ve class 70, 75, 80
rolein model 95
set Coef method 76
oRange class
casting operator for 75
example 71
reading from file 80
role in Concert Technology 70
rolein model 95
set Coef method 76
set Expr method 100
Il 0Senm Cont Var class80
I | 0SCS1 class 80
| | 0SCS2 class 80
i npor t Model method
I I oCpl ex class 80, 82
infeasible 97
installing CPLEX 25 to 29
testing installation 28
see also testing installation
integer parameter 88
integer variable

162 ILOG CPLEX 9.0

optimizer used 126
representing in model 70
Interactive Optimizer 33 to 63

command formats 34

commands 35

description 11

example model 14

quitting 63

starting 34

see also individual Interactive Optimizer commands
invalid encrypted key 93
iteration log 46, 47

J

Java Native Interface (INI) 91
Java Virtua Machine (JVM) 92
j avamake for Windows 92

L

libformat 92
licensing
CPLEX 28
linear optimization 10
Linear Programming (LP) problem
seeLP
linker
error messages 68
using with CPLEX 67
linking
applications 29
Callable Library applications 120
Concert Technology applications 67
Concert Technology library files 29
CPLEX library files 29
log file
adding to 56
cpl ex. | og 47
creating 47
iteration log 46, 47
LP
creating amodel 13
node 81
problem format 10

GETTING STARTED

root 81

solving amodel 13

solving pure 81
LPfile

format 37

reading 54

writing 51, 52
| pex1.c

sengitivity and 153
| pex1. c example 127
LPex1. j ava example 97
LPMETHOD parameter 45

M

makefile 92
maximization in LP problem 37
memory management
by environment object 69
minimization in LP problem 37
MIP
description 11
optimizer 48
solving 81
nmi popt Interactive Optimizer command 48
Mixed Integer Programming (MIP) problem
see MIP
model
adding constraints 87
creating 69
creating | | oModel 69
creating objectsin 74
extracting 74
modifying 86
reading from file 80, 82
solving 82
writing to file 80
see al so optimization model
modeling
by columnsin C++ 75
by columnsin Java 99
by nonzerosin C++ 76
objects 66
modeling by nonzeros 100
modeling by rows 75, 99

ILOG CPLEX 9.0

INDE X

modeling variables 95
modifying

problem object 123
monitoring iteration log 46
MPS file format 55
multiple algorithms 81

N

net opt Interactive Optimizer command 47
network
description 10
flow 87
Network Flow problem
see network
network optimizer
availability 47
selecting 81
solving with 87
Nmake 92
no license found 93
NoClassDefFoundError 93
node LP
solving 81
nonzereos
modeling in Java 100
nonzeros
modeling in C++ 76
notation in this manual 19
notification 86
numeric parameter 88
nunVar Ar r ay Concert method 99

O

objective function
accessing value 48
adding to model 71
changing coefficient 61
changing sense 60
creating 75, 80
default name 38
displaying 44
entering 38
entering in LP format 37

GETTING STARTED 163

INDE X

name 38
representing in model 70
sensitivity analysis 49, 154
operator() 75
operator+ 75
optimal solution 97
optimization model
creating 69
defining extractable objects 70
extracting 69
optimization problem
interrupting 48
reading from file 82
representing 74
solving with | | oCpl ex 71
opt i m ze Interactive Optimizer command 45
re-solving 47
syntax 47
optimizer
choosing by problem type 126
choosing by switch in application 82
choosing in Interactive Optimizer 47
options 12
parallel 122
syntax for choosing in C++ 81
ordering variables 43
out Concert method 98
Cut put St r eam98

P

parallel
choosing optimizersfor 12
linking for optimizers 122
parameter
Boolean 88
changing 56, 88
displaying settings 57
integer 88
list of settable 56
numeric 88
resetting to defaults 57
string 88
parameter specification file 57
path names 52

164 ILOG CPLEX 9.0

popul at eByCol unm 98
popul at eByNonzer 0 98, 100
popul at eByRow98
primal simplex optimizer
availability 47
selecting 81
pri nopt Interactive Optimizer command 47
problem
change options 59
changing 58
creating binary representation 127
data entry options 13
display options 40
displaying 40
displaying a part 42
displaying statistics 41
entering from the keyboard 36
entering in LP format 37
naming 36
reading files 138
solving 45, 128
verifying entry 40, 59
problemfile
reading 53
writing 50
problem formulation
i 1ol pexl.cpp 74
Interactive Optimizer and 36
| pex1.c 128
| pex1. cs 109
LPex1.java 97
standard notation for 10
problem object
creating 123
modifying 123
problem types solved by CPLEX 10

Q

QCP
description 10
QP
applicable algorithms 81
description 10
solving pure 81

GETTING STARTED

Quadratic Programming (QP) problem
see QP
qui t Interactive Optimizer command 63
quitting
ILOG CPLEX 63
Interactive Optimizer 63

R

range constraint 75
adding to amodel 96
r ead Interactive Optimizer command 53, 54, 55
avoiding prompts for options 54
basis filesand 55
file type options 53
syntax 55
reading
file format for 53
LPfiles54
model from file 80, 82
MPSfiles 55
problem files 53, 138
reduced cost
accessing in Interactive Optimizer 48
accessing in Java 97
removing bounds 60
representing optimization problem 74
re-solving 47
RHS
see right-hand side
right-hand side (RHS)
changing coefficient 61
sensitivity analysis 50, 154
root LP
solving 81

S

SAV fileformat 148
saving
problem files 50
solution files 50
scal Pr od Javamethod 99
sense
changing in Interactive Optimizer 59

ILOG CPLEX 9.0

sensitivity analysis
performing 49, 153
set Interactive Optimizer command 56
advance 47
available parameters 56
def aul ts 57
| ogfiled7
si npl ex 46
basi si nterval 52
syntax 57
set Qut Concert method 98
set Root Al gori t hmmethod
1 oCpl ex class 82
setting
parameters 56, 88
parameters to default 57
see also changing
set Wr ni ng Concert method 98
shadow prices
see dual values
sifting algorithm 81
slack
accessing in Interactive Optimizer 48
accessing in Java 97
accessing values 48
solution
accessing basic rows and columns 48
accessing values 48
displaying 48
displaying basic rows and columns 48
outputting 75
process 46
querying results 72
reporting optimal 46
restarting 47
sensitivity analysis 49, 153
solution file
writing 50
sol ve 96
sol ve Concert method 98
sol ve method
Il oCpl ex class 72, 74, 82, 86
solving
model 71, 82
node LP 81

GETTING STARTED

INDE X

165

INDE X

problem 45, 128
root LP 81
with network optimizer 87
SOS
creating 80
sparse matrix 87
Specia Ordered Set
see SOS
starting
CPLEX 34
from previous basis 88
Interactive Optimizer 34
new problem 36
string parameter 88
structure of a CPLEX application 94
Supported Platforms 92
System out 98

T

t ranopt Interactive Optimizer command 47

U

unbounded 97
UNIX
building Callable Library applications 121
executing commands 63
installation directory 26
installing CPLEX 26
testing CPLEX in Concert Technology 67
verifying installation 28
UnsatisfiedLinkError 93

Vv

variable
Boolean 70
box 41
changing bounds 60
changing names 59
continuous 70
creating 80
deleting 61
displaying 41

166 ILOG CPLEX 9.0

displaying names 42
entering bounds 38
entering names 37
integer 70

modeling 95

name limitations 37
ordering 43

removing bounds 60
representing in model 70

W

war ni ng Concert method 98
Windows
building Callable Library applications 121
dynamic loading 122
installing CPLEX 26
Microsoft Visual C++ compiler 122
Microsoft Visual C++ IDE 121
testing CPLEX in Concert Technology 67
verifying installation 29
wr i t e Interactive Optimizer command 50, 51
file type options 51
syntax 53
writing
basisfiles 52
file format for 51
LPfiles51
model to file 80
problem files 50
solution files 50

X

xecut e Interactive Optimizer command 63
syntax 63
xxx file format 52

— GETTING STARTED

	Introducing ILOG CPLEX
	What Is ILOG CPLEX?
	ILOG CPLEX Components
	Optimizer Options
	Data Entry Options

	Solving an LP with ILOG CPLEX
	Using the Interactive Optimizer
	Concert Technology for C++ Users
	Concert Technology for .NET Users
	Concert Technology for Java Users
	Using the Callable Library

	What You Need to Know
	What’s in This Manual
	Notation in this Manual
	Related Documentation

	Setting Up ILOG CPLEX
	Installing ILOG CPLEX
	Setting Up Licensing
	Using the Component Libraries

	Interactive Optimizer Tutorial
	Starting ILOG CPLEX
	Using Help
	Entering a Problem
	Entering the Example Problem
	Using the LP Format
	Entering Data

	Displaying a Problem
	Displaying Problem Statistics
	Specifying Item Ranges
	Displaying Variable or Constraint Names
	Ordering Variables
	Displaying Constraints
	Displaying the Objective Function
	Displaying Bounds
	Displaying a Histogram of NonZero Counts

	Solving a Problem
	Solving the Example Problem
	Solution Options
	Displaying Post-Solution Information

	Performing Sensitivity Analysis
	Writing Problem and Solution Files
	Selecting a Write File Format
	Writing LP Files
	Writing Basis Files
	Using Path Names

	Reading Problem Files
	Selecting a Read File Format
	Reading LP Files
	Using File Extensions
	Reading MPS Files
	Reading Basis Files

	Setting ILOG CPLEX Parameters
	Adding Constraints and Bounds
	Changing a Problem
	Changing Constraint or Variable Names
	Changing Sense
	Changing Bounds
	Removing Bounds
	Changing Coefficients
	Deleting

	Executing Operating System Commands
	Quitting ILOG CPLEX

	Concert Technology Tutorial for C++ Users
	The Design of CPLEX in Concert Technology
	Compiling and Linking ILOG CPLEX in Concert Technology Applications
	Testing Your Installation on UNIX
	Testing Your Installation on Windows
	In Case of Problems

	The Anatomy of an ILOG Concert Technology Application
	Constructing the Environment: IloEnv
	Creating a Model: IloModel
	Solving the Model: IloCplex
	Querying Results
	Handling Errors

	Building and Solving a Small LP Model in C++
	General Structure of an ILOG CPLEX Concert Technology Application
	Modeling by Rows
	Modeling by Columns
	Modeling by Nonzero Elements
	Complete Program

	Writing and Reading Models and Files
	Selecting an Optimizer
	Reading a Problem from a File: Example ilolpex2.cpp
	Reading the Model from a File
	Selecting the Optimizer
	Accessing Basis Information
	Querying Quality Measures
	Complete Program

	Modifying and Reoptimizing
	Modifying an Optimization Problem: Example ilolpex3.cpp
	Setting ILOG CPLEX Parameters
	Modifying an Optimization Problem
	Starting from a Previous Basis
	Complete Program

	Concert Technology Tutorial for Java Users
	Compiling ILOG CPLEX Applications in ILOG Concert Technology
	In Case Problems Arise

	The Design of ILOG CPLEX in ILOG Concert Technology
	The Anatomy of an ILOG Concert Technology Application
	Create the Model
	Solve the Model
	Query the Results

	Building and Solving a Small LP Model in Java
	Modeling by Rows
	Modeling by Columns
	Modeling by Nonzeros

	Complete Code of LPex1.java

	Concert Technology Tutorial for .NET Users
	What You Need to Know: Prerequisites
	What You Will Be Doing
	Describe
	Model
	Solve

	Describe
	Building a Small LP Problem in C#

	Model
	Solve
	Example: LPex1.cs

	Callable Library Tutorial
	The Design of the ILOG CPLEX Callable Library
	Compiling and Linking Callable Library Applications
	Building Callable Library Applications on UNIX Platforms
	Building Callable Library Applications on Win32 Platforms
	Building Applications that Use the ILOG CPLEX Parallel Optimizers

	How ILOG CPLEX Works
	Opening the ILOG CPLEX Environment
	Instantiating the Problem Object
	Populating the Problem Object
	Changing the Problem Object

	Creating a Successful Callable Library Application
	Prototype the Model
	Identify the Routines to be Called
	Test Procedures in the Application
	Assemble the Data
	Choose an Optimizer
	Observe Good Programming Practices
	Debug Your Program
	Test Your Application
	Use the Examples

	Building and Solving a Small LP Model in C
	Complete Program

	Reading a Problem from a File: Example lpex2.c
	Complete Program

	Adding Rows to a Problem: Example lpex3.c
	Complete Program

	Performing Sensitivity Analysis

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

