

NMIN-2114 Dec 11, 2002

NMIN-2114
Single Board Computer

User Manual V.1

User Manual V.1 Dec 11, 2002 1

Table of Contents

1.0 Overview

 .

3

1.1 Noted microcontroller features: .

3

1.2 Included Files .

3

2.0 Getting Started

 .

4

3.0 Memory Map

 .

5

4.0 Programming the Board

.

5

4.1 ONCE Connector and Parallel Port.

5

4.2 S-Records and the Serial Loader .

6

4.2.1 Downloading S-Records With X-Modem

.

7

4.2.2 Hooking Into Autoboot

 .

7

4.2.3 Tags

.

8

4.2.4 Quick Entry

 .

8

4.2.5 Boot Entry

 .

8

4.2.6 Auto Vector

 .

8

4.3 On-board Development System .

8

5.0 I/O Connections and Jumpers

.

8

6.0 Board Layout

.

10

7.0 Schematic

 .

11

8.0 Examples

.

12

8.1 Reading from the A/D port .

12

8.2 Control Registers.

13

8.3 Implementing an Interrupt .

14

8.3.1 Setting up the CPU

 .

15

8.3.2 Setting up the Interrupt Controller

.

17

8.3.3 Setting up a Peripheral Interrupt

.

21

8.3.4 Interrupts Calling Forth

.

21

8.4 Flash Programming.

22

8.5 Auto Install Program .

25

8.5.1 AUTOBOOT.F

 .

25

8.5.2 UNBOOT2114.F

.

27

8.6 Advanced Programming .

27

8.6.1 SRECBOOT.F

 .

28

8.6.2 Example of C and Forth Together

.

31

8.6.3 Makefile

 .

34

8.6.4 gnulink.acf

.

34

8.6.5 spi.c

.

36

User Manual V.1 Dec 11, 2002 2

8.6.6 pit.c

 .

36

8.6.7 forth.h

.

37

8.6.8 micro.h

 .

38

8.6.9 interrupt.h

 .

40

8.6.10 words.c

 .

40

8.6.11 makewords.c

 .

40

User Manual V.1 Dec 11, 2002 3

1.0 Overview

The NMIN-2114 single board computer provides you with plug and play access to the powerful 32-bit
Motorola MMC2114 microcontroller. The computer board provides power regulation, RS232 and RS422
serial support and an LCD connector. The microcontroller includes the following built in capabilities:

Figure 1 P eripheral interfaces on the 2114 micr ocontr oller .

1.1 Noted micr ocontr oller f eatures:

•

MCORE 32-bit RISC low-power integer processor

•

256K of word programmable flash memory

•

32K of static RAM

•

8 channels of 10-bit A/D with queueing

•

2 asynchronous serial channels

•

1 synchronous serial channel

•

8 timer channels with PWM capability

•

up to 40 interrupts

•

periodic interval timer

•

watchdog timer

•

35 digital I/O pins

•

eight external interrupts

•

ONCE debug support

The computer board’s power consumption with RS-422 drivers installed is about 80mA.

1.2 Included Files

The following files are included and are available from our website. The MaxForth file is only available if
you have licensed it.

•

nmin2114v1.pdf - this manual in PDF format

•

xload2114v2.s - serial loader file in s-record format that can be downloaded through the ONCE port or
serial port

•

mfcoreapp51b.s - MaxForth in s-record format

•

srecboot.f - s-record loader and Forth loader which loads application programs into RAM or Flash

•

autoboot.f - simple tool set for creating autostarting programs in flash

MMC2114
Microcontroller

ONCE A/D

SPI

interrupts

timers

I/O
ports

SCI

Flash

RAM

User Manual V.1 Dec 11, 2002 4

•

unboot2114.f - for removing auto start tags

2.0 Getting Star ted

You will interact with your board by connecting it to a PC using a serial cable and running a terminal program
such as HyperTerminal or an equivalent setup. You need to set it to 19200 BAUD, one stop bit, no parity and
8 data bits. Connect an RS232 serial cable between your PC’s COM port and the serial port on the board. To
power up the board, you need a 9 to 12 volt plug-in transformer plugged into the power jack, PJ1 (AC, DC
both polarities accepted).

When everything is ready and you plug in the power, you should receive a prompt in the terminal program.

MMC2114 X-Modem Flash Programmer V.2

:

or

Max-FORTH V5.1B

 (license agreement is required)

And when you depress the ENTER key, it should respond with

 type ? for help

:

or

OK

(Max-FORTH prompt)

When you see that message, it means the communication is established and you are ready to interact with
the board and microcontroller. By pressing the reset button, SW1, you should get the same boot prompt as
when you powered it up. Pressing the reset button will leave the contents of most of the RAM intact which
might be useful for debugging purposes, whereas, if you power cycle the board, then all RAM contents will be
lost.

MMC211421142114 (Sika) Flash Programmer
:

Board
Computer

Serial Cable
Power

User Manual V.1 Dec 11, 2002 5

3.0 Memor y Map

The memory map consists of the RAM, ROM and registers. The interrupt vectors can exist anywhere by
setting the vector base register (VBR) (Figure 5 on page 15).

Figure 2 After booting, the RAM memor y map either belongs to the serial loader or
the MaxFor th application.

4.0 Programming the Boar d

When the board is reset, it executes the program pointed to by the vector at location 0. In a loaded board this
will be the boot loader which will either start the serial loader or MaxForth. When MaxForth starts, it checks to
see if there is an application present and runs it or just runs MaxForth.

There are several ways in which to program the board:

1. download an s-record through the ONCE connector and the PC parallel port using a
programmer such as CPROGMCZ.

2. download s-records using the embedded serial loader and a serial port with HyperTerminal
3. interact directly with the microcontroller and download source code to the on-board

development system, MaxForth, through a serial port and HyperTerminal
4. download a mixture of s-records and Forth using the Forth s-record loader (SRECBOOT.F)

When downloading text files to the board, using the text download protocol, make sure the delay per line is at
least 100 milliseconds. You can risk having lines missed if you go to fast, but with some setups, it is possible
to use smaller line delays which has a nice effect on a long download. Your mileage will vary.

4.1 ONCE Connector and P arallel P or t

Using the MCORE Cable from P&E Micro or equivalent, plug it into the parallel port of your computer

External
Memory

Registers

ports

Internal
RAM 32K

Internal
Flash 256K

0

0x0080.0000

0x00C0.0000

0x0003.FFFF

0x0080.7FFF

0x8000.0000

0xFFFF.FFFF

boot loader + serial loader copy

MaxForth and/or Application
0x0000.4000

serial loader system

free space

80.7FFF

80.0D30
80.0000

MaxForthSerial Loader or

03.FFFF

01.0000

00.4000
00.0000

Application

User Manual V.1 Dec 11, 2002 6

through a parallel port cable and the ONCE port on the computer board making sure to orientate the
triangle on the pin header to pin 1 on the board which is marked by a square solder pad on the bottom of
the board. Apply power to the board. When disconnecting from the board make sure it goes through a
power cycle before you try out the downloaded software since a reset is not enough to regain control of
the microcontroller after interacting with the ONCE port.

If you already have CPROGMCZ running, click reset the chip. If you start it up, it will reset the chip and
proceed to the next choice which is to read in a configuration file. The file that works with the board is the
2114_256k.MCP file which should be in the directory for configuration files. Next you will need to erase
the module, specify an s-record to download and then program the module. To test out the software, you
must disconnect the ONCE connector and power cycle the board. The serial loader file can be
downloaded in this manner and then used to program the flash ROM using the serial port as described
next.

Check the help screens for more details.

4.2 S-Recor ds and the Serial Loader

Using the serial loader, you can download s-records that have been created by a C compiler or
assembler system that you have acquired separately, to flash memory to be run. The help menu, invoked
by typing a ?, is:

: ?

 To download to flash:

 1. bulk erase if necessary

 2. Type f

 3. Send S-record with Xmodem or XModem-1K

 f - Program flash

 b - bulk erase all of the flash

 e - erase application from flash

 type ? for help

:

When programming the flash with an s-record, the locations to be programmed should be erased to 0xFF
first by either erasing the whole flash or just the part which contains the serial loader.

WARNING:

Bulk Erase

If you do bulk erase the entire flash with the ‘b’ selection, then the loader will be gone and
you will not be able to reboot. Your application should either put a vector at location 0000,
or you should download the serial loader program (xload2114v2.s).

The serial loader works by running out of RAM. At bootup, the boot program in flash checks to see if
there is an application at location 0x4000 by checking for a vector (anything but 0xFFFFFFFF). If there
isn’t, then it copies the serial loader program from flash to RAM and then runs the program. The serial
loader program must run out of RAM to be able to program flash memory.

If you erase all of flash, then the next time you reset the board, there will be no programs present and you
will have to program it through the ONCE port. Otherwise if you download a program with a reset vector
at location 0x00000000, such as the serial loader program, then it will boot up next time. You have the
flexibility to keep the serial loader program as part of your end system or to remove it and replace it with
another program.

Quick Tip !!

Applications
If you are using the serial loader to test out your application which starts with a vector at location 0x4000,
then just use ‘e’ and ‘f’ to download your application.

If you download an application, reboot and nothing happens, you can recover to the serial loader by
shorting out PA7 to +3V on the J2 connector with a jumper or equivalent and pressing the reset button.
You will be taken back to the serial loader where you can erase your errant application and try again.

User Manual V.1 Dec 11, 2002 7

4.2.1 Downloading S-Recor ds With X-Modem

The serial loader uses the X-Modem protocol to transfer data from the host computer to the board. This
allows for error recovery and pacing to be done by the protocol giving you a more robust download
protocol. Depending on your host program and its defaults, the setting may be not right. Try it first and if
it doesn’t work, modify some of the settings.

To install a fresh copy of MaxForth and erase all the flash from 0x4000 to 0x1FFFF do the following:

1. get to the serial loader from Forth by FLASH or by resetting with PA7 to V+
2. press e
3. wait till done, then press f
4. download the MaxForth s-record with Xmodem
5. wait till done, then press reset with PA7 not connected to V+

4.2.2 Hooking Into A utoboot

You can autoboot an application by leaving a vector to it at location 0x4000. The startup boot loader will
detect this vector and then jump to the location that the vector is pointing to. When MaxForth is installed,
it has a vector at that location. To get to the serial loader from MaxForth, type in FLASH and hit enter. To
get back to the serial loader from an application, execute the vector stored at location 0x190 in memory.
The application area, 0x0.4000-0x1.FFFF can be erased using the serial loader without the boot loader
being removed from memory. This is the ‘e’ option.

If MaxForth is loaded, you can check the memory at location hex 4000 by:

HEX 4000 1 DUMP

 0 1 2 3 4 5 6 7 8 9 A B C D E F

4000: 00 00 91 08 72 04 A4 02 30 04 60 03 1E 34 01 44r...0.̀ ..4.D OK

MaxForth occupies the space from 0x4000 to about 0xE300. At location 0x4000 is the start vector for
MaxForth which is what the bootloader looks for when booting. If the location is 0xFFFFFFFF, then it is
assumed that there is no application loaded and the serial loader is run. MaxForth can be replaced by
erasing it and writing a new application in its place, making sure that the startup vector for the new
application is at 0x4000.

If you want to hook into the Forth autoboot system, then there are several places where you can do this:

•

quick entry - allow setting of COP and other write-once registers on the micro.

•

boot entry - MaxForth has been setup and can be augmented

•

auto vector - last possible chance before Forth is started up

User Manual V.1 Dec 11, 2002 8

4.2.3 Tags

The patterns 0xA44A and 0xA55A are referred to as tags and are used during the autoboot process to
find vectors to be executed during the bootup process. Only the lowest A44A and A55A tag will be
executed with A44A going first. This applies to the boot entry and autovectors. The quick entry, if used,
only uses A55A.

4.2.4 Quic k Entr y

Quick entry lets you get in on the boot process and set COP or any other write once registers before
MaxForth starts up. The tag contains a 32 bit value that is checked first and if present, then the CFA
stored at the vector preceding it is executed.

A55A 3FFC FL! ' COP-RUN CFA 3FF8 FL! (hook into quick entry vector)

4.2.5 Boot Entr y

Boot entry lets you take over or execute something after MaxForth has been initialized. This is a good
time to modify the dictionary linkage to add extra words from flash. The vector follows the tag.

A44A 3FF0 FL! ' STARTUP CFA 3FF4 FL! (hook into boot-start vector)

4.2.6 Auto Vector

As well, at any 1K boundary in RAM you can lay down a tag followed by a vector.

A44A 1F800 FL! ' STARTUP CFA 1F804 FL! (hook into auto-start vector)

4.3 On-boar d Development System

Taking advantage of the interactive nature of the board’s development system, MaxForth, you can
interact directly with the microcontroller’s peripherals by fetching and storing values to the memory
mapped configuration registers for the peripheral devices. This is an effective way of understanding the
peripheral documentation, verifying correct initialization sequences, running some tests on different
configurations and debugging driver code as you develop it. By typing in new definitions, you can add
new macros to the dictionary for interactive use or for creating an automated program. Some examples
are given later on.

5.0 I/O Connections and J umper s

The I/O connections J1-J16 are highlighted with colored boxes on the board layout on page 10. A description
of their function follows:

•

J1, LCD connector, match the triangle on the connector with the pin with a square solder pad.

•

J2, J3, J4 are general purpose I/O connectors including timers, A/D, INT, etc.

Table 1: Noted Memory Locations for Startup Hooks

Name Value Notes

quick_tag 0x3FFC store a tag

1

quick_vector 0x3FF8 CFA of word to call

boot_tag 0x3FF0 store a tag

2

boot_vector 0x3FF4 CFA of word to call

boot_start 0x10000 lower limit in flash for checking for
an auto vector tag

2

 on a 1K boundary

boot_end 0x1FFFF upper limit of flash for auto vector
tag

2

 checking

1. A55A
2. A44A for first autostart or A55A for continuous last autostart.

User Manual V.1 Dec 11, 2002 9

•

J5, RESET & GND pin not installed. It may be used as option for a front panel mounted reset switch.

•

J6, Misc. signals

•

J7, JTAG/Once

•

J8, includes jumper A, B, C. The Jumpers A,B,C allow both RS-232 drivers for COM1 & COM2 or 1 RS-
232 and 1 RS-422 driver for either COM.

•

Jumper A allows RS-422 selection of either TxD1 or TxD2 of SCI0 or SCI1 serial output signals
respectively.

•

Jumper B is the serial input to SCI1 labeled RxD2; it is defaulted to RS-232 but can be jumpered the
other way for RS-422. (Next to Jumper B is +5V & GND. This can be used for a test point or external
5V source to power a probe. Use a paper separator for protection.)

•

Jumper C is the serial input to SCI0 labeled RxD1. It is defaulted to RS-232 but can be jumpered for
other way for RS-422.

•

J9, Flash voltage supply. Connects when flash needs to Erase/Program. Open when flash does not
need to erase/program or for Write protection.

•

J10, serial connection for SCI1.

•

DB1, serial connection for SCI0.

•

J12, RS-232 shut down control input. Drive high for normal operation. Drive low to shut down the
drivers. This can be controlled by PA2 or jumper to 3V for normal operation (default).

•

J13, RS-422 connector

•

J14, Jumper to GND (default) for RS-422 receiver always or jumper to PA6 as RS-485 transmitter/
Receiver control signal.

•

J15 connects to pin 1 of RS-232, U2. This pin can be used to enable/disable the receivers for the RS-
232 interface. For normal operation, this pin must be low. By default, J15 is open and this pin is pulled
down through R5. To disable the receivers, J15 can be connected and controlled via PA0. Set it high to
disable and low to enable the receivers.

•

J16 is

onl y

 needed when U2, the RS-232 chip, is not installed and the LCD application required.

 Do
not connect J16 if U2 is present

. This can damage U2.

User Manual V.1 Dec 11, 2002 10

6.0 Boar d Layout

1

96

51

M
M

C
2107F

1

(1.60,0.15)

Unit in Inches

(0,4.00)

0.570

(0.430)

(0.05,2.45)

M
M

C
2114

0.520 0.120.360

(1.90,3.28)

(1.70,1.92)

(1.90,1.88)

(1.90,0.35)

(1.90,0.1)

(0.53,3.33)

(0.1,3.20)

(0.3,1.83)

(0.1,1.88)

(0.4,0.35)

(0.1,0.35)

(0.1,0.1)

(2.00,0)(0,0)

U5U4

U2

C17

C16

C15

C14

C13 C12

V-
J16

J15

S
P

32
22

R7

C

BA

C11

C10

C9

C8

C7

C6

C5

C2

C1

J14J13

J1
2

R6

R5

SW1

R4

J1 RN2

RN1

1

R3

R2

M
A

X
32

25

R0

1

L2

L1

N
M

IN
-2

10
7

1

R
X

2

R
X

1
D1

U3
Q2

J10

J9

J8

VR2

VR1

M
C

7805

CR1

R1

J4

R
S

T

T
xD

2

RxD2T
xD

1

R
xD

1

PQB0

0

2

4

6

I

Y

S

6

3

1

4

1

1

3

PQA0

LVRH

PQB2

PE5

PE7

SCK

MISO

INT7

INT5

INT3

INT1

GND

G
N

D

V
F

+
3V

V
D

D
F

V
P

P

T
xD

1

T
T

xD
2

13 112123

IO
C

10

IO
C

12

IO
C

20

IO
C

22

7 5 3 1

6

P
D

4

P
D

2

P
D

0

0

2

4

6

1

3

PC5

PC7

0

2

4

6

0

2

4

6

PB1

PB3

PB5

PB7

PA1

PA3

PA5

PA7

+3V

G
/S

O G
/S

I

T
C

LK

T
D

O

T
D

I

R
X

1

R
X

2

C
LK

O
U

T
R

S
T

O
U

T

V
S

S
S

Y
N

G
N

D
V

D
D

H

V
S

S
A

V
D

D
A

1

1

1

1

1

1

G
N

D GND

G
N

D

G
N

D

K
E

Y

T
M

S

D
E

T
R

S
T

+
3V

T
xD

2

+5V GND

T
xD

1

LM
3940IT

RP1

J7

J6

J5

J3

C4C3

Q1

X
TA

L1

J2

U1

R
X

T
X

D
T

R
G

N
D

C
T

S
R

T
S

D
S

R

W
W

W
.N

E
W

M
IC

R
O

S
.C

O
M

(2
14

)
33

9
22

04

P
J1D
B

1

V
M

08

User Manual V.1 Dec 11, 2002 11

7.0 Schematic

1
2

1 2
12

IN
G

N
D

O
U

T

LM
78

L0
5

1
2

3

1
2

IN
G

N
D

O
U

T

LM
39

40

+
5V

+
5V

+
5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

V
D

D
A

V
D

D
A

V
S

S
A

01
1

O
F

1

2

T
IT

LE

D C B A
ABCD

8
7

6
5

4
3

2
11

3
4

5
6

7
8

D

A
P

P
R

O
V

A
LS

D
A

T
E

D
R

A
W

N

C
H

E
C

K
E

D

F
IN

IS
H

S
IZ

E
D

W
G

N
O

.
R

E
V

S
H

E
E

T
S

C
A

LE

N
P

11
20

02

N
M

IN
-2

11
4

MMC2114

N
O

T
E

:D
o

no
tc

on
ne

ct
J1

6
if

U
2

is
in

st
al

le
d V

-

U
5

U
4

U
3

10
K

A
dd

iti
on

al
B

yp
as

s
C

ap
ac

ito
rs

C
24

-
C

27
,C

31
,C

32

C
18

,C
20

,C
21

,C
22

+
3.

3V

C
25

,C
28

,C
29

C
19

,C
23

+
5V

+
5V

J5
C

4
J6

J7

C
7

C
6

C
8

C
9

C
10

C
11

10
K

x7

10
K

R
2

C
1

C
2

.1
uF

10
0u

F
.1

uF
10

0u
F

.1
uF

10
0u

F

D
1

C
5

R
4

R
5

10
K C
13

C
16

C
15

C
14

10
K

R
3

R
6

R
7

J1
6

J1
5

J1
2

P
A

0

N
C

LC
D

C
O

N
N

E
C

T
O

R

S
W

1

R
xD

2
R

xD
1

J9

8 7 6 5
4321

8 7 6 5
4321

B
A

J1
4

11
06

01

B
B

G
06

M
A

X
34

83
M

A
X

34
83

SP3222ECA

C

1

R
P

1

J1
3

1

J1

+
5V

J8

15

R
xD

1

1019

14

7 6

18

20

1716

V
O

+
5V

+
5V

+
5V

L2 L1

R
1

M
IS

O
S

C
LK

R
0

R
P

2

V
S

S
V

S
S

A

10
uH

10
uH

.1
uF

3.
3V

3.
3V

1
1

1

8
7

6
5

4
3

1
1

1

2 1

J4

JT
A

G
/O

nC
E

J1
0

J3

J2

X
TA

L1

C
R

1

10
K

M
A

X
46

28

.0
01

V
P

P

V
D

D
A

S
80

73
0A

N

Q
2

op
tio

na
l

w
w

w
.n

ew
m

ic
ro

s.
co

m

D
al

la
s,

T
X

.7
52

12
16

01
C

ha
lk

H
ill

R
d.

N
ew

M
ic

ro
s,

In
c.

M
C

O
R

E
C

P
U

C
.N

.

T.
N

.

T
xD

1
R

xD
2

T
xD

2

V
M

08
/D

B
10

1

U
1

V
S

S
H

V
S

S
A

V
D

D
H

V
D

D
A

V
S

S
S

Y
N

R
S

T
O

U
T

V
D

D
S

Y
N

C
LK

O
U

T1

V
S

S
F

V
D

D
F

IN
T

2
V

S
S

V
D

D
IN

T
3

IN
T

4
IN

T
5

V
P

P
IN

T
6

IN
T

7
M

IS
I

M
IS

O
V

S
T

B
Y

S
C

K
S

S
P

E
7

P
E

6
P

E
5

V
D

D
H

P
Q

B
3

P
Q

B
2

P
Q

B
1

P
Q

B
0

P
Q

A
4

P
Q

A
3

P
Q

A
1

P
Q

A
0

V
R

L
V

R
H

V
S

S
A

V
D

D
A

R
E

S
E

T
R

S
T

O
U

T
V

D
D

S
Y

N
X

TA
L

E
X

TA
L

V
S

S
S

Y
N

V
S

S
C

LK
O

U
T

V
D

D
T

C
LK

T
D

I
T

D
O

T
M

S
V

S
S

V
D

D
T

R
S

T
D

E
P

A
7

IN
T

1
IN

T
0

R
X

D
1

T
X

D
1

R
X

D
2

T
X

D
2

T
E

S
T

IC
O

C
10

IC
O

C
11

IC
O

C
12

IC
O

C
13

IC
O

C
20

IC
O

C
21

IC
O

C
22

IC
O

C
23

P
D

0
P

D
1

P
D

2
P

D
3

P
D

4
P

D
5

P
D

6
P

D
7

P
C

0
P

C
1

P
C

2
P

C
3

P
C

4
V

D
D

V
S

S
P

C
5

P
C

6
P

C
7

P
B

0
P

B
1

P
B

2
P

B
3

V
D

D
V

S
S

P
B

4
P

B
5

P
B

6
P

B
7

P
A

0
P

A
1

P
A

2
P

A
3

P
A

4

P
A

6
P

A
5

10
K

8M
hz

5253 51
5049484746454443424140383736353433323130292827262524232221201918171615141312

545556575859606162636465666768697071

38

7273747576777879808182838485868788899091929394959698 97

11109876543

99
2

10
0

1

V
P

P

T
C

LK

T
D

O

T
D

I

V
D

D

R
E

S
E

T

G
P

IO
/S

I

G
P

IO
/S

O

N
C

G
N

D

G
N

D

G
N

D

T
R

S
T

D
E

T
M

S

G
N

D

P
C

0
P

C
2

P
C

4
P

C
6

P
B

0

P
B

0

P
B

2

P
B

2

P
B

4

P
B

4

P
B

6

P
B

6

P
A

0
P

A
2

P
A

2

P
A

4
P

A
6

P
A

6

P
C

1
P

C
3

P
C

5
P

C
7

P
B

1

P
B

1

P
B

3

P
B

3

P
B

5

P
B

5

P
B

7

P
B

7

P
A

1

P
A

1

P
A

3

P
A

3

P
A

5

P
A

5 P
A

7

P
A

7

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

IC
O

C
12

IC
O

C
20

IC
O

C
22

P
D

0
P

D
2

P
D

4
P

D
6

P
D

7
P

D
5

P
D

3
P

D
1

IC
O

C
23

IC
O

C
21

IC
O

C
13

IC
O

C
11

IC
O

C
10

T
E

S
T

T
X

D
2

R
X

D
2

T
X

D
1

R
X

D
1

V
S

S
F

V
D

D
F

V
S

S
V

D
D

V
D

D

P
Q

A
3

P
Q

A
4

P
Q

B
3

P
Q

B
2

P
Q

B
1

P
Q

B
0

S
S

P
E

5
P

E
6

P
E

7
V

S
T

B
M

O
S

I
IN

T
7

IN
T

6
IN

T
5

IN
T

4
IN

T
3

IN
T

2
IN

T
1

IN
T

0

P
Q

A
0

V
R

H
P

Q
A

1
V

R
L

9-
12

V

1N
58

17

2
1

8
7

4
6

5
3

2

10
K

x7

1

R
P

1

1
1

1
1

1
1

S
80

72
8A

N

V
R

1
V

R
2

22
P

F

22
P

F

0.
1U

F
0.

1U
F

0.
1U

F

U
2

D
B

1

P
J1

9
8

7
6

5
4

3
2

1

D
S

R
R

T
S

C
T

S
N

C
N

C
G

N
D

D
T

R
T

X
R

X
N

C

13

8
12

9

5

42
3

1

Q
1

10
M

User Manual V.1 Dec 11, 2002 12

8.0 Examples

These examples may be typed in interactively or cut and pasted into the terminal window if you are using
MaxForth. Alternately, they can be translated to the language that you are using to program the
microcontroller with.

There are two manuals (PDF files from Motorola) that you need at your disposal to understand the 2114
microcontroller. Some of the subsequent tables and diagrams are from these sources:

1

MMC2114 Technical Data

This document describes the peripherals, including the interrupt controller and the registers
(memory-mapped, so accessible from Forth).

2

MCORE Reference Manual

This document discusses the core CPU, instructions and internal registers (not memory mapped,
so accessible only from assembler).

8.1 Reading fr om the A/D por t

For this example we will consider the simplest way to get an A/D reading:

This involves: setting up the A/D registers so it is ready to go; requesting a read of a channel; waiting for
that channel to complete converting; and finally reading and displaying the value. Each of these boxes
on the diagram will become a word except for Done.

HEX

: H@ (a -- h) COUNT 100 * SWAP C@ OR ;

: DISPLAY-READING (--) CA0280 H@ . ;

: CHANNEL0? (-- f) CA0010 C@ 80 AND ;

: CLEAR0 (--) CHANNEL0? IF CA0010 DUP C@ 80 NOT AND SWAP C! THEN ;

: REQUEST0 (--) CLEAR0 21 CA000C C! ;

: INIT-A/D (--) 2 CA0200 C! C0 CA0201 C! 2 CA0202 C! FF CA0203 C! ;

: GETAD INIT-A/D REQUEST0 BEGIN CHANNEL0? UNTIL DISPLAY-READING ;

The first reading is from 5 volts, the second from 0 volts and the third from 3.3 volts all applied to pin
PQB0 on connector J4.

get A/D
reading

initialize
A /D

request
channel 0

channel
0?

not yet

display
reading

Done.

User Manual V.1 Dec 11, 2002 13

GETAD 3D0 OK

GETAD 21 OK

GETAD 2A4 OK

In theory, 5 volts should be 3FF, 0 volts should be 0 and 3.3 volts should be 2A3. So while the limits are
not quite there, the 3.3 volts is.

8.2 Contr ol Register s

To control the CPU, you need to read and modify the contents of the control registers. Since the control
registers are inside the CPU and not on the memory bus, you will need to access them through
assembler code. The code below does this by using the

mtcr

 and

mfcr

 assembly instructions ored with
a specified control register number:

(MCore interface to internal registers Rob Chapman April 18, 2002)

HEX

(Assembly interface: use mtcr and mfcr to transfer contents of control)

(registers to and from memory)

CODE MFCR (read control register into parameter field)

 (lrw r4,ptr mfcr r3,crn stl r3,(r4,0} jmp r15 ptr: .+4, 0,)

 74021003 , 930400CF , HERE 4 + , 0 , END-CODE

CODE MTCR (write control register from parameter field)

 (lrw r3,value mtcr r3,crn jmp r15 value: 0,)

 73021803 , 00CF0000 , 0 , END-CODE

(Forth interface: Create an opcode with the given control register)

(and then store it in the code word before running it.)

: CRN@ (control register -- contents) (return contents of control reg#)

 10 * 74021003 OR ['] MFCR @ >R R@ ! MFCR R> C + @ ;

: CRN! (value \ control register --) (store value into control reg#)

 10 * 73021803 OR ['] MTCR @ >R R@ ! R> 8 + ! MTCR ;

CREATE MNEMS 13 4 * ALLOT (pointers to 13 mnemonics)

: M" HERE SWAP 4 * MNEMS + ! 22 WORD C@ 1+ ALLOT ;

: ALIGN SP@ SP@ - ABS 1- DUP HERE + SWAP NOT AND DP ! ;

0 M" PSR " 1 M" VBR " 2 M" EPSR" 3 M" FPSR" 4 M" EPC " 5 M" FPC " 6 M" SS0 "

7 M" SS1 " 8 M" SS2 " 9 M" SS3 " A M" SS4 " B M" GCR " C M" GSR "

ALIGN

(Dump all the control registers)

: .CREGS (--) CR D 0 DO I 2 .R I CRN@ 9 U.R

 I 4 * MNEMS + @ COUNT SPACE TYPE CR LOOP ;

User Manual V.1 Dec 11, 2002 14

Figure 3 The contr ol register s with their labels and v alues.

This is the output from running .CREGS:

.CREGS

 0 80000000 PSR

 1 0 VBR

 2 4984 EPSR

 3 1DA83004 FPSR

 4 8540380 EPC

 5 4441280 FPC

 6 28004023 SS0

 7 220002C0 SS1

 8 41406000 SS2

 9 C26620 SS3

 A 8200444 SS4

 B 0 GCR

 C 0 GSR

 OK

8.3 Implementing an Interrupt

The 2114 contains a lot of parts to get right (usually all of them) before you can make an interrupt (more
generally referred to as an exception) happen. You must set up the CPU, the interrupt controller and an
interrupt source such as a peripheral. Setting up the CPU involves modifying CPU control registers while
setting up the interrupt controller and peripheral involves modifying their memory mapped control
registers.

The interrupt machinery on the 2114 supports a wide range of operational capabilities. You can just use
one interrupt or support a complex system of prioritized interrupts from all peripherals. Interrupts can
even be forced to happen to provide for a way of testing or syncing.

To set up an interrupt you'd f ollow these steps:

1 set up VBR and PSR (EE, IE)
2 set up vector for interrupt routine

User Manual V.1 Dec 11, 2002 15

3 set up interrupt controller (NIER)
4 set up peripheral

8.3.1 Setting up the CPU

Setting up the CPU is a little harder because you need to access its internal registers (PSR and VBR)
which can

only

 be done in assembler.

Figure 4 Pr ogram status register (PSR) accessib le onl y fr om assemb ler. The EE and
IE or FE bits m ust be set f or interrupts to w ork.

To enable interrupts at the CPU, you must set the EE (exceptions enabled) and one or both of the IE
(interrupt enable) or FE (fast interrupt enable) bits. With the EE bit set, in the event of an interrupt, the
PC (program counter) and PSR can be saved into two registers on the CPU. This limits interrupts to a
depth of one unless some interrupt register management is added to push these two registers onto the
stack and then restore them later. The IE bit enables normal interrupts while the FE bit enables fast
interrupts.

80000140 0 CRN! (enable exceptions and normal interrupts)

Figure 5 The address in the VBR is the star t of the e xception vector tab le. Since the
lower 10 bits are z ero, the vector tab le can onl y star t on ad dress e venl y divisib le by
1024. 0, 0x400, 0x800...

The VBR can be set to a RAM location for developing your interrupt routine and then later set to the final
place for your working interrupt routine. You can put this near the top of the internal ram by:

807C00 1 CRN!

This puts the vector table in the upper 1K of the 32K internal RAM so the normal and fast interrupt
vectors need to be placed at vectors 10 and 11 or

807C00 28 +

 and

807C00 2C +

.

User Manual V.1 Dec 11, 2002 16

Figure 6 The exception vector tab le pointed to b y VBR. The 40 peripheral interrupts
on the 2114 can be vectored to the 32-127 vector s or just thr ough the normal and
fast vector s.

Your servicing interrupt routine must be in assembler and the vector that you place in the table must point
to the start of the code. You must push registers if you are to use the same register file as normal
processing and your routine must end with an

rte

 instruction.

NOTE:

Alternate register file
If you want to use the alternate file of registers (AF) for an interrupt, make sure you have the
least significant bit in your interrupt vector set. The CPU masks off the lower two bits but also
records the lsb into the AF bit enabling the alternate register file R0-15. Be careful though, if
you try to use the stack pointer, it won’t point to anything unless it has been initialized.

User Manual V.1 Dec 11, 2002 17

8.3.2 Setting up the Interrupt Contr oller

The interrupt controller is setup by modifying its memory mapped registers.

Figure 7 These register s are mapped into the memor y space and can be accessed to
set up the interrupt contr oller peripheral f or interrupt pr ocessing.

2

Any access to
the regions that are not implemented result in c ycle termination err ors

Setting up the interrupt controller and peripheral is a matter of translating documentation into which
register bits to twiddle and since these are all memory mapped, you can access them from Forth. For a
single interrupt to happen, we need to set NIER. For our purpose we have only one interrupt so we will
not set its priority and leave it at 0. This means that we need to enable interrupts for priority level 0:

HEX

C50000 CONSTANT ICR (interrupt control register

C50002 CONSTANT ISR (interrupt status register

C50004 CONSTANT IFRH (interrupt force register high

C50008 CONSTANT IFRL (interrupt force register low

C5000C CONSTANT IPR (interrupt pending register

C50010 CONSTANT NIER (normal interrupt enable register

User Manual V.1 Dec 11, 2002 18

C50014 CONSTANT NIPR (normal interrupt pending register

C50018 CONSTANT FIER (fast interrupt enable register

C5001C CONSTANT FIPR (fast interrupt pending register

C50040 CONSTANT PLSR (base of priority level select registers 0-39

1 NIER !

For debugging, you can just fake interrupts using the interrupt controller force interrupt registers. The
interrupt provides a way to create an interrupt for testing just by writing to a register. Since there are 40
possible interrupt sources from all the peripherals, two 32 bit registers are used to provide this: IFRH and
IFRL. By setting a bit in these registers, you can force that interrupt from that peripheral to happen. In
the interrupt service routine, you will need to reset that bit.

Figure 8 IFRH register contains the upper 8 interrupt sour ce force bits.

User Manual V.1 Dec 11, 2002 19

Figure 9 IFRL with the fi rst 32 interrupt f orce sour ce bits.

Figure 10 This tab le sho ws the fi rst 16 interrupt sour ces, and ho w to turn them off .

User Manual V.1 Dec 11, 2002 20

Figure 11 This tab le has the rest of the interrupts fr om the other peripherals.

If you want to develop a timer ticker to provide a solid time base you could use one of the PIT timers. To
make sure you have the interrupt machinery right before you play with the PIT, you should test it with the
interrupt force register. For PIT1 this is bit 30 or in hex:

40000000 IFRL ! (this forces on the interrupt bit for the PIT1 peripheral)

If we check out the interrupt controller registers, we can see that we have a normal interrupt pending in
the ISR (lower 16 bits of ICR), the pending interrupt is lowest priority in the IPR register and it is a normal
interrupt as shown by the value in NIPR:

ICR @ U. 80000200 OK

IPR @ U. 1 OK

NIPR @ U. 1 OK

At this point, we are ready to flip the switch on the CPU and test out an interrupt (unless you have done
that already and crashed and burned). Before we switch on interrupts, we need to provide a vector for

User Manual V.1 Dec 11, 2002 21

the interrupt to jump to and also a way of turning off the source of the interrupt.

CODE TEST-PIT

 (mvi r4,0 lrw r3,pIFRL stl r4,(r3,0} lrw r4,ctr)

 60047303 , 94037404 ,

 (addi r4,0 lrw r3,pctr stl r4,(r3,0} rte)

 20047302 , 94030002 ,

 (ptr: IFRL pctr: .+4 ctr: 0)

1

 IFRL , HERE 4 + , 0 , END-CODE

: .TICK ['] TEST-PIT @ 18 + @ . ;

Now we set up a vector table and test the interrupt:

' TEST-PIT @ 1 OR 807C28 ! OK

1 NIER ! OK

807C00 1 CRN! OK

80000140 0 CRN! OK

.TICK 0 OK

40000000 IFRL ! .TICK 1 OK

40000000 IFRL ! .TICK 2 OK

Every time we force the interrupt on with IFRL, it gets serviced and the tick counter increments. Now we
are ready to hook into a peripheral.

8.3.3 Setting up a P eripheral Interrupt

For this example, we will use the first programmable interrupt timer to generate a periodic interrupt which
increments a variable. From the documentation we find that we need to set PCSR to run the PIT and the
interrupt routine needs to write pit PIF to the PCSR to reset the interrupt. So our code will look like this:

CODE SIR-PIT

 (mvi r4,13 lrw r3,pPCSR stb r4,(r3,0} lrw r4,ctr)

 60D47303 , B4037404 ,

 (addi r4,0 lrw r3,pctr stl r4,(r3,0} rte)

 20047302 , 94030002 ,

 C80001 , HERE 4 + , 0 , END-CODE

: .TICK ['] SIR-PIT @ 18 + @ . ;

Now we set up a vector table and test the interrupt:

' SIR-PIT @ 1 OR 807C28 ! OK

1 NIER ! OK

807C00 1 CRN! OK

80000140 0 CRN! OK

9FFFF C80000 ! OK

.TICK .TICK .TICK 31 36 3B OK

8.3.4 Interrupts Calling For th

As for calling a Forth word from an interrupt, this is doomed to fail at some point since not all Forth words
including the virtual machine are not interruptible without some extra context savings. This all adds
overhead and goes against keeping interrupts as short as possible. If you keep your interrupt simple and

1 Pardon the hand coded horizontal assembler; it takes a while to get use to it. The next step would be to
build a small assembler, throw away the code and compile the comments (horizontally)!

User Manual V.1 Dec 11, 2002 22

in assembler, then they have a greater chance of working and meeting system time constraints.

With the alternate register set, a parallel Forth environment which ran the same words and shared the
same variables but had different stacks and program counters, could be built, in the sketch board of the
mind. This parallel Forth could then be relegated to interrupts only and then you would be able to run
one Forth from interrupts and one from the command line. Or better, there is just one Forth and it runs
from interrupts only.

8.4 Flash Pr ogramming

On the 2114, there is 256K of programmable flash and 32K of RAM. The Flash can only be programmed
by running programming software entirely out of RAM or from the opposite 128K block that is being
programmed. The programming procedure is fairly simple and is expressed here as a C program:

// MCore 2114 flash routines Rob Chapman Nov 21, 2002

#include "mmc2114.h"

//SGFM Commands, User Mode

#define ERASE_VERIFY 0x05

#define PROGRAM_WORD 0x20

#define PAGE_ERASE 0x40

#define MASS_ERASE 0x41

#define FLASH_START 0x00000000

#define FLASH_END 0x0003FFFF

#define FLASH_SIZE 0x00040000

#define BANK_SIZE 0x00020000 //128k banks

#define SECTOR_SIZE 0x00002000 //8k sectors (minimum protectable area)

#define BANK0 0x00

#define BANK1 0x01

INT32U d,a,err; // global accessable data and address

void program(void) // program a word

{

 INT16U protect_mask;

 err = 0;

 protect_mask = ~(1<<((((a - FLASH_START) & (BANK_SIZE - 1)) / SECTOR_SIZE)));

 reg_SGFMPROT.reg = reg_SGFMPROT.reg & protect_mask;

 //clear the protects for the bank

 if (reg_SGFMPROT.reg != (reg_SGFMPROT.reg & protect_mask))

 //make sure that the protect got cleared (not locked)

 {

 err = 1;

 return;

 }

 if (reg_SGFMUSTAT.bit.CBEIF == 0) //make sure a command isn't active

 {

 err = 2;

User Manual V.1 Dec 11, 2002 23

 return;

 }

 *(volatile INT32U *)a = d; //write the value to the address provided

 reg_SGFMCMD.bit.CMD = PROGRAM_WORD; //write to the command buffer

 reg_SGFMUSTAT.bit.CBEIF = 1;

 //clear CBEIF flag by writing a one to start the command

 //wait for the command to complete

 while (reg_SGFMUSTAT.bit.CBEIF == 0);

 while (reg_SGFMUSTAT.bit.CCIF == 0);

} // so flash is available for use

void erase(void) // erase a page

{

 err = 0;

 //clear the protects for the bank

 reg_SGFMPROT.reg = reg_SGFMPROT.reg & 1;

 //make sure that the protect got cleared (not locked)

 if (reg_SGFMPROT.reg != (reg_SGFMPROT.reg & 1))

 {

 err = 3;

 return;

 }

 //clear error flags

 reg_SGFMUSTAT.bit.ACCERR = 1; //access error

 reg_SGFMUSTAT.bit.PVIOL = 1; //Protections Violation

 *(volatile INT32U *)a = d; //write the value to the address provided

 reg_SGFMCMD.bit.CMD = PAGE_ERASE; //write to the command buffer

 reg_SGFMUSTAT.bit.CBEIF = 1;//clear CBEIF flag by writing a one to start command

 //wait for the command to complete

 while (reg_SGFMUSTAT.bit.CBEIF == 0);

 while (reg_SGFMUSTAT.bit.CCIF == 0);

 //check for errors

 if (reg_SGFMUSTAT.bit.ACCERR == 1)

 {

 err = 4;

 return;

 }

 if (reg_SGFMUSTAT.bit.PVIOL == 1)

 {

 err = 5;

 return;

 }

}

User Manual V.1 Dec 11, 2002 24

Using the GNU C compiler to compile this C source into a map file and an S-record file and then passing

these two files through a Timbre script, we create a Forth compileable version:

(Flash interface; written in C and compiled to an srecord: flash2114.c

VARIABLE a (where to put flash address

VARIABLE d (where to put flash data

VARIABLE err (where error codes are stored 1-5 or 0

21C CONSTANT CLOCK

D00002 CONSTANT SGFMCLKD

DECIMAL

: INIT-FLASH (--) (initialize the flash CLKD register

 CLOCK @ 200000 / DUP 60 > IF 8 / 64 + THEN SGFMCLKD C! ;

INIT-FLASH

HEX

HERE (program a 32 bit word with "d" at "a"

 24709E00 , 743E6007 , 9704773D , 83072D17 , 16373ED7 , 60121225 , 1B7501F5 ,

 01657639 , C7061657 , D706C706 , C6061657 , 0F76E802 , 9204F01F , 75358705 ,

 37F7E003 , 60279704 , F0187732 , 87079703 , 76328706 , 2D8E35FE , 16E735D7 ,

 97068705 , 35F79705 , 870537F7 , E0041256 , 870637F7 , EFFD7627 , 870637E7 ,

 EFFD8E00 , 207000CF ,

HERE (erase a page containing "a"

 74216007 , 97047621 , C7062E17 , D706C706 , C6062E17 , 0F76E803 , 60379704 ,

 00CF751C , 870535C7 , 97058705 , 35D79705 , 77178607 , 77198707 , 97067618 ,

 87062D83 , 35F31637 , 35E79706 , 870535F7 , 97058705 , 37F7E004 , 12568706 ,

 37F7EFFD , 760E8706 , 37E7EFFD , 760C8706 , 3FC72E17 , 2A17E003 , 60479704 ,

 00CF8706 , 3FD72E17 , 2A17E002 , 60579704 , 00CF0000 ,

 err , a , 00D00010 , 00D0001C , d , 00D00020 ,

CODE ERASE-PAGE END-CODE LATEST PFAPTR CFA ! (connect to the C routines

CODE PROGRAM-WORD END-CODE LATEST PFAPTR CFA !

This program consists of two parts: the part in the Forth user dictionary (the headers) and the C code
which is in RAM. There is one word used to program and one word used to erase. Only a 1K page of
memory can be erased at a time. In the 256K flash, there are 256 pages. Erasing leaves all the bits as
FF. Flash can be programmed 4 bytes at a time aligned to a 4 byte boundary.

To program the flash, the location must be all FFs. You must store the data into the variable

d

 and the
destination address for flash must be in

a

. Once you set those two variables, then you call

PROGRAM-WORD

.

C
source

code

GNU C
compiler

srecord

map file

Timbre
translator

scr ipt

Forth
Source

User Manual V.1 Dec 11, 2002 25

Erasing is about as simple. You must put the address of a location within the page into the variable

a

 and
then call

ERASE-PAGE

.

Example:

Programming a word at 0x10000

 HEX 10000 a ! ERASE-PAGE (erase 10000-103FF)

 12345678 d ! PROGRAM-WORD (store 32 bit data at location 10000)

You can check by:

 10000 1 DUMP

8.5 Auto Install Pr ogram

This example uses the previous programming tool for flash to store Forth programs in empty flash. The
program can be linked into the autostart system to initialize the dictionary and give a greeting.

There are two files involved:

AUTOBOOT.F - used to install a simple user program in flash that gets called at bootup

UNBOOT2114.F - this file can be used to remove all auto-starting tags.

If you download the first file, it will install the simple user program which will say Hello when restarted and
add the word HI to the dictionary. If you download the UNBOOT2114.F file, it will cancel the autoboot
feature from the simple user program.

8.5.1 AUTOBOOT.F

(Application tools Rob Chapman Aug 7, 2002)

 (put Forth application into Flash and allow hooking into autoboot)

COLD

HEX

: firstword ; (dictionary sentry)

(Flash interface; written in C and compiled to an srecord: flash2114.c

VARIABLE a (where to put flash address

VARIABLE d (where to put flash data

VARIABLE err (where error codes are stored 1-5 or 0

21C CONSTANT CLOCK

D00002 CONSTANT SGFMCLKD

DECIMAL

: INIT-FLASH (--) (initialize the flash CLKD register

 CLOCK @ 200000 / DUP 60 > IF 8 / 64 + THEN SGFMCLKD C! ;

INIT-FLASH (run so flash can be programmed

HEX

HERE (program a 32 bit word with "d" at "a"

 24709E00 , 743E6007 , 9704773D , 83072D17 , 16373ED7 , 60121225 , 1B7501F5 ,

 01657639 , C7061657 , D706C706 , C6061657 , 0F76E802 , 9204F01F , 75358705 ,

 37F7E003 , 60279704 , F0187732 , 87079703 , 76328706 , 2D8E35FE , 16E735D7 ,

 97068705 , 35F79705 , 870537F7 , E0041256 , 870637F7 , EFFD7627 , 870637E7 ,

 EFFD8E00 , 207000CF ,

HERE (erase a page containing "a"

 74216007 , 97047621 , C7062E17 , D706C706 , C6062E17 , 0F76E803 , 60379704 ,

 00CF751C , 870535C7 , 97058705 , 35D79705 , 77178607 , 77198707 , 97067618 ,

User Manual V.1 Dec 11, 2002 26

 87062D83 , 35F31637 , 35E79706 , 870535F7 , 97058705 , 37F7E004 , 12568706 ,

 37F7EFFD , 760E8706 , 37E7EFFD , 760C8706 , 3FC72E17 , 2A17E003 , 60479704 ,

 00CF8706 , 3FD72E17 , 2A17E002 , 60579704 , 00CF0000 ,

 err , a , 00D00010 , 00D0001C , d , 00D00020 ,

CODE ERASE-PAGE END-CODE LATEST PFAPTR CFA ! (connect to the C routines

CODE CPROGRAM-WORD END-CODE LATEST PFAPTR CFA !

: PROGRAM-WORD a @ IF CPROGRAM-WORD ELSE d @ . ." at zero " THEN ;

: FL! (n \ a --) a ! d ! PROGRAM-WORD ;

: FLMOVE 4 / 0 DO >R DUP @ R@ FL! 4 + R> 4 + LOOP 2DROP ;

(Flash memory interface)

 VARIABLE FDP (flash dictionary pointer

 VARIABLE flast (points to last entry

(==== Find empty space in Flash ROM ====)

: FLBLANK (-- a) E400 40000 10000 (aux \ high \ low)

 DO FF I 40 OVER + SWAP DO I C@ AND LOOP (must all be empty)

 FF = IF DROP I LEAVE THEN

 40 +LOOP DUP 1800 = IF CR ." Flash is full." CR ELSE DUP U. THEN ;

FLBLANK FDP ! UNDO (use and discard)

: FLWORD (--) LATEST >R (remember the beginning of the word

 FDP @ 3 + 3 NOT AND FDP ! (set fdp to next word

 R@ PFAPTR LFA @ CONTEXT @ ! (unlink

 ['] firstword LFA @ R@ PFAPTR LFA ! (relink below firstword

 FDP @ ['] firstword LFA ! (link to firstword

 FDP @ R@ - R@ PFAPTR +! (change pfa pointer

 R@ FDP @ HERE R@ - FLMOVE (move word

 HERE R@ - FDP +! (update flash pointer

 R> DP ! ; (update dictionary pointer

(==== ROM it all with auto-rom words

: CONSTANT CONSTANT FLWORD ;

: CREATE HERE CONSTANT ;

: VARIABLE CREATE 2 ALLOT ;

: ; [COMPILE] ; FLWORD ; IMMEDIATE

(end of support code)

(user program begins here)

(===== Test ====)

 (at reboot time a Hello will be emitted and the word that did it, will

 (be part of the dictionary

: HI ." Hello" ;

HERE CONSTANT DP0

: STARTUP DP0 DP ! ['] HI NFA CONTEXT @ ! HI ;

(A44A 3FF0 FL! ' STARTUP CFA 3FF4 FL! (hook into boot-start vector)

User Manual V.1 Dec 11, 2002 27

 A44A 1F800 FL! ' STARTUP CFA 1F804 FL! (hook into auto-start vector)

8.5.2 UNBOOT2114.F

(Utility for eraseing boot tags in flash Rob Chapman Au072002

(put flash programming tools in upper memory)

COLD

HEX

(Flash interface; written in C and compiled to an srecord: flash2114.c

VARIABLE a (where to put flash address

VARIABLE d (where to put flash data

VARIABLE err (where error codes are stored 1-5 or 0

21C CONSTANT CLOCK

D00002 CONSTANT SGFMCLKD

DECIMAL

: INIT-FLASH (--) (initialize the flash CLKD register

 CLOCK @ 200000 / DUP 60 > IF 8 / 64 + THEN SGFMCLKD C! ;

INIT-FLASH (run so flash can be programmed

HEX

HERE (program a 32 bit word with "d" at "a"

 24709E00 , 743E6007 , 9704773D , 83072D17 , 16373ED7 , 60121225 , 1B7501F5 ,

 01657639 , C7061657 , D706C706 , C6061657 , 0F76E802 , 9204F01F , 75358705 ,

 37F7E003 , 60279704 , F0187732 , 87079703 , 76328706 , 2D8E35FE , 16E735D7 ,

 97068705 , 35F79705 , 870537F7 , E0041256 , 870637F7 , EFFD7627 , 870637E7 ,

 EFFD8E00 , 207000CF ,

HERE (erase a page containing "a"

 74216007 , 97047621 , C7062E17 , D706C706 , C6062E17 , 0F76E803 , 60379704 ,

 00CF751C , 870535C7 , 97058705 , 35D79705 , 77178607 , 77198707 , 97067618 ,

 87062D83 , 35F31637 , 35E79706 , 870535F7 , 97058705 , 37F7E004 , 12568706 ,

 37F7EFFD , 760E8706 , 37E7EFFD , 760C8706 , 3FC72E17 , 2A17E003 , 60479704 ,

 00CF8706 , 3FD72E17 , 2A17E002 , 60579704 , 00CF0000 ,

 err , a , 00D00010 , 00D0001C , d , 00D00020 ,

CODE ERASE-PAGE END-CODE LATEST PFAPTR CFA ! (connect to the C routines

CODE CPROGRAM-WORD END-CODE LATEST PFAPTR CFA !

: PROGRAM-WORD a @ IF CPROGRAM-WORD ELSE d @ . ." at zero " THEN ;

: FL! (n \ a --) a ! d ! PROGRAM-WORD ;

: ?UNBOOT (a --) DUP @ DUP A44A = SWAP A55A = OR

 IF DUP . 0 SWAP FL! ELSE DROP THEN ;

: UNBOOTS (clear out the boot flags in 3FF0 and 3FFC and any in Flash

 3FF0 ?UNBOOT 3FFC ?UNBOOT 1FBFF 10000 DO I ?UNBOOT 400 +LOOP ;

UNBOOTS

8.6 Advanced Pr ogramming

This loader file which is written in Forth, runs on top of MaxForth and allows you to mix S-Records and
Forth programming in the same file. This is useful if you want to program exception vectors in C or

User Manual V.1 Dec 11, 2002 28

assembler and then debug them with Forth. S-records of S0, S1, S2, S3, S7, S8 and S9 formats are
accepted. For an S7, S8, or S9 record, the vector of the start program will be run at the time the line is
downloaded. This can be used to initialize the program, add words to the dictionary or to run a
sequence.

The file SRECBOOT.F, is installed on top of MaxForth and becomes a resident program in Flash which is
called on MaxForth bootup. The MaxForth prompt will be replaced with:

Boot V.3

*

The asterick (*) will be displayed after each non-blank line has been received and processed. A line
could be an s-record or a line of Forth code. If you type in Forth code, it will not be echoed but it will
execute. You can test this by trying .S. If you want to get back to the Forth prompt, just type in QUIT and
hit enter.

Once you download the program and reboot, the loader will be resident and running waiting for code to
be downloaded. You can remove the program at anytime by typing in -AUTOBOOT and hitting the enter
key.

8.6.1 SRECBOOT.F

(S-Record loader and application support Rob Chapman Nov 21, 2002)

(This small program consists of the following tools:

(> an s-record loader for S0, S1,S2,S3 and S7,S8,S9 records for RAM

(> any line not starting with S will be passed to the Forth interpreter

(> a code to FLASH saver/restorer with autoboot

(> saving and restoring static ram images

(> application auto start

(=== From Reset to application running

(reset MCU

(jumps to MCore bootloader routine

(calls MaxForth startup routine

(scans for secondary boot and finds image in FLASH

COLD

HEX

(==== Image and properties ====)

 HERE CONSTANT RAM-START (start of user dictionary

 10000 CONSTANT FL-START (start of Flash above Forth

 1BFFF CONSTANT FL-END (just before forth vector at 1FC00

(Flash interface; written in C and compiled to an srecord: flash2114.c

VARIABLE a (where to put flash address

VARIABLE d (where to put flash data

VARIABLE err (where error codes are stored 1-5 or 0

21C CONSTANT CLOCK

D00002 CONSTANT SGFMCLKD

DECIMAL

: INIT-FLASH (--) (initialize the flash CLKD register

 CLOCK @ 200000 / DUP 60 > IF 8 / 64 + THEN SGFMCLKD C! ;

INIT-FLASH

HEX

User Manual V.1 Dec 11, 2002 29

HERE (program a 32 bit word with "d" at "a"

 24709E00 , 743E6007 , 9704773D , 83072D17 , 16373ED7 , 60121225 , 1B7501F5 ,

 01657639 , C7061657 , D706C706 , C6061657 , 0F76E802 , 9204F01F , 75358705 ,

 37F7E003 , 60279704 , F0187732 , 87079703 , 76328706 , 2D8E35FE , 16E735D7 ,

 97068705 , 35F79705 , 870537F7 , E0041256 , 870637F7 , EFFD7627 , 870637E7 ,

 EFFD8E00 , 207000CF ,

HERE (erase a page containing "a"

 74216007 , 97047621 , C7062E17 , D706C706 , C6062E17 , 0F76E803 , 60379704 ,

 00CF751C , 870535C7 , 97058705 , 35D79705 , 77178607 , 77198707 , 97067618 ,

 87062D83 , 35F31637 , 35E79706 , 870535F7 , 97058705 , 37F7E004 , 12568706 ,

 37F7EFFD , 760E8706 , 37E7EFFD , 760C8706 , 3FC72E17 , 2A17E003 , 60479704 ,

 00CF8706 , 3FD72E17 , 2A17E002 , 60579704 , 00CF0000 ,

 err , a , 00D00010 , 00D0001C , d , 00D00020 ,

CODE ERASE-PAGE END-CODE LATEST PFAPTR CFA ! (connect to the C routines

CODE CPROGRAM-WORD END-CODE LATEST PFAPTR CFA !

: PROGRAM-WORD a @ IF CPROGRAM-WORD ELSE d @ . ." at zero " THEN ;

: FL! (n \ a --) a ! d ! PROGRAM-WORD ;

: FLMOVE 4 / 0 DO >R DUP @ R@ FL! 4 + R> 4 + LOOP 2DROP ;

(==== Startup services ====)

 R0 DPL MIN CONSTANT sys-start (start of system variables

 R0 DPL MAX 4 + CONSTANT sys-end (end of system variables

 sys-end sys-start - CONSTANT sys-size (size of variables

(+ 0 0000A44A

(+ 4 RESTORE - must point to saved image of restore

(+ 8 main startup word; must be a PFA

(+ C copy of sys-size RAM locations in system

(+ C + sys-size length of image

(+10 + sys-size image of code

: FLERASE (--) (erase FLASH

 FL-END FL-START DO I a ! ERASE-PAGE 400 +LOOP ;

: FL+ FL-START + ;

: >FL (ram -- flash) (convert ram address to saved location in flash

 RAM-START - FL-START + 10 + sys-size + ;

: RESTORE (can't call nonexistant words so [] LITERAL is used

 [C FL+] LITERAL (start of system image)

 [sys-start] LITERAL (start of system variables)

 [sys-size] LITERAL CMOVE (restore system RAM image

 [sys-size 10 + FL+] LITERAL (start of dict image)

 [RAM-START] LITERAL (start of dict space

 [sys-size C + FL+] LITERAL @ CMOVE (restore dictionary image to RAM

 [8 FL+] LITERAL @

 DUP -1 = IF DROP ['] TASK @ THEN

 >R ; (run main program after exiting restore

: SEEMOVE (s \ d \ n --) (like FLMOVE but you get to see it

User Manual V.1 Dec 11, 2002 30

 100 /MOD DUP

 IF SWAP >R DUP >R 0

 DO I 1+ . 2DUP 100 FLMOVE 100 + >R 100 + R> LOOP

 R> R> SWAP

 THEN 1+ . FLMOVE ;

: FLSAVE (--) (save application image in flash)

 FLERASE (always start flash the same way.

 A44A FL-START FL! (fire once autostart flag for startup)

 ['] RESTORE CFA >FL 4 FL+ FL! (restoration vector)

 (['] TASK @ 8 FL+ FL! (null vector can be written by INSTALL)

 sys-start C FL+ sys-size FLMOVE (save system variables)

 RAM-START sys-size 10 + FL+ HERE RAM-START -

 DUP sys-size C + FL+ FL! SEEMOVE (save length & dictionary) ;

: INSTALL (tick --) FLSAVE @ 8 FL+ FL! ;

: -AUTOBOOT 0 FL-START FL! (turn off autostart flag) COLD ; (cold boot

(==== record parser

: X 0 (a \ c -- a' \ n)

 SWAP 0

 DO 10 * >R COUNT

 30 - DUP

 9 > IF

 7 - THEN R> + LOOP ;

(==== Memory interfaces ====)

VARIABLE accumen (accumulate 4 bytes then write

VARIABLE storage (point to where it is to be stored

: WRITE-OUT (--) storage @ 40000 U< (flash write?)

 IF accumen @ -1 XOR (skip if nothing set; else program flash)

 IF storage @ 3 NOT AND a ! accumen @ d ! PROGRAM-WORD THEN

 ELSE accumen @ storage @ ! THEN (RAM write)

 0 storage ! -1 accumen ! ; (initialize values again)

: BYTE! (b \ a --) DUP storage @ XOR 3 NOT AND (same block of 4?)

 IF WRITE-OUT THEN DUP 3 NOT AND storage ! 3 AND accumen + C! ;

: S! (t \ a \ c -- t') 0 DO >R 2 X R@ BYTE! R> 1+ LOOP DROP ;

(==== S record loader

 VARIABLE ls (last srecord

 VARIABLE g (go address from s-record

' TASK CFA g ! (default

: G g EXECUTE ;

: Q (--)

 BEGIN TIB @

 BEGIN KEY DUP BL < 0= WHILE OVER C! 1+ REPEAT DROP (echoless)

 0 >IN ! DUP TIB @ - DUP SPAN ! #TIB ! 0 OVER C! (imitate query)

 TIB @ XOR UNTIL ; (skip blank lines)

User Manual V.1 Dec 11, 2002 31

: 0INPUT (--) WRITE-OUT 0 DUP >IN ! DUP #TIB ! TIB @ C! ;

: Szero (a -- a') 2 X 2* X DROP ;

: S1 (a -- a') 2 X 3 - >R 4 X R> S! ;

: S2 (a -- a') 2 X 4 - >R 6 X R> S! ;

: S3 (a -- a') 2 X 5 - >R 8 X R> S! ;

: S7 (a -- a') WRITE-OUT 2 X DROP 8 X g ! 0INPUT ;

: S8 (a -- a') WRITE-OUT 2 X DROP 6 X g ! 0INPUT ;

: S9 (a -- a') WRITE-OUT 2 X DROP 4 X g ! 0INPUT ;

: S (--)

 BEGIN ." *" Q

 TIB @ 2 X

 DUP 1C0 = IF DROP Szero DROP ELSE

 DUP 1C1 = IF DROP S1 DROP ELSE

 DUP 1C2 = IF DROP S2 DROP ELSE

 DUP 1C3 = IF DROP S3 DROP ELSE

 DUP 1C7 = IF ls ! S7 ." *" EXIT ELSE

 DUP 1C8 = IF ls ! S8 ." *" EXIT ELSE

 DUP 1C9 = IF ls ! S9 ." *" EXIT

 ELSE 2DROP INTERPRET

 THEN THEN THEN THEN THEN THEN THEN

 AGAIN ;

(==== Half word support ====)

: H@ (a -- n) COUNT 100 * SWAP C@ OR ;

: H! (n \ a --) >R 100 /MOD R@ C! R> 1+ C! ;

: H, (n --) HERE 2 ALLOT H! ;

(==== Boot program ====)

: START -1 accumen ! INIT-FLASH CR ." Boot V.3" CR

 S ls @ 1C6 > IF G THEN ;

808000 HERE - DECIMAL CR . .(bytes of memory left.) HEX

' START INSTALL

8.6.2 Example of C and For th Together

This is an example of a program which has interrupt handlers written for SPI and PIT in C but the control
interface is in Forth:

(MCore high speed SPI receiver for sensors Rob Chapman Nov 12, 2002)

: \ 0 WORD DROP ; IMMEDIATE \ allow comments like this

\ PIT and SPI exception handlers written in C

S00A00007069742E7331399D

S31A00806000760D870620079706770C60069607740B6067B7047535

S31A008060150B6017B705770AB607B60564C73477B704664639162D

S31A0080602A870635279706000200CF0080721C0080722000CB0099

S30E0080603F0000CB000800CB00072D

S31A008060487709A70776097509A7051C677609A606B607A605616F

User Manual V.1 Dec 11, 2002 32

S31A0080605D170C67E80312672007B705000200CF00CB00030080B8

S30F0080607272240080722000CB000526

S31A0080607C24F0007D122E123D7F29014276298306752987059795

S31A008060910612263476B6072007970512272407127201422C872E

S31A008060A60F72E80D12748705A60EB607200E2007970512272418

S31A008060BB07127201420F42E7F4751B87052407A6073476B607F5

S31A008060D087052E372A07E809125660058706B507200797062E1A

S31A008060E5372A07E7F9751187059307203797051276207696077E

S31A008060FA87051276203696059D1720779705006D20F000CF24AF

S31A0080610F70007E123E73087F08760687069E0720379706006EA5

S31A00806124207000CF008061AC008005080080050C000048880006

S3080080613980607C81

S31A0080613C760EA7062007B70600CF24709F00720B730C7F0C72B8

S31A008061510D73087F0D720D730E7F0B720E730E7F0A720E730F89

S31A008061667F08720F730F7F078F00207000CF00807220008061AD

S31A0080617BEC0080613C0080607C008061F40080610E008061F887

S31A0080619000807224008062000080721C0080620C008060480058

S30C008061A58062140080600097

S31A008061AC122512272E372A07E808F0012002A7022A07E7FC058D

S31A008061C15200CF2032860277071C671F67740616472A07EFF7D3

S31A008061D6F0012002A7022A07E7FC055200CFFEFEFEFF808080BF

S306008061EB80AD

S31A008061EC68656C6C6F000000696E640073616D706C6573007361

S31A00806201616D706C655F6E6F0000007369725F737069007369E2

S30B00806216725F70697400DE

S70500806146D3

HEX

: .SPI ind C@ . ;

(Assembly interface: use mtcr and mfcr to transfer contents of control)

(registers to and from memory)

CODE MFCR (read control register into parameter field)

 (lrw r4,ptr mfcr r3,crn stl r3,(r4,0} jmp r15 ptr: .+4, 0,)

 74021003 , 930400CF , HERE 4 + , 0 , END-CODE

CODE MTCR (write control register from parameter field)

 (lrw r3,value mtcr r3,crn jmp r15 value: 0,)

 73021803 , 00CF0000 , 0 , END-CODE

(Forth interface: Create an opcode with the given control register)

(and then store it in the code word before running it.)

: CRN@ (control register -- contents) (return contents of control reg#)

 10 * 74021003 OR ['] MFCR @ >R R@ ! MFCR R> C + @ ;

: CRN! (value \ control register --) (store value into control reg#)

 10 * 73021803 OR ['] MTCR @ >R R@ ! R> 8 + ! MTCR ;

CREATE MNEMS 13 4 * ALLOT (pointers to 13 mnemonics)

: M" HERE SWAP 4 * MNEMS + ! 22 WORD C@ 1+ ALLOT ;

: ALIGN SP@ SP@ - ABS 1- DUP HERE + SWAP NOT AND DP ! ;

0 M" PSR " 1 M" VBR " 2 M" EPSR" 3 M" FPSR" 4 M" EPC " 5 M" FPC " 6 M" SS0 "

User Manual V.1 Dec 11, 2002 33

7 M" SS1 " 8 M" SS2 " 9 M" SS3 " A M" SS4 " B M" GCR " C M" GSR "

ALIGN

(Dump all the control registers)

: .CREGS (--) CR D 0 DO I 2 .R I CRN@ 9 U.R

 I 4 * MNEMS + @ COUNT SPACE TYPE CR LOOP ;

\ Vector table for interrupts

803C00 CONSTANT VECTORS (out of the way on a 1K boundary

C50010 CONSTANT NIER (normal interrupt enable register

C50045 CONSTANT PLSR5

C5005E CONSTANT PLSR30

C50000 CONSTANT ICR

(MCORE constants for registers)

CB0000 CONSTANT CR1

CB0001 CONSTANT CR2

CB0002 CONSTANT BR

CB0003 CONSTANT SR

CB0005 CONSTANT DR

CB0006 CONSTANT PURD

CB0007 CONSTANT PORTS

CB0008 CONSTANT DDRS

C5000C CONSTANT IPR

: SLAVE 0 DDRS C!

 C CR1 C! C CR2 C! SR C@ DR C@ 2DROP CC CR1 C! ;

: -SPI 0 DDRS C! 6 CR1 C! ;

: PORT -SPI 1 DDRS C! 0 PORTS C! ;

: .SPI ind C@ . samples 20 DUMP ;

: TEST 0 ind ! PORT SLAVE ;

: T TEST ;

: INIT SLAVE ;

: R DR C@ . ;

: W SR C@ DR C@ 2DROP DR C! BEGIN SR C@ UNTIL ;

: S SR C@ . ;

: P PORTS C@ 8 0 DO DUP 80 AND IF ." 1" ELSE ." 0" THEN 2* LOOP DROP ;

: Q PORTS C! P ;

: Z BEGIN BEGIN SR C@ ?TERMINAL OR UNTIL S R ?TERMINAL UNTIL ;

: X 0 DO I W LOOP ;

\ Take a run at it

1 CRN@ VECTORS 80 CMOVE \ grab current vectors

sir_spi 1 OR VECTORS 22 4 * + ! \ INSTALL SPI VECTOR WITH AF BIT SET

sir_pit 1 OR VECTORS 21 4 * + ! \ install PIT victor

VECTORS 1 CRN! \ SET VBR

2 PLSR5 C! \ LEVEL 2 FOR SPI

1 PLSR30 C! \ LEVEL 1 FOR PIT

6 NIER ! \ ENABLE INTERRUPTS

0 ICR H! \ VECTORED INTERRUTPS

User Manual V.1 Dec 11, 2002 34

80000140 0 CRN! \ ALLOW NORMAL INTERRUPTS

SLAVE \ SET FOR SPI RECEPTION

S R \ CLEAR UP ANY OLD DATA

\ PIT \ START THE PIT BULL

\ PORT \ TURN OFF SPI SET MISO LINE LOW

\ TEST \ PUT THE MISO LINE HIGH AND THEN SWITCH ON SPI INTERRUPTS

If you download this file, it will install interrupts for PIT and SPI as well as create words in the Forth
dictionary to access the C functions. The details are in the following C files and only will work for this
version of MaxForth. The C code has been compiled with a port of the GNU C compiler for Mcore. The
makefile is included.

8.6.3 Makefi le

This makefile was used to invoke the GNU compiler and compile the files:

pit.c spi.c makeword.c
words.c.

NAME = test io

S = ..

I = ..\..\Mcore

CC = gcc-mcore -I..\ -I..\Mcore\ -I..\..\Mcore

LD = gcc-mcore -nostartfiles -T gnulink.lcf

AR = ar-MCORE

AS = as-MCORE

GS = gasp-MCORE

RM = del

.SUFFIXES : .o .c .s

CFLAGS = -c -O3

AFLAGS = -ahls

pit: pit.c gnulink.lcf

$(CC) $(CFLAGS) -Wa,-ahls -Wunknown-pragmas pit.c spi.c makeword.c words.c

gcc-mcore -Ttext 0x806000 -nostartfiles -Wl,--oformat=srec,-Map=pit.map\

-o pit.s19 pit.o spi.o makeword.o words.o

gnulink.acf:

forth.h:

micro.h:

8.6.4 gnulink.acf

This file uses a linker language to describe what the target memory looks like and how the sections of
code, data and empty space fit into it all.

MEMORY

{

 VECTORS (R) : ORIGIN = 0x00004000, LENGTH = 0x00000004

 TEXT (RX) : ORIGIN = 0x00004004, LENGTH = 0x00001000

 DATA (R) : ORIGIN = 0x00010000, LENGTH = 0x00001000

 MAXFORTH(R) : ORIGIN = 0x0001FC00, LENGTH = 0x00000400

 BSS (RW) : ORIGIN = 0x00800000, LENGTH = 0x00001000

}

/* damn deadstrip prevention */

SECTIONS

User Manual V.1 Dec 11, 2002 35

{

 .vectormap : /* Put the vector map at the very beginning */

 {

 . = ALIGN(0x400); /* Align table on 1024-byte boundary per */

 __vector_table_start__ = .; /* MCore requirement */

 * (vectortable) /* File of vector table */

 __vector_table_end__ = .;

 } >VECTORS /* Map to VECTORS memory section (0x000-0x1FF) */

 .main_application : /* Application Code */

 {

 * (.text)

 . = ALIGN(0x4);

 * (.rodata)

 . = ALIGN(0x4);

 ___sinit__ = .;

/* STATICINIT */

 . = ALIGN(0x4);

 __ROM_INIT_START = .;

 } >TEXT /* Map to TEXT section (0x200-) */

 /* tell linker generate the Load address other than the real address */

 .main_app_data : AT(__ROM_INIT_START) /* Data Section */

 {

 . = ALIGN(0x4); /* A section of data to be copied to RAM */

 __data_ROM_begin = .; /* Sets location variable used in rom_copy */

 * (.data)

 /* Just include data in all modules for now */

 * (.vtables)

 * (.exception)

 . = ALIGN(0x4);

 __exception_table_start__ = .;

 /* EXCEPTION */

 __exception_table_end__ = .;

 __data_ROM_end = .; /* to be copied to RAM */

 } >DATA

 .maxforthmap : /* Put the vector map at the very beginning */

 {

 . = ALIGN(0x400); /* Align table on 1024-byte boundary per */

 __maxforth_vector_start__ = .;

 * (forthvector) /* File of vector table */

 __maxforth_vector_end__ = .;

 } >MAXFORTH /* Map to MAXFORTH memory section (0x1FC00) */

 .main_app_bss : /* Uninitialized data space */

 {

 __bss_begin = .;

 * (.bss)

 __bss_end = .;

User Manual V.1 Dec 11, 2002 36

/* Calculations and assignments of section sizes */

 __stack_end = .;

 __stack_begin = __stack_end + 0x0800;

 __stack_begin = (__stack_begin + 7) & ~7;

 __heap_addr = __stack_begin; /* see MSL alloc.c */

 __heap_end = __heap_addr + 0x0000;

 __heap_size = __heap_end - __heap_addr;

 __data_begin = __data_ROM_begin; /* set to shadow RAM address */

 __data_size = __data_ROM_end - __data_ROM_begin;

 __data_ROM_begin = __ROM_INIT_START;

 __data_ROM_end = __ROM_INIT_START + __data_size;

 F_user_data_dict = __heap_end; /* first memory location for user */

 __exception_table_size = __data_ROM_end - __data_ROM_begin;

 } >BSS

}

8.6.5 spi.c

// MCore end of SPI link to HC12 Rob Chapman Nov 8, 02

// When the miso line is pulses low, then high, it is a signal to the HC12 that

// it should upload its current sensor readings. To get the miso line low, the

// data direction register is set, the port is written to as a zero and the SPI

// is turned off. Turning the SPI back on, will make the miso pin an input and

// it will go high, initiating values from the HC12 sensor queues.

#include "micro.h"

#include "forth.h"

#include "interrupt.h"

Byte samples[9*2+1],ind;

void sir_spi(void) // service the spi interrupt

{

 if (reg_SPISR.reg);

 samples[ind] = reg_SPIDR;

 if (ind < (sizeof(samples) - 1))

 ind++;

 RTE; // return from exception

}

8.6.6 pit.c

// MCore PIT Rob Chapman Nov 17, 02

// A periodic timer is used to get sensor values from the HC12. The interval

// is settable from 2 ms or more.

#include "micro.h"

#include "forth.h"

User Manual V.1 Dec 11, 2002 37

#include "interrupt.h"

extern ind;

Cell sample_no; // sample number

void sir_pit(void) // service the pit interrupt

{

 sample_no++; // increment sample number

 ind = 0; // reset index for sample array

 reg_SPICR1.reg = 6; // turn off SPI to gain port control

 reg_SPIDDR.reg = 1; // set the MISO line as an output

 reg_SPIPORT.reg = 0; // make sure its zero

 reg_SPIDDR.reg = 0; // turn it off now

 reg_SPICR1.reg = 0xCC;// turn spi back on

 reg_PCSR1.bit.PIF = 1;// turn off pit interrupt

 RTE; // return from exception

}

8.6.7 for th.h

/* header file for forth.c Rob Chapman Feb 2, 2000 */

/*

 17 mar 02 bjr - changed user_dict from Cell to Byte

 28 apr 02 bjr - removed UD_SIZE, dict now define in linker file

*/

// Since long long is not universally supported, the double cell support

// can come from either long for 16 bit cells, long long if supported

// for 32 bit cells; or forth double number support if no double support

// is available. For this reason, Duo and U_Duo are defined in micro.h

/* Portable type definitions */

typedef unsigned int Bits; /* for bit fields */

typedef unsigned char Byte; /* a byte */

typedef unsigned int Cell; /* default memory unit; ok as pointer */

typedef Cell Flag; /* a flag: 0 or non zero */

typedef signed int Integer; /* for signed numbers */

typedef unsigned int Natural; /* for unsigned numbers including 0 */

typedef void (*inner)(void); // inner interpreter

#define Forth void *

//typedef void (Forth)(void); // Forth word

#define Literal(A) (const Cell)(A)

#define Forward(A) Literal(A*sizeof(Forth))

#define Backward(A) Literal(-A*(signed)sizeof(Forth))

#define String(S) (S)

#define CONSTANT(S,N) Forth * const S[] = {(Forth)cii,(Forth)Literal(N)}

#define FUN_VECT (void (*)(void)) // good for casting vector adddresses

// should be in micro.h, user dictionary size

// #define UD_SIZE 1000

User Manual V.1 Dec 11, 2002 38

/* flag */

#ifndef TRUE

#define TRUE ((Cell)-1)

#define FALSE 0

#endif

/* list Forth functions to be called */

extern inner *wp, **ip;

extern Cell *dsp, *rsp; /* data stack pointer; and return stack pointer */

extern void iboot(void);

//extern const Forth *tasknfa[];

extern const struct { unsigned char name[6]; const unsigned char *link;\

 void **pfaptr;}tasknfa;

// should have a limit as well, maybe just documented or known.

//extern Forth * const task[];

/* virtual forth engine definitions */

typedef struct {

 void *inner;

 void (*code)(void); /* points to code like the inner interpreter */

} Quarkextra;

typedef inner Quark; /* fundamental building block */

typedef union param{

 void (*inner)(void); /* points to code like the inner interpreter */

 union param *body[1]; /* points to an array of pointers to these */

// Forth whatever;

} Param;

#ifdef DUO

// Endiandependance for the double integer guys

// Forth model is top is upper cell and next is lower cell

// Little endian would have it switched from big endian (Forth)

// These little ditties run independant of endian and convert

// to duos and back from memory. Trick is, no conditionals.

Duo asduo(Cell *);

void toduo(Duo , Cell *);

#endif

8.6.8 micr o.h

// M2107 Settings

#include "mmc2107.h"

//#include "m2107.h"

#ifndef MICROH

#define MICROH

#define MCORE

User Manual V.1 Dec 11, 2002 39

//#define DUO 1

//typedef signed long long Duo; /* double the integer power */

//typedef unsigned long long U_Duo; /* double the cell power */

// eeprom no here

#define EEPROM_START 0

// wrist canine chronometer

#define COP_OFF reg_WCR.bit.EN = 0 /* disable watchdog timer */

// external RAM

#define EXTERNAL_RAM

// assembler to forth call

#define ATO4 0xE198 // for hc12? or mcore?

extern unsigned int F_user_data_dict;

// user dictionary

#define SETUP_DICTIONARY *(Cell *)dppfa = (Cell)&F_user_data_dict;\

 /* value from linker file*/\

 *(Cell *)fencepfa = (Cell)&F_user_data_dict; // value from linker file

// serial io

#define SEND(X) reg_SCI1DRL = X

#define RECEIVE reg_SCI1DRL

#define SENT reg_SCI1SR1.bit.TDRE

#define RECEIVED reg_SCI1SR1.bit.RDRF

//#define TDRE 0x80

//#define RDRF 0x20

#define FREQ 32 // frequency for 2114 chip

#define BAUD57 (FREQ * 1000000 / (16 * 57600))

#define BAUD96 (FREQ * 1000000 / (16 * 9600))

#define BAUD19 (FREQ * 1000000 / (16 * 19200))

#define SET_SERIAL COP_OFF;\

 reg_SYNCR.reg = 0x2000;\

 reg_SCI1BD = BAUD19; /* select the baud rate */\

 reg_SCI1CR1.reg = 0x00; /*reset values (8/N/1)*/\

 reg_SCI1CR2.bit.TE = 1; /*enable transmitter*/\

 reg_SCI1CR2.bit.RE = 1; /*enable reciever*/\

 if (reg_SCI1SR1.reg); /*transmitter is actually enabled here*/\

 while(!reg_SCI1SR1.bit.TDRE) /* wait for TDRE to go high */

#define _flash ((void **)0x190) /* vector for flash program module */

#define ALIGNED(a) (((Cell)a + 3) & ~3)

/* Stack sizes */

#define RS_SIZE 64

#define DS_SIZE 64

#define FS_SIZE 8

// User dictionary size

User Manual V.1 Dec 11, 2002 40

#define UD_SIZE 1000

// Environment

#define DICTSTART 0x800000

#define DICTEND 0x81FFFF

#define QUICKTAG 0x3FFC

#define QUICKVECTOR 0x3FF8

#define BOOTTAG 0x3FF0

#define BOOTVECTOR 0x3FF4

#define BOOTSTART 0x10000

#define BOOTEND 0x1FFFF

#endif

8.6.9 interrupt.h

#define RTE asm("rte") // exit interrupt

8.6.10 words.c

// MCore interrupt routine interface

#include "forth.h"

#include "makeword.h"

extern Byte ind;

extern Cell sample_no;

extern Byte samples[];

extern void sir_pit(void);

extern void sir_spi(void);

void hello(void)

{

 ind++;

}

void _start(void) // link these C words to the Forth dictionary

{

 FUNCTION(hello);

 VARIABLE(ind);

 VARIABLE(samples);

 VARIABLE(sample_no);

 VARIABLE(sir_spi);

 VARIABLE(sir_pit);

}

8.6.11 makewords.c

// Add to dictionary from C Rob Chapman Nov 20, 02

#include <string.h>

#include "forth.h"

#include "makeword.h"

#define list ((void **)0x800508) // points to last in dictionary

#define dp ((Byte **)0x80050C) // dictionary pointer

User Manual V.1 Dec 11, 2002 41

#define cii (inner *)0x4888 // constant inner interpreter

void make_header(char *s, void *m) // link word to dictionary

{

 Byte l = strlen(s); // get length

 void **t = *list; // get current nfa

 *list = (void **)*dp; // set list to new word

 *(*dp)++ = l|0x80; // store count byte with msbit set

 while(l--) // for the length of the string

 *(*dp)++ = *s++; // create the name

 *((*dp)-1) |= 0x80; // terminal byte

 while (((Cell)*dp & (sizeof(Cell)-1))) // alignment

 *(*dp)++ = 0; // zero and increment

 ((void ****)dp)++ = t; // add link to current word

 (void *)dp = (void **)(*dp+2*sizeof(Cell));// pfa pointer

 *dp += sizeof(Cell); // next cell

 ((void ***)dp)++ = m; // point to C routine

}

void make_variable(char *s, void *m) // link as variable constant

{

 make_header(s,cii); // make it as a constant

 ((void ***)dp)++ = m; // point to C variable

}

makewords.h

#define VARIABLE(A) make_variable(#A,&A)

#define FUNCTION(A) make_header(#A,&A)

void make_header(Byte *, void *);

void make_variable(Byte *, void *);

	Table of Contents
	1.0 Overview
	1.1 Noted microcontroller features:
	1.2 Included Files

	2.0 Getting Started
	3.0 Memory Map
	4.0 Programming the Board
	4.1 ONCE Connector and Parallel Port
	4.2 S-Records and the Serial Loader
	4.2.1 Downloading S-Records With X-Modem
	4.2.2 Hooking Into Autoboot
	4.2.3 Tags
	4.2.4 Quick Entry
	4.2.5 Boot Entry
	4.2.6 Auto Vector

	4.3 On-board Development System

	5.0 I/O Connections and Jumpers
	6.0 Board Layout
	7.0 Schematic
	8.0 Examples
	8.1 Reading from the A/D port
	8.2 Control Registers
	8.3 Implementing an Interrupt
	8.3.1 Setting up the CPU
	8.3.2 Setting up the Interrupt Controller
	8.3.3 Setting up a Peripheral Interrupt
	8.3.4 Interrupts Calling Forth

	8.4 Flash Programming
	8.5 Auto Install Program
	8.5.1 AUTOBOOT.F
	8.5.2 UNBOOT2114.F

	8.6 Advanced Programming
	8.6.1 SRECBOOT.F
	8.6.2 Example of C and Forth Together
	8.6.3 Makefile
	8.6.4 gnulink.acf
	8.6.5 spi.c
	8.6.6 pit.c
	8.6.7 forth.h
	8.6.8 micro.h
	8.6.9 interrupt.h
	8.6.10 words.c
	8.6.11 makewords.c

