
Paulus

CANopen Mini Bootloader
User Manual

© port GmbH, Halle,2011/6/20; Paulus Bootloader Version 1.1.

Disclaimer
All rights reserved

The programs, boards and documentations supplied byport GmbH are created with due
diligence, checked carefully and tested on several applications.

Nevertheless,port GmbH can not take over no guarantee and no assume del credere lia-
bility that the program, the hardware board and the documentation are error-free respec-
tive are suitable to serve the special purpose.

In particular performance characteristics and technical data given in this document may
not be constituted to be guaranteed product features in any leg al sense.

For consequential damages, which are emerged on the strength of use the program and
the hardware boards therefore, every legal responsibility or liability is excluded.

port has the right to modify the products described or their documentation at any time
without prior warning, as long as these changes are made for reasons of reliability or
technical improvement.

All rights of this documentation lie withport. The transfer of rights to third parties or
duplication of this document in any form, whole or in part, is subject to written approval
by port. Copies of this document may however be made exclusively for the use of the
user and his engineers.The user is thereby responsible that third parties do not obtain
access to these copies.

The soft- and hardware designations used are mostly registered and are subject to copy-
right.

We are thankful for hints of possible errors and may ask around for an information.

We will go all the way to verify such hints fastest

Copyright

© 2011port GmbH
Regensburger Straße 7b
D-06132 Halle
Tel. +49 345 - 777 55 0
Fax. +49 345 - 777 55 20
E-Mail service@port.de
Internet http://www.port.de

Table of Contents

1. GeneralRemarks . 5

2. CANopenfeatures . 5

2.1. NMT . 6

2.1.1. ImplementationReset Communication. 6

2.2. NMTError . 7

2.2.1. Implementation 7

2.3. Emergency . 8
2.4. CANopenLayer Setting Services, LSS. 9
2.5. SDO . 9
2.6. PDO . 9
2.7. Objectdictionary 9

2.7.1. Programming. 10

2.8. CANopennode number and bit rate. 11

3. Structureof the directory 12

4. Hardware Requirements. 12

5. Software Requirements 13

6. Implementation. 13

6.1. Processes . 13

6.1.1. MainLoop . 13
6.1.2. Tesing for valid applications. 14
6.1.3. Interpretationof CANopen requests. 15

6.2. Usedstructures. 17

6.2.1. CanMsgRx_T. 17
6.2.2. CanMsgTx_T. 17
6.2.3. SdoRequest_T 18

6.3. segmented SDO transfer. 18

7. ImplementationDetails and Application Requirements. 19

8. Portingto STM32 . 20

8.1. Memoryusage. 21

8.1.1. Codesize . 23

8.2. Generatingthe user image 23

8.2.1. paulus_cksum. 24

8.3. Creationof the application 24

8.3.1. Startaddress 24

8.4. Usecase. 25

9. Portingto dsPIC33. 27

9.1. Memory . 30
9.2. Application . 30

9.2.1. Debugging. 31

9.3. Binaryimage . 31
9.4. Generationof the user image 33

9.4.1. objcopy . 33
9.4.2. paulus_cksum. 34

1. General Remarks
Modern device designs need enormous flexibility in hard- and software. Thisflexibility
is reached by integration of download-mechanisms and programming functions within
the software and the dimensioning of hardware for the future.
Bootloaders with a communication interface make allow firmware updates by use of an
appropriate network Standardized communication objects and algorithms provide a high
transparency and operator convenience.

The CANopen Bootloader makes this flexibility available for devices in CANopen net-
works. With the SDO transfer CANopen provides a standardized mechanism for the
transfer of large blocks of data.The Bootloader is independent of the application and
works as a minimal CANopen slave node according to the standard CiA 301.

It allows to use regular CANopen master software or configuration tools to download new
firmware into the user FLASH code memory.

Paulus is a bootloader optimized to code size and highly compatible to CANopen.To
achieve the aim of minimal code size there are only those functionalities of a CANopen
protocol stack included that are indespenseable.Nevertheless the project is flexible
enough to provide a hardware independent code part for carrying out the protocol.

Implementations for the following controller families are available:

• dsPIC33F by Microchip

• DSP Controller TMS320F2812/2808/28335 by Texas Instruments
(in development)

• 32-bit ARM Controller STM32 by ST Microelectronics

The recent list of supported processors is available at our sales department.Please ask
our sales team for the latest versions. We would of course also make the adaptions to not
yet supported processors by your order.

The bootloader code is written rather universal and modular. It can therefore easily appli-
cable to other architectures.For the full application code two further steps are required:

• The respective main initializing of the processor

• The FLASH handling for the programming

• The regulation for the linking of loadable applications.

2. CANopen features
Some of the described features are always available, others can be activated by setting
#define in the file<target>/bl_config.h

Version: 1.1. Paulus Bootloader Page 5 of 34

2.1. NMT
A NMT state machine does not make sense for the CANopen bootloader. The CANopen
bootloder stays in pre-operational mode that is set immediately after the boot-up.For
data communication only the SDO transfer is used.

NMT command activity

reset application reset
reset communication send boot up
start ignored
preoperational permanent
stopped ignored

The NMT commandReset Applicationanalyzes the bootloader for a software reset, e.g.
when it was received after a successful firmware download. TheNMT commandReset
Communicationleads to the activation of a new Node Id when LSS is active. Additional
the SDO communication will be reset.

2.1.1. ImplementationReset Communication

resetOD() Reset object dictionary

Reset SDO

LSS &&
unconfigured

send Bootup
send LSS Msg

(unconfigured Node)

send EMCY
(optional)

yesno

Page 6 of 34 Paulus Bootloader Version: 1.1.

2.2. NMT Error
Heartbeat creation by the bootloader is possible. Dependent on the target, different vari-
ants are implemented.

• counting loop in main loop; rather imprecise

• Hardware timer, with higher need of resources

It is also possible to set the heartbeat production aside.

When sufficient code is available the bootloader can send a boot-up message.

service activity

boot-up message supported
heartbeat fixed heartbeat time 0
heartbeat optional- fixed heartbeat time greater than 0

The Heartbeat Producer entry is available at 0x1017. The optional functionality to send
the heartbeat cyclic requires the functiontimerTriggered().

2.2.1. Implementation

In case the bootloader should send a cyclic heartbeat, the functionality must be config-
ured by using#define and of coursethe target specific code must be available.

#define BL_USE_HB 1

Version: 1.1. Paulus Bootloader Page 7 of 34

main.c main()

init_xxx.c initDevice()

init_xxx.c initTimer()

bl_canopen.c doCANopen()

bl_canopen.c sendHeartbeat()

init_xxx.c timerTriggered()

can.c canMsgTransmit()

2.3. Emergency
If necessary, emergency functionalities can be used with limitations. The emergency
functionality is reduced to the bare sending of a CAN message.

• The COB-ID of emergency is fixed (predefined connection set).

• Inhibit time is not supported.

• 0x1001 is not adjusted.

• 0x1003 is not supported.

Activate EMCY functionality in bootloader configuration.

#define BL_USE_EMCY 1

After sending the bootup message, the bootloader can send an additional emergency.
This is usefull to signal the bootloader start in difference to an application start.

#define BL_TXEMCY_AFTER_BOOTUP 1

After the bootup message the first defined emergency is sending
(emcyErrMsg[EMCY_0] in bl_canopen.c).

Page 8 of 34 Paulus Bootloader Version: 1.1.

You can send own emergencys in the same manner.

canMsgTransmit(EMCY_COBID, &emcyErrMsg[EMCY_0]);

2.4. CANopen Layer Setting Services, LSS
CANopen LSS is supported as slave. Paulus can get a CANopen node ID by a LSS Mas-
ter. This information can be forwarded to an application that was started by the Boot-
loader when there is a Shared Memory.

Solutions that use a hardware daisy-chain with simplified LSS services were also been
implemented before.

#define BL_USE_LSS 1

2.5. SDO
Paulus Bootloader is SDO server.

Expedited and segmented SDO transfer are supported for access to the object dictionary
and for firmware download.
The reason for the predefinitions that are used mostly, is the fixed coding of the SDO
command bytes. There is no detailed decoding.

Possible error code is limited to a few error codes. Mainly error codeGeneric Error, is
used.

2.6. PDO
No support of PDO service.

2.7. Objectdictionary
The following table gives an overview of implemented objects in Paulus. Optional
entries are marked. Areference is also the EDS file and its documentation in HTML for-
mat1. The electronic data sheet is available in the traditional format aspaulus.edsbut as
well in the XML based format according CiA 311 aspaulus.xdd. Both were generated by
the CANopen Design Tool2.

1 Are available as enclosures
2 http://www.port.de/0640

Version: 1.1. Paulus Bootloader Page 9 of 34

Index Subindex Mode comment

0x1000 0 co Device Type
0x1001 0 co (*) no error signaling supported
0x1014 0 co (*) fixed Emcy COB-ID
0x1017 0 co (*) 0 or fixed time
0x1018 0-2 co (*) Identify object
0x1018 3-4 co (*) with LSS
0x1F50 0 co (*) Number of Elements
0x1F50 1 wo Domain Entry - new firmware
0x1F51 0-1 rw (*) Program Control
0x1F56 0-1 ro (*) Application software identification
0x1F57 0-1 ro (*) Flash status identification

(*) to achieve a small code size these objects can be set aside

Program Control — 0x1F51
Writing the value 0x01 to this entry will cause the Bootloader to start the loaded
application. Writingthe value 0x03 to this entry will "ERASE" the application
FLASH area.
Attention: The start of the application with this entry is harmful, because the
periphery is only partly initialized. The application run should be done by a power
on reset.

Application software identification — 0x1F56
Depending on the implementation there is only strongly limited support for this
object available. It is possible to read out and in consequence identify the CRC
sum of the flashed application.

Flash status identification — 0x1F57
Depending on the implementation there is only strongly limited support for this
object available.

2.7.1. Programming

Install a new user software with the following steps:

0x1F51:1 = 3
Erase FLASH

0x1F50:1 = Domain
Download and Flash

NMT Node Reset
Start Application

check EMCY
for errors

The application can be startet during the development also via SD . That simplifies
debugging.

Page 10 of 34 Paulus Bootloader Version: 1.1.

#define BL_CALL_BY_SDO 1

0x1F51:1 = 3
Erase FLASH

0x1F50:1 = Domain
Download and Flash

0x1F51:1 = 1
Start Application

check EMCY
for errors

2.8. CANopen node number and bit rate
If LSS service is not implemented easier methods can be chosen, such as reading out of
switches or EEPROM. In this case the functionsgetNodeId() andgetBitRate() provided
in <target>/<tar get>_init.c have to provide thees information to the CANopen layer.

LSS service can be added in the bootloader configuration3

#define BL_USE_LSS 1

2.9. Dataexchange between Paulus and the User Application
The interface between Paulus protocol layer and hardware application is inbl_inter-
face.[ch].

Applications should use macros defined inbl_interface.hto jump back to the bootloader.
According to the Paulus principles the application has to request an update by jumping
back to the boot loader using the macro

BOOTLOADER_JUMP(APPL);

Using

BOOTLOADER_JUMP(BL);

the boot loader will be called, checks again the application image and starts it again. In
case of an CRC error Paulus will stay in boot loader mode and expects an new image via
object 1f50.

3 Target platform and specific information or hints can always be found in the file
<target>/bl_config.hthat is part of the source code delivery.

Version: 1.1. Paulus Bootloader Page 11 of 34

3. Structure of the directory
Hardware dependent and hardware independent source code are in different directories.
That makes handling of the sources in CVS easier.

software

boot loader

<target>
<hw: dsPIC33>

<target>
<hw: horch>

<target>
<hw: stm32>

tools

The directorybootloadercontains the hardware independent part of the software. The
hardware dependent part of the software is named after its hardware, e.g.horch. Config-
uration is stored in thehorch-directory. Projects andmain.care stored insoftware

The tools directory contains software that is necessary to create images for the boot-
loader.

4. Hardware Requirements
By dividing protocol layer and HAL4 the bootloader can be used on all supported target
platforms. Solelythe FLASH routines have to be adopted.

Depending on CPU, compiler and compiler settings the consumption of resources varies.
Typical values are 4-8KiB flash and 2KiB RAM.
Every PC interface hardware can be used as a client counterpart
- e.g. a USB-CAN interface (CPC-USB or USB-XS) or a gateway according to the CiA
DS309-3 (EtherCAN).

4 HAL — Hardware Abstraction Layer

Page 12 of 34 Paulus Bootloader Version: 1.1.

5. Software Requirements
The downloading software has to support the CANopen SDO domain transfer. For a free
download of thedownloadergoto: http://www.port.de
Best results can be obtained by using standard CANopen configuration tools like the
CANopen Device Monitor5.

5 http://www.port.de/0642

Version: 1.1. Paulus Bootloader Page 13 of 34

6. Implementation

6.1. Processes

6.1.1. MainLoop

basic
HW initialization

check for
valid application

HW initialization,
among others CAN

CANopen
initialization

waiting for
CAN message

CANopen
interpretation

Program flow in main.c

Page 14 of 34 Paulus Bootloader Version: 1.1.

6.1.2. Tesing for valid applications

CRC available?

calculate CRC

yes

CRC correct?

go to application

yes

stay in bootloader

no

no

callApplication(), <hw>_appl.c

Version: 1.1. Paulus Bootloader Page 15 of 34

6.1.3. Interpretation of CANopen requests

SDO request?

exp SDO?

no

segm. SDO?

no

SDO Abort

yes

SDO Response

yes

do segmented SDO

no

NMT?

no

yes

doNMT

doCANopen(), bl_canopen.c

Other services accordingly.

Page 16 of 34 Paulus Bootloader Version: 1.1.

6.2. Used structures

6.2.1. CanMsgRx_T

typedef struct

{

UNSIGNED16 StdId; /**< identifier */

UNSIGNED8 DLC; /**< message length */

union {

UNSIGNED32 u32Data[2]; /**< data as 2x32bit values */

UNSIGNED16 u16Data[4]; /**< data as 4x16bit values */

UNSIGNED8 u8Data[8]; /**< data as 8x8bit values */

} Msg;

} CanMsgRx_T;

low-level Receive message

CanMsgRx_T is from the CAN driver. There is no content or invalid content when StdId
== 0xFFFF.

6.2.2. CanMsgTx_T

typedef struct

{

UNSIGNED8 DLC; /**< message length */

union {

UNSIGNED32 u32Data[2]; /**< data as 2x32bit values */

UNSIGNED16 u16Data[4]; /**< data as 4x16bit values */

UNSIGNED8 u8Data[8]; /**< data as 8x8bit values */

} Msg;

} CanMsgTx_T;

low-level Transmit message

UNSIGNED8 entries have to be used with care on DSP systems, because they are
internal 16bit in size!

CanMsgTx_T is used to define send and response messages. These definitions can be
stored in flash. They do not contain CAN-IDs which is often dependent on the node ID.

Example

static const CanMsgTx_T bootupMsg = {
1, {.u32Data[0] = 0ul, 0ul}

};

Version: 1.1. Paulus Bootloader Page 17 of 34

6.2.3. SdoRequest_T

typedef struct

{

UNSIGNED32 request; /**< first 4 Bytes of the SDO Request */

/**< contains command, Index and Subindex */

/**< of the Request */

CanMsgTx_T response; /**< complete SDO Response */

} SdoRequest_T;

This structure consists mainly of the object dictionary. There are mainly constant entries
defined that are transmitted by exp. SDO transfer.

At that point the values are in the RAM and can be changed during the initialization.
That allows for example to put the version of the bootloader into the object dictionary. It
is also possible to put down software states in the object dictionary, at a later point of
time.

example:

#define SDO_REQ_COBID (0x600 + nodeId)

#define SDO_RESP_COBID (0x580 + nodeId)

static SdoRequest_T sdoRequest[] = {

#define SDO_1000_0_IDX 0

{0x00100040ul /* 0 - sdo 1000:0 */,

{8,{.u32Data[0]=0x00100043ul,0x0000FFFEul}} },

...

}

6.3. segmented SDO transfer
SDO upload is not supported!

Initiate SDO Download

CMD Index,SubIndex Length

Request 0x21 0x1F50 0x01 0x00004610

Response 0x60 0x1F50 0x01 0x00000000

Page 18 of 34 Paulus Bootloader Version: 1.1.

SDO Download

CMD data

Request 0x00 7 Byte
Response 0x20 reserved
Request 0x00+0x10<togglebit> 7 Byte
Response 0x20+0x10<togglebit> reserved

...

Request 0x00+<togglebit>+<7-Länge> 0..7 Byte
Response 0x20+<togglebit>+<7-Länge> reserved

7. Implementation Details and Application Requirements
The Paulus Bootloader can only handle application programs in binary format. The pro-
cessing of programs in the Intel-Hex-Format will be supported in the future if required by
customers.

The Bootloader checks the received data by a CRC checksum. Therefore an application
header of 128 byte is necessary. This header can be generated with the tool
paulus_cksumand contains the following information:

struct {

UNSIGNED32 length; /* application length */

UNSIGNED16 crc; /* application crc */

UNSIGNED16 applicationType; /* reserved */

void (* entry_point)(void); /* Application Entry point */

} APPLICATION_HEADER_T;

Unused bytes in the application header are by default 0x00. There may be differences
depending on the target.

Version: 1.1. Paulus Bootloader Page 19 of 34

8. Porting to STM32
Porting was carried out with the gcc based development environment CrossWorks for
ARM version 2. The root of the project directory is in project filepaulus_cw_stm32.hzp.
The following figure shows the directory structure:

|-- Readme
|-- THUMB Debug
|-- THUMB Release
|-- bootloader
| |-- bl_can.h
| |-- bl_canopen.c
| |-- bl_canopen.h
| |-- bl_crc.c
| |-- bl_hw.h
| |-- bl_type.h
| \-- bl_user.c
|-- eds
| |-- paulus.can
| |-- paulus.eds
| |-- paulus.html
| |-- paulus.xdd
| \-- style.css
|-- flash_placement.xml
|-- hello
| |-- flash_placement.xml
| |-- init.c
| |-- main.c
| |-- main.c.bak
| \-- stm32f10x_conf.h
|-- main.c
|-- paulus_cw_stm32.hzp
|-- paulus_cw_stm32.hzs
|-- stm32 $(TargetDir)
| |-- STM32F10x_Startup.s
| |-- STM32_Startup.s
| |-- STM32_Target.js
| |-- bl_config.h
| |-- cw_settings
| |-- environ.h
| |-- fwlib3.3.0
| | |-- inc
| | \-- src
| |-- linkeropts
| |-- stm32_appl.c
| |-- stm32_can.c
| |-- stm32_flash.c
| |-- stm32_flash.h
| |-- stm32_init.c
| |-- stm32f10x_conf.h
| |-- stm32f10x_it.c
| |-- stm32f10x_it.h
| \-- thumb_crt0.s
\-- tools

|-- paulus_cksum
|-- paulus_cksum.c
\-- create

Page 20 of 34 Paulus Bootloader Version: 1.1.

When using different development environments it is important to stick to the given
directory structure and the correct setup of the include paths. CAN driver and flash rou-
tines must be provided for the targets.

$(TargetDir)/$(Target)_flash.[ch] FLASHRoutinen
$(TargetDir)/$(Target)_can.[ch] CANRoutinen
$(TargetDir)/$(Target)_init.c CPUInitialisierung
$(TargetDir)/environ.h allgemeinerHeader

All of these modules fall back to functions of the ST firmware library. By use of the gen-
eral header fileenviron.hthe header files of firmware Lib are inserted.To do so the con-
figuration filestm32f10x_conf.hof firmware Lib must be adjusted.

Initialization of the CAN controller is done in module<target>/<tar get>_can.c. In
module<target>/targetw>_init.c the IO pins in function and assignment for CAN-RX
and CAN-TX have to be initialized. Dueto type and diverse possibilities there may be
adjustments necessary.
Check the code of the functionsRCC_Configuration(), GPIO_Configuration() and init-
Device() in the filestm32_init.cand the used#defineSTM32F10* in bl_config.h.

Auto-Bus-on function of the CAN controller is used in Paulus. Itconstantly check for
recessive bus and wakes the CAN controller automatically up from bus-off. In case of
hardware errors it could disturb the complete construction.

In modulestm32_init.cthere must be the functionsgetBitRate() andgetNodeId()avail-
able. Usuallythis is done by reading out jumpers or the values are stored in an area of
the FLASH. For internal coding of the CAN bit rate, the CANopen index is used, a num-
ber between 0 and 8.For easier reading the following defines are availablebl_config.h

#define BL_USED_BITRATE_INDEX BITRATE_INDEX_1000K

During development a debug output can be activated by a serial interface In header
bl_config.hline

#define DEBUG 1

must be active.

In general the initialization function will initialize only the absolutely necessary peripher-
als like clock system, CAN, memory management as needed by Paulus. Nevertheless,
there might be situations where it makes sense that Paulus initializes other functionalities
which are later used by the application as well.As an example consider the UART for
Debug messages and LEDs as simple status displays.

Version: 1.1. Paulus Bootloader Page 21 of 34

8.1. Memoryusage

Shared-RAM

RAM

Application
User code

Vector table
Application Header

gap

Paulus

Vector table

FLASH_PROGRAM_END_ADR

+ 0x100
FLASH_PROGRAM_START_ADR

0x0000 0000 0x0800 0000

0x2000 0000

0x2000 27F0

Memory usage(example with 10 KiB RAM)

The original flash programming of the firmware Lib is written in 2 byte style.Therefore
Paulus uses the firmware Lib functionFLASH_ProgramHalfWord(); This function takes
over to unlock the programming function, writing and waiting for completion. The mem-
ory area for the application i.e. the area that can be deleted and rewritten is defined in
stm32/stm32_flash.hwith constants

#define FLASH_PROGRAM_START_ADR
#define FLASH_PROGRAM_END_ADR

It must be adjusted when the the processor is changed.That defines the area which is
deleted when writing to 0x1f51:1=3 The area that is written is defined by the length of
the download image.

Page 22 of 34 Paulus Bootloader Version: 1.1.

8.1.1. Code size

The following table shows typical FLASH sizes of an typical minimum implementation6.

section size
.vectors 236
.init 384
.text 4.1KiB
.rodata 564
.data 256
overall 0x1660(5.6 KiB)

8.2. Generating the user image
The user image is created as follows.

IDE

using special settings

ELF File

objcopy

Binary

paulus_cksum

Binary with Application Header

objdump

Start address / entry point

The shell scripttools/createstm32imageorganizes these steps.

The following command sequence shows the result of objdump:

6 without LSS

Version: 1.1. Paulus Bootloader Page 23 of 34

$ /usr/share/crossworks_for_arm_2.0/gcc/bin/objdump -f THUMB Release/hello.elf

THUMB Release/hello.elf: file format elf32-littlearm
architecture: arm, flags 0x00000012:
EXEC_P, HAS_SYMS
start address 0x080022ed

Using CrossWorks, thestart address is the address of thereset_handler in
STM32_Startup.s.

8.2.1. paulus_cksum

paulus_cksumcalculates the CRC checksum of the binary application program, gener-
ates the application header and stores the application header and the application program
in a new file. Thisfile can be loaded in a device with the Bootloader.

Application header Application program image

Application software

The Bootloader checks the received data by a CRC checksum. Therefore an application
header is necessary. This header can be generated with the toolpaulus_cksumand con-
tains the following information as described in chapter 7APPLICATION_HEADER_T.

Unused bytes in the application header are set to 0xFF with the STM32. Length of the
application header is 256 bytes.
Example:

$ tools/paulus_cksum -v -l 256 -C -O download.bin -v -x $EXEC appl.bin

size: 0x00003524, crc: 0x1cb5, file: >appl.bin<

$ l appl.bin download.bin

-rwxrwxrwx 1 oe users 13604 9. Sep 16:59 appl.bin*

-rw-rw-rw- 1 oe users 13732 9. Sep 17:00 download.bin

Besides checking the CRC the bootloader is checking also the size information of the
header. A size of 0 is invalid. An application may destroy the ’valid’ information by
overwriting the size information with 0. That is always possible on the STM32 FLASH,
because erased content is 0xFF.

8.3. Creation of the application
Following explanations are written as general as possible, but refer to the use of Cross-
Works for ARM version 2.

8.3.1. Start address

It is important that the start address of the user application in FLASH and the information
in the Paulus configuration in Flash instm32/stm32_flash.hare the same.The user image
is stored into FLASH behind Paulus code. Therefore the image is flashed to

Page 24 of 34 Paulus Bootloader Version: 1.1.

#define FLASH_DATA_START_ADR

The actual application starts 256 byte later. The given start address for the linker is e.g.
for CrossWorks with

linker_section_placement_macros="FLASH_START=0x8002100" 7

From the STM32 manual:
After this startup delay has elapsed, the CPU fetches the top-of-stack value
from address 0x0000 0000, then starts code execution from the boot memory
starting from 0x0000 0004.

A STM32 program starts as follows (names as used in CrossWorks): (Address labels as
used in CrossWorks):

Program area

Interrupt
vectors

reset_handler
__stack_end

0x0800 0004
0x0000 0000 0x0800 0000

In order to start the application correctly it is necessary to set thedefine
STARTUP_FROM_RESET when compilingSTM32_Startup.s. Otherwise, at least Cross-
Works compiles a loop as thereset_handlercalled reset_wait to give a Debugger the
chance to stop execution at e defined location.

8.4. Use case
Paulus Bootloader and an example use case are included in the delivery as two projects
for oneSolution. The application is the projecthello which gives out instruction mes-
sages at the UART and receives instructions by the user at the UART. It is possible to

7 allocated under the premise that Paulus takes 0x2000 byte.

Version: 1.1. Paulus Bootloader Page 25 of 34

command different possibilities to return to PAULUS. Both,application and PAULUS,
are communicating via the shared memory in RAM by using different signatures built of
4 bytes in RAM.

Page 26 of 34 Paulus Bootloader Version: 1.1.

9. Porting to dsPIC33
Porting was carried out withthe Microchip MPLAB development environment. Theroot
of the project directory is in project filepaulus_dspic.mcp. The following figure shows
the directory structure:

|-- bootloader
| |-- bl_can.h
| |-- bl_canopen.c
| |-- bl_canopen.h
| |-- bl_config.h_template
| |-- bl_crc.c
| |-- bl_hw.h
| |-- bl_type.h
| \-- bl_user.c
|-- dsPIC
| |-- Readme
| |-- bl_config.h
| |-- bl_flash.h
| |-- bl_interface.c
| |-- bl_interface.h
| |-- dspic_appl.c
| |-- dspic_can.c
| |-- dspic_flash.c
| |-- dspic_flash.h
| |-- dspic_init.c
| |-- environ.h
| |-- p33FJ256GP710.gld >gcc 3.20
| \-- p33FJ256GP710_old.gld <gcc 3.20
|-- eds
| |-- paulus.can
| |-- paulus.eds
| \-- paulus.html
|-- examples Example projects
|-- main.c
|-- paulus_dspic.bin
|-- paulus_dspic.cof
|-- paulus_dspic.hex
|-- paulus_dspic.map
|-- paulus_dspic.mcp Paulus project
|-- paulus_dspic.mcs
|-- paulus_dspic.mcw
|-- tools
| |-- paulus_cksum
| |-- paulus_cksum.c
| \-- dsPIC_binutils
| |-- objcopy
| \-- objdump
\-- version.h

Version: 1.1. Paulus Bootloader Page 27 of 34

These components were used for the porting:

Derivate dsPic33FJ256GP710
Quarz 8MHz
IDE MPlab8.60
Compiler pic30-gccv3.24

Settings for CAN and flash are dependent on the used derivates. Thereare also depen-
dencies on the used clock.

dsPIC/dspic_can.[ch] CANRoutinen
dsPIC/dspic_init.c CPUInitialisierung
dsPIC/dspic_flash.[ch] FLASHRoutinen
dsPIC/environ.h allgemeinerHeader
dsPIC/bl_interface.[ch] Interface zu Applikation

To achieve a minimal code size interrupts are not applied.As consequence the IVT is
free for usage by the application. The reset vector must point to the vector address of the
bootloader to make sure it starts there and carries out check sum.

Reset vector is deleted during Erase and overwritten with the applications images.

For the adaption of the flah routines some steps are necessary. They are in dspic_flash.h
and are dependent on the derivates.

/* (reserved) Paulus code size */

#define FLASH_SIZE_PAULUS 16 /* in KiB */

/* first flash address (incl. Bootloader) */

#define FLASH_START_ADR 0x00000000ul

/* Define the FLASH Page Size depending on the used device */

#define FLASH_ERASE_PAGE_SIZE (512*2)

/* Number of words to gbe flashed at a time */

#define FLASH_PAGE_SIZE (64*4) /* in words */

Flashing starts with address 0. The application starts after the bootloader. To skip the
bootloader the addresses are needed.

Page 28 of 34 Paulus Bootloader Version: 1.1.

/** Applikationsstartaddr im Flash (incl header) */

/* Reset vector - start of flashing */

#define FLASH_PROGRAM_START_ADR 0x0000ul

/* word address */

#define FLASH_PROGRAM_REAL_START_ADR 0x4000ul

/** max. Application size im Flash (incl header) */

#define FLASH_PROGRAM_MAX_SIZE \

(FLASH_PROGRAM_END_ADR - FLASH_PROGRAM_START_ADR + 1)

/* max siez without vectors - word size */

#define FLASH_PROGRAM_REAL_MAX_SIZE \

(FLASH_PROGRAM_END_ADR - FLASH_PROGRAM_REAL_START_ADR + 1)

Maximum size of the application and end of flash depend on the chosen derivate.

/* FLASH config data - word address */

#if defined(DSPIC33FJ64)

#define FLASH_PROGRAM_END_ADR 0xABFF

#elif defined(DSPIC33FJ128)

#define FLASH_PROGRAM_END_ADR 0x157FF

#elif defined(DSPIC33FJ256)

#define FLASH_PROGRAM_END_ADR 0x2ABFF /* word address */

#else

error "One DSP version has to be specified"

#endif

When Paulus size was not changed, only adaption of the value forFLASH_PRO-
GRAM_END_ADR is necessary. It is recommended to check the other values.

Value for FLASH_PROGRAM_REAL_START_ADR must be the same as the linker set-
tings of Paulus (after the memory areaprogram) and the application linker settings (start
of program)

Version: 1.1. Paulus Bootloader Page 29 of 34

9.1. Memory

RAM

Application
User code

Paulus

Config Area (CRC)
Vector table IVT/AIVT

Jump to Paulus

$APPL_START

0x0000 0400
0x0000 0200

0x0000 0000 .reset

The APPL_START value is set with 0x4000 which allows an easy implementation with
debugging and a great number of printf output. After doing own adjustments it is possi-
ble to optimize this value to get more space for the application.

9.2. Application
In linker file (e.g. paulusExample_p33FJ256GP710.gld) the reset vector must be on
address 0, but it has to point to the beginning of Paulus.

__CODE_BASE = 0x4000;

__BL_BASE = 0x400;

Page 30 of 34 Paulus Bootloader Version: 1.1.

SECTIONS

{

.reset :

{

/* Jump to the boot-loader entry */

SHORT(ABSOLUTE(__BL_BASE));

SHORT(0x04);

SHORT((ABSOLUTE(__BL_BASE) >> 16) & 0x7F);

SHORT(0);

} >reset

}

The application starts after Paulus.

MEMORY

{

program (xr) : ORIGIN = 0x4000, LENGTH = 0x26C00

}

The vector address must now be on the first possible address in the linkerfile.

0x004000 __resetPRI

The application should not contain fuse settings.They blow up the image and Paulus
uses its own fuse settings.

9.2.1. Debugging

It is recommenden to develop the application without the bootloader. For debugging with
the bootloader following steps are recommended.

• Paulus is already installed on dsPic33. It was flashed in debug mode.

• The application project is opened in MPLAB.

• Application and download image are created.Paulus has to be activated with "RUN" in
the debugger. Ignore the note that memory has changed. The image is flashed by
Paulus (not by debugger).

• After a reset of the processor, Paulus analyzes the checksum and starts the application.

• Now it is possible to debug as usual.

Version: 1.1. Paulus Bootloader Page 31 of 34

9.3. Binary image
The binary image is created of the kind to make working within Paulus as easy as possi-
ble. MPLABroutines are used:

• _write_flash24() - flashing the image, needs 4 byte per instruction

• _memcpy_p2d24() - for CRC calculating of the application supplies 3 byte per instruc-
tion

• _memcpy_p2d16() - for data reading from flash, 2 byte per instruction

Instruction: Doubleword

0x00 Instruction

Constants

Byte 3 Byte 2 Byte 1 Byte 0

For calculating CRC byte 3 is ignored.

The address area of the botloader is transmitted with the image, but not flashed.

Page 32 of 34 Paulus Bootloader Version: 1.1.

9.4. Generation of the user image
The user image is created with following steps.

IDE

using special settings

Hex File

objcopy

Binary

paulus_cksum

Binary with Application Header

The shell scriptcreateorganizes these steps.

9.4.1. objcopy

The creation of the binary image is done out of the iHex-file. It is recommended not to
compile a fuse bit configuration into the application.The fuse bit configuration of Paulus
is used. The fuse bit configuration within the application is therefore dispensable and
would enlarge the binary image significantly .

objcopy -I ihex -O binary --gap-fill 0xFF appl.hex appl.bin

-I ihex Inputformat ihex
-O binary Outputformat binary
−−gap-fill 0xFF fill gaps with 0xFF

Version: 1.1. Paulus Bootloader Page 33 of 34

9.4.2. paulus_cksum

paulus_cksumcalculates the CRC checksum of the binary application program, gener-
ates the application header and stores the application header and the application program
in a new file. Thisfile can be loaded in a device with the bootloader.

IVT AIVT
Application

header
Bootloader Application program image

Application software, CRC partAppl. vectors

Reset

The bootloader checks the received data by a CRC checksum. Therefore an application
header of 128 byte is necessary. This header can be generated with the tool
paulus_cksumand contains the following information as described in chapter 7APPLI-
CATION_HEADER_T.

Bsp: dsPic33FJ256GP710

paulus_cksum -P -C -a 0x400 -b 0x8000 -c 0x55800 -x 0x4000 \

-O appl.crc appl.bin

-P dsPic33
-C CANopenCRC
-a CRCBlock address (byte address)
-b Applicationstart address (byte address)
-F Flashend address (byte address)
-O outputfile (incl appl.bin) == complete domain
-x Entrypoint (without conversion)

The Flash end address is required to ignore the Configuration bits, if this bits are included
in the binary. The used addresses are byte addresses, the common Word-addresses of
dsPIC33 have to be duplicated, therefore.

Page 34 of 34 Paulus Bootloader Version: 1.1.

	1. General Remarks
	2. CANopen features
	2.1. NMT
	2.1.1. Implementation Reset Communication

	2.2. NMT Error
	2.2.1. Implementation

	2.3. Emergency
	2.4. CANopen Layer Setting Services, LSS
	2.5. SDO
	2.6. PDO
	2.7. Object dictionary
	2.7.1. Programming

	2.8. CANopen node number and bit rate

	3. Structure of the directory
	4. Hardware Requirements
	5. Software Requirements
	6. Implementation
	6.1. Processes
	6.1.1. Main Loop
	6.1.2. Tesing for valid applications
	6.1.3. Interpretation of CANopen requests

	6.2. Used structures
	6.2.1. CanMsgRx_T
	6.2.2. CanMsgTx_T
	6.2.3. SdoRequest_T

	6.3. segmented SDO transfer

	7. Implementation Details and Application Requirements
	8. Porting to STM32
	8.1. Memory usage
	8.1.1. Code size

	8.2. Generating the user image
	8.2.1. paulus_cksum

	8.3. Creation of the application
	8.3.1. Start address

	8.4. Use case

	9. Porting to dsPIC33
	9.1. Memory
	9.2. Application
	9.2.1. Debugging

	9.3. Binary image
	9.4. Generation of the user image
	9.4.1. objcopy
	9.4.2. paulus_cksum

