peort

Paulus

CANopen Mini Bootloader
User Manual

© port GmbH, Halle,2011/6/20; Rulus Bootloader Version 1.1.

peort

Disclaimer
All rights reserved

The programs, boards and documentations suppliggbliyGmbH are created with due
diligence, checked carefully and tested oress applications.

Neverthelessport GmbH can not tak over no guarantee and no assume del credere lia-
bility that the program, the hardware board and the documentation are error-free respec-
tive ae suitable to seevthe special purpose.

In particular performance characteristics and technical de¢a @i this document may
not be constituted to be guaranteed product featurey ilega sense.

For consequential damages, which are agadron the strength of use the program and
the hardware boards thereforeeny legd responsibility or liability is excluded.

port has the right to modify the products described or their documentatiory ditren
without prior warning, as long as these changes are made for reasons of reliability or
technical impreement.

All rights of this documentation lie withort. The transfer of rights to third parties or
duplication of this document in yifiorm, whole or in part, is subject to written apgaio

by port. Copies of this document may wever be made &clusively for the use of the
user and his engineerd.he user is thereby responsible that third parties do not obtain
access to these copies.

The soft- and hardware designations used are mostly registered and are subjggct to cop
right.

We ae thankful for hints of possible errors and may ask around for an information.

We will go all the way to verify such hints fastest

Copyright

© 2011port GmbH
Regensburger Stral3e 7b
D-06132 Halle

Tel. +49 345 - 777550
Fax. +49 345 - 777 55 20
E-Mail service@port.de
Internet http://www.port.de

peort

Table of Contents

1. GeneraRemarks
2. CANoperfeatures .
2.1. NMT . : Coe e
2.1.1. ImplementatloReset Communlcatlon
2.2. NMT Error . .
2.2.1. Implementation.

2.3. Emegency . .

2.4. CANoperi_ayer Settlng Serwces LSS
2.5. SDO . e
26. PDO. . . :

2.7. Objecdlctlonary

2.7.1. Programming .
2.8. CANopemode number and bit rate
3. Structureof the directory .
4. Hardvware Requirements.
5. Software Requirements .
6. Implementation.
6.1. Processes .

6.1.1. MainLoop. . .

6.1.2. Bsing for valid appllcatlons

6.1.3. Interpretatioof CANopen requests
6.2. Usedstructures

6.2.1. CanMsgRx_T

6.2.2. CanMsgTx_T .

6.2.3. SdoRequest_T .

6.3. sgmented SDO transfer .

7. ImplementatioDetails and Application Requirements.

8. Portingto STM32 .
8.1. Memoryusage.
8.1.1. Codssize . .o
8.2. Generatinghe user image .
8.2.1. paulus_cksum .
8.3. Creatiorof the application .
8.3.1. Staraddress .
8.4. Usecase.
9. Portingto dsPIC33.

O OOWWOWo N ~NO O O U1

e el ol ol ol
W wWwwNN R o

o il
o~ w

[EEN
\l

[=
o~ ~

NN DNDNDNDNDNDNDNDDNPEPPE
N oo b~ BSADMDOOWWERE O OO®

peort

9.1. Memory.
9.2. Application.

9.2.1. Debgging.

9.3. Binaryimage
9.4. Generationf the use

9.4.1. objcop .

rimage .

9.4.2. paulus_cksum .

30
30

31
31
33

33
34

peort

1. General Remarks

Modern device designs need enormousilfiéty in hard- and softwre. Thisflexibility

is reached by integration of download-mechanisms and programming functions within
the software and the dimensioning of hardware for the future.

Bootloaders with a communication interface maltow firmware updates by use of an
appropriate network Standardized communication objects and algorithms provide a high
transparencand operator corenience.

The CANopen Bootloader makes this flexibilityagable for devices in CANopen net-
works. Wth the SDO transfer CANopen provides a standardized mechanism for the
transfer of large blocks of data’lhe Bootloader is independent of the application and
works as a minimal CANopen sk ode according to the standard CiA 301.

It allows to use regular CANopen master saitevor configuration tools to downloadane
firmware into the user FLASH code memory.

Paulus is a bootloader optimized to code size and highly compatible to CANdpen.
achieve the aim of minimal code size there are only those functionalities of a CANopen
protocol stack included that are indespenseablevertheless the project is Hible
enough to provide a hardware independent code part for carrying out the protocol.

Implementations for the following controller families awgikble:
* dsPIC33F by Microchip

* DSP Controller TMS320F2812/2808/28335 lexds Instruments
(in developmen)

» 32-bit ARM Controller STM32 by ST Microelectronics

The recent list of supported processorsvalable at our sales departmerRlease ask
our sales team for the latestrgions. V& would of course also makhe adaptions to not
yet supported processors by your order.

The bootloader code is written ratheruensal and modularlt can therefore easily appli-
cable to other architecturebor the full application code tavfurther steps are required:

* The respectie main initializing of the processor
* The FLASH handling for the programming
* The regulation for the linking of loadable applications.

2. CANopen features

Some of the described features amagb available, others can be actied by setting
#def i ne in the file<target>/bl_config.h

Version: 1.1. Paulus Bootloader Page 5 of 34

peort

2.1. NMT

A NMT state machine does not neatense for the CANopen bootloadérhe CANopen
bootloder stays in pre-operational mode that is set immediately after the boBorup.
data communication only the SDO transfer is used.

NMT command activity

reset application reset

reset communication send boot up
start ignored
preoperational permanent
stopped ignored

The NMT commandreset Applicatiomnalyzes the bootloader for a software reset, e.g.
when it was recged dter a successful firmware @oload. TheNMT commandReset
Communicatiordeads to the actétion of a n&v Node Id when LSS is agt. Additional

the SDO communication will be reset.

2.1.1. ImplementationReset Communication

7

resetOD() | | Reset object dictionary

Y

Reset SDO

LSS &&
unconfigured

A Y

send LSS Msg
(unconfigured Node)

send Bootup

Y

send EMCY
(optional)

Page 6 of 34 Paulus Bootloader Version: 1.1.

peort

2.2. NMT Error

Heartbeat creation by the bootloader is possible. Dependent on the target, difigrent v
ants are implemented.

 counting loop in main loop; rather imprecise

« Hardware timerwith higher need of resources

It is also possible to set the heartbeat production aside.

When sufficient code isvailable the bootloader can send a boot-up message.

sewice activity

boot-up message supported

heartbeat fizd heartbeat time O

heartbeat optionalfixed heartbeat time greater than O

The Heartbeat Producer entry igitable at 0x1017. The optional functionality to send
the heartbeat cyclic requires the functionerTriggered().

2.2.1. Implementation

In case the bootloader should sendyelic heartbeat, the functionality must be config-
ured by usingtdef i ne and of cours¢he target specific code must bevailable.

#define BL_USE HB 1

Version: 1.1. Paulus Bootloader Page 7 of 34

peort

main.c

init_xxx.c

initDevice()

init_xxx.c

doCANopen()

bl_canopen.c

bl_canopen.c | sendHeartbeat()

init_xxx.c | timerTriggered()

can.c | canMsgTransmit()

Tk

]

2.3. Emergency

If necessaryemergeng functionalities can be used with limitations. The egeecy
functionality is reduced to the bare sending of a CAN message.

» The COB-ID of emergends fixed (predefined connection set).
* Inhibit time is not supported.

* 0x1001 is not adjusted.

e 0x1003 is not supported.

Activate EMCY functionality in bootloader configuration.

#define BL_USE_EMCY 1

After sending the bootup message, the bootloader can send an additiorgéngmer
This is usefull to signal the bootloader start in difference to an application start.

#defi ne BL_TXEMCY_AFTER _BOOTUP 1

After the bootup message the first defined e@emy is <nding
(encyEr r Msg[EMCY_O] in bl_canopen.k

Page 8 of 34 Paulus Bootloader Version: 1.1.

peort

You can send own emergencys in the same manner.
canMsgTransm t (EMCY_COBI D, &entyErr Msg[EMCY_0]);

2.4. CANopen Layer Setting Services, LSS

CANopen LSS is supported as\aa Paulus can get a CANopen node ID by a LSS Mas-
ter. This information can be forwarded to an application thas started by the Boot-
loader when there is a Shared Memory.

Solutions that use a hardware daisy-chain with simplified LSS services were also been
implemented before.

#define BL_USE LSS 1

2.5. SDO
Paulus Bootloader is SDO server.

Expedited and segmented SDO transfer are supported for access to the object dictionary
and for firmware download.

The reason for the predefinitions that are used mastipe fixed coding of the SDO
command bytes. There is no detailed decoding.

Possible error code is limited to aMerror codes. Mainly error cod@eneric Eror, is
used.

2.6. PDO
No support of PDO service.

2.7. Objectdictionary

The following table gies an werview of implemented objects inaBlus. Optional
entries are madd. Areference is also the EDS file and its documentation in HTML for
mat. The electronic data sheet igadable in the traditional format ggaulus.eddut as
well in the XML based format according CiA 311@msulus.xdd Both were generated by
the CANopen Design Todl

1 Are available as enclosures
2 http://www.port.de/0640

Version: 1.1. Paulus Bootloader Page 9 of 34

peort

Index Subindex | Mode | comment

0x1000 | O co Device Type

0x1001 | O co (*) no error signaling supported
0x1014 | O co (*) fixed Emg COB-ID

0x1017 | O co (*) O or fixed time

0x1018 | 0-2 co (*) Identify object

0x1018 | 3-4 co (*) with LSS

Ox1F50 | O co (*) Number of Elements
Ox1F50 | 1 wo Domain Entry - ne firmware
Ox1F51 | O-1 rw (*) Program Control

Ox1F56 | O-1 ro (*) Application software identification
0x1F57 | 0O-1 ro (*) Flash status identification

(*) to achieve a snall code size these objects can be set aside

Program Control — Ox1F51
Writing the value 0x01 to this entry will cause the Bootloader to start the loaded
application. Writingthe value 0x03 to this entry will "ERASE" the application
FLASH area.
Attention: The start of the application with this entry is harmful, because the
periphery is only partly initialized. The application run should be done byarpo
on reset.

Application software identification — 0x1F56
Depending on the implementation there is only strongly limited support for this
object aailable. Itis possible to read out and in consequence identify the CRC
sum of the flashed application.

Flash status identification — Ox1F57
Depending on the implementation there is only strongly limited support for this
object aailable.

2.7.1. Programming
Install a nev user software with the following steps:

Ox1F51:1 =3
Erase FLASH

0x1F50:1 = Domain
Download and Flash

NMT Node Reset check EMCY
Start Application for errors

The application can be startet during thevetpment also via SD . That simplifies
debugging.

Page 10 of 34 Paulus Bootloader Version: 1.1.

peort

#define BL_CALL_BY SDO 1

Ox1F51:1 =3
Erase FLASH

0x1F50:1 = Domain
Download and Flash

Ox1F51:1 =1 check EMCY
Start Application for errors

A

2.8. CANopen node number and bit rate

If LSS service is not implemented easier methods can be chosen, such as reading out of
switches or EEP@M. In this case the functiorgetNodeld) andgeBitRatg) provided
in <target>/<tar get>_init.c have provide thees information to the CANopen layer.

LSS service can be added in the bootloader configufation

#define BL_USE LSS 1

2.9. Dataexchange between Paulus and the User Application

The interface between Paulus protocol layer and hemehvapplication is irbl_inter-
face.[ch]

Applications should use macros definedininterface.hto jump back to the bootloader
According to the Paulus principles the application has to request an update by jumping
back to the boot loader using the macro

BOOTLOADER_JUMP(APPL) ;
Using
BOOTLOADER _JUMP(BL) ;

the boot loader will be called, checks again the application image and stagmit by
case of an CRC error Paulus will stay in boot loader modexpetis an ng image via
object 1f50.

3 Target platform and specific information or hints cawals be found in the file
<target>/bl_config.hthat is part of the source code dety.

Version: 1.1. Paulus Bootloader Page 11 of 34

peort

3. Structure of the directory

Hardware dependent and hardware independent source code are in different directories.
That makes handling of the sources in CVS easier.

software

boot loader

<target>
<hw: dsPIC33>

<target>
<hw: horch>

<target>
<hw: stm32>

tools

The directorybootloadercontains the hardsve independent part of the sodive. The
hardware dependent part of the software is named after its hardwar&éoech. Config-
uration is stored in thieorch-directory Projects andnain.care stored irsoftware

The tools directory contains software that is necessary to create images for the boot-
loader.

4. Hardware Requirements

By dividing protocol layer and HALthe bootloader can be used on all supportegketar
platforms. Solelythe FLASH routines hee o be aopted.

Depending on CPU, compiler and compiler settings the consumption of rescariess v
Typical values are 4-8KiB flash and 2KiB RAM.

Every PC interface hardware can be used as a client counterpart

- e.g. a USB-CAN interface (CPC-USB or USB-XS) oragegyyay according to the CiA
DS309-3 (EtherCAN).

4HAL — Hardware Abstraction Layer

Page 12 of 34 Paulus Bootloader Version: 1.1.

peort

5. Software Requirements

The downloading software has to support the CANopen SDO domain trafRsiex free
download of thelownloader goto: http://www.port.de

Best results can be obtained by using standard CANopen configuration teotiselik
CANopen Device MonitoP.

5 http://www.port.de/0642

Version: 1.1. Paulus Bootloader Page 13 of 34

pert

6. Implementation

6.1. Processes

6.1.1. MainLoop

Program flev in main.c

Page 14 of 34

|

basic
HW initialization

Y

check for
valid application

Y
HW initialization,
among others CAN

Y
CANopen
initialization

-

Y

waiting for
CAN message

Y

CANopen
interpretation

Paulus Bootloader

Version: 1.1.

peort

6.1.2. Tesing for valid applications

CRC available? 90
[calculate CRC]

es no
y CRC correct?

/ Y

[go to application] [stay in bootloader]

callApplication(), <hw>_appl.c

Version: 1.1. Paulus Bootloader Page 15 of 34

peort

6.1.3. Intempretation of CANopen requests

SDO request?

yes

no

segm. SDO?
)

[SDO Response]

yes

NMNS o [do segmented SDO}

[SDO Abort }
no
[doNMT]

doCANopen(), bl_canopen.c

Other services accordingly.

Page 16 of 34 Paulus Bootloader

Version: 1.1.

peort

6.2. Used structures

6.2.1. CanMsgRx_T

typedef struct

{
UNSI GNED16 St dl d; [**< identifier */
UNSI GNED8 DLC; [**< message |l ength */
uni on {
UNSI GNED32 u32Dat a[2] ; [**< data as 2x32bit val ues */
UNSI GNED16 ul6Dat a[4] ; [**< data as 4x16bit val ues */
UNSI GNED8 u8Dat af 8] ; [**< data as 8x8bit val ues */
} Msg;
} CanMsgRx_T,;

low-level Receive mesga

CanMsgRx_T is from the CAN dser. There is no content orvalid content when Stdid
== OxFFFF.

6.2.2. CanMsgTx_T

t ypedef struct

{
UNSI GNED8 DLC; [**< nmessage | ength */
uni on {
UNSI GNED32 u32Dat a[2] ; [**< data as 2x32bit val ues */
UNSI GNED16 ul6Dat a[4] ; [**< data as 4x16bit val ues */
UNSI GNED8 u8Dat af 8] ; [**< data as 8x8bit val ues */
} Msg;
} CanMsgTx_T,;

low-level Tansmit messge

UNSIGNEDS8 entries hae © be wsed with care on DSP systems, becausg e
internal 16bit in size!

CanMsgTx_T is used to define send and response messages. These definitions can be
stored in flash. Thedo not contain CAN-IDs which is often dependent on the node ID.

Example

static const CanMsgTx_T boot upMsg = {
1, {.u32Data[0] = Oul, Oul}
)i

Version: 1.1. Paulus Bootloader Page 17 of 34

peort

6.2.3. SdoRequest T

typedef struct
{
UNSI GNED32 r equest ; [**< first 4 Bytes of the SDO Request */
[**< contai ns command, |ndex and Subi ndex */
[**< of the Request */
CanMsgTx_T response; [/**< conplete SDO Response */

} SdoRequest T,;

This structure consists mainly of the object dictionarlgere are mainly constant entries
defined that are transmitted by exp. SDO transfer.

At that point the alues are in the RAM and can be changed during the initialization.
That allows for example to put the version of the bootloader into the object dictidhary
is also possible to put down software states in the object dictjcataayhter point of
time.

example:
#defi ne SDO REQ COBI D (0x600 + nodel d)
#def i ne SDO RESP_COBI D (0x580 + nodel d)

static SdoRequest T sdoRequest[] = {
#def i ne SDO 1000 0 _IDX 0O
{0x00100040ul /* 0 - sdo 1000:0 */,
{8, {. u32Dat a[0] =0x00100043ul , 0XxO000FFFEul }} 1},

6.3. segmented SDO transfer
SDO upload is not supported!

Initiate SDO Download

CMD | Inde,Subinde | Length

Request 0x21 | Ox1F50 0x01 0x0000461
Response| 0x60| Ox1F50 0x01 0x0000000

o

o

Page 18 of 34 Paulus Bootloader Version: 1.1.

peort

SDO Download

CMD data
Request 0x00 7 Byte
Response 0x20 reserved
Request 0x00+0x10<togglebit> 7 Byte
Response 0x20+0x10<togglebit> reserved

Request 0x00+<togglebit>+<7-Lange> 0..7 Byte
Response 0x20+<togglebit>+<7-Lange> reserved

7. Implementation Details and Application Requirements

The Paulus Bootloader can only handle application programs in binary format. The pro-
cessing of programs in the Intel-4€ormat will be supported in the future if required by
customers.

The Bootloader checks the reeml data by a CRC checksum. Therefore an application
header of 128 byte is necessaryhis header can be generated with the tool
paulus_cksumand contains the following information:

struct ({
UNSI GNED32 | engt h; [* application |Iength */
UNSI GNED16 crc; [* application crc */
UNSI GNED16 applicationType; /* reserved */

void (* entry_point)(void); [* Application Entry point */
} APPLI CATI ON_HEADER T;

Unused bytes in the application header are by default 0Ox00. There mayebendis
depending on the target.

Version: 1.1. Paulus Bootloader Page 19 of 34

peort

8. Poarting to STM32

Porting was carried out with the gcc basedettgment environment CrossWorks for
ARM version 2. The root of the project directory is in projectgiéellus _cw_stm32.hzp
The following figure shows the directory structure:

-- Readne
-- THUMB Debug
-- THUMB Rel ease
-- boot | oader
| -- bl _can.h
bl _canopen.c
bl _canopen. h
-- bl _crc.c
-- bl _hw h
-- bl _type.h
-- bl _user.c

I

I

I

I

I

I

I

I

I

I

I

I

| -- paul us. can

| -- paul us. eds

| -- paul us. ht n

| paul us. xdd

| styl e.css

| -- flash_pl acenent . xni
|-- hello

| | -- flash_pl acenent . xm
| |-- init.c

| |-- main.c

| | -- main.c.bak

| \-- stnB2f10x_conf. h
|-- main.c
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

1
1
_—
o
(7]

—
'
'

-- paul us_cw_st n82. hzp
-- paul us_cw st nB82. hzs
-- stnB2 $(TargetDir)
| -- STMB2F10x_Startup.s
| -- STM32_Startup.s
| -- STM32_Target.js
| -- bl _config.h
| -- cw_settings
| -- environ.h
[-- fwib3.3.0
| |-- inc
| \-- src
| -- I'inkeropts
| -- stnB2_appl.c
| -- stnmB2_can.c
| -- stnB2_flash.c
| -- stnmB2_flash. h
|-- stmB2_init.c
| -- stnmB2f 10x_conf. h
| -- stmB2f10x_it.c
[-- stnB2f10x_it.h
\-- thunb crtO.s
-- tools
| -- paul us_cksum
| -- paul us_cksum c
\-- create

Page 20 of 34 Paulus Bootloader Version: 1.1.

peort

When using different delopment environments it is important to stick to theegi
directory structure and the correct setup of the include paths. CA#t dnd flash rou-
tines must be provided for the targets.

$(TargetDir)/$(Taget) flash.[ch]| FLASHRoutinen
$(TargetDir)/$(Taget) can.[ch] CANRoutinen
$(TargetDir)/$(Taget)_init.c CPUnitialisierung
$(TargetDir)/emiron.h allgemeineHeader

All of these modulesail back to functions of the ST firmware librafgy use of the gen-
eral header filenviron.hthe header files of firmware Lib are insertda. do so he con-
figuration filestm32f10x_conf.bf firmware Lib must be adjusted.

Initialization of the CAN controller is done in modutgarget>/<targe> can.c In
module <target>/targew>_init.c the 1O pins in function and assignment for CAN-RX
and CAN-TX hae o be nitialized. Dueto type and dierse possibilities there may be
adjustments necessary.

Check the code of the functioRCC_Configuratiof), GPIO_Configuratiof) andinit-
Devicd) in the filestm32_init.cand the use#tdef i neSTM32F10 in bl_config.h

Auto-Bus-on function of the CAN controller is used muRis. Itconstantly check for
recessie kus and vakes the CAN controller automatically up fromassof. In case of
hardware errors it could disturb the complete construction.

In modulestm32_init.cthere must be the function®tBitRatg) and geNodeld() avail-

able. Usuallythis is done by reading out jumpers or the values are stored in an area of
the FLASH. For internal coding of the CAN bit rate, the CANopen xdeused, a num-

ber between 0 and &or easier reading the following defines axitable bl_config.h

#define BL_USED Bl TRATE | NDEX Bl TRATE | NDEX_1000K

During development a debug output can be waed by a serial interface In header
bl_config.hline

#defi ne DEBUG 1

must be actie.

In general the initialization function will initialize only the absolutely necessary peripher
als like dock system, CAN, memory management as neededaju® Neertheless,

there might be situations where it makes sense that Paulus initializes other functionalities
which are later used by the application as wéls an example consider theABT for

Debug messages and LEDs as simple status displays.

Version: 1.1. Paulus Bootloader Page 21 of 34

peort

8.1. Memoryusage

Shared-RAM 0x2000 27F0

RAM
0x2000 0000
FLASH PROGRAM_END_ADR
Application
User code

Vector table + 0x100
Application Header| FLASH_PROGRAM_START_ADR

gap

Paulus

0x0000 0000 Vector table 0x0800 0000

Memory usage(example with 10 KiB RAM)

The original flash programming of the firrave Lib is written in 2 byte styleTherefore

Paulus uses the firmare Lib functionFLASH_PogramHalfWord); This function taks

over to unlock the programming function, writing and waiting for completion. The mem-
ory area for the application i.e. the area that can be deleted and rewritten is defined in
stm32/stm32_flashwith constants

#def i ne FLASH PROGRAM START ADR
#def i ne FLASH PROGRAM END ADR

It must be adjusted when the the processor is changeat defines the area which is
deleted when writing to 0x1f51:1=3 The area that is written is defined by the length of
the download image.

Page 22 of 34 Paulus Bootloader Version: 1.1.

peort

8.1.1. Code size

The following table shows typical FLASH sizes of an typical minimum implementation

section size
.vectors 236
.init 384
text 4.1KiB
.rodata 564
.data 256
overall 0x1660(5.6 KiB)

8.2. Generating the user image
The user image is created as follows.

IDE
using special settings

ELF File

objdump

objcopy

Binary

paulus_cksum

Binary with Application Header

Start address / entry point

The shell scriptools/createstm32ingge organizes these steps.
The following command sequence shows the result of objdump:

6 without LSS

Version: 1.1.

Paulus Bootloader

Page 23 of 34

peort

$ /usr/sharel/ crossworks_for_arm 2.0/ gcc/ bin/obj dunp -f THUMB Rel ease/ hello. el f

THUMB Rel ease/ hel |l 0. el f: file format el f32-littlearm
architecture: arm flags 0x00000012

EXEC P, HAS SYMS

start address 0x080022ed

Using CrossWorks, thestart addess is the address of theeset handler in
STM32_Startup.s

8.2.1. paulus_cksum

paulus_cksumcalculates the CRC checksum of the binary application program,-gener
ates the application header and stores the application header and the application program
in a nav file. Thisfile can be loaded in a device with the Bootloader.

Application software

-¢ o

Application heade Application program image

The Bootloader checks the reasl data by a CRC checksum. Therefore an application
header is necessaryhis header can be generated with the paellus_cksumand con-
tains the following information as described in chaptaPPLI CATI ON_HEADER T.

Unused bytes in the application header are set to OxFF with the STM32. Length of the
application header is 256 bytes.
Example:

$ tool s/ paul us_cksum-v -1 256 -C -O downl oad. bin -v -x $EXEC appl . bin
si ze: 0x00003524, crc: Oxl1lcb5, file: >appl.bin<

$ | appl.bin downl oad. bin

-rwxrwxrwx 1 oe users 13604 9. Sep 16:59 appl . bi n*

-rwrwrw 1 oe users 13732 9. Sep 17:00 downl oad. bin

Besides checking the CRC the bootloader is checking also the size information of the
header A size of O is imalid. An application may destyothe valid’ information by
overwriting the size information with 0. That isvedys possible on the STM32 FLASH,
because erased content is OXFF.

8.3. Creation of the application

Fadlowing explanations are written as general as possible, but refer to the use of Cross-
Works for ARM version 2.

8.3.1. Start address

It is important that the start address of the user application in FLASH and the information
in the Paulus configuration in Flashstm32/stm32_flashdre the sameThe user image
is stored into FLASH behind Paulus code. Therefore the image is flashed to

Page 24 of 34 Paulus Bootloader Version: 1.1.

peort

#define FLASH DATA START ADR

The actual application starts 256 byte lat€he gven gart address for the linker is e.g.
for CrossWorks with

| i nker _section_pl acenent _macr os="FLASH START=0x8002100" 7

From the STM32 manual:
After this startup delay has elapsed, the CPU fetches the top-&fisiae
from addess 0x0000 0000, then starts code execution from the boot memory
starting from 0x0000 0004.

A STM32 program starts as follows (names as used in Crags)V (Address labels as
used in CrossWorks):

Program area

Interrupt
vectors

reset_handler 0x0800 0004
0x0000 0000 __stack_end 0x0800 0000

In order to start the application correctly it is necessary to set didfe
STARTUP_FROM RESET when compilingSTM32_ Startup.sOtherwise, at least Cross-
Works compiles a loop as theset handlercalled reset_waitto give a Delugger the
chance to stopxecution at e defined location.

8.4. Use case

Paulus Bootloader and an example use case are included in therydel two projects
for one Solution The application is the projetiello which gives aut instruction mes-
sages at the ART and receves instructions by the user at theARIT. It is possible to

7 allocated under the premise that Paulus takes 0x2000 byte.

Version: 1.1. Paulus Bootloader Page 25 of 34

peort

command different possibilities to return tAURLUS. Both, application and RULUS,
are communicating via the shared memory in RAM by usirfgréifit signatures built of
4 bytes in RAM.

Page 26 of 34 Paulus Bootloader Version: 1.1.

peort

9. Porting to dsPIC33

Porting was carried out witthe Microchip MPLAB deelopment emironment. Theoot
of the project directory is in project filgaulus_dspic.mcpThe following figure shas
the directory structure:

oot | oader

bl _can. h

bl _canopen. c

bl _canopen. h

bl _config.h_tenplate
bl crc.c

bl _hw. h

bl type.h

bl user.c

C

Readne

bl _config.h

bl _flash.h

bl _interface.c

bl _interface.h

dspi c_appl . c

dspi c_can.c
dspic_flash.c
dspic_flash.h

dspic init.c

envi ron. h
p33FJ256GP710.gld >gcc 3. 20
p33FJ256GP710 ol d. gl d <gcc 3. 20

paul us. can
paul us. eds

\-- paul us. htm

exanpl es Exanpl e projects
mai n. ¢

paul us_dspic. bin

paul us_dspi c. cof

paul us_dspi c. hex

paul us_dspi c. map

paul us_dspi c. ncp Paul us proj ect
paul us_dspi c. nts

paul us_dspi c. ncw

tool s

--
\--

paul us_cksum
paul us_cksum c
dsPlI C binutils

| -- obj copy
\-- obj dunmp
ver si on. h
Version: 1.1. Paulus Bootloader

Page 27 of 34

peort

These components were used for the porting:

Derivate dsPic33FJ256GP710
Quarz 8MHz

IDE MPlab8.60
Compiler | pic30-gcw3.24

Settings for CAN and flash are dependent on the usedhidsti Thereare also depen-
dencies on the used clock.

dsPIC/dspic_can.[ch] CARoutinen

dsPIC/dspic_init.c CPlhitialisierung
dsPIC/dspic_flash.[ch] FLASRoutinen
dsPIC/eriron.h allgemeineHeader

dsPIC/bl_interfce.[ch] | Interhce zu Applikation

To achieve a nminimal code size interrupts are not appliedls consequence the IVT is
free for usage by the application. The reset vector must point tether\address of the
bootloader to makaure it starts there and carries out check sum.

' Reset vector is deleted during Erase arawritten with the applications images. |

For the adaption of the flah routines some steps are nece33ayare indspic_flash.h
and are dependent on the daies.

/* (reserved) Paul us code size */
#def i ne FLASH S| ZE_PAULUS 16 /* in KiB */

[* first flash address (incl. Bootl oader) */
#def i ne FLASH START_ADR 0x00000000ul

/* Define the FLASH Page Size depending on the used device */
#defi ne FLASH ERASE PAGE S| ZE (512*2)

/* Nunber of words to gbe flashed at a tinme */

#defi ne FLASH PACE SIZE (64*4) /* in words */

Flashing starts with address 0. The application starts after the bootldadskip the
bootloader the addresses are needed.

Page 28 of 34 Paulus Bootloader Version: 1.1.

peort

[** Applikationsstartaddr imFlash (incl header) */

/* Reset vector - start of flashing */
#def i ne FLASH PROGRAM START_ADR 0x0000u

/* word address */
#defi ne FLASH PROGRAM REAL START ADR 0x4000u

[** max. Application size imFlash (incl header) */
#def i ne FLASH PROGRAM MAX S| ZE \
(FLASH_PROGRAM END ADR - FLASH PROGRAM START_ADR + 1)

/[* max siez wthout vectors - word size */
#def i ne FLASH PROGRAM REAL_ NMAX S| ZE \
(FLASH PROGRAM END ADR - FLASH PROGRAM REAL_ START ADR + 1)

Maximum size of the application and end of flash depend on the choseatederi

/[* FLASH config data - word address */
#if defi ned(DSPI C33FJ64)
#def i ne FLASH PROGRAM END_ADR OxABFF

#elif defined(DSPl C33FJ128)
#defi ne FLASH PROGRAM END ADR Ox157FF

#elif defined(DSPlI C33FJ256)
#defi ne FLASH _PROGRAM END_ADR Ox2ABFF /* word address */

#el se
error "One DSP version has to be specified"
#endi f

When Paulus size was not changed, only adaption of the valuEL#&®H PRO-
GRAM _END_ADR s necessarylt is recommended to check the other values.

Value for FLASH PROGRAM REAL _START_ADR must be the same as the linker set-
tings of Paulus (after the memory apFagram) and the application linker settings (start
of program)

Version: 1.1. Paulus Bootloader Page 29 of 34

peort

9.1. Memory

RAM

Application
User code

$APPL_START

Paulus
0x0000 0400

Config Area (CRC)

0x0000 0200

Vector table IVT/AIVT

Jump to Paulus

0x0000 0000

.reset

The APPL_SART value is set with 0x4000 which allows an easy implementation with
delugging and a great number of printf output. After doing own adjustments it is possi-
ble to optimize this value to get more space for the application.

9.2. Application

In linker file (e.g. paulusExample_p33FJ256GP710)glithe reset gctor must be on
address 0, but it has to point to the beginning of Paulus.

__CODE_BASE = 0x4000;
__BL_BASE = 0x400;

Page 30 of 34 Paulus Bootloader Version: 1.1.

peort

SECTI ONS
.reset :

[* Junp to the boot-I|oader entry */
SHORT(ABSOLUTE(__BL_BASE)) ;

SHORT(0x04) ;
SHORT((ABSOLUTE(__BL_BASE) >> 16) & Ox7F);
SHORT(0) ;
} >reset
}
The application starts after Paulus.
MEMORY
{
program (xr) : ORIG N = 0x4000, LENGTH = 0x26C00
}

The vector address mustwde on he first possible address in the linkerfile.

0x004000 __reset PRI

The application should not contain fuse settineey blow up the image and &ulus
uses its own fuse settings.

9.2.1. Debugging

It is recommenden to delop the application without the bootloadéior debugging with
the bootloader following steps are recommended.

* Paulus is already installed on dsPic33. It was flashed in debug mode.
» The application project is opened in MPLAB.

Application and download image are creatPdulus has to be asgtited with "RIN" in
the deligger Ignore the note that memory has changed. The image is flashed by
Paulus (not by debugger).

» After a reset of the processBaulus analyzes the checksum and starts the application.
* Now it is possible to debug as usual.

Version: 1.1. Paulus Bootloader Page 31 of 34

peort

9.3. Binaryimage
The binary image is created of the kind to makrking within Paulus as easy as possi-
ble. MPLAB routines are used:

» _write_flash24() - flashing the image, needs 4 byte per instruction

e memcly_p2d24() - for CRC calculating of the application supplies 3 byte per instruc-
tion

e _memcpy_p2d16() - for data reading from flash, 2 byte per instruction

Instruction: Doublevord
0x00 Instruction
Constants
Byte 3 Byte 2 Byte 1 Byte O

For calculating CRC byte 3 is ignored.
The address area of the botloader is transmitted with the image, but not flashed.

Page 32 of 34 Paulus Bootloader Version: 1.1.

peort

9.4. Generation of the user image
The user image is created with following steps.

IDE
using special settings

Hex File

objcopy

Binary

paulus_cksum

Binary with Application Headet

The shell scriptreateorganizes these steps.

9.4.1. objcopy

The creation of the binary image is done out of thecifile. It is recommended not to
compile a fuse bit configuration into the applicatidine fuse bit configuration ofaRlus

is used. The fuse bit configuration within the application is therefore dispensable and
would enlarge the binary image significantly .

objcopy -1 ihex -O binary --gap-fill OxFF appl.hex appl.bin
-l ihex Inputformat ihex
-O binary Outputformat binary

——gap-fill OxFF fill gaps with OXFF

Version: 1.1. Paulus Bootloader Page 33 of 34

peort

9.4.2. paulus_cksum

paulus_cksumcalculates the CRC checksum of the binary application program,-gener
ates the application header and stores the application header and the application program
in a nav file. Thisfile can be loaded in a device with the bootloader.

\ppl. vectors 3 Application software, CRC part
Application L .
IVT AIVT header Bootloade Application program image
Reset

The bootloader checks the raagi data by a CRC checksum. Therefore an application
header of 128 byte is necessaryhis header can be generated with the tool
paulus_cksumand contains the following information as described in chapt&PLI -

CATI ON_HEADER T.

Bsp: dsPic33FJ256GP710

paul us_cksum -P -C -a 0x400 -b 0x8000 -c 0x55800 -x 0x4000 \
-O appl .crc appl.bin

-P dsPic33

-C CANopenCRC

-a CRCBlock address (byte address)

-b Applicationstart address (byte address)

-F Flashend address (byte address)

-O outputfile (incl appl.bin) == complete domain
-x Entrypoint (without comersion)

The Flash end address is required to ignore the Configuration bits, if this bits are included
in the binary The used addresses are byte addresses, the common Word-addresses of
dsPIC33 hee o be diplicated, therefore.

Page 34 of 34 Paulus Bootloader Version: 1.1.

peort

	1. General Remarks
	2. CANopen features
	2.1. NMT
	2.1.1. Implementation Reset Communication

	2.2. NMT Error
	2.2.1. Implementation

	2.3. Emergency
	2.4. CANopen Layer Setting Services, LSS
	2.5. SDO
	2.6. PDO
	2.7. Object dictionary
	2.7.1. Programming

	2.8. CANopen node number and bit rate

	3. Structure of the directory
	4. Hardware Requirements
	5. Software Requirements
	6. Implementation
	6.1. Processes
	6.1.1. Main Loop
	6.1.2. Tesing for valid applications
	6.1.3. Interpretation of CANopen requests

	6.2. Used structures
	6.2.1. CanMsgRx_T
	6.2.2. CanMsgTx_T
	6.2.3. SdoRequest_T

	6.3. segmented SDO transfer

	7. Implementation Details and Application Requirements
	8. Porting to STM32
	8.1. Memory usage
	8.1.1. Code size

	8.2. Generating the user image
	8.2.1. paulus_cksum

	8.3. Creation of the application
	8.3.1. Start address

	8.4. Use case

	9. Porting to dsPIC33
	9.1. Memory
	9.2. Application
	9.2.1. Debugging

	9.3. Binary image
	9.4. Generation of the user image
	9.4.1. objcopy
	9.4.2. paulus_cksum

