FPML Validation

Joint proposal from UBS Warburg,
University College London, and
Systemwire.

Version: 1.0
Editor: Bryan Thal (UBS Warburg)

Participants: Wolfgang Emmerich (UCL)
Steven Lord (UBS Warburg)
Daniel Dui (UCL)

Christian Nentwich (Systemwire)

Date: 25/06/02

Change History:

Date Version Author Change description

10/05/02 0.1 B. Thal First draft release distributed for
comments and feedback.

30/05/02 0.95 W. Emmerich

10/06/02 0.97 D. Dui

19/06/02 0.99 B. Thal Final review

25/06/02 1.0 D. Dui Final changes

Page 2 of 62

Date: 25/06/02

Table of Contents

1

2

4

7

INTRODUCTION AND BACK GROUND ...ttt ettt sttt s bt s s s ae e s s sabs e s s s bae s s sabessssabaesssbaeessnseesssarens 5
VALIDATION REQUIREMENTS.... .ttt s ettt e s te et e et e e atessaessaesteesseensesnsesneesseeseensesnsesneessenss 5
21 FPML TooLS WORKSHOP CONCLUSIONS ON VALIDATION REQUIREMENTScoiiititiiiiieeieiiiiriieeee e s sssissreesessssssssssnenas 5
2.2 ABILITY TO EXPRESS AND HANDLE DIFFERENT CLASSES OF VALIDATION RULES ...cviiiiiiiiittiieee et 6
2.3 COMPARISON TO EXTERNAL DATA SOURCES (E.G. FPML SCHEMES)....c.utcciieieiiesieesteesieeseesee e steesteesveete e snnesneens 6
2.4 L ST Y = 2P 6
25 CLASSIFICATION OF PRODUGCT TYPES .. uuttttiitiiiiiiuttteeeesssasssssessesssasissssstsesssssisssssssessssmsssssstesssssmissssseessssmmsssseessssssses 6
26 COMPLIANCE WITH XML STANDARDS (XPATH AND XLINK)...eitrtiiriirieneeie sttt esie s st 7
2.7 EFFICIENT EXECUTION ..viiiiteieeietteesieesteessesstessasseessaassssssasssessassssssaassssssasssessassssssaasesessassssssansesesansesessassssssssseeessnsesessans 7
POSSIBLE APPROACHES TO VALIDATION ...ttt ittt e s ettt es e s s s sssaaassssssssesssssssesesssssssrsssseessssssnses 7
31 D I 11 7
3.2 ATTRIBUTE GRAMMARSutttiieiiiieittttteeeesssasiassessssssasissestsesssssiasssstsesssssasssssssessssssssssssesssssssssssseessssssssssssessessssssssssees 7
3.3 [0 L R 8
34 SPECIFICATION OF VALIDATION RULESWITH XSLT coeiiiiiiiiitiiiiie ettt sbbaae e e s s e sbbnse e e s s s sabbnaeees e e 8
35 S 1= N1 T OO 8
3.6 S L LY X 2 A 2P 8
XLINKIT VALIDATION RULE LANGUAGE ...ttt sttt sttt ba e s s ba e s saae e s s saba e s s ebanesanns 9
4.1 COMMON MECHANISMS ... iititteiie e e e eeiitbe et e e s s s e sib b e eeeesssesaab b s aeeeesessasbbabeeseesssasbbabeeeseessaabsbeeeeaeseessabbaeeeassessnabbrbeeesesaan 10
411 S (S = ol oo TSP 10
4.1.2 LY/ =c= 0 1= = RO 10
4.2 [0 Y 1= N S = IS TR 11
421 [L= 1 0T IR 11
422 EXAIMIDIES. ...ttt b e h b e R b bR bR R bR R R e e bRt b e R et h et be e enes 12
4.3 [(O = = TSP 13
431 [7S T1 0T IR 13
432 EXAIMPIES. .. .ttt ettt e b bt b b e e oA £ e Ao Ee Rt SRt SR e ReeRe e e e b e eRe e Ee e Rt eReeRe e e et neenhe e e 13
4.4 [(O T =SSP 14
441 Lo g1 1= Tl =T g 1= = R 14
4.5 [(0T = T =S PSRR 23
451 (1K) 0 T2 1 IS = TR 24
452 CONSISEENCY TUIES ... ettt ettt ettt bbbt b e e e bt b e e st s b et e st s b et et e b et e st st et et nb et 24
453 EXAIMIDIES. ...ttt bt h b e s b e R b e R b AR Rt et b Rt b e Rt b et et ae e enes 24
4.6 (@)= 12T [0 =7 26
46.1 (@0 10 S = F USSP PRSP ORUSTPPPRPROIN 26
46.2 OpeErator IMPIEMENTALION. ..ottt b bbbt bbb et sbe e 27
46.3 L= o o] ST SS PP 28
4.7 1Y X0t T 1 TSP 28
47.1 LY E= Lo o T B 1< {1 2T (o) TR 29
4.7.2 Macro INCIUSION @NA PrOCESSINGcccuieiiieiiiie e see st ste e te s ee st e s e te e te et eeatesaaesaaesteesaeesneensesnsesneesreanseenes 30
FPML 1.OVALIDATION RULES. ... o oottt ettt sttt sttt st e e s et e e s st e e s s e bt e e s seabee s s sabaeessbbeessanbaesssanens 31
5.1 [11 O] 272 31
5.2 RULE DEVELOPMENT PROGCESS......uuuutuuututatasnussssssssssassnns 31
53 Y 1 LU 31
RULE IMPLEMENTATION IN XL INK T ooiiieiieiis et e st ee s s ee s seeeeesssseessassesssasssesssssesssasssssssssssesssssesesassssessasees 33
6.1 (@)= 127N [0 =7 R 33
6.1.1 OPEFALON INEEITACES.cvieeiieteree et b et b e e bbb bbbt s b et et be bt sbe e 33
6.1.2 OPErator DEfINITIONeitiiie ittt e et b e aesh e et e e se e st e sbe s aeeheeaeeseeseesbesbesbeebeeneenseseenbesbesreas 34
6.2 RO =]] = =N = .1, SRR 37
6.3 RULES RENDERED IN 1ST ORDER LOGIC ...ceiiiiiutttitiiesiiiiitsseeeesseessssssesseesssssssns 48
6.4 REFERENCE IMPLEMENTATION ...ciiiittttttttteiisisttteetessssasssbssseesssssasssssesssssssssssssssssssssasssssssssesssassssssssessssssssssssseessssssssns 53
[y IR I O] N R 54

Page 3 of 62

Date: 25/06/02

71 COVERAGE OF REQUIREMENTS. ¢.etiiiiiiiitttttttesitisistbsstessssasssssssssssssssasssssssssssssassssssssssssssssssssssesssssssssssssessssssssssssseesssns 54
7.2 ON THE BENEFITS OF FORMALIZATIONttetteutteutesteesteesseessesssesessseesseasseasesssssssesssessesssesssesnsesssssesssesssesnsessesssessenns 55
7.3 PERFORMANCEeeeteertereesresseesseesseesreesseseesnesse e sseesseeseeas e easese e e se e e aR e e eR e e ame e ane s e e eae e eRe e ere e Rt e an e earene e e nm e e nreenreenreenesanes 55
8 SUMMARY AND RECOMMENDATION ..ottt sttt sttt sttt sttt st sbe e b b e b s beseebesbeneebesbe e 56
9.1 RULELANGUAGE SYNTAX (XML SCHEMA) ..ccuiiiiieieiteieie sttt sttt sttt sttt sttt sttt bt sttt sttt st st nnene 56
9.2 DOCUMENT SET DEFINITION SYNTAX (XIML SCHEMA)ctiuiiiiirieirie ettt sttt sttt sttt st st st 58
9.3 RULE SET DEFINITION SYNTAX (XML SCHEMA)ccutiiiiiiirieisit ettt sttt sttt sttt 59
9.4 OPERATOR DEFINITION SYNTAX (XML SCHEMA).....citiiiiirieieitsiertete ettt sttt sttt sttt st be et sttt st sbe e 60
9.5 MACRO LANGUAGE SYNTAX (XIML SCHEMA) ..e.ueiieeiiectie st et eteetesteesteesteesteestesessaeesneesaaenteenteentessaessaesseessessesnnas 61

Page 4 of 62

Date: 25/06/02

1 Introduction and Background

Annual ISDA Operations Surveys have found that delays and high costsin the processing of complex OTC Derivative
trades are to some extent due to the manual nature of trade validation and trade confirmation processing. Trade validation
ensures that trades that are exchanged between counterparties or between different systems of the same organization meet a
number of consistency constraints. During trade confirmation, details about a trade held by one organization are checked
against the details provided by the counterparty. The trade matching process is required to identify inconsistencies between
them.

With the trend towards XML based information representation in finance and the resultant need for systematic ways of
identifying and reconciling inconsistencies between XML documents, UBS Warburg is sponsoring a PhD studentship at
University College London. The aim of the studentship, which started in September 2001, is to investigate the management
of inconsistency in processing XML based financial trading datafor OTC derivative trades. The associated business goal is
to support more effective strai ght-through-processing of financial trading data.

The aim of this proposal isto put forward a validation rule language for FpML, which can be used to unambiguously
describe the rules and also to execute them. It looks at the requirements for validation drawing on work carried out by the
PhD student and the FpML Tools workshop in August 2001. It then puts forward the grammar, syntax and operation of the
validation rule language based on Xpath before setting out a sample ruleset for FpML 1.0.

The Software Systems Engineering Group at University College London has along-standing interest in all aspects of
inconsistency management. The group has developed algorithms and technol ogies that support consistency checks across
distributed data represented in XML. The IPR of these algorithms and technologies have been transferred to Systemwire, a
UCL spin-off company. Systemwire markets a product family called xlinkit, which supports the specification of
consistency constraints, their efficient execution and various forms of diagnoses of the results of consistency checks. More
details about the company and xlinkit can be found at http://www.systemwire.com.

The work carried out to date has looked at business efficiency issues and at extending the algorithms and consistency
checking architeecture of xlinkit to make it suitable for FpML Version 1.0. Following demonstrations of this work to
members of the FpML Standards Committee, UBS Warburg, University College London and Systemwire would like to put
forward a proposal for FpML Validation.

2 Validation Requirements

Validation isacritical requirement for any organization implemeting FpML. It wasidentified as a high priority area during
the FpML Toolsworkshop in August 2001. High-level requirements for validation were identified and refined at the
workshop (see http://www.fpml.org/tool s/tool swork.asp). These requirements are set out below. The PhD student’s
research has also investigated financial institutions’ requirements for checking electronic trade representations. This has
resulted in an ordering of sources of inconsistency.

2.1 FpML Tools Workshop Conclusions on Validation Requirements
We reached the following conclusions:

R2.1.1: Validation should focus on semantic or business validation. It is assumed that XML parsers are used for XML
syntax validation based on the FpML DTD/schema (for both well-formedness and syntactic validation).

R2.1.2: Therewas a preference for an XML based predicate or rule definition, as tools can be built to process such rules.

R2.1.3: Thisincludes GUI toolsto enable business anaysts to formulate and update the rules. The provision of asimple
API to alow callout for programmed validation was discussed as an aternative.

R2.1.4: FpML could supply validation rules with each version of FpML for ‘community wide' issues. It is hoped that this
proposal will help to facilitate this.

In conclusion it was noted by the workshop participants that validation is a critical and timely areafor FpML to consider, as
all institutions and vendors working with FpML have the requirement.

Page 5 of 62

Date: 25/06/02

2.2 Ability to Express and Handle Different Classes of Validation Rules
In refinement of R2.1.4, the following examples of classes or levels of validation rule have been identified:

R2.2.1: Community/Industry Rules: these would come from FpML and include product and market conventions. They
could include regulatory requirements for a particular product.

R2.2.2: Company Specific Rules: these would be rules specific to a company and implement policy requirements, such as
market or credit risk parameters or collateral requirements.

R2.2.3: Department Specific Rules: these would be rules taking into account how a particular Department processes a
document. It could include threshold levels at which atrade would require manual intervention.

R2.2.4: System Specific Rules: these would include rules that are to be enforced by particular trading systemsin order to
be able to process particular trades.

These classes are not considered to be exhaustive. The requirement is for any humber of classes to be handled.
Furthermore, we anticipate that the different FpML product working groups will determine a significant number of
validation rules (atotal of 100-300).

2.3 Comparison to External Data Sources (e.g. FpML Schemes)
R2.3.1: Theformalism for specifying validation rules shall not just support validation of single FpML trades, but also
comparisons between trades and other external data sources, such as static data, market data, or FpML Schemes.

R2.3.2: It can be assumed that either these external data sources are available in an XML markup language or can be
transformed into an XML language. However, the formalism shall support external data sourcesin non-FpML
languages.

R2.3.3: Often such market datais provided from outside a particular organization and this has implications on the
distributed checks. However, the notation to express consistency rules should support the specification of
consistency rules without assuming any details of where external data sources are located.

2.4 Usability
The validation rule language shall support the formulation of rules at appropriate levels of abstraction.
R2.4.2: To facilitate the conciseness of rules, the formalism shall support the declarative specification of consistency rules.

R2.4.3: At the same time the domain of financial derivative instrumentsis quite special and the rule language should offer
extension mechanisms that can cope with the need for any domain-specific operators, macros and primitives.

R2.4.4: The language should be easily comprehensible and therefore use concepts that members of the FpML community
are likely to be familiar with.

R2.4.5: The validation rule approach should be capable of coping with the complexity of alarge number of rules (100-
300) and in particular offer different structuring mechanisms that support the hierarchical decomposition of the
overall set of rules and support the parallel definition of rules by different working groups.

R2.4.6: The formalism should be amenable to automated tranglation between internal (machine-readable) representations
of validation rules and external representations that can be understood and serve as the specification of validation
rules across product working groups.

The validation language will not only be used to standardize and specify validation rules, but these rules also need to be
executed in order to actually perform the validation.

R2.4.7: The rule validation language should have a compiler or interpreter that can be used in order to execute validation
rules.

2.5 Classification of product types

FpML can represent alarge number of different products without actually providing language constructs. It might be
necessary for purposes of processing and standardizing FpML contracts to classify them into different trades.

R2.5.1: The validation language should support such classification.

Page 6 of 62

Date: 25/06/02

2.6 Compliance with XML Standards (XPath and XLink)
FpML demands for all its standards compliance with W3C standards.

R2.6.1: The validation approach adopted for FpML should therefore be compliant with current W3C standards.

2.7 Efficient Execution

It would be desirable if the language chosen for the validation rules could also directly be used to control the execution of
validations. In particular, we would like to avoid the need to manually translate the rules into an execution and instead
desire that this step be performed by an interpreter or compiler. This motivates the following requirement

R2.7.1: The validation rule language should be efficiently executable.

3 Possible Approaches to Validation

We have evaluated a number of possible approaches for specifying and executing validation rules. In this section, we will
briefly present an overview of those approaches. Thiswill then result in the selection of xlinkit as the most promising
approach.

3.1 xlinkit

xlinkit is a framework for expressing and checking the consistency of distributed, heterogeneous documents. It comprises a
language, based on arestricted form of first order logic, for expressing constraints between elements and attributesin XML
documents. The restriction enforces that sets have afinite cardinality, which is not a problem as XML documents only have
afinite set of elements and attributes. xlinkit also contains a document management mechanism and an engine that can
check the documents against the constraints.

xlinkit has been implemented as a lightweight mechanism on top of XML and creates hyperlinks to support diagnostics by
linking inconsistent elements. Because it was built on XML, xlinkit is flexible and can be deployed in a variety of
architectures. It has also been applied in avariety of different application areas, including the validation of Software
Engineering documents such as the design models and source code of Enterprise JavaBeans-based systems [1].

Setsused in quantifiers of xlinkit rules are defined using XPath. XPath [2] is one of the foundational languagesin the set of
XML specifications. It permits the selection of elements from an XML document by specifying a tree path in the document.
For example, the path / FpM_/ t r ade would select all t r ade elements contained in the FpM. element, which is the root
element.

XLink [3] isthe XML linking language and is intended as a standard way of including hyperlinksin XML documents.
XLink goes beyond the facilities provided by HTML by alowing any XML element to become a link; by specifying that
links may connect more than two elements, so called extended links; and by allowing links to be managed out-of-bound, as
collections of links termed linkbases. These features allow us to capture complex relationships between a multitude of
elements that are involved in an inconsistency without altering any of the inconsistent documents.

The linkbases generated by xlinkit form an ideal intermediate representation from which different forms of higher-level
diagnoses can be derived. Firstly, xlinkit has a report generator that takes report templates and uses the linkbase to obtain
details of the elementsinvolved in an inconsistency to provide areport similar to an error report that a compiler generates.
Secondly, xlinkit has a servlet that can read alinkbase and allows usersto select alink and it will then open the documents
referenced in the link, navigate to elementsidentified in the link and in that way assist users to understand the links. Xlinkit
also has alinkbase processor that folds links back into the documents so that both consistent and inconsistent data can be
captured as hyperlinks.

It depends on the application domain which of these higher-level diagnoses mechanismsis most appropriate. For the
domain discussed in this paper we found the report generation to have generated most interest among our partnersin
various investment banks.

3.2 Attribute Grammars

Thereisalarge body of work on validation of constraints of context-free languagesin Compiler construction. The
congtraints that are considered are typically static semantic constraints, such as scoping and typing rules. These constraints
are specified using for example attribute grammars [4], which have been shown to be efficiently executable by compilers.
Attribute grammars are not very concise specifications of consistency as one constraint is typically spread over alarge

Page 7 of 62

Date: 25/06/02

number of products. On the other hand, they have been shown to be very amenable to efficient execution [5, 6], which isan
important property when considering compiling large amounts of source code on slow processors. We have made a slightly
different trade-off decision with xlinkit and favour conciseness of the constraint definition over efficiency. Thisis
particularly appropriate given the small size of derivative trade documents, which are in the order of 17KBytes. Moreover it
would be difficult to integrate attribute grammars with XML parsers as the attribute grammar approaches assume that an
integrated compiler is generated while XML parsers are generic and work in a customized manner.

The work on attribute grammars was then taken on for the construction of syntax-directed editors and software engineering
environments, such as Gandalf [7], Synthesizer Generator [8], IPSEN [9], Centaur [10] and GOODSTEP [11].The focus of
these environments was to incrementally check constraints during editing. This could only be achieved by trand ating
attribute or graph grammars into efficiently executable code. Our focus is not on supporting the editing of trade
representations, but to support the batch validation that occurs when trades are exchanged between organisations or
different departments within an organisation. Provision of support for incremental checksis therefore not necessary and
instead we favour the flexibility that comes with interpretation of constraintsin the xlinkit rule engine.

3.3 OCL

We have also compared xlinkit rules with OMG's Object Constraint Language (OCL) [12]. OCL was defined to declare
congtraintsin UML diagrams or MOF meta models. OCL was not defined with an aim to be executable. In particular, it
allowsfor infinite sets (e.g. integer), which preventsit from being executed efficiently. The focus of xlinkit, however, was
to be as expressive as possible, while still being executable in polynomial time.

3.4 Specification of Validation Rules with XSLT

The weakness of expressing constraintsin the DTD and XML Schema languages has been recognized for some time now.
Various approaches have been reported that use XSLT [13] for validation. In [14], we report about the TIGRA enterprise
application integration architecture that uses XML as transport representation for financial trades. In that architecture we
have used XSLT stylesheets to express constraints. The expressive power of XSLT stylesheets is considerably lower than
that of xlinkit in that xlinkit supports the full power of first-order logic. Moreover, xlinkit carefully separates the concerns
of constraint specification, document and rule location, and provision of diagnostic feedback, which would be intertwined
in XSLT.

3.5 Schematron

Rick Jeliffe's Schematron [15] also uses XSLT to trandate documents into reports about their consistency. However,
Schematron manages to conceal the use of XSLT and provides a higher level of abstraction for the definition. Although
Schematron works quite well for validating single documents it would not allow us to express constraints across different
documents, e.g. to check trades against reference data or workflow representations or to compare two trades in different
representations.

3.6 Summary

The following table summarizes the different approaches we investigated. It assesses how well each of the approaches
supports the requirements identified in Section 2. The elements of the table identify the extent to which the requirements
are addressed. A “++” denotes that the approach fully satisfies the requirement, a“0” denotes that the approach meets the
requirement to some extent and a “--" denotes that the requirement is not addressed at all.

Page 8 of 62

Date: 25/06/02

As can be seen from the table, the xlinkit approach is the most promising approach and therefore we have selected it for a
more detailed assessment. We therefore present xlinkit rules in more detail in Section 4 before we show how it was used to

specify validation rules for FpML 1.0

: 5

S 28 2 5
R2.1.1 Semantic Validation ++ | + + + +
R2.1.2 XML-based Definition ++ - - ++ | ++
R2.1.3 GUI toolsto formulate and update rules o) - o | ++ -
R2.2 Multiple distributed rule sets ++ | - - - -
R2.3.1 Comparison to external data sources ++ - - - -
R2.3.2 Check against non-FpML languages ++ | - - - -
R2.3.3 Distributed data sources ++ | - - + +
R2.4.1 Declarative rule language ++ | - | ++ | + +
R2.4.2 Domain-specific operators ++ | ++ | o | ++ | ++
R2.4.3 Ease of comprehension ++ | - | ++ | - o
R2.4.4 Rule structuring mechanisms ++ | -- + - -
R2.4.5 human + machine readable representation + -- + - +
R2.5.1 Classification of FpML product types + + + o) o]
R2.6.1 W3C compliance + -- o | ++ | +
R2.7.1 Efficient Execution + | ++ | - | ++ | ++

4 xlinkit Validation Rule Language

This section explains the language of version 5 of xlinkit. The purpose of this explanation isto give a definition of the
various data files, artifacts and languages provided by xlinkit. It is not intended as a user manual - it does not define how
xlinkit works, how to use xlinkit, how to interpret its output, or any kind of best practice. For more information on these

topics, please visit the xlinkit web site at http://www.xlinkit.com.

The xlinkit framework consists of many different artifacts and languages that combine to provide the unique benefits of
xlinkit: arbitrary distribution of content, abstraction from underlying data formats, specification of complex constraints,
integration of heterogeneous data and a flexible approach to consistency management. Figure 1 shows how the various

artifacts provided by xlinkit are interrel ated:

Figure 1. Language family overview

—— Reference

Proprietary Macro

Reference Definition File

XML file Database @ Proprietary
Format

i Document Set [RCC EonstrainEN

Rule file

Operator

Implementation

Operator
Set

Rule Set I

Page 9 of 62

Date: 25/06/02

This document will discuss the artifacts shown in the Figure: Section 1 defines common mechanisms that appear in al
artifacts: the referencing mechanism used in the Figure and xlinkit's metadata system; Section 2 defines document sets and
Section 3 rule sets; Section 4 definesrule files and the xlinkit constraint language; Section 5 specifies xlinkit's operator
plugin mechanisms, operator sets and operator implementations, and Section 6 defines macro files.

4.1 Common Mechanisms

This section summarises the mechanisms that are common to all xlinkit input files: the referencing mechanism for loading
datafiles and the metadata for describing the input files.

4.1.1 Referencing

Many filesin the xlinkit family contain references: rule sets reference rule files and further rule sets, operator sets reference
operator implementations and so on. xlinkit therefore defines what such areference should look like. In general, references
come in two forms:

* Aloca filename, for examplerul e. xm , C.\Rul es\rul e.xm or../../rule.xn . A loca filename can aso
taketheformof afil e: // URL. Inthiscase, xlinkit will smply remove the protocol section and treat it asa
local file. Thus, file://rul e.xm will betreated asrul e. xnl .

* ANnHTTPURL, for examplehtt p: / / www. xI i nkit.com rul e. xni .

The important thing to note is that xlinkit does not support relative URLS. It is therefore not possible to mix filenames and
URLSs freely. For example, if arule set includesafiler ul e. xm and the rule set is referenced locally, then the current
directory will be searched for thefile. If it is not there, an error occurs. If the samerule set isreferenced using an HTTP
URL, the local directory on the referencing host will still be searched for the file. Since thisislikely to lead to errors, we
recommend that URLSs or filenames be used uniformly and not mixed.

4.1.2 Metadata

The xlinkit metadata elements are standardised throughout the different file types and can be used to annotate document
sets, rule set, operator sets and individual consistency rules. It istheir purpose to provide helpful annotation such as
authorship information and documentation for the various artifacts in the xlinkit framework. Figure 1.1 shows a graphical
representation of the header element, which contains the metadata.

Figure 1.1. Metadata Schema

.............................

|hcader [;I—(A*-—)EI—(JEEI—];F g
<

—(amt htlp:.I'J'www.:-clinkil.cum.l'l'u'leladata.l‘ﬁ.llj

aut hor contains the name of the author of an artifact. If there are multiple authors, one element should be used for each.

descri pti on can contain atextual description of the resource with which the header has been associated. In addition to
text the element can contain elements from the XHTML namespace (ht t p: / / waww. w3. or g/ 1999/ xht mi), enabling the
production of documentation web pages from xlinkit artifacts using stylesheets (see Example 1.2).

proj ect can bean arbitrary text string that defines the context of the artifact. In the case of consistency rules, this string
may be used as an identifier in future versions (see Section 4.2.2), otherwise it can be used arbitrarily.

coment isintended as a means to provide additional information beyond the description, for example on the status of the
artifact.

The remaining extension point in the schema allows any element fromthe ht t p: / / waww. x1 i nki t . con’ Met adat a/ 5. 0
namespace to appear in the header. The content of these elements will not be validated and can be chosen arbitrarily

Page 10 of 62

Date: 25/06/02

(though it does have to be well-formed XML), for example to meet organi sation-specific documentation requirements. See
Example 1.3 for an example.

4.1.2.1 Examples
Example 1.1 shows some metadata used to annotate a consistency rule.

Example 1.1. Simple Rule Annotation

<consi stencyrule id="r1">

<header >
<aut hor >Chri stian Nentw ch</aut hor >
<description>An invalid rule: the forall is enpty!!</description>

<proj ect >xl i nkit Language Reference</project>
<comment >This is broken. Fix it.</coment>
</ header >
<forall/>
</ consi st encyrul e>

Example 1.2 demonstrates the use of additional XHTML elements in a document set description. Notice how the XHTML
namespace is bound to the prefix x: and the prefix is used on the XHTML elements. Failure to use the prefix would cause
avalidation error.

Example 1.2. Using XHTML in Descriptions

<Docunent Set >
<header >
<descri ption xm ns: x="http://ww. w3. org/ 1999/ xht m ">
There is a problemw th this <x:tt>Docunment Set</x:tt>
The nanespace decl aration is <x:b>m ssing</x: b>
</ descri ption>
</ header >
</ Docunent Set >

Finally, Example 1.3 demonstrates how to create customised metadata elements. In the example, we create our own

ver si on element, and ar evi ewer s element that lists the devel opers who have reviewed a particular consistency rule. All
the elements are in the metadata namespace, which is bound to the prefix et a: at the header element. In files where many
extended headers are used, the prefix could be bound at the root element to avoid having to rebind it.

Example 1.3. Customised M etadata

<consi st encyrul e>
<header xm ns:nmeta="http://ww. x| inkit.com Metadata/5.0">
<net a: ver si on>1. 0</ net a: ver si on>
<net a: r evi ewer s>
<met a: r evi ewer >Wl f gang Enmeri ch</ et a: r evi ewer >
<met a: r evi ewer >Ant hony Fi nkel st ei n</ neta: revi ener>
</ met a: revi ewer s>
</ header >

</ consi st encyrul e>

4.2 Document Sets

4.2.1 Definition

Document sets are xlinkit's way of structuring document input. A document in this case means a collection of structured or
semi-structured data, but does not necessarily imply storage in atraditional document format. The purpose of a document
set isthusto abstract from underlying data storage formats, drawing if necessary on the support of fetcher pluginsto
tranglate them into a DOM tree that can be used for checking.

The namespace for document setsisht t p: / / www. xI i nki t. com Docunent Set /5. 0. Figure 2.1 shows a graphical view
of the document set schema, |eaving the metadata <header > collapsed.

Page 11 of 62

Date: 25/06/02

Figure 2.1. Document set schema

I——J:’header

DocumentSet [—e- [——
(—p(~1=1

1o Set

header : A document set can contain the usual metadata, as defined in the common mechanisms. No additional meanings
are defined for the metadata in the context of a document set and it can be used freely.

Docurnent : The Docunment command imports a document into the document set for checking. It requires an attribute, hr ef
as areference - as defined in common mechanisms - to the document. The second, optional, attribute f et cher isastring
identifying the Fetcher to be used to retrieve the document. By default, documents are loaded using the Fi | eFet cher,
whichisessentially an XML parser. If XML documents are to be loaded, therefore, no fetcher parameter has to be
specified.

If alternative fetcher parameters are passed, for example JDBCFet cher for loading a database table, two conditions must
be met: afetcher class matching this string has to be registered with xlinkit, and the format of the Ref er ence hasto be
valid for this fetcher (e.g. the IDBCFetcher expects an SQL query rather than afile name).

Set : This can be used to import further document setsinto the set. The only attributeis hr ef , which must point to avalid
xlinkit document set. Using this mechanism, it is possible to build up hierarchies of document sets that will be flattened and
loaded during a check.

4.2.2 Examples
Example 2.1 shows a simple document set that includes XML files from two different URLS for a check.

Example 2.1. Simple document set

<Docunent Set xm ns="http://ww. xl i nkit.com Docunent Set/5. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. x| i nki t. com Docunment Set/5. 0 Docunent Set . xsd" >

<Docunent href="http://ww. xlinkit.conl Exanpl e/ docunent A. xm "/ >
<Docunent href="http://ww. systemni re. conl Exanpl e/ docunent B. xm "/ >
</ Docunent Set >

Example 2.2 gives a dightly more complex example that specifies some metadata, includes an XML document, imports
another document set, and uses a proprietary plugin, called JavaFet cher to load a Java source file and make it available
for checking. Thisfetcher must of course be implemented and registered with xlinkit beforeit can bereferred toin a
document set like this.

Example 2.2. Document set with custom fetcher

<Docunent Set xm ns="http://ww. x| inkit.con Docunent Set/5. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. x| i nki t. com Docurment Set/5. 0 Docunent Set . xsd" >

<header >
<description>A slightly nore conpl ex exanpl e</description>
<aut hor >Chri stian Nentw ch</aut hor >
<coment >Test ed and wor ki ng</ conment >
</ header >
<Docunent href="http://ww. xlinkit.conl Exanpl e/ docunent A. xm "/ >
<Set href="http://ww.systemii re. com Exanpl e/ Mor eDocurent s. xm "/ >
<Docunent href="Hel |l oWorld.java" fetcher="JavaFetcher"/>
</ Docunent Set >

Page 12 of 62

Date: 25/06/02

4.3 Rule Sets

4.3.1 Definition

Rule sets are xlinkit's structured consistency rule selection mechanism. They allow the free distribution and reassembly of
rules, permit the selection of rules based on workflow, and assist in decoupling the rules from the documents they are
applied to.

The namespace for rule setsisht t p: / / www. x1 i nkit. con’ Rul eSet /5. 0. Figure 3.1 gives agraphical overview of the
schema, leaving the metadata header collapsed.

Figure 3.1. Rule set schema

RuleSet EH:""'E_ RuleFile

———e- ~iF Set

1. %

Operators

Rul eSet : In addition to serving as a container element, this has a second function: any namespace prefixes bound at this
element can be used in XPath queries to pick out particular rules. For more information, see the definition of Rul eFi | e
below and Example 3.2.

header : A rule set can contain the usual metadata, as defined in the common mechanisms. No additional meanings are
defined for the metadata in the context of arule set and it can be used freely.

Rul eFi | e: Inthe current version of the language, consistency rules must be stored in the xlinkit XML format for
consistency rules. The required attribute hr ef is therefore a reference that denote a URL or filename.

The optional xpat h attribute can be used to fine-tune which rules are included from arule file that contains multiple rules.
By default, that isin the absence of the parameter, all rules are included. A parameter such as

/rul e: consi stencyrul eset/rul e: consi stencyrul e[1], wherer ul e has been bound to the rule file namespace at
the root element, can be used to pick out the first rule of the file.

Oper at or s includes an operator set into thisrule set. If any of the rulesin the rule set make use of operators, they have to
beincluded here. Therequired hr ef attribute must identify a valid operator set file.

4.3.2 Examples

Example 3.1 shows atypical rule set that includes asingle rule file, picking al rules from the file for checking, and no
metadata. It referencesthe file using itsfilenamer ul e. xnl , so the file has to be present in the same directory astherule
set.

Example 3.1. Simplerule set

<Rul eSet xm ns="http://ww. x| inkit.conm Rul eSet/5. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. x| i nkit.com Rul eSet/5.0 Rul eSet.xsd">

<Rul eFile href="rule.xm"/>
</ Rul eSet >

Example 3.2 shows how to refine rule selection in arule set using XPath expressions to pick out a subset of the rules from a
rulefile. The expression/ / rul e: consi st encyrul e[@ d='r 3'] matchesthe consistency rule whosei d attribute is
equal to r3, anywhere in the rule file. Note how the XPath expression makes use of the r ul e namespace prefix that has

Page 13 of 62

Date: 25/06/02

previously been bound to the rule file namespace. Thisis very important - if the namespace prefix is not properly bound or
left out altogether, no rules will be matched and xlinkit will return an error.

Example 3.2. Rule selection

<Rul eSet xm ns="http://ww. x| inkit.conl Rul eSet/5.0"
xm ns:rul e="http://wwm. xIinkit.conl Consi stencyRul eSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://wwmv. x| i nkit.com Rul eSet/5.0 Rul eSet.xsd">

<Rul eFile href="rule.xm" xpath="//rul e:consistencyrule[@d="r3"]"/>
</ Rul eSet >

Finally, Example 3.3 shows a fully-flegded rule set with metadata and operator set inclusion. It retrieves the operator set
from aremote server, as well asincluding another additional rule set from a remote server.

Example 3.3. Operator and rule set inclusion

<Rul eSet xm ns="http://ww. x| inkit.conm Rul eSet/5. 0"
xm ns:rul e="http://wwmn xIinkit.conl ConsistencyRul eSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. x| i nkit.com Rul eSet/5.0 Rul eSet.xsd">

<header >
<descri ption>
A rule set with operator inclusion
</ descri ption>
<aut hor >Chri sti an Nentw ch</aut hor >
<coment >Test ed and wor ki ng</ conment >
</ header >
<Operators href="http://ww. xlinkit.conl Foo/ operators/Qperators. xm"/>
<Rul eFile href="rule.xm"/>
<Set href="http://ww.xlinkit.con Foo/additional-rules.xm"/>
</ Rul eSet >

4.4 Rule Files

Rule files contain the constraints that the xlinkit checker applies to documents. This chapter therefore defines not only the
layout of the files, but the grammar of the xlinkit constraint language itself. The constraint language can be displayed in
many different formats, in addition to its standard XML encoding. As a consequence we define the language using an
abstract syntax, and provide the XML encoding of each construct after the behaviour definition.

From here on, the section is split into three parts: Sub-section 4.4.1 defines the xlinkit constraint language, Sub-section
4.4.2 defines the format of the rule files, including the elements that supplement the constraints, and Sub-section 4.4.3 gives
severd illustrating examples of complete consistency rule files.

4.4.1 Constraint Language

The xlinkit constraint language is afairly simple language that is based on first order predicate logic: it allows the use of
boolean connectives such asand and or , quantifierssuch asf or al | and exi st s for iteration, and predicates such as
equal for comparison.

The purpose of this section isfirstly to define the abstract syntax and XML encoding of the language, and secondly to
specify the behaviour of each construct in the language. The section does not discuss the xlinkit link generation semantics,
i.e. how to create hyperlinks as aresult of the evaluation of formulae in the language - instead we refer you to
http://www.xlinkit.com for more information.

This section also does not define any bracketing for formulae, leaving the precedence relationship between logical
connectives ambiguous. The reason for thisis that bracketing belongs in the concrete syntax - for example the XML syntax
is already disambiguated because it is a prefix notation, and does not require any bracketing. Should new concrete syntaxes
be defined, they have to introduce bracketing on a case by case basis.

Formula

[1] Formula :: = Forall | Exists | [* Quantifiers */
And | Or | Implies | Iff | Not | /* Logical connectives */
Equal | Notequal | Same | True | Operator /* Predicates */

Page 14 of 62

Date: 25/06/02

Everything in the xlinkit language is a For nul a - constructs that can contain subformulae, for example the logical
connectives, can thus contain any other formulain the language. The only restriction on an xlinkit formulaisthat it must
start with aFor al | , as defined in Sub-section 4.4.2.

4.4.1.1 Forall

[2] Forall :: = 'forall' Variable'in' XPath Formula?

Var i abl e: Thismust be avalid XPath variable identifier, as defined in the XPath standard. In addition, if the For al | is
contained in a parent formula, the identifier must not be declared in a quantifier of one of the parent formulae. Note: the
variable identifier does not include the variable reference character '$', thus $a isanillegal variable name whereasa is
legal.

XPat h: This must be avalid XPath expression. In addition, the execution of the XPath expression must result in a node set.
Expressions that return different types of results areillegal and will cause arun-time error. The following XPath
expressions are examples of legal expressionsfor For al | since they select node sets:

/ f oo/ bar selectsall elements called <bar > that are contained under elements called <f oo> in any of the documents of the
document set.

/ f oo/ @ar selectsall attribute nodes called bar that are attached to elements called <f oo> in any of the documents of the
document set.

And the following examples are illegal since they select other types of values:
54 isillegal becauseit selects a number.
substring(/fool/ bar/text(),5) isillegal becauseit selectsastring.

For al | 'sbehaviour is defined as follows: it executes the expression contained in XPat h on all documents of the document
set. The working set of the quantifier is then defined to be the union of all nodes returned from all documentsin the
document set. The quantifier binds each node to the variable in turn, calling the subformula to evaluate itself given the new
variable binding. It returnst r ue if the subformula evaluation returnst r ue for al assignments of the variable, elseit
returns false. Figure 4.1 specifies the behaviour in pseudocode.

The abstract syntax permits the omission of a subformulafor the forall operator. If no subformulais present, the
subformula will be set to True, and the quantifier will return t r ue regardless of where the X Path expression is pointing.

Figure4.1. Forall evaluation pseudo-code

forall (binding)
begin
wor ki ngset =0
for all doc in DocunentSet do
wor ki ngset =wor ki ngset +eval uat e(XPat h, doc)
done
resul t=true
for all node in workingset do
bi ndi ng=bi ndi ng+(Vari abl e, node)
resul t=result &anp; &np; Fornmul a. eval uat e(bi ndi ng)
bi ndi ng=bi ndi ng- (Vari abl e, node)
done
return result
end

XML Representation

Figure 4.2 showsthe XML representation for For al | . No attributes or el ements beyond those already specified in the
abstract syntax are required.

Figure4.2. Forall XML Representation

<forall var="variable" in="xpath">
Formul a
</forall>

4.4.1.2 Exists
[3] Exists :: = 'exists Variable'in' XPath Formula?

Page 15 of 62

Date: 25/06/02

Var i abl e: Thismust be avalid XPath variable identifier, as defined in the X Path standard. In addition, the same
restrictions as for Forall apply.

XPat h: This must be avalid XPath expression. The execution of the XPath expression must result in a node set.
Expressions that return different types of results areillegal and will cause a run-time error. Please refer to Forall for
examples of legal and illegal XPath expressions.

Exi st s' behaviour is defined as follows: it executes the expression contained in XPat h on al documents of the document
set. The working set of the quantifier is then defined to be the union of all nodes returned from all documentsin the
document set. The quantifier binds each node to the variable in turn, calling the subformula to evaluate itself given the new
variable binding. It returnst r ue if the subformula eval uation returnst r ue for any assignment of the variable. If it isfalse
for all assignments, it returnsf al se. Figure 4.3 specifies the behaviour in pseudocode.

Similarly to Forall, the abstract syntax of Exi st s permits the omission of a subformula. If the subformulais omitted,
xlinkit assumesit to be True. Thisisfrequently very useful in practice, since it allows a test for the existence of an element
without applying any predicates, i.e. we can say "element A exists'. Because the subformulais True, the only way an
existential quantifier with no subformula can fail isif the XPath expression does not match anything.

Figure 4.3. Exists evaluation pseudo-code

exi sts (binding)
begi n
wor ki ngset =0
for all doc in DocunentSet do
wor ki ngset =wor ki ngset +eval uat e(XPat h, doc)
done
resul t=fal se
for all node in workingset do
bi ndi ng=bi ndi ng+(Vari abl e, node)

result=result || Formula.eval uate(binding)
bi ndi ng=bi ndi ng- (Vari abl e, node)
done
return result
end

XML Representation

Figure 4.4 showsthe XML representation for Exi st s. No attributes or elements beyond those already specified in the
abstract syntax are required.

Figure 4.4. Exists XML Representation

<exi sts var="variabl e" in="xpath">

For mul a
</ exi st s>
4.4.1.3 And
[4] And ::= Formula'and' Formula

The behaviour of And matchesits definition in classical logic: it returnstrue if and only if both subformulae evaluate to
true, otherwise it returns false. Table 4.1 specifies the behaviour exhaustively. In the table, For mul aA refersto the first
subformula and For mul aB to the second.

Table4.1. And truth table
FormulaA |FormulaB |FormulaA 'and' FormulaB

true True true

true False false
false True false
false False false

Page 16 of 62

Date: 25/06/02

XML Representation

Figure 4.5 shows the XML representation for And. No attributes or elements beyond those already specified in the abstract
syntax are required. Note that the XML syntax for and is prefix, i.e. the connective frames its subformulae, whereas the

abstract syntax isinfix, i.e. the connective islocated between its parameters. In the XML syntax, note that still exactly two
subformulae must be present.

Figure4.5. And XML Representation

<and>
For mul a
Formul a
</ and>
4.4.1.4 Or
[5] Or ::= Formula'or' Formula

The behaviour of O aso matchesits definition in classical logic: it returnstrue if either subformula evaluatesto true,
otherwise it returns false. Table 4.2 specifies the behaviour exhaustively. In the table, For mul aA refersto the first
subformula and For mul aB to the second.

Table4.2. Or truth table

FormulaA [FormulaB |FormulaA 'or' FormulaB
true True true
true False true
false True true
false False false

XML Representation
Figure 4.6 showsthe XML representation for O . No attributes or elements beyond those already specified in the abstract

syntax are required. The same comments as for the And XML encoding apply.

Figure4.6. Or XML Representation

<or >
For mul a
For mul a
</ or>
4.4.1.5 Implies
[6] Implies ::

= Formula‘implies' Formula

We use the classical definition of | npl i es, which is summarised in Table 4.3. In the table, For mul aA refersto the first
subformula and For nul aB to the second. The only way an implication can bef al se if the first subformulaist r ue and

the second oneisf al se, for example "l am strong implies| can lift anything".

Note in particular that if For mul aA isfalse, the outcome of evaluating For mul aB isirrelevant - the result will bet r ue.
Thisistaking the classical view that anything may follow from a false premise. For example, the sentence "If five divides

eleven, | will beking" is considered true even if | will never be king.

Page 17 of 62

Date: 25/06/02

Table4.3. Impliestruth table

FormulaA [FormulaB |FormulaA 'implies’ FormulaB
true True true

true False false

false True true

false False true

XML Representation

Figure 4.7 shows the XML representation for | npl i es. No attributes or elements beyond those already specified in the
abstract syntax are required. The same comments as for the And XML encoding apply.

Figure4.7. Implies XML Representation

<i nplies>
For mul a
For mul a
</inplies>
4.4.1.6 Iff
[7] Iff ::= Formula'iff' Formula

| ff isatraditional shorthand for “if and only if”. It isaconvenient way of expression atwo-way implication. For mul aA
i ff Formul aBisthusequivalentto (For mul aA i nplies Formul aB) and (Formul aB i nplies FormulaA).

Table4.4 givesthetruth tablefori f f . It returnstrue if the result of evaluating both subformulae is equal, otherwise it
returns false.

Table 4.4. Iff truth table

FormulaA [FormulaB |FormulaA 'iff' FormulaB

true True true

true False false
false True false

false False true

XML Representation

Figure 4.8 shows the XML representation for | f f . No attributes or elements beyond those already specified in the abstract
syntax are required. The same comments as for the And XML encoding apply.

Figure 4.8. Iff XML Representation

<iff>
For mul a
For mul a
</iff>
4.4.1.7 Not
[8] Not :: = 'not' Formula

Not computes the logical negation of its subformula. Table 4.5 gives the truth table.

Page 18 of 62

Date: 25/06/02

Table4.5. Not truth table

Formula ['not' Formula

true False

false True

XML Representation

Figure 4.9 shows the XML representation for Not . No attributes or elements beyond those already specified in the abstract
syntax are required.

Figure4.9. Not XML Representation

<not >
For mul a
</ not >
4.4.1.8 Equal
|
[9] Equal ::= XPath'=' XPath

Equal comparestwo sets of values for equality. The two sets are constructed by evaluating the two parameter X Path
expressions. The two XPath expressions must either return primitive values, like strings or numbers, or they must be
relative to avariable. Thus, the following expressionsarelegal, ' f oo’ , 5, $x/ nane/ t ext (), while the following isillegal
/ name/ t ext () (absolute expression).

Value sets

Before defining the behaviour of Equal we will define how it evaluates its XPath expressions to produce value sets. All
entries a value set must be of the same type, determining the type of the set. A value set can thus be:

aset of strings

a set of booleans

a set of numbers (double)

In order to construct the set of values, the two X Path expressions are eval uated and their results converted:

Expressions that result in strings directly are converted into a set of size 1, containing the string. For example, the
expression' f oo' becomestheset{' f oo' }, theexpression subst ri ng($x/ nane/ t ext (), 2) may become
{'ristian'}.The XPath 1.0 specification gives further details on which functions return strings.

Expressions that result in numbers directly are converted into a set of nubmers of size 1, containing the number. For
example, 20 becomes the set { 20} and count ($x/ b) may become { 2} .

Similarly, expressions that result in booleans directly are converted into a set of booleans of size 1, containing only the
boolean value. For example, t r ue becomes{t r ue} and $x/ val ue > 5 may become{f al se}.

What remains are expressions that produce node sets, i.e. expressions like $x/ nanme/ t ext (), which produces alist of text
nodes, $x/ @ame, which produces alist of attribute nodes, and $x/ name, which produces alist of element nodes.

Any expression that produces a node set will be converted to a set of strings, using the following conversion rules: for
every noden in the set.

If n isatext node, attribute node, comment node or CDATA node, the value of the node is added to the result set.

If n isan element node, all text node children of n are added to the result set. Thus, an expressions like $x/ nane will be
equivalent to $x/ name/ t ext () . Thisis equivaent to the behaviour of XSLT. CAUTION: While this behaviour is
guaranteed by the xlinkit checker, we discourage the use of this shorthand, and recommend the use of the full t ext ()

Page 19 of 62

Date: 25/06/02

syntax - omission of the explicit text syntax may prevent tools that statically analyse formulae, for example optimisers or
repair action generators, from working properly.

If n isany other type of node, for example a document node, a runtime error will occur.

We will now go through some examples of the value sets that would be generated from typical XPath expressions. Example
4.1 gives the sample data we will use for the expressions. We will further assume that the variable $x has been bound to the
<cat al ogue> root element.

Example 4.1. Sample document

<cat al ogue>
<pr oduct >
<nane>Eval uat i on</ nane>
</ product >
<pr oduct >
<nane>FpM. Val i dat or </ nane>
</ product >
<pr oduct >
<name>UM. Val i dat or </ nane>
</ pr oduct >
<nunber >4</ nunber >
</ cat al ogue>

Evaluating count ($x/ product) will result in the set of integers{ 3} . $x/ pr oduct / name/ t ext () will result in the set
of strings, { " Eval uati on", "FpM. Validator", "UM Validator"},$x/product[2]/nane/text () will result
in{"FpM. Val i dator"} and count ($x/ product) > 5 will resultinthe boolean set {f al se}.

Casting

Since Equal and other predicates that rely on value sets have to compare two or more sets for equality, casting rules have
to be defined for those cases where the sets are of a different type. Table 4.6 shows what type both sets will be converted to
given their own types - i.e. in practice one set will remain unchanged and the other downcast.

Table4.6. Value set casting rules

Setl Set2 Basetype

Number |Boolean [Boolean

Number |Strings [Strings

Boolean |Strings [Strings

The base type for all setsisthus aset of strings. The conversion rules for converting between set types are as follows:

Number to Boolean: Thefirst entry in the set of numbersis compared to 0. If it is non-zero, a boolean set of size 1 with the
value{true} isreturned, elsetheset {fal se} is returned. For example, the set {5} becomes{true} and the set
{0} becomes{fal se}.

Number to Strings. The first number in the set is directly converted into a string and placed into anew set, e.g. { 5}
becomes{"5"}.

Boolean to Srings: Thefirst boolean in the set is directly converted into the string "t rue" or " f al se", depending on its
value, and placed into anew set, e.g. {true} becomes{"true"}.

Using these casting rulesit is now possible to compare sets of different types. Taking the data from Example 4.1, we can
for example compare count ($x/ pr oduct) , anumber, to $x/ nunber / t ext (), astring, and the result will bef al se.

Behaviour

The behaviour of Equal is quite straightforward, it checks whether two value sets contain exactly the same val ues. Because
it is dealing with sets, however, the order in which the values appear isirrelevant. The pseudocode, assuming the value sets
have been constructed and downcast beforehand, is given below:

Page 20 of 62

Date: 25/06/02

equal (setl, set?2)
begi n
if (setl.size != set2. size)
return fal se;

for all entries e in setl
if (!set2.contains(e))
return fal se
set 2=set 2-e
done

return true
end

Given this behaviour, the sets{" f 00"} and {"f 00"} areequal, the sets{" f oo", "bar"} and{"f oo"} arenot equal,
{"foo","bar"} and{"bar", "foo"} areequal and {5} and{true} areequal.

XML Representation

Figure 4.10 shows the XML representation for Equal . The two XPath expressions must be passed as attributesop1 and
op2.

Figure 4.10. Equal XML Representation
<equal opl="xpath" op2="xpath"/>

4.4.1.9 Notequal

[10] Notequal ::= XPath'='XPath

Not equal isreally a convenience mechanism, sinceit can be equivalently represented using the existing Not and Equall
congtructs. For details on the restrictions on the XPath expressions, their evaluation, and downcasting rules, please refer to
the description of Equal in Sub-section 4.4.1.8.

Behaviour
For completeness, the behaviour of Not equal is given below in pseudocode. It makes the same comparison as Equal ,
comparing two sets for equality regarless of order, and returns the opposite resuilt.

not equal (setl, set?2)
begi n
if (setl.size != set2. size)
return true

for all entries e in setl
if (!set2.contains(e))
return true
set 2=set 2-e
done

return fal se

end

XML Representation

Figure 4.11 shows the XML representation for Not equal . The two XPath expressions must be passed as attributes op1 and
op2.

Figure 4.11. Notequal XML Representation
<not equal opl="xpath" op2="xpath"/>

4.4.1.10 Same

[17] Same :: = VariableRef '=="VariableRef
Sane takes as its parameters two references to variables that must have been bound in a parent formula. It then checks
whether the two variables point to exactly the same node - it does not compare them by value like Equal does. Take

Page 21 of 62

Date: 25/06/02

Example 4.2 below: assume that $x points to the first <pr oduct > element, and $y to the second. Then $x == $y is
fal se while$x = $y istrue.

Example 4.2. " Same" example

<cat al ogue>
<pr oduct >x! i nki t </ pr oduct >
<pr oduct >xI i nki t </ pr oduct >
</ cat al ogue>

Sane is most useful in uniqueness checks, for example if one wishesto say “if A and B have the same value, then they
must be the same element”.

XML Representation

Figure 4.12 shows the XML representation for Sane. The two variable references must be passed as attributes op1 and
op2.

Figure 4.12. Same XML Representation

<same opl="$var" op2="$var"/>

4.4.1.11 True

[12] True = 'True
Tr ue isdifferent from the other formulae in that it must not be used explicitly as a subformula. Instead, it is appended
automatically as a child to quantifiers that do not specify a subformula. Please refer to Sub-section 4.4.1.2 for details.

Thereisno XML encoding for Tr ue.

4.4.1.12 Operator

[13] Operator :: = 'Operator' String Param*

[14] Param :: = 'Param’ String String /* Name and Value */

Oper at or : An operator behaves like any other predicate, it takes a number of parameters and returnst r ue or f al se. The
St ri ng hasto be avalid name for the operator: The rule set in which thisrule file is included must include an operator set
that provides a definition for this operator. Furthermore, the name of the operator must be prefixed with the name of the
operator set from which it isloaded. Thus, in order to use the operator i sPri me in operator set nat h, mat h: i sPri me has
to be used as the name.

Par am The parameters passed as arguments must match those in the operator definition of the operator set both in name,
and in order. The value passed as a parameter is a string, but will be converted into the format expected by the operator, for
example by treating it as an XPath expression and evaluating it. Please refer to Section 5.1 for details on parameter
conversion.

Please refer to Chapter 5 for further details on defining operators.

XML Representation
Figure 4.13 shows the XML representation for Qper at or . The parameters are passed as subelements.

Figure 4.13. Operator XML Representation

<operat or nane="prefix: nane" >
<par am nane="paranl" val ue="val "/ >
<par am nane="paran?" val ue="val "/ >

</ oper at or >

Page 22 of 62

Date: 25/06/02

4.4.1.13 Complete Grammar

xlinkit Constraint Language

[1] Formula :: = Foral | Exists| /* Quantifiers*/
And | Or | Implies | Iff | Not | /* Logical connectives */
Equal | Notequal | Same | True | Operator /* Predicates */

[2] Forall :: = ‘foral' Variable'in' XPath Formula?

[3] Exists :: = 'exists Variable 'in' XPath Formula?

[4] And ::= Formula'and' Formula

[5] Or ::= Formula'or' Formula

[6] Implies : : = Formula'implies’ Formula

[7 Iff = Formula'iff' Formula

[8] Not ::= 'not' Formula

[9] Equal ::= XPath'='XPath

[10] Notequal ::= XPath'l='XPath

[11] Same : = VariableRef '=='VariableRef

[12] True ::= 'True

[13] Operator :: = 'Operator' String Param*

[14] Param : : = 'Param’ String String /* Name and Vaue */

4.5 Rule file

A rulefile, called a consistency rule set for historical reasons - but not to be confused with arule set, consists of namespace
declarations, global set declarations, macro inclusion commands, and consistency rules expressed in the xlinkit constraint
language. The consistency rules themselves provide additional mechanisms on top of the constraint language, such as
metadata.

The namespace for rule setsisht t p: / / www. xI i nki t. conl Consi st encyRul eSet /5. 0. Figure 4.14 gives agraphical
overview of the schema, leaving the metadata header collapsed.

Figure 4.14. Rulefile schema

P ttp: Marvas X1inKicom Macros5.0 ¢
-1 globalset T

A RS Sagr =

P p—

consistencyruleset e "

commivienoyrie B nkgenaration EHCEEISH | inconietend |

1.

Theroot element of arulefileisconsi st encyr ul eset . It does not contain any attributes, but may contain namespace
definitions. Any prefix that is bound to a URI at the consi st encyr ul eset element can be used inside XPath expressions
in constraints. You can find an illustration of thisin Example 4.5.

macr o: i ncl ude - therule file may contain macro inclusion elements. The schema allows any element from the
http://ww. x!I i nkit.conm Macro/ 5. 0 namespace, which has been bound to the prefix nacr o in this case, to occur
here, but at the moment only thei ncl ude element is processed. The element must provide an hr ef attribute, whichisa
reference to the macro definition file to be applied to the rules. Please refer to Chapter 6 for more details. (Note: the current
version of xlinkit limits the macro inclusion mechanism to including only a single macro file, this restriction will probably
be removed in future versions).

Page 23 of 62

Date: 25/06/02

4.5.1 Global sets

A gl obal set isanode set that is created before all rules are evaluated and bound to a certain variable name. The variable
can then be used in any of the consistency rules. The element takes two parameters: i d, which defines the name of the
variable and xpat h, which gives the path to evaluate in order to obtain the value of the variable.

The XPath expression passed as a parameter must have the same characteristics as those for the quantifiers - i.e. it must
evaluate to anode set -, please refer to Section 4.1.1 for details. Note that the Var i abl e isavariable definition, not a
reference, so it must not include the $ character.

A global set is not only shared between al rulesinside one particular rule file, but appliesto all rulesincluded in arule set.

It isthus possible to refer to elements in documents using a symbolic name such as $cl asses instead of

/ / Foundat i on. Cor e. C ass. Because global sets are shared, whenever aglobal set is declared under the samei d intwo

different files that have been included in the same rule set the xpat h attribute of the declaration must also match, otherwise
therule setisinvalid.

See Example 4.6 for an example of how to use a global set.

4.5.2 Consistency rules

Asthe schemain Figure 4.14 shows, a consistency rule consists of three parts: aheader that defines the metadata, a
| i nkgener at i on element that controls the way xlinkit produces hyperlinks, and the formulaitself, which must start with
aForall.

Every consistency rule must provide ani d attribute for unique identification in the rule. According to the XML
specification, thisidentifier hasto be unique inside the rule file. We recommend that identifiers are made unique within a
larger context, for example a set of rule files for a specific markup language.

Theheader contents can be used freely to associate any metadata with the rule. The pr oj ect element, however, is
reserved to take up a specia rolein future versions of xlinkit. It will be used together with thei d attribute to uniquely
identify rules and make it possible to identify rules that have been spread over several filesusing a(pr oj ect, i d) pair.
The element may become mandatory in future versions of xlinkit.

4.5.2.1 Link Generation

Theoptional | i nkgener at i on element may contain a number of directives that control the diagnostic output produced by
xlinkit: consi st ent controls whether elements that are obey a constraint should be explicitly linked and i nconsi st ent
controlsif elements that violate a constraint should be linked. Both elements are optional, and the default is that consistent
isof f and inconsistent ison. Both elements have ast at us attribute that can take the values on or of f .

el i m nat esymet ry can be used to instruct xlinkit to remove any pairs links whose locators point to the same elements
but are permutations of one another. For example, if apair of links pointsto (A, B) and another to (B, A) , the second link
will be removed. This functionality is useful in some situations where pairs of elements are compared for equality and
inconsistencies cause the elements to be linked twice (because A isinconsistent with B, but B is also inconsistent with A).
This behaviour israre, but does occur with some uniqueness checks. The element takes a st at us attribute whose values
can beon or of f - the default isof f . Turning this function on when it is not necessary will not cause a differencein the
result, but will introduce a runtime overhead of n* n where n isthe number of linksin alinkbase.

4.5.3 Examples

Example 4.3 shows a very simple constraint that specifies that “for every element A there must be an attribute att”. This
rule can now beincluded in arule set and checked against a document set that includes any number of files, some of which
may have root elements called A. The rule does not define any metadata or link generation commands. Consistent cases
where the attribute is present will therefore not be specially identified, and inconsistent cases will be linked. The XPath
expressions also do not use any hamespace prefixes, so the element A will only be matched if it is contained in afile
without a default namespace.

Page 24 of 62

Date: 25/06/02

Example 4.3. Simple Constraint

<consi stencyrul eset xm ns="http://ww. xlinkit.com Consi stencyRul eSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. x| i nki t. com Consi st encyRul eSet/5. 0 consi stencyrul eset. xsd">

<consi stencyrule id="r1">
<forall var="x" in="/A">
<exists var="a" in="$x/att"/>
</forall>
</ consi st encyrul e>
</ consi st encyrul eset >

Example 4.4 shows a dightly more complex constraint, taken from xlinkit's Wilbur's Bike Shop example, that expresses a
relationship between two different data formats. It says that for every file with an Advert root element, there hasto be a
Pr oduct element somewhere else that matches its name.

When applying thisrule, it is now possible to feed several filesinto xlinkit, and all those that have an Advert root
elements will be checked. Similarly, multiple catalogues could possibly supplied and be checked against.

Note that we have turned on consistent link generation. This will cause elements that obey the constraint to be linked, in
this case al adverts will be linked to the correct entry in the catalogue.

Example 4.4. Checking M ultiple Files

<consi stencyrul eset xm ns="http://ww. xlinkit.com Consi stencyRul eSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv x| i nki t. com Consi st encyRul eSet/5. 0 consi stencyrul eset. xsd">

<consi stencyrule id="r1">
<header >
<descri pti on>Every advert must be in the catal ogue</description>
<proj ect >W | bur s</ pr oj ect >
</ header >
<li nkgenerati on>
<consi stent status="on"/>
</linkgeneration>
<forall var="x" in="/Advert">
<exi sts var="y" in="/Catal ogue/ Product">
<equal opl="$x/name/text ()" op2="$y/ name/text()"/>
</ exi st s>
</forall>
</ consi st encyrul e>
</ consi st encyr ul eset >

Example 4.5 shows the same constraint as the previous example, but assumes that the catal ogue elements have been placed
inafilethat useshtt p: / / www. xI i nki t . con’ Exanpl e/ Bi ke/ Cat al ogue as the default namespace. If we used the
previous constraint on such a catalogue, no elements would be matched and inconsistencies would be detected. Instead, we
bind the new namespace to the prefix cat : at the root element and make use of that prefix in the X Path expressions.

Example 4.5. Namespacesin XPaths

<consi stencyrul eset xm ns="http://ww. xlinkit.com Consi stencyRul eSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wmn x| i nki t. conf Consi st encyRul eSet/5. 0 consi stencyrul eset. xsd"
xm ns: cat ="http://wwmv. x| i nki t.com Exanpl e/ Bi ke/ Cat al ogue" >

<consi stencyrule id="r1">
<forall var="x" in="/Advert">
<exi sts var="y" in="/cat: Catal ogue/ cat: Product">
<equal opl="$x/name/text ()" op2="3%y/cat:nane/text()"/>
</ exi st s>
</forall>
</ consi st encyrul e>
</ consi st encyr ul eset >

Example 4.6 demonstrates the use of a global set. The set is defined using the XPath expression from the previous example.
Theruleitself has now become dlightly easier to read - and could become significantly easier to read if more complex
expressions were involved. The set $pr oduct s isnow been defined globally and can be used in any other rule included in
the same rule set as the one in the example.

Page 25 of 62

Date: 25/06/02

Example 4.6. Global Sets

<consi stencyrul eset xm ns="http://ww. xlinkit.com Consi stencyRul eSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. x| i nki t. com Consi st encyRul eSet/5. 0 consi stencyrul eset. xsd">

<gl obal set id="products" xpath="/Catal ogue/ Product"/>

<consi stencyrule id="r1">
<forall var="x" in="/Advert">
<exists var="y" in="$products">
<equal opl="$x/nanme/text ()" op2="3%y/ nanme/text()"/>
</ exi st s>
</forall>
</ consi st encyrul e>
</ consi st encyrul eset >

The final example, Example 4.7 demonstrates an operator invocation. Please refer to Section 5.3 to see the definition of the
operator used in this example.

Example 4.7. Operator Invocation

<consi stencyrul eset xm ns="http://ww. xlinkit.com Consi stencyRul eSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. x| i nki t. com Consi st encyRul eSet/5. 0 consi stencyrul eset. xsd">

<consi stencyrule id="r1">
<forall var="x" in="/Advert">
<operator nanme="test:isGeater">
<param nane="stri ngA" val ue="$x/name/text()"/>
<param nane="stri ngB" val ue="$x/shortnanme/text()"/>
</ oper at or >
</forall>
</ consi st encyrul e>
</ consi st encyrul eset >

4.6 Operators

Operatorsin xlinkit are plug-in predicates. Just as the standard xlinkit predicates like Equal , they take a number of
parameters and return atruth value as aresult. In order to create an operator for use in aformula, it hasto be defined in an
operator set (Section 5.1), and implemented in an implementation language (Section 5.2).

4.6.1 Operator Set

The purpose of an operator set is to define an interface to plug-in operators that are to be used in formulae. It includes
metadata, operator interface definitions, and a reference to where the implementation is stored. Operator sets, like the other
input mechanisms, can contain further operator sets, permitting the construction and reuse of collections of operators.

The namespace for rule setsisht t p: / / www. x1 i nki t. conf Oper at or Set/ 5. 0. Figure 5.1 gives agraphical overview of
the schema, leaving the metadata header collapsed.

Figureb5.1. Operator set schema

.-—J:lheader

OperatorSet [

httpeisew w.w3.0rgM999/xhtrmd J:;
.. pn

Oper at or Set : This serves as a container element for the operators. It has arequired attributed called nanme. The nane
defines the prefix that will be applied to all operatorsin this set in order to avoid name clashes between different sets. Thus
the operator i sPri me in the set whose nameis mat h will become mat h: i sPri ne.

Page 26 of 62

Date: 25/06/02

The second required attribute isi npl , which must contain areference to an implementation file. The reference can be a
URL or file name. See Section 5.2 for more details on implementation files.

I mpl ement at i on must be avalid reference, URL or file, to an operator implementation file. See Section 5.2 for details of
implementation files.

header : Operator sets can contain the usual metadata, as defined in the common mechanisms. No additional meanings are
defined for the metadata in the context of an operator set and it can be used freely.

Oper at or s can be used to include a further operator set. Thereis only one attribute, hr ef , which is areference to the set
to be included.

Oper at or Def i ni ti on: Thiselement defines an interface for an operator that has been implemented in the referenced
implementation file. The required attribute nanme defines the name of the operator. This name must match the name of a
function in the implementation file, otherwise the operator set isinvalid.

The optional descri pti on element isdefined in exactly the same way asthe descri pti on element in the metadata. It
can contain a mixture of text and XHTML elements, provided the elements are in the XHTML namespace. See Section 1.2
for details on how to use this element.

par am An operator definition can take zero or more parameters. Each par amelement has two required attributes, name
and t ype. The name of the parameter can be chosen freely and does not have to match the name of the parameter in the
implementation file (however when the operator isreferred to in arule, the name of the parameter in the rule does have to
match that in the operator set).

Thet ype attribute has to be one of the following: i nt, stri ng, nodeLi st or node. The type of the parameter affects
how any values passed in the operator invocation are treated and passed on to the operator implementation. See Section 5.2
for details.

4.6.2 Operator Implementation

An operator implementation file contains the actual implementation of operators referenced in the operator set. The
contents of the file are specific to which programming language is being used. In the current version of xlinkit, the only
supported language is ECM A Script.

Regardless of which language is used, the implementation file must provide one function for each operator referenced in
the operator set. The function will take several parameters that depend on the language, but must return the languages
native boolean type.

4.6.2.1 Parameter types

Section 5.1 sets out the possible types for operator parameters: i nt, st ri ng, nodeLi st or node. These types define how
parameter values are treated before being passed to the operator invocation:

i nt: The parameter istreated as an integer and converted to the implementation specific integer type. If this conversionis
impossible, arun-time error occurs.

st ri ng: The parameter is converted to the implementation specific string type, and passed on to the implementation as it
is.

nodelLi st : The parameter isinterpreted as an XPath expression. The expression is eval uated and must result in a node set.
This node set is then passed on to the implementation.

node: The parameter isinterpreted as an XPath expression. The expression is evaluated and must result in a node set with
exactly one node in it. This node is then passed on to the implementation.

NOTE: If any XPath expressions are to be evaluated in an argument and passed to the operator, they must be passed asa
nodeli st or node, not asst ri ng. For example, passing the expression/ f oo/ t ext () asastring will result in the
operator being passed the literal string "/ f oo/ t ext () ". If it is passed asanode, the operator will be passed the DOM text
node contained in / f oo and can use the get NodeVal ue method defined by the DOM to get its string value.

Page 27 of 62

Date: 25/06/02

4.6.2.2 ECMAScript Implementation

An ECMA Script operator implementation file should simply contain a number of functions that hold the same name as the
operators defined in the operator set. Each function must take exactly the same number of parameters as defined in the
operator set, and must returnt r ue or f al se from all possible execution flows. The implementation file may contain
additional functions to be used as helper functions, which may return any type.

Type mapping:
i nt parameters are converted into native ECMAScript i nt s.

st ri ng parameters are converted into native ECMAScript st ri ng objects. (Caution: these are not the same as Java
St ri ng objects. Please consult your manual or the ECM A Script specification if you need further information).

nodeli st parameters are passed as JavaNodel i st classes. Nodel i st isaclass defined in the Document Object Model
(DOM) and can be found in the or g. w3c. dompackage of most XML parsers.

node parameters are passed as Java Node classes. Node is also aclass defined in the DOM and can be found in the
or g. w3dc. dompackage of most XML parsers.

4.6.3 Example

Example 5.1 shows an operator set that defines a new operator that can be used to check if itsfirst parameter is alonger
string that its second. Because we want to apply the operator using X Path expressions, we have to pass the parameters as
nodes - they will point tot ext nodes when we make use of the operator.

Because we assigned the namet est to the set, all operatorsin the set will have to be prefixed t est : when they are
invoked.

Example5.1. Oper ator Set

<Qperator Set name="test" inpl="test.es"
xm ns="http://wmn. x| i nkit.conl OperatorSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://ww. xlinkit.com OperatorSet/5.0 OperatorSet.xsd">

<OperatorDefinition name="isGeater">
<param nanme="stri ngA" type="node"/>
<param nane="stringB" type="node"/>
</ Qper at or Defi ni ti on>
</ Qper at or Set >

Example 5.2 shows the matching ECM A Script implementation for the operator. It uses the get NodeVal ue method of the
two parameters, which must be Node objects, to retrieve the text value, and converts them into a Java string. It then returns
the result of comparing the strings.

Example5.2. Operator | mplementation

function isGeater(stringA stringB) {
sA=new j ava. |l ang. Stri ng(stringA. get NodeVal ue());
sB=new j ava. |l ang. Stri ng(stringB. get NodeVal ue());

return (sA conpareTo(sB) > 0);
}
It would now be possible to invoke the operator in arule file asin Example 5.3, assuming that $x has been bound by a
parent formula.

Example 5.3. Operator Invocation

<operator nanme="test:isGeater">
<param nane="stri ngA" val ue="$x/fool/text()"/>
<param nane="stri ngA" val ue="$x/bar/text()"/>
</ oper at or >

4.7 Macros

Macros are xlinkit's preprocessing mechanism for consistency rules. They allow the parameterization of frequently used
formulae, which increases reuse. They also make rules easier to read since they can be used to replace complex formulae
with a simple macro invocation.

Page 28 of 62

Date: 25/06/02

Example 6.1 isarule that will serve as a motivating example throughout this chapter. It expresses the constraint that all
Pr oduct elements have to have a unique name within a Cat al ogue element. Thiskind of uniqueness check arises quite
frequently and it is tedious to define precisely every time - it is thus a good candidate for replacement with a macro.

Example 6.1. Sample Rule without Macro

<forall var="c" in="/Catal ogue">
<forall var="x" in="$c/Product">
<forall var="y" in="$c/Product">
<i nplies>
<equal opl="$x/nanme/text ()" op2="3%y/ nanme/text()"/>
<same opl="$x" op2="8%y"/>
</inmplies>
</forall>
</forall>
</forall>

4.7.1 Macro Definition

Macros have to be defined in a macro definition file before they can be used. Figure 6.1 shows a graphical representation of
the schema for macro definition files.

Figure 6.1. Macro Definition Schema

——————————

--------- 1

i -1 header

http:J'Mww.Hlinkit.cumJ'CunsistencyﬂuIeSeﬂs.ﬂ]

Thedefi ni ti ons root element may contain the usual metadata contained in header . No special meaning is defined for
the metadata and it can be used freely.

macr o: A definition file must contain at least one macr o element. The element has arequired attributed name that defines
the name of the macro. The name has to be unique within the definition file. Individual macros may also contain the
optional header element for metadata declaration - again, no special meaning is defined and the metadata may be used
freely.

par am A macro may take zero or more parameters that can be referred to in X Path expression inside the out put . Each
par amelement has a mandatory nane attribute that must be unique within the macro.

out put contains the formula the macro invocation element will be replaced with. The schema allows any element from the
consistency rule namespace to occur here, but in practice only formulae may be used otherwise a run-time error will occur.

Formulae in the output may make reference within their X Path attributes to the formally defined parameters of the macro
using the notation { $par ammane} . A parameter referenced using { $par amnane} will be replaced at macro invocation
using the value passed as the parameter par annane. See Section 6.2 for details.

4.7.1.1 Example

In this example, we take the fragment of the formulain Example 6.1 that expresses the actual uniqueness criterion, remove
the actual XPath expressions and insert parameter references instead. We use the parameter | i st to refer to the set of
elements that we wish to compare, andi dent i fi er for the relative path that we will use to compare the elements for
equality.

Note that we bind the default name space to the rule namespace at the out put element, so that we can use the formula
elements without further prefixes. We referencethel i st parameter using { $1 i st} inthe forall expression. When the
macro is invoked, this parameter reference will be replaced with the actual expression. To avoid any name clashes that
might arise when inserting the macro into a parent formula, we use nacr ox and nacr oy asour interna variable names, but
any variable nameis allowed.

Page 29 of 62

Date: 25/06/02

Example 6.2. M acro Definition

<macro: definitions xmns:macro="http://ww. xlinkit.conl Macro/5. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. x| i nkit.com Macro/5.0 Macro. xsd">

<macro: nacro name="uni que" >
<macro: param nanme="list"/>
<macr o: param nane="identifier"/>
<macr o: out put xm ns="http://ww. xl i nkit.conl Consi stencyRul eSet/5.0">
<forall var="macrox" in="{$list}">
<forall var="macroy" in="{$list}">
<i mplies>
<equal opl="$nacrox/{$identifier}" op2="$nmacroy/{$identifier}"/>
<same opl="$nacrox" op2="S$nmacroy"/>
</inplies>
</forall>
</forall>
</ macr o: out put >
</ macr o: macr o>
</ macro: definitions>

4.7.2 Macro Inclusion and Processing

Macros may beincluded in arulefile using thei ncl ude element, which is also contained in the macro namespace. Section
4.2 specifies where the element may appear in arulefile.

Once a macro file has been included, macro invocations may appear as a subformula wherever any other formula may
appear. Macro invocation is achieved by inserting an element with the name of the macro and a prefix bound to the macro
namespaces as a subformula. For example, if we bind macr o to ht t p: // www. xI i nki t. com Macr o/ 5. 0, we can then
include the macro uni que using the element nmacr o: uni que.

Parameters to macros are treated similarly: al parameters become attributes, with the same name, of the macro invocation
element. Thus, in our example we would have to specify the attributes| i st andi denti fi er. The values of these
attributes are then used to replace the parameter references in the macro. When the replacement is compl ete, the
instantiated macro with the actual attribute val ues replaces the macro invocation element in the rule file.

When all macro invocation elements have been replaced with macro instantiation, and the macro inclusion element has
been removed, macro processing is complete and the rule file is loaded as normal.

4.7.2.1 Example

Example 6.3 shows the rule file Example 6.1 rewritten using the macro definition from Example 6.2. The macr o: prefix is
bound to the correct namespace URL at the root element. We then use macr o: i ncl ude to include the macro file, and
replace the uniqueness formula with a macro invocation. The name of the macro invocation elements matches the name of
the macro in the definition file. The parameters! i st andi denti fi er are passed as attributes to the macro.

Example 6.3. Macro I nvocation

<consi stencyrul eset xm ns="http://ww. x| inkit.con Consi stencyRul eSet/5. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemalLocation="http://ww. xl i nkit.com Consi stencyRul eSet/5.0 consi st encyrul eset. xsd"
xm ns: macro="http://wwm. xI i nki t.com Macro/5. 0" >

<macro: i ncl ude href="nacrodef.xm"/>

<consi stencyrule id="r1">
<forall var="c" in="/Catal ogue">
<macro: uni que |ist="%c/Product" identifier="name/text()"/>
/forall>
</ consi st encyrul e>
</ consi st encyr ul eset >

For completeness, Example 6.4 shows the consistency rule file after macro processing: the macro inclusion has been
removed and the macro formula has been inserted, with the actual values replacing the formal parameters. The fileis now
ready to be loaded and processed by xlinkit as any other rulefile.

Page 30 of 62

Date: 25/06/02

Example 6.4. Processed Rule File

<consi stencyrul eset xm ns="http://ww. xlinkit.com Consi stencyRul eSet/5.0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wmn x| i nki t. conf Consi st encyRul eSet/5. 0 consi stencyrul eset. xsd"
xm ns: macro="http://ww. xl i nkit.com Macro/5. 0" >

<consi stencyrule id="r1">
<forall var="c" in="/Catal ogue">
<forall var="macrox" in="$c/Product">
<forall var="macroy" in="$c/Product">
<i nplies>
<equal opl="$macrox/ nanme/text ()" op2="$macroy/ name/text()"/>
<same opl="$macrox" op2="$macroy"/>
</inplies>
</forall>
</forall>
</forall>
</ consi st encyrul e>
</ consi st encyr ul eset >

5 FpML 1.0 Validation Rules

5.1 History

In Q1 2002 Steven Lord defined a number of FpML 1.0 Validation rules and circulated them within FpML. These authors
than formalized these rules using the xlinkit rule language. And during the process of formalization a number of
ambiguities were identified and resolved. Furthermore it was found that several rules could be subsumed into single rules
thus allowing for a more concise definition. Also during the process we found rules that were missing. The set of rules
given in 4.3 does not yet include these missing rules as it was considered more important to give arealistic example for
how validation rules could be specified rather than attempt to be complete.

5.2 Rule development process

In order to formalize these rules we defined them in first order logic and defined them in the XML encoding of xlinkit's
rule language. We then tested each of these rules using the example trade given in the FpML 1.0 standard.

The example was modified to force deliberate violations that were then to be identified by the xlinkit rule engine.

Steven Lord and Daniel Dui also evaluated the rulesin a number of workshops and now agree that these are meaningful
and important rules for FpML

5.3 Sample Rule Set
ID Description
1 InswapStream: resetDates must exist if and only if a floatingRateCalculation existsin calculation

2 InswapStream: resetDates must not exist if and only if fixedRateSchedule exists in calculation.

3 In%FpML_BusinessDayAdjustments: neither businessCentersReference nor businessCenters must exist if and only if
the value of businessDayConvention is 'NONE'.

%FpML_BusinessDayAdjustments defines cal cul ationPeriodDatesAdj ustments, dateAdjustments,
paymentDatesAdjustments, and resetDatesAdjustments.

4 In calculationPeriodDates: firstPeriodStartDate and should not equal effectiveDate.
In calculationPeriodDates. terminationDate and |astRegul arPeriodEndDate must not be the same.

Page 31 of 62

Date: 25/06/02

6

10

11

12

13

14
15

16

17

18

19

20
21

CalculationPeriodFrequency must divide the regular period precisely. Thisisthe period between the following pairs of
dates depending on which are present in the document:

» effectiveDate and terminationDate, if neither firstPeriodStartDate nor firstRegul arPeriodStartDate nor
lastRegularPeriodEndDate exist.

» firstPeriodStartDate and terminationDate, if firstPeriodStartDate exists and neither firstRegularPeriodStartDate
nor lastRegularPeriodEndDate exist.

» firstRegularPeriodStartDate and terminationDate, if firstPeriodStartDate does not exigt,
firstRegularPeriodStartDate exists, and lastRegul arPeriodEndDate does not exist.

» effectiveDate and lastRegularPeriodEndDate, if firstPeriodStartDate and firstRegularPeriodStartDate do not
exist and lastRegularPeriodEndDate exists.

» firstRegularPeriodStartDate and terminationDate, if firstPeriodStartDate and firstRegul arPeriodStartDate exist
and lastRegularPeriodEndDate does not exist.

» firstPeriodStartDate and lastRegularPeriodEndDate, if firstPeriodStartDate exists, firstRegularPeriodStartDate
does not exist and lastRegularPeriodEndDate exists.

» firstRegularPeriodStartDate and lastRegularPeriodEndDate, if firstPeriodStartDate does not exist,
firstRegularPeriodStartDate exists and |astRegularPeriodEndDate exists.

» firstRegularPeriodStartDate and lastRegularPeriodEndDate, If all of firstPeriodStartDate,
firstRegularPeriodStartDate, and lastRegul arPeriodEndDate exists.

In calculationPeriodFrequency: if rollConvention is not either 'NONE' or 'SFE' then the period must be 'M* or Y.

In PaymentFrequency and cal cul ationPeriodFrequency: PaymentFrequency must be an integer multiple (could be 1) of
the cal cul ationPeriodFrequency.

In swapStream: if firstPaymentDate exists in paymentDates, it must match one of the unadjusted cal culation period
dates.

In swapstream: if lastRegularPaymentDate exists in paymentDates, it must match one of the unadjusted cal culation
period dates.

In %FpML_Offset: If the dayType element exists, the period must be 'D'.

%FpML_Offset defines paymentDaysOffset and rateCutOff DaysOffset.

In %FpML_Offset: If the dayTypeis 'Business, the periodMultiplier must be non zero.

%FpML_Offset defines paymentDaysOffset and rateCutOff DaysOffset.

In %FpML_RelativeDateOffset: If the dayTypeis 'Business, then the businessDayConvention should be 'NONE'.
%FpML_RelativeDateOffset defines fixingDateOffset and fixingDates.

In resetFreguency: weeklyRollConvention must exist if and only if the period is'W'.

In ResetFrequency and cal cul ationPeriodFrequency: cal culationPeriodFrequency must be an integer multiple of the
resetFrequency

In notional StepSchedul e, fixedRateSchedule, capRateSchedul e, floorRateSchedule, and spreadSchedule: if step exists,
stepDates in step must match one of the unadjusted cal culation period dates.

In swapstream: cal cul ationPeriodAmount/cal cul ation/compoundingM ethod must exist if and only if
paymentDates/paymentFrequency and cal cul ationPeriodDates/cal cul ationPeriodFrequency are different.

In swapStream: if initial Stub existsin stubCal culationPeriodAmount, at least one of either firstPeriodStartDate or
firstRegularPeriodStartDate must exist in the cal cul ationPeriodDates referenced by stubCal culationPeriodAmount.

In swapStream: if final Stub exists in stubCal culationPeriodAmount, lastRegularPeriodEndDate must exist in the
calculationPeriodDates referenced by stubCal cul ationPeriodA mount.

In swapStream: payerPartyReference and receiverPartyReference must not be the same.

In %FpML_Fee: payerPartyReference and receiverPartyReference must not be the same. %FpML_Fee defines
additional Payment and otherPartyPayment .

Page 32 of 62

Date: 25/06/02

22 In%FpML_Fee: At least one of paymentDate or adjustedPaymentDate must exist. %FpML_Fee defines
additional Payment and otherPartyPayment .

23 %FpML_Fee: paymentAmount/amount element have non zero value.
%FpML_ Fee defines additional Payment and otherPartyPayment.
24 In swapStream: if calculationPeriodAmount/cal culation/compoundingM ethod exists, resetDates must exist.
25 In calculationPeriodDates: effectiveDate must be before the terminationDate.
26 In %FpML_Schedule: If there are no step elements, initial Value must be non-zero.
%FpML_Schedul e defines capRateSchedul e, fixedRateSchedul e, floorRateSchedule, and spreadSchedule.

27 In businessCentersReference there shall be a businessCenters el ement where the href attribute of the
busi nessCentersReference element matches the attribute id of the businessCenters element.

28 In businessCenters: value of businessCenter elements must be unique.

6 Rule Implementation in xlinkit

In this section, we provide the full formalization of the above rules using the xlinkit rule language. In Section 5.1 we show
the definition of operatorsthat are used in the rules. The rules themselves are shown in Section 5.2 in XML in the same
way as the rule-writer would edit them. As the rule language has a concrete XML syntax, we are able to render the rule
using an XSLT stylesheet transformation into a more readabl e first order language, which we givein Section 5.3 in order to
show how rules could be included in FpML standard documentation. In Section 5.4 we provide a reference to the FpML
rule implementation that is available on the web for eval uation.

6.1 Operators

As described above xlinkit supports the definition of plugin operators. The rules shown in Section 5.1 use this concept to
define operators that are not easily expressed in first order logic. In this section, we show an example of how these
operators are defined in away that xlinkit rules can invoke them and also how they can be implemented in JavaScript

6.1.1 Operator Interfaces

<?xm version="1.0" standal one="no"?>
<QOper at or Set
nane="fpm "
i mpl =" operators/fpm Operators. es”
xm ns="http://ww. x| inkit.com OperatorSet/5.0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schemaLocati on="http://wwmv. xl i nkit.conl OperatorSet/5.0 OperatorSet.xsd">

<QOperat orDefinition name="i n_unadj ust ed_peri od_dat es" >
<description xm ns: x="http://ww. w3. org/ 1999/ xht m " >
Check if <x:b>checkdate</x:b> is on a periodic interval
bet ween <x: b>startdate</x:b> and <x: b>enddat e</ x: b>:
<x: b>period</x:b> is added to the start date repeatedly, taking
into account the unit (which nust be D WMY). One of those dates
must be the check date.
</ descri pti on>
<param nane="startdate" type="node"/>
<par am nane="enddat e" type="node"/>
<par am nane="checkdat e" type="node"/>
<par am nanme="peri od" type="node"/>
<par am nane="periodunit" type="node"/>
</ Operat or Defi ni ti on>

<Qper at or Defi ni ti on nanme="unadj ust ed_peri od_dat es_di vi des" >
<description xm ns: x="http://ww. w3. org/ 1999/ xht m " >
Check if we can get from <x:b>startdate</x:b> to exactly the
<x: b>enddat e</ x: b> by addi ng the <x:b>period</x:b> a nunber of

Page 33 of 62

Date: 25/06/02

times. If the enddate is exceeded by adding a period, the operator
returns false. The unit nust be DWMor Y.

</ descri ption>

<param nane="startdate" type="node"/>

<par am nane="enddat e" type="node"/>

<par am nanme="peri od" type="node"/>

<par am nane="periodunit" type="node"/>

</ Operat or Definiti on>

<QOper at or Defi ni ti on nanme="great er_t han">
<description xm ns: x="http://ww. w3. org/ 1999/ xht m " >
Check if <x:b>datea</x:b> is greater than <x:b>dateb</x:b> The
dates nust be in the YYYY-MV DD fornat.
</ descri ption>
<par am nane="dat ea" type="nodeList"/>
<par am nane="dat eb" type="nodeList"/>
</ Operat or Defi ni ti on>

<QperatorDefinition name="is_period_multiple">
<description xm ns: x="http://ww. w3. org/ 1999/ xht m " >
Check if <x:b>periodA</x:b> is an integer nultiple of
<x: b>periodB</x: b>, taking into account the units, which must be
Y, MWD. For exanple, 6 years is an integer nmultiple of 3 nonths.
<x: b>Not e: </ x: b> Thi s operator can only conpare pairs of nonths and
years, and weeks and days, respectively. Conparing nonths to weeks or
days, etc. is illegal.
</ descri pti on>
<par am nanme="peri odA" type="node"/>
<param nane="uni t A" type="node"/>
<par am nanme="peri odB" type="node"/>
<param nane="uni t B" type="node"/>
</ Operat or Defi ni ti on>

</ Oper at or Set >

6.1.2 Operator Definition

function greater_than(date_a, date_b) {
/1 if one does not exist return false

if (date_a.getlLength !'=1 || date_b.getLength !'= 1) {
return false ;

}

/1 Date format is YYYY- MV DD

s = new java.lang. String(date_a.item(0).get NodeVal ue()) ;
t = new java.lang. String(date_b.itenm(0).get NodeValue()) ;

return (s.conpareTo(t) > 0) ;

}

function createCal endar (date) {
var digits = new Array(0,1,2,3,5,6,8,9);
for (i=0;i<8;i++)

if (!java.lang.Character.isDigit(date.charAt(digits[i])))
return null;

year =j ava. | ang. | nt eger . parsel nt (dat e. substring(0, 4));
mont h=j ava. | ang. | nt eger . par sel nt (dat e. substring(5,7))-1;
day=j ava. | ang. | nt eger. parsel nt (date. substring(8, 10));

cal =java. util. Cal endar. get | nstance();
cal . set (year, nont h, day, 0, 0, 0) ;

Page 34 of 62

Date: 25/06/02

return cal;

function cal endar Equal (cal A, cal B) {

return cal A get(java.util.Cal endar. YEAR) ==cal B. get (j ava. util. Cal endar. YEAR) &&
cal A get(java.util.Cal endar. MONTH) ==cal B. get (j ava. uti |l . Cal endar. MONTH) &&
cal A get(java.util.Cal endar. DAY_OF_MONTH) ==cal B. get (j ava. uti | . Cal endar. DAY_OF_MONTH) ;

function printcal (cal) {
java.lang. System out. print(cal.get(java.util.Cal endar. YEAR) +"-");
java.l ang. Systemout.print((cal.get(java.util.Calendar. MONTH) +1) +"-");
java.lang. System out. println(cal.get(java.util.Cal endar. DAY_OF _MONTH)) ;
}

function in_unadjusted_period_dates(startdate, enddat e, checkdat e,
peri od, periodunit) {

/1l Create java.util.Calendar objects for each date

startcal =cr eat eCal endar (st art dat e. get NodeVal ue());
endcal =cr eat eCal endar (enddat e. get NodeVal ue());
checkcal =cr eat eCal endar (checkdat e. get NodeVal ue());

/!l |f dates cannot be created bail out

if (startcal==null || endcal ==null || checkcal ==null)
return fal se;

peri od=j ava. | ang. | nt eger. par sel nt (peri od. get NodeVal ue());
unitstring=new java.l ang. String(periodunit.get NodeVal ue());

uni tfield=java.util.Cal endar. DAY_OF_YEAR;

if (unitstring.equal s("W))
peri od=peri od*7;
el se
if (unitstring.equals("M))
unitfield=sjava.util. Cal endar. MONTH;
el se
if (unitstring.equals("Y"))
unitfield=java. util. Cal endar. YEAR,
el se
if (lunitstring.equals("D"))
return false;

current=startcal;

while (current. before(endcal)) {
/lprintcal (current);
/I printcal (checkcal);
/ljava.lang. Systemout.println("--");

i f (cal endar Equal (current, checkcal))
return true;

current.add(unitfield, period);

}

if (checkcal . equal s(endcal))
return true;

return fal se;

Page 35 of 62

Date: 25/06/02

function unadj usted_peri od_dat es_di vi des(startdate, enddat e, peri od, periodunit) {
/1l Create java.util.Cal endar objects for each date

startcal =cr eat eCal endar (st art dat e. get NodeVal ue());
endcal =cr eat eCal endar (enddat e. get NodeVal ue());

/] 1f dates cannot be created bail out

if (startcal==null || endcal ==null)
return fal se;

peri od=j ava. | ang. I nt eger . par sel nt (peri od. get NodeVal ue());
unitstring=new java.lang. String(periodunit.getNodeVal ue());

uni tfield=java.util.Cal endar. DAY_OF_YEAR;

if (unitstring.equal s("W))
peri od=peri od*7;
el se
if (unitstring.equals("M))
unitfield=sjava.util. Cal endar. MONTH;
el se
if (unitstring.equals("Y"))
unitfield=java. util.Cal endar. YEAR,
el se
if (lunitstring.equals("D"))
return false;

current=startcal;

while (current. before(endcal)) {
//printcal (current);
[/ printcal (endcal);
/ljava.lang. Systemout.println("--");

if (cal endar Equal (current, endcal)) return true;

current.add(unitfield, period);

}

i f (cal endar Equal (current, endcal))
return true;

el se
return fal se;

function is_period_multiple(periodA unitA, periodB,unitB) {

peri odA=j ava. | ang. | nt eger. par sel nt (peri odA. get NodeVal ue());
uni t A=new j ava. | ang. String(unitA. get NodeVal ue());

peri odB=j ava. | ang. | nt eger. parsel nt (peri odB. get NodeVal ue());
uni t B=new j ava. |l ang. Stri ng(unitB. get NodeVal ue());

if (unitA equals("Y") || unitA equals("M)) {
if (!'(unitB.equals("M) || unitB.equals("Y")))
return fal se;

if (unitA equals("Y"))
peri odA=peri odA*12;
if (unitB.equals("Y"))
peri odB=peri odB*12;

return (periodA % peri odB)==0;

Page 36 of 62

Date: 25/06/02

}
el se
if (unitA equals("W) || unitA equals("D")) {
if (!'(unitB.equals("D') || unitB.equals("W)))
return fal se;

if (unitA equal s("W))
peri odA=peri odA*7;
if (unitB.equals("W))
peri odB=peri odB*7;

return (periodA % peri odB)==0;
}

return fal se;

6.2 Rules defined in XML

<?xm version="1.0" encodi ng="utf-8"?>

<consi st encyrul eset

xm ns="http://wwm. x| i nkit.conf Consi stencyRul eSet/5. 0"

xm ns: macro="http://wmn x| i nki t.conm Macro/5. 0"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocation="http://ww. xl i nkit.com Consi stencyRul eSet/5.0 consi stencyrul e. xsd">

<consi stencyrule id="r1">
<header >
<descri pti on>Reset Dat es nust be present in a swapStreamif
and only if a floatingRateCalculation elenent is present in
the cal cul ation el enent. </ descri pti on>
</ header >

<li nkgenerati on>
<elim natesymmetry status="on" />
</linkgeneration>

<forall var="x" in="//swapStreani>
<iff>
<exists var="y" in="$x/resetDates" />

<exists var="z" in="$x/cal cul ati onPeri odAnpunt/cal cul ati on/fl oati ngRat eCal cul ati on"

<[iff>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r2">
<header >
<description>ln swapStream elenent ResetDates nust not exi st
if and only if elenment fixedRateSchedule exists in the
cal cul ati on el ement. </ descri pti on>
</ header >

<li nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

<forall var="x" in="//swapStreani>
<iff>
<not >
<exists var="y" in="$x/resetDates" />
</ not >
<exi sts var="z" in="%$x/cal cul ati onPeri odAmount/cal cul ati on/fi xedRat eSchedul e" />
<[iff>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r3">
<header >
<descri pti on>ln %pM._Busi nessDayAdj ust nents: neither
busi nessCent er sRef erence nor busi nessCenters nust exist if
and only if the value of businessDayConvention is 'NONE . %
FpM__Busi nessDayAdj ust nent s defi nes
cal cul ati onPeri odDat esAdj ust ment's, dat eAdj ustments,

/>

Page 37 of 62

Date: 25/06/02

paynent Dat esAdj ust nents, and
reset Dat esAdj ust ment s. </ descri pti on>
</ header >

<l i nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

"

<forall var="x" in="//cal cul ati onPeri odDat esAdj ust nent s|// dat eAdj ust nent s|
/ | paynment Dat esAdj ust nent s| // r eset Dat esAdj ust nent s" >
<iff>
<equal opl="$x/busi nessDayConvention/text()" op2="'NONE' " />
<and>
<not >
<exi sts var="y" in="$x/busi nessCent er sRef erence" />
</ not >
<not >
<exists var="y" in="$x/businessCenters" />
</ not >
</ and>
<liff>
</forall>

</ consi st encyrul e>

<consi stencyrule id="r4">
<header >
<descri ption>ln cal cul ati onPeri odDat es: firstPeriodStartDate
and effectiveDate nust not be the sane.</description>
</ header >

<li nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

<forall var="x" in="//cal cul ationPeri odDat es">
<forall var="y" in="$x/effectiveDate/unadjustedDate">
<not >
<exists var="z
i n="$x/firstPeriodStart Dat e/ unadj ust edDat e" >
<equal opl="%y/text()" op2="%z/text()" />
</ exi st s>
</ not >
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r5">
<header >
<description>ln cal cul ati onPeri odDates: term nati onDate and
| ast Regul ar Peri odEndDat e must not be the sane. </description>
</ header >

<l i nkgenerati on>
<elimnatesymetry status="on" />
</linkgeneration>

<forall var="x" in="//cal cul ati onPeri odDat es" >
<forall var="y" in="$x/term nationDate">
<not >
<exi sts var="z" in="$x/1ast Regul ar Peri odEndDat " >
<equal opl="$y/unadjustedDate/text()"
op2="%z/text()" />
</ exi st s>
</ not >
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r6">
<header >
<aut hor >Chri sti an</ aut hor >

<descri ption>

Page 38 of 62

Date: 25/06/02

Cal cul ati onPeri odFrequency mnust divide the regular period precisely.
</ descri ption>
</ header >

<forall var="x" in="//cal cul ati onPeri odDat es" >
<forall var="s"
in="%$x/effectiveDate[count(../firstRegul arPeriodStartDate)=0 and
count(../firstPeriodStartDate)=0]|
$x/firstPeriodStartDate[count(../firstRegul arPeri odStart Date)=0]
$x/firstRegul ar Peri odSt art Dat e" >

<forall var="e" in="$x/term nati onDate[count(../|astRegul arPeri odEndDat e) =0]
$x/ | ast Regul ar Peri odEndDat e" >

<operat or nanme="fpnl : unadj ust ed_peri od_dat es_di vi des" >
<par am nane="st art dat e"
val ue="$s/ unadj ust edDat e/ text () | $s[count(unadjustedDate)=0]/text()" />

<par am nane="enddat e"
val ue="$e/ unadj ust edDat e/ text () | $e[count (unadjustedDate)=0]/text()" />

<par am nane="peri od"
val ue="$x/ cal cul ati onPeri odFrequency/ periodMul tiplier/text()" />

<par am nane="peri oduni t"
val ue="$x/ cal cul ati onPeri odFr equency/ period/text()" />
</ oper at or >
</forall>
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r7">
<header >
<descri ption>ln cal cul ati onPeri odFrequency: if roll Convention
is not either ' NONE' or 'SFE then the period nust be 'M or
"Y' .</description>
</ header >

<l i nkgenerati on>
<elimnatesymetry status="on" />
</linkgeneration>

<forall var="x" in="//cal cul ati onPeri odFrequency" >
<i mplies>
<or >
<not equal opl="$x/roll Convention/text()" op2="'NONE " />

<not equal opl="$x/roll Convention/text()" op2="'SFE " />
</ or>

<or >
<equal opl="$x/period/text()" op2=""M" />

<equal opl="$x/period/text()" op2=""'Y" />
</ or>
</inmplies>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r8">
<header >
<aut hor >Dani el </ aut hor >

<descri pti on>l n swapStream paynent Frequency i n paynent Dat es
must be an integer nultiple of calculationPeriodFrequency in
cal cul ati onPeri odFrequency. </ descri pti on>

</ header >

<forall var="x" in="//swapStreani>
<forall var="y" in="$x/paynent Dat es/ paynent Frequency" >
<forall var="z"
i n="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFr equency" >

Page 39 of 62

Date: 25/06/02

<operator name="fpm :is_period_multiple">
<par am nane="peri odA" val ue="3$y/ periodMiltiplier/text()" />

<par am nanme="uni t A" val ue="8$y/period/text()" />
<par am nane="peri odB" val ue="$z/periodMiltiplier/text()" />

<par am nanme="uni t B" val ue="%$z/period/text()" />
</ oper at or >
</forall>
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r9">
<header >
<aut hor >Chri sti an</ aut hor >

<descri pti on>
</ descri ption>
</ header >

<forall var="x" in="//swapStreani>
<forall var="y" in="$x/paynentDates">
<i nplies>
<exists var="I1" in="8Qy/firstPaynentDate" />

<l-- Either the date matches firstPeriodStartDate or it is
one of the unadjusted period dates -->
<or >
<equal
opl="$x/ cal cul ati onPeri odDat es/firstPeri odSt art Dat e/ unadj ust edDat e/ t ext ()"
op2="%y/firstPayment Date/text()" />

<forall var="s" in="$x/cal cul ati onPeri odDat es/ ef fecti veDate
[count (../firstRegul arPeriodStartDate)=0 and
count(../firstPeriodStartDate)=0] |
$x/ cal cul ati onPeri odDat es/firstPeriodStartDate
[count (../firstRegul arPeriodStartDate)=0] |
$x/ cal cul ati onPeri odDat es/ fi rst Regul ar Peri odSt art Dat e" >

<forall var="e" in="$x/cal cul ati onPeri odDat es/term nati onDat e
[count (../| ast Regul ar Peri odEndDat e) =0] |
$x/ cal cul ati onPeri odDat es/ | ast Regul ar Peri odEndDat e" >

<operator nane="fpm :in_unadjusted_peri od_dates">
<par am nane="st art dat e"
val ue="$s/ unadj ust edDat e/ text () | $s[count(unadjustedDate)=0]/text()" />

<par am nane="enddat e"
val ue="$e/ unadj ust edDat e/ text () | $e[count (unadjustedDate)=0]/text()" />

<par am nane="checkdat e"
val ue="$y/first PaynentDate/text()" />

<par am nane="peri od"
val ue="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency/ periodMul tiplier/text()" />

<par am nane="peri oduni t"
val ue="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency/ peri od/text()" />
</ oper at or >
</forall>
</forall>
</ or>
</inmplies>
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r10">
<header >
<aut hor >Chri st i an</ aut hor >

Page 40 of 62

Date: 25/06/02

<descri pti on>
In swapstream if |astRegul arPaynentDate exists in paynentDates, it mnust
mat ch one of the unadjusted cal cul ation period dates.
</ descri ption>
</ header >

<forall var="x" in="//swapStreani>
<forall var="y" in="$x/paynentDates">
<i mplies>
<exists var="I1" in="3$y/| ast Regul ar Paynent Date" />

<l-- Either the date matches firstPeriodStartDate or it is

one of the unadjusted period dates -->
<or >
<equal
opl="%x/cal cul ati onPeri odDat es/firstPeri odStart Dat e/ unadj ust edDate/text ()"
op2="8$y/ | ast Regul ar Paynent Date/text ()" />

<forall var="s" in="$x/cal cul ati onPeri odDat es/ ef f ecti veDat e[
count(../firstRegul arPeriodStartDate)=0 and
count(../firstPeriodStartDate)=0] |

$x/ cal cul ati onPeri odDat es/firstPeri odStart Dat e[
count (../firstRegul arPeriodStartDate)=0] |
$x/ cal cul ati onPeri odDat es/ fi rst Regul ar Peri odSt art Dat e" >

<forall var="e" in="$x/cal cul ati onPeri odDat es/term nati onDat e[
count (. ./l ast Regul ar Peri odEndDat €) =0] |
$x/ cal cul ati onPeri odDat es/ | ast Regul ar Peri odEndDat e" >

<operator name="fpmnl :in_unadj ust ed_peri od_dat es" >
<par am nane="st art dat e"
val ue="$s/ unadj ust edDat e/ text () | $s[count(unadjustedDate)=0]/text()" />

<par am nane="enddat e"
val ue="$e/ unadj ust edDat e/ text () | $e[count (unadjustedDate)=0]/text()" />

<par am nane="checkdat e"
val ue="8$y/ | ast Regul ar Paynent Date/text ()" />

<par am nane="peri od"

val ue="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency/ periodMul tiplier/text()" />

<par am nane="peri oduni t"
val ue="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency/ period/text()" />
</ oper at or >
</forall>
</forall>
</ or>
</inplies>
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r11">
<header >
<description>ln %pM_Cfset: If the dayType el ement exists,
the period nust be 'D. %pM_O fset defines
paynment DaysOf f set and rat eCut O f DaysOf f set . </ descri pti on>
</ header >

<li nkgenerati on>
<elim natesymetry status="on" />
</linkgeneration>
<forall var="x"
in="//paynment DaysO fset|//rat eCut O f DaysOf f set " >
<i mplies>
<exists var="y" in="$x/dayType" />

<equal opl="$x/period/text()" op2=""D" />
</inplies>
</forall>
</ consi st encyrul e>

Page 41 of 62

Date

: 25/06/02

<consi stencyrule id="r12">
<header >
<description>ln %pM_Ofset: |If the dayType is 'Business'
the periodMul tiplier nust be non zero</description>
</ header >

<li nkgenerati on>
<elimnatesymmetry status="on" />
</linkgeneration>

<forall var="x"
in="//paynment DaysO fset|//rateCut O f DaysOf f set " >
<i mplies>
<equal opl="$x/dayType/text()" op2="'Business'" />

<not equal opl="$x/periodMiltiplier/text()" op2=""0"" />
</inmplies>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r13">
<header >
<description>ln %pM_Rel ati veDateOfset: |f the dayType is
' Busi ness', then the businessDayConventi on shoul d be ' NONE'
9%pM.__Rel ati veDat ek f set defines fixingDateOfset and
fixi ngDat es. </ descri pti on>
</ header >

<l i nkgenerati on>
<elimnatesymmetry status="on" />
</linkgeneration>

<forall var="x" in="//fixingDateOfset|//fixingDates">
<i nplies>
<equal opl="$x/dayType/text()" op2="'Business'" />

<equal opl="$x/busi nessDayConvention/text ()"
op2="'NONE' " />
</inmplies>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r14">
<header >
<descri ption>l n reset Frequency: weeklyRol | Convention nust
exist if and only if the period is 'W.</description>
</ header >

<li nkgenerati on>
<elimnatesymetry status="on" />
</linkgeneration>

<forall var="x" in="//resetFrequency">
<iff>
<exi sts var="y" in="$x/weekl yRol | Convention" />

<equal opl="$x/period/text()" op2=""W" />
<[iff>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r15">
<header >
<aut hor >Dani el </ aut hor >

<descri ption>ln swapStream cal cul ati onPeri odFrequency in
cal cul ati onPeri odDates is integer multiple of resetFrequency
in resetDates. </description>

Page 42 of 62

Date: 25/06/02

</ header >

<forall var="x" in="//swapStreani>
<forall var="y" in="$x/resetDates/resetFrequency">
<forall var="z"
i n="%x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency" >
<operator name="fpm:is_period_nultiple">
<par am nane="peri odA"
val ue="$z/periodMil tiplier/text()" />

<param nane="uni t A" val ue="$z/period/text()" />

<par am nane="peri odB"
val ue="$y/periodMil tiplier/text()" />

<param nane="uni t B" val ue="3$y/ period/text()" />
</ oper at or >
</forall>
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r16">
<header >
<aut hor >Chri sti an</ aut hor >

<descri pti on>
I n notional St epSchedul e, fixedRat eSchedul e, capRat eSchedul e, fl oor Rat eSchedul e,
and spreadSchedule: if step exists, stepDates in step nust match one of the
unadj ust ed cal cul ati on peri od dates.
</ descri ption>
</ header >

<forall var="x" in="//swapStreant>
<forall var="y"
i n="$x//notional StepSchedul e | $x//fixedRat eSchedul e |
$x/ / capRat eSchedul e | $x//fl oor Rat eSchedul e |
$x/ / knownAnount Schedul e | $x/ spreadSchedul e" >

<forall var="z" in="8y/step/stepbate">
<l-- Either the step date matches firstPeriodStartDate or it is
one of the unadjusted period dates -->
<or >
<equal
opl="$x/ cal cul ati onPeri odDat es/ first Peri odSt art Dat e/ unadj ust edDat e/ t ext ()"
op2="%z/text()" />

<forall var="s" in="$x/cal cul ati onPeri odDat es/ effectiveDate
[count (../firstRegul arPeri odStartDate)=0 and
count(../firstPeriodStartDate)=0] |
$x/ cal cul ati onPeri odDat es/firstPeriodStartDate
[count (../firstRegul arPeri odStart Dat e)=0] |
$x/ cal cul ati onPeri odDat es/ fi rst Regul ar Peri odSt art Dat e" >

<forall var="e" in="$x/cal cul ati onPeri odDat es/term nati onDat e
[count (../] ast Regul ar Peri odEndDat e) =0] |
$x/ cal cul ati onPeri odDat es/ | ast Regul ar Peri odEndDat e" >

<operator nane="fpnm :in_unadj usted_peri od_dat es">
<par am nane="st art dat e"

val ue="$s/ unadj ust edDat e/ text () | $s[count(unadjustedDate)=0]/text()" />
<par am nane="enddat e"

val ue="$e/ unadj ust edDat e/ text () | $e[count (unadjustedDate)=0]/text()" />

<par am nane="checkdat e" val ue="$z/text()" />

<par am nane="peri od"

val ue="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency/ periodMul tiplier/text()" />

<par am nane="peri oduni t"

val ue="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency/ peri od/text()" />

</ oper at or >
</forall>
</forall>

Page 43 of 62

Date: 25/06/02

</ or>
</forall>
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrule id="r17">
<header >
<aut hor >Dani el </ aut hor >

<descri pti on>l n swapstream
cal cul ati onPeri odAnmount/ cal cul ati on/ conpoundi ngMet hod nust
exist if and only if paynentDat es/ paynent Frequency and
cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency are
di fferent.</description>
</ header >

<forall var="x" in="//swapStreani>
<iff>

<exists var="y

i n="%$x/ cal cul ati onPeri odAnount/ cal cul ati on/ conpoundi ngMet hod" />

<not >
<and>
<equal
opl="$x/ paynent Dat es/ paynent Fr equency/ peri odMul tiplier/text()"
op2="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency/ peri odMul tiplier/text()" />

<equal

opl="$x/ paynent Dat es/ paynent Fr equency/ peri od/ text ()"

op2="$x/ cal cul ati onPeri odDat es/ cal cul ati onPeri odFrequency/ period/text()" />

</ and>
</ not >
</[iff>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r18">

<header >
<description>ln swapStream if initial Stub exists in
st ubCal cul ati onPeri odAmount, at | east one of either
firstPeriodStartDate or firstRegul arPeriodStartDate nust
exi st in the cal cul ati onPeri odDat es referenced by
st ubCal cul ati onPeri odAmount . </ descri pti on>

</ header >

<li nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

<forall var="x" in="//swapStreani>
<i nplies>
<exi sts var="y
i n="$x/ st ubCal cul ati onPeri odAmount/initial Stub" />

<and>
<or >
<exi sts var="z"
i n="$x/ cal cul ati onPeri odDat es/firstPeriodStartDate" />
<exi sts var="z"
i n="%$x/ cal cul ati onPeri odDat es/first Regul ar Peri odSt art Date" />
</ or>

<equal opl="$x/cal cul ati onPeri odDat es/ @d"
op2="substring($x/ st ubCal cul ati onPeri odAmount / cal cul ati onPeri odDat esRef erence/ @ref, 2)" />
</ and>
</inmplies>
</forall>
</ consi st encyrul e>

Page 44 of 62

Date: 25/06/02

<consi stencyrul e id="r19">
<header >
<description>ln swapStream if final Stub exists in
st ubCal cul ati onPeri odAmount, | ast Regul ar Peri odEndDat e nust
exist in the cal cul ationPeri odDat es referenced by
st ubCal cul ati onPeri odAmount . </ descri pti on>
</ header >

<l i nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

<forall var=
<i nmplies>

<exi sts var="y

i n="$x/ st ubCal cul ati onPeri odAmount/fi nal Stub" />

x" in="//swapStreant >

<exists var="z"
i n="%x/ cal cul ati onPeri odDat es/ | ast Regul ar Peri odEndDat e" >
<equal opl="$x/cal cul ati onPeri odDates/ @d"
op2="substring($x/ st ubCal cul ati onPeri odAmount / cal cul ati onPeri odDat esRef erence/ @ref, 2)" />

</ exi st s>
</inplies>
</forall>

</ consi st encyrul e>

<consi stencyrul e id="r20">
<header >
<descri pti on>ln swapStream PayerPartyReference and
recei ver PartyRef erence must not be the sane. </description>
</ header >

<li nkgenerati on>
<elim natesymmetry status="on" />
</linkgeneration>

<forall var="x" in="//swapStreani>
<forall var="y" in="$x/payerPartyReference">
<not >
<exists var="z" in="$x/receiverPartyReference">
<equal opl="3%y/ @ref" op2="%z/ @ref" />
</ exi st s>
</ not >
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r21">
<header >
<description> I n %pM_Fee: payerPartyReference and
recei ver PartyRef erence nust not be the sane.
%-pM__Fee defines additional Paynent and ot her PartyPaynent
</ descri ption>
</ header >

<li nkgenerati on>
<elimnatesymetry status="on" />
</linkgeneration>

<forall var="x" in="//additional Paynent|//otherPartyPaynent">
<forall var="y" in="$x/payerPartyReference">
<not >
<exists var="z" in="$x/receiverPartyReference">
<equal opl="3%y/ @ref" op2="%z/ @ref" />
</ exi st s>
</ not >
</forall>
</forall>
</ consi st encyrul e>

Page 45 of 62

Date

: 25/06/02

<consi stencyrul e id="r22">
<header >
<description>ln %pM_Fee: At |east one of paynentDate or
adj ust edPaynent Dat e nmust exi st. %pM._Fee defines
addi ti onal Payment and ot her PartyPaynent .</description>
</ header >

<l i nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

<forall var=
<or >
<exi sts var="y" in="$x/paynentDate" />

x" in="//additional Payrment|// ot her PartyPaynment" >

<exi sts var=
</ or>
</forall>
</ consi st encyrul e>

y" in="$x/adjust edPaynment Date" />

<consi stencyrul e id="r23">
<header >
<descri pti on>%-pM._Fee: paynment Anount/anmount el enent have non
zero val ue. %-pM._Fee defines additional Paynent and
ot her Part yPayment . </ descri pti on>
</ header >

<l i nkgenerati on>
<elimnatesymetry status="on" />
</linkgeneration>

<forall var="x" in="//additional Paynent|//otherPartyPaynent" >
<forall var="y" in="$x/paynent Anount/anount">
<not equal opl="$y/text()" op2="'0.00"" />
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r24">
<header >
<description>ln swapStream if
cal cul ati onPeri odAnount / cal cul ati on/ conmpoundi ngMet hod exi st's,
reset Dat es nust exist.</description>
</ header >

<li nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

<forall var="x" in="//swapStreani>
<i nplies>
<exi sts var=

"o

y" in="8$x/cal cul ati onPeri odAmount/ cal cul ati on/ conpoundi ngMet hod" />

<exi sts var=
</inplies>
</forall>
</ consi st encyrul e>

y" in="$x/resetDates" />

<consi stencyrul e i d="r25">
<header >
<descri ption>ln cal cul ati onPeri odDates: effectiveDate nmust be
before the term nationDate. </description>
</ header >

<l i nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

Page 46 of 62

Date

: 25/06/02

<forall var="x" in="//cal cul ati onPeri odDat es" >
<forall var="y" in="$x/terninationDate">
<forall var="z" in="$x/effectiveDate">
<oper ator nanme="fpmnl :greater_than">
<par am nane="dat ea"
val ue="$x/t er mi nati onDat e/ unadj ust edDate/text ()" />

<par am nane="dat eb"
val ue="$x/ ef f ecti veDat e/ unadj ust edDat e/ text ()" />
</ oper at or >
</forall>
</forall>
</forall>
</ consi st encyrul e>

<consi stencyrul e i d="r26">
<header >
<descri ption>ln %pM_Schedule: If there are no step
el emrents, initialValue nmust be non-zero. %-pM_Schedul e
defines capRateSchedul e, fixedRateSchedul e
fl oor Rat eSchedul e, and spreadSchedul e. </ descri pti on>
</ header >

<l i nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

<forall var="x"
in="//capRat eSchedul e| // fi xedRat eSchedul e| // f| oor Rat eSchedul e| // spr eadSchedul e" >

<i mplies>
<not >
<exists var="y" in="$x/step" />
</ not >

<forall var="y" in="$x/initialVal ue">
<not equal opl="$y/text()" op2="'0.00"" />
</forall>
</inplies>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r27">
<header >
<descri pti on>l n busi nessCent ersRef erence: value of attribute
href nust be equal to the value attribute id of at |east one
busi nessCent ers. </ descri pti on>
</ header >

<li nkgenerati on>
<elimnatesymmetry status="on" />
</linkgeneration>

<forall var="x" in="//businessCentersReference">
<exi sts var="y" in="//busi nessCenters">
<equal opl="substring($x/ @ref,2)" op2="$y/ @d" />
</ exi st s>
</forall>
</ consi st encyrul e>

<consi stencyrul e id="r28">
<header >
<descri ption>l n busi nessCenters: value of businessCenter
el ements nmust be uni que. </ descri pti on>
</ header >

<li nkgenerati on>
<el i m nat esymmetry status="on" />
</linkgeneration>

Page 47 of 62

Date: 25/06/02

<forall var="a" in="//busi nessCenters">
<forall var="x" in="$al/busi nessCenter">
<forall var="y" in="$al/busi nessCenter">
<i mplies>
<not >
<same opl="$x" op2="$y" />
</ not >
<not equal opl="$x/text()" op2="$y/text()" />
</inplies>
</forall>
</forall>
</forall>

</ consi st encyrul e>
</ consi st encyrul eset >

6.3 Rules rendered in 1st order logic

Consistency Rulerl

Description

ResetDates must be present in a swapSreamif and only if a floatingRateCal culation element is present in the calcul ation el ement.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
existsy in $x/resetDates () <-> exists z in $x/calculationPeriodAmount/cal culation/floatingRateCal culation ()
)

Consistency Ruler2

Description

In swapStream: element ResetDates must not exist if and only if element fixedRateSchedule exists in the calculation element.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
not existsy in $x/resetDates () <-> exists z in $x/calculationPeriodAmount/cal culation/fixedRateSchedule ()
)

Consistency Ruler3

Description

In %FpML_Bus nessDayAdjustments: neither businessCenter sReference nor businessCenters must exist if and only if the value of
businessDayConvention is'NONE'. % FpML_Busi nessDayAdj ustments defines cal cul ationPeriodDatesAdjustments,
dateAdjustments, paymentDatesAdjustments, and resetDatesAdjustments.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //calculationPeriodDatesAdj ustments|//dateAdj ustments|//paymentDatesAdj ustments|/r esetDatesAdj ustments (
$x/businessDayConvention/text()='"NONE' <-> not existsy in $x/businessCenter sReference () and not existsy in
$x/businessCenters ()

)

Consistency Ruler4

Description

In calculationPeriodDates: firstPeriodSartDate and effectiveDate must not be the same.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //calculationPeriodDates (
forall y in $x/effectiveDate/lunadjustedDate (
not exists z in $x/fir stPeriodStartDate/unadjustedDate (
$yltext()=$z/text()

Consistency Ruler5

Description

In calculationPeriodDates: terminationDate and lastRegul arPeriodEndDate must not be the same.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //calculationPeriodDates (
forall y in $x/terminationDate (
not exists z in $x/lastRegular PeriodEndDate (
$y/unadjustedDate/text()=$z/text()

Consistency Ruler6

Description

CalculationPeriodFrequency must divide the regular period precisely

Link Generation

Consistent on

Page 48 of 62

Date: 25/06/02

Inconsistent on

Rule forall x in //calculationPeriodDates (
forall sin $x/effectiveDate[count(../fir stRegular PeriodStar tDate)=0 and count(../fir stPeriodStartDate)=0] |
$x/firstPeriodStartDate]count(../fir tRegular PeriodStartDate)=0] | $x/fir stRegular PeriodStartDate (
forall ein $x/ter minationDate[count(../lastRegular PeriodEndDate)=0] | $x/lastRegular PeriodEndDate (
fpml:unadjusted_period_dates divides($s/unadjustedDate/text() |
$9 count(unadjustedDate)=0]/text(),$e/unadjustedDate/text() |
$e] count(unadjustedDate)=0]/text(),$x/cal cul ati onPeri odFrequency/periodM ulti plier/text(),$x/cal cul ati onPeri odFrequenc
y/period/text())
)
)
)
Consistency Ruler7
Description In calculationPeriodFreguency: if rollConvention is not either 'NONE' or 'SFE' then the period must be'M' or 'Y'.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //calculationPeriodFrequency (
$x/rollConvention/text()!="NONE' or $x/rollConvention/text()!="SFE' implies $x/period/text()="M" or $x/period/text()="Y"
)

Consistency Ruler8

Description

In swapStream: paymentFrequency in paymentDates must be an integer multiple of calculationPeriodFrequency in
calculationPeriodFrequency.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
forall y in $x/paymentDates/paymentFrequency (
forall zin $x/calculationPeriodDates/cal culationPeriodFrequency (
fpml:is_period_multiple($y/periodMultiplier/text(),$y/period/text(),$z/peri odM ultiplier/text(),$z/peri od/text())

)
)
Consistency Ruler9
Description
Link Generation Consigtent on

Inconsistent on

Rule

forall x in //swapStream (
forall y in $x/paymentDates (
exists| in $y/firstPaymentDate ()
implies $x/cal cul ationPeriodDates/firstPeri odStartDate/unadjustedDate/text()=$y/fi rstPaymentDate/text() or
forall sin $x/calculationPeriodDates/effectiveDate[count(../fir stRegular PeriodStar tDate)=0 and
count(../firstPeriodStartDate)=0] |
$x/calculationPeriodDates/fir stPeriodStartDate[count(../fir tRegular PeriodStar tDate)=0] |
$x/calculationPeriodDates/fir stRegular PeriodStartDate (
forall ein $x/calculationPeriodDates/ter minationDate[count(../lastRegular PeriodEndDate)=0] |
$x/calculationPeriodDates/lastRegular PeriodEndDate (
fpml:in_unadjusted period_dates($s/unadjustedDate/text() |
$9 count(unadjustedDate)=0]/text(),$e/unadjustedDate/text() |
$ef count(unadjustedDate)=0]/text()
Sy/firstPaymentDatef/text(),$x/cal cul ationPeri odDates/cal cul ati onPeri odFrequency/periodMultiplier/text()
,$x/cal cul ati onPeri odDates/cal cul ati onPeri odFrequency/period/text())

Consistency Ruler10

Description

In swapstream: if lastRegular PaymentDate exists in paymentDates, it must match one of the unadjusted calculation period dates.

Link Generation

Consistent on
Inconsistent on

Page 49 of 62

Date: 25/06/02

Rule

forall x in //swapStream (
forall y in $x/paymentDates (
exists| in $y/lastRegular PaymentDate () implies
$x/cal culati onPeriodDates/firstPeriodStartDate/unadj ustedDate/text()=3$y/l astRegul arPaymentDate/text() or forall sin
$x/calculationPeriodDates/effectiveDate[count(../fir stRegular PeriodStar tDate)=0 and
count(../firstPeriodStartDate)=0] |
$x/calculationPeriodDates/fir stPeriodStar tDate[count(../fir stRegular PeriodStar tDate)=0] |
$x/calculationPeriodDates/fir tRegular PeriodStartDate (
forall ein $x/calculationPeriodDates/ter minationDate[count(../lastRegular PeriodEndDate)=0] |
$x/calculationPeriodDates/lastRegular PeriodEndDate (
fpml:in_unadjusted period_dates($s/unadjustedDate/text() |
$9 count(unadjustedDate)=0]/text(),$e/unadjustedDate/text() |
$¢f count(unadjustedDate)=0]/text(),$y/l astRegul arPaymentDate/text (), $x/cal cul ationPeri odDates/cal cul ati onPeri odF
requency/periodM ultiplier/text(),$x/cal cul ationPeri odDates/cal cul ati onPeri odFrequency/period/text())

Consistency Ruler1l

Description

In %FpML_Offset: If the dayType element exists, the period must be 'D'. %FpML_Offset defines paymentDaysOffset and
rateCutOffDaysOffset.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //[paymentDaysOffset|//rateCut Off DaysOffset (
existsy in $x/dayType () implies $x/period/text()='D'
)

Consistency Ruler12

Description

In %FpML_Offset: If the dayTypeis'Business, the periodMultiplier must be non zero

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //paymentDaysOffset|//r ateCutOff DaysOffset (
$x/dayType/text()='Business implies $x/periodMultiplier/text()!="0'
)

Consistency Ruler13

Description

In %FpML_RelativeDateOffset: If the dayTypeis'Business, then the businessDayConvention should be ‘NONE'.
%FpML_RelativeDateOffset defines fixingDateOffset and fixingDates.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //fixingDateOffset|//fixingDates (
$x/day Type/text()='Business implies $x/businessDayConvention/text()='"NONE'

Consistency Ruler14

Description

In resetFrequency: weeklyRoll Convention must exist if and only if the period is'W.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //resetFrequency (
existsy in $x/weeklyRollConvention () <-> $x/period/text()="W'
)

Consistency Ruler15

Description

In swapSream: calculationPeriodFrequency in calculationPeriodDates isinteger multiple of resetFrequency in resetDates.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
forall y in $x/resetDates/r esetFrequency (
forall zin $x/calculationPeriodDates/cal culationPeriodFrequency (
fpml:is_period_multiple($z/periodMultiplier/text(),$z/period/text(),$y/periodMultiplier/text(),$y/period/text())

Consistency Ruler16

Description

In notional SepSchedul e, fixedRateSchedule, capRateSchedule, floor RateSchedule, and spreadSchedule: if step exists, stepDatesin
step must match one of the unadjusted cal culation period dates.

Link Generation

Consistent on
Inconsistent on

Page 50 of 62

Date: 25/06/02

Rule

forall x in //swapStream (
forall y in $x//notional StepSchedule | $x//fixedRateSchedule | $x//capRateSchedule | $x//floor RateSchedule |
$x//knownAmountSchedule | $x/spreadSchedule (
forall zin $y/step/stepDate (
$x/cal cul ationPeri odDates/firstPeri odStartDate/unadj ustedDate/text()=$z/text()
or forall sin $x/calculationPeriodDates/effectiveDate[count(../fir stRegular PeriodStar tDate)=0
and count(../firstPeriodStartDate)=0] |
$x/calculationPeriodDates/fir stPeriodStar tDate[count(../fir stRegular PeriodStar tDate)=0] |
$x/calculationPeriodDates/fir stRegular PeriodStartDate (
forall ein $x/calculationPeriodDates/ter minationDate[count(../lastRegular PeriodEndDate)=0] |
$x/calculationPeriodDates/lastRegular PeriodEndDate (
fpml:in_unadjusted_period_dates($s/unadjustedDate/text() |
$9 count(unadjustedDate)=0] /text(),$e/unadj ustedDate/text() | $ef count(unadj ustedDate)=0] /text(),$z/text(),
$x/cal culati onPeriodDates/cal cul ati onPeri odFrequency/periodMultiplier/text(),
$x/cal culationPeriodDates/cal cul ati onPeri odFrequency/peri od/text())

Consistency Ruler17

Description

In swapstream: cal culationPeriodAmount/cal cul ation/compoundingMethod must exist if and only if
paymentDates/paymentFrequency and cal cul ationPeriodDates/cal cul ationPeriodFrequency are different.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
existsy in $x/calculationPeriodAmount/cal culation/compoundingM ethod () <-> not
$x/paymentDates/paymentFrequency/periodMultiplier/text()=$x/cal cul ationPeri odDates/cal cul ati onPeri odFrequency/periodMult
iplier/text() and
$x/paymentDates/paymentFrequency/period/text()=$x/cal cul ationPeri odDates/cal cul ati onPeri odFrequency/peri od/text()

)

Consistency Ruler18

Description

In swapStream: if initial Stub exists in stubCal culationPeriodAmount, at least one of either firstPeriodStartDate or
firstRegularPeriodStartDate must exist in the cal culationPeriodDates referenced by stubCal culationPeriodAmount.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
existsy in $x/stubCalculationPeriodAmount/initial Stub () implies existszin
$x/calculationPeriodDates/fir stPeriodStartDate () or exists z in $x/calculationPeriodDates/fir stRegular PeriodStartDate ()
and $x/cal cul ati onPeri odDates/ @i d=substring($x/stubCal cul ati onPeri odAmount/cal cul ationPeriodDatesRef erence/ @href, 2)

)

Consistency Ruler19

Description

In swapStream: if final Stub exists in stubCal culationPeriodAmount, lastRegular PeriodEndDate must exist in the
calculationPeriodDates referenced by stubCal culationPeriodAmount.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
existsy in $x/stubCalculationPeriodAmount/finalStub () impliesexistszin
$x/calculationPeriodDates/lastRegular PeriodEndDate (
$x/cal culationPeri odDates/ @i d=substring($x/stubCal cul ati onPeri odA mount/cal cul ati onPeri odDatesReferencel @href, 2)
)

)

Consistency Ruler20

Description

In swapStream: Payer PartyReference and receiver PartyReference must not be the same.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
forall y in $x/payer PartyReference (
not exists z in $x/receiver PartyRefer ence (
Syl @href=%$z/ @href
)
)
)

Consistency Ruler21

Description

In %FpML_Fee: payer PartyReference and receiver PartyReference must not be the same. %FpML_Fee defines additional Payment
and otherPartyPayment .

Link Generation

Consistent on
Inconsistent on

Page 51 of 62

Date: 25/06/02

Rule

forall x in //additionalPayment|//other PartyPayment (
forall y in $x/payer PartyReference (
not exists z in $x/receiver PartyRefer ence (

$y/ @href=%$z/ @href
)

)
)

Consistency Ruler22

Description In %FpML_Fee: At least one of paymentDate or adjustedPaymentDate must exist. %FpML_Fee defines additional Payment and
other PartyPayment .
Link Generation Consistent on

Inconsistent on

Rule

forall x in //additionalPayment|//other Par tyPayment (
existsy in $x/paymentDate () or existsy in $x/adjustedPaymentDate ()
)

Consistency Ruler23

Description

%FpML_Fee: paymentAmount/amount element have non zero value. %FpML_Fee defines additional Payment and
otherPartyPayment.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //additionalPayment|//other PartyPayment (
forall y in $x/paymentAmount/amount (
$yltext()!="0.00'
)
)

Consistency Ruler24

Description

In swapSream: if cal culationPeriodAmount/cal culation/compoundingMethod exists, resetDates must exist.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //swapStream (
existsy in $x/calculationPeriodAmount/cal culation/compoundingM ethod () implies existsy in $x/r esetDates ()
)

Consistency Ruler25

Description

In calculationPeriodDates: effectiveDate must be before the terminationDate.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //calculationPeriodDates (
forall y in $x/ter minationDate (
forall zin $x/effectiveDate (
fpml:greater _than($x/terminationDate/unadjustedDate/text(), $x/effectiveDate/unadjustedDate/text()

Consistency Ruler26

Description

In %FpML_Schedule: If there are no step elements, initial Value must be non-zero. %FpML_Schedul e defines capRateSchedul e,
fixedRateSchedul e, floor RateSchedule, and spreadSchedule.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //capRateSchedule)//fixedRateSchedul e}//fl oor RateSchedul e]//spr eadSchedule (
not existsy in $x/step () impliesforall y in $x/initialValue (
$yltext()!='0.00'

Consistency Ruler27

Description

In businessCenter sReference there shall be a businessCenters element where the href attribute of the busi nessCenter sReference
element matches the attribute id of the businessCenters element.

Link Generation

Consistent on
Inconsistent on

Rule

forall x in //businessCenter sRefer ence (
existsy in //businessCenters (
substring($x/@href,2)=%y/@id

Consistency Ruler28

Description

In businessCenters:. value of businessCenter elements must be unique.

Page 52 of 62

Date: 25/06/02

Link Generation Consistent on
Inconsistent on
Rule forall ain //businessCenters (

forall x in $a/businessCenter (
forall y in $a/businessCenter (
not $x===%y implies $x/text()! =$y/text()
)

)

)

6.4 Reference Implementation
A reference implementation of the above rulesis available at http://www.xlinkit.com/fpmlvalidator.html.

The xlinkit FpML Validator validates FpML 1.0 compliant documents against additional integrity constraints. Any FpML
document can be submitted to the Validator by entering the document’s URL into the form.

The validator will then execute the 28 rulesidentified in the previous section that check the validity of dates, proper
referencing between business centers and more. These hyperlinks will connect elementsin the FpML document that are in
violation of a constraint, for example two business center elements. These hyperlinks are not intended for human
consumption but as an intermediate representation based on which higher-level diagnostic tools can be built very easily.

Because it is based on XLink, xlinkit's hyperlinks can have more than two endpoints. Since there is no browser that can
currently display such links, we render the linksinto HTML and show where each endpoint (or locator) is pointing. Each
locator will point into the file and use XPath to highlight which element it is pointing to.

af | 3 mlinkit FpML Yalidator - Netscape == O 1‘.
B File Edit View Go Communicator Help
i ¥ 3 3 2 @ 3 3 @
Search Metzcape Sacurity Shop ,‘J
F: _-‘ Bookrarks & Loc.atmlhttp £ vy, ikt corn/pralealidator. hiral ;' ﬂ'\h‘hi's Fielated

& Google & ZEMal [ZE Phores &) 1EL [F ACMODL
e .
xlinkKit

Location: -> xlinkit main page > xlinkit FpML Validator

You can use this form to validate an FpML 1.0 compliant document. Just enter the URL of your document below and click on the button. (Disclaimer. We
assume no responsibility for the secunty of your data. Your document will be submitted unencrypted over the public Internet and may be compromised)

FpML Document URL
http: ¢

“alidate |

=T = —

(c)2002 Systermwire

i!l-zl-|-20-|-1‘3-|-18-|-1]"-|-16-|-15-|-14-|-13-|-12-|-11-|-1B-|-9-|-8-|-?-|-5-|-5-|-4-|-3- r I F |

Page 53 of 62

Date: 25/06/02

7 Evaluation

In this chapter we will reflect on the experience that we made when using xlinkit to express the validation rules for FpML
1.0. We will first review the expressiveness of the xlinkit rules and then report the performance measurements.

7.1 Coverage of Requirements
The table below shows the extent to which we have demonstrated in this proposal how well xlinkit addresses the

requirements defined in Section 2.

R2.1.1 Semantic Validation

Xlinkit expresses static semantic validation rules that
are beyond the syntactic rules that can be expressed
in DTD or XML Schema.

R2.1.2 XML-based Definition

'The various xlinkit languages have a concrete syntax
defined in XML Schea and shown in Appendix 9.

R2.1.3 GUI toolsto formulate and update rules

Systemwire has alpha release GUI tools for editing
xlinkit rules, but these have not been discussed in this
report.

R2.2 Multiple distributed rule sets

Rules are grouped into rule filesand rule files are
aggregated in rule sets. URL s are used to reference
rules on remote web servers.

R2.3.1 Comparison to external data sources

\When expressing rules, xlinkit does not assume any
|ocation information. Multiple documents can be
checked by including them into a document set. This
feature is not yet used in the FpML 1.0 validation
rules.

R2.3.2 Check against non-FpML languages

xlinkit assumes that each document references its
schema definition. Thereis no restriction on the
number of different schema used.

R2.3.3 Distributed data sources

Document sets can reference distributed data using
URLSs. Fetchers can be used in order to load
documents from sources other than Web servers (e.g.
a JDBC Fetcher to load it from a database)

R2.4.1 Declarative rule language

xlinkit uses first order logic rules, adeclarative rule
language. As aresult the rules are very concise.

R2.4.2 Domain-specific operators

Operators can be defined in ECMAscript, a
standardized version of Javascript or in Java classes.
'These operators can then be invoked in rule files.

R2.4.3 Ease of comprehension

'The rules are reasonably simple to understand for
anyone who understands first-order predicate logic

R2.4.4 Rule structuring mechanisms

There are no restrictions on the number of rulefiles
and rule sets.

R2.4.5 human + machine readabl e representation

Asrules are defined in XML, they can be trandated
using an XSL T stylesheet into a more readable form.

R2.5.1 Classification of FpML product types

To date, we have not yet demonstrated how to use
xlinkit to achieve classification of FpML product

types.

R2.6.1 W3C compliance

xlinkit uses only Schemas, XPath and XLink.

R2.7.1 Efficient Execution

28 Validation rules were executed on arelatively

small PC within less than a second

Page 54 of 62

Date: 25/06/02

7.2 On the Benefits of Formalization

The rule descriptions that we obtained from people in Warburg were given in English, attempting to be as precise as
possible. We have then formalized these constraints using the xlinkit rule language. During this process, we have identified
many ambiguities and we had to discuss the meaning of some rules with our business contact. Once formalized, we were
able to reformulate the original constraint in English, albeit in a more precise way. We give an example now. We were first
given the following description of a constraint.

“Busi nessCentersReference must reference a businessCenter element within the document.”

We trandated that into the following xlinkit rule:

<forall var="x" in="//busi nessCentersReference">
<exi sts var="y" in="//busi nessCenters">
<equal opl="substring($x/ @ref,2)" op2="$y/ @d" />
</ exi st s>
</forall>

Once we had gone through the formalization, we were able to capture the meaning of the constraint more precisely as:

Inbusi nessCent er sRef er ence there shall be abusi nessCent er s element where the hr ef attribute of the
busi nessCent er sRef er ence e ement matches the attributei d of the busi nessCent er s element.

This new description formulation identifies explicitly the attributes to compare, which was unclear in the origina
formulation. The xlinkit rule also shows exactly what it is meant with ““matches". If thei d valueis

“pri maryBusi nessCent er”, then the hr ef valuesreferencing it must have value ™ \ #pri mar yBusi nessCenter' '
(with aleading hash symbol). Hence, using an XPath expression, we impose that the substring starting on the second
character of the hr ef string must be equal to the entirei d string.

Another by-product of the formalization process was that the detailed analysis of all the constraints has led usto identify
gaps that demanded new constraints that were not evident from the beginning, or to condense several constraints into one.
Therefore the whole exercise has led to a more complete and precise formulation of the validation constraints.

7.3 Performance

After having formalized theinitial set of 35 constraints atotal of 28 constraints remained (because some were subsumed)
and others were proven to be obsolete. We then checked a 17KByte FpML 1.0 trade document that did not have any
constraint violations using the xlinkit rule engine. The rule engine executed on a dual-processor Pentium |11 with a clock
speed of 1.7 GHz and 1GByte of RAM. The rule angine runs as a single task so it does not use the second processor.

The figure below shows the performance measurements that we. The total for checking all 28 rulesis just under 990msec.
We also note that at some rules require a significantly longer time than others to evaluate. This happens when the
evaluation of an XPath expression requires the traversal of the entire DOM tree. For example expression
“/IbusinessCentersReference” appearsin rule 27.

200

150 -

100 -

Time (msec)

a1
o
!

1
1
21
23
25
27

Expressions of this kind are necessary when the element we are trying to find can appear anywhere in the document, unless
we can explicitly identify the position of the element in the document tree. In rule 1 we changed the expression from

Page 55 of 62

Date: 25/06/02

“/IswapStream™ to ~*/FpM L /trade/product/swap/swapStream™ and the execution time reduced by five folds (the figure in
the graph). The only drawback is that long X Path expressions make rules less readable.

Caching isaso important. If arule uses an X Path expression that was evaluated already for another rule, it will execute
much faster. This happens, for example, in rule 2, which uses an expression that the X Path processor had previously
evaluated for rule 1.

In general XPath evaluation is the dominant performance factor. We expected the rules that use plug-in operators (for
example 8, 9, 10, and 15) to be lower, but their execution time isin line with the other rules.

We are using Apache's Xalan as an X Path processor. Preliminary tests with a beta version of Jaxen indicate that a faster
XPath processor can give significant performance improvements. Rule optimisation is also something on which we will be
focussing.

8 Summary and Recommendation

In this proposal, we have demonstrated how semantic validations can be achieved using xlinkit. We have argued why
xlinkit is superior to other approaches, such as attribute grammars, XSLT or OCL. We have provided evidence that xlinkit
is expressive enough to concisely formalize all constraints for FpML 1.0 that we defined. We have customized the xlinkit
rule engine to directly check one FpML trade document and have made that FpML validator available as a reference
implementation on the systemwire web site. We have done some extensive performance analysis and shown that the 28
FpML 1.0 validation rules can be executed in less than a second. We have also shown that there is considerable benefit in
formalizing the static semantics of FpML trades.

These observations lead us to conclude that xlinkit should be adopted as the standard FpML validation language and for
FpML Product Working groups to use xlinkit to precisely define the constraints they wish to impose on rules. We would
expect that such adoption of xlinkit would have a very positive effect on the efficiency with which financial trade ocuments
can be handled both across FpML organizations, but also within different departments of the same organization.

9 APPENDIX

9.1 Rule language syntax (XML Schema)

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema target Nanespace="http://ww. x| i nkit.conl Consi stencyRul eSet/5. 0"
xm ns="http://wwmn x| i nkit.con Consi stencyRul eSet/5. 0"
xm ns: xs="http://wwmw. w3. or g/ 2001/ XM_Schema"
el enent For nDef aul t =" qual i fi ed" attri buteFornDefaul t="unqualified">
<xs: el ement nanme="consi st encyrul eset">
<xs:conpl exType>
<Xxs:sequence>
<xs:any nanespace="http://ww. x| inkit.con Macro/5. 0"
processCont ent s="ski p" m nQccurs="0"/>
<xs: el ement nane="gl obal set" m nCccurs="0" maxCOccur s="unbounded" >
<xs: conpl exType>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute nanme="xpath" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="consi stencyrul e maxCOccur s="unbounded" >
<xs:conpl exType>
<xs:sequence>
<xs: el ement ref="header" m nCccurs="0"/>
<xs:conpl exType>
<xs: choi ce maxCccurs="3">
<xs: el ement nanme="consi stent" m nCccurs="0">
<xs: conpl exType>
<xs:attribute nane="status" use="optional" default="on">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="on"/>
<xs:enuneration val ue="off"/>
</xs:restriction>
</ xs: si npl eType>

Page 56 of 62

Date

: 25/06/02

</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="inconsistent" m nCccurs="0">
<xs: conpl exType>
<xs:attribute nane="status" use="optional" default="on">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="on"/>
<xs:enuneration value="of f"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="el i m natesymetry" m nQccurs="0">
<xs: conpl exType>
<xs:attribute name="status" use="optional" default="of f">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="on"/>
<xs:enuneration value="off"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >
</ xs: choi ce>
</ xs: conpl exType>
</ xs: el ement >
<xs:element ref="forall"/>
</ xs: sequence>
<xs:attribute name="id" type="xs:|D' use="required"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="header" >
<xs:conpl exType>
<xs:sequence>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement nanme="aut hor" type="xs:string"/>
<xs: el ement nane="description">
<xs:conpl exType mi xed="true">
<Xs: sequence>
<xs:any nanespace="http://ww. w3. or g/ 1999/ xht m "
processCont ent s="ski p" m nQccurs="0" nmaxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="project" type="xs:string"/>
<xs: el ement nanme="conmment" type="xs:string"/>
<xs:any nanespace="http://ww. x| inkit.conl Met adat a/ 5. 0"
processCont ent s="ski p"/ >
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType nanme="quantifierType">
<xs:group ref="forml aG oup" m nCccurs="0"/>
<xs:attribute nane="var" type="xs:string" use="required"/>
<xs:attribute name="in" type="xs:string" use="required"/>
<xs:attribute name="npde" use="optional" default="exhaustive">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="exhaustive"/>
<xs:enuneration val ue="instance"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
<xs: conpl exType nane="bi nOper at or Type" >
<xs:group ref="formul aG oup" m nCccurs="2" maxQccurs="2"/>
</ xs: conpl exType>
<xs: conpl exType nane="bi nPredi cat eType" >

Page 57 of 62

Date: 25/06/02

<xs:attribute name="opl" type="xs:string" use="required"/>
<xs:attribute nane="op2" type="xs:string" use="required"/>
</ xs: conpl exType>
<xs: el ement name="forall" type="quantifierType"/>
<xs: el ement nanme="and" type="bi nOperat or Type"/>
<xs: el ement nanme="or" type="bi nOperator Type"/>
<xs: el ement name="inplies" type="hi nOperator Type"/>
<xs: el ement name="iff" type="bi nOperatorType"/>
<xs: el ement nanme="not">
<xs:conpl exType>
<xs: group ref="forml aG oup"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="exi sts" type="quantifierType"/>
<xs: el ement nanme="equal " type="bi nPredi cateType"/>
<xs: el ement nanme="not equal " type="hi nPredi cateType"/>
<xs: el ement nanme="sane" type="bi nPredi cateType"/>
<xs: el ement nanme="subset">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: ext ensi on base="bi nPredi cat eType" >
<xs:attribute name="size" type="xs:int" use="optional" default="0"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="intersect">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: ext ensi on base="bi nPredi cat eType" >
<xs:attribute nane="size" type="xs:int" use="optional" default="0"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="operator">
<xs:conpl exType>
<xs: sequence>
<xs: el ement nanme="parani m nCccurs="0" maxCOccur s="unbounded" >
<xs:conpl exType>
<xs:attribute nane="nane" type="xs:string" use="required"/>
<xs:attribute name="val ue" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: group nane="fornml aG oup" >
<xs: choi ce>
<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs: el ement ref="equal "/>
<xs: el ement ref="notequal"/>
<xs: el ement ref="same"/>
<xs:element ref="intersect"/>
<xs: el ement ref="subset"/>
<xs: el ement ref="and"/>
<xs:element ref="or"/>
<xs:element ref="inplies"/>
<xs:element ref="iff"/>
<xs:element ref="not"/>
<xs: el ement ref="operator"/>
<xs:any nanespace="http://ww. x| inkit.con Macro/5. 0"
processCont ent s="ski p"/>
</ xs: choi ce>
</ xs: group>
</ xs: schema>

9.2 Document Set Definition syntax (XML Schema)

<?xm version="1.0" encodi ng="UTF-8"?>

<xs:schemm target Nanmespace="http://ww. xl i nkit.com Docunent Set/5. 0"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://wmn x| i nki t.conm Docunent Set/5. 0"

Page 58 of 62

Date

: 25/06/02

el emrent For nDef aul t =" qual i fi ed" attri buteFornDef aul t ="unqual i fi ed">
<xs: el ement name="Docunent Set" >
<xs:conpl exType>
<Xs: sequence>
<xs: el ement ref="header" m nCccurs="0"/>
<xs:sequence>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement nanme="Docunent" >
<xs: conpl exType>
<xs:attribute nane="href" type="xs:string" use="required"/>
<xs:attribute nane="fetcher" type="xs:string" use="optional"
defaul t ="Fi | eFetcher"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Set">
<xs:conpl exType>
<xs:attribute name="href" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: choi ce>
</ xs: sequence>
</ xs: sequence>
<xs:attribute nane="nane" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="header" >
<xs:conpl exType>
<xs:sequence>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement nanme="aut hor" type="xs:string"/>
<xs: el ement nane="description">
<xs:conpl exType m xed="true">
<Xs: sequence>
<xs:any nanespace="http://ww. w3. or g/ 1999/ xht m "
processCont ent s="ski p" m nQccurs="0" nmaxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="project" type="xs:string"/>
<xs: el ement nanme="comment" type="xs:string"/>
<xs:any nanespace="http://ww. x| inkit.conl Met adat a/5. 0"
processCont ent s="ski p"/ >
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

9.3 Rule Set Definition syntax (XML Schema)

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema target Nanespace="http://ww. xl i nkit.com Rul eSet/5. 0"
xm ns="http://wwm. x| inkit.conm Rul eSet/5.0"
xm ns: xs="http://wwmw. w3. or g/ 2001/ XM_Schem"
el emrent For nDef aul t =" qual i fi ed" attri buteFornDef aul t ="unqual i fi ed">
<xs: el ement name="Rul eSet" >
<xs:conpl exType>
<xs: sequence>
<xs: el ement ref="header" m nCccurs="0"/>
<xs:sequence>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement name="Rul eFil e">
<xs: conpl exType>
<xs:attribute name="href" type="xs:string" use="required"/>
<xs:attribute nane="xpath" type="xs:string" use="optional"
defaul t="/*[1ocal - name() =' consi stencyrul eset']/*[| ocal - nanme()
='consi stencyrule']"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="Set">
<xs: conpl exType>
<xs:attribute name="href" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="COperators">

Page 59 of 62

Date: 25/06/02

<xs: conpl exType>
<xs:attribute nane="href" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: choi ce>
</ xs: sequence>
</ xs: sequence>
<xs:attribute name="name" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="header">
<xs: conpl exType>
<Xs: sequence>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement nanme="author" type="xs:string"/>
<xs: el ement nanme="description">
<xs: conpl exType mi xed="true">
<Xs: sequence>
<xs:any nanespace="http://ww. w3. org/ 1999/ xht m "
processCont ent s="ski p" m nQccurs="0" nmaxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="project" type="xs:string"/>
<xs: el ement nanme="comment" type="xs:string"/>
<xs:any nanespace="http://ww. x| inkit.conl Met adat a/ 5. 0"
processCont ent s="ski p"/>
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

9.4 Operator Definition Syntax (XML Schema)

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema t ar get Nanespace="http://ww. x| i nki t.conl Oper at or Set/ 5. 0"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Scherma" xm ns="http://wmn. x| i nki t. conl Oper at or Set/5. 0"
el emrent For nDef aul t =" qual i fi ed" attri buteFornDef aul t ="unqual i fi ed">
<xs: el ement nane="Oper at or Set " >
<xs:conpl exType>
<xXs:sequence>
<xs: el ement ref="header" m nCccurs="0"/>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement nane="Operators">
<xs: conpl exType>
<xs:attribute name="href" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="COperatorDefinition">
<xs: conpl exType>
<xs:sequence>
<xs: el ement nanme="description" m nCccurs="0" maxCccurs="1">
<xs: conpl exType mi xed="true">
<xs:sequence>
<xs:any nanespace="http://ww. w3. org/ 1999/ xht m "
processCont ent s="ski p" m nQccurs="0" nmaxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="paranm' mi nCccurs="0" nmaxCccurs="unbounded" >
<xs: conpl exType>
<xs:attribute name="nanme" type="xs:string" use="required"/>
<xs:attribute name="type" type="ParaneterType" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="nanme" type="xs:string" use="required"/>
</ xs: conpl exType>
<xs:uni que nane="Paranlni que" >
<xs: sel ector xpath="./paran/>
<xs:field xpat h="@ane"/>
</ xs: uni que>
</ xs: el ement >
</ xs: choi ce>

Page 60 of 62

Date

: 25/06/02

</ xs: sequence>
<xs:attribute nane="nane" type="xs:string" use="required"/>
<xs:attribute name="inpl" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="header">
<xs:conpl exType>
<Xs: sequence>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement nanme="author" type="xs:string"/>
<xs: el ement nanme="description">
<xs: conpl exType mi xed="true">
<Xs: sequence>
<xs:any nanespace="http://ww. w3. or g/ 1999/ xht m "
processCont ent s="ski p" m nQccurs="0" nmaxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="project" type="xs:string"/>
<xs: el ement nanme="comment" type="xs:string"/>
<xs:any nanespace="http://ww. xl i nkit.conl Met adat a/ 5. 0" processContents="skip"/>
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: si npl eType nane="Par anet er Type" >
<xs:restriction base="xs:string">
<xs:enuneration value="int"/>
<xs:enuneration value="string"/>
<xs:enuneration val ue="nodelList"/>
<xs:enuneration val ue="node"/ >
<xs:enuneration val ue="var"/>
</xs:restriction>
</ xs: si npl eType>
</ xs: schema>

9.5 Macro Language Syntax (XML Schema)

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema target Nanespace="http://ww. x| i nkit.conl Macro/5. 0"
xm ns="http://ww. X| i nki t.conf Macro/ 5. 0"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
el emrent For nDef aul t =" qual i fi ed" attri buteFornDef aul t ="unqual i fi ed">
<xs: el ement nanme="definitions">
<xs: conpl exType>
<xs:sequence>
<xs: el ement ref="header" m nCccurs="0"/>
<xs: el ement ref="macro" maxCOccurs="unbounded"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="nmacro">
<xs: conpl exType>
<xs:sequence>
<xs: el ement ref="header" m nCccurs="0"/>
<xs: el ement ref="parant m nCccurs="0" maxCOccurs="unbounded"/>
<xs: el ement ref="output"/>
</ xs: sequence>
<xs:attribute nane="nane" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="out put">
<xs:conpl exType>
<Xs: sequence>
<xs:any nanespace="http://ww. x| i nkit.conl Consi st encyRul eSet/5. 0"
processCont ent s="ski p"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="parani >
<xs:conpl exType>
<xs:attribute nane="nane" type="xs:string" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="header">

Page 61 of 62

Date: 25/06/02

<xs: conpl exType>
<xs:sequence>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement nanme="aut hor" type="xs:string"/>
<xs: el ement nanme="description">
<xs:conpl exType m xed="true">
<xs:sequence>
<xs:any nanespace="http://ww. w3. or g/ 1999/ xht m "
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="project" type="xs:string"/>
<xs: el ement nanme="comment" type="xs:string"/>
<xs:any nanespace="http://ww. x| inkit.conl Met adat a/5. 0"
processCont ent s="ski p"/>
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

Refences

[1] C. Nentwich, W. Emmerich, A. Finkelstein. Flexible Consistenc Checking. Research Note, University College
London, Dept. of Computer Science, 2001. Submitted for Pubblication.

[2] J Clark and S. DeRose. XML Path Language (XPath) Version 1.0 W3C Recommendation, 16 November 1999,
http://www.w3.0rg/TR/xpath.

[3] S DeRoseandE. Mder and D. Orchard. XML Linking Language (XLink) Version 1.0. W3C Recommendation
http://www.w3.0rg/TR/xlink/, World Wide Web Consortium, June 2001.

[4] D.E. Knuth. Semantics of Context-Free Languages. Mathematical Systems Theory, 2(2):127-145, 1968.
[5] U. Kastens. Ordered Attributed Grammars. Acta Informatica, 13(3):229-256, 1980.
[6] U.Kastensand W. M. Waite. Modularity and reusability in attribute grammars. Acta Informatica, 31:601-127, 1991.

[71 A.N.Habermann and D. Notkin. Gandalf: Software Development Environments. |EEE Transactions on Software
Engineering, 12(12): 1117-1127, 1986.

[8] T.W.RepsandT. Teitelbaum. The Synthesizer Generator. ACM SIGSOFT Software Engineering Notes, 9(3): 42-48,
1984.

[9] M. Nagl, editor. Building Tightly Integrated Software Development Environments: The IPSEN Approach, volume
1170 of Lecture Notesin Computer Science. Springer Verlag, 1996.

[10] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. CENTAUR: The System. ACM
S GSOFT Software Engineering Notes, 13(5):14-24, 1988, ACM Press.

[11] An Object-Oriented Language for Specification of Syntax Directed Tools. Proc. of the 8th Int. Workshop on Software
Specification and Design, 26-35, 1996. |EEE Computer Society Press.

[12] J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling with UML. Addison Wesley,
1999.

[13] J. Clark, XSL Transformations (XSLT). Technical Report http://www.w3.org/TR/xslt, World Wide Web Consortium,
November, 1999.

[14] W. Emmerich and E. Ellmer and H. Fieglein, TIGRA -- An Architectural Style for Enterprise Application Integration.
In Proc. of the 23rd Int. Conf. on Software Engineering, pages 567-576. |EEE Computer Society Press, 2001.

[15] R. Jelliffe. The Schematron Assertion Language 1.5. Technical Report, GeoTempo Inc., October 2000.
[16] FpML Version 1.0 Recommendation, May 14, 2001, http://www.fpml.org/spec/2001/rec-fpml-1-0-2001-05-14/
[17] XML Schema Part 0: Primer W3C Recommendation, 2 May 2001, http://www.w3.org/TR/xml schema-0/

Page 62 of 62

