

Publisher's Note

Instruction manual for Cube20 BN-P DP-V1 DI8 (Article Number: 56001)

Version 3.2

Edition 11_10 EN

Article Number 56001

Murrelektronik GmbH Falkenstrasse 3

D-71570 Oppenweiler

Phone +49 (0) 71 91 47-0

Fax +49 (0) 71 91 47-130

info@murrelektronik.de

Service and Support

Website:

www.murrelektronik.com

In addition, our Customer Service Center (CSC) will be glad to assist you:

Our Customer Service Center can support you throughout your project in the planning and conception of customer applications, configuration, installation, and startup. We also offer competent consulting or – in more complex cases – we even provide direct onsite support.

The Customer Service Center provides support tools. It performs measurements for fieldbus systems, such as PROFIBUS DP, DeviceNet, CANopen, and AS interface, as well as energy, heat, and EMC measurements.

Our coworkers at the Customer Service Center provide their competence, know-how, and years of experience. They are knowledgeable about hardware and software, and compatibility with products made by various manufacturers.

You can contact the Customer Service Center at

Phone +49 (0) 71 91 47-424

or by email at csc@murrelektronik.de

About the User Manual and its Structure

Bus Manual:

General explanations and functions for each bus.

On this subject, please click on the links to the next page.

System Manuals:

Describe the system in general and give an overview about the products, accessories and documentation.

Art. No. Designation

56030 Cube 20 System

www.murrelektronik.com

Product Manuals:

Describe product-specific features.

Art. No. Designation

56001 Cube20 BN-P DI8 56005 Cube20 BN-E DI8 56006 Cube20 BN-PNIO DI8 56035 Cube20 Expansions

www.murrelektronik.com

The following link will provide you with more information on the bus system, as well as the standards and specifications on which it is based:

Important Information

Minimum Basic Knowledge Requirements

This manual contains general information on the system and the product. For more details, refer to the bus manuals (see page **Fehler! Textmarke nicht definiert.**).

To understand this manual, you need to know about automation systems.

Symbols and Icons

This manual contains information and instructions you must comply with in order to maintain safety and avoid personal injury or damage to property. They are identified as follows:

Notes indicate important information.

Warnings contain information that, if you ignore this information, may cause damage to equipment or other assets or, if you fail to comply with safety precautions, may constitute a danger to the user's health and life.

These instructions are recommendations issued by Murrelektronik.

Table of Contents

Ρ	Publisher's Note	2
S	Service and Support	3
Α	About the User Manual and its Structure	4
lr	mportant Information	6
T	able of Contents	7
1	Description of the Cube20 BN-P DP-V1 DI8 Art. No. 56001	9
2	! Installation	10
	2.1 Mounting	10
	2.2 Overview of Connections Cube20 BN-P DI8 Art. No. 56001	11
3	Startup	12
	3.1 Terminating PROFIBUS Segments	12
	3.2 Assigning and Setting the PROFIBUS Address	12
	3.3 GSD File	12
	3.4 Baud Rates	13
	3.5 Configuration and Parameterization	14
	3.5.1 Example :Configuration of a Cube20 system with Simatic Step7®	15
	3.5.2 Cube20 BN-P DP-V1 DI8 Art. No. 56001	18
	3.5.3 Cube20/67 Interface, Art. No. 56140	21
	3.5.4 Modules and Slots	22
	3.6 I/O - Data Cube20 BN-P DP-V1 DI8 Art. No. 56001	24
4	Diagnostics	25
	4.1 LED Indicators	25
	4.1.1 Significance of the States of the "Bus Run" LED	25
	4.1.2 Significance of the States of the "Cfg F" LED	26
	4.1.3 Displays for the Supply Voltage at the Terminals	27
	4.1.4 Diagnostics Overview	27
	4.2 Diagnostics via the Fieldbus	28
	4.2.1 Standard Diagnostic Information Format	29

4.2.2 Identification-Related Diagnostic	32
4.2.3 Module Status Diagnostic	33
4.2.4 Channel-Related Diagnostic	35
4.3 Troubleshooting	37
5 DPV1 Support Cube20 BN-P DP-V1 DI8 Art. No. 56001	39
5.1 Supported DPV1 Indices	39
5.1.1 Index 10 "Machine Options Management"	39
5.1.2 Index 12 "BusControl"	42
5.1.3 Index 13 "Machine Options Management Configuration	n Test"42
5.1.4 Index 255 "Identification and Maintenance" (I&M)	43
6 Machine Options Management (MOM)	49
6.1 Module Selection and Setting a Configuration	49
6.2 Configuration Test	51
6.3 Module Change	52
7 Usable Modules	54
7.1 Cube20 Modules	54
7.2 Cube67 Modules	54
7.3 Cube67+ Modules	54
8 Technical Data Cube20 BN-P DP-V1 DI8 Art. No. 56001	55
Accessories	57
Glossary	58
Legal Provisions	61

1 Description of the Cube 20 BN-P DP-V1 DI8 Art. No. 56001

The Cube20 system is a modular I/O system with IP20 protection for decentralized collection and control of digital and analog process variables. It consists of a fieldbus specific bus node and I/O modules that are independent of the fieldbus and are connected to the bus node via an internal system connection. Galvanic separation between the supply of the system supply and the sensor supply has to be provided.

In order to maximize electromagnetic compatibility, we advise you to ensure galvanic separation.

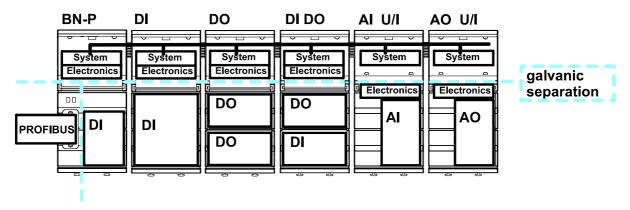


Fig. 1: Typical system structure with galvanic separation

The illustration above shows a typical Cube20 system structure with digital inputs and outputs (DI/DO) and analog inputs and outputs (AI/AO).

Furthermore, it shows PROFIBUS, I/O area, and I/O supply as well as the supply of the system electronics are galvanically separated. The internal electronics of the digital input/output modules are supplied by the system cable. The internal electronics of the analog input/output modules are supplied via the input/output supply voltage.

Information on the analog I/O modules.

The I/O supply voltage must always be connected, otherwise communication via the internal system connection is interrupted, starting from the analog module that is not supplied.

Application Notes

The bus node "Cube20 BN-P DP-V1 DI8" described here is the successor to the "Cube20 BN-P DI8" that also bears Article Number 56001. Install the GDS file MUR20B3D.* in order to obtain full functionality. The file can also be used in existing systems as a substitute for the "Cube20 BN-P DI8" with GSD file MURR0B3D.*. In this case, the extended functions of the Cube20 BN-P DP-V1 DI8 are not available.

2 Installation

2.1 Mounting

For general information on mounting, please see the Cube20 system manual Art. No. 56030.

2.2 Overview of Connections Cube20 BN-P DI8 Art. No. 56001

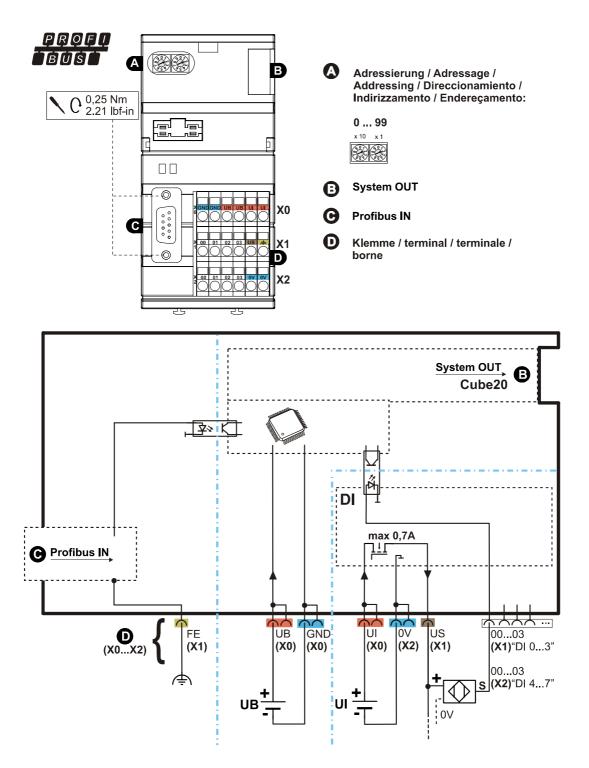


Fig. 2: Overview of Connections Cube 20 BN-P DP-V1 DI8 Art. No. 56001

We recommend use of our common terminal block Art. No. 56109.

For further information, please refer to the common terminal block instruction manual.

3 Startup

3.1 Terminating PROFIBUS Segments

A terminating resistor is required at the beginning and at the end of the PROFIBUS segment. The terminating resistors must be powered in order to guarantee a physically clean signal level. A maximum of 16 users may be connected to the PROFIBUS segment.

3.2 Assigning and Setting the PROFIBUS Address

The PROFIBUS address is set by means of two rotary switches directly on the Cube20. Values are permitted between 0 and 99. Usually, a DP Master assigns the addresses 0 to 2. Therefore, we recommend setting the addresses for Cube20 starting with address 3.

The address setting is read in once after the power supply is connected. A change of address only becomes effective, therefore, when the module power supply is reset. When the address is assigned, make sure you provide each PROFIBUS device with a unique individual address.

3.3 GSD File

The equipment described in this manual requires a GSD file

MURR20B3D.* or MURR0B3D.* in order to be operable.

The file suffix indicates the language version. GSD files are available in six different languages.

Language	File Suffix
Default = English	*.gsd
English	*.gse
German	*.gsg
Spanish	*.gss

Language	File Suffix
French	*.gsf
Italian	*.gsi
Portuguese	*.gsp

Tab. 1: GSD File Suffixes

The GSD file is downloadable from the Murrelektronik website:

http://www.murrelektronik.com/

The software features described in this manual can only be activated by installing GDS (DDB) file MUR20B3D.* Version 2.0 or higher.

Compatibility Data

If the bus node "Cube20 BN-P DP-V1 DI8" is operated with GDS file MUR20B3D.*, it is not replaceable by predecessor model "Cube20 BN-P DI8".

The predecessor model "Cube20 BN-P DI8" is replaceable by bus node "Cube20 BN-P DP-V1 DI8", provided GDS file MURR0B3D.* is used.

3.4 Baud Rates

All devices in a PROFIBUS network operate at a standard baud rate that is defaulted by the bus master. The Cube20 bus node automatically identifies the preset baud rate. Comply with the maximum permissible line lengths dependent on the baud rate used as shown in the table below. The values refer to one segment in each case. Larger network topologies are implementable across several segments by means of repeaters.

Maximum Permissible Line Lengths in a PROFIBUS Segment

Transmis- sion speed in Kbps	9,6	19,2	45,45	93,75	187,5	500	1500	3000	6000	12000
Cable length in m	1200	1200	1200	1200	1000	400	200	100	100	100

Tab. 2: Cable lengths in a PROFIBUS segment

3.5 Configuration and Parameterization

The Cube20 system is usually configured with the help of a configuration tool provided by the master device manufacturer. The master sends the configuration telegram to the slave during system startup and defines the number of input and output bytes. Cube20 uses the special identifier format according to IED 61158. Cube20 can only be operated with DP masters that support the special identifier format.

On the basis of this information, the Cube20 bus node checks the installation for compliance with the projected configuration. If the bus node detects a difference between the nominal configuration transferred by the DP Master and the physical configuration, the bus node reports a configuration error message (parameter error message) and does not exchange data with the DP Master. A configuration or parameter error is displayed at the bus node by the LED "CFg F". If there is a failure, the LED "Cfg F" lights up red.

The Cube20 system is configured as a modular system. If supported by your DP master, the bus node "56001 BN-P DP-V1" is automatically added when the Cube20 bus node is entered. The bus node "56001 BN-P DP-V1" is always the 1st module in the configuration. It is capable of running without any expansion modules.

3.5.1 Example :Configuration of a Cube20 system with Simatic Step7®

When GSD file MUR20B3D.* is used, the hardware catalog of the Simatic Manager lists Cube20 BN-P DP-V1 Dl8 Art. No.: 56001 under "Other Field Devices" and under "I/O" with the name "Cube20 BN-P DP-V1".

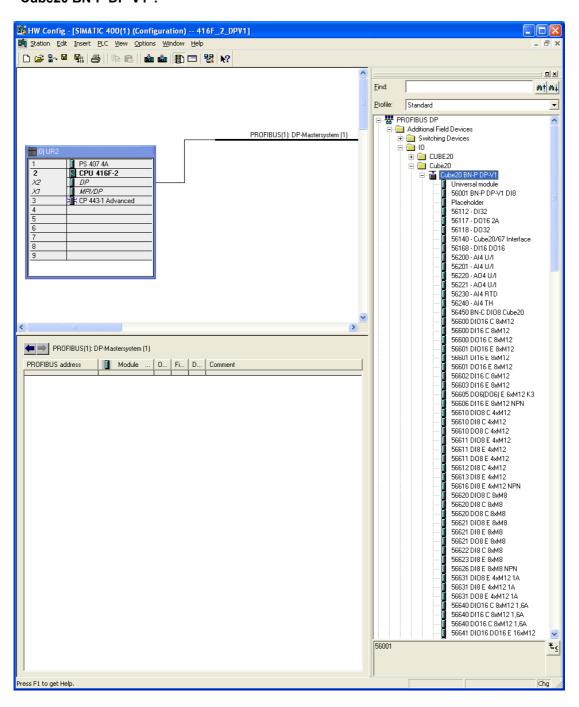


Fig. 3: Cube 20 BN-P DP-V1 DI8 Art.No.: 56001 in the Simatic Manager

Mark "Cube20 BN-P DP-V1 DI8 Art. No. 56001" and drag the entry to the PROFIBUS string while keeping the left mouse button depressed, or double-click on the PROFIBUS string. This automatically adds the module "Cube20 BN-P DP-V1 DI8 Art. No.: 56001". In order to add additional modules to the configuration (max. 15), double-click on the corresponding entry in the hardware catalog.

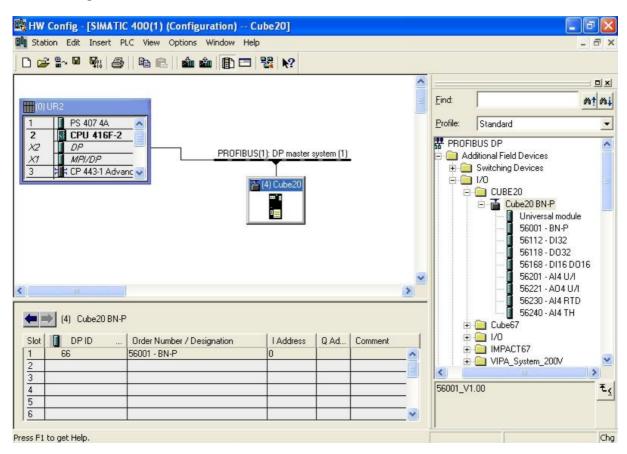


Fig. 4: Adding Cube 20 field units to the Simatic Manager

Double-click on any module to open a list box containing the parameter settings for this module.

Select the settings you require.

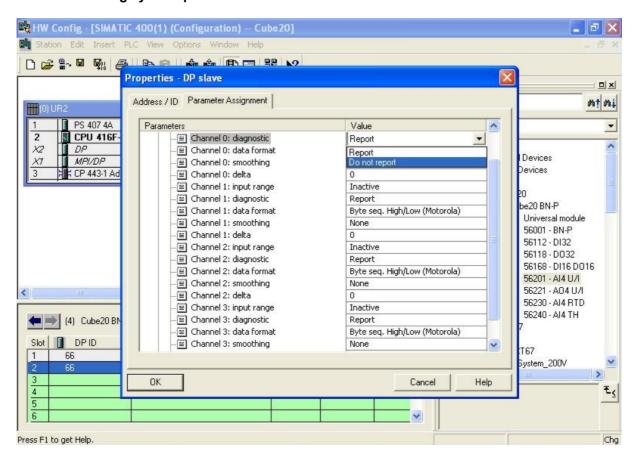


Fig. 5: Settings of Cube 20 field units in the Simatic Manager

3.5.2 Cube20 BN-P DP-V1 DI8 Art. No. 56001

3.5.2.1 Identification

Description	Art. No.	Process data		Identification
		Input	Output	
Cube20 BN-P DP-V1 DI8	56001	1 byte	0 byte	0x43, 0x00, 0xDA,0xC1, 0x08

Tab. 3: Identification of Cube20 BN-P DP-V1 DI8 Art. No. 56001

3.5.2.2 Parameters

Number of parameter bytes: 6

Bit assignment of parameter Byte 0

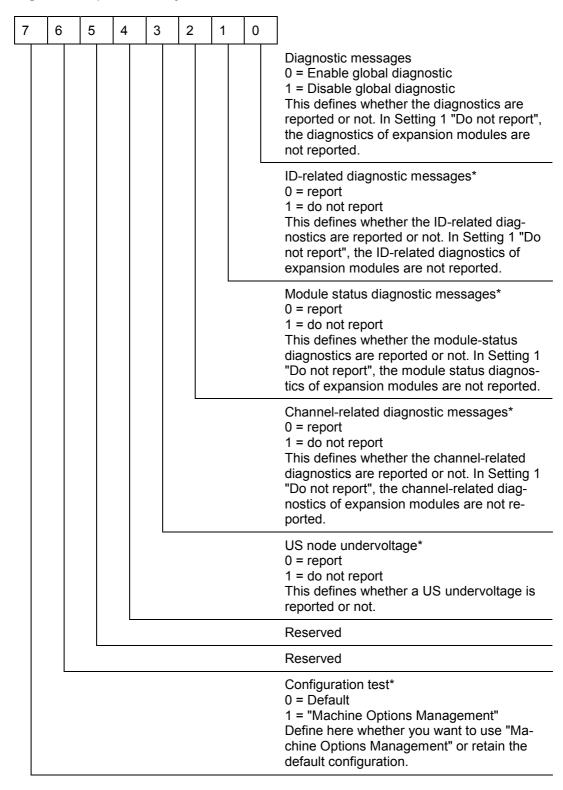


Fig. 6: Parameter Byte 0 of Cube 20 BN-P DP-V1 DI8 Art. No. 56001

Bit assignment of parameter Byte 1

Reserved

Bit assignment of parameter Byte 2

This defines whether actuator power supply diagnostics, such as undervoltage, or no voltage, are reported for the assigned slot or not.

0 = report 1 = do not report

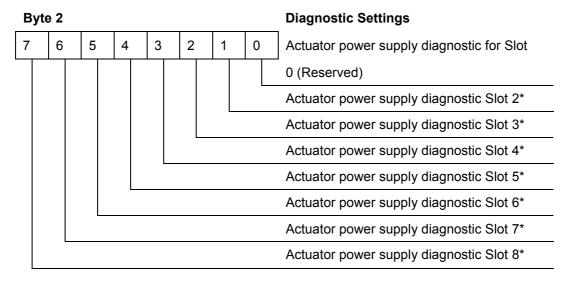


Fig. 7: Parameter Byte 2 of Cube20 BN-P DP-V1 DI8 Art. No. 56001

Bit assignment of parameter bytes 3 to 5

This defines whether actuator power supply diagnostics, such as undervoltage, or no voltage, are reported for the assigned slot or not.

0 = report 1 = do not report

Byte 3: Actuator power supply diagnostic for Slots 9 to 16

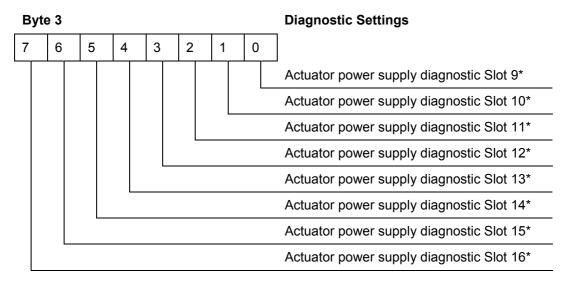


Fig. 8: Parameter Byte 3 of Cube 20 BN-P DP-V1 DI8 Art. No. 56001

Corresponding assignment of Bytes 4 and 5:

Byte 4: Actuator power supply diagnostic for Slots 17 to 24*

Byte 5: Actuator power supply diagnostic for Slots 25 to 32*

3.5.3 Cube 20/67 Interface, Art. No. 56140

When the GDS file MUR20B3D.* is used, you also have the interface module "56140 Cube20/67 Interface" and several Cube67 modules at your disposal, besides the previous Cube20 modules available. Use of the interface module "56140 Cube20/67 Interface" before replacing a Cube20 module by a Cube67 module is optional, i.e. you are free to change directly from Cube20 to Cube67 (as in Fig. 9: 56221 after 56701), or to configure the interface module "56140 Cube20/67 Interface" (Fig. 10:). The two configurations are valid.

^{*} only when GSD file MUR20B3D.* is used

Slot	DPID	Order Number / Designation	LAddress	Q Address
1	67	56001 BN-P DP-V1 DI8	0	
2	131	56221 - AO4 U/I		512519
3	67	56701 AI4 E 4xM12 (U)	512519	
4	195	56601 DIO16 E 8xM12	12	01
5	195	56601 DIO16 E 8xM12	34	23
6	195	56611 DIO8 E 4xM12	56	45
_				

Fig. 9: Configuration with Cube20 and Cube67 modules without interface module

	Slot	DPID	Order Number / Designation	I Address	Q Address
ı	1	67	56001 BN-P DP-V1 DI8	0	
	2	131	56221 - AO4 U/I		512519
ı	3	3	56140 - Cube20/67 Interface		
ı	4	67	56701 AI4 E 4xM12 (U)	512519	
ı	5	195	56601 DIO16 E 8xM12	12	01
	6	195	56601 DIO16 E 8xM12	34	23
ı	7	195	56611 DIO8 E 4xM12	56	45

Fig. 10: Configuration with Cube20 and Cube67 modules with interface module

The configuration of a Cube20/Cube67 System may only include one interface module "56140 Cube20/67 Interface".

3.5.4 Modules and Slots

Number of available slots 32*

Max. number of usable modules 16

(including bus nodes Cube20 BN-P DP-V1 DI8 Art. No. 56001, including interface module "56140 Cube20/67 Inter-

face")*

Too many modules are configured in the configuration in Fig. 11: . Since module 56140 "Cube20/67 Interface" is not considered in the calculation of the maximum number of modules, the error message "Slot 18: False Module" is issued, even if this configuration physically exists.

^{*} only when GSD file MUR20B3D.* is used

Slot	DPID	Order Number / Designation	I Address	Q Address
1	67	56001 BN-P DP-V1 DI8	0	
2	131	56221 - AO4 U/I		512519
3	67	56201 - AI4 U/I	512519	
4	67	56240 - AI4 TH	520527	
5 6	131	56117 - DO16 2A		01
	3	56140 - Cube20/67 Interface		
7	67	56701 AI4 E 4xM12 (U)	528535	
8 9	195	56611 DIO8 E 4xM12	12	23
9	131	56601 D016 E 8xM12		45
10	131	56611 DO8 E 4xM12		67
11	67	56621 DI8 E 8xM8	3	
12	67	56631 DI8 E 4xM12 1A	45	
13	67	56603 DI16 E 8xM12	67	
14	67	56613 DI8 E 4xM12	89	
15	67	56623 DI8 E 8xM8	10	
16	131	56651xx D016 E Valve		1011
17	131	56655xx DO8 E Valve		12
18	131	56656xx D032 E Valve 0,5A		1316
19	131	56661 DO8 E Cable		17
20	195	56662 DIO16 E Cable	1112	1819
21	195	56663 DIO8 E M16 0,5A	13	20
22	195	56760 DIO4 RS485 E 3xM12	1421	2128
1	700	55. 55 5 10 4 110 400 E ONN 1E	7	

Fig. 11: Example of an incorrect configuration

Please note that the number of modules to be configured may be reduced if you deploy Cube67+ modules. For example, it is not possible to use more than six modules of type Cube67+ DIO12 IOL4 E 8xM12 Art. No. 56752, as they require five slots each: one slot for the module itself and four slots for virtual modules.

Slot	■ DPID	Order Number / Designation	I Address	Q Address
1	67	56001 BN-P DP-V1 DI8	0	
2	3	56140 - Cube20/67 Interface		
2 3 4	195	56752 DIO12 E 8xM12 IO-Link	12	01
4	66	IOL_I_2 Byte	512513	
5	2	IOL_DEACTIVATED		
	2	IOL_DEACTIVATED		
7	2	IOL_DEACTIVATED		
8	195	56752 DIO12 E 8xM12 IO-Link	34	23
	66	IOL_I_2 Byte	514515	
10	2	IOL_DEACTIVATED		
11	2	IOL_DEACTIVATED		
12	2	IOL_DEACTIVATED		
13	195	56752 DIO12 E 8xM12 IO-Link	56	45
14	66	IOL_I_2 Byte	516517	
15	2	IOL_DEACTIVATED		
16	2	IOL_DEACTIVATED		
17	2	IOL_DEACTIVATED		
18	195	56752 DIO12 E 8xM12 IO-Link	78	67
19	66	IOL_I_2 Byte	518519	
20	2	IOL_DEACTIVATED		
21	2	IOL_DEACTIVATED		
22	2	IOL_DEACTIVATED		
23	195	56752 DI012 E 8xM12 IO-Link	910	89
24	66	IOL_I_2 Byte	520521	
25	2	IOL_DEACTIVATED		
26	2	IOL_DEACTIVATED		
27	2	IOL_DEACTIVATED		
28	195	56752 DIO12 E 8xM12 IO-Link	1112	1011
29	66	IOL_I_2 Byte	522523	
30	2	IOL_DEACTIVATED		
31	2	IOL_DEACTIVATED		
32	2	IOL_DEACTIVATED		

Fig. 12: Example of a configuration using Cube67+ modules

3.6 I/O - Data Cube20 BN-P DP-V1 DI8 Art. No. 56001

Bit assignment I/O data - input data PAE

Byte 0								
Bit	7	6	5	4	3	2	1	0
Terminal	X2 03	X2 02	X2 01	X2 00	X1 03	X1 02	X1 01	X1 00

Tab. 4: Input Data Cube 20 BN-P DP-V1 DI8 Art. No. 56001

4 Diagnostics

4.1 LED Indicators

For a detailed description, please see the Cube20 System Manual Art. No. 56030.

4.1.1 Significance of the States of the "Bus Run" LED

The "Bus Run" LED represents the state of PROFIBUS communication on the Cube20 BN-P DI8 Art. No. 56001.

Fig. 13: Bus-Run LED of Cube 20 BN-P DI8 Art. No. 56001

LED Display	Response	State
	Lights up continuously	PROFIBUS-DP data exchange
W	Flashing (green)	No PROFIBUS-DP data exchange
	Off	- PROFIBUS firmware not yet initialized - Voltage at terminal UB too low (<13V)

Tab. 5: LED-Bus-Run on Cube20 BN-P DP-V1 DI8 Art. No.: 56001

4.1.2 Significance of the States of the "Cfg F" LED

The "Cfg F" LED represents the state of a correct/incorrect configuration on the Cube20+ BN-P DP-V1 DI8 Art. No. 56001.

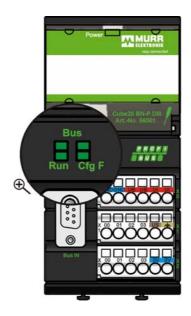


Fig. 14: Cfg F-LED on Cube20 BN-P DP-V1 DI8 Art. No. 56001

LED Display	Response	State
	Lights up continuously (red)	Real configuration does not match the projected configuration
	Off	Configuration correct

Tab. 6: Cfg F-LED on the Cube 20 BN-P DP-V1 DI8 Art. No. 56001

4.1.3 Displays for the Supply Voltage at the Terminals

Please see the Cube20 System Manual Art. No. 56030.

4.1.4 Diagnostics Overview

Overview of the reported diagnostic messages Cube20 BN-P DP-V1 DI8 Art. No.: 56001

Designation of terminals	Description	Fieldbus Diagnostics	Related to:
UB	Undervoltage (< 18V)	Undervoltage	Modules
UI	Undervoltage (< 18V)	Undervoltage	Modules
US	Overload or short- circuit sensor supply	Short-circuit	Modules

Tab. 7: Overview of reported diagnostic messages

4.2 Diagnostics via the Fieldbus

There are a total of four levels of diagnostic information over PROFIBUS on the Cube20.

1. ProfiBus standard diagnostics

Bytes 0 to 5 of diagnostic telegram.

2. Identification-related diagnostic (information about what modules have a diagnostic function)

Bytes 6 to 10 Parameter Byte 0, Bit 1 = 0 (ID-related diagnostic is activated)

3. Module status diagnostic (information about what modules have a diagnostic function, or are missing, or are incorrect).

Bytes 11 to 22 Parameter Byte 0, Bit 2 = 0 (module status diagnostic is activated)

4. Channel-related diagnostic (short-circuits at outputs, etc.).

Byte 23.... Parameter Byte 0, Bit 1 = 0, Bit 2 = 0 (ID-related and module status diagnostics are switched on) 3 byte per channel, max. 64 channel diagnostics.

- When you set the bus node parameter "Diagnostic Message" to "Disable global diagnostics", the blocks "ID-related diagnostic" and "Module status diagnostic" still exist, but the content of these diagnostic blocks always indicate an errorfree state.
- Use of the Profibus DP-V1 functionality Alarms and Status Reports for the diagnostic is not supported by Cube20 BN-P DP-V1 DI8 Art. No. 56001. Select Mode DP-V0 for the DP Alarm Mode (diagnostic mode) if the Profibus Master configuration tool offers an option.
- All diagnostic messages are reported slot-dependent. Note here that some configuration tools name the first slot as Slot 0; others name it Slot 1. The reported diagnostic messages refer to the numbering of the first slot with "Slot 1".

4.2.1 Standard Diagnostic Information Format

Standard diagnostic information Byte 0 to 5

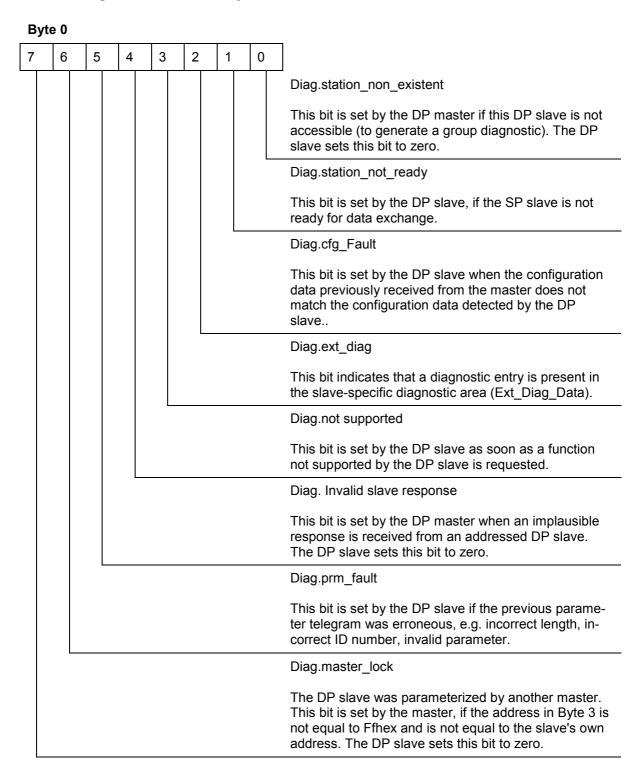


Fig. 15: Standard diagnostic information Byte 0

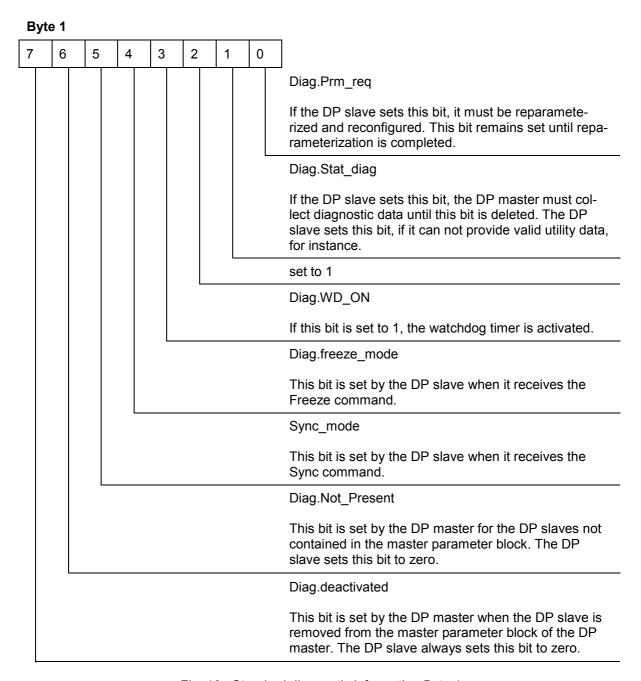


Fig. 16: Standard diagnostic information Byte 1

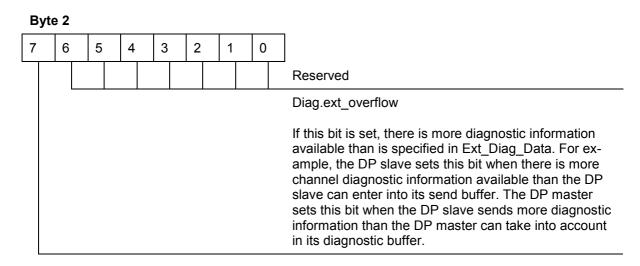


Fig. 17: Standard diagnostic information Byte 2

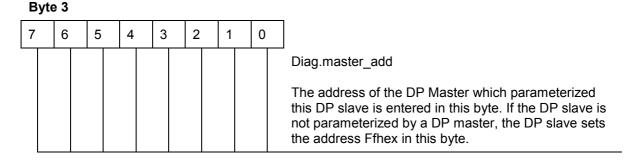


Fig. 18: Standard diagnostic information Byte 3

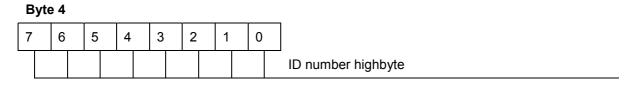


Fig. 19: Standard diagnostic information Byte 4

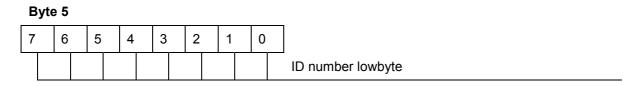


Fig. 20: Standard diagnostic information Byte 5

4.2.2 Identification-Related Diagnostic

Identification-related diagnostic bytes 6

Fig. 21: Identification-related diagnostic Byte 6

Bit assignment of parameter bytes 7 to 10

Defines whether the assigned slot has an ID-related diagnostic.

Byte 7: Diagnostic of the ID for Slots 1 to 8:

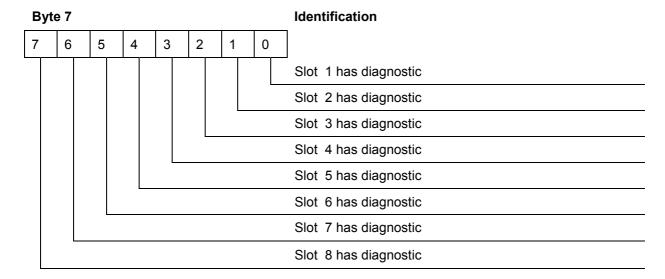


Fig. 22: Identification-related diagnostic Byte 7

Corresponding assignment of Bytes 8 to 10:

Byte 8 Slots 9 to 16

Byte 9 Slots 17 to 24

Byte 10 Slots 25 to 32

If you do not set the bus node parameter "ID-related diagnostic messages" to "Do not report", the block of ID-related diagnostics is no longer contained in the diagnostic telegram.

4.2.3 Module Status Diagnostic

Module status diagnostic Bytes 11 to 22

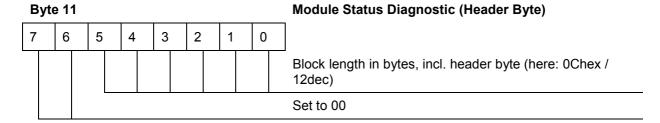


Fig. 23: Module status diagnostic Byte 11

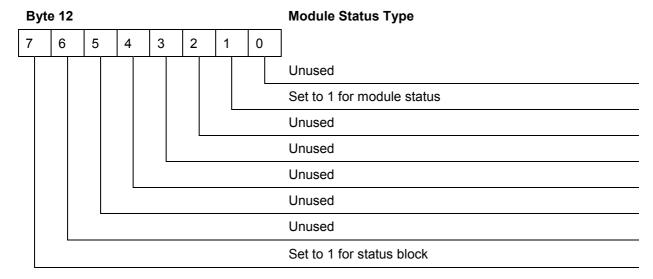


Fig. 24: Module status diagnostic Byte 12

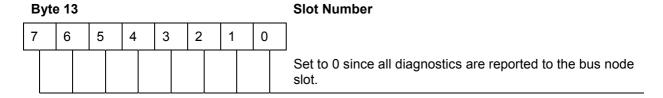


Fig. 25: Module status diagnostic Byte 13

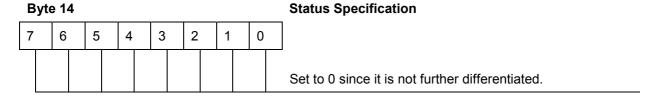


Fig. 26: Module status diagnostic Byte 14

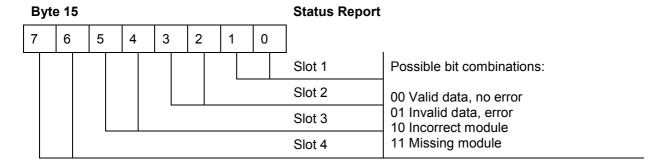


Fig. 27: Module status diagnostic Byte 15

Corresponding assignment of Bytes 16 to 22:

Byte 16: Diagnostic of module status for Slots 5 to 8

Byte 17: Diagnostic of module status for Slots 9 to 12

Byte 18: Diagnostic of module status for Slots 13 to 16

Byte 19: Diagnostic of module status for Slots 17 to 20

Byte 20: Diagnostic of module status for Slots 21 to 24

Byte 21: Diagnostic of module status for Slots 25 to 28

Byte 22: Diagnostic of module status for Slots 29 to 32

If you do not set the bus node parameter "Module status diagnostic messages" to "Do not report", the block of module status diagnostics is no longer contained in the diagnostic telegram.

4.2.4 Channel-Related Diagnostic

Channel-related diagnostic Bytes 23 to 25 and following

Three bytes are assigned in the diagnostic telegram for each channel-related diagnostic. If, for example, 5 channel-related diagnostics are available, a total of 5 times 3 bytes channel-related diagnostic information will follow from byte 23.

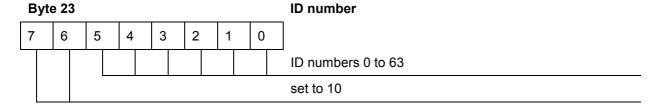


Fig. 28: Channel-related diagnostic Byte 23

Fig. 29: Channel-related diagnostic Byte 24

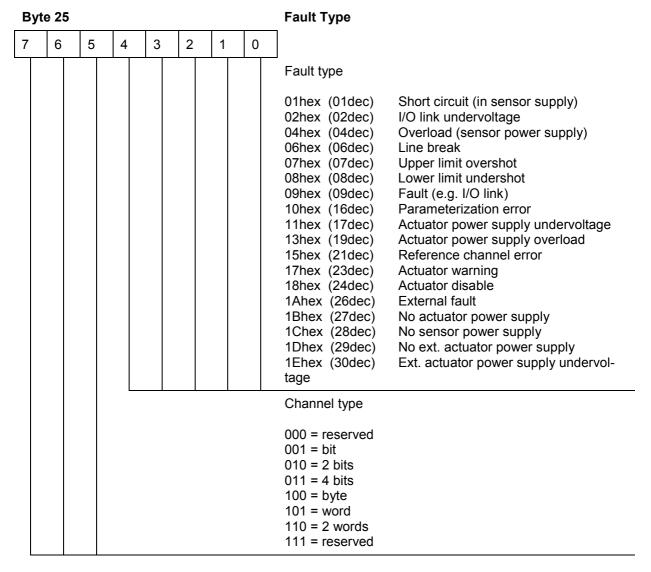


Fig. 30: Channel-related diagnostic Byte 25

If you set the bus node parameter "channel-related diagnostic messages" to "Do not report", no channel-related diagnostics are contained in the diagnostic telegram.

4.3 Troubleshooting

Rectify errors or incorrect modules in ascending slot order.

Diagnostic Message		Possible Cause	Action	
Chan- Short-circuit (set supply)		Overload or short-circuit of sensor power supply to 0V.	Change cable to sensor or check sensor for short-circuit.	
		Overload or short-circuit of internal system connection (channel type = 000)	Check cables on associated line.	
	Undervoltage I/O link	I/O link undervoltage (events 0x5100 to x5119)	Check cable to sensor.	
	Overload	Current load on a line greater than 4 A and less than 4.4 A (100 to 110%)	Check current load and possibly distribute to other lines.	
	I/O link overload	I/O link overload (event 0x5410)	Check current load.	
	Line break	Defective line. Only for analog inputs and outputs.	Check connection to sensor or sensor itself.	
	Line break I/O link	I/O link device not plugged in or incorrect (invalid data length, cycle time too short, etc.)	Check connection to I/O link device. Check data length. Increase cycle time in parameters.	
	Upper limit overshot	Analog input measuring range overshot.	Check connection to sensor or sensor itself.	
	Upper limit overshot (I/O link)	IO link event 0x8C10, 0x8C20	Check parameterization or measuring range.	
	Lower limit under- shot	Analog input measuring range undershot	Check connection to sensor or sensor itself.	
	Lower limit under- shot (I/O link)	I/O link event 0x8C30	Check parameterization or measuring range.	
	Fault	I/O link fault not assignable to another fault	Check I/O link devices or read out their event memories.	
	Parameterization error	Parameterization incorrect.	Check parameterization.	
	Actuator power supply undervoltage	Actuator power supply < 18 V	Check power supply unit and cable.	
	Reference channel fault	TH module KTY not plugged in	Install KTY correctly.	

Diagnostic Message		Possible Cause	Action	
Actuator warning Actuator disable		External power supply to an output.	Check cable.	
		Overload or short-circuit of output signal to 0V.	Check wiring or actuator.	
External fault		Desina diagnostic	Check sensor or wiring.	
No actuator supply No sensor voltage No ext. actuator power supply		Actuator power supply < 13 V	Check power supply unit and cable.	
		Sensor power supply < 13 V	Check power supply unit and cable.	
		External actuator power supply < 13 V	Check power supply unit and cable.	
	Ext. actuator power supply undervoltage	Ext. actuator power supply < 18 V	Check power supply unit and cable.	

Tab. 8: Troubleshooting

5 DPV1 Support Cube20 BN-P DP-V1 DI8 Art. No. 56001

Cube 20 BN-P DP-V1 DI8 Art. No. 56001 currently supports DP-V1 for each Master Class 1 and Master Class 2 access. Below is an overview of supported indices.

5.1 Supported DPV1 Indices

5.1.1 Index 10 "Machine Options Management"

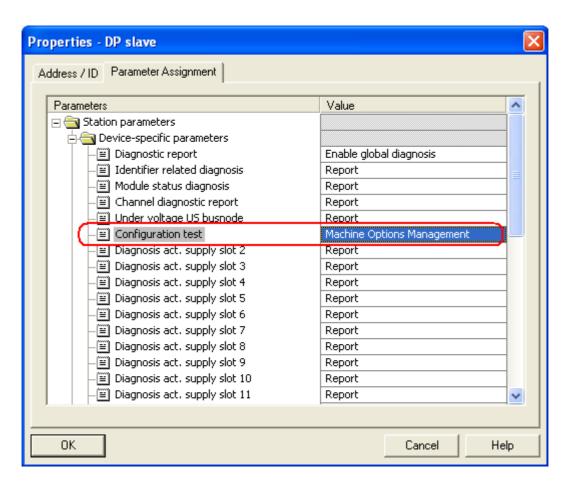


Fig. 31: Configuration test within the parameter list

Slots 2 to 32 can be enabled or disabled in 4 bytes, provided "Machine Options Management" is parameterized. Slot 1 (bus node) can not be disabled.

Byte0 to Byte3 must always be written

Byte 0 Disable Slots 1 to 8:

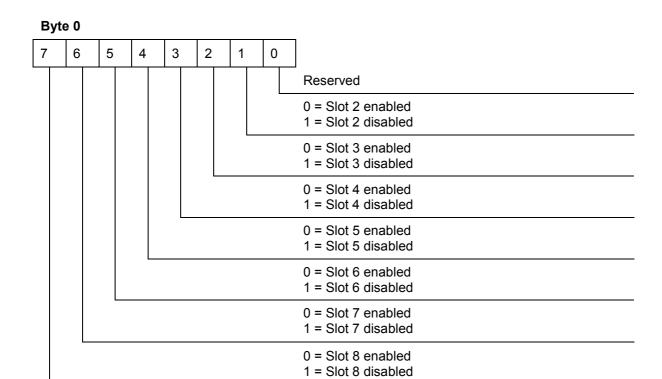


Fig. 32: Assignment of Byte 0

Corresponds to:

Byte 1: Disable Slots 9 to 16:

Byte 2: Disable Slots 17 to 24:

Byte 3: Disable Slots 25 to 32:

Placeholders may not be disabled If an attempt is made to do this, a configuration error is displayed.

Read/write requests in "Default Configuration" receive the negative reply "Feature not supported".

Read requests with "Machine Options Management" receive a positive reply. The response contains the parameters that were previously written with Index 10.

If the configuration is invalid, Index 10 write requests always receive a positive reply. If the configuration is valid after an Index 10 write request, every following Index 10 write request receives a negative reply with "State conflict".

If no valid configuration is set in "Machine Options Management", no "Static diagnostic" can be set in the system.

If "Machine Options Management" is set and there is still no valid configuration set, a diagnostic message "Missing module at Slot 1" is sent if the link to a module is lost. The system most be reset after the link problem is rectified.

If a further error occurs at Slot 1 in relation to the missing module, this error is NOT indicated in the default diagnostic but in the channel-specific diagnostic (see Fig. 33: Fig. 33:).

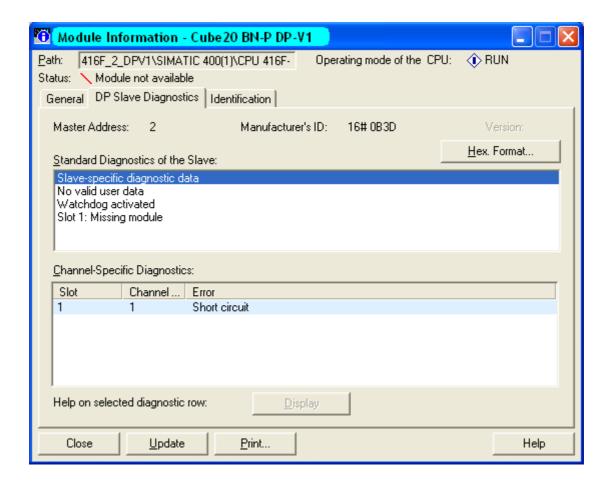


Fig. 33: Error display in default and channel-specific diagnostic

For more details on "Machine Options Management", please refer to Chapter 6.

5.1.2 Index 12 "BusControl"

Byte 0 "BusControl":

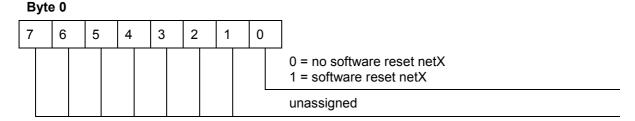


Fig. 34: BusControl byte DPV1 Index 12

Use the BusControl request to perform a bus node reset from the PLC.

5.1.3 Index 13 "Machine Options Management Configuration Test"

Byte 0 Configuration test:

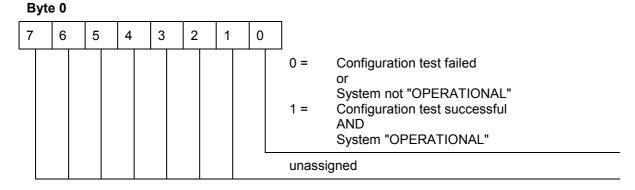


Fig. 35: Assignment of configuration test

Read request must be set with Index 13 to know whether a valid configuration was set in "Machine Options Management". Here, 1 is returned if the configuration is valid and the system is "OPERATIONAL", otherwise 0.

If the bus node is parameterized with "Default configuration"; the negative reply "Feature not supported" is sent.

Write requests receive a negative reply "Feature not supported".

5.1.4 Index 255 "Identification and Maintenance" (I&M)

The bus node itself supports a read request to I&M Index 65000 (IM0) and the manufacturer-specific Index 65100. If other Cube67+ modules are connected to the bus nodes, the Cube67+ modules can then support additional I&M indices. For more details, please refer to the related module documentation.

The bus node supports the following read/write requests:

Read bus node	IMO
Read bus node	IM100
Write Not-IOL module	IM100
Read Not-IOL module	IM100
Write IOL module	IM98
Read IOL module	IM98

5.1.4.1 IM0 (65000)

Content	Size	Content
Header		
Manufacturer-specific	10 bytes	Manufacturer-specific
I&M data		
MANUFACTURER_ID	2 bytes	012Fhex, 303dec
ORDER_ID	20 bytes	'56001 '
SERIAL_NUMBER	16 bytes	,
HARDWARE_REVISION	2 bytes	Manufacturer-specific
SOFTWARE_REVISION	4 bytes	Manufacturer-specific
REVISION_COUNTER	2 bytes	Manufacturer-specific
PROFILE_ID	2 bytes	F600hex
PROFILE_SPECIFIC_TYPE	2 bytes	0003hex
IM_VERSION	2 bytes	0101hex for V1.1
IM_SUPPORTED	2 bytes	Ohex

Tab. 9: IM0

5.1.4.2 IM100 (65100)

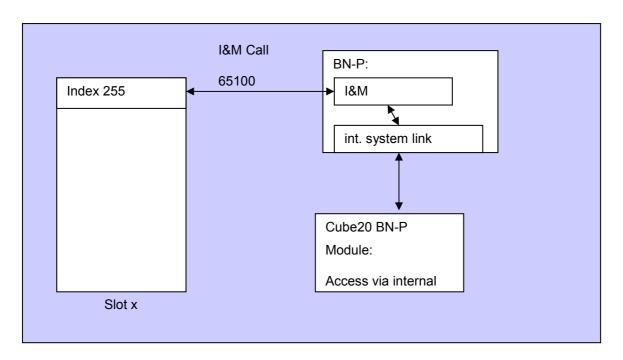


Fig. 36: IM100 request to Cube20 BN-P DP-V1 DI8 Art. No. 56001 or Cube67 modules

Using the manufacturer-specific I&M Index 65100 (IM100), you can send read or write requests to module parameter bytes.

If the outputs of an analog module are enabled or reparameterized by means of DP-V1 IM100 requests, the output data must be reset to 0 during the request. On completion of reparameterization, the output data are re-updated.

Example:

In the simple example below, we will show you how to disable a channel of an analog output module using two IM100 requests and enable another channel of the same module to switch a sensor off and switch another sensor on. The example was carried out using a Siemens controller. DP-V1 requests were handled using module that are available in the download section of the Murrelektronik website.

The configuration:

	Slot	DPID	Order Number / Designation	I Address	Q Address
	1	67	56001 BN-P DP-V1 DI8	0	
ı	2	131	56220 - AO4 U/I		512519

Fig. 37: Configuration example

Channel 0 of Cube20 module AO4 U/I Art. No. 56220 is enabled for the range 4 to 20 mA; here are the parameters in detail:

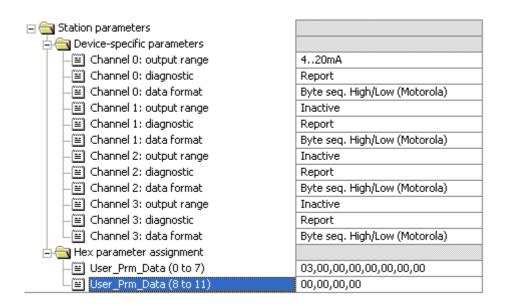


Fig. 38: Example of parameters

The current he parameter string of the module is 03 00 00 00 00 00 00 00 00 00 00 00; this can also be found in the parameter assignment of Cube20 AO4 U/I Art. No. 56220 (extract from the Cube20 Expansion Manual (Art. No. 56035):

Number of parameter bytes: 12

Bit assignment of parameter bytes 0 (Channel 0), 3 (Channel 1), 6 (Channel 2), 9 (Channel 3)

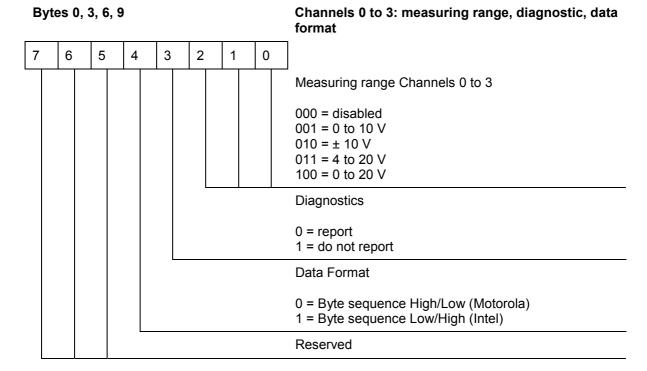


Fig. 39: Bit assignment of parameter bytes 0, 3, 6, 9

Bit assignment of parameter bytes 1, 2, 4, 5. 7, 8, 10, 11:

reserved

Disabling Channel 0 of Cube20 AO4 U/I Art. No. 56220

In order to change the module parameters using DP-V1, the DP-V1 Write Request is sent:

5F 02 FF 08 08 00 FE 4C A0 01 01 00

Meaning of the characters in detail (all hexadecimal):

5F Write Request

02 Slot Number

FF Number of index used (255dec = IM)

08 Number of useful data in bytes

08 Call Function

00 Reserved

FE 4C (65100 dec) = IM100

A0 01 Index 20 01, here the highest bit is set (2+8 = A), it means write request

01 The 1st parameter byte (parameter byte 0) is handled

00 Write parameter for the selected byte

Read Request

After the write request, a reply telegram is sent containing the written data length. According to the IM standard, this must be followed by a read request (without parameters).

5E 02 FF F0

Meaning of the numerals in detail (all hexadecimal):

5E Read Request

02 Slot Number

FF Number of index used (255dec = IM)

FO Number of useful data in bytes

The parameter change was successful, Channel 0 is now set to "disabled".

Enabling Channel 1 for the range 4 to 20 mA

The value 3 (binary 0000 0011) must be set for parameter byte 3. Here are the telegram data in detail:

5F 02 FF 08 08 00 FE 4C A0 01 04 03

Meaning of the numerals in detail (all hexadecimal):

5F Write Request 02 Slot Number FF Number of index used (255dec = IM) 80 Number of useful data in bytes **Call Function** 80 00 Reserved FE 4C (65100 dec) = IM100A0 01 Index 20 01, here the highest bit is set (2+8 = A), it means write request 04 The 4th parameter byte (parameter byte 3) is handled 03 Write parameter for the selected byte

According to the IM standard, this must be followed by a read request (without parameters).

The parameter change was successful; Channel 1 is not enabled for the range 4 to 20 mA.

STEP7 libraries that contain modules for IM accesses are available in the download section of the Murrelektronik website:

www.murrelektronik.com

6 Machine Options Management (MOM)

Using the Machine Options Management ("MOM"), you can perform a module configuration on machines. If the machine comprises a Basic Module A and an optional Machine Module B, for example, you can disable modules belonging to the – nonexistent – Machine Module B using Machine Options Management.

For this reason, the configuration tool configures all the optional modules of the Machine Module B modules. This configuration is then the "Maximum configuration". In addition, you can parameterize the "Configuration test" parameter of the bus node with "Machine Options Management". The system reports no error after runup and this is totally independent of the received configuration or parameterization. The bus node then reverts to data exchange, but the data are not yet updated.

In order to illustrate MOM, here is an example of maximum configuration:

(88) Cube20 BN-P DP-V1					
	Slot	DPID	Order Number / Designation	I Address	Q Address
1	1	67	56001 BN-P DP-V1 DI8	0	
	2	131	56220 - AO4 U/I		512519
ı	3	131	56221 - AO4 U/I		520527
ı	4	131	56118 - DO32		03
ı	5	195	56168 - DI16 DO16	12	45
_	_				

Fig. 40: Maximal configuration

6.1 Module Selection and Setting a Configuration

If the system is in data exchange mode, set the configuration you require by disabling the slots of the unused modules by means of DP-V1 Index 10 ("Machine Options Management"). You will find a detailed description of this in Section 5.1.1. A configuration text then takes place in the system, i.e. the configuration set using MOM is compared to the actual setup. If this test is OK, the configuration is valid and the system reverts to data exchange mode. If the test fails, the configuration is invalid and a diagnostic is generated (missing or false module). The system is then no longer in data exchange mode - the static diagnostic bit is set.

The test result can be requested using DP-V1 Index 13 ("Machine Options Management Configuration Test"). A detailed description of this is in Section 5.1.3. If the configuration is invalid, you can continue to try using MOM to set a valid configuration.

In our example, only the modules in Slots 1, 2, 4 and 5 are physically present. The module in Slot 3 is not present. It is then disabled by a DP-V1 write request using Index 10.

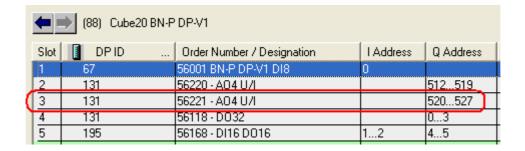


Fig. 41: Example of an invalid configuration

The physical setup does not comprise the module highlighted by the red border (Slot 3).

Telegram parameters in detail:

5F 00 0A 04 04 00 00 00

Meaning of the numerals in detail (all hexadecimal):

- 5F Write Request
- 00 Slot number (Slot 1)
- 0 Number of index used (10dec)

Α

- 04 Number of useful data in bytes
- 04 1st parameter byte (parameter byte 0)
- 00 2nd parameter byte (parameter byte 1)
- 00 3rd parameter byte (parameter byte 2)
- 00 4th parameter byte (parameter byte 3)

Bit pattern of parameter bytes:

Byte 1:

Bit value: $0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \rightarrow \text{Hex: } 04$

Slot number: 8 7 6 5 4 3 2 1

Byte 2:

Bit value: $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \rightarrow \text{Hex: } 00$

Slot number: 16 15 14 13 12 11 10 9

Byte 3 and Byte 4 are also 0, as is Byte 2.

A write request receives a positive reply telegram if it was successful, irrespective of the fact whether the configuration is valid or not.

6.2 Configuration Test

A DP-V1 read request with Index13 can test whether the configuration is valid.

Telegram parameters in detail:

5E 00 0D 01

Meaning of the numerals in detail (all hexadecimal):

5E Read Request

00 Slot Number

0D Number of index used (13dec)

01 Number of useful data in bytes

If "Machine Options Management" is a default configuration, this results in a positive reply telegram that looks like this:

5E 00 0D 01 01 (configuration is valid and system is OPERATIONAL) or 5E 00 0D 01 00 (otherwise).

If the configuration is valid, the system reverts to data exchange mode. If there are diagnostics present, they are displayed, provided they were not disabled by bus node parameters.

If the configuration is invalid, the system does not revert to data exchange mode. Instead, the static diagnostic is set and a slot error is displayed.

Our example shows a valid configuration. The system is in data exchange mode.

If a valid configuration is set, it is not possible to set another configuration using MOM. If you attempt to do this, it results in a negative reply telegram.

In order to know which parameters were sent by Index 10, a read request can be made to Index 10 which returns the written parameters. If nothing was written, then zeros are returned.

If the bit is set for a slot that does not exist (example: Slots 1 to 9 are assigned and Mask 00 00 02 00 was set (= Slot 18 is disabled), then this bit is ignored.

6.3 Module Change

If you want to change modules, i.e. change the physical setup, this is the procedure:

- 1. Switch off all power supplies of the bus node and all modules.
- 2. Replace the modules.
- 3. Switch on all power supplies of the bus node and all modules.
- 4. Set a valid configuration using Index 10.
- 5. Check whether the configuration is valid.

Example: Module Change

- 1. Switch off power supplies of the bus node and all modules.
- 2. Replace the modules.

Module 56220 is removed, Module 56221 is set at the same location.

- 3. Switch on all power supplies of the bus node and all modules.
- 4. Set a valid configuration using Index 10.

Now the modules of Slots 1, 3, 4, and 5 are connected; the module at Slot 2 is missing. It is disabled using DP-V1 Index 10 write request.

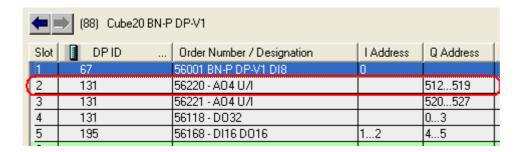


Fig. 42: Example of module change

Telegram parameters in detail:

5F 00 0A 04 02 00 00 00

Meaning of the numerals in detail (all hexadecimal):

- 5F Write Request
- 00 Slot number (Slot 1)
- 0 Number of index used (10dec)

Α

- 04 Number of useful data in bytes
- 02 1st parameter byte (parameter byte 0)
- 00 2nd parameter byte (parameter byte 1)
- 00 3rd parameter byte (parameter byte 2)
- 00 4th parameter byte (parameter byte 3)

Bit pattern of 1st parameter byte:

Byte 1:

Bit value: $0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \rightarrow \text{Hex: } 02$

Slot number: 8 7 6 5 4 3 2

5. Check whether the configuration is valid.

Now a test can be made using DP-V1 V1 read request by Index13 whether the configuration is valid. If this is the case, the system is in data exchange mode. The module change was successful.

7 Usable Modules

7.1 Cube20 Modules

All Cube20 modules are operable on the Cube20 BN-P DP-V1 DI8.

Please refer to the Cube20 System Manual for lists of the various Cube20 modules.

You will find a list of manuals in the section "List of Manuals and Layout" in this manual.

7.2 Cube67 Modules

All Cube67 modules are operable on the Cube20 BN-P DP-V1 DI8.

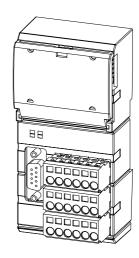
Please refer to the Cube67 System Manual for lists of the various Cube20 modules.

You will find a list of manuals in the section "List of Manuals and Layout" in this manual.

7.3 Cube67+ Modules

All Cube67+ modules are operable on the Cube20 BN-P DP-V1 DI8. The "+" of the Cube67+ stands for the expanded functionality of these modules.

Please refer to the Cube67+ Manual for the lists and information on the various Cube67+ modules.


You will find a list of manuals in the section "List of Manuals and Layout" in this manual.

8 Technical Data Cube 20 BN-P DP-V1 DI8 Art. No. 56001

PROFIBUS Slave IP20 with 8 inputs

[Terminal X1] \rightarrow 4 inputs

[Terminal X2] \rightarrow 4 inputs

EMC

EN 61131-2 Product standard

EN 61000-4-2 ESD	Contact ± 4 kV, air ± 8 kV
EN 61000-4-3 RF-Field & GSM	
EN 61000-4-4 Burst	\pm 2 kV DC inputs, \pm 1 kV signal lines
EN 61000-4-5 Surge	•
EN 61000-4-6 HF-asymmetric	
EN 61000-4-8 Magnetic field 50 Hz	
EN 55011 Emission	
	QP 47 dBµV/m (230 - 1000 MHz) Class A

Ambient Conditions

Operating temperature	0°C +55°C
Storage temperature	-20°C to $+85$ °C
Enclosure type according to EN 60529	IP 20

Mechanical Ambient Conditions

Oscillation according to EN 60068 Part 2-6	5 g
Shock according to EN 60068 Part 2-27	15 g / 11 ms

Miscellaneous

Dimensions (LxWxH) in mm	117 x 56 x 47 mm
Mounting dimension (L xW)in mm	117 x 56 mm
Weight	Approx. 170 g

Bus Data

Transfer protocol	PROFIBUS-DP according to IEC 61158 / 61784
Acyclic services	
Transfer rate	
Baud rate identification	Automatically
Operating mode	Sync-Mode, Freeze-Mode are supported
Addressing	
Identity number	0B3D hex
Galvanic isolation	500 V between Bus and internal Logic

System connection

Connection Possibilities

Internal system connection Out	10-pin male connector
Sensor and actuator supply	Cage clamp 2.5 mm ²
Bus connection	Sub-D 9-pin
Sensor	2x4 terminal block connectors

Power Supply

Operating voltage range logic U _B	18 30.2 V DC
Current consumption (only, U _B)	110 mA
Sensor supply U _I	18 30.2 V DC
•••	

Reverse voltage protection module electronics	Yes
Reverse voltage protection sensor power supply	yes
Overvoltage protection	yes (suppressor diode)

Inputs

Delay time for signal change	2 ms
Input characteristics	EN 61131-2, Type 3
Galvanic separation	500 V

Sensor power supply

Max. current	0.7 A
Short circuit protection for sensors with automatic restart	Yes
Reverse polarity protection	Yes

This is a class A product. The product may cause broadcast interferences in a residential environment. In this case the applicant may have to take appropriate measures.

Accessories

A list of Cube20 accessories is contained in the Cube20 System Manual.

Information on accessories is available in our catalog and our online shop at: onlineshop.murrelektronik.com

Manual Title

Glossary

Actuator shutdown Short circuit or overload at an output leads to the shutdown

AI Analog input
AO Analog output

BN-P Bus Node - PROFIBUS

Bus Run LED LED that signals bus status

Bus segment due to the electrical specification of the RS-485 interface, the number

of users in an RS485 network is limited to 32.

If there are more than 32 PROFIBUS users, the network must be di-

vided into segments by means of repeaters.

1 byte corresponds to 8 bits

Cfg F-LED LED to signal a correct/incorrect configuration

DI Digital input

DIN TH35 Standardized DIN rail (35x15mm, 35x7.5mm)

DO Digital output

DP Decentral Periphery. PROFIBUS protocol for rapid cyclical data ex-

change

E/A (I/O) Input/output

EC Directive 2004/108/EEC EMC Directive

EMC Electromagnetic Compatibility

ESD Electrostatic Discharge

FE Function ground

Freeze Command The input data of the slave are "frozen".

DDBF The Device Master Data describes the technical features of a PROFI-

BUS product. This file is required to configure a PROFIBUS system

and is provided by the device manufacturer.

Current

I/O Input/ Output

ID number A 16-bit number that identifies a PROFIBUS product uniquely. It

represents a reference for the GSD file. Several devices have the same ID number, provided they are described in a common GSD file. This number is awarded by the PROFIBUS User Organization.

IEC 61158 Worldwide standard for PROFIBUS DP and FMS. Successor of inter-

national standard EN 50170, Volume 2

Manual Title

IP20 Ingress Protection,

> 20 = Device protection against the ingress of solid foreign bodies measuring a diameter of more than 12.5 mm (finger protection), the device is not protected against ingress of water with deleterious im-

pacts.

LSB Least Significant Bit.

FΟ Optical fiber

MSB Most Significant Bit.

Ni Nickel

PAA Process map of outputs PAE Process map of inputs

PELV Protective Extra Low Voltage

PNO Profibus Nutzerorganisation e.V. (German Profibus User Organization)

Power-LED LED to signal the operating status

Pt 100 Temperature sensor on platinum base (0° is equivalent to 100Ω)

+R High potential sensor connection -R Low potential sensor connection

Repeater Coupling element to process signals between PROFIBUS segments

RL Sensor power supply in three-wire mode

RTD Resistance Temperature Device

S Reference potential

SELV Safety Extra Low Voltage.

Programming software for program-logic controllers made by Siemens Simatic Manager

PLC Program-logic controller

TH Thermocouple

TH+ High potential sensor connection TH Low potential sensor connection

Type E, Type J, Type K,

Type N, Type R

Thermocouples as per DIN EN 60584 standard

U Voltage

U/I Voltage / current

UA (brown terminal) Actuator power supply Module power supply UA (red terminal) UB

Operating voltage

UI (red terminal) Module and sensor power supply

US (brown terminal) Sensor power supply Manual Title

VDMA Verband Deutscher Maschinen- und Anlagenbau e.V. (Association of German Machinery and Industrial Equipment Manufacturers)

VZ Sign

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e.V. (German Electrical and Electronic Manufacturers' Association)

Manual Title

Legal Provisions

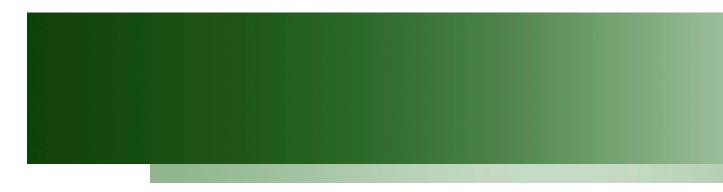
Exclusion of Liability

Murrelektronik GmbH has checked the contents of this technical documentation for conformity with the hardware and software described therein. Deviations can not be excluded in individual cases. For this reason, Murrelektronik excludes the warranty for the correctness of its contents and any liability for errors, in particular full conformity. The limitation of liability shall not apply if the cause for damage is attributable to willful intent and/or gross negligence, or for all claims arising from the Product Liability Law. Should a major contractual obligation be violated by criminal negligence, the liability of Murrelektronik GmbH shall be limited to damages that typically arise.

Subject to technical changes and alternations in content. We advise that you check at regular intervals whether this documentation has been updated since corrections that may become necessary due to technical advances are included by Murrelektronik GmbH at regular intervals. We are gratefully for any suggestions for improvement.

Copyright

It is prohibited to transfer or photocopy the documentation either in paper or in digital form, reuse or divulge its contents unless otherwise expressly permitted by Murrelektronik GmbH or in conjunction with the production of documentation for third-party products that contain products made by Murrelektronik GmbH. Violations will result in liability for damages. All rights reserved, in particular in the event of the award of patents or granting of utility models.


Right of Use

Murrelektronik GmbH grants its customers a non-exclusive right revocable at any time and for an indefinite period of time to use this documentation to produce their own technical documentation. For this purpose, the documentation produced by Murrelektronik GmbH may be changed in parts, or amended, or copied ,and transferred to the customer's users as part of the customer's own technical documentation on paper or on electronic media. The customer shall then bear sole responsibility for the correctness of the contents of the technical documentation produced by him.

If the technical documentation is integrated in part, or in full in the customer's technical documentation, the customer shall refer to the copyright of Murrelektronik GmbH. Furthermore, special attention shall be paid to compliance with the safety instructions.

Although the customer is obliged to make reference to the copyright of Murrelektronik GmbH, provided the technical documentation of Murrelektronik GmbH is used, the customer shall market and/or use the technical documentation on his sole responsibility. The reason is that Murrelektronik GmbH has no influence on changes or applications of the technical documentation and even minor changes to the starting product or deviations in the intended applications may render incorrect the specifications contained in the technical documentation. For this reason, the customer is obliged to identify the technical documentation originating from Murrelektronik GmbH if and inasmuch as the documentation is changed by the customer. The customer shall be obliged to release Murrelektronik from the damage claims of third parties if the latter are attributable to any deficits in the documentation. This shall not apply to damages to the rights of third parties caused by deliberate or criminal intent.

The customer shall be entitled to use the company brands of Murrelektronik GmbH exclusively for his product advertising, but only inasmuch as the products of Murrelektronik GmbH are integrated in the products marketed by the customer. The customer shall refer to the brands of Murrelektronik GmbH in an adequate manner if the brands of Murrelektronik GmbH were used.

Murrelektronik GmbH | Falkenstraße 3, D-71570 Oppenweiler | P.O. Box 1165, D-71567 Oppenweiler Phone +49 7191 47-0 | Fax +49 7191 47-130 | info@murrelektronik.com | www.murrelektronik.com

The information in this manual has been compiled with the utmost care. Liability for the correctness, completeness and topicality of the information is restricted to gross negligence.