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Introduction
The idea of unit testing has been around for many years. “Test early, test often” is a mantra that concerns unit 
testing, but not every software project has the luxury of a  decent and up-to-date unit test suite. This may change, 
especially for embedded systems, as the demand for delivering quality software continues to grow. 
International standards, like IEC-61508-3, ISO/DIS-26262, or DO-178B/C, demand module testing for a given 
functional safety level. Unit testing at the module level helps to achieve this requirement. Yet, even if functional 
safety is not a concern, the cost of a recall—both in terms of direct expenses and in lost credibility—justifies 
spending a little more time and effort to ensure that our released software does not cause any unpleasant 
surprises. 

In this article, we will show how to prepare, maintain, and benefit from setting up unit tests for a simplified simulated 
ASR module. We will use a Keil evaluation board MCBSTM32E with Cortex-M3 MCU, MDK-ARM with the 
new ULINK Pro debug and trace adapter, and Parasoft C/C++test. You will see how utilizing tight IDE/Test 
Framework integration and the new test-tool-dedicated host communication channel through ULINK Pro 
simplifies the initial set up. You will also see how this setup effort pays off in terms of extended testing capabilities.

Basics of Unit Testing

Unit testing is a well-known concept. Essentially, it involves taking a single function or method of a class (a 
unit) and invoking it with a given set of parameters. Then, when the execution finishes, an outcome is checked 
against the expected result. Code that accomplishes this is called a test case. Checking the outcome is usually 
done with a form of assertions. For example, assume you have the following function “foo”:

int foo (int a, int b) {

return b – a -1;

}

A test case might look like this:

void test_foo ()

{

int Ret = foo(1,2);

assertTrue(ret = 0, “Wrong value returned!”);

}

Often, “unit testing” refers not only to test cases invoking a single function or method, but also to test cases 
invoking an interface to a module or library. In other words, the terms “module” and “unit” testing are commonly 
used interchangeably. 

Benefits 
There are a number of benefits to unit testing. When creating a unit test case, the developer tests at  a very low 
level. He is able to drive execution to parts of the code that are normally not covered by high-level functional 
tests. That way, he can test “corner cases” and the handling of abnormal situations.  

The second important benefit stems from the fact that doing unit testing forces the developer to write “testable” 
code. This usually results in code that is better decomposed, not overly complex, and all-around better designed. 

Another benefit is that suites of unit test cases establish a great safety net for your application—so you do not 
have to be afraid of modifying it. That is especially important if you want to refactor your code, or when you deal 
with old, legacy code that you do not know well any more. Typically, in such situations, developers are afraid to 
touch anything for fear of introducing errors. With this safety net, you can modify code with the confidence that 
if you break something, you will be alerted immediately. That translates to better productivity and better code. 
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Last but not least, unit test cases expose errors very early in the development cycle. According to well-known 
studies, fixing an error early is much cheaper than fixing that same error late in the integration test phase or in 
the system test phase.

The above reasons led to the invention of Test Driven Development (TDD). TDD promotes that the developer is 
supposed to create a unit test case for each piece of functionality—before he starts to implement it.

Critics 
If unit testing is so great, then why isn’t it done on every project? Probably because it inevitably involves a 
certain amount of work—even for simple cases. 

Recall the simplistic example from above. First, arguments to the function do not have to be simple types. They 
may be complicated structures that need to be initialized properly for the test to make any sense. Second, the 
function under test does not have to return a simple type. It can also refer to external variables, which again do 
not have to be simple types. Finally, the function “foo” may call another one, “goo”, which for example talks to 
a real-world hardware sensor/file/database/network socket/USB port, receives user input from a GUI, etc.—and 
thus will not operate properly in separation.

To prepare a useful unit test case for this non-trivial “foo” requires a lot of work: proper initialization of all 
variables that the function under test depends on, stubs/drivers for functions that we do not want to call (like 
“goo”), intelligent post condition checking, and so on. Then all of this has to be built, run, and recover gracefully 
if a problem occurs. The final steps involve preparation of a nice report that shows what the test execution 
results were and also which lines / statements or branches were covered during execution. And all of this must 
be maintained as the code evolves.

Sound like a lot of work? It is. This is probably the #1 reason why unit testing is so rare in real-world software 
projects.

Practical Unit Testing in Embedded Development

In the context of embedded software development, unit testing is an even greater challenge. On the one 
hand, it is simpler because often only C code is used—and when C++ is used, it is only a simplified subset of it. 
However, on the other hand, unit test cases need to be deployed on a target board, or at least on a simulator. 
The code prepared for testing, together with all the test cases and test data, must be transferred to the target 
board, then executed. Finally, test outcomes must be collected and transferred back to the host, which is where 
they can be analyzed. This adds additional overhead on top of the work described in the previous section. A 
thorough discussion of all the challenges of unit testing embedded software would take an entire article, if not 
an entire book. Rather than take this route, let’s take a more practical approach: let’s explore how to set up and 
develop unit test cases in a concrete situation. This will not explain all the possible details, but it will provide a 
sense of what unit testing means in practice.

The system under test
Let’s consider a simplified ASR (Acceleration Slip Regulation) system running on a Keil evaluation board 
MVBSTM32E. It must be emphasized that we are presenting this system only to demonstrate  a concept; it is 
not  ASR software for a real-world vehicle. 

In the sample system, two speed detectors monitor the front wheels. If one of the wheels starts spinning while 
the other slows down, then the system assumes that the wheel is slipping and it engages the brakes on that 
wheel so the torque can be directed through the front axle differential to the other wheel (the one slowing 
down). For details of how a real ASR system works, please refer to Wikipedia at http://en.wikipedia.org/wiki/
Acceleration_Slip_Regulation.
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Our simplified ASR is built using MDK-ARM and deployed through ULINK Pro. It runs on a board that is attached 
to the car model with speed sensors and that can simulate slip conditions. It is shown in the following image.

For a video of how the system works, see http://www.facebook.com/video/video.php?v=368849244190.

Notice that when one wheel goes up, it loses its grip and gets the entire torque. You can see how the system 
engages the brake on that wheel to allow the torque to be transferred to the other wheel, which is not visible.

To prepare for unit testing this ASR, we need to:

» Import our uVision project into C++test

» Configure the project inside C++test

» Configure results transmission

» Deal with target limitations

» Prepare a test suite and the first, exemplary test case

» Deploy it and collect the results

Once we have all of these steps completed, we will be ready to do some true work and achieve  our specific 
testing goals. But first, we need to start on the ground work.

Importing uVision projects
If you use CppUnit or some similar framework, you can make it a part of your project and deal with the tests 
from within your IDE, which here is uVision. However, you would then have a lot of manual work ahead of 
you—for example, setting separate test build targets. More comprehensive tools, like C++test, take care of this 
automatically as long as you provide your project settings. In this case, the configuration does not require much 
work. You just point to the uVision project file from within C++test, and the import is performed automatically. 
Once the project is imported, C++test will automatically synchronize with the original project whenever it detects 
that it was modified. 
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C++test provides a wizard to facilitate the project import process. This wizard allows importing of a single project 
or a collection of projects. The wizard is available in both GUI mode and command line mode for automated 
project importing. In the simplest case, we will need to provide a path to the uVision project; this is entered in 
the first wizard screen, which is shown on the left. Next, the wizard prompts us to specify a few details about 
the imported project: 

» Where the C++test project should be located

» If variables should be used to reference the original source code location (facilitates sharing)

» What is the name of the uVision project target that should be used to acquire compiler/linker  

flags used for C++test analysis.

C++test is using the build bat file generated by the uVision IDE to acquire the compiler/linker flag. If the build 
bat file generation is not enabled in uVision, then the project import wizard will issue a warning and block the 
project import. To enable build bat file generation in uVision, simply mark the check box in the uVision project 
properties, as shown on the screenshot below:

After wizard settings are confirmed, C++test will proceed with the project import: the result will be a new C++test 
project that is synchronized with the uVision project. All basic settings are automatically set so it is possible to 
start static analysis without any additional configuration. Just select the context for  static analysis and run one 
of the provided C++test test configurations:
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Results from the analysis confirm that the uVision project was imported correctly.

Configure the C++test project for Unit Testing
Since running static analysis does not require code execution, the setup process is fairly simple: all the 
settings that are required can be deduced from the uVision project. With unit testing, the situation is a bit more 
complicated. To successfully run unit tests on the target, C++test needs to: 

» Prepare the test components (C/C++ source files)

» Build a test executable based on generated test components

» Generate a special debugger script for uVision that will automate the test execution

» Start uVision with the generated debugger script to execute the scheduled portion of tests

» Process the collected results and provide the execution statistics to the users

This looks like a lot of work. Moreover, for non-standard projects, some additional actions may be required; for 
example, it might be necessary to generate a special resource for the executable (images included into build) 
or convert a generated executable to a different format in order to deploy it to the target, and so on.

C++test significantly reduces the amount of work required. All testing actions, whether standard steps or user 
custom actions, are handled by so called “test configurations”: specifically, by a test flow definition that is a part 
of the test configuration. C++test ships with a number of built-in test configurations. For testing uVision4 projects 
with the ULINKPro debug and trace adapter, the best option is the test configuration at “Test Configurations> 
Builtin> Embedded Systems> Keil uVision> Run Keil uVision Tests- ULINKPro.”

Configuring a C++test project for unit testing often requires changing the parameters of the test flow definition 
and sometimes introducing  new steps into the test flow contained inside the predefined test configurations.
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To introduce a customization to the testing flow, a user would duplicate a built-in configuration to the “User-
defined” node, where it is editable. The “Execution> General” tab contains the most important settings related 
to test flow. The settings are available in the form of execution flow properties. Users can assign values to 
these execution flow property variables and C++test will use them consistently inside the test flow definition. 
The built-in test flow definition for uVision4 and ULINKPro operates on the following flow execution variables:

Name Default value Description

uVision project 
executable location

${uvision:project_
executable}

Automatically expanded to the location of uVision project build 
product– usually the executable file. This variable is used for 
replacing the original executable with the C++test-generated test 
executable. In typical situations, this should not be modified.

uVision project 
project file

${uvision:project_file}

Automatically expanded to the location of the uVision project 
file. This variable is used for starting uVision with the generated 
debugger script to automate test execution. In typical situations, 
this should not be modified.

uVision IDE 
executable file

Uv4.exe
Location of uVision IDE executable. This is required to start 
automated tests. If not automatically detected by C++test, it 
should be manually specified by the user.

uVision project 
directory

${uvision:project_
directory}

Automatically expanded to the location of the uVision project 
directory. This is used as a default location for storing C++test-
generated debugger scripts. In typical situations, this  should not 
be modified.

uVision project’s 
target

${uvision:project_
target}

Automatically expanded to the uVision project’s current target. If 
there is a special target created in the uVision project for testing 
purposes, it should be manually specified as a value of this 
property.

Executable exit point _sys_exit

The function name or address that is considered as an end-point 
of test execution. The default configuration of C++test assumes 
that the last function called from test executable is _sys_exit. The 
debugger script generated by C++test finalizes the test execution 
when the running test program will reach the _sys_exit function 
(or other specified here by the user).

Debugger script 
template

${cpptest:cfg_dir}/
templates/for_
recipes/uvision_
ulinkPro_itm.tja

Location of the debugger script template. The template is used by 
C++test to generate the final form of the debugger script that is 
used by uVision to automate the test execution. It is designed to 
be modified/customized by users. It contains only the commands 
that are necessary to deploy and run the test executable. Any 
special initialization of the development environment that is used 
in the original project should be added to this template to be 
printed into the final debugger script. The recommended practice 
is to make a copy of the debugger template file that is by default 
denoted by this property (stored inside the C++test distribution) 
and put it to the project location for easy modification. Working 
with the debugger script template stored in the project location 
requires modifying this flow execution property to:${project_loc}/
uvision_ulinkPro_itm.tja
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As already mentioned, in some nonstandard situations there may be a need to add an additional action to 
be executed when preparing or running the test executable. This can be achieved by editing the test flow 
definition. To do this, click the “Edit...” button next to the “Test execution flow:” drop down menu. For details 
about editing the test flow definition, see the C++test User Manual. 

Configure uVision project for Unit Testing
Besides the configuration done in the C++test project, some additional adjustments need to be done in the 
uVision project in order to achieve fully automated test execution. Typically, the following things need to be 
customized:

» Path to the C++test-generated debugger script.

 C++test uses the following command to run the uVision IDE to automatically execute a prepared test 

executable:

	 uv4.exe	-d	<tested	project	uVision	project	file>	-t	<name	of	the	uVision	
project	target>

The “-d” option tells uVision to run in Debugging mode and execute all commands that are specified 

in the debugger script provided for the <name of the uVision project target> target. To ensure that the 

C++test-generated script will be used, the path to this script needs to be set in the Project Properties> 

Debug tab, as shown in the following image:

In this case, the C++test-generated debugger script will be expected in the uVision project location—the 

default place where C++test generates it. 

For convenience, it is recommended to add an additional uVision project target that will be used for testing 

purposes and enter the path to the C++test-generated debugger script only for this target. Using the 

same project target for testing and development will require you to juggle the development and testing 

debugger scripts. Note that if a special target is created for testing, its name needs to be specified in the 

C++test test configuration’s test flow properties  as described in previous section (“Configure C++test 
project for Unit Testing”).
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» Heap and Stack memory

The unit testing framework consumes additional memory, impacting the stack and heap usage. When 

the project under test is setup with very a very low margin of free heap or stack memory, test execution 

might crash due to the stack/heap shortage. The amount of the stack and heap memory that is taken 

by the testing framework depends on various factors , such as the “instrumentation configuration”, the 

“C++test runtime library configuration”, and the “code of the test cases and stubs”. C++test provides 

several configuration points to limit stack/heap consumption; these will be discussed in a later section 

titled “Dealing with target limitations.” For relatively simple projects like the ASR demonstration program, 

we may assume that  0x450 for stack and about 0x900 for heap is sufficient.

Heap and stack memory is typically configured via the assembler startup files. In our example, this is the 

STM32F10x.s. To modify these values, select the assembler startup file from the project tree, switch to the 

editor window, and select the “Configuration Wizard” tab. In the configuration wizard tab, enter the new 

values for the stack and heap. The following screen shot shows typical settings:

After this modification, make sure that project is rebuilt so that the object generated from the assembler 

startup file is up to date. This is required because C++test will use this object to complete the build of 

the final test executable (objects generated from C/C++ source code are produced by C++test but all the 
objects generated from assembler files are taken from the original project).

Configure results transmission
Configuring the results transmission requires selecting a suitable communication channel in the C++test runtime 

library. The default setting for running tests with MDK-ARM 4.1 and ULINKPro is communication based on the 

Instrumentation Trace Macrocell, a part of ARM CoreSight debug and trace technology. In this mode, C++test 

writes the test messages directly to ITM port and ULINKPro ensures data transport to the host machine, where 

it is captured by uVision IDE and stored into a file for analysis by C++test.

A development environment with a target-to-host communication channel dedicated for quality tools like 

Parasoft C++test is a unique solution. It provides excellent bandwidth, and is significantly simpler to configure 

than the typically-used UART connections. Also, because this is a dedicated channel, there are no problems with 

collisions when accessing this communication link generated by the tested program and the test framework.

C++test is preconfigured for use with the ITM based communication channel for uVision 4 projects and ULINKPro. 

No additional configuration is required.
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Deal with target limitations
To reiterate what was stated at the beginning of this text, unit testing is not a simple matter— especially when 

we need to handle both tests and development platform limitations. The more limitations are in a development 

environment, the more work is involved in setting up unit tests. The following general problems might be 

encountered when running tests on a target device:

» Insufficient heap or stack (or both). 

 Embedded projects are often setup with a very low margin of free stack and heap memory. If end of the 

available stack or heap is reached, the testing framework cannot continue the test execution. In the worst 

case, we may not even get through the test driver code to the first test case. The simplest solution is 

to increase the amount of stack and heap. However, very often this will not be possible. In many cases, 

the hardware will state a hard stop on our attempts to obtain some more memory. The other option 

is to reconfigure the unit testing framework to consume less memory… probably at a cost of limited 

functionality. For example, if you are willing to give up support for using external data sources in test 

cases, using DCPPTEST_DATA_SOURCES_ENABLED=0 will limit the heap utilization. Similarly, if you are 

willing to give up support for reporting stack traces from tests execution problems, using -DCPPTEST_

STACKTRACE_ENABLED=0, and disabling the “stack traces reporting” instrumentation feature will ensure 

that less memory is taken from the heap. Another option is to impose a lower limit on the size of the 

message emitted via the single test assertion from a test case. Lowering this limit from the default 1024b 

(e.g. -DCPPTEST_MAX_MESSAGE_SIZE=512) will decrease the consumption of the stack memory… but 

test assertion messages cannot exceed the specified size.

» Test executable footprint is too large to fit into program memory.

 The following factors contribute to the increased size of the test executable when compared to the size 

of the original program:



Practical Unit Testing for Embedded Systems / White Paper11

» C++test runtime library – This is a collection of helper routines used by instrumentation. The runtime 

library is designed to be configurable. This means that some functionalities can be excluded, which 

usually results in a smaller footprint. In general, to limit the program memory overhead generated by the 

runtime library, some non-core functionalities can be disabled. The decision of which functionalities to 

disable always belongs to the user and depends on the particular project’s testing requirements. The 

list of runtime library macros to be used for enabling/disabling C++test runtime library components is 

available in the C++test user’s manual. 

» Source code instrumentation – Added by C++test to original source code to collect various information from 

testing process and control test execution. To limit the overhead generated by C++test instrumentation, 

users can exclude some parts of the project from the instrumentation process or disable some of the 

instrumentation features. C++test provides the configuration interfaces for both settings. The screen shot 

below shows the UI component for controlling instrumentation features.

» Test cases/stubs source code – These are inherent pieces of the testing process. The amount of test 

cases and stubs that are included into the individual unit tests run also affects the footprint of the test 

executable. Usually this becomes a problem when a large number of test cases (several hundreds or 

even thousands) are scheduled for a single run. Splitting the collection of test cases into the number of 

runs can help in achieving a lower footprint at the cost of extra maintenance work.

» Execution time overhead – The execution time overhead is mostly generated by the execution of source 

code instrumentation and subsequent calls to the C++test runtime library. The glue code added to 

manage the test execution is negligible in this context. The execution time overhead is usually not a 

problem when we want to run tests for functions/methods in isolation. In this case, all we need to do is run 

a function, wait for the results, and validate the results. There is an overhead—but so what? We will wait 

a little bit longer. This is a test session that can eventually be run overnight. The real problem surfaces 

if we want to run integration tests. Here, we are interested not only in checking the logic of the function 

in isolation, but also how it cooperates with other functions/modules. What kind of issues might arise in 

this case? Assume that C++test instrumented the code of an interrupt handler that is supposed to finish 

in xxx but—because of the instrumentation— it executes 2*xxx. As a result,  some other code is unable 

to execute in the designed time and the time dependencies are broken for the entire module, resulting 

in failed test. This problem can be solved by applying selective instrumentation. As described in the 

previous point, C++test provides a user interface where users can specify which portions of the project 

should be instrumented and which instrumentation features should be used. 

» Communication channel - The choice of the communication channel for test results emission is mostly 

determined by the development platform and the target device. Results can be sent via TCP/IP sockets, 

through RS232, or stored in the file system or in flash memory. Each option has both pros and cons. 

C++test’s runtime library is open to allow custom implementations of other communication channels. 

Users just need to provide an implementation for the following simple functions: initializeCommunicaiton, 

sendByte, finalizeCommunication. The most common problems are related to:

 » The execution time overhead created by sending test results via a slow communication   

 channel (like serial links with low baud rates).

 » Collisions when accessing the communication channel (the application under test might also  

 require access to the communication channel; in the case of serial connections, this might be a  

 problem).

 The lack of suitable communication for sending results back to the host.
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 In most of these situations, not much can be done with the limits in the communication channel provided 

by the development environment. Therefore, it is very important to select a development environment 

that provides good support for testing tools. To see what numbers we are talking about, refer to the 

following image, which shows a comparison of time consumed by a function sending a byte through 

UART and ITM. It is two orders of magnitude greater—and it  can be even greater, depending on the 

settings.

Prepare test suite and first exemplary test case
Once the configuration of C++test project and uVision project is accomplished and all the development 

environment limitations are resolved, we can try to run a simple test case to validate that setup is working 

correctly. To avoid problems with complicated initialization of the arguments for a function under test or unknown 

dependencies with other parts of the tested project, it is highly recommended to use a very simple function for 

the initial test case that is used to validate the setup. In this way, we  avoid mixing setup problems with problems 

that might rise from improper argument initialization or external function dependencies.

Deploy it and collect results 
To start the first test case, select it in the C++test test case explorer and run the customized test configuration. 

As a result, you should get the test case outcome and the code coverage reported for the function under test. 

In this part of the article, we briefly introduced unit testing, and discussed at length challenges which embedded 

developer faces when doing unit testing. We used specific example - a simplified ASR (Acceleration Slip 

Regulation) system running on a Keil evaluation board MVBSTM32E. In the second part we will show what 

does it mean to obtain particular goals with unit testing, like certain level of code coverage. We will also discuss 

safety relevance of unit testing.
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