
26 Issue 5

Communication The design of an image bank

Abstract
Image Banks, which are collections of images with associated data and captions, are a
valuable teaching tool for Astronomy courses at the Open University. Until now web
pages have been created for each image and its associated information. This paper
examines how a database, front-ended by a multimedia authoring tool, can provide a
much more flexible and maintainable architecture for producing Image Banks.
Accessibility issues are discussed.

Introduction
Image Banks are used within several science courses1,2,3 presented by the Open
University. They typically consist of between one and six hundred images with titles,
captions (often running to a thousand words or more), dates, credits and scale
information. The idea is that these images can be browsed by logical sections or by
searches on the captions. The student might be investigating a certain kind of object.
Sometimes exercises can be carried out on the images such as measurement of a
particular feature. The image banks are perceived as being vital components of the
relevant courses and are well received by the students. They offer a way to deliver large
volumes of information that are based around images in a way that can easily be
accessed and searched. Many of our subjects contain large numbers of educationally
valuable images that would be difficult to produce in book form, due to the volume and
regular updating of the images. In particular, astronomical images are constantly being
updated with new discoveries and better resolution images and images taken at different
wavelengths. For these reasons we perceive image banks as being a generally
applicable teaching tool which might be used across many subject areas where large
numbers of images and associated captions are a beneficial resource.

Until recently these image banks have been created using Dreamweaver, a webpage
authoring package, to create a set of individual web-pages that incorporate the image
and the various text fields. Hence a particular image and its various text fields will
become a single web page. The web-page approach has some advantages: everyone
has a browser with which they can view the image bank, so there‟s nothing to install and
the image bank will run straight from the CD/DVD. Also screen readers such as JAWS
(Job Access With Speech) are able to read the text for partially sighted and blind users
and take advantage of text used in Alt-tag fields that are commonly used to describe
fields on web pages.

It is foreseen that Image Banks will be used more widely due to the successful use of
those already in place and the need to provide the students with a tool which they can
use alongside the main course material that supports their own exploration of additional
material. Thus a more generic approach to creating and maintaining them is seen as
highly desirable. Ideally, we would like to have a viewer which can be used with any set
of images so that the viewer and the sets of data it can use can be maintained
independently of each other.

Requirements for an Image Bank Viewer.
1. A generic approach can be taken to viewing the images that does not require each

image to be individually processed to produce a web-page or some such viewing
medium. It shouldn‟t be necessary to produce pages that list all the hyperlinks to
sections and subsections. These should be generated automatically from the data.

2. The viewer must not rely on the user having any particular application installed
unless this is something that the user must have anyway (such as a web browser).

3. It should not need to be installed, but should run directly from the CD/DVD as a
matter of convenience.

4. We want to be able to pan and zoom images.
5. Measurement tools should be incorporated into the viewer.
6. Accessibility should be addressed.

Robert J Lucas
PiCETL
1st Floor, East Perry
The Open University
Walton Hall
Milton Keynes
MK7 6AA
r.j.lucas@open.ac.uk

The design of an image bank

The image banks are
perceived as being vital

components of the
relevant courses and are

well received by the
students. They offer a

way to deliver large
volumes of information
that are based around

images in a way that can
easily be accessed and

searched.

New Directions 27

Communication The design of an image bank

Proposing a solution
The first requirement suggests a database approach with
each image being associated with a record in a table. This
table would store all the textual items and give the path to the
particular image. A page can then be created that can display
any of the images with its associated data fields. Additionally,
pages giving hyperlinks to each of the sections can be
generated at run-time.

The second requirement rules out using PowerPoint, Word for
example, as either the application delivery mechanism or as a
software component for viewing images or documents.

The third requirement makes component-based applications
unusable. Hence, VB, C, C++ and Delphi are all going to be
problematic as development
tools.

Requirement 4 might be met in
one of several ways. A multi-
media authoring package might
be expected to provide this as a
primitive function, but if not, any
such environment would be
capable of providing this given
the ability to program in some
embedded language such as
Java or C.

Requirement 5 can be satisfied
just a long as a sufficient
amount of programming is
available to provide the
necessary calculations on the
image positions.

Requirement 6 will be discussed
in its own section „Accessibility‟.

Database Connectivity
It is clear that an Image Bank
that is required to work with various collections of images and
their associated data should be a database application as
databases are designed to solve the problem of efficiently
storing and giving access to collections of related data. With
the added requirements of needing to operate directly from
CD/DVD with no installation then a multimedia development
tool with ODBC (Open DataBase Connectivity) is going to be
the only solution. These requirements are met by the Opus
Professional Multimedia development environment4. This has
the additional advantage of permitting programming in Java.
ODBC drivers, which are available as part of the Windows
Operating System, give access to a huge range of databases
some of which are not actually genuine databases at all, but
are just treated as such. This is achieved via SQL (Standard
Query Language)5. This allows us to select fields from tables
of information, apply conditions on whatever is selected and
impose ordering on retrieved datasets. Whether we have a
genuine database system such as Oracle, or a table of data in
the form of an Excel spreadsheet is of little consequence as
we access both using identical SQL strings. There are
questions of efficiency and sharing which commercial
database systems address but simply don‟t apply here where
we have a relatively small, non-shared dataset. A fully-fledged
database system such as Oracle would not be feasible here.
It couldn‟t be provided on a executable CD/DVD, it would

require the user to have Oracle installed, and it‟s very
expensive amongst many other reasons. A PC based system
such as Access would provide all that we want, but again it
could not be used on a executable CD as it would need to
create a log file at run time which could not be achieved on a
read-only device. Hence, an Excel spreadsheet will serve as
the database, with the connection to the application provided
by a suitable ODBC driver.

Accessibility
It is certainly not clear that Opus can provide the necessary
Accessibility features as its controls do not even support a tab
ordering which would allow it to be controlled via the keyboard
rather than the mouse. Some experimentation has shown that
tab-ordering can be achieved by programming it in for each

screen, but it is surprisingly
clumsy and elaborate. However,
it is an easy matter to use keys
for the same functions as on-
screen buttons. For example, the
PgDn key can be used instead of
mouse-clicking on the Page
Forward button.

Screen readers such as JAWS
need access to the underlying
text in order to be able to render
it as speech. This is only usually
the case for the major Microsoft
applications like Word where it
has been specially provided for
or in HTML documents where
the source text is not encoded
(surprisingly screen readers
never do screen-scraping
coupled with Optical Character
Recognition, they always require
special hooks to be provided that
give them access to the
underlying text). JAWS cannot
be directly interfaced to the

database. To enable JAWS to read the text it would be
necessary for the Image Bank software to extract the data
from the database and then present the text in an HTML
document or some other format that JAWS could access.

In addition to tools such as JAWS which are aimed squarely at
the partially sighted or blind user, there are a multitude of Text
To Speech (TTS) applications available. A common facility is
being able to paste text into them and have it converted to
WAV or MP3 format, i.e. the text is rendered into a spoken
form and stored as a sound file in one of the Windows
standard formats. The latest generation of TTS programs,
such as Natural Reader from AT&T6 is really very good with a
tonal quality that is good enough to be used where students
would prefer to listen to the captions rather than read them.
Thus we can take all the text from our captions and other
fields and translate them to sound files that can be played by
the multimedia application. Additionally we can make help on
navigating and using the application available as both text and
speech. This actually works better than using an application
like JAWS which tends to deliver an unnecessarily large
amount of information about the current window. Whereas,
our application restricts itself to exactly what the blind user
needs to know.

„The CD-ROM (with

its moving planetary

images) and

textbook images

were all beautifully

presented and

shown in great

clarity and colour‟

28 Issue 5

Communication

Fig 1: The Image Bank viewer which shows the measurement of the distance between two sunspots

DeskBot7 is a freeware clipboard reader that allows the user
to configure how the text is to be read. It is only necessary for
the application to copy the text to the clipboard for the
DeskBot reader to start reading the text to the user. The user
can also ask for the text to be displayed at any size and at a
given number of lines at a time. This is a very elegant solution
as the application, upon extracting the text from the database
for the particular image, can at the same time copy this text to
the clipboard making it instantly available to the DeskBot
reader which renders it as audible.

Formatted text
There is a requirement for some formatting of the text such as
subscripts used in chemical formulae and superscripts to
indicate numerical powers. These are surprisingly awkward to
deal with. A superscript character is not simply an item of a
character set. It is such an item plus additional attributes set
for this item. So when a character string is read in from a
database character field there is no such attribute data and
any such formatting simply does not exist.

Unicode gives us the capability of storing wide character sets,
but these do not address consistently the need for
superscripts and subscripts. Typically some values such as 2
for squared and 3 for cubed will exist but little else. For this
reason Unicode is simply a red-herring.

The options that remain are to:

Mark all cases of special formatting with escape

sequences so that the formatting can be applied once the
data has been extracted into the application.

Store the data in a standard format such as RTF (Rich

Text Format).

Perhaps surprisingly SQL based databases do not have the
capability to store any formatted text directly. There is no
formatted text type in the SQL Standard5. If the second option
is to be used then a binary type is needed for a database field
which is to store it. Or store each of the captions in its own
formatted file which is then referenced in the database.
Having stored it, as binary (which precludes the use of text
files or spreadsheets as our database source, something that
we might wish to do if we were to use ODBC) then we need to
be able to retrieve the formatted text and then display it in its
formatted form.

We also need to be mindful that we might wish to change
other attributes of the text, such as size for readability. Opus
will allow us to use a document viewer to view any Active X
document (ActiveX is simply the technology that allows the
document to be opened within another application). However,

The design of an image bank

New Directions 29

Communication

Student feedback
The students‟ reactions have not been formally evaluated, but
comments posted on the students‟ forums indicate a general
appreciation of the image banks. Here are some from the
S196 Planets – and introduction course:

„The CD-ROM (with its moving planetary images) and
textbook images were all beautifully presented and shown
in great clarity and colour‟
„The course is challenging, interesting and loaded with up
-to-date info and images.‟

And from the S194 – Introduction to astronomy course:

„…while the CD-ROM images formed an excellent
complement to the course book…‟

„…beautifully illustrated
course materials.‟

Conclusions
A high-level multimedia
authoring tool coupled to a
database has proved an
excellent architecture for the
design of the Image Bank.
The image bank has been
used by many hundreds of
students and has proved to be
robust with very few issues
arising. We have since
developed several more
image banks that have
demonstrated the advantages
of this architecture and have
introduced new facilities. This
has shown that this
architecture is not limited to
astronomical images but is
suitable for a wide range of
images with associated
captions. We are now looking
at designing a Resource
Library from which Image
Banks for different courses
can be automatically
generated from the

department‟s entire collection of image and image-related
data. This will require the course editor to simply select the
images required for the course causing the entire CD/DVD
image to be created. This will remove the hard work currently
needed to create a new Image Bank and also remove the
possibilities for errors. This work has demonstrated that simply
collecting relevant images is straightforward but collecting
them with appropriate captions, scales, copyright information
and relevant dates needs substantial resources.

Using a database to store the image data gives us a very
flexible approach and if necessary we can extend our use of
the data to automatically generating HTML pages. As we are
moving towards more web content orientated courses this will
almost certainly be a future enhancement.

this requires the application that views this format to be
present on the end-user‟s machine. This clearly cannot be
guaranteed in the case of Word or Excel. The only viable
format is RTF which can be displayed without recourse to an
external application.

Image Bank Design
The original image bank was designed for the Introduction to
Astronomy Course (S194)1. The design uses an Excel
spreadsheet as the database. The Image Bank application is
written in Opus4 and used an ODBC connection to the
database. The database stores the captions, the image file
paths and other information such as credits and image size.
From this spreadsheet all the pages, the section and
subsection headings are automatically generated by the
viewer. In the first instance, superscripts and subscripts were
catered for using escape
sequences. This is not ideal
and in future we will store the
captions in individual RTF
files with a reference to them
in the caption field of the
database.

Features, such as being able
to do on-screen
measurements, panning and
zooming were exceptionally
easy to program into the
application using the
underlying Java language and
the available set of multimedia
functions.

Extending the design
Since building the first image
bank for the Introduction to
Astronomy course, several
more have been built for the
Planets course (S196)3 and
for the Understanding the
Weather course (S189)2.
These two courses added to
the requirements. In particular
hyperlinks were required
between images and
captions. Also more control over formatting the captions was
required. These were both provided for by introducing new
escape sequences into the text.

We are also now looking at the possibility of generating the
final image bank in different formats. Currently we use the
Opus front-end to access the database on a disk. This means
that to update the images or the captions means re-mastering
the disk. However, with all the data stored in a central
database we could easily create an application capable of
generating HTML pages from the contents of the database
that could be updated without any need for updating student
copies.

The design of an image bank

Features, such as being

able to do on-screen

measurements, panning

and zooming were

exceptionally easy to

program into the

application using the

underlying Java

language and the

available set of

multimedia functions.

30 Issue 5

Communication The design of an image bank

Although we haven‟t as yet incorporated the text to speech
technology into our current version the effectiveness of this
approach is manifestly obvious. Our students can spend their
time looking at the images instead of reading the text.
Additionally we can provide instructions for using the package
as speech generated directly from the Help text. Both the
Natural Reader software and the DeskBot approaches have
been tried. We abandoned Natural Reader because of
licensing reasons, but DeskBot has proved to be very easy to
use and highly effective and I would expect it to be
incorporated in future versions of the image bank.

Acknowledgements
The images and captions for the S194 – Introduction to
astronomy course were collated and edited by Bob
Lambourne and Simon Green of the Open University.

The images and captions for the S189 – Understanding the
weather course were collated and edited by Shelagh Ross
and Stephen Lewis of the Open University.

The images and captions for the S196 – Planets – an
introduction course were collated and edited by David Rothery
of the Open University.

References
1. S194 – Introducing astronomy

<www3.open.ac.uk/courses/bin/p12.dll?C01S194>
2. S189 – Understanding the weather

<www3.open.ac.uk/courses/bin/p12.dll?C01S189>
2. S196 – Planets: an introduction.

<www3.open.ac.uk/courses/bin/p12.dll?C01S196>
4. Illuminatus Opus Pro User Manual and Additional

Features. Digital Workshop Ltd.
5. A Guide to the SQL Standard. C.J. Date with Hug

Darwen. Addison Wesley 1993.
6. Natural Reader -

<www.naturalreaders.com/>
4. DeskBot -

<www.bellcraft.com/deskbot/>

A high-level multimedia

authoring tool coupled

to a database has

proved an excellent

architecture for the

design of the Image

Bank. The image bank

has been used by many

hundreds of students

and has proved to be

robust with very few

issues arising.

http://www3.open.ac.uk/courses/bin/p12.dll?C01S194
http://www3.open.ac.uk/courses/bin/p12.dll?C01S196
http://www.bellcraft.com/deskbot/

