C++ 1: Introduction to C++ (PDF)
Lesson 1: Introduction

Learning C++
History of C++

About Eclipse
Perspectives and the Red Leaf Icon

Writing Your First Program
What Does It All Mean?
Adding to Our Program

What Goes On Under the Hood

Finishing the Program
T he User Manual
The Test Plan

A Few More Notes

Lesson 2: Expressions
Mathematical Expressions
Creating the Project and File
Editing and Running Your Program

Types of Numbers
Floating-Point vs. Integer Division
Dividing by Zero

Limits on Numbers

Common Problems

Lesson 3: Variables
Basic Programs

Variables

Variable Definitions

Variable Types: Integer

Variable Types: Floating Point

Variable Types: Characters
Escape Characters
Wide Characters

Boolean

Mixing Types

cplusplus1.pdf

Lesson 4: Arrays and For Loops

Using Arrays
T he const Modifier

Our first array

forloops
Array Safety

Lesson 5: C++ Strings
Strings in C++
Characters in strings
Other Functions

Lesson 6: C-Style Strings
What is a C-Style String?

Concatenation of C-Style Strings

Comparing Strings

Tips
Converting C++ Strings to C-Style Strings
Unsafe String Functions

The future of strcpy() and strcat()

Comparisons to other types
C Strings vs. Arrays of Characters
C-Style vs. C++ Style

Lesson 7: Reading Data and if
Reading Strings

Reading Integers

if Statements

if Abuse
Equality or Assignment?

Blocks
Conditional Shortcuts

Lesson 8: Shortcuts
Operators

For Loops
For Loop Misuse

Side Effects

Lesson 9: While Loops
while, break, and continue

Fibonacci numbers

Lesson 10: Scope
What is Scope?
Global Variables
Storage Class

for Loop Scope
Hidden Variables

Lesson 11: Functions
What is a Function?
Our First Function

Void Functions and Array Parameters
Function Overloading
Default Parameters

Lesson 12: Parameters and Return Types
Passing Parameters
Pass by Value
Array Parameters
Const Parameters

References
Const Return Values

Problems with Reference Returns

Lesson 13: Final Project
Putting It All Together
Assignment

Code Design
Aqgile Development

Coding Notes

Testing
Revisions

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction
C++ 1: Introduction to C++ Lesson 1

Welcome to the O'Reilly School of Technology's C++ course! We're glad you've decided to go on this ride with us and learn
C++ programming. By the time you finish the course, we're confident that you'll have firm grasp on this really practical
programming language.

If you've already taken an O'Reilly School of Technology (OST) course, you're familiar with the useractive approach to learning.
It's an approach where you (the user) will be active! You'll learn by doing, building live programs, testing them, and then
experimenting with them, hands-on!

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take the useractive approach to learning. This means that
you (the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn'twork, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Here are some tips for using O'Reilly School or Technology courses effectively:

e Type the code. Resistthe temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. Italso gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.

e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely off the rails.

e Accept guidance,but don't depend on it. Try to solve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fair game.

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Yourinstructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so cool! | did it!" feeling. And you'll have
some projects to show off when you're done.

Lesson Format

We'll try outlots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll fype the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).
If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove witt—Fook—tike—this.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is

provided by the system (not for you to type). The commands we want you to type look 1lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspectand absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also set especially pertinentinformation apartin "Note" boxes:

Learning C++

C++is the workhorse language of the programming world. It's used for many different applications, from high-end
graphics systems to embedded processing. Chances are you already own two or three computers running C++
programs, only they aren't called computers, they're called cell phones, GPS systems, cameras, or DVD players.

Our course is designed to teach you how to do real-world, practical programming. As such, it will teach notonly the
best practices when itcomes to design and coding, butalso how to deal with the "worst practices" that seem to seep
into many of the programs out there in the real world.

For this course, we will use the Advanced O'Reilly Learning Sandbox. This system allows you notonly to read the
lessons, butto interact with the examples. You are encouraged to experiment and try new things, all within the
environmentofyour O'Reilly Learning Sandbox.

Of course, in the real world you'll make mistakes. Typing in a program, finding thatit's broken, and sweating over it until
2 o'clockin the morning, only to find you've made a small mistake, is another way of learning. (We hope you will rarely
need to use this method of learning!)

History of C++

C++ was bornin 1970 when two programmers wanted a "high-level" language for a machine they were
working on. They designed a language similar to an old language they had been using called B. In the
programming tradition of keeping things simple, they named their language C.

C was a good language forits day. It ran on very limited hardware (4mhz, 64K memory) and did a pretty good

job. The language was also designed notto getin the way of the programmer. In other words, if he wanted to
do something stupid, itlet him.

C is a procedural language. The data and instructions are kept separate. Ten years after its invention, people

realized that they could make better programs if they combined data and the instructions that operated on the
data into one thing called an objector class.

In 1980 Bjarne Stroustrup started working on a new language called "C with classes." The goal of the
language was to bring classes to C while not breaking existing C code (or atleast not breaking ittoo badly).

This language would become C++.

About Eclipse

We're using an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right

now. IDEs assist programmers by performing many of the tasks that need to be done repetitively. IDEs can also help
to editand debug code, and organize projects.

Perspectives and the Red Leaf Icon

The Ellipse plug-in for Eclipse, developed by the O'Reilly School of Technology, adds anicon to the toolbar
in Eclipse. This icon is your "panic button." Eclipse is versatile and lets you move things like views and

toolbars. If you ever get confused and want to return to the default perspective (window layout), the Red Leaf
icon is the most efficient way to do that.

You can also change perspectives by clicking the drop-down arrow beside the icon, and then clicking a series
name (JAVA, PYTHON, C++, etc.). Most of the perspectives look similar, but subtle changes may be present
"under the hood," so it's bestto use the perspective designed specifically for each course.

For this course, select C++:

=0%5T Java - Eclipse Platform

File Edit Mavigate Search Run Project ‘“Window Help

J LI~ ﬁﬁ” o 7/ To select the perspective far this course, click the down
& start page gg? Java arrow next to the red leaf, and then select C++ To resset
the perspective, click the red leaf.
SCHOOL of
TECHNOLOGY
> My Start Page Steve Miller's Start Page

Okay, now that you understand the basic structure of an OST course, you're ready to enter and run code!

Writing Your First Program

We wantyou to see a working C++ program as soon as possible, so we'll resist the urge to explain too much for this
first program while you're creating and running it. Let's get going—we'll fill you in on the details later!

To startyour project, select File | New | C++ Project, as shown here:

& C/C++ - Eclipse SDK

File Edit Refactor Mawvigate Search Project Run Window Help

e Vg T C Project Q- | @
Open File... B C++ Project
Close ZEr[H- [Project...
Clozz 4l CerkE S Convert ko & CiC++ Make Project
Save ChrlH-5 {7 Source Folder
Save fs,.,, [Folder
Sawe Al ZEr|+-Shift+5 ¢/ Source File
Rewvett h| Header File
Mowe * File from Template
Rename. .. Fz @? Class
Refresh F5 = Example...
Convert Line Delimiters To L4

[Cther, .. ChrlH-M

Brimt... kel H+-F
Switch Workspace L4

next to the Red Leaficon and then select C++

Not IfC++ Project isn'ton the menu, then the perspective hasn't been set properly. Click the down arrow

Note
things to break.

Due to limitations in the GNU tools, all project names and file names should consistofonly letters,
digits, and underscores. Do notuse punctuation or spaces in a name. It confuses the tools and causes

For"Project Type," select Executable | Empty Project. Under "Toolchains,"” select MiniGW GCC (the default). Then,

click Finish:

= LC++ Project !IE[E
C++ Project
Create C++ project of selected tvpe

——

CPrDject name: | hello_world)

¥ Use default lacation
LLocatiam; I W hworkspaceihelo_world Browse, ., |

Praoject type: T

== Executable
----- @ Empty Project ool Chain
----- @ Hello World C++ Project
[#=- Shared Library

[Ep Skatic Library

----- > Executabls (3L ClIC++)

----- £» Static LibraryfsL ClC++)

----- > shared Library (3L ClC++)

[#-[=- Makefile project

v show project types and toolchains only if they are supported on the platForm

(7 = Back | Next = | | Firish I Cancel |

o

If you are prompted to open the C++ perspective, check the "Remember my decision" box and click No:

& Open Associated Perspective?

This kind of project is associaked with the CjC++ perspective, Do wou wank
L] ko open this perspective now?

6_7 Remember rmy decisiDD

Yes Mo
e —

New projects are added by default to the Other Projects working set. To help keep your projects organized, we'll move
them to the C++1_Lessons working set. Find the hello_world projectin the Other Projects set, right-click it, and select
Assign Working Sets.... In the dialog box that appears, check the box for C++1_Lessons and click OK:

& Working Set Assignments !IE[E

Select working sets For 'hello_world';

O J.f,‘.lL‘Z++1_IC-::mrrn_lnilz';.f Select Al

O JE,‘.IIC++1_H-f|n|:||:|an:|<u
S C4++1 Homework

(151 C+4+1 _Lessons

-

Deselect all

i

Mews, ..

¥ show only Package Explorer working sets Configure. ..

K I Cancel |

Now we'll set up the project's building behavior. Right-click the hello_world project again, and then select
Properties. Select C/IC++ Build, then click the Behavior tab. Check the Build on resource save (Auto build) box
and click OK:

& Properties for hello_world =] E3
ftvpe filter best C/C++ Build - e

- Resource

Configuration: |Cebug j Manage Cu:unfiguraticuns...l

i ClE:
- €+ Build

- Praoject References pre————————=,
Run/Debug Settings
Server

Task Repositary —Build settings

- Task Tags ¥ Stop on first build error I Use parallel build
[Yalidation £ Use optimal jobs number

% Use paralel jobs: I 1 3:

[=| Builder Settin (@) Behaviour |

—Warkbench Build Behavior
Workbench build bype:

Iv Build on resource save (Auka build))

Mokte: See Workbench automatic build preference

v Build {Incremental build)

¥ Clean

Restare Defaulks | Apply |

7 K I Cancel |

You will need to do this for every project you create. If you don't, when you try to run programs from the project, you'll
see this message: "Launch failed. Binary notfound." ltisn't possible to set this flag as the default. Butjustin case you
need to refresh your memory on occasion, we've provided a checklist of the steps you need to take in order to starta
project.

Okay, we're ready to create our program. Find the hello_world projectin the C++1_Lessons working setand select it,
then selectFile | New | Source File:

] E R L
P
L™ Project Ex m = = = =
Y - ot —
m Cipen in Mew \Window $_| Ecore Diagram
{5'-'. Exam = Copy Lf=i Ecore Toals Project
L _:: R =i
TDC' Factc |z Paste File
T_? 5 Delete * File: from Template
IE"I- Java, - d
g Move. ., [Folder
= Java, 0L Fil
EES javal ename. [, 0L File
Reemowe From Contesxt (o e e
{5 Class
2 Impart.. h' Header Fils
=7 Expart..., B source File
% Source Folder

Enter the name hello.cpp and click Finish:

check.html

& New Source File [_ O] x|

Creakte a new source file, C
1= |

Source Folder: |hellu:u_wu:ur|-:| Browse, ., |
{ Source File: ihellu:u.u:pp|)

Templake: I Default 4+ source template j Configure. ..

J—
(7) (Finish 3 Cancel

The new file hello.cpp appears, with a short header containing the flename, the date, and your name. In hello.cpp,
add code as shown below:

CODE TO TYPE:

/*
* hello.cpp

*

* Created on: Dec 15, 2009

* Author: smiller
*/

#include <iostream>

int main() {

std::cout << "Hello World!" << std::endl;
return (0) ;

As you type, you'll notice that the system automatically completes certain items. For instance, when you type <, it adds
a >. And after you enter the line that contains int main() {, Eclipse automatically indents the nextline by four spaces
and adds the closing bracket} on the following line. Eclipse is your friend, and does its bestto help whenever it can!

SelectFile | Save All to save your file:

& C/C++ - hello/hello.cpp - Eclipse SDK
|File Edit Refactor Mawvigate Search Project Ruom Windo

Hew alcsshiften b L
Cpen File..,
Close Chrl+in -
Close &ll Chrl+-Shif b+ CP
. n1
|z Save Chrl+3
5] Save As... m
I save Al Chrl+shift+s |8
Rewert !
Move...
Remare...

Congratulations, you've just written your first C++ program! Now let's run it. In the editor window for your hello.cpp
program, right-click and select Run as | Local C++ Application:

=
[£] hello.cpp 3

1%

Z * hello.cpp

50

4 * Created on: HMs
5 ® Author: sn
6 o

LT

2 * hello.cpp

9 W

10 * <Created on: De
11 * Author: 3n
1z #f

13f#include <iostrean
14int maini{) {

15 std::icout << '
1a return (0)

17}

12

< Undo Typing Chrl+Z
Rewvert File
Save kS
Cpen Declaration F3
Cpen Type Hierarchy F4
Cpen Call Hierarchy Chrl+alk+H
Cuick Cutline Chrl+O
Cuick Twpe Hierarchy Chrl+T
Explore Macro Expansion Chrl+=
Toggle SourcefHeader Ckrl+Tab
Shiows In BlE-+ShifE+
Ut L 4
oy Zhr+-C
Paste Chrl+y
Cick Fix Chrl+1
SouUrce
Refackor
Declarations
References

Search Text

Show TASTHode in DOM Wisw

Run As

Debug As

Clean Selected Filels)
Build Selected Filels)
Team

Compare With
Replace With

& 1 Local C)\C4++ application

Run Configurations. . .

Preferences...

Exclude From build. ..
Build Configurations
Make targets

Remayve from Context

b Al Shifb-+ Dot

Note

A Console window appears, containing the output from your program:

To run a program, you can also selectitin the Package Explorer and click the Run icon (i}) in the toolbar
at the top of the screen. In the future, we'll use thaticon when we want to run the program.

[Package Explorer (E Consale 23 2 Terminal 11 = O | [€] hella.epp £3

ATerminated > hello_world. exe [CC++ Local Application] ¥:yworkspace 1/
A %| H UEIEIEl] = - L=i|> T Z ¥ hello.cpp

Hello World! | |
4 * Created on: May 3, Z010
5 % Author: smillerl

N Al s e/
TE
g8 * hello.cpp
9 *
10 % Created on: Dec 15, 2009
11 = Author: smiller
1z =/
13#include <iostresmn:
14int main() {
15 std:icout << "Hello World!"™ << std::endl;
16 return(0) ;
173
15

Excellent! You've run your first C++ program!

Now let's screw itup. We're doing that on purpose now, so we'll know whatitlooks like and how to fix it when we
screw up our programs later by accident.

Modify hello.cpp as shown below:

CODE TO TYPE:

#include <iostream>

int main() {
standard: :cout << "Hello World!" << std::endl;
return (0) ;

We omit the header comments from some of our examples in order to save space. In your real
programs, you should always include descriptive comments.

Save your file (File | Save all). Ared icon appears on the left side of the panel near the line you just changed. If you put
the mouse pointer on the icon, you'll see this message:

] Package Explorer El consale 52 .S'J Terminal 11

C-Build [hello_waorld]
G Ee| 2 B -9~

project hello_world *%+%%

#&%% Internal Builder is used for build
FEEL

g++ -00 —-g3 -Wall -c —fmessage-length=0
—-ohello.o ..Yhello.cpp

..thello.cpp: In function “int maini)':

heen declared
..vhello.cpp:3: error: “cout' was not
declared in this =scope

'cout!
Build error occurred, build is stopped
Timwe consumed: 656 mwa.

j‘

..%hello.cpp:3: error: “standard' has not

..thello.cpp:3: warning: unused variable

=08 el hello.cpp B3 =08
1#include <iostresm: ;I!
Zint main () {
3 [Multiple markers at this line Llo World!™ << std::endl: =
o | -unused variable 'cout’

- “cout’ was not declared in this scope

51 - standard' has nat been declared
&

= 1

p

This tells you that something bad happened. In particular, the compiler can't figure out what the symbol standard

means.

Fix the problem by changing standard back to std, then save the file. The red icon should go away.

Now let's create a new problem for ourselves. Modify hello.cpp below as shown:

CODE TO TYPE:

#include <iostream>
int main() { int

return (0) ;

std::cout << "Hello World!" << std::endl;

Save the file. You'll see an x error icon on the the std::cout line:

= Package Explorer El conscle 52 A2 Terminal 1
~3

=0 | hello.cpp 3

C-Build [hella_warld]
G Ee| et B -rF-

__ l#include <iostream>
? Zint main() { intl

#%%% Build of configuration Debug for
project hello world *##%+

#%** Internal Builder is used for build
TEET

g++ -00 -g3 -Wall -c -fmessage-length=0
-ohello.o ..%hello.cpp

. hhello.cpp: In function “int main()':
..%hello.cpp:3: error: expected
initializer hefore '<<' token

Build error occurred, kbuild is stopped
Time consumed: 609 ms.

st
(X] std::icout << "Hello World!™ << std::endl:
4 return(0) ;

B

i || I

Py

So what happened? Eclipse flags errors with an x error icon. Ideally, it appears on the line where you made the

mistake, but sometimes (like now), it doesn't. (However, in this case you do see a small yellow box containing a
question mark on the int main line. Eclipse's internal parser detected an error on this line and flagged it that way.)

When Eclipse flags errors in your program, you still might need to do some investigative work to find and fix them—
and it's a good idea to check the lines of code surrounding the flagged ones as well.

Fix the problem in hello.cpp by removing the misplaced int, then save your work.

What Does It All Mean?

Let's take a closer look at the program to see how it works:

OBSERVE: hello.cpp

#include <iostream>

int main()

{
std: :cout << "Hello World!" << std::endl;
return (0) ;

The firstline is #include <iostream>. This #include line tells C++ "I'm going to use your standard streaming
I/O package (iostream)." The compiler brings in the definitions of the items for this package.

The nextline, int main(), is the start of the code for your program. The main() function is special in C++; itis
the first function that C++ executes. We'll getinto function definitions later—for now, you just need to know that
this special line starts the program.

The curly brace { indicates the start of the body ofthe code. Code enclosed in braces is called a block. In this
program, we have one block of statements and they make up the body of the main() function. In later lessons
we'll learn how to use multiple blocks of code.

The next line contains std::cout << "Hello World!" << std::endl;, which is a C++ executable statement. It
tells C++ to printa message. You'll notice that the line starts with four spaces. C++ doesn't care how many
spaces you use to starta line, but good programming style dictates that you use one level ofindentation for
each level oflogic. Here we indented four spaces for each set of braces we have nested. We chose to indent
four spaces as a standard because it's easy to read and we needed a standard for this course.

Let's break the std::cout statementdown into components.

The firstitem, std::cout, is the name of a predefined variable thatis used by C++ to write to the standard
output (the console). (In the Eclipse programming environment, console output shows up in a window at the
bottom ofthe screen.) The std::cout variable is one of the items broughtin by the #include <iostream>
statement.

The operator << tells C++ to take what follows itand send it somewhere else, in this case to the output
(std::cout). Nextin our code, we have the string "Hello World". This is a literal string containing the
characters we want to display on the console.

This is followed by << again (which sends whatever follows it to the output stream on the left) and the symbol
std::endl. The std::endl symbol tells C++ to output an end-of-line character. The statement ends with a
semicolon.

Next, we have the return line return(0);, which tells C++ to end the program and return a status of 0 to the
operating system. (You'll learn more about the return statement later, but for now all you need to know is that
inside main, it ends the program.) A return code of 0 indicates a normal exit. Codes 1-255 typically indicate
that the program exited abnormally—the bigger the number, the bigger the problem.

Again, the statement ends with a semicolon.

Atthe very end we have a closing brace }. This ends the block of code that started at the brace just after the
main() line.

Adding to Our Program

Now let's say we want to output another line of text. To do that, we can add another line to output an additional
message. Edit your program as shown (using your own name instead of "Steve"):

CODE TO TYPE:

/*

#include <iostream>

int main() {
std::cout << "Hello World!" << std::endl;
std::cout << "My name is Steve!" << std::endl;
return (0) ;

@ Save your file, then run it by right-clicking in hello.cpp in the editor window and choosing Run as | Local
C++ Application (alternatively you could click the Run icon in the toolbar). You'll see this output:

OBSERVE:

Hello World!
My name is Steve!

Our output appears on two lines because we used std::endl. Another way to make the output appear on two
lines is to use the special escaped character \n. Modify hello.cpp as shown:

CODE TO TYPE:

#include <iostream>

int main() {
std::cout << "Hello World!" << "\n";
std::cout << "My name is Steve!" << "\n";
return (0) ;

2 save your program, and run it. The outputlooks identical to the lastrun:

OBSERVE:

Hello World!
My name is Steve!

\n is called an escape character. The backslash (\) "escapes" from the regular interpretation of keyboard
characters to begin a special multi-character sequence, indicating a special character. In this case, it's a
"newline," or end of line, the equivalent of pressing the Enter key.

For more information, see the glossary's description of the escape character.

But the escape character is the old-fashioned way to printa newline. The more modern practice is to use the
special symbol std::endl. There is a subtle difference between \n and std::endl; the std::endl symbol
causes a buffer flush, which makes sure the output appears immediately. The \n is notrequired to flush the
buffer (although on most systems itdoes).

We cover buffering and flushing in more detail in later C++ courses.

What Goes On Under the Hood

Eclipse is a type oftool called an IDE or Infegrated Development Environment. This sortoftool is a wrapper around
many othertools. The idea of the IDE is to hide the other tools and give you a single system in which to work. Butas a
professional, you'll need to know what goes on "under the hood" to make the most effective use of all the tools
available.

When your projectis built, Eclipse figures out what needs to be done to make your programs executable,
automatically. This comes in handy for many types of programs, including our small "hello world" project. Tools like
Visual Studio work much the same way.

Some programs use other builder tools to make them automatically executable—in the C/C++ world, a program called
make is a common tool for that. In java, Antis a popular tool for that task. Both ofthose tools require programmers to
specify a setof"rules" or "targets" that describe how a program will be built.

To convert your code into computer instructions, Eclipse uses the GNU g++ compiler. This program takes your source
code (.cpp file) and turns itinto an executable. To do this, it needs to run a series of programs. The firstis the actual
C++ compiler. Its job is to take the human-readable source code and turn itinto an objectfile (.o file).

You can see the object file created by the compiler. Switch to the Package Explorer tab, then expand the Debug folder.
Inside that folder you'll see hello.o (among other things). If you try to open hello.o, you won'tfind anything useful—
this file contains computer code. The objectfile is readable by the computer, but not by humans. The object file
contains only the code for executing the task that you wrote. In the case of hello_world, that code uses std::cout to
write outa message. The definition of std::cout is notin your objectfile; instead itis part of a standard library. This

glossary.html#Escape_character
glossary.html#IDE
glossary.html#make
glossary.html#source_code
glossary.html#compiler
glossary.html#object_file
glossary.html#library

library contains generally useful definitions like std::coutand lots of other things. The library itself is justa bunch of
object files packaged togetherinto one file (something like a zip file, but different).

The linker takes your object file and the object files in the library and produces an executable program. Here's a
graphical representation of what itdoes:

S?:Iﬁ[?ce OEJiF;t Executable
(.cpp) (.obj) Loxe)

Library

With some compilers, you may not see object files, because they delete object files after the link step.

With the GNU compiler, the compilation process is actually accomplished by multiple programs. The first thing g++
does to your program is pass itthrough a program called the pre-processor. This program takes care of things like the
#include directive. (We cover lots more about this program in the next C++ course.)

The next stage turns the high-level C++ code into low-level assembly code. In high-level code, one statement can
resultin many machine instructions being created to process that statement. In assembly language, there's one
statement per instruction. Also, high-level languages are machine-independent (or they are supposed to be.)
Assembly code is machine-dependent. In other words, the assembly language for an Intel x86-compatible processor
(such as the Intel Core 2 Duo or Intel Pentium) is entirely different from the assembly code for the iPhone's ARM
processor.

Fortunately, all this complexity is hidden from you and you can ignore it most of the time. But sometimes you may
need to take a peek under the hood to deal with any bugs you encounter along the way.

Finishing the Program

Our program, although syntactically and logically correct, is not complete because it only contains the default comments
produced by Eclipse. Acommentis textin the program that tells people reading the program what's going on.
Comments are notread by the computer and although itis possible to write a program with no comments in it, we will
notdo so in this course. Professional programming means creating professional-quality programs with comments—
even if that program is "Hello World."

All of your programs should begin with a comment block that contains these sections:

e Thelesson and project number (so the instructor knows which question you're answering).
e Adescription section that describes what the program is supposed to do.
e Ausage section.

Comments begin with /* and end with */. Comments can also begin with // and go to the end of the line.

Our program needs a setof comments. Modify hello.cpp as shown:

glossary.html#linker
glossary.html#assembly

CODE TO TYPE:

/*
* Lesson 1, Example 1 (Or Assignment 1 for programs you turn in)
*

* Description: The classic "Hello World" program. Prints
* out the message and that's all.

*

* Usage: Run it and get the message.

*

/
// This is another way to comment a single line.

#include <iostream>

int main() {
std::cout << "Hello World!" << std::endl;
return(0) ;

-
2 save and runiitto verify that it still works as expected.

The User Manual

Are we finished? Not yet—a program isn'tany good if no one knows how to use it, so we'll write a user
manual for every program.

You may wonder how to go about writing a manual for such a short program. For a short program, we just
write a short manual.

To create your manual, select the hello_world project and then selectFile | New | Other. In the New File
Wizard, select General | File. Name your file manual.txt. Now write the manual:

CODE TO TYPE:

Run the program.
See the message.

The Test Plan

Finally, the program needs a test plan. Our test plan should have these attributes:

e Itshould testas much of the program as is feasible.

e Itmustlista precise setofsteps to follow (ambiguous instructions lead to results that cannotbe
reproduced).

e lts results mustbe observable.
e Itmustlead to a clearly observable pass/fail result.

Forexample, a test plan that says, "Play around with the software and see if you can break it," is a vague and
therefore pretty bad test plan.

First, the term "Play around" is not precise. Different people could "play around" in different ways.

Second, what happens if someone breaks the software? Can he do itagain? Often, the answer to this
questionis no.

Third, the term "break" is not defined. If the system crashes, that certainly is a break. But what if it merely draws
something thatlooks odd? Is that "odd" drawing a feature or a bug?

Now we'll write our clear, brief, and excellent test plan. Create a file called test.xt, then type in the code as
shown:

CODE TO TYPE:

1. Run the program.
2. Observe the message "Hello World!" (Yes -- Pass, No -- Fail)

A Few More Notes

We recommend that you use the Save All menu option to save your work; this will save everything you have opened,
and it can prevent problems when running your programs while you're working on them.

Do not put spaces or other special characters in file names. Limit yourselfto a combination of letters, digits,
underscores (_), and dashes (-) This helps to avoid problems with the tool set being used.

When you create a new source file, it always contains the standard header, including the file name, date, and your
name. You should replace those elements with more detailed and specific information about your program.

Remember, when using the O'Reilly sandbox system, that Red Leaficon is your emergency button. It will restore your
screen to the original layout:

& 05T lava - Eclipse SDK

=] E3
File Edit MNavigate Search Project Run Window Help
JL=<_|>Y nPIJi‘_&:vﬁv‘%v J@&?@‘Jfgﬁh' ﬁm >
J = = > = L Resource

/‘ —~

‘Start Page (‘ Syllabus £3 Back Refresh Fle Googe = O

-

}\To reset the screen, click the red Ieaf)

O'REILLY ‘ TECHNOLOTY

My Start Page Steve Miller's Courses: Java Programming
A g e i W "'ﬂ-vlwsf\l\wﬁhw “n.all aQIWhWMr—” L

Congratulations! You have created your first C++ program and completed lesson 1 of the course! In the nextlesson, we'll
investigate expressions. See you there!

[4]

(]
Kl [+]

Copyright © 1998-2013 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Expressions
C++ 1: Introduction to C++ Lesson 2

Glad to see you're back! In this lesson we'll learn to use mathematical expressions in C++.

Mathematical Expressions

C++ understands these operations:

+ | Addition

- | Subtraction

Multiplication

/ | Division

% | Modulus (remainder after division)

We can combine these operations with numbers into an expression to do useful lots of really useful work.

Let's getgoing and try an example to see how these operators work. Start a new project and name itexp-
expression. Assign itto the C++1_Lessons working set. Then create a new source file in the new exp-expression
projectand name it exp-expression.cpp. Now create the project and source file. You can see a graphical
representation of this procedure in the next section. But if you feel comfortable with the process so far, go ahead and
skip to the following section.

Creating the Project and File

SelectFile | New | C++ Project, enter the information, and click Finish, as shown:

== LC++ Project !E
C++ Project
Create C++ project of selected tvpe

8

G‘rnject narme: | EXp-eXpression _)

¥ Use default location

Locatian: | W hworkspacelexp-expression Browse, .., |

Project bype: Toolchains:
EI[E& Executable m
@ Empty Project ¥L CHC++ Tool Chain

o @ Hello World C++ Project
[#-[== Shared Library

[E; Skatic Library

----- &> Exerutable (%L C)C++)

----- &> Static Library(sL CfC+4)
----- > shared Library (%L ClC++)

[#-[= Makefile project

¥ Show project bypes and toolchains only if they are supported on the platform

'3:':?:3' = Back | Mext = 'l Finish I} Zancel |

S

If you are prompted to change the perspective, check the Remember my decision box and click No:

= Open Associated Perspective? |

This kind of project is associated with the C/C++ perspective, Do wou wank
. ko open this perspective now?

(7 Rermermber ry decisiu:un)

s Mo
1“"'l--_l-l"ﬂ'-

Assign the C++1_Lessons working setto the exp-expression project; right-click the project, select Assign
Working Sets..., and assign the working setas shown:

= Working Set Assignments !E E

Select working sets for 'exp-expression':

O 45 pythonz_Lessons Select all |
O J|leF'y.ftl‘u:un2_C-:umr|'||_||'|iI:';.f
O J.f,‘.lF“;.fthu:un2_H-amu:||:uan:|~t Deselect Al |

(JE,‘.IIC++1_LESS|:||'|5

¥ show only Package Explorer working sets Configure. ..

e

t Ik Cancel

In the Package Explorer, right-click the exp-expression project, select Properties, and set the Build
properties as shown:

= Properties for exp-expressio !El E

|ty|:ue filker becxt C/C++ Build - T

[+ CfC++ Buid Configuration; |Debug j Manage Configurations. .. |
e ETieT &

- Project References —
- Run/Debug Settings
i Task Repository

=] Builder Settings| (=) Behaviour

Build settings
[¥ stop on first build error [Use parallel build

£ Use optimal jobs nurmber

% [se parallel jobs: |1 =

—Warkbench Build Behavior
\Warkbench build bvpe:

[+ EBuild on resource save {Auto build))

Moke; See Workbench automatic build preference

[v Build {Incremental build)

v Clean

Restare Defaulks | Apply |

(7) [OF !} Cancel |

Now, in the exp-expression project, select File | New | Source File, and enterinformation as shown:

= New Source File _[O

Create a new source file, C
= |

Source Folder: |exp-expressiu:un Browse. ., |
o
GDLIFEE File: | exp-expressiu:un.cpp| _)

Termplake: I Default C++ source templake j Configure. ..

(7) Finish I Cancel

Editing and Running Your Program

Open your exp-expression.cpp file and enter the following code (we'll omit the automatic comments from
now on to save space):

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "The answer is " << (1 + 2) * 4 << std::endl;
return (0);

V] Save your source file, then in the editor window for exp-expression.cpp, right-click and select Run as |

Local C++ Application (or selectexp-expression.cpp in the Package Explorer and click the 0’ iconin
the toolbar). You'll see this output:

OBSERVE:

The answer is 12

The computer evaluated, or calculated, the answer to the expression (1 + 2) * 4 (which is 12) and showed you
the results.

So, how did the parentheses affect the answer? I'm glad you asked! Let's remove them and see what
happens—edit your code as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "The answer is " << 1 + 2% * 4 << std::endl;
return (0);

2 Save and run your program. This time the answer is different:

OBSERVE:

The answer is 9

The computer reads the expression 1+ 2 * 4 from left to right, butitalso follows the Order of Operations:

1. exponents and roots
2. multiplication and division
3. addition and subtraction

Multiplication occurs before addition, so the computer actually does this:

e 2%4=8
e 1+8=9

You can change the Order of Operations by using parentheses (). In the first example, we used parentheses
to force addition to occur before multiplication.

Types of Numbers

There are two major types of numbers in C++: integers and floating point. (You might also hear about a complex type,
but that type isn't actually built into the language.)

Integers, also known as whole numbers have no fractional value. For example, these are all integers:

OBSERVE:

1 324290 42 -999 Sy

Floating-point numbers contain a fractional part. For example:

OBSERVE:

1.2 8.5 14.8 37.0

The last number presents a key concept: 37.0 is a floating-point number. Even though the fractional partis 0, its
presence after the decimal point makes 37.0 a floating-point number. The number 37 is an integer.

Note When writing floating-point numbers, always include a decimal point. It tells anyone reading your code
that you intend the value to be floating point. So 1.0 is good, and 1 is bad. 0.0 is good; 0 is bad.

Floating-point numbers can also contain an optional exponent. For example:

OBSERVE:

13.33E+5

This tells C++ that the value of the number is 13.33 x 10°.

http://en.wikipedia.org/wiki/Order_of_operations

Floating-Point vs. Integer Division

Editexp-expression.cpp to compute (and print) the value of the expression 1/3 as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "The answer is " << 1 / 3 << std::endl;
return (0);

2 save and run it, then read the output:

OBSERVE:

The answer is 0

When C++ does integer division, the resultis an integer—it truncates any fractional part of the result.

Now, edit exp-expression.cpp again, as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "The answer is " << 1.0 / 3.0 << std::endl;
return (0);

L) Save and run itand look over the output:

OBSERVE:

The answer is 0.333333

When C++ sees that the arguments are floating-point numbers, it performs floating-point division and gives

floating-pointresults.

But whatif one number is floating point and the other is an integer? Let's give that a try. Modify exp-
expression.cpp as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "The answer is " << 1.0 / 3 << std::endl;
return (0);

{2 save and run itand read over yourresults. Try 1/3.0 as well. Now that you've seen how mixed-mode
arithmetic will affect your programs, avoid using itif at all possible. For now, that may be difficult, but later we'll

learn about casing, which will let us explicitly tell the compiler which types of numbers (and therefore
operations) to use.

Dividing by Zero

We cannot divide anything by zero—that operation isn't defined and the expression has no meaning. So what
happens if we tell the computer to divide by zero? Modify your program to compute a new expression that

divides by zero as shown:

http://en.wikipedia.org/wiki/Division_by_zero

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "Divide " << (1/0) << std::endl;
return (0);

Save your program, and ignore the warning message. 2 Run itand observe that it terminates with this
message:

exp-expression.exe - Application Error |
. The exception Integer division by zera,
(Dxc0000094) occurred in the application at location Ox0040141d,

Click on ©F ko kerminate the program
Click on CAMCEL to debug the program

Cancel |

The computer can't handle this type of math, so the program stops with a warning. Click OK to end the
program.

But what happens when you divide by zero with a floating-point number? Try itand find out; edit your program
below as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "Divide " << (1.0/0) << std::endl;
return (0);

2 Save and run it. You'll see outputlike:

OBSERVE:

Divide inf

The floating-point format used by basic Intel-compatible processors has special "numbers" defined for error
conditions such as inf, -inf, and NaN (nota number). This is processor-dependent and although almost all
modern processors now use this standard format, some don't. Results on those computers could be
different.

So now you may be wondering why integer division by zero crashes your program, while floating point
division by zero does not. This is by design—Intel-compatible processors have been used for decades, and
atfirst could only perform integer arithmetic. Floating-point arithmetic was handled separately, and thus it
continues to generate different errors.

Instead of worrying about the differences in error handling, itis better notto generate the error in the first place.
In future lessons we'll learn how to make sure our programs work correctly. Stay tuned!

Limits on Numbers

Suppose you have an old eight-digit calculator. You type in the number 99,999,999 and then add 1 to it. The
resultis a nine-digit number, which the calculator can'tdisplay. So the calculator displays ERROR.

There are similar limits to the numbers in C++. Unfortunately, these are not hard limits. They can vary
depending on the processor type, compiler, and operating system.

C++ has a file (named climits) that defines the limits on its basic types. We'll #include this file, and then add
some code to use it. Edityour exp-expression.cpp program as shown:

CODE TO TYPE:

#include <iostream>
#include <climits>
int main ()
{
std::cout << "INT MAX " << INT MAX << std::endl;

return (0);

L} Save and run it. You'll see this:

OBSERVE:

INT MAX 2147483647

This example uses the C-style constantfor the integer limit. The pure C++ way of doing this is to
' include the header file <limits>. Then you can get the maximum integer with the expression
Note std::numeric_limits<.int>::max(). We used the C method because it's shorter. Also, to

! understand the expression std::numeric_limits<int>::max(), you need to understand

' classes, static member functions, templates and template specialization—all concepts we will
cover in a future course.

Let's see what happens when we go past the limit. Change the program as shown:

CODE TO TYPE:

#include <iostream>

#include <climits>

int main ()

{
std::cout << "INT MAX+1l " << INT MAX+1l << std::endl;
return (0);

Based on the last execution of the program, we might expectto see the number 2147483648. o Run it.
Instead we see:

OBSERVE:

INT MAX+1 -2147483648

This is called overflow. It occurs when a number becomes too big ortoo small to fitinto its type (in this case,
integer). C++ does not check for overflow and will not warn you when it occurs. You won't encounter this
problem too often, butif you do, now you'll be able to recognize and correctit.

Okay, now let's see what happens when we have a floating-point overflow. Because of the way floating-point
numbers are stored and computed, it's hard to specify an exact maximum number. But the expression below
will definitely give you an overflow, so go ahead and add itto your program as shown:

glossary.html#Overflow_error

CODE TO TYPE:

#include <iostream>
#include <climits>
int main ()
{
std::cout << "Float
return (0);

LIPS

(9E399 * 9E399)

<< std::endl;

-
€2 Run it. You'll see the special floating-point number inf; the floating system gives you some indication that

an overflow occurred.

Common Problems

There are some common warnings and errors that you may encounter when working with C++. We'll experiment with
some of them by making a few mistakes on purpose. Change your program as shown:

CODE TO TYPE:

FT | <l 3 4=
et Sestrea
#include <climits>
int main ()

{

std::cout << "The answer is"
return (0);

<<

(L + 2) * 4;

C++ flags this line with an error message because itdoesn'trecognize std::cout.

waona

lnternal BUlLlASr 15 uSed Ior
bhuild TEEE

g++ —20 —-g3 -Wall -c
—fressage-length=0 -oexp-expression.o
.\ eXxp-expression.cpp
..\exp-expression.cpp:
“int mwaini) ' :
LJ\EeXp-eXpression.cppif:
‘oout!

In function

Error:

‘srd!
EBuild error cccurred, build i=
stopped

iz not a wember of

Time consumed: 156 wsS.

i

int maini()

i
*“ [[cout'is not a member of “stdhe anayer is ™ << (1 + 2] * 4=
return (0):

The std::cout functionality is defined in iostream, so in order to use std::cout, we have to include iostream in our

program. Edit the program as shown:

CODE TO TYPE:

#include <iostream>

AL 2 1 <l 1= .
m L1l Emviwl i Ny)
int main ()
{

(L + 2) * 4;

return (0);

When you compile the program, you'll notice a warning triangle next to the line that contains the expression. Look in
the Console panel to see the text associated with the warning:

-
int main)

i

|statement has no effect}

—frmessage—-length=0 —-oexp-expression.o
. Eedp-expression. cpp

W exXp-expression.cpp: In function
“int mainll':

return (0] :
. EeXHp-expression.cpp:9: warning:

statement has no effect
g++ —oexXp-expression.exe
exXp—eXpression.o

Build complete for project
exp-exXxpression

Tiwe conswmed: 516 ms.

The warning reminds us that our expression doesn't really do anything—we do not outputits results or save them
anywhere.

£2 save and run it. The output window contains absolutely nothing. In particular, it does not contain the result of the

calculation. The line (1 + 2) * 4 tells C++ to compute the value of the expression, but nothing more. ltdoesn't store the

result anywhere, doesn't make a decision based on the result, and doesn't outputit. C++ just computes the answer
and then throws it away.

This is perfectly legal, but pretty strange—so strange that the compiler issues a warning when you build it. That's why
you gotthe "no effect" warning. Let's fix the program by editing itas shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "The answer is" << (1 + 2) * 4;
return (0);

2 Save and run it. You'll see this:

OBSERVE:

The answer isl2

Do you see a problem in this code? That's right—we need a space between "is" and the answer. Add the space as
shown (we use an underscore here to represent the space):

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "The answer is " << (1 + 2) * 4;
return (0);

L)) Save and run it. Hmm. There's still a problem. See if you can spotit. We'll add another output statement (as shown
in blue below) to help illuminate the problem:

CODE TO TYPE:

#include <iostream>

int main ()

{
std::cout << "The answer is " << (1 + 2) * 4;
std::cout << "The answer still is " << (1 + 2) * 4;
return (0);

-
€2 save and run it. The outputlooks like this:

OBSERVE:

The answer is 12The answer still is 12

Any additional output statements will be appended to the end of this one. You need to add a newline at the end of the
outputline. Edit the program as shown:

CODE TO TYPE:

#include <iostream>
int main ()
{
std::cout << "The answer 1is " << (1 + 2) * 4 << std::endl;

std::cout << "The answer still is " << (1 + 2) * 4 << std::endl;
return (0);

-
L)) Save and run itto make sure that the problem has been corrected.

We covered a lotin this lesson! We went over expressions, integers, and floating point numbers. Now you're ready to tackle the
nextlesson, where we'll discuss program structure and variables. See you there!

[4]

(]
Kl [+]

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Variables
C++ 1: Introduction to C++ Lesson 3

Basic Programs

We have to walk before we can run, so we're going to learn to program for now in a subset of the C++ language. Our
basic program structure is:

OBSERVE:

/* File heading comments */
#include directives
int main() {

data declarations

executable statements
return (0);

-
In some books and code examples, the data declarations are placed before the int main line. In these
' lessons, they come after it. At this stage, for the types of programs we can currently write, either order will

Note work. (We'll learn the difference between the two types of declarations later.) .
Itis easierto use Eclipse if you putthe data declarations just after the first brace ({).

The include directives, data declarations, and executable statements sections are optional, so the shortest
possible C++ program would have all three sections omitted:

OBSERVE:

int main ()
{

return (0) ;

}

Such a program may appear to be useless, butit's actually a standard Linux/Unix command, true. It's used in shell
scripting as a command that always returns a good status (0) to the currently running script.

Variables
A variable is a bitof your computer's memory, like a box, in which you can put a single item of data. We must declare
variables before we use them. In order to declare a variable, C++ needs two pieces ofinformation: the name and the
type (what the box is called, and what type of box itis).

In order to pass this course, you'll need to add a third piece ofinformation: A comment explaining what the variable is
used for.

A variable name begins with a letter (upper or lower case) or an underscore (_), then continues with any combination
ofletters, underscores, or digits. It cannot be the same as any C++ keyword.

For example, these are legal variable names:

OBSERVE:
box width point count today
whatever point3 dataField

These are notlegal variable names:

http://www.freebsd.org/cgi/man.cgi?query=true&sektion=1&apropos=0&manpath=FreeBSD+7.2-RELEASE

OBSERVE:

3times // Begins with a digit
box-top // Contains hyphen

Variable names are usually lower case (size, full_size or mostly lower case (Size, FullSize, fullSize. Constants
are usually given upper-case-only names (PI, MAX_INT). Nothing in the language forces you to follow this
convention, butif you choose to ignore it, don't be surprised ifa mob of angry maintenance programmers shows up
outside your door with torches and pitchforks.

Style Note: There are two major ways of constructing variable names. The firstis separating words with underscores:

OBSERVE:

box width point count data size

The otheris something called "CamelCase":

OBSERVE:

boxWidth pointCount dataSize

In practice, there's nota lot of difference in the readability of the two styles, but there is a great benefit to picking one
style and sticking fo it.

The style guide for this course requires you to use the underscore style.

Variable Definitions

A variable definition consists of three parts:

OBSERVE:

{type}l {name}; // {Comment explaining the variable}

The comment is notoptional—atleastnotin this course. The reason is that a program is a setofinstructions to the
computer that uses a unique (to that program!) vocabulary. | mean if you see a variable named center_point in code,
the first question you are going to ask yourselfis "Center of what?" By commenting every variable declaration, you
produce a mini-dictionary describing every specialized word (variable) you use in your program. It makes
understanding the program much easier.

Variable Types: Integer

The C++ keyword for the integer type is int (Glossary integer, int). A integer variable declaration looks like this:

OBSERVE:

int x; // example variable

The int declaration tells C++ to declare an integer variable using the optimal size of an integer for the machine. On
most machines, this allows numbers from 2147483647 to -2147483648 to be used. On some older systems, this is
just32767 to -32768 and on some newer systems, it's —9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807.

This is the difference between 32-bit, 16-bit, and 64-bitintegers. Unless you are interested in the technical details
regarding the physical storage of integers within your computer's processor, you don't need to remember the
difference between bit sizes and number ranges. Instead, remember there are different ways to store this data and
remember to use the constants we saw earlier, such as INT_MAX.

Think of a variable as a box. You can put a single integerin itand you can look in itand see what's in it. Let's look at
this in action. Create a project named assign-exp in your C++1_Lessons working set, and a program named
assign-exp.cpp that contains the following code:

http://en.wikipedia.org/wiki/CamelCase
style.html
glossary.html#Variable
glossary.html#Integer
glossary.html#int

CODE TO TYPE:

// Put in the regular heading comments
#include <iostream>

int main() {
int play; // An integer to play around with

play = 5;
std::cout << "The value of play is " << play << std::endl;
return(0) ;

-
L)) Save and run it. This program assigns the variable play a single value and then uses itin an output. You'll see the
results:

OBSERVE:

The value of play is 5

The program stores "5" in the variable named play and then displays that value to you.

Variables can change values as programs execute, and play is no exception. Let's see how the value of play changes
as the program executes. Change your program as shown:

CODE TO TYPE:

#include <iostream>
int main() {
int play; // An integer to play around with
std::cout << "At first, the value of play is " << play << std::endl;

play = 5;
std::cout << "The value of play is " << play << std::endl;

play = -999;
std::cout << "Finally, the value of play is " << play << std::endl;

return (0) ;

G Save and run it. You should see the following output:

OBSERVE:

At first, the value of play is O
The value of play is 5
Finally, the value of play is -999

If we stepped through the program, we'd see the value of play after each line is executed. We might see the following:

Line value of play
int play; undefined
std::cout << "Atfirst, the value of play is " << play << std::endl; | undefined
play = 5; 5
std::cout << "The value of play is " << play << std::endl; 5
play =-999; -999
std::cout << "The value of play is " << play << std::endl; -999

return(0); -999

BUT WAIT! This table shows that the initial value of play is undefined, but the output shows thatitwas 0!

Before we assign play a value for the first time—before the play = 5 line—its value is notknown, and cannotbe
assumed to be anything. With this specific computer, compiler, and execution, the value happened to be 0. A different
computer, compiler, or execution could produce any other result, such as 100,900, or-2147483648!

The bottom line: don't assume your variable has a value before you give it a value!

In C++, you can declare and initialize variables in one statement. Change assign-exp.cpp as shown:

CODE TO TYPE:

#include <iostream>
int main() {
int play = 2; // An integer to play around with
std::cout << "At first, the value of play is " << play << std::endl;

play = 5;
std::cout << "The value of play is " << play << std::endl;

play = -999;
std::cout << "Finally, the value of play is " << play << std::endl;

return (0) ;

-
L) Save and runit. You should see the following output:

OBSERVE:

At first, the value of play is 2
The value of play is 5
Finally, the value of play is -999

Variable Types: Floating Point

The int is justone of C++'s built-in types. Another major type is the floating-point number. Here's an example of a
typical floating point (float) declaration and use. Create a project named float-play, assign itto the C++1_Lessons
working set, and in it, create a float -play.cpp program as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
// Floating-point variable declaration...
float area = 5.2 * 3.5; // Area of a rectangle

std::cout << "The area is " << area << std::endl;
return (0) ;

€2 save and run it. You should see the following result:

OBSERVE:

The area is 18.2

Here we saved a step—we declared a variable named area and assigned it the value of the expression 5.2 * 3.5 all in
a single line of code. C++ does the math—it evaluates the expression and assigns 18.2 to the area variable.

Variable Types: Characters

The character (char) data type stores a single character. To be more specific, it stores a single character from the ASCII
character set. This character set provides for the letters a-z (upper and lower case), the digits 0-9, a set of punctuation
characters, and special control characters.

Glossary: ASCIl Character Set.

Control characters are not printed, butinstead control how the output appears on the screen.
Character constants are enclosed in single quotes:'A’,'B','?".

Create a char-play project, assign itto the C++1_Lessons working set, and in it, create char-play.cpp as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
char chl; // First play character
char ch2; // Second play character
char ch3; // Third play character

chl = 'A';
ch2 = 'B';
ch3 = 'C';

std::cout << "The characters are " << chl << ch2 << ch3 << std::endl;
return (0) ;

€2 save and run it. You should see the following:

OBSERVE:

The characters are ABC

What happens if we try to shove more than one character into a variable? Try it Change your program as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
char chl; // First play character
char ch2; // Second play character
char ch3; // Third play character

chl = 'A'";

ch2 = 'B';

ch3 = 'CDEF';

std::cout << "The characters are " << chl << ch2 << ch3 << std::endl;
return (0) ;

See the warning? This is the firstindication that something isn't quite correct.

#*%* Internal Builder is used for
build wEEE

og++ —00 —-g3 -Wall -
—friessage-length=0 -ochar-play.o
..hchar-play.cpp
Lhchar-play.cppile:ll: warning:
multi-character character constant
g++ —ochar-play.exe char-play.o
Build complete for project char-play
Fime consumed: 1422 msS.

char chl; // First
char chz; // Zecond
char ch3; // Third

chl = '"4';:

ch2 = 'B';:
[mulki-character characker constant]

ztd:icout << "The o

return(0) ;

glossary.html#ASCII

G Try running the program. You'll see something like:

OBSERVE:

The characters are ABF

Looks like the computer wasn't happy with our 'CDEF' character, so itdropped CDE without telling us. Warnings exist
forareason—don'tignore them!

Escape Characters

There is a special character, the backslash (\), which is used to specify characters that cannot be typed inside
single quotes easily, such as tab ('\t') and newline ('\n"). In these cases, the backslash "escapes" from normal
rendering oftand n, allowing you to represent tabs and newlines in program output.

Some of the escape characters are:

\b Backspace Move the cursor to the left one character.

\f Form feed Go to top of a new page.

\n New line Go to the nextline.

\r Return Go to the beginning of the currentline.

\t Tab Advance to the next tab stop (eight-column boundary).
\' Apostrophe or single quotation mark | The character' .

\" Double quote The character ".

\ Backslash The character\.

\nnn | some character The character number nnn (octal).

\xNN | some character The character number NN (hexadecimal).

Edit the program below, replacing the value we assign to ch2 as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
char chl; // First play character
char ch2; // Second play character
char ch3; // Third play character

chl = 'A";
ch2 = '"\n';
ch3 = 'C';

std::cout << "The characters are " << chl << ch2 << ch3 << std::endl;
return (0) ;

2 save and run itand observe the output:

OBSERVE:

The characters are A
C

Now let's try something a little different. Change the value of ch2 to \b, the backspace, as shown below:

CODE TO TYPE:

#include <iostream>

int main ()

{
char chl; // First play character
char ch2; // Second play character
char ch3; // Third play character

chl = 'A'";
ch2 = "\b';
ch3 = 'C';

std::cout << "The characters are " << chl << ch2 << ch3 << std::endl;
return (0) ;

-
L)) Save and run itand observe the output:

OBSERVE:

The characters are AOC

The display probably doesn'tlook correct—depending on how your computer handles the backspace
character, you might see anything from AC to A, some funny character, and then C.

Wide Characters
The char type suffers from the fact that it cannot deal with international alphabets. To help solve this problem,
the wide character (wchar) type was created. While the char type defines 256 characters, wchar defines
65536.
However, there are languages (such as Chinese, Japanese, Farsi, Hebrew, and many others) that contain
even more than 65536 characters. To display characters from those languages, a character encoding system
called Unicode was created.

Support for wide and Unicode characters is dependent on the compiler and operating system thatyou are
using. We'll discuss this in a future lesson.
Boolean
The boolean type (bool) can have the value true (which is also one, or 1) or false (which is also zero, or 0).

Create a project named play-bool, assign the C++1_Lessons working set to it, and create the program file play-
bool.cpp as shown:

CODE TO TYPE:

#include <iostream>
int main ()
{
bool flag; // Boolean to play around with

flag = true; // Set it to true
std::cout << "Flag is " << flag << std::endl;

flag = false; // Set it to false
std::cout << "Flag is " << flag << std::endl;

flag = (1 == 1); // == is the test for equality operator (expression is true)
std::cout << "Flag is " << flag << std::endl;

return (0) ;

o Save and run it. You should see the following output:

OBSERVE:

Flag is 1
Flag is O
Flag is 1

The computer printed the underlying values for flag as it was setto true, then false, then true.

Originally, C did not have a boolean type, so people defined their own. As a result, you may see things like BOOL,
BOOLEAN, Bool, TRUE, and FALSE in older books or code. Be aware that these are local, non-standard items.

Now the question comes up, "What should | do aboutlegacy types in my code?" The bestanswer is, if the code works,
leave italone. You could waste a lot of time and effort trying to improve working code and bring itup to current
standards, merely to make it do whatit already does.

If you do have to go in and change something, and bringing the types up to date will not cause too much trouble, by all
means do so. Butdon't change anything just for the sake of changing it.

Mixing Types

C++is very flexible when it comes to mixing types. If it can figure out a conversion, it will silently allow you to assign a
constantofone type (such as boolean) to another (such as integer).

Here are the conversions that occur when mixing types:

Result |Expression

Conversion
type type

1for true, O for false (not guaranteed by the standard, but everyone | know ofimplements it

integer |boolean that way).

float boolean Same as integer.

The character whose character number is the number being assigned. This depends on the
char integer character seton your system. For mostsystems, this is ASCI|, so assigning ch = 65 makes
ch an'A' (ASCIl character number 65).

Integer after truncation. Note: If the value of the floatis bigger than the maximum size the

integer | float integer can handle, the integer will get the maximum value.

integer |char The numeric value of the character in the current character set.

float char The numeric value of the character in the current character set.

If the number O (zero), the boolean variable gets false. If non-zero, the value true is

boolean|Numeric .
assigned.

Let's try this. Change your program as shown:

CODE TO TYPE:

#include <iostream>
int main ()

{
bool flag; // Boolean to play around with

flag = true; // Set it to true

float test = flag; // will this work?
flag = false;

std::cout << "Flag is " << flag << std::endl;
std::cout << "Test is " << test << std::endl;

return (0) ;

http://www.cplusplus.com/doc/ascii/

O Save and run it. Your program happily stores the boolean value 1 from flag into test. Also note that, even when
the value of flag changes to false (0), test retains the value originally assigned to it:

OBSERVE:

Flag is O
Test is 1

We learned a lot about variables and types in this lesson! In the nextlesson, we'll learn how to store many values of the same
data type using arrays. See you then!

[4]

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Arrays and For Loops
C++ 1: Introduction to C++ Lesson 4

Using Arrays

So far, we've only learned basic data types and every datum had a name. But suppose we want to calculate the
average grade for twenty students in a class. It's a lot of work to define twenty different variables, one for each number:

OBSERVE:

int studentl; // A number we are going to average
int student2; // A number we are going to average
int student3; // A number we are going to average

// I'm not going to write out the whole thing.

int student20; // A number we are going to average

Arrays allow us to define a set of data—like a group of mailboxes at an apartment building. Compare this to a regular
variable (one thatisn't an array)—itis like a mailbox outside of a single house.

A regular (non-array) variable is just a single part of your computer's memory, but an array is a chunk of continuous
memory locations.

Here is how we'd declare an array to store the same setof numbers:

OBSERVE:

int students[20]; // The numbers we are going to average

The elements of the array are students[0] through students[19]. You might expect them to be 1through 20, butin
C++, array element numbering starts at 0. The numbers—0, 1, or 19—are indexes to the array.

The const Modifier

Our class might always have twenty students in it, but what if it changes, say, to 35?7 We would have to go
through our program, find all of the 20 values relating to our students array, and change them manually to
35. This process is error-prone—after all, there may be occurrences of 20 unrelated to the number of
students, that we don't want to change!

Good programming practice dictates that we specify the size of our class in one place, as a variable, and then
use that variable rather than the literal number in our program. Since our class size doesn't change very often,
we can tell C++ that the variable is a constant.

The const modifier defines a "variable" (actually a constant) whose value cannot be changed by the program
when it's running. C/C++ style conventions call for the names of constants to be all upper case; for example,
const int CLASS_SIZE = 35.

How do constants work? Let's find out! Start a new project named constants, assign itto the
C++1_Lessons working set, and in it, create a new source file named constants.cpp as shown:

CODE TO TYPE:

#include <iostream>
int main ()
{
const int CLASS SIZE = 20;

std::cout << "I have " << CLASS SIZE << " students in my class." << std::end
1;

return (0) ;

V] Save and run it. If you typed everything correctly you will see the following:

OBSERVE:

I have 20 students in my class.

What happens if the program tries to change the value of CLASS_SIZE? Try it:

CODE TO TYPE:

#include <iostream>

int main ()
{
const int CLASS SIZE = 20;

std::cout << "I have " << CLASS SIZE << " students in my class." << std::end
1;

CLASS SIZE = 35;

std::cout << "Now I have "<< CLASS SIZE << " students in my class." << std::
endl;

return (0) ;

Save your code. This time your program won't compile, because you are trying to change a constant.

#**% Build of configuration Debug for

project constants #F%F const int CLASS_SIZE = Z0;

*#xx% Ipternal Builder is used for stdiicout << "I have " <<

build FEEE

g++ —-00 —-g3 -TUall -co
—frmessage—-length=0 -oconstants.o
.. Zonstants.cpp

..hconstants.cpp: In function " int

|assignment of read-only variable " CLASS SIZE

std::cout << "Now I have '

return(0) ;
waini)':

..hCOonsStants.cpp:9: EBrror: assignment
of read-only variakhle "CLASS SIEZE'
Build error occurred, build i=s
stopped

Time consuwmed: 637 ms.

If your numberis going to change in the middle of a program run like this, it shouldn't be defined as a
constant. To fix this problem, you'd need to remove the word const from the variable declaration and change
the variable name to an appropriate style, for example, class-size.

You should use named constants to specify the dimensions of arrays; for example, int

students[CLASS_SIZE].

Good programming style dictates that you should always use named constants in this way. In other words,
the dimension specification of an array should never be justa number like 20.

Our first array

Now let's look at arrays in action. Create a new project named average, assignitto the C++1_Lessons
working set, and in it, create average.cpp as shown:

CODE TO TYPE:

#include <iostream>

int main ()

{
const int CLASS SIZE = 5;

float average = 0.0; // average of the items

float total = 0.0; // the total of the data items
float students[CLASS SIZE]; // data to average and total
students[0] = 34.0;

students[1l] = 27.0;

students[2] = 46.5;

students[3] = 82.0;

students[4] = 22.0;

total = students[0] + students[l] + students[2] + students[3] + students[4];
average = total / CLASS SIZE;

std::cout << "Total " << total << " Average " << average << std::endl;
return (0);

o Save and runit. You should see the following result:

OBSERVE:

Total 211.5 Average 42.3

Remember how we could declare a variable and set its value atthe same time? You can also do that for
arrays, using {braces}. Change your program as shown:

CODE TO TYPE:

#include <iostream>

int main ()
{

const int CLASS SIZE = 5;

float average = 0.0; // average of the items
float total = 0.0; // the total of the data items
float students[CLASS SIZE] = { 34.0, 27.0, 46.5, 82.0, 22 }; // data to av

erage and total

FEPD | PR ot B 1/ B
coaenTcS ol — J=-.97
FEPD | PR e | o) fa
cooehTcS T CAvAZ
FEP o [0 i I
cCooCIcCS 2T — =0.-97
deo] o [D1 Q fa
coaencS o — CAYAZ
SR o [A o) fa
coaehcsS T CAvAZ

total = students[0] + students[l] + students[2] + students[3] + students[4];
average = total / CLASS SIZE;

std::cout << "Total " << total << " Average " << average << std::endl;
return (0);

Q’ Save and run it. You should see the same results as before.

Our code so farlooks good, but our total calculation is a bit unwieldy because we'll have to change the
formula each time we change the CLASS_SIZE. Let's see how we can fix that!

for loops

We can have the computer calculate the total for us—after all, it knows how big CLASS_SIZE is! To do this, we can use
a for loop—which executes a block of code a specified number of times. Change your program as shown:

CODE TO TYPE:

#include <iostream>

int main ()
{
const int CLASS SIZE = 5;

int x;

float average = 0.0; // average of the items

float total = 0.0; // the total of the data items

float students[CLASS SIZE] = { 34.0, 27.0, 46.5, 82.0, 22 }; // data to average a
nd total

totet— +rrcterrts [C] t torcterrte [l] t tudcuto[q] T taderrt [] STuceTT [4},

for (x = 0 ; x < CLASS SIZE ; x = x + 1)

total = total + students[x];

average = total / CLASS SIZE;

std::cout << "Total " << total << " Average " << average << std::endl;
return (0);

O Save and run it. You should see the same output as before:

OBSERVE:

Total 211.5 Average 42.3

So...how does the for loop work? Take a look at the code:

OBSERVE:

for (x =0 ; x < CLASS_SIZE ; x = x + 1)
{

total = total + students[x];
}

In English, this loop might be written this way: "for x starting at zero, while x is less than CLASS_SIZE, x is
incremented by one after we add each student value to the total.

Since x starts atzero and our CLASS_SIZE is 5, the code total = total + students[x] will run five times—with x
having the values 0, 1, 2, 3, and 4.

Aforloop typically has these parts:

OBSERVE:

for (/* Initialization */ ; /* Test */ ; /* Increment */)
{

/* body of loop */
}

Inourloop:

e x=0istheinitialization code. Arrays startatzero, so x must startatzero as well.

e Xx<CLASS_SIZE s the test code. Ourarray only has the number of elements (5) specified by

CLASS_SIZE, butthe indexes startat 0 so the lastindex will be 4; therefore, we wantto stop looping before

x is equal to CLASS_SIZE.
e x=x+1istheincrement code. x will increase by one after each iteration.

e total=total + students[x] is the body of loop code, which updates the total.

To really see what the forloop is doing, let's add some code to show the values of x and total inside the loop while

it's running:

CODE TO TYPE:

#include <iostream>

int main ()
{

const int CLASS SIZE = 5;

int x;

float average = 0.0; // average of the items

float total = 0.0; // the total of the data items

float students[CLASS SIZE] = { 34.0, 27.0, 46.5, 82.0, 22 }; // data to average a

nd total

for (x = 0 ; x < CLASS SIZE ; x = x + 1)
{
total = total + students[x];
std::cout << "Students[x = " << x << "]: " << students[x] << "; total: " << to
tal << std::endl;
}

average = total / CLASS SIZE;
std::cout << "Total " << total << " Average " << average << std::endl;
return (0);

o Save and run itand observe the output:

OBSERVE:

Students[x = 0]: 34; total: 34
Students[x = 1]: 27; total: 61
Students[x = 2]: 46.5; total: 107.5
Students[x = 3]: 82; total: 189.5
Students([x = 4]: 22; total: 211.5
Total 211.5 Average 42.3

Aforloop can really make shortwork of a big list! Suppose our class size grows to ten. We can quickly update our
program to handle this, simply by updating CLASS _SIZE and entering values for the additional students. Update your
program as shown. Remember, arrays are zero-based, so we are adding students 5 through 9.

CODE TO TYPE:

#include <iostream>

int main ()
{
const int CLASS SIZE = 10;

int x = 0;

float average = 0.0; // average of the items
float total = 0.0; // the total of the data items
float students[CLASS SIZE] =
{ 34.0, 27.0, 46.5, 82.0, 22, 72.3, 55.9, 91.2, 90.0, 43.8 }; // data to avera
ge and total

for (x = 0 ; x < CLASS SIZE ; x = x + 1)
{
total = total + students[x];
std::cout << "Students[x = " << x << "]: " << students[x] << "; total: " << to
tal << std::endl;
}

average = total / CLASS SIZE;
std::cout << "Total " << total << " Average " << average << std::endl;
return (0);

G Save and run it. See how we didn't have to change the rest of the program—itjust worked! Your output should look
like this:

OBSERVE:

Students[x = 0]: 34; total: 34
Students[x = 1]: 27; total: 6l
Students[x = 2]: 46.5; total: 107.5
Students[x = 3]: 82; total: 189.5
Students[x = 4]: 22; total: 211.5
Students[x = 5]: 72.3; total: 283.8
Students[x = 6]: 55.9; total: 339.7
Students[x = 7]: 91.2; total: 430.9
Students[x = 8]: 90; total: 520.9
Students[x = 9]: 43.8; total: 564.7
Total 564.7 Average 56.47

Array Safety

C++ makes iteasy to store a lotofinformation in an array. What happens if you make a mistake—like accidentally loop
over too many array elements? Edit the program as shown:

CODE TO TYPE:

//***************************‘k************‘k***

//*** WARNING: In order to see what happens when we violate the rules, this program del

iberately overflows an array.
//*****************‘k**‘k*‘k*********************

#include <iostream>

int main ()
{
const int CLASS SIZE = 10;

int x = 0;
float average = 0.0; // average of the items
float total = 0.0; // the total of the data items
float students]|
2

s[CLASS SIZE] =
{ 34.0, 27.0, 46.5, 82.0, 22 72,3, 55.9, 91.2, 90.0, 43.8 }; // data to averag
e and total

for (x =0 ; x<15; x=x+ 1) // O0PS!!
{
total = total + students[x];
std::cout << "Students[x = " << x << "]: " << students[x] << "; total: " << to
tal << std::endl;
}

average = total / CLASS SIZE;
std::cout << "Total " << total << " Average " << average << std::endl;
return (0);

Save the file. No error or warnings will be generated, because the computer assumes you know what you are doing,
and has not checked to make sure you are staying within the bounds ofthe students array. What happens when you
try to run the program? Run it to find out!

o Your program may run, and it may crash. Ifitruns, you might see output like this:

OBSERVE:

Students[x =
Students[x =
Students[x
Students[x
Students [x

]: 34; total: 34

]: 27; total: 61

1: 46.5; total: 107.5
]: 82; total: 189.5
] .
]
1

22; total: 211.5
Students[x 72.3; total: 283.8
Students[x : 55.9; total: 339.
Students([x = 7]: 91.2; total: 430.9
Students[x = 8]: 90; total: 520.9
Students[x = 9]: 43.8; total: 564.7
Students[x = 10]: 3.21401e-039; total: 564.7
Students[x = 11]: 5.95261e-039; total: 564.7
Students[x = 12]: 1129.4; total: 1129.4
Students[x = 13]: 0; total: 1129.4

Students[x = 14]: 1.96182e-044; total: 1129.4
Total 211.5 Average 21.15

Il
o U WN O

~J

See the junk added at the end? Your specific output may look different. C++ didn't check to make sure you were
staying within the bounds of your array, and happily went on with the program. Itis like trying to get mail out of 15
mailboxes, when only 10 physical mailboxes existin your apartment building.

What happens if we try to write to an array location outside of CLASS_SIZE? Try it:

Code to Edit: average.cpp

//*********k‘k**********************************

//*** WARNING: In order to see what happens when we violate the rules, this program del
iberately overflows an array.
//**‘k*‘k**‘k************************************

#include <iostream>

int main ()
{
const int CLASS SIZE = 10;

int x = 0;
float average = 0.0; // average of the items
float total = 0.0; // the total of the data items
float students]|
2

s[CLASS SIZE] =
{ 34.0, 27.0, 46.5, 82.0, 22 72,3, 55.9, 91.2, 90.0, 43.8 }; // data to averag
e and total

students[500] = 500.0;

for (x =0 ; x <15 ; x=x+ 1) // OOPS!!
{
total = total + students[x];
std::cout << "x: " << x << " students[x]: " << students[x] << " total: " << to
tal << std::endl;

}

average = total / CLASS SIZE;
std::cout << "Total " << total << " Average " << average << std::endl;
return (0);

Save the file. Once again, no error or warnings are generated, because the computer assumes you know what you are
doing and has not checked to make sure you are staying within the bounds of the students array. What happens
when you try to run the program?

2 Run itto find out! Your program will crash, and give an error like this:

average.exe - Application Error |

@ The instruction at "0x0040142c" referenced memory at "0x002306F0", The memory could not be “written”,

Click. on ©F ko terminate the program
Click on CAMCEL to debug the program

n]'4 I Cancel

C++did not check to make sure your array index of 500 was valid. Instead, that line executed, and crashed your

program. In C++, when you try to access or write something you are not supposed to access, any of these things
might happen:

e your program could crash.

e yourcomputer could crash, depending on the operating system.

e your program could run and calculate things incorrectly.

e your program could run normally, only to crash later (perhaps waiting until it's shipped to 10,000
customers, when it suddenly decides to wipe out all theirimportant datal!).

If you remember the good old days of computers and operating systems—MS-DOS, Windows 95, and MacOS 7, to
name a few—you probably remember bugs in applications that could crash the entire computer. Those bugs were
often array problems just like this!

In some other languages, you might not need to worry so much about checking your array indices. In C++,you do.In a

future course, we will discuss ways to double-check your programs to make sure you are accessing arrays correctly.

In the real world, almostno one checks the array indices before using them to access an array. Instead,
Note theyrun withoutchecking and spend millions of dollars later to debug the strange and hard-to-find bugs '
caused by bad index values. CHECK YOUR CODE! '

We covered a lotin this lesson! We learned how to use arrays, and how to loop over arrays using for loops. In the nextlesson
we'll learn about another type of variable: strings. See you then!

(4

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

C++ Strings
C++ 1: Introduction to C++ Lesson 5

Strings in C++

Strings are sequences of characters you can use in a computer program. There are two basic ways to use strings—the
newer C++ style strings (which we will learn about in this lesson), and older "C-Style" strings that we will review in the
nextlesson.

To use C++ strings, we need to #include <string> atthe top of our programs. We can then declare a string with a
statement like:

OBSERVE:

std::string variableName; // comment

Let's see how this works. Create a project named string, assign itto the C++1_Lessons working set, create a source
file named string.cpp, and enter the following code:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()

{
std::string first; // First name
std::string last; // Last name

first = "Joyce";
last = "Kilmer";
std::cout << "My name is " << first << " " << last << std::endl;

return (0) ;

Replace we'll use Joyce Kilmer in the examples, but you should replace Joyce and Kilmer with any names you like. As
you can see, string constants are enclosed in double quotes ("). Remember that character constants are enclosed in
single quotes (*). It might help to remember that one tick (') is for a single character and multiple ticks (") for multiple
characters (strings).

L)) Save and run the program. You'll see something like:

OBSERVE:

My name is Joyce Kilmer

Excellent! So far, strings work exactly like any other variable such as an int orfloat.

We learned how to add two numbers in a previous lesson. You can perform a similar operation on strings—using the
plus operator (+), you can concatenate two strings. To see how this works, change your program as shown:

CODE TO TYPE:

#include <iostream>
#include <string>

int main ()

{
std::string first;
std::string last;
std::string full;

// First name
// Last name
// The full name

first = "your first name";

last = "your last name";

full = first + " " + last;

std::cout << "My name is " << full << std::endl;

return(0) ;

9 Save and run it. You'll see the same output:

OBSERVE:

My name is Joyce Kilmer

In this program, we concatenated the two variables first and last (with the space " " in between). What if we tried to
concatenate "Joyce", a space, and "Kilmer" directly? Change your program as shown:

CODE TO TYPE:

#include <iostream>
#include <string>

int main ()

{

// First name

// Last name

// The full name

std::string first;
std::string last;
std::string full;

return (0) ;

first = "Joyce";

last = "Kilmer";

full = "Joyce" + " " + "Kilmer";

std::cout << "My name is " << full << std::endl;

Oops!Looks like C++ isn't happy with us. It gives the following error:

og++ 00 —-g3 -Wall -c
-fwessage—length=0 -ostring.o
.4 3tring.cpp

. string.epp: In function Cint
maini(l':

. 3tring.cpp:li: error: invalid
operands of types “const char[6]' and
"oonst char[Z] ' to binary "operator+!

Euild error occurred, build is
stopped

Titne conswmed: 718 m3.

first = "3teve':
last = "Oualline™;

irvalid operands of kypes " const char[6] and “const chat[Z] o binary ~ operator+]

std: icout <<
return (0] ;

"My name is " << full << std::endl

This is because of the way the concatenate (+) operator is defined. There mustbe a std::string on atleastone side of

the +.

Change your program to fix this problem:

CODE TO TYPE:

#include <iostream>
#include <string>

int main ()

{
std::string first; // First name
std::string last; // Last name
std::string full; // The full name

first = "Joyce";
last = "Kilmer";
full = first + " " + "Kilmer";

std::cout << "My name is " << full << std::endl;
return(0) ;

0 Save and run it; you'll see the same results as before.

Characters in strings

You can access any character in the string using the subscript ([]) operator. Change string.cpp as shown:

CODE TO TYPE:

#include <iostream>
#include <string>

int main ()

{
std::string first; // First name
std::string last; // Last name
std::string full; // The full name

char first initial; // The first initial

first = "Joyce";

last = "Kilmer";

full = first + " " + last;

first initial = first[0]; // Assigns first initial the value 'J'.

std::cout << "My first initial is " << first initial << std::endl;
return (0) ;

0 Save and run it, and observe the output:

OBSERVE:

My first initial is J

This [] syntax might remind you of an array. This is because a string is justlike an array of characters!

There is a problem here—the index is not checked in this operation. So if the index is out ofrange, the
expression returns an undefined value. In other words, this operation is not safe—and you know how we feel
about safety!

Fortunately, there is another way of getting the character, the at() function. Change the program as shown:

CODE TO TYPE:

#include <iostream>
#include <string>

int main ()

{
std::string first; // First name
std::string last; // Last name
std::string full; // The full name
char first initial; // The first initial

first = "Joyce";
last = "Kilmer";
full = first + " " 4+ last;

first initial = first.at(0); // Assigns first initial the value 'J'. This is
the safe way of doing this.

std::cout << "My first initial is " << first initial << std::endl;
return (0) ;

o Save and runit. You'll see the same output as before:

OBSERVE:

My first initial is J

Now justfor fun, change the line that gets the firstinitial to attemptto grab character 99 (an illegal index), as
shown below:

CODE TO TYPE:

#include <iostream>
#include <string>

int main ()

{
std::string first; // First name
std::string last; // Last name
std::string full; // The full name

char first initial; // The first initial
first = "Joyce";

last = "Kilmer";

full = first + " " 4+ last;

first initial = first.at(99); // Assigns first initial the value 'J'. This i
s the safe way of doing this

std::cout << "My first initial is " << first initial << std::endl;
return (0) ;

o Save and runit. You'll see the following on the console:

OBSERVE:

This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

The program can't access the 99th character in the string, so itthrew in the towel. This isn't quite a crash, but it
isn'ta good way to end your program.

Other Functions

One ofthe more common things to do with a string is to extract a substring; for example, some substrings of
the full name "Joyce Kilmer" are "Joyce," "e Ki," and "Kilmer."

C++ strings let you take substrings using the substr function. Let's try it!

CODE TO TYPE:

#include <iostream>
finclude <string>

int main ()

{
std::string first; // First name
std::string last; // Last name
std::string full; // The full name

1o £ I LN | ml, £ I LN |
CIar— ISt Irirrcraxry TIT TS T TITrcrar

first = "Joyce";
last = "Kilmer";
full = first + " " + last;
£ 4= 3 I 1 £ A ey eveY 2 £ = 2 I 1 =l 1 | el L
S L,iJ.llJ_LJ_(lJ_ T J S -y C.aC\ Tr DJ_\jll [S i L,iJ_llJ_L,J_QJ. CIT [y TITT .
=1 £ £ i i,
S—Ehr afe—wayof—doing—tht

std::cout << "My substring is " << full.substr(4, 5) << std::endl;
return (0) ;

G Save and run it. You will see the following output:

OBSERVE:

My substring is e Kil

Let's take a look at the substr code:

OBSERVE:

full.substr (4, 5)

The 4 is the position of the starting character for the substring—in this case, the 'e’' in Joyce. The 5 is the
length of the substring—in this example, the program returns the characters 'e,’' space, 'K, 'i,' and 'l

If you omit the second number, a different substring is returned. Try it:

CODE TO TYPE:

#include <iostream>
finclude <string>

int main ()

{
std::string first; // First name
std::string last; // Last name
std::string full; // The full name

first = "Joyce";
last = "Kilmer";
full = first + " " + last;

std::cout << "My substring is " << full.substr (4—5) << std::endl;
return (0) ;

0 Save and run it. This time you will see:

OBSERVE:

My substring is e Kilmer

C++ also has a function to tell you how many characters are in a string. It's called length()—let's try it:

CODE TO TYPE:

#include <iostream>
#include <string>

int main ()

{

std::string first; // First name

std::string last; // Last name
std::string full; // The full name
first = "Joyce";

last = "Kilmer";

full = first + " " + last;

std::cout << "My name has " << full.length() << " characters in it." <<std::
endl;

return (0) ;

}

o Save and run it. Sure enough, it counts the characters, including spaces!

OBSERVE:

My name has 12 characters in it.

In the nextlesson we will learn more about strings and discuss C-Strings. See you then!

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

C-Style Strings
C++ 1: Introduction to C++ Lesson 6

What is a C-Style String?

In the lastlesson we learned about C++ strings. There is an additional, different type of string—the C-style string.

C-style strings are the primary string type of the C language. Since C++is a supersetof C, ittoo has use C-style
strings. In previous lessons we examined characters and arrays—a C-style string is essentially an array of characters
with the special character null ('\0') at the end.

Since C-style strings are arrays, they have a fixed maximum length. "Dynamic" strings are possible, but they require
the programmer to manually manage memory—a process thatis full of pitfalls and gotchas. Many security problems
and bugs refer to buffer overflows—which are typically errors with C-style strings that resultin memory corruption.

There are many who believe that you should never have a C-style string in a C++ program. Unfortunately "should" and
the "real world" are two quite different things. There is still a lot oflegacy code out there that uses C-style strings. As a
programmer in the real world, you will see this type of string and have to deal with it.

So let's start with an experimental C-style string program. Create a project named c-string, assign itto your
C++1_Lessons working set, and create a program c-string.cpp containing the following:

Code to Type: c-string.cpp

#include <iostream>

int main ()
{

char name([] = {'S', 'a', 'm', '\0'}; // The name for this example

std::cout << "The name is " << name << std::endl;
return (0) ;

This assigns the value "Sam" to a C string name, which can be outputto std::cout.

U Save and run it, and observe the output:

OBSERVE:

The name is Sam

Now what would happen if you didn't end the string with "\0'? Let's see. Change your program as shown:

Code to Edit: c-string.cpp

#include <iostream>
int main ()
{

char name[] = {'S', 'a', 'm', '\0'}; // The name for this example
char other[] = {'J', 'o', 'e'}; // Another name with an error

std::cout << "The name 1is " << name << " and other is " << other << std::endl;
return (0) ;

P Save and run it, and observe the output:

OBSERVE:

The name is Sam and other is Joew

http://en.wikipedia.org/wiki/Buffer_overflow

Your actual output might differ from this example—in fact, it might even look normal. This is another situation where the
behavior is undefined. If you do not put an end-of-string marker (\0) in your C-style string, itis anybody's guess what
will occur.

Remember when we accidentally used an array element we weren't supposed to use? What happened? Because there
was no end-of-string marker, C++ did notstop atthe end of other. It continued to write out characters from random
memory until it actually found an end-of-string character.

C++ allows for even more compactinitialization, using double quotes ("). Let's use it to fix the error:

Code to Edit: c-string.cpp

#include <iostream>

int main ()

{
char name([] = {'S', 'a', 'm', '\0'}; // The name for this example
char other[] = "Joe"; // Another name with an error

std::cout << "The name is " << name << " and other is " << other << std::endl;
return (0) ;

This form of initialization creates an array four characters long and assigns it four character values, the fourth and last
being the end-of-string character.

L) Save and run it, and observe the output:

OBSERVE:

The name is Sam and other is Joe

You cannotassign a value to an existing C-style string. This is because a C string is an array and you cannot change
its value like you can with other variables. Try it:

Code to Edit: c-string.cpp

#include <iostream>
int main ()

{

char name[] = "Sam"; // The name for this example
N~ =l L1 — n T 1 =l L, N
Far—etherf—"13 » rother—rame—wrth—ar—error
name = "Joe"; // Will this work?
std::cout << "The name 1s " << name << L —srd—other—Fs—U e std::endl;
return (0) ;
}
When you save this file you will see an error:

EEEE i i i ; char nate[] = "Saw™:

Build of configquration Debug for project 4

C—-String FFFF

[157 C++ Forbids assignment of arrays|

#%%% Tnternal Builder iz used for build

EEEE std: tcout << "The na

g++ -00 —-g3 -Wall -c -fressage-length=0

-oc-string.o ..%c-string.cpp return (0] ;

Lho-gtring.cpp: In function Cint main() '
. ho-string.cpp:6: error: IS0 C4++ forbids
assigrnment of arrays

Build error occurred, build is stopped
Time consumwed: 625 msS.

This error is generated because C strings require the programmer to worry about memory and do extra work when
copying them. Think of the mailbox analogy from the array lesson—here we created a mailbox with three slots,
containing the values "S," "a," and "m." Using name = "Joe"; is like buying a new mailbox with three slots and trying
to shove the new mailbox with slots "J","0" and "e" where the old mailbox is still hanging.

Instead of trying to smash one mailbox in place of another, we must manually open each slotand copy the contents
from the new to the old. This is done using the strncpy() function (see the reference information at cplusplus.com).
Note this reference uses an old header file (string.h) instead of the currentone (cstring).

This function has three parameters:

strncpy() Syntax

std::strncpy(destination , source , size);

destination is where the data is to be put, source is the source of the data, and size is the maximum number of
characters to putin the destination.

Before we can use strncpy, we need to get out our tape measure—an operator named sizeof(). sizeof() returns the
size of something in "char" units. If we use it on a C-style string, it will return the maximum number of characters that
can be stored in the string.

This is very important because our strings (mailboxes) are fixed in size. [f we try to copy too many characters from our
new mailbox to the old, bad things could happen. Copying too many characters is yet another way to overflow the
buffer and possibly cause the program to crash.

Let's see an example. Edit c-string.cpp as shown:

Code to Edit: c-string.cpp

#include <cstring>
#include <iostream>

int main ()

{

char name[4];// Short name
std::cout << "Size 1is " << sizeof (name) << std::endl;
std::strncpy (name, "Joe", sizeof (name));

std::cout << "Name is now " << name << std::endl;

return (0);

P Save and runit. You'll see:

OBSERVE:

Size is 4
Name is now Joe

You might be wondering why you see Size is 4—after all, Joe is only three letters long! The fourth character is the end
of string ("\0') null character. Remember: this character is required, so you must take itinto account.

What happens when we try to copy a larger string into a smaller variable? Let's try it:

http://www.cplusplus.com/reference/clibrary/cstring/strncpy/

Code to Edit: c-string.cpp

#include <cstring>
#include <iostream>

int main ()
{

char name[4]; // Short name
std::cout << "Size is " << sizeof (name) << std::endl;
std::strncpy(name, "Joe", sizeof (name));

std::cout << "Name is now " << name << std::endl;

std::strncpy(name, "Steve", sizeof (name));
std::cout << "Name is now " << name << std::endl;

return (0);

V] Save and run it. This time, you'll see something like this:

OBSERVE:

Size is 4
Name is now Joe
Name is now Stev a"

The output from your program may be slightly different, see how "Steve" wasn't copied correctly, and the output
contains extra characters?

We used the sizeof operator to compute the maximum number of characters that can be stored in the variable name.

This included the null character. "Steve" is six characters—"Steve" plus the end-of-string character.

If the source string has fewer characters than the size of the array, then std::strncpy() copies the string and adds an
end-of-string ("\0') to the end. But since the source is bigger here, it copies size's number of characters and does not

append the end-of-string. So in order to make things work, we mustdo so ourselves:

Code to Edit: c-string.cpp

#include <cstring>
#include <iostream>

int main ()
{

char name[4]; // Short name

std::cout << "Size is " << sizeof (name) << std::endl;
std::strncpy(name, "Joe", sizeof (name));
std::cout << "Name is now " << name << std::endl;

std::strncpy(name, "Steve", sizeof (name));
name [sizeof (name)-1] = "\0"';

std::cout << "Name is now " << name << std::endl;

return (0);

Since sizeof(name) is 4 in our example, sizeof(name)-1 will be 3. Remember arrays (and C-style strings, which

are arrays of characters) are zero-based, so 3 is the last mailbox in the name string.

-
€2 save and run it. This time you'll see:

OBSERVE:

Size is 4
Name is now Joe
Name is now Ste

We only see the first three characters of "Steve" because name is only big enough to contain four characters—"Ste"
plus the null character. Believe it or not, changing the size of C-style strings is not as straightforward as you might
expect. That topic will be covered in a future course.

Concatenation of C-Style Strings

In the lastlesson, we covered the length() function for C++-style strings. The function std::strlen() returns the length
of a C-style string. In other words, it returns the number of characters actually in the string, as opposed to sizeof(),
which returns the capacity.

The function to perform concatenation of C-style strings is std::strncat(). Unlike concatenation of C++ strings,
concatenation of C-style strings requires some planning to make sure you don't overflow any buffers. The function
takes three parameters:

OBSERVE:

std: :strncat (destination , source, size);

You must carefully calculate size in order to make sure you don'toverflow the destination. The easiest way to do
this is to always use the following code:

Concatenation Design Pattern

std::strncat (destination , source, sizeof(dest) - std::strlen(dest) -1);
destination[sizeof (destination)-1] = '\0';

The calculation for the size parameter for std::strncat() works like this:

Code Description

sizeof(destination) Start with the size of the destination string in characters.

- std::strlen(destination) | Subtract the number of characters already in the string.

-1 Subtract one more for the end-of-string ("\0') character.

Let's try an example! Edit c-string.cpp as shown:

Code to Edit: c-string.cpp

#include <cstring>
#include <iostream>

int main ()

{
char name[25]; // Short name with plenty of space

std::cout << "Size 1is " << sizeof (name) << std::endl;
std::strncpy(name, "Joe", sizeof (name));
std::cout << "Name is now " << name << std::endl;

std::strncat (name, " Smith", sizeof (name) - std::strlen(name) - 1);
name [sizeof (name)-1] = '\0"';

std::cout << "Name is now " << name << std::endl;

return (0);

0’ Save and run it, and observe the output:

OBSERVE:

Size is 25
Name is now Joe
Name is now Joe Smith

Success!

Comparing Strings

The C-style string comparison function is std::stremp(). It takes two parameters:

OBSERVE:

std::strcmp (stringl, string2)

Itreturns:

e 0 ifthe strings are equal

e Apositive value if the first character that does not match has a greater value in string1 than in string2
e A negative value if the first character that does not match has a greater value in string2 than in string1

Let's see how itworks. Create a compare-c project and assign itto your C++1_Lessons working set. Then, create a
program named compare-c.cpp as shown:

Code to Type: compare-c.cpp

#include <cstring>
#include <iostream>

int main ()

{

char strl[] = "Steve";
char str2[] = "Steven";
int result = std::strcmp(strl, str2);

std::cout << "Result is " << result << std::endl;
return (0);

-
U Save and run it, and observe the output:

OBSERVE:

Result is -1

You might be asking yourself why we can't use the == equality operator to check to see if two strings are the same.
Let's try itto see how it might work:

Code to Edit: compare-c.cpp

#include <cstring>
#include <iostream>

int main ()

{

char strl[] = "Steve";
char str2[] = "Steve";
if (strl == str2)

{
std::cout << "Same!" << std::endl;

std::cout << "Not the same!" << std::endl;

return (0);

o Save and run it, and observe the output:

OBSERVE:

Not the same!

Why is this? The two strings obviously have the same value.

Using our mailbox metaphor, the == equality operator checks to see if the two mailboxes are the same (like if they
have the same serial number)—it doesn't check their contents. This fails because the mailboxes are notthe same.

Tips
Converting C++ Strings to C-Style Strings

You can convert from C-style strings to C++ style strings, and vice versa. To geta C-style string from a C++-
style string, use the c_str() function. You can assign a C-style string to a C++-style string. Try it:

Code to Edit: c-string.cpp

#include <iostream>
int main ()

{

char name[] = "Sam"; // The name for this example
char other[] = "Joe"; // Rnother name
char c_style[4]; // New variable to hold C++ string

std::string cpp style;
cpp_style = name; // Assigning to a C++-style string

std::strncpy(c_style, cpp style.c str(), 4); // Copy C-string to a variabl

std::cout << "The name is " << name << " and other is " << other << std::en
dl;

std::cout << "cpp style as a C-style string is " << c_style << std::endl;

return (0) ;

In this example we:

1. Copied a C-style string to a C++ style string, using directassignment: cpp_style = name

2. Copied a C++ string to a C-style string, using ¢_str () and std: :strncpy

-
L)) Save and run it, and observe the output. To us, the results look the same:

OBSERVE:

The name is Sam and other is Joe
cpp_style as a C-style string is Sam

Unsafe String Functions

Many people don'tuse the string copy design pattern we provided, and thus buffer overflow problems occur in
many programs. Instead, they use the function std::strcpy(). The standard form of this function is:

Unsafe Use of strcpy()

// Unsafe. Do not use.
std::strcpy (destination, source) ;

Where destination is where the data will be copied into and source is the string to copy.

Paranoid programmers will ask themselves "What happens if the source is bigger that the destination?" The
strcpy() function does not check length and if the source is too big, it will happily write random memory,
corrupting your program.

-
©
o
Q
=
Q
>
e
o
5
o
=
O
«Q
=
Q
3
3
(]
-
@
s
Q
Q
—
c
=3
<
Q
«Q
o
]
Q
Ke]
[
o
é

In the style guide, we recommend that you not use the strcpy() function.

In the real world, you might encounter legacy code containing strcpy()—a lot of code still uses this function.
So, whatshould you do when you see it? Ideally, to make the program safe, replace all strcpy() functions
with strncpy(), but any time you change a program there is risk—for example, you may not make the change
correctly. If the code is working, even ifitis messy, the best thing to do is to leave it alone. Unless there is a
bug in the program that forces you to rewrite the code, leave working code alone.

There are two times you would wantto upgrade strcpy() to the C-string strncpy() design pattern. The firstis
if you are changing the code anyway. (Always leave code better than when you found it.) The second is when
you are trying to track down a memory corruption bug—in this case, the change might fix the bug.

Another unsafe function is std::strcat(). It performs much the same function as std::strcpy(), except that it
does concatenation instead of copying.

std::strcat (unsafe)

// Unsafe. Do not use.
std::strcat (destination, source) ;

This function adds the source string to the end of the destination with no regard for the size of the
destination.

The future of strcpy() and strcat()

People have done all sorts of things to getaround the limitations of strcpy() and strcat() for years.
Currently, the OpenBSD folks have devised new functions, stricpy() and stricat(), designed to overcome
the safety problems with strcpy() and strcat (), respectively. However, their effort has not made itinto the
standard yet.

For more information, see strlcopy in Wikipedia.

Comparisons to other types

C Strings vs. Arrays of Characters

http://www.cplusplus.com/reference/clibrary/cstring/strcpy/
style.html
http://www.cplusplus.com/reference/clibrary/cstring/strcat/
http://en.wikipedia.org/wiki/Strlcpy

C-style strings and arrays of characters are two different things. An array of characters is of fixed length and
contains no markers or other special characters. In other words, char name[50] contains 50 characters of
any type, no more or less.

Note In a character array, the null character ('\0') need not be present; it's just another character, with
' no special meaning.

A C-style string is built on the character array type. It states that you have an array of characters, with an end-
of-string marker ("\0') to end it. So, null (\0') cannot be part of the string.

So all C-style strings are arrays of characters, but all arrays of characters are not C-style strings. Let's try an
example. Edityour compare-c.cpp program as shown:

Code to Edit: compare-c.cpp

#include <cstring>
#include <iostream>

int main ()
{
char state[2] = {'C','A"'};

std::cout << "This probably looks funny: " << std::endl;
std::cout << state << std::endl;

std::cout << "This looks better: " << std::endl;
std::cout << state[0] << state[l] << std::endl;

return (0);

You mightlook at the state declaration and think itis an error, thatitshould be char state[3] in order to
reserve one character for the end of string.

But this is nota mistake. state is nota C-style string; it's a character array. It holds two characters. No more,
no less (there are no one-character state name abbreviations).

-
2 save and run it, and observe the output. Generally, you'll see something like:

OBSERVE:

This probably looks funny:
CA "

This looks better:

CA

When you use std::cout << state <<, C++ will assumes that state is a C-style string (it's not). It will then
look for the end-of-string marker (there is none) and write the state abbreviation followed by some random
garbage.

You mustwrite a character array one character ata time:

Writing a Character Array

std::cout << state[0] << state[l] << std::endl;

The bottom line: You can write outa C-style string using << but not a character array.

C-Style vs. C++ Style

There are advantages and disadvantages to using each type of string.

Im_- |C++ strings can store any length string automatically. You must explicitly declare the

oles maximum size of C-style strings.

The memory used by C-style strings is precisely controlled. They do notgrow or shrink
depending on what data you putinto them. C++ style strings manage their own memory.
They can grow and shrink. They can also use memory in surprising ways if you are not
careful.

Memory

Almostall of the operations you can use on C++ style strings are safe. Aimostall of the
Operations |operations you can use on C-style strings can be dangerous. You must be very careful about
safety so you do not cause any buffer overflows.

C-style strings are more efficient that C++ style strings. However, as a practical matter, most
Efficiency |[programs are not CPU limited so efficiency makes little difference in a program. Safety does,
and that's where C++ style strings win.

If you are interacting directly with an operating system like Windows or Linux, you will find that
(0K many of the lower-level operating system functions (raw read and others) use C-style
Interaction |strings as arguments. This means thatif you pass data from one part of the OS to another,
C-style strings are more efficient.

Have you had enough of strings yet? In our nextlesson we'll finally move on from output to input, and we'll startlearning how to
make decisions in our programs. See you there!

Kl

(]
Kl [+]

Copyright © 1998-2013 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Reading Data and if
C++ 1: Introduction to C++ Lesson 7

Reading Strings

In earlier lessons we used std::cout to output data to the console. If we want to read data in from the console, we can
use—surprisel—std::cin.

Let's look ata short program that demonstrates the use of std::cin. Create a project named reading, assign itto the
C++1_Lessons working set, then type a reading.cpp program in itas shown:

Code to Type: reading.cpp

#include <iostream>

int main() {
std::string name;
std::cout << "Enter your name: ";
std::cin >> name;

std::cout << "You typed " << name << std::endl;
return (0);

L) Save and run it. Enter a first name, a space, and a last name (separated by a space) and press Enter. You see
something like:

OBSERVE:

Enter your name: Jimi Hendrix
You typed Jimi

The program only reads the first name. You probably know "Jimi" by his first name, but that won't work for everyone!

Butall is notlost! The solution is to use the standard function std::getline. The general form of this function is:

getline syntax

std::getline(input-stream , string);

The input-stream is the source of the data—in our case, it's std::cin. Change your reading program as shown:

Code to Edit: reading.cpp

#include <iostream>

int main() {
std::string name;
std::cout << "Enter your name: ";
std::getline(std::cin, name);

std::cout << "You typed " << name << std::endl;
return (0);

2 save and run itagain. Enter the first and last name and press Enter. This time the resultis much better:

http://www.cplusplus.com/reference/string/getline/

OBSERVE:

Enter your name: Jimi Hendrix
You typed Jimi Hendrix

std::getline reads a full line up to and including the end-of-line character. The result (minus the end ofline) is stored
in the string.

Reading Integers

std::cin and the >> operator work for all sorts of variables, including integers. Edit your reading program as shown:

reading.cpp

#include <iostream>

int main() {
int value = 0; // a value to double
std::cout << "Enter a value: ";

std::cin >> value;
std::cout << "Twice " << value << " is " << value * 2 << std::endl;
return (0);

o Save and run it, then click in the console window, type 123 and press Enter. You will see:

OBSERVE:

Enter a value: 123
Twice 123 is 246

Let's look at this code more closely.

Observe: reading.cpp

#include <iostream>

int main () {
int value = 0; // a value to double

std::cout << "Enter a value: ";

std::cin >> value;

std::cout << "Twice " << value << " is " << value * 2 << std::endl;
return (0);

Back in the firstlesson, we learned that the << operator means to "put whatever's on the rightinto whatever's on the
left." Since we are using std:cin and want to get data from the console, we use >> to go the other direction and "get
whatever's on the right from whatever's on the left." In our case, we getdata from std::cin and putitin the variable
named value.

Also, look atthe line std::cout << "Enter a value: ";. Notice thatthere's no std::endl at the end. We omitted this
deliberately to make this outputline a prompt.

In real-world programming, paranoia is partof the job. So one question you need to ask at this pointis "What happens
if | type something thatisn'ta number?" Let's try itt Run your program again, enter "Jimi Hendrix," and press Enter.

This time you'll see the following:

OBSERVE:

Enter a value: Jimi Hendrix
Twice 0 is 0

When you try to assign an inappropriate type of data to the value variable, it doesn't change.

if Statements

Now that we can read data, we are going to create a program that reads a number and tells you ifit's even. Create a
project named if, assign itto your C++1_Lessons working set. In that project, create a program named if.cpp as
shown:

Code to Type: if.cpp

/*
* if Show the use of the if statement
*
* In this case the program will tell you if a number
* is even or odd.
*
* Usage:
* Run the program.
* Type in a number when prompted.
* Get the answer.
*
*

/

#include <iostream>

int main ()
{

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if ((number % 2) == 0)
{

std::cout << number << " is even" << std::endl;
}

return (0) ;

-
£2 save and run the program. Enter an even number like 8. You will see the following output:

OBSERVE:

Enter a number: 8
8 is even

If you enter an odd number like 7, you won't see any output at all.

How does the if statementwork? The key line is:

if Statementin Use

if ((number % 2) == 0)

This says to C++, "compute the value of the expression number % 2." The % is the modulus operator—it calculates
the remainder after division. If the value is equal to (==) zero, the program executes the statements in the following
block (enclosed in curly braces {}).

if statements have the following structure:

OBSERVE:

if (conditional test)
{
Code to execute when conditional test is true.
}
else
{
Code to execute when conditional test is false. You do not need to have an

}

"alse."

There are other comparison operators you can use (in if statements and elsewhere):

==|Equal to

I= |Notequal to

> | Greater than

< |Less than

>=| Greater than or equal to

<=|Less than orequal to

Let's try a different comparison. Change your program as shown:

Code to Edit: if.cpp

#include <iostream>

int main ()
{

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if (number >= 100)
{
std::cout << number << " is big!" << std::endl;
}
else
{
std::cout << number << " is not so big." << std::endl;
}

return (0) ;

In this program, we changed our conditional test slightly and added an "else" clause.

-
€2 save and run it. Enter 250; you will see:

OBSERVE:

Enter a number: 250
250 is big!

If you enter a smaller number, like -250, you'll see the other message instead:

OBSERVE:

Enter a number: -250
-250 is not so big.

if Abuse

Equality or Assignment?

In our firstexample of the if statement, we used the == equality operator to see ifa number was even or not.
What would happen if you used a single = instead? Try it:

Code to Edit: if.cpp

#include <iostream>

int main ()
{

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if (number = 100)
{
std::cout << number << " is one hundred!" << std::endl;
}
else
{
std::cout << number << " is not one hundred." << std::endl;

}

return (0) ;

-
L} Save and run it, and enter 25. You'll see:

OBSERVE:

Enter a number: 25
100 is big!

Try it with other numbers: -0, -25, 150. No matter what you type, the computer thinks you entered 100!

This is because we didn't use the equality operator—instead, we changed the value of number. In other
words, this line:

OBSERVE:

if (number = 100)

was essentially interpreted as:

OBSERVE:

number = 100;
if (number != 0) {

This sortoferror can be tricky to spot. An easy way to avoid this issue is to always place constants on the left
side of the comparison. Change your code to the following:

Code to Edit: if.cpp

#include <iostream>

int main ()
{

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if (100 = number)
{
std::cout << number << " is one hundred!" << std::endl;
}
else
{

std::cout << number << " is not one hundred." << std::endl;

return(0) ;

=l save your program. See how there is a new error:

[non-kvalue in assignment hurdaer
{

std: jcout << numwbe

This error indicates you are trying to change the value of"100" to whatever is stored in number, but"100"
isn'ta variable, so you cannotdo thatsortofassignment.

Fix the error by using the == equality operator:

Code to Edit: if.cpp

#include <iostream>
int main ()
{

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if (100 == number)
{

std::cout << number << " is one hundred!" << std::endl;

std::cout << number << " is not one hundred." << std::endl;

return (0) ;

Blocks

C++ allows you to write if statements in a compact way. Change your program as shown:

Code to Edit: if.cpp

#include <iostream>
int main ()
{

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if (100 == number)

{
std::cout << number << " is one hundred!" << std::endl;
_}.
else
{
std::cout << number << " is not one hundred." << std::endl;
_}.
return (0) ;

Q Save and run your program a few times with different numbers. You will see this program works just like
the prior version. The if statement does notrequire you to use braces {}—it executes the statement

im

Th

mediately following the if or else.

OBSERVE:

if (conditional test)

Code to execute when conditional test is true.
else

(Optional) Code to execute when conditional test is false. You do not need t
o have an "else."

is can be very problematic, though. Change your program as shown (including spaces):

Code to Edit: if.cpp

#include <iostream>

int main ()

{

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if (50 <= number) // if #1
if (100 == number) // if #2
std::cout << number << " is one hundred!" << std::endl;
else // else #1
std::cout << number << " is not so big." << std::endl;
else // else #2
std::cout << number << " is ??? " << std::endl;

return (0) ;

Confused? You should be! Without braces (and proper indentation), itis very hard to figure out what exactly
will happen in this program. Which else goes with which if ? Possible answers include:

o if#1goes with else #1
o if#2 goes with else #1

if #1 goes with else #2

If you don't write code like this, you won't have to worry about silly questions like this.

The correct answer is number 4!

You need to know this so you can debug other people's code. People who value compact code over
readability, understandability, and safety. However, since we find readability, understandability, and safety
valuable and we write good code, we will never write code like this.

Note

Some people tell you to always use {} for the statements affected by an if. The Perl/ language
requires it. We considered this, but decided that, for the most part, letting the programmer decide

whether {} or a single statementis clearer.

Conditional Shortcuts

If statements also let you take shortcuts in the conditional test. In the C++ world, 0 is false, and anything
else is true. With this in mind, people have devised shortcuts, such as the following:

Code to Edit: if.cpp

{

#include <iostream>

int main ()

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if (' number)

{

std::cout << number << " 1is zero!" << std::endl;

}

else

{

std::cout << number << " is not zero." << std::endl;

}

return (0) ;

The !is the logical negation operator—it adds a "not" to the condition. The conditional statementin this

program mightread like "if not number"—which is pretty confusing.

-
{4 save and run the program. Enter O (zero); you'll see this:

OBSERVE:

Enter a number: 0
0 is =zero.

If you enter a non-zero number (even -25), you'll see the following:

OBSERVE:

Enter a number: -25
-25 is not zero.

This code is notgood because itisn't clear exactly whatis going on. Instead, be explicit with your if

statements. Change your program as shown:

Code to Type: if.cpp

#include <iostream>

int main ()
{

int number; // A number we are going to check

std::cout << "Enter a number: ";
std::cin >> number;

if (0 !'= number)
{
std::cout << number << " is not zero." << std::endl;
}
else
{

std::cout << number << " is zero." << std::endl;

}

return (0) ;

This program is clearer—the condition reads "if number is not equal to zero." Much better!

You made it! In the nextlesson we will shift gears and discuss some shortcuts thatare common in C++ programs. See you
then!

[4

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Shortcuts
C++ 1: Introduction to C++ Lesson 8

There are many different ways to accomplish the same task in C++. Some code patterns occur very often, so the developers of
C and C++ have included shortcuts that can make code shorter and easier to understand.

Operators

Consider the following operation:

Incrementing a Variable's Value

This code pattern occurs frequently in C++ (and other languages), so the makers of C++ added a shortcut operator to
the language:

Incrementing with a Shortcut

x += 5;

Other shortcut operators are:

Longhand |Shortcut

a=a-b; a-=b;

a=a*b; a*=b;
a=alb; al=b;

a=a%b; |a%=b;

a=a+1, |at++

a=a-1; a--;

Let's experiment with some shortcut operators. Start a new project named shortcut, and assign itto your
C++_Lessons working set. In the new project, create a source file named shortcut.cpp.

Code to Type: shortcut.cpp

#include <iostream>
int main() {
int x = 0; // to play

std::cout << "x is " << x << std::endl;

x += 5;
std::cout << "x is " << x << std::endl;
X++;

std::cout << "x is " << x << std::endl;

return (0) ;

L) Save and run your program. You'll see the value of x change:

OBSERVE:

X is O
X is 5
X 1s 6

One ofthe mostcommon uses ofthese shortcuts is in for loops. Let's take alook:

Code to Edit: shortcut.cpp

#include <iostream>
int main () {
int x = 0; // to play
for (x = 0 ; x < 25; xt+)
{ std::cout << "x is " << x << std::endl;

}

return(0) ;

'U Save and runit. You'll see:

OBSERVE:

is
is
is
is
is
is
is
is
is
is 9

is 10
is 11
is 12
is 13
is 14
is 15
is 16
is 17
is 18
is 19
is 20
is 21
is 22
is 23
is 24

O J oy Ul b WP O

KX X X X X X X X X XK X X X X XM X X X X X X X X X

We can use += to have our loop skip by five instead:

Code to Edit: shortcut.cpp

#include <iostream>
int main() {
int x = 0; // to play
for (x =0 ; x < 25; x += 5)
{ std::cout << "x is " << x << std::endl;

}

return (0) ;

W Save and run it. See the difference:

OBSERVE:

is 0
is 5
is 10
is 15
is 20

XX X X X

For Loops
Itturns outthe forloop has a few more ftricks. Suppose we wanted to write a program to add several numbers, but no
more than ten. We don't want to include any negative numbers, and if we encounter a zero, we will know our listis
done.

We can make this happen with two shortcuts: continue and break. Clear your program and type the following:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
int total; // Total so far
int count; // Count of the numbers

int number; // A number to read
total = 0;

for (count = 0; count < 10; ++count)
{
std::cout << "Enter a number: ";
std::cin >> number;

// Skip all negative numbers

if (number < 0) {
std::cout << "Negative numbers don't count." << std::endl;
continue;

if (number == 0) {
std::cout << "I guess you want to end the list" << std::endl;
break;

total += number;
std::cout << "The new total is " << total << std::endl;

std::cout << "The grand total is " << total << std::endl;
return(0) ;

-
L) Save and run it. Enter a few positive numbers, a negative number, and finally a zero. You'll see something like this:

OBSERVE:

Enter a number: 1

The new total is 1

Enter a number: 1

The new total is 2

Enter a number: 1

The new total is 3

Enter a number: 1

The new total is 4

Enter a number: 1

The new total is 5

Enter a number: -5

Negative numbers don't count.
Enter a number: 9

The new total is 14

Enter a number: 0

I guess you want to end the list
The grand total is 14

When the program encounters a negative number, it outputs a message and then runs continue. This skips the rest
ofthe forloop, and goes on to the next number.

When you enter a zero, the program outputs a message and then runs break, which completely exits the forloop and
outputs the grand total.

Instead of using continue and break, you could have accomplished similar results by using if statements and
perhaps another variable, but continue and break make the loop much easier to understand.

Suppose you want to allow users to enter as many numbers as they want—and only quit the program when they enter

a zero. You can change your for loop to accomplish this as well:

Code to Edit: shortcut.cpp

#include <iostream>

int main () {
int total; // Total so far
int count; // Count of the numbers

int number; // A number to read
total = 0;

for (;7)

{
std::cout << "Enter a number: ";
std::cin >> number;

// Skip all negative numbers

if (number < 0) {
std::cout << "Negative numbers don't count." << std::endl;
continue;

}

if (number == 0) {
std::cout << "I guess you want to end the list" << std::endl;
break;

total += number;
std::cout << "The new total is " << total << std::endl;

std::cout << "The grand total is " << total << std::endl;
return (0) ;

G Save and run it. It will continue until you enter a zero.

Earlier, we discussed the sections ofa forloop:

OBSERVE:

for (/* Initialization */ ; /* Test */ ; /* Increment */)
{
/* body of loop */

The initialization, test, and increment sections are all optional. Only the semicolons (;) are required.

A
<
<
—
=
(2]
Q
Q
=
o
=
[
QO
—
(¢}
Q
>
s
=h
=)
=
(¢}
o
o
©
=
<
o
c
Q.
o
o
—_
>
Q0
<
()
QO
S
Q
©
©
=
o
©
=.
QO
—
[0}
(=2
=
(]
Q
x
s
<
o
c
=
Q
o
Q.
o

For Loop Misuse

The goal of programming is to be as clear and correct as possible. However, some people thinkit's to use as
few characters as possible. | hope you never have to debug their code.

One of the tricks they have is to putthe comma (,) operatorinto a for statement.

Coding Horror

for (twos = 0, threes = 0; twos < 100; twos +=2, threes += 3)

The comma (,) operator can be used to string two C++ statements together and have the compiler treat them
as one. Do not use it! All itreally does is make iteasy to write bad code. In this case, we have two initialization
statements:twos = 0 and threes = 0. Because of the comma operator, C++ does notobject to them both
being inside a for initialization.

The same holds true for the increment section. Two statements have been stuffed into a place where only one
should go.

What this loop is supposed to do is to count up two variables, twos by 2 and threes by 3, allin one loop.

Whatitreally does is to cause good programmers to curse the people who think they are being clever by
writing such code.

Side Effects

A side effectis an effect that occurs in addition to the main effect of a statement. C++ allows you to use the ++ and --
operators inside other expressions. Let's take a look. Clear your program and enter the following:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
int total size; // Total so far
int current size; // Count of the numbers

total size = 5;

current size -3;

current size ++total size;

std::cout << "current size: " << current size << std::endl;
std::cout << "total size: " << total size << std::endl;

return (0) ;

Do you know what the program will do?

-
£2 save and run it. The results may surprise you:

OBSERVE:

current size: 6
total size: 6

This is bad code! The line current_size = ++total_size; does two things (in this order):

1. Increments total_size.

2. Assigns the value of total_size to current_size.

This is bad programming style because it makes the code harder to read. Two short operations are much easier to
maintain and understand than one complex one.

There is another problem with side effects. Change your program as shown:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
int total size; // Total so far
int current size; // Count of the numbers

total size = 0;

current size = 1;

total size = (++current size * 5) + (++current size * 3);
std::cout << "current size: " << current size << std::endl;
std::cout << "total size: " << total size << std::endl;

return(0) ;

-
£2 save and run it. Once again, the output may surprise you:

OBSERVE:

current size: 3
total size: 19

The code total size = (++current size * 5) + (++current size * 3) tells C++to:

1. Increment current_size and multiply the resultby 5
2. Increment current_size and multiply the resultby 3
3. Add the results from steps 1 and 2 together.

There is no rule that tells C++ which step (step 1 or step 2) to execute first. Depending on the compiler, the execution
order could:

1. Increment the FIRST current_size from 1to 2 and multiply the resultby 5 and get 10.
2. Incrementthe SECOND current_size and multiply the result by 3 and get9.
3. Add the results from steps 1and 2 together and get 19.

Or, it could:
1. Increment the SECOND current_size from 1to 2 and multiply the resultby 3 and get6.

2. Increment the FIRST current_size from 2 to 3 and multiply the result by 5and get 15.
3. Add the results from steps 1and 2 together and get 21.

So, which resultis right? They both are!l The C++ standard allows for this ambiguity. That's one of the reasons the style
guide prohibits this type of coding. We want to make the code safer and more reliable.

You should never use the increment (++) and decrement (--) operators inside another expression, especially an
assignment statement. But some people do, so it's importantto know how they work.

The prefix increment (++x) operator increments the variable and returns the result after incrementing.
The posffix increment (x++) operator increments the variable and returns the result before incrementing.

The mnemonic luse is thatif you see the ++ first, then C++ increments first, then returns the value. If you see the value
first, C++ returns the value first, then increments it.

Now let's rewrite our program, so itdoes one thing at a time, with no side effects.

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
int total size; // Total so far
int current size; // Count of the numbers

int first_term; // for first term
int second_term; // for second term

total size = 0;

current size 1;

current size += 1;
first term = current size * 5;

current size += 1;
second term = current size * 3;

total size = first term + second term;

std::cout << "current size: " << current size << std::endl;
std::cout << "total size: " << total size << std::endl;
return (0) ;

This program is a little longer than the last, butitis very clear whatis happening.

0 Save and runit. You'll see:

OBSERVE:

current size: 3
total size: 19

We covered a lotin this lesson! In the next we will examine another loop we can use in our programs: while loops. See you
then!

[4]

(]
Kl [+]

Copyright © 1998-2013 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

While Loops
C++ 1: Introduction to C++ Lesson 9

while, break, and continue

Welcome back! In the previous lessons we have used for loops to do some repetitive work. In this lesson, we'll learn
about while loops—another way to do repetitive work.

The basic form of the while loop is:

while Syntax

while (condition)
{
statement;

}

In the lastlesson, we used an "empty" for loop thatwould let us input as many numbers as we wanted, and give us the
grand total after we entered a zero. We can do the same thing using a while loop instead. Start a new project named

while, and assign itto the C++1_Lessons working set. In the new project, create a new file named while.cpp as
shown:

Code to Type: while.cpp

#include <iostream>

int main() {
int total; // Total so far
int number; // A number to read
total = 0;

while(true)

{
std::cout << "Enter a number: ";
std::cin >> number;

// Skip all negative numbers
if (number < 0) {

std::cout << "Negative numbers don't count." << std::endl;
continue;

}

if (number == 0) {

std::cout << "I guess you want to end the list" << std::endl;
break;

}

total += number;
std::cout << "The new total is " << total << std::endl;

}

std::cout << "The grand total is " << total << std::endl;
return (0) ;

-
§2 save and run your program. You'll soon notice it runs exactly the same as the forloop we used before—right down
to the continue and break statements.

Suppose we wantour program to run until we enter a zero OR our grand total is greater than 50. We can alter the
condition in ourloop to accomplish this:

Code to Edit: while.cpp

#include <iostream>

int main() {
int total; // Total so far
int number; // A number to read
total = 0;

while(total <= 50)

{
std::cout << "Enter a number: ";
std::cin >> number;

// Skip all negative numbers

if (number < 0) {
std::cout << "Negative numbers don't count." << std::endl;
continue;

}

if (number == 0) {
std::cout << "I guess you want to end the list" << std::endl;
break;

total += number;
std::cout << "The new total is " << total << std::endl;

std::cout << "The grand total is " << total << std::endl;
return (0) ;

'i} Save and run it. Enter the numbers 5, 10, 15, 20, and 1—you should see your program stop:

OBSERVE:

Enter a number: 5
The new total is 5
Enter a number: 10
The new total is 15
Enter a number: 15
The new total is 30
Enter a number: 20
The new total is 50
Enter a number: 1
The new total is 51
The grand total is 50

Fibonacci numbers

The Fibonacci numbers are numbers in a sequence starting with "0 1," where each subsequent number is the sum of
the previous two:

Fibonacci Number Calculations
0+1=1
1 +1=2
1 +2 =3
2 +3 =5
3 +5 =28
5+ 8 = 13... and so on.

http://en.wikipedia.org/wiki/Fibonacci_number

Thus, the first Fibonacci numbers are 0,1, 1,2, 3,5, 8, and 13. (Yes, 1is in there twice.)

We can use a while loop to calculate the sequence of Fibonacci numbers less than 100. Create a new project named
fib and assignitto your C++1_Lessons working set, and in that project, create a source file named fib.cpp as
shown:

Code to Type: fib.cpp

#include <iostream>

int main ()

{
int old number; // previous Fibonacci number
int current number; // current Fibonacci number
int next number; // next number in the series

// start things out
old number = 0;
current number = 1;

std::cout << "0 "; // Output first number

while (current number < 100) {
std::cout << current number << ' ';
next number = current number + old number;
old number = current number;
current number = next number;
}
std::cout << std::endl;

return (0);

o Save and run it. You should see the Fibonacci sequence:

OBSERVE:

01123581321 34 55 89

How did we do that? Let's look atthe program more closely.

fib.cpp

#include <iostream>

int main ()

{
int old number = 0; // previous Fibonacci number
int current number = 1; // current Fibonacci number
int next number; // next number in the series

std::cout << old number; // Output first number

while (current number < 100) {
std: :cout << current number << ' ';
next number = current number + old number;
old number = current number;
current number = next number;
}
std: :cout << std::endl;

return (0);

From the formula for Fibonacci numbers, we know the starting values and that the next number is the sum of the

previous ("old") and current numbers, so we created variables for the old_number (setto 0), the current_number
(setto 1), and next_number (which we'll setin our loop).

The first Fibonacci number is 0—the initial value of old_number—so we'll just output it before we start the loop. (But
rather than print"0", we'll use the variable, so if we ever antto change it, we only need to change itin one place in the
program.)

We want to continue looping while the number is less than 100, so we can add a while loop to our program.

Inside the while loop, we display the current number, then add the old and current numbers to get the value
of the next number.

Now, to move the sequence along, we shift the values: move the current_number value to old_number and
the next_number value to current_number before the next calculation.

Finally, we do a little housekeeping. Our program outputs everything on a single line, so we add an end-of-line
character after the loop finishes.

Excellent! To get a better idea how Fibonacci numbers, and while loops work, let's add some cout statements. Add
the colorized code:

Code to Edit: fib.cpp

#include <iostream>
#include <iomanip>

int main ()

{

int old number = 0; // previous Fibonacci number
int current number = 1; // current Fibonacci number

int next number; // next number in the series
int iteration count = 1;

std::cout << "Iteration old current next <100?" << std::endl;
while (current number < 100) {

std::cout << std::setw(2) << iteration count;
std::cout << std::setw(l2) << old number;
std::cout << std::setw(9) << current number;

next number = current number + old number;
old number = current number;
current number = next number;

std::cout << std::setw(5) << next number;
if (current number < 100)
{
std::cout << " T";
}
else
{
std::cout << " F";

}
std::cout << std::endl;

iteration count = iteration count + 1;
}
std::cout << std::endl;

return (0);

We included iomanip—specifically the std::setw() function—to help format our output. This function sets the padded
width of the nextitem in the cout chain. For example, the following code ensures thatiteration_code is outputas
exactly two characters:

OBSERVE:

std::cout << std::setw(2) << iteration count;

€2 save and run it. This time, you'll see a beautifully formatted table:

OBSERVE:

Iteration old current next <1002
1 0 1 1 T
2 1 1 2 T
3 1 2 3 T
4 2 3 5 T
5 3 5 8 T
6 5 8 13 T
7 8 13 21 T
8 13 21 34 T
9 21 34 55 T

10 34 55 89 T

11 55 89 144 F

The output shows how variables are saved for the next trip around the while loop. By the tenth iteration we have the first
Fibonacci number (stored in current_number) thatis greater than or equal to 100, so the program stops.

You've added some extremely helpful tools to your C++ tool kit! In the nextlesson, we'll discuss the scope of our variables. See
you then!

Copyright © 1998-2013 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Scope
C++ 1: Introduction to C++ Lesson 10

What is Scope?

Up to this point, we've used very basic variable declarations. We've declared variables atthe top of our programs and
used them throughout the entire program. In other words, all variables existed through the entire program.

In this lesson, we'll see how to create variables that existfor only a portion of the program.

We'll start with a short program. Create a project named var-exp and assign itto your C++1_Lessons working set. In
this new project, create a program named var-exp.cpp as shown:

Code to Type: var-exp.cpp

#include <iostream>

int main ()

{
std::string state = "Texas";
std::cout << "State is " << state << std::endl;
return (0);

V] Save and run this program. As you might expect, you will see the following output:

OBSERVE:

State is Texas

Now, edit the program as shown:

#include <iostream> int main() { std::string state = "Texas"; std::cout << "State is " << state << std::endl; return (0); }

Code to Edit: var-exp.cpp

#include <iostream>

int main ()
{
std::string state = "Texas";
std::cout << "State #1 is " << state << std::endl;
{
std::string city = "Austin";
std::cout << "City is " << city << std::endl;
}

return (0);

-
2 Save and runit. You'll see:

OBSERVE:

State #1 is Texas
City is Austin

Edit the program again as shown:

Code to Edit: var-exp.cpp

#include <iostream>

int main ()
{
std::string state = "Texas";
std::cout << "State #1 1s " << state << std::endl;
{
std::string city = "Austin";
std::cout << "City is " << city << std::endl;
}
std::cout << "City #2 is " << city << std::endl;
return (0);

=1 Save your program; this time you'll notice an error:

r[hgl *yar-gxp.Cpp i
I#finclude <iocstresoo:
2
Fint maini)
i
5 std::string state = "Texas"™:
=] gtd:joout << "State #1 i=s " << state << std::endl;
7 {
3 std::string city = "hustin®:
=] std::cout << "oity is " << ity << std:iendl;
0 B
€411 [Multiple markers at this line oo pity < atd:iendl:
= - “ity' was not decared in this scope
. - unused variable 'city
14

The compiler is telling us that city isn't defined—but we did define it... didn't we?

Not quite. The variable city has a local scope. Scope is the portion of a program in which the variable is known. city
only exists within the curly brace ({}) block enclosing it—not outside ofit.

Compare this to the state variable. Italso has a local scope, butits enclosing braces include the entire program.

Is the state variable accessible from the middle of our program? Let's see. Change your program:

}

Code to Edit: var-exp.cpp

#include <iostream>

int main ()
{
std::string state = "Texas";
std::cout << "State #1 is " << state << std::endl;
{
std::string city = "Austin";
std::cout << "City is " << city << std::endl;
std::cout << "State #2 is " << state << std::endl;
}
teh—cotrt e tr—H2— vy th—sendt

return (0);

2 Save and runit. You'll see:

OBSERVE:

State #1 is Texas
City is Austin
State #2 is Texas

Though we added a block in braces and a local variable to our list of variables, state is still within the scope of the
program.

Now, let's see if we can access state AFTER the block in braces. Change your program:

Code to Edit: var-exp.cpp

#include <iostream>

int main ()
{
std::string state = "Texas";
std::cout << "State #1 is " << state << std::endl;
{
std::string city = "Austin";
std::cout << "City is " << city << std::endl;
std::cout << "State #2 is " << state << std::endl;
}
std::cout << "State #3 is " << state << std::endl;
return (0);

2 Save and runit. You'll see:

OBSERVE:

State #1 is Texas
City is Austin

State #2 is Texas
State #3 is Texas

Global Variables

Like their geographical counterparts, you're in the state when you're in the city, but you're not (necessarily) in
the city when you're in the state.

In our example, the state variable is actually a local variable. It exists only inside the curly braces that
enclose it (butit's still available within other braces nested in those braces). Right now that happens to be our
entire program, but we will deal with more complex programs in the next few lessons.

A variable that exists outside of main() and in fact exists everywhere is called a global variable. std::cout,
for example, is a global variable. It exists before main() starts and after it ends.

Let's declare our own global variable named country. Edit your program as shown:

Code to Edit: var-exp.cpp

#include <iostream>

std::string country = "USA"; // A global variable

int main ()
{
std::string state = "Texas";
std::cout << "State #1 is " << state << std::endl;
std::cout << "Country #1 is " << country << std::endl;
{
std::string city = "Austin";
std::cout << "City is " << city << std::endl;
std::cout << "State #2 is " << state << std::endl;
std::cout << "Country #2 is " << country << std::endl;
}
std::cout << "State #3 is " << state << std::endl;
std::cout << "Country #3 is " << country << std::endl;
return (0);

-
L)) Save and runit. You'll see:

OBSERVE:

State #1 is Texas
Country #1 is USA
City is Austin

State #2 is Texas
Country #2 is USA
State #3 1s Texas
Country #3 is USA

In the city, you can "see" the state and the country. In the state, you can "see" the country but not the city. In the

country, you can't see the state or city. It's an imperfect anaology, butit's okay for the purpose of illustration,
right?

Storage Class

The storage class of a variable can be permanent or temporary. The local variables we've defined are
temporary. They are created when they are declared and disappear when their enclosing block ends.

Global variables are permanent. They are created (and initialized) when the program starts, and are not
destroyed until the program ends.

Let's create a quick program to take a look at this situation. Create a project named var-types and assign it
to the C++1_Lessons working set. In the new project, create a program named var-types.cpp as shown:

Code to Type: var-types.cpp

#include <iostream>
int global = 1; // Global variable to play around with

int main ()
{
int loop; // A loop counter

for (loop = 0; loop < 3; ++loop) {
int temp = 1; // A local variable to play around with

std::cout << "global is " << global << std::endl;
std::cout << "temp is " << temp << std::endl;
++global;
++temp;
// Almost useless comment

}

return (0);

-
€2 save and run itand observe the output:

Output of var-types

global is 1
temp is 1
global is 2
temp is 1
global is 3
temp is 1

The value of temp never changes—but why? The answer: scope. Let's take a closer look at the life cycle of
temp.

var-types.cpp

#include <iostream>
int global = 1; // Global variable to play around with

int main ()
{
int loop; // A loop counter

for (loop = 0; loop < 3; ++loop) {
int temp = 1; // A local variable to play around with

std::cout << "global is " << global << std::endl;
std::cout << "temp is " << temp << std::endl;
++global;
++temp;
// Almost useless comment

}

return (0);

The variable is created by the line int temp = 1;. Itthen is incremented by the line ++temp, so its value is 2.

Itthen is destroyed just after the line // Aimo st useless comment, so itnow has no value because it
doesn'texist. The for loop starts another loop. The variable is born again with the line int temp = 1;.

It's importantto remember thatthe scope oftemp is local and the storage class is temporary.

We can make a local variable permanent by putting the keyword static in front of it. Edit your program as
shown:

Code to Edit: var-types.cpp

#include <iostream>
int global = 1; // Global variable to play around with

int main ()

{
int loop; // A loop counter

for (loop = 0; loop < 3; ++loop) {
int temp = 1; // A local variable to play around with
static int perm = 1; // A local, permanent variable to play with

std::cout << "global is " << global << std::endl;
std::cout << "temp is " << temp << std::endl;
std::cout << "perm is " << perm << std::endl;
++global;
++temp;
++perm;
// Almost useless comment

}

return (0);

L} Now, save and run itagain and observe the output:

Output of var-types

global is 1
temp is 1
perm is 1
global is 2
temp is 1
perm is 2
global is 3
temp is 1
perm is 3

The storage class of perm is permanent. Itis created and initialized when the program is created, and that
means thatitis initialized once. Every time through the loop itis incremented by one, unlike temp, which is

re-initialized every time through the loop.

On the other hand, the variable perm always stays around.

E The static keyword is the mostoverloaded keyword in C++. It has many different meanings,
' Note depending on where you use it. For local variables, it changes the storage class to permanent.

We will examine its other uses as they arise.

for Loop Scope

In general, the scope of a local variable is restricted to the block ({}) in which itresides. The for statementis

special in that you can declare the loop variable rightinside the for itself.

Edit var-types.cpp as shown:

Code to Edit: var-types.cpp

#include <iostream>
int global = 1; // Global variable to play around with

int main ()

{

N

iiit l UtJ, l UtJ \AiAtCL
for (int loop = 0; loop < 3; ++loop) {
int temp = 1; // A local variable to play around with
static int perm = 1; // A local, permanent variable to play with

std::cout << "loop is " << loop << std::endl;
std::cout << "global is " << global << std::endl;
std::cout << "temp is " << temp << std::endl;
std::cout << "perm is " << perm << std::endl;
++global;
++temp;
++perm;
// Almost useless comment

}

return (0);

Q’ Save and runit. You'll see:

OBSERVE:

loop is O
global is 1
temp is 1
perm is 1
loop is 1
global is 2
temp is 1
perm is 2
loop is 2
global is 3
temp is 1
perm is 3

In this case, the loop variable has a scope of the entire body ofthe forloop.

Hidden Variables

Now we'll discuss hidden variables. First let's see them in action. Create a program called hidden.cpp and
type in the program below.

Code to Type: hidden.cpp

/*
* hidden -- A very good demonstration of what not to do.
* More of a puzzle than a useful program.

*/

#include <iostream>

int main ()

{
int a var = 2;
int b var = 5;

std::cout << "a var #1 is " << a var << std::endl;
std::cout << "b var #1 is " << b var << std::endl << std::endl;
{

int a var = 3;

std::cout << "a var #2 is " << a var << std::endl;
std::cout << "b var #2 is " << b var << std::endl << std::endl;

}
std::cout << "a var #3 is " << a _var << std::endl;

std::cout << "b var #3 is " << b var << std::endl;

return (0);

ﬁ Save and runit. You'll see:

OBSERVE:

a var #1 is 2
b var #1 is 5

a var #2 is 3
b var #2 is 5

a var #3 is 2
b var #3 is 5

Itlooks like a_var switched values in the middle of the program to 3 and then back to 2. But did it?

Not quite. So what's happening? Let's start by looking atthe scope of b_var since we haven't played any
games with it.

Scope ofb_var

int main ()

{
int a var = 2;
int b var 5p

std::cout << "a var #1 is " << a_var << std::endl;
std: :cout << "b_var #1l is " << b var << std::endl << std::endl;

{

int a_var = 3;

std::cout << "a var #2 is " << a_var << std::endl;

std::cout << "b var #2 is " << b var << std::endl << std::endl;
}

std: :cout << "a_var #3 is " << a var << std::endl;
std: :cout << "b_var #3 is " << b var << std::endl;

return (0);

b_var's scope includes all of the code shown in green. Now we'll show the scope ofint a_var = 3;—we
need to say int a_var = 3; to identify the variable instead of a_var, because there are two a_var variables.
This confusion should provide a clue as to why hidden variables are a bad thing.

Here's the scope ofint a_var = 3;:

Scope ofa_var(3)

int main ()

{
int a var = 2;
int b var = 5;

std::cout << "a var #1 is " << a var << std::endl;
std::cout << "b var #1 is " << b var << std::endl << std::endl;
{
int a_var = 3;
std::cout << "a var #2 is " << a _var << std::endl;
std::cout << "b var #2 is " << b_var << std::endl << std::endl;

}
std::cout << "a var #3 is " << a var << std::endl;

std::cout << "b var #3 is " << b var << std::endl;

return (0);

Now let's add int a_var = 2 to the mix:

Scope ofa_var(2) and a_var(3)

int main ()

{
int a var = 2;
int b var = 5;

std: :cout << "a_var #1 is " << a var << std::endl;
std: :cout << "b_var #1 is " << b var << std::endl << std::endl;
{
int a_var = 3;
std: :cout << "a_var #2 is " << a_var << std::endl;
std: :cout << "b_var #2 is " << b var << std::endl << std::endl;

}
std: :cout << "a_var #3 is " << a var << std::endl;

std: :cout << "b_var #3 is " << b var << std::endl;

return (0);

Because a_var(3) has the innermost scope where itis defined, it hides a_var(2) in the middle of the program.
Thus, the scope for a_var(2) has a hole in it.

In other words, the declaration of a_var(3) hides a_var(2) in the dark red area.

Avoid using hidden variables whenever possible. That's because if you say something like "And here | print
the value of a_var," someone has to ask you, "Which a_var?" There's enough confusion in the programing
world now without us adding more!

You made it! In the nextlesson we will put scope to work with functions. Stay tuned!

[+]
Kl D

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Functions
C++ 1: Introduction to C++ Lesson 11

What is a Function?
In prior lessons, our programs were fairly short. Repetition so far has been limited to for and while loops.

In this lesson we'll learn how to use functions to organize frequently-used code. A function is like a black box—you
provide the box with some parameters, and it returns the result.

Our First Function
Let's suppose we wantto compute the area of a right triangle (the formula is area = (base * height) / 2).

Create a project named triangle and assign itto your C++1_Lessons working set. In the new project, create
a source file named triangle.cpp as shown:

Code to Type: triangle.cpp

#include <iostream>

int main ()

{
float width;
float height;
float area;

width = 5.0;

height = 2.0;

area = (width * height) / 2.0;

std::cout << "Area of the first triangle is " << area << std::endl;

return(0) ;

G Save and run the program. You'll see:

OBSERVE:

Area of the first triangle is 5

Excellentl Suppose you now want to calculate area for two more triangles. Extend your program as shown:

Code to Edit: triangle.cpp

#include <iostream>

int main ()

{
float width;
float height;
float area;

width = 5.0;

height = 2.0;

area = (width * height) / 2.0;

std::cout << "Area of the first triangle is " << area << std::endl;

width = 3.8;

height = 5.9;

area = (width * height) / 2.0;

std::cout << "Area of the second triangle is " << area << std::endl;

width = 2.8;

height = 1.6;

area = (width * height) / 2.0;

std::cout << "Area of the third triangle is " << area << std::endl;

return (0);

V] Save and run the program. You'll see:

OBSERVE:

Area of the first triangle is 5
Area of the second triangle is 11.21
Area of the third triangle is 2.24

In our program, we have lines of code that repeat:

OBSERVE:

area = (width * height) / 2.0;
std::cout << "Area of the (nth) triangle is " << area << std::endl;

Let's take those lines of code and turn them into a function. Edit your program:

Code to Edit: triangle.cpp

#include <iostream>

/*

* triangle -- compute the area of a triangle
*

* Parameters

* width -- the width of the triangle

* height -- the height of the triangle
*

* Returns

* the area of the triangle

*

float triangle(float width, float height) {
float area = (width * height) / 2.0;
return (area);

}

int main ()

{
float width;
float height;
float area;

width = 5.0;

height = 2.0;

area = (width * height) / 2.0;

std::cout << "Area of the first triangle is " << area << std::endl;

width = 3.8;

height = 5.9;

area = (width * height) / 2.0;

std::cout << "Area of the second triangle is " << area << std::endl;

width = 2.8;

height = 1.6;

area = (width * height) / 2.0;

std::cout << "Area of the third triangle is " << area << std::endl;

return (0);

Let's take a closer look at the triangle() function:

OBSERVE:

float triangle (float width, float height) ({
float area = (width * height) / 2.0;
return (area) ;

The firstline specifies the return type, name, and parameters of the function. Our function named
triangle will return a float value. lt requires two parameters—the firstis a float named width, the second
is afloat named height. After calculating the area, the function returns it.

Now that we've defined our function, let's update our program to call it:

Code to Edit: triangle.cpp

#include <iostream>

/*

* triangle -- compute the area of a triangle
*

* Parameters

* width -- the width of the triangle

* height -- the height of the triangle
*

* Returns

* the area of the triangle

*

float triangle(float width, float height) {
float area = (width * height) / 2.0;
return (area);

float area;

e R———7L50
hetaht—2-06+

Trea—— \W‘Ldth - hci\jht/ ".O,

area = triangle (5.0, 2.0);

std::cout << "Area of the first triangle is " << area << std::endl;

Wit —36+
Feteaght—5-5+

Loz Jale g Lo o 2 N
e (WICcClr TETOTIT

t/ A2
area = triangle (3.8, 5.9);
std::cout << "Area of the second triangle is " << area << std::endl;

e ——28
etaght—3+6+

—_—an Al LI N 2 N
e TW T CTrT TTeTTIT

=\
T/ 0 7
area = triangle (2.8, 1.6);
std::cout << "Area of the third triangle is " << area << std::endl;

return (0);

G Save and run it. You'll see the same output as before:

OBSERVE:

Area of the first triangle is 5
Area of the second triangle is 11.21
Area of the third triangle is 2.24

For each triangle calculated, we replaced three lines of code with one. We're making progress! Do you
another area where we could save a few lines of code?

Void Functions and Array Parameters

In our program, we could also add code to the triangle() function to display the message like::

OBSERVE:

float triangle (float width, float height) {
float area = (width * height) / 2.0;

std: :cout << "Area of the triangle is " << area << std::endl;

return (area);

This message would be a side effect of the triangle() function. A function has a side effectif it outputs
messages, modifies files, or otherwise performs some action besides returning a value. Generally speaking,
side effects are nota good idea.

Instead, let's create a separate function to output the message. Change your program:

Code to Edit: triangle.cpp

#include <iostream>

/*

* triangle -- compute the area of a triangle
*

* Parameters

* width -- the width of the triangle
* height -- the height of the triangle
*

* Returns

* the area of the triangle

*/
float triangle(float width, float height) {

float area = (width * height) / 2.0;
return (area);

}
/*

* print it -- output a message

*

* Parameters

* area —-- the area of the triangle

* what -- the name of the triangle

*/

void print it (float area, char what[])
{
std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;
}

int main ()
{

float area; // Area of a triangle

area = triangle (5.0, 2.0);
std::cout << "Area of the first triangle is " << area << std::endl;

area = triangle (3.8, 5.9);
std::cout << "Area of the second triangle is " << area << std::endl;

area = triangle(2.8, 1.6);
std::cout << "Area of the third triangle is " << area << std::endl;

return (0);

Let's take a closerlook at print_it():

OBSERVE:

void print it (float area, char what[])
{
std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;
}

This function named print_it() returns void, which means "nothing" in C++. In other words, our function
does notreturn any value. It has two parameters—a float named area and a C-Style string named what
(a character array named what). The character array parameter has no dimension. Thatis because the
dimension is determined by the code that calls the print_it(), as you will see shortly.

Some otherlanguages might call print_it() a procedure, because itdoes notreturn a value,
' Note and call triangle a function because itdoes return a value. C++ just has one construct, a '
' function. '

Our function does nothave a return statement because itisn'trequired inside a void function. Let's add it,
and revise our program to call print_it():

Code to Edit: triangle.cpp

#include <iostream>

/*
* triangle -- compute the area of a triangle
*

* Parameters

* width -- the width of the triangle

* height -- the height of the triangle
*

* Returns

* the area of the triangle

*/

float triangle(float width, float height) {
float area = (width * height) / 2.0;
return (area);

—

/*

* print it -- output a message

*

* Parameters

* area -- the area of the triangle
* what -- the name of the triangle
*/

void print it (float area, char what[])
{

std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;

return;

int main ()
float area; // Area of a triangle

area = triangle (5.0, 2.0);

=l = 1 £ 4= £ 4= = 2 1 2 1 FEpN =11
Eeh—eotE rea—of—the—first—triangte—+ e =t e
print it (area, "first");
area = triangle (3.8, 5.9);
=l = 1 £ =l <l = 3 | = 111 =l <l
=eh—eotE rea—of—th ecord—triangte—is Fres st e
print it (area, "second");
area = triangle(2.8, 1.6);
FEp | = 1 £ =l =l P 4= 1 1 FEp | =11
e otE rea—of—the—third—triangte—+ Fres =t e

print it (area, "third");

return (0);

G Save and run it. You'll see the same output again:

OBSERVE:

The area of the first triangle is 5
The area of the second triangle is 11.21
The area of the third triangle is 2.24

Function Overloading

Our print_it() function works fine, but what if we didn't always wantto pass the second parameter? In C++,
we can overload a function, which means that we can have two or more different functions with the same

name and different parameters.

Let's define a new print_it() with only one parameterinstead of two. Edit your program as shown:

Code to Edit: triangle.cpp

#include <iostream>

/*
* triangle -- compute the area of a triangle
*

* Parameters

* width -- the width of the triangle

* height -- the height of the triangle
*

* Returns

* the area of the triangle

*/

float triangle(float width, float height) {
float area = (width * height) / 2.0;
return (area);

—

/*

* print it -- output a message

*

* Parameters

* area -- the area of the triangle
* what -- the name of the triangle
*/

void print it (float area, char what[])

{
std::cout << "The area of the " << what << " triangle is " << area << std::e

ndl;
return;
}
/*
* print it -- output a message without the "what"

* Parameters
* area -- the area of the triangle
*/

void print it (float area)

{

std::cout << "The area of the triangle is " << area << std::endl;

return;

int main ()
float area; // Area of a triangle

area = triangle (5.0, 2.0);
print it (area;y—‘firstl);

area = triangle (3.8, 5.9);
print it (area, "second");

area = triangle(2.8, 1.6);
print it (area, "third");

return (0);

Q Save and run it. You'll see this slightly different result:

OBSERVE:

The area of the triangle is 5
The area of the second triangle is 11.21
The area of the third triangle is 2.24

The firsttime we call print_it () with only one parameter, and C++ runs the correct print_it() function that
accepts one parameter (the second one in the program). The next two times, we call it with two parameters,
and C++ runs the correct function that accepts two parameters (the firstone in the program).

C++ keeps track of this by using function signatures. A function signature is the combination of the function
name, return data type, parameter data types, and names. In our program, there are actually four functions:

1. float triangle(double width, double height)
2.void print_it(float area, char what[])

3. void print_it(float area)

4.intmain()

In C++, the function name and parameters must be unique. In other words, you cannot define two separate
functions like this:

1. void print_it(float area)
2.intprint_it(float area)
Default Parameters

C++ lets you define functions with default parameters. For example, you could decide that triangles have a
default height of2.0. You can add a small bit of code to the parameter listto specify this:

OBSERVE:

float triangle(float width, float height = 2.0) {

To see this change in action, edit your program:

Code to Edit: triangle.cpp

#include <iostream>

/*

* triangle -- compute the area of a triangle
*

* Parameters

* width -- the width of the triangle

* height -- the height of the triangle
*

* Returns

* the area of the triangle

*/

float triangle(float width, float height = 2.0) {

float area = (width * height) / 2.0;
return (area);

1
/*

* print it -- output a message

*

* Parameters

* area —-- the area of the triangle

* what -- the name of the triangle

*/

void print it (float area, char what[])

{
std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;
return;
void print it (float area)
{

std::cout << "The area of the triangle is " << area << std::endl;

return;

int main ()
float area; // Area of a triangle

area = triangle(5.0——26);
print it(area);

area = triangle (3.8, 5.9);
print it (area, "second");

area = triangle(2.8, 1.6);
print it (area, "third");

return (0);

0 Save and run it. You'll see the same results as before:

OBSERVE:

The area of the first triangle is 5
The area of the second triangle is 11.21
The area of the third triangle is 2.24

If we DO provide a height, the function uses it; otehrwise, it uses the default 2.0.

Using default parameters hides information and can make programs confusing. While
 WARNING you may encounter default parameters in existing programs, you would be wise to avoid !
' using them in new programs. '

We covered a lotofinformation in this lesson! In the nextlesson, we'll continue our discussion of parameters and types. Stay
tuned!

(4

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Parameters and Return Types
C++ 1: Introduction to C++ Lesson 12

Welcome back! In the lastlesson we discussed functions, and learned how to write our own functions with parameters. In this
lesson, we'll explain just how parameters work.
Passing Parameters

C++ provides many ways of passing parameters to functions. Knowing what choices you have and how to use them is
key to writing good C++ code.

Pass by Value

Let's start with a short program. Create a project named var-pass and assign itto your C++1_Lessons
working set. In the new project, create a program named var-pass.cpp as shown:

Code to Type: var-pass.cpp

#include <iostream>

void test (int a)

{
std::cout << "test: a is " << a << std::endl;
a = 5;
std::cout << "test: a is " << a << std::endl;

}

int main ()
{
int i; // Variable to play around with

i=2;

test (1) ;

std::cout << "main: i is " << i1 << std::endl;
return (0) ;

L)) Save and run the program, and observe the output:

Output of var-pass

test: a is 2
test: a is 5
main: i is 2

We passed i as a parameter to test(), where it was labeled a. We changed the value ofa inside test(), but
that change did not make its way back to i. Why did this happen?

It happened because the parameters to the test() function were passed by value. Internally, C++ copies the
values of any variables passed by value and passes the copy to the function. Any changes to this copy will
not be reflected in the calling procedure. This is the default way C++ passes parameters to functions.

Remember when we discussed how variables were like mailboxes? Passing by value is like making
photocopies of your mail, then putting the copies in the mailbox (the function), keeping the originals safe.

C++ lets you pass by reference as well, using the reference (&) operator. Edit your program as shown:

Code to Edit: var-pass.cpp

#include <iostream>

void test (inté& b)
{

b = 6;

}

int main ()

{ int 1i; // Variable to play around with
i=2;

test (1) ;

return (0) ;

std::cout << "test: b is " << b << std::endl;

std::cout << "test: b is " << b << std::endl;

std::cout << "main: i is " << 1 << std::endl;

-
'U Save and runit. You see:

Output of var-pass

test: b is 2
test: b is 6
main: i is 6

In this program, i passed by reference, so the test() function changed its value: main:iis 6!

With pass by reference, C++ makes the parameter b a reference to main's local variable i. A reference means
that these variables are the same thing. As a result, any change to b is a change to i.

Using the mailbox analogy again, passing by reference is like putting the original letter in the mailbox, so the

recipient (the function) can look at and potentially change it.

Array Parameters

Now let's see how functions work with arrays. We'll add an array parameter to our program.

Code to Edit: var-pass.cpp

#include <iostream>
void test (int k[])
{

k[0] = 7;
}

int main ()

{

test (k) ;

return (0) ;

std::cout << "test: k[0] is " << k[0] << std::endl;

std::cout << "test: k[0] is " << k[0] << std::endl;

int k[3] = {10, 20, 30}; // Array to play around with

std::cout << "main: k[0] is " << k[0] << std::endl;

-
L)) Save and runit. You'll see:

OBSERVE:

test: k[0] is 10
test: k[0] is 7
main: k[0] is 7

Notice that the value of k[0] is changed, even though we didn't use the & reference operator. That's because
arrays are automatically passed by reference. In fact, there is no way to make them pass by value.

What happens if you pass k[0] to a function instead? Let's try it:

Code to Edit: var-pass.cpp

#include <iostream>

void test (int a)
{
std::cout << "test: a is " << a << std::endl;
a =5;
std::cout << "test: a is " << a << std::endl;
}

int main ()

{
int k[3] = {10, 20, 30}; // Array to play around with

test (k[0]);
std::cout << "main: k[0] is " << k[0] << std::endl;
return(0) ;

-
U Save and runit. You'll see:

OBSERVE:

test: a is 10
test: a is 5
main: k[0] is 10

A single array elementis just like a single variable—so by default, C++ passes by value.

Const Parameters

Let's now produce a program with a function that returns the maximum oftwo integers. Start a new project
named max and assign itto your C++1_Lessons working set. Create a source file named max.cpp as
shown:

Code to Type: max.cpp

#include <iostream>

// Function comments
int max (int 11, int i2)
{
if (i1 > i2)
return (1i1);
return (i2) ;

}

int main ()

{
int 1 = 1;
int 3 = 2;

std::cout << "Max is " << max(i,j) << std::endl;
return (0);

-
L} Save and runit. You'll see:

OBSERVE:

Max is 2

Notice that the values ofi1 and i2 are never changed in the max() function. Given the nature of the function,
they never should be changed.

But what if someone decided to change the parameter? Edit the program as shown:

Code to Edit: max.cpp

#include <iostream>

// Function comments
int max (int i1, int i2)
{
il = 99;
if (11 > i2)
return (il);
return (i2) ;

}

int main ()

{
int 1 = 1;
int 3 = 2;

std::cout << "Max is " << max(i,]J) << std::endl;
return (0);

L} Save and runit. You'll see:

OBSERVE:

Max is 99

The function should not change the value of the parameters! To help ensure that the parameters don't change,
put the modifier const in front of them. Edit your program as shown:

Code to Edit: max.cpp
#include <iostream>
int max (const int il, const int i2)
{
il = 99;
if (i1 > i2)
return (il);
return (12) ;
}
int main ()
{
int 1 = 1;
int § = 2;
std::cout << "Max is " << max(i,j) << std::endl;
return (0);
}
2 save your program—you'll see this error:
##%% Fuild of configuration Debug for project int max (const int il, const int iz2)
var—-pags wEEW {
[assignment of read-only parameter "]
##%% Internal Builder is used for build if (i1 > iZ)
TEEE return (il);
g++ —-00 -g3 -Wall -c -fmessage-length=0 return(iz);
—OvVar-pass.o ..yvar—-pass.cpp ¥
Lhwar-pass.cpp: In function Cint max(int, int) '
..\war-pass.cpp:f: error: assigmment of read-only int maini)
parameter “il! i
Euild error occurred, build is stopped int i = 1;

Code that attempts to change the value of a constant parameter results in a compile-time error. In this case,

the code i1 =99 is the offender.

References

References let different variables point to the same underlying value. ltis like having a two-sided mailbox—
the postal worker opens the box on one side to deposit mail, and you open the box on the other side to
retrieve it. Both doors pointto the same contents. Let's take a deeper look at references. Change your code

as shown:

Code to Edit: max.cpp

#include <iostream>

int& max (eerst int& il, eemst ints i2)
{
+H——55+
if (i1 > i2)
return
return (i2);

(11);

int main ()

{

int i
int j

1;
2;

std::cout << "Max is " << max(i,]j) << std

return (0);

::endl;

o Save and run it—you'll see the original message again.

Now, let's add a new variable (), which is a reference to j. We'll then zero this reference, which should cause i
to be zeroed. Change the code as shown:

Code to Edit: max.cpp

#include <iostream>

int& max (inté& i1, int& 1i2)
{
if (i1 > 12)
return (il);
return (i2);

int main ()

{
int 1 = 1;
int 3 = 2;

std::cout << "Max is " << max(i,j) << std::endl;
{
ints 1 = j; // 1 now refers to j
1 =20; // Since 1 is j, j is now zero
std::cout << "j #1 is " << j << std::endl;
}
std::cout << "j #2 is " << J << std::endl;
return (0);

0 Save and run it. Sure enough, | and i both pointto the same place, and i ends up being setto O:

OBSERVE:

Max is 2
J #1 is O
j #2 is 0

This is because our latest and greatest max() function returns a reference to i. Because it's a reference, we
can use iton the left side of the equals sign (=) as well as the right.

Make the changes indicated in the program to remove the reference k and replace it with the reference max (i,
3).

Code to Edit: max.cpp

#include <iostream>

int& max(int& il, ints& i2)
{
if (i1 > i2)
return (il);
return (i2) ;

int main ()

{
int 1 = 1;
int 3 = 2;

std::cout << "Max is " << max(i,j) << std::endl;
{

max (i, j) = 0; // Assigning a reference
l 7 2 SJLIAL/C l i JI, JI i ITOW E.

std::cout << "j #1 is " << J << std::endl;

}
std::cout << "j #2 is " << j << std::endl;

return (0);

0 Save and runit. You'll see:

OBSERVE:

Max is 2
J #1 is O
J #2 is O

Sure enough, the reference returned by max(i,j), which pointed to the same place as j, was changed to zero.

Const Return Values

In the last example, we could assign a value to the reference returned by max(i,j). To keep this from
happening, let's change the function so itreturns a const reference.

Code to Edit: max.cpp

#include <iostream>

const int& max(int& il, inté& i2)

{
if (i1 > i2)
return (il);
return (i2) ;
}
int main ()
{
int 1 = 1;
int 3 = 2;
std::cout << "Max is " << max(i,j) << std::endl;
{
max (i, j) = 0; // Assigning a reference
std::cout << "j #1 is " << J << std::endl;
}
std::cout << "j #2 is " << j << std::endl;
return (0);
}

Once you save your file you will notice that we can no longer assign a value to max(). Because itis a
constant, we can only retrieve the result, not change it:

evvusan ey,
#% Ipnternal Builder is used for build return(iz};

TEEFR

g++ 00 —-g3 -Wall -¢ -fressage-length=0

—OVar-pass.o ..\var-pass.cpp int main ()
hvvar-pass.cpp: In function Cint main() ': £
LLhVar-pass.oppil?: error: assignment of int i = 1;
read-only location int j = 2;
Build error occurred, build is stopped
Time consumed: 655 ms. atd: tocout << "Max iz " << max(i,]) << =td::endl;
{
[assignment of read-onl bcibnb; Lazigning g reference

std::cout << "3 #1 is " << j << std::endl:
B
std::cout << "3 #2 is " << j << std::endl:

return (0]

Problems with Reference Returns

Returning a reference as an int has its benefits, but it can be very tricky to use. Let's change our code so that
max() assigns the resultto a local variable and returns that variable instead.

Code to Edit: max.cpp

#include <iostream>

eerrst int& max(int& il, ints& i2)
{
int result; // Which one to use
if (i1 > i2)
result = 11;
else
result = 1i2;

// This is a bad thing to do
return (result) ;

int main ()

{
int 1 = 1;
int j = 2;

std::cout << "Max is " << max(i,]j) << std::endl;
{
max (i, j) = 0; // Assigning a reference
std::cout << "i is " << i << std::endl;
}

return (0);

5l save it—you'll see a warning:

S Function comments
inté maxiints i1, int& i2)
[reference ta local variable “result’ returned)e to use
if (il > i2)
result = il;

#x%% Build of configuration Debug for project
Var-pass TEEE

w#F*% Internal Builder is used for build
wEEEE

g+ —00 —g3 -TWall -c —fressage-length=0
—OVARE-PaSS.0 ..\ Var-pass.cpp
LOvwvar-pass.opp: In function Cintg wax (inte,
inte) '

LLhZWWARr-pasSs.cpp:7: warning: reference to local
varishle ‘result' returned

g++ -—ovar-pass.exe vVar-pass.o

Build complete for project war-pass

Time consumed: 1282 ms.

else
result = 1iZ;

/f This i= a had thing to do
return(result) ;

Andt mmadin i

The compiler warns you that you are returning a reference to a local variable. This is reminding you that the
variable result will be destroyed when max() returns. This is like removing your mailbox from the wall—the
postal worker can't put anything into the box, and you can't either.

So... what does the reference generated by the return statement refer to? Absolutely nothing. The value
referenced is notin scope, so itis notlegal to reference it. This is yet another area of undefined behavior in
C++. Your program might work justfine, orit could crash, or it could cause strange and mysterious data
errors.

When a reference refers to something thatis no longerin scope, it's called a dangling reference. You can't
(legally) return areference to alocal variable from inside a function.

Now let's try another experiment with our program. Edit the program so thatituses expressions as
parameters to max():

Code to Edit: max.cpp

#include <iostream>

eorst int& max (int& 11, int& i2)

{
iiit 1 ult, ‘;Jhi\.«h A2 9Ll tU o™
if (i1 > 12)
return (il);
return (1i2) ;
}
int main ()
{
int 1 = 1;
int 3 = 2;
int answer;
answer = max (i+l, J+1);
std::cout << "Max 1is " << answer << std::endl;
return (0);
}

This program too has a dangling reference thatis hard to spot, butthe compiler won'tlet it by.

5l save itand you'll see:

##%% Build of configuration Debug for project (xX] A

var-pass FEEE if (i1 » iZ)
return (il);

*#%% Internal Builder is used for build return(iz] ;

FHEEE H

g++ -00 -3 -Wall -o -fressage-length=0

—ovar—-pass.o ..\ Var—pass.cpp int main()

LJhvwar-pass.cpp: In function Cint maini) ' i

A\ war-pass.cpp:17: error: invalid initialization int 1 =1

of non-const reference of type 'inté' from a int j = 2;

temporary of type 'int!
Lhwar-pass.cpp:d: error! in passing argumwent 1 int answer:;

of "inté max({int&, inte)!

Euild error occurred, build is stopped

inwalid initialization of non-const reference of bype ink&’ from a temporary of bype 'int]

Time consumed: 609 ms.

return (0);

When a function expects a reference parameter such as max(), the compiler performs a number of
operations behind the scenes:

1. lt creates a temporary variable and assigns it the value of the expression.
2. It performs the function call.

3. ltdestroys the temporary variable.

So the code the compiler generates looks something like:

stdiicout << "Max is " <<| answer << stdi:iendl;

The compiler's version of max.cpp

#include <iostream>

int& max (int& il, int& i2)
{
if (i1 > i2)
return (il);
return (i2) ;

int main ()

{
int 1 = 1;
int §j = 2;

int answer;

{

int tmpl =i + 1;

int tmp2 = j + 1;

answer = max(tmpl, tmp2);

// At this point answer is a reference to tmp2
}

// At this point tmp2 does not exist

std::cout << "Max is " << answer << std::endl;
return (0);

You will rarely need to use references to variables as return values, but when you do need to use them, be
very careful about what you are doing.

You made it! In the nextlesson we'll discuss your final project for the course. Good luck!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Final Project
C++ 1: Introduction to C++ Lesson 13

Putting It All Together

At this point we've learned enough to create your very own program from scratch.

Assignment

To start, create a project named final_project assigned to your C++1_Homework working set, with a
source file named final_project.cpp.

Your assignmentis to create a program that will countthe number of words in a file. Itis up to you to define
whata "word" is. "hello" is a word. But what about "high-five"—is thatone word or two? And how about
something like "ground_point"? Some programmers might consider that one word and others think it was
two. Did you consider something like "O'Reilly"?

Whatever you decide to consider a word, document your decision in a file named requirements.txt.

The specification is as exact a description as you can get of what the program is going to do. Sometimes you
don'tknow how a program is going to end up until you start coding. In that case, you start with a preliminary
specification and refine itas you go on.

Atthe end of coding, the specification should be detailed enough that you can use it as a user guide.

Create a file named spec.txt and write your specification in it.

Code Design
The design is a general outline of how you are going to create your program.

The design for this word count program should be fairly short. A good paragraph describing the general
operation of the code should do it. Create a file named design.txt and enter your design.

Agile Development

Years ago there was programming technique called "fast prototyping.” Today, it has been renamed "agile
development." Basically, it means that you create the smallest working program you can. Test it, enhance it,
and repeat until you get what you want. The idea is that you start with a working copy and build a working
program on top of that. That way, you have a working program to see where you are and to give you an idea
of what the computer can do. This lets you refine your specification as you learn more about what's
happening with your system.

In this case, there are three stages thatwe go through in our development:

1. Make a program that reads a character at a time, counting nothing.
2. Make the program count characters.
3. Change the program to countwords.

Coding Notes

To help you get started, the following is code that will read each character from a file called input.txt and will
outputit. ltuses fstream.

Code to Type: final_project.cpp

#include <iostream>
#include <fstream>

int main () {
char c;
std::ifstream myfile ("input.txt");

// Make sure the file can be read from
if (myfile.is open())
{
// While we have not reached the end of file (EOF)
while (! myfile.eof())
{
c = myfile.get();
std::cout << c;
}
myfile.close();

}
else std::cout << "Unable to open file";

return 0;

Create a file named input.txt in your project, add some appropriate text to it, and then save and run this

code to see how itworks. Your program will promptfor user inputinstead of using a file.

Testing

Testing comes next. Write up a test plan for your program named test.txt. Take care to testall major

components of your program.

I would suggest that you create a file named "input.txt" containing the input that you want to use for testing the

program.

To actually test the program:

1. Open the input.txt file.

2. Select Edit | Select All.
3. Select Edit | Copy.
4.Run the program.

5. Clickin the console and select Edit | Paste to paste the testfile's contents into your program'’s

input.

6. Type [Ctrl+Z] to signal end offile.

Revisions

Your program counts words. Think of how you might wantto enhance it. Create a file named "rev.txt"
containing the wish listfor your new program. Then be thankful that you've reached the end of the lesson and

you don'thave to implement any of those revisions!

When you finish, hand in your project. GOOD LUCK!

[+]
Kl D

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

