
C++ 1: Introduction to C++ (PDF)
Lesson 1: Introduction

Learning C++
History of C++

About Eclipse
Perspect ives and the Red Leaf Icon

Writ ing Your First Program
What Does It All Mean?
Adding to Our Program

What Goes On Under the Hood

Finishing the Program
The User Manual
The Test Plan

A Few More Notes

Lesson 2: Expressions
Mathemat ical Expressions

Creat ing the Project and File
Edit ing and Running Your Program

Types of Numbers
Float ing-Point vs. Integer Division
Dividing by Zero
Limits on Numbers

Common Problems

Lesson 3: Variables
Basic Programs

Variables

Variable Def init ions

Variable Types: Integer

Variable Types: Float ing Point

Variable Types: Characters
Escape Characters
Wide Characters

Boolean

Mixing Types

cplusplus1.pdf

Lesson 4: Arrays and For Loops
Using Arrays

The const Modif ier
Our f irst array

for loops

Array Safety

Lesson 5: C++ Strings
St rings in C++

Characters in st rings
Other Funct ions

Lesson 6: C-Style Strings
What is a C-Style St ring?

Concatenat ion of C-Style St rings

Comparing St rings

T ips
Convert ing C++ St rings to C-Style St rings
Unsafe St ring Funct ions
The future of st rcpy() and st rcat ()

Comparisons to other t ypes
C St rings vs. Arrays of Characters
C-Style vs. C++ Style

Lesson 7: Reading Data and if
Reading St rings

Reading Integers

if Statements

if Abuse
Equalit y or Assignment?
Blocks
Condit ional Shortcuts

Lesson 8: Shortcuts
Operators

For Loops
For Loop Misuse

Side Ef fects

Lesson 9: While Loops
while, break, and cont inue

Fibonacci numbers

Lesson 10: Scope
What is Scope?

Global Variables
Storage Class
for Loop Scope
Hidden Variables

Lesson 11: Functions
What is a Funct ion?

Our First Funct ion
Void Funct ions and Array Parameters
Funct ion Overloading
Default Parameters

Lesson 12: Parameters and Return Types
Passing Parameters

Pass by Value
Array Parameters
Const Parameters
References
Const Return Values
Problems with Reference Returns

Lesson 13: Final Project
Put t ing It All Together

Assignment
Code Design
Agile Development
Coding Notes
Test ing
Revisions

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction
C++ 1: Introduction to C++ Lesson 1

Welcome to the O'Reilly School o f Technology's C++ course! We're glad you've decided to go on this ride with us and learn
C++ programming. By the time you finish the course, we're confident that you'll have firm grasp on this really practical
programming language.

If you've already taken an O'Reilly School o f Technology (OST) course, you're familiar with the useractive approach to learning.
It's an approach where you (the user) will be active! You'll learn by do ing, building live programs, testing them, and then
experimenting with them, hands-on!

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take the useractive approach to learning. This means that
you (the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Here are some tips for using O'Reilly School or Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

Learning C++
C++ is the workhorse language o f the programming world. It's used for many different applications, from high-end
graphics systems to embedded processing. Chances are you already own two or three computers running C++
programs, only they aren't called computers, they're called cell phones, GPS systems, cameras, or DVD players.

Our course is designed to teach you how to do real-world, practical programming. As such, it will teach not only the
best practices when it comes to design and coding, but also how to deal with the "worst practices" that seem to seep
into many o f the programs out there in the real world.

For this course, we will use the Advanced O'Reilly Learning Sandbox. This system allows you not only to read the
lessons, but to interact with the examples. You are encouraged to experiment and try new things, all within the
environment o f your O'Reilly Learning Sandbox.

Of course, in the real world you'll make mistakes. Typing in a program, finding that it's broken, and sweating over it until
2 o 'clock in the morning, only to find you've made a small mistake, is another way o f learning. (We hope you will rarely
need to use this method o f learning!)

History of C++

C++ was born in 1970 when two programmers wanted a "high-level" language for a machine they were
working on. They designed a language similar to an o ld language they had been using called B. In the
programming tradition o f keeping things simple, they named their language C.

C was a good language for its day. It ran on very limited hardware (4mhz, 64K memory) and did a pretty good
job. The language was also designed not to get in the way o f the programmer. In o ther words, if he wanted to
do something stupid, it let him.

C is a procedural language. The data and instructions are kept separate. Ten years after its invention, people
realized that they could make better programs if they combined data and the instructions that operated on the
data into one thing called an object or class.

In 1980 Bjarne Stroustrup started working on a new language called "C with classes." The goal o f the
language was to bring classes to C while not breaking existing C code (or at least not breaking it too badly).

This language would become C++.

About Eclipse
We're using an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right
now. IDEs assist programmers by performing many o f the tasks that need to be done repetitively. IDEs can also help
to edit and debug code, and organize pro jects.

Perspectives and the Red Leaf Icon

The Ellipse plug-in fo r Eclipse, developed by the O'Reilly School o f Technology, adds an icon to the too lbar
in Eclipse. This icon is your "panic button." Eclipse is versatile and lets you move things like views and
too lbars. If you ever get confused and want to return to the default perspective (window layout), the Red Leaf
icon is the most efficient way to do that.

You can also change perspectives by clicking the drop-down arrow beside the icon, and then clicking a series
name (JAVA, PYTHON, C++, etc.). Most o f the perspectives look similar, but subtle changes may be present
"under the hood," so it's best to use the perspective designed specifically fo r each course.

For this course, select C++ :

Okay, now that you understand the basic structure o f an OST course, you're ready to enter and run code!

Writing Your First Program
We want you to see a working C++ program as soon as possible, so we'll resist the urge to explain too much for this
first program while you're creating and running it. Let's get go ing—we'll fill you in on the details later!

To start your pro ject, select File | New | C++ Pro ject , as shown here:

Note If C++ Pro ject isn't on the menu, then the perspective hasn't been set properly. Click the down arrow
next to the Red Leaf icon and then select C++

The C++ Pro ject type dialog appears. For Pro ject Name, enter hello _wo rld.

Note
Due to limitations in the GNU too ls, all pro ject names and file names should consist o f only letters,
digits, and underscores. Do not use punctuation or spaces in a name. It confuses the too ls and causes
things to break.

For "Pro ject Type," select Execut able | Empt y Pro ject . Under "Too lchains," select MiniGW GCC (the default). Then,
click Finish:

If you are prompted to open the C++ perspective, check the "Remember my decision" box and click No :

New pro jects are added by default to the Other Pro jects working set. To help keep your pro jects organized, we'll move
them to the C++1_Lessons working set. Find the hello _wo rld pro ject in the Other Pro jects set, right-click it, and select
Assign Wo rking Set s.... In the dialog box that appears, check the box for C++1_Lesso ns and click OK:

Now we'll set up the pro ject's building behavior. Right-click the hello _wo rld pro ject again, and then select
Pro pert ies. Select C/C++ Build, then click the Behavio r tab. Check the Build o n reso urce save (Aut o build) box
and click OK:

You will need to do this fo r every pro ject you create. If you don't, when you try to run programs from the pro ject, you'll
see this message: "Launch failed. Binary not found." It isn't possible to set this flag as the default. But just in case you
need to refresh your memory on occasion, we've provided a checklist o f the steps you need to take in order to start a
pro ject.

Okay, we're ready to create our program. Find the hello_world pro ject in the C++1_Lessons working set and select it,
then select File | New | So urce File :

Enter the name hello .cpp and click Finish:

check.html

The new file hello .cpp appears, with a short header containing the filename, the date, and your name. In hello .cpp,
add code as shown below:

CODE TO TYPE:

/*
 * hello.cpp
 *
 * Created on: Dec 15, 2009
 * Author: smiller
 */
#include <iostream>
int main() {
 std::cout << "Hello World!" << std::endl;
 return(0);
}

As you type, you'll no tice that the system automatically completes certain items. For instance, when you type < , it adds
a > . And after you enter the line that contains int main() {, Eclipse automatically indents the next line by four spaces
and adds the closing bracket } on the fo llowing line. Eclipse is your friend, and does its best to help whenever it can!

Select File | Save All to save your file:

Congratulations, you've just written your first C++ program! Now let's run it. In the editor window for your hello .cpp
program, right-click and select Run as | Lo cal C++ Applicat io n:

Note To run a program, you can also select it in the Package Explorer and click the Run icon () in the too lbar
at the top o f the screen. In the future, we'll use that icon when we want to run the program.

A Conso le window appears, containing the output from your program:

Excellent! You've run your first C++ program!

Now let's screw it up. We're do ing that on purpose now, so we'll know what it looks like and how to fix it when we
screw up our programs later by accident.

Modify hello .cpp as shown below:

CODE TO TYPE:

#include <iostream>
int main() {
 standard::cout << "Hello World!" << std::endl;
 return(0);
}

Note We omit the header comments from some of our examples in order to save space. In your real
programs, you should always include descriptive comments.

Save your file (File | Save all). A red icon appears on the left side o f the panel near the line you just changed. If you put
the mouse po inter on the icon, you'll see this message:

This tells you that something bad happened. In particular, the compiler can't figure out what the symbol st andard
means.

Fix the problem by changing st andard back to st d, then save the file. The red icon should go away.

Now let's create a new problem for ourselves. Modify hello .cpp below as shown:

CODE TO TYPE:

#include <iostream>
int main() { int
 std::cout << "Hello World!" << std::endl;
 return(0);
}

Save the file. You'll see an x error icon on the the st d::co ut line:

So what happened? Eclipse flags errors with an x error icon. Ideally, it appears on the line where you made the
mistake, but sometimes (like now), it doesn't. (However, in this case you do see a small yellow box containing a
question mark on the int main line. Eclipse's internal parser detected an error on this line and flagged it that way.)

When Eclipse flags errors in your program, you still might need to do some investigative work to find and fix them—
and it's a good idea to check the lines o f code surrounding the flagged ones as well.

Fix the problem in hello .cpp by removing the misplaced int , then save your work.

What Does It All Mean?

Let's take a closer look at the program to see how it works:

OBSERVE: hello .cpp

#include <iostream>

int main()
{
 std::cout << "Hello World!" << std::endl;
 return(0);
}

The first line is #include <io st ream> . This #include line tells C++ "I'm go ing to use your standard streaming
I/O package (iostream)." The compiler brings in the definitions o f the items for this package.

The next line, int main() , is the start o f the code for your program. The main() function is special in C++; it is
the first function that C++ executes. We'll get into function definitions later—for now, you just need to know that
this special line starts the program.

The curly brace { indicates the start o f the body o f the code. Code enclosed in braces is called a block. In this
program, we have one block o f statements and they make up the body o f the main() function. In later lessons
we'll learn how to use multiple blocks o f code.

The next line contains st d::co ut << "Hello Wo rld!" << st d::endl;, which is a C++ executable statement. It
tells C++ to print a message. You'll no tice that the line starts with four spaces. C++ doesn't care how many
spaces you use to start a line, but good programming style dictates that you use one level o f indentation for
each level o f logic. Here we indented four spaces for each set o f braces we have nested. We chose to indent
four spaces as a standard because it's easy to read and we needed a standard for this course.

Let's break the st d::co ut statement down into components.

The first item, st d::co ut , is the name of a predefined variable that is used by C++ to write to the standard
output (the conso le). (In the Eclipse programming environment, conso le output shows up in a window at the
bottom of the screen.) The st d::co ut variable is one o f the items brought in by the #include <io st ream>
statement.

The operator << tells C++ to take what fo llows it and send it somewhere else, in this case to the output
(st d::co ut). Next in our code, we have the string "Hello Wo rld" . This is a literal string containing the
characters we want to display on the conso le.

This is fo llowed by << again (which sends whatever fo llows it to the output stream on the left) and the symbol
st d::endl. The st d::endl symbol tells C++ to output an end-of- line character. The statement ends with a
semico lon.

Next, we have the return line ret urn(0);, which tells C++ to end the program and return a status o f 0 to the
operating system. (You'll learn more about the return statement later, but fo r now all you need to know is that
inside main, it ends the program.) A return code o f 0 indicates a normal exit. Codes 1-255 typically indicate
that the program exited abnormally—the bigger the number, the bigger the problem.

Again, the statement ends with a semico lon.

At the very end we have a closing brace } . This ends the block o f code that started at the brace just after the
main() line.

Adding to Our Program

Now let's say we want to output another line o f text. To do that, we can add another line to output an additional
message. Edit your program as shown (using your own name instead o f "Steve"):

CODE TO TYPE:

/*
#include <iostream>
int main() {
 std::cout << "Hello World!" << std::endl;
 std::cout << "My name is Steve!" << std::endl;
 return(0);
}

 Save your file, then run it by right-clicking in hello .cpp in the editor window and choosing Run as | Lo cal
C++ Applicat io n (alternatively you could click the Run icon in the too lbar). You'll see this output:

OBSERVE:

Hello World!
My name is Steve!

Our output appears on two lines because we used st d::endl. Another way to make the output appear on two
lines is to use the special escaped character \n. Modify hello .cpp as shown:

CODE TO TYPE:

#include <iostream>
int main() {
 std::cout << "Hello World!" << "\n";
 std::cout << "My name is Steve!" << "\n";
 return(0);
}

 Save your program, and run it. The output looks identical to the last run:

OBSERVE:

Hello World!
My name is Steve!

\n is called an escape character. The backslash (\) "escapes" from the regular interpretation o f keyboard
characters to begin a special multi-character sequence, indicating a special character. In this case, it's a
"newline," or end o f line, the equivalent o f pressing the Enter key.

For more information, see the glossary's description o f the escape character.

But the escape character is the o ld-fashioned way to print a newline. The more modern practice is to use the
special symbol st d::endl. There is a subtle difference between \n and st d::endl; the st d::endl symbol
causes a buffer flush, which makes sure the output appears immediately. The \n is not required to flush the
buffer (although on most systems it does).

We cover buffering and flushing in more detail in later C++ courses.

What Goes On Under the Hood
Eclipse is a type o f too l called an IDE or Integrated Development Environment. This sort o f too l is a wrapper around
many o ther too ls. The idea o f the IDE is to hide the o ther too ls and give you a single system in which to work. But as a
pro fessional, you'll need to know what goes on "under the hood" to make the most effective use o f all the too ls
available.

When your pro ject is built, Eclipse figures out what needs to be done to make your programs executable,
automatically. This comes in handy for many types o f programs, including our small "hello world" pro ject. Too ls like
Visual Studio work much the same way.

Some programs use o ther builder too ls to make them automatically executable—in the C/C++ world, a program called
make is a common too l fo r that. In java, Ant is a popular too l fo r that task. Both o f those too ls require programmers to
specify a set o f "rules" or "targets" that describe how a program will be built.

To convert your code into computer instructions, Eclipse uses the GNU g++ compiler. This program takes your source
code (.cpp file) and turns it into an executable. To do this, it needs to run a series o f programs. The first is the actual
C++ compiler. Its job is to take the human-readable source code and turn it into an object file (.o file).

You can see the object file created by the compiler. Switch to the Package Explorer tab, then expand the Debug fo lder.
Inside that fo lder you'll see hello .o (among o ther things). If you try to open hello .o , you won't find anything useful—
this file contains computer code. The object file is readable by the computer, but not by humans. The object file
contains only the code for executing the task that you wrote. In the case o f hello_world, that code uses st d::co ut to
write out a message. The definition o f st d::co ut is not in your object file; instead it is part o f a standard library. This

glossary.html#Escape_character
glossary.html#IDE
glossary.html#make
glossary.html#source_code
glossary.html#compiler
glossary.html#object_file
glossary.html#library

library contains generally useful definitions like std::cout and lo ts o f o ther things. The library itself is just a bunch o f
object files packaged together into one file (something like a zip file, but different).

The linker takes your object file and the object files in the library and produces an executable program. Here's a
graphical representation o f what it does:

With some compilers, you may not see object files, because they delete object files after the link step.

With the GNU compiler, the compilation process is actually accomplished by multiple programs. The first thing g++
does to your program is pass it through a program called the pre-processor. This program takes care o f things like the
#include directive. (We cover lo ts more about this program in the next C++ course.)

The next stage turns the high-level C++ code into low-level assembly code. In high-level code, one statement can
result in many machine instructions being created to process that statement. In assembly language, there's one
statement per instruction. Also, high-level languages are machine-independent (or they are supposed to be.)
Assembly code is machine-dependent. In o ther words, the assembly language for an Intel x86-compatible processor
(such as the Intel Core 2 Duo or Intel Pentium) is entirely different from the assembly code for the iPhone's ARM
processor.

Fortunately, all this complexity is hidden from you and you can ignore it most o f the time. But sometimes you may
need to take a peek under the hood to deal with any bugs you encounter along the way.

Finishing the Program
Our program, although syntactically and logically correct, is not complete because it only contains the default comments
produced by Eclipse. A comment is text in the program that tells people reading the program what's go ing on.
Comments are not read by the computer and although it is possible to write a program with no comments in it, we will
no t do so in this course. Pro fessional programming means creating pro fessional-quality programs with comments—
even if that program is "Hello World."

All o f your programs should begin with a comment block that contains these sections:

The lesson and pro ject number (so the instructor knows which question you're answering).
A description section that describes what the program is supposed to do.
A usage section.

Comments begin with /* and end with */. Comments can also begin with // and go to the end o f the line.

Our program needs a set o f comments. Modify hello .cpp as shown:

glossary.html#linker
glossary.html#assembly

CODE TO TYPE:

/*
 * Lesson 1, Example 1 (Or Assignment 1 for programs you turn in)
 *
 * Description: The classic "Hello World" program. Prints
 * out the message and that's all.
 *
 * Usage: Run it and get the message.
 */

// This is another way to comment a single line.

#include <iostream>
int main() {
 std::cout << "Hello World!" << std::endl;
 return(0);
}

 Save and run it to verify that it still works as expected.

The User Manual

Are we finished? Not yet—a program isn't any good if no one knows how to use it, so we'll write a user
manual fo r every program.

You may wonder how to go about writing a manual fo r such a short program. For a short program, we just
write a short manual.

To create your manual, select the hello_world pro ject and then select File | New | Ot her. In the New File
Wizard, select General | File . Name your file manual.txt. Now write the manual:

CODE TO TYPE:

Run the program.
See the message.

The Test Plan

Finally, the program needs a test plan. Our test plan should have these attributes:

It should test as much o f the program as is feasible.
It must list a precise set o f steps to fo llow (ambiguous instructions lead to results that cannot be
reproduced).
Its results must be observable.
It must lead to a clearly observable pass/fail result.

For example, a test plan that says, "Play around with the software and see if you can break it," is a vague and
therefore pretty bad test plan.

First, the term "Play around" is not precise. Different people could "play around" in different ways.

Second, what happens if someone breaks the software? Can he do it again? Often, the answer to this
question is no.

Third, the term "break" is not defined. If the system crashes, that certainly is a break. But what if it merely draws
something that looks odd? Is that "odd" drawing a feature or a bug?

Now we'll write our clear, brief, and excellent test plan. Create a file called test.txt, then type in the code as
shown:

CODE TO TYPE:

1. Run the program.
2. Observe the message "Hello World!" (Yes -- Pass, No -- Fail)

A Few More Notes
We recommend that you use the Save All menu option to save your work; this will save everything you have opened,
and it can prevent problems when running your programs while you're working on them.

Do not put spaces or o ther special characters in file names. Limit yourself to a combination o f letters, digits,
underscores (_), and dashes (-) This helps to avo id problems with the too l set being used.

When you create a new source file, it always contains the standard header, including the file name, date, and your
name. You should replace those elements with more detailed and specific information about your program.

Remember, when using the O'Reilly sandbox system, that Red Leaf icon is your emergency button. It will restore your
screen to the original layout:

Congratulations! You have created your first C++ program and completed lesson 1 o f the course! In the next lesson, we'll
investigate expressions. See you there!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Expressions
C++ 1: Introduction to C++ Lesson 2

Glad to see you're back! In this lesson we'll learn to use mathematical expressions in C++.

Mathematical Expressions
C++ understands these operations:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (remainder after division)

We can combine these operations with numbers into an expression to do useful lo ts o f really useful work.

Let's get go ing and try an example to see how these operators work. Start a new pro ject and name it exp-
expressio n. Assign it to the C++1_Lesso ns working set. Then create a new source file in the new exp-expressio n
pro ject and name it exp-expressio n.cpp. Now create the pro ject and source file. You can see a graphical
representation o f this procedure in the next section. But if you feel comfortable with the process so far, go ahead and
skip to the fo llowing section.

Creating the Project and File

Select File | New | C++ Pro ject , enter the information, and click Finish, as shown:

If you are prompted to change the perspective, check the Remember my decisio n box and click No :

Assign the C++1_Lesso ns working set to the exp-expressio n pro ject; right-click the pro ject, select Assign
Wo rking Set s..., and assign the working set as shown:

In the Package Explorer, right-click the exp-expressio n pro ject, select Pro pert ies, and set the Build
properties as shown:

Now, in the exp-expressio n pro ject, select File | New | So urce File , and enter information as shown:

Editing and Running Your Program

Open your exp-expressio n.cpp file and enter the fo llowing code (we'll omit the automatic comments from
now on to save space):

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is " << (1 + 2) * 4 << std::endl;
 return (0);
}

 Save your source file, then in the editor window for exp-expressio n.cpp, right-click and select Run as |
Lo cal C++ Applicat io n (o r select exp-expressio n.cpp in the Package Explorer and click the icon in
the too lbar). You'll see this output:

OBSERVE:

The answer is 12

The computer evaluated, or calculated, the answer to the expression (1 + 2) * 4 (which is 12) and showed you
the results.

So, how did the parentheses affect the answer? I'm glad you asked! Let's remove them and see what
happens—edit your code as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is " << (1 + 2) * 4 << std::endl;
 return (0);
}

 Save and run your program. This time the answer is different:

OBSERVE:

The answer is 9

The computer reads the expression 1 + 2 * 4 from left to right, but it also fo llows the Order o f Operations:

1. exponents and roots
2. multiplication and division
3. addition and subtraction

Multiplication occurs before addition, so the computer actually does this:

2 * 4 = 8
1 + 8 = 9

You can change the Order o f Operations by using parentheses () . In the first example, we used parentheses
to force addition to occur before multiplication.

Types of Numbers
There are two major types o f numbers in C++: integers and floating point. (You might also hear about a complex type,
but that type isn't actually built into the language.)

Integers, also known as whole numbers have no fractional value. For example, these are all integers:

OBSERVE:

1 324290 42 -999 37

Floating-po int numbers contain a fractional part. For example:

OBSERVE:

1.2 3.5 14.8 37.0

The last number presents a key concept: 37.0 is a floating-po int number. Even though the fractional part is 0 , its
presence after the decimal po int makes 37.0 a floating-po int number. The number 37 is an integer.

Note When writing floating-po int numbers, always include a decimal po int. It tells anyone reading your code
that you intend the value to be floating po int. So 1.0 is good, and 1 is bad. 0.0 is good; 0 is bad.

Floating-po int numbers can also contain an optional exponent. For example:

OBSERVE:

13.33E+5

This tells C++ that the value o f the number is 13.33 x 105.

http://en.wikipedia.org/wiki/Order_of_operations

Floating-Point vs. Integer Division

Edit exp-expressio n.cpp to compute (and print) the value o f the expression 1/3 as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is " << 1 / 3 << std::endl;
 return (0);
}

 Save and run it, then read the output:

OBSERVE:

The answer is 0

When C++ does integer division, the result is an integer—it truncates any fractional part o f the result.

Now, edit exp-expressio n.cpp again, as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is " << 1.0 / 3.0 << std::endl;
 return (0);
}

 Save and run it and look over the output:

OBSERVE:

The answer is 0.333333

When C++ sees that the arguments are floating-po int numbers, it performs floating-po int division and gives
floating-po int results.

But what if one number is floating po int and the o ther is an integer? Let's give that a try. Modify exp-
expressio n.cpp as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is " << 1.0 / 3 << std::endl;
 return (0);
}

 Save and run it and read over your results. Try 1 / 3.0 as well. Now that you've seen how mixed-mode
arithmetic will affect your programs, avo id using it if at all possible. For now, that may be difficult, but later we'll
learn about casing, which will let us explicitly tell the compiler which types o f numbers (and therefore
operations) to use.

Dividing by Zero

We cannot divide anything by zero—that operation isn't defined and the expression has no meaning. So what
happens if we tell the computer to divide by zero? Modify your program to compute a new expression that
divides by zero as shown:

http://en.wikipedia.org/wiki/Division_by_zero

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "Divide " << (1/0) << std::endl;
 return (0);
}

Save your program, and ignore the warning message. Run it and observe that it terminates with this
message:

The computer can't handle this type o f math, so the program stops with a warning. Click OK to end the
program.

But what happens when you divide by zero with a floating-po int number? Try it and find out; edit your program
below as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "Divide " << (1.0/0) << std::endl;
 return (0);
}

 Save and run it. You'll see output like:

OBSERVE:

Divide inf

The floating-po int fo rmat used by basic Intel-compatible processors has special "numbers" defined for error
conditions such as inf , -inf , and NaN (not a number). This is processor-dependent and although almost all
modern processors now use this standard format, some don't. Results on those computers could be
different.

So now you may be wondering why integer division by zero crashes your program, while floating po int
division by zero does not. This is by design—Intel-compatible processors have been used for decades, and
at first could only perform integer arithmetic. Floating-po int arithmetic was handled separately, and thus it
continues to generate different errors.

Instead o f worrying about the differences in error handling, it is better not to generate the error in the first place.
In future lessons we'll learn how to make sure our programs work correctly. Stay tuned!

Limits on Numbers

Suppose you have an o ld eight-digit calculator. You type in the number 99,999,999 and then add 1 to it. The
result is a nine-digit number, which the calculator can't display. So the calculator displays ERROR.

There are similar limits to the numbers in C++. Unfortunately, these are not hard limits. They can vary
depending on the processor type, compiler, and operating system.

C++ has a file (named climits) that defines the limits on its basic types. We'll #include this file, and then add
some code to use it. Edit your exp-expressio n.cpp program as shown:

CODE TO TYPE:

#include <iostream>
#include <climits>
int main()
{
 std::cout << "INT_MAX " << INT_MAX << std::endl;

 return (0);
}

 Save and run it. You'll see this:

OBSERVE:

INT_MAX 2147483647

Note

This example uses the C-style constant fo r the integer limit. The pure C++ way o f do ing this is to
include the header file <limits>. Then you can get the maximum integer with the expression
st d::numeric_limit s<int >::max() . We used the C method because it's shorter. Also , to
understand the expression st d::numeric_limit s<int >::max() , you need to understand
classes, static member functions, templates and template specialization—all concepts we will
cover in a future course.

Let's see what happens when we go past the limit. Change the program as shown:

CODE TO TYPE:

#include <iostream>
#include <climits>
int main()
{
 std::cout << "INT_MAX+1 " << INT_MAX+1 << std::endl;
 return (0);
}

Based on the last execution o f the program, we might expect to see the number 2147483648. Run it.
Instead we see:

OBSERVE:

INT_MAX+1 -2147483648

This is called overflow. It occurs when a number becomes too big or too small to fit into its type (in this case,
integer). C++ does not check for overflow and will no t warn you when it occurs. You won't encounter this
problem too o ften, but if you do, now you'll be able to recognize and correct it.

Okay, now let's see what happens when we have a floating-po int overflow. Because o f the way floating-po int
numbers are stored and computed, it's hard to specify an exact maximum number. But the expression below
will definitely give you an overflow, so go ahead and add it to your program as shown:

glossary.html#Overflow_error

CODE TO TYPE:

#include <iostream>
#include <climits>
int main()
{
 std::cout << "Float " << (9E399 * 9E399) << std::endl;
 return (0);
}

 Run it. You'll see the special floating-po int number inf ; the floating system gives you some indication that
an overflow occurred.

Common Problems
There are some common warnings and errors that you may encounter when working with C++. We'll experiment with
some of them by making a few mistakes on purpose. Change your program as shown:

CODE TO TYPE:

#include <iostream>
#include <climits>
int main()
{
 std::cout << "The answer is" << (1 + 2) * 4;
 return (0);
}

C++ flags this line with an error message because it doesn't recognize st d::co ut .

The st d::co ut functionality is defined in io st ream , so in order to use st d::co ut , we have to include io st ream in our
program. Edit the program as shown:

CODE TO TYPE:

#include <iostream>
#include <climits>
int main()
{
 (1 + 2) * 4;
 return (0);
}

When you compile the program, you'll no tice a warning triangle next to the line that contains the expression. Look in
the Co nso le panel to see the text associated with the warning:

The warning reminds us that our expression doesn't really do anything—we do not output its results or save them
anywhere.

 Save and run it. The output window contains abso lutely nothing. In particular, it does not contain the result o f the
calculation. The line (1 + 2) * 4 tells C++ to compute the value o f the expression, but nothing more. It doesn't store the
result anywhere, doesn't make a decision based on the result, and doesn't output it. C++ just computes the answer
and then throws it away.

This is perfectly legal, but pretty strange—so strange that the compiler issues a warning when you build it. That's why
you got the "no effect" warning. Let's fix the program by editing it as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is" << (1 + 2) * 4;
 return (0);
}

 Save and run it. You'll see this:

OBSERVE:

The answer is12

Do you see a problem in this code? That's right—we need a space between "is" and the answer. Add the space as
shown (we use an underscore here to represent the space):

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is_" << (1 + 2) * 4;
 return (0);
}

 Save and run it. Hmm. There's still a problem. See if you can spot it. We'll add another output statement (as shown
in blue below) to help illuminate the problem:

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is " << (1 + 2) * 4;
 std::cout << "The answer still is " << (1 + 2) * 4;
 return (0);
}

 Save and run it. The output looks like this:

OBSERVE:

The answer is 12The answer still is 12

Any additional output statements will be appended to the end o f this one. You need to add a newline at the end o f the
output line. Edit the program as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 std::cout << "The answer is " << (1 + 2) * 4 << std::endl;
 std::cout << "The answer still is " << (1 + 2) * 4 << std::endl;
 return (0);
}

 Save and run it to make sure that the problem has been corrected.

We covered a lo t in this lesson! We went over expressions, integers, and floating po int numbers. Now you're ready to tackle the
next lesson, where we'll discuss program structure and variables. See you there!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Variables
C++ 1: Introduction to C++ Lesson 3

Basic Programs
We have to walk before we can run, so we're go ing to learn to program for now in a subset o f the C++ language. Our
basic program structure is:

OBSERVE:

/* File heading comments */
#include directives
int main() {
 data declarations

 executable statements
 return (0);
}

Note

In some books and code examples, the dat a declarat io ns are placed before the int main line. In these
lessons, they come after it. At this stage, fo r the types o f programs we can currently write, either order will
work. (We'll learn the difference between the two types o f declarations later.)

It is easier to use Eclipse if you put the dat a declarat io ns just after the first brace ({).

The include direct ives, dat a declarat io ns, and execut able st at ement s sections are optional, so the shortest
possible C++ program would have all three sections omitted:

OBSERVE:

int main()
{
 return(0);
}

Such a program may appear to be useless, but it's actually a standard Linux/Unix command, true. It's used in shell
scripting as a command that always returns a good status (0) to the currently running script.

Variables
A variable is a bit o f your computer's memory, like a box, in which you can put a single item of data. We must declare
variables before we use them. In order to declare a variable, C++ needs two pieces o f information: the name and the
type (what the box is called, and what type o f box it is).

In order to pass this course, you'll need to add a third piece o f information: A comment explaining what the variable is
used for.

A variable name begins with a letter (upper or lower case) or an underscore (_), then continues with any combination
of letters, underscores, or digits. It cannot be the same as any C++ keyword.

For example, these are legal variable names:

OBSERVE:

box_width point_count today
whatever point3 dataField

These are not legal variable names:

http://www.freebsd.org/cgi/man.cgi?query=true&sektion=1&apropos=0&manpath=FreeBSD+7.2-RELEASE

OBSERVE:

3times // Begins with a digit
box-top // Contains hyphen

Variable names are usually lower case (size, f ull_size o r mostly lower case (Size, FullSize, f ullSize . Constants
are usually given upper-case-only names (PI, MAX_INT). Nothing in the language forces you to fo llow this
convention, but if you choose to ignore it, don't be surprised if a mob o f angry maintenance programmers shows up
outside your door with to rches and pitchforks.

Style Note: There are two major ways o f constructing variable names. The first is separating words with underscores:

OBSERVE:

box_width point_count data_size

The o ther is something called "CamelCase":

OBSERVE:

boxWidth pointCount dataSize

In practice, there's not a lo t o f difference in the readability o f the two styles, but there is a great benefit to picking one
style and sticking to it.

The style guide for this course requires you to use the underscore style.

Variable Definitions
A variable definition consists o f three parts:

OBSERVE:

{type} {name}; // {Comment explaining the variable}

The co mment is not optional—at least not in this course. The reason is that a program is a set o f instructions to the
computer that uses a unique (to that program!) vocabulary. I mean if you see a variable named cent er_po int in code,
the first question you are go ing to ask yourself is "Center o f what?" By commenting every variable declaration, you
produce a mini-dictionary describing every specialized word (variable) you use in your program. It makes
understanding the program much easier.

Variable Types: Integer
The C++ keyword for the integer type is int (Glossary integer, int). A integer variable declaration looks like this:

OBSERVE:

int x; // example variable

The int declaration tells C++ to declare an integer variable using the optimal size o f an integer fo r the machine. On
most machines, this allows numbers from 2147483647 to -2147483648 to be used. On some o lder systems, this is
just 32767 to -32768 and on some newer systems, it's −9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807.

This is the difference between 32-bit, 16-bit, and 64-bit integers. Unless you are interested in the technical details
regarding the physical storage o f integers within your computer's processor, you don't need to remember the
difference between bit sizes and number ranges. Instead, remember there are different ways to store this data and
remember to use the constants we saw earlier, such as INT _MAX.

Think o f a variable as a box. You can put a single integer in it and you can look in it and see what's in it. Let's look at
this in action. Create a pro ject named assign-exp in your C++1_Lesso ns working set, and a program named
assign-exp.cpp that contains the fo llowing code:

http://en.wikipedia.org/wiki/CamelCase
style.html
glossary.html#Variable
glossary.html#Integer
glossary.html#int

CODE TO TYPE:

// Put in the regular heading comments
#include <iostream>

int main() {
 int play; // An integer to play around with

 play = 5;
 std::cout << "The value of play is " << play << std::endl;
 return(0);
}

 Save and run it. This program assigns the variable play a single value and then uses it in an output. You'll see the
results:

OBSERVE:

The value of play is 5

The program stores "5" in the variable named play and then displays that value to you.

Variables can change values as programs execute, and play is no exception. Let's see how the value o f play changes
as the program executes. Change your program as shown:

CODE TO TYPE:

#include <iostream>
int main() {
 int play; // An integer to play around with
 std::cout << "At first, the value of play is " << play << std::endl;

 play = 5;
 std::cout << "The value of play is " << play << std::endl;

 play = -999;
 std::cout << "Finally, the value of play is " << play << std::endl;

 return(0);
}

 Save and run it. You should see the fo llowing output:

OBSERVE:

At first, the value of play is 0
The value of play is 5
Finally, the value of play is -999

If we stepped through the program, we'd see the value o f play after each line is executed. We might see the fo llowing:

Line value o f play

int play; undefined

std::cout << "At first, the value o f play is " << play << std::endl; undefined

play = 5; 5

std::cout << "The value o f play is " << play << std::endl; 5

play = -999; -999

std::cout << "The value o f play is " << play << std::endl; -999

return(0); -999

BUT WAIT! This table shows that the initial value o f play is undefined, but the output shows that it was 0 !

Before we assign play a value for the first time—before the play = 5 line—its value is not known, and cannot be
assumed to be anything. With this specific computer, compiler, and execution, the value happened to be 0 . A different
computer, compiler, o r execution could produce any o ther result, such as 100, 900, or -2147483648!

The bottom line: don't assume your variable has a value before you give it a value!

In C++, you can declare and initialize variables in one statement. Change assign-exp.cpp as shown:

CODE TO TYPE:

#include <iostream>
int main() {
 int play = 2; // An integer to play around with
 std::cout << "At first, the value of play is " << play << std::endl;

 play = 5;
 std::cout << "The value of play is " << play << std::endl;

 play = -999;
 std::cout << "Finally, the value of play is " << play << std::endl;

 return(0);
}

 Save and run it. You should see the fo llowing output:

OBSERVE:

At first, the value of play is 2
The value of play is 5
Finally, the value of play is -999

Variable Types: Floating Point
The int is just one o f C++'s built- in types. Another major type is the floating-po int number. Here's an example o f a
typical floating po int (f lo at) declaration and use. Create a pro ject named f lo at -play, assign it to the C++1_Lesso ns
working set, and in it, create a f lo at -play.cpp program as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 // Floating-point variable declaration...
 float area = 5.2 * 3.5; // Area of a rectangle

 std::cout << "The area is " << area << std::endl;
 return(0);
}

 Save and run it. You should see the fo llowing result:

OBSERVE:

The area is 18.2

Here we saved a step—we declared a variable named area and assigned it the value o f the expression 5.2 * 3.5 all in
a single line o f code. C++ does the math—it evaluates the expression and assigns 18.2 to the area variable.

Variable Types: Characters

The character (char) data type stores a single character. To be more specific, it stores a single character from the ASCII
character set. This character set provides for the letters a-z (upper and lower case), the digits 0-9 , a set o f punctuation
characters, and special control characters.

Glossary: ASCII Character Set.

Contro l characters are not printed, but instead contro l how the output appears on the screen.

Character constants are enclosed in single quotes: 'A', 'B', '?'.

Create a char-play pro ject, assign it to the C++1_Lesso ns working set, and in it, create char-play.cpp as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 char ch1; // First play character
 char ch2; // Second play character
 char ch3; // Third play character

 ch1 = 'A';
 ch2 = 'B';
 ch3 = 'C';
 std::cout << "The characters are " << ch1 << ch2 << ch3 << std::endl;
 return(0);
}

 Save and run it. You should see the fo llowing:

OBSERVE:

The characters are ABC

What happens if we try to shove more than one character into a variable? Try it! Change your program as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 char ch1; // First play character
 char ch2; // Second play character
 char ch3; // Third play character

 ch1 = 'A';
 ch2 = 'B';
 ch3 = 'CDEF';
 std::cout << "The characters are " << ch1 << ch2 << ch3 << std::endl;
 return(0);
}

See the warning? This is the first indication that something isn't quite correct.

glossary.html#ASCII

 Try running the program. You'll see something like:

OBSERVE:

The characters are ABF

Looks like the computer wasn't happy with our 'CDEF' character, so it dropped CDE without telling us. Warnings exist
fo r a reason—don't ignore them!

Escape Characters

There is a special character, the backslash (\), which is used to specify characters that cannot be typed inside
single quotes easily, such as tab ('\t') and newline ('\n'). In these cases, the backslash "escapes" from normal
rendering o f t and n, allowing you to represent tabs and newlines in program output.

Some of the escape characters are:

\b Backspace Move the cursor to the left one character.

\f Form feed Go to top o f a new page.

\n New line Go to the next line.

\r Return Go to the beginning o f the current line.

\t Tab Advance to the next tab stop (eight-co lumn boundary).

\' Apostrophe or single quotation mark The character ' .

\" Double quote The character ".

\\ Backslash The character \.

\nnn some character The character number nnn (octal).

\xNN some character The character number NN (hexadecimal).

Edit the program below, replacing the value we assign to ch2 as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 char ch1; // First play character
 char ch2; // Second play character
 char ch3; // Third play character

 ch1 = 'A';
 ch2 = '\n';
 ch3 = 'C';
 std::cout << "The characters are " << ch1 << ch2 << ch3 << std::endl;
 return(0);
}

 Save and run it and observe the output:

OBSERVE:

The characters are A
C

Now let's try something a little different. Change the value o f ch2 to \b, the backspace, as shown below:

CODE TO TYPE:

#include <iostream>
int main()
{
 char ch1; // First play character
 char ch2; // Second play character
 char ch3; // Third play character

 ch1 = 'A';
 ch2 = '\b';
 ch3 = 'C';
 std::cout << "The characters are " << ch1 << ch2 << ch3 << std::endl;
 return(0);
}

 Save and run it and observe the output:

OBSERVE:

The characters are A☐C

The display probably doesn't look correct—depending on how your computer handles the backspace
character, you might see anything from AC to A, some funny character, and then C.

Wide Characters

The char type suffers from the fact that it cannot deal with international alphabets. To help so lve this problem,
the wide character (wchar) type was created. While the char type defines 256 characters, wchar defines
65536.

However, there are languages (such as Chinese, Japanese, Farsi, Hebrew, and many o thers) that contain
even more than 65536 characters. To display characters from those languages, a character encoding system
called Unicode was created.

Support fo r wide and Unicode characters is dependent on the compiler and operating system that you are
using. We'll discuss this in a future lesson.

Boolean
The boo lean type (bo o l) can have the value t rue (which is also one, or 1) or f alse (which is also zero , or 0).

Create a pro ject named play-bool, assign the C++1_Lesso ns working set to it, and create the program file play-
bo o l.cpp as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 bool flag; // Boolean to play around with

 flag = true; // Set it to true
 std::cout << "Flag is " << flag << std::endl;

 flag = false; // Set it to false
 std::cout << "Flag is " << flag << std::endl;

 flag = (1 == 1); // == is the test for equality operator (expression is true)
 std::cout << "Flag is " << flag << std::endl;

 return(0);
}

 Save and run it. You should see the fo llowing output:

OBSERVE:

Flag is 1
Flag is 0
Flag is 1

The computer printed the underlying values for flag as it was set to true, then false, then true.

Originally, C did not have a boo lean type, so people defined their own. As a result, you may see things like BOOL,
BOOLEAN, Bo o l, T RUE, and FALSE in o lder books or code. Be aware that these are local, non-standard items.

Now the question comes up, "What should I do about legacy types in my code?" The best answer is, if the code works,
leave it alone. You could waste a lo t o f time and effort trying to improve working code and bring it up to current
standards, merely to make it do what it already does.

If you do have to go in and change something, and bringing the types up to date will not cause too much trouble, by all
means do so. But don't change anything just fo r the sake o f changing it.

Mixing Types
C++ is very flexible when it comes to mixing types. If it can figure out a conversion, it will silently allow you to assign a
constant o f one type (such as boo lean) to another (such as integer).

Here are the conversions that occur when mixing types:

Result
type

Expression
type Conversion

integer boo lean 1 for true, 0 for false (not guaranteed by the standard, but everyone I know of implements it
that way).

float boo lean Same as integer.

char integer
The character whose character number is the number being assigned. This depends on the
character set on your system. For most systems, this is ASCII, so assigning ch = 65 makes
ch an 'A' (ASCII character number 65).

integer float Integer after truncation. Note: If the value o f the float is bigger than the maximum size the
integer can handle, the integer will get the maximum value.

integer char The numeric value o f the character in the current character set.

float char The numeric value o f the character in the current character set.

boo lean Numeric If the number 0 (zero), the boo lean variable gets f alse . If non-zero , the value t rue is
assigned.

Let's try this. Change your program as shown:

CODE TO TYPE:

#include <iostream>
int main()
{
 bool flag; // Boolean to play around with

 flag = true; // Set it to true

 float test = flag; // will this work?
 flag = false;

 std::cout << "Flag is " << flag << std::endl;
 std::cout << "Test is " << test << std::endl;

 return(0);
}

http://www.cplusplus.com/doc/ascii/

 Save and run it. Your program happily stores the boo lean value 1 from f lag into t est . Also note that, even when
the value o f f lag changes to false (0), t est retains the value originally assigned to it:

OBSERVE:

Flag is 0
Test is 1

We learned a lo t about variables and types in this lesson! In the next lesson, we'll learn how to store many values o f the same
data type using arrays. See you then!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Arrays and For Loops
C++ 1: Introduction to C++ Lesson 4

Using Arrays
So far, we've only learned basic data types and every datum had a name. But suppose we want to calculate the
average grade for twenty students in a class. It's a lo t o f work to define twenty different variables, one for each number:

OBSERVE:

int student1; // A number we are going to average
int student2; // A number we are going to average
int student3; // A number we are going to average
// I'm not going to write out the whole thing.
...
int student20; // A number we are going to average

Arrays allow us to define a set o f data—like a group o f mailboxes at an apartment building. Compare this to a regular
variable (one that isn't an array)—it is like a mailbox outside o f a single house.

A regular (non-array) variable is just a single part o f your computer's memory, but an array is a chunk o f continuous
memory locations.

Here is how we'd declare an array to store the same set o f numbers:

OBSERVE:

int students[20]; // The numbers we are going to average

The elements o f the array are st udent s[0] through st udent s[19] . You might expect them to be 1 through 20, but in
C++, array element numbering starts at 0 . The numbers—0, 1, or 19—are indexes to the array.

The const Modifier

Our class might always have twenty students in it, but what if it changes, say, to 35? We would have to go
through our program, find all o f the 20 values relating to our st udent s array, and change them manually to
35 . This process is error-prone—after all, there may be occurrences o f 20 unrelated to the number o f
students, that we don't want to change!

Good programming practice dictates that we specify the size o f our class in one place, as a variable, and then
use that variable rather than the literal number in our program. Since our class size doesn't change very o ften,
we can tell C++ that the variable is a constant.

The co nst modifier defines a "variable" (actually a constant) whose value cannot be changed by the program
when it's running. C/C++ style conventions call fo r the names o f constants to be all upper case; fo r example,
co nst int CLASS_SIZ E = 35 .

How do constants work? Let's find out! Start a new pro ject named co nst ant s, assign it to the
C++1_Lesso ns working set, and in it, create a new source file named co nst ant s.cpp as shown:

CODE TO TYPE:

#include <iostream>

int main()
{
 const int CLASS_SIZE = 20;

 std::cout << "I have " << CLASS_SIZE << " students in my class." << std::end
l;

 return(0);
}

 Save and run it. If you typed everything correctly you will see the fo llowing:

OBSERVE:

I have 20 students in my class.

What happens if the program tries to change the value o f CLASS_SIZ E? Try it:

CODE TO TYPE:

#include <iostream>

int main()
{
 const int CLASS_SIZE = 20;

 std::cout << "I have " << CLASS_SIZE << " students in my class." << std::end
l;

 CLASS_SIZE = 35;
 std::cout << "Now I have "<< CLASS_SIZE << " students in my class." << std::
endl;

 return(0);
}

Save your code. This time your program won't compile, because you are trying to change a constant.

If your number is go ing to change in the middle o f a program run like this, it shouldn't be defined as a
constant. To fix this problem, you'd need to remove the word co nst from the variable declaration and change
the variable name to an appropriate style, fo r example, class-size .

You should use named constants to specify the dimensions o f arrays; fo r example, int

st udent s[CLASS_SIZ E] .

Good programming style dictates that you should always use named constants in this way. In o ther words,
the dimension specification o f an array should never be just a number like 20.

Our first array

Now let's look at arrays in action. Create a new pro ject named average , assign it to the C++1_Lesso ns
working set, and in it, create average.cpp as shown:

CODE TO TYPE:

#include <iostream>

int main()
{
 const int CLASS_SIZE = 5;

 float average = 0.0; // average of the items
 float total = 0.0; // the total of the data items
 float students[CLASS_SIZE]; // data to average and total

 students[0] = 34.0;
 students[1] = 27.0;
 students[2] = 46.5;
 students[3] = 82.0;
 students[4] = 22.0;

 total = students[0] + students[1] + students[2] + students[3] + students[4];
 average = total / CLASS_SIZE;
 std::cout << "Total " << total << " Average " << average << std::endl;
 return (0);
}

 Save and run it. You should see the fo llowing result:

OBSERVE:

Total 211.5 Average 42.3

Remember how we could declare a variable and set its value at the same time? You can also do that fo r
arrays, using {braces}. Change your program as shown:

CODE TO TYPE:

#include <iostream>

int main()
{
 const int CLASS_SIZE = 5;

 float average = 0.0; // average of the items
 float total = 0.0; // the total of the data items
 float students[CLASS_SIZE] = { 34.0, 27.0, 46.5, 82.0, 22 }; // data to av
erage and total

 students[0] = 34.0;
 students[1] = 27.0;
 students[2] = 46.5;
 students[3] = 82.0;
 students[4] = 22.0;

 total = students[0] + students[1] + students[2] + students[3] + students[4];
 average = total / CLASS_SIZE;
 std::cout << "Total " << total << " Average " << average << std::endl;
 return (0);
}

 Save and run it. You should see the same results as before.

Our code so far looks good, but our to tal calculation is a bit unwieldy because we'll have to change the
formula each time we change the CLASS_SIZ E. Let's see how we can fix that!

for loops
We can have the computer calculate the to tal fo r us—after all, it knows how big CLASS_SIZE is! To do this, we can use
a for loop—which executes a block o f code a specified number o f times. Change your program as shown:

CODE TO TYPE:

#include <iostream>

int main()
{
 const int CLASS_SIZE = 5;

 int x;

 float average = 0.0; // average of the items
 float total = 0.0; // the total of the data items
 float students[CLASS_SIZE] = { 34.0, 27.0, 46.5, 82.0, 22 }; // data to average a
nd total

 total = students[0] + students[1] + students[2] + students[3] + students[4];
 for (x = 0 ; x < CLASS_SIZE ; x = x + 1)
 {
 total = total + students[x];
 }

 average = total / CLASS_SIZE;
 std::cout << "Total " << total << " Average " << average << std::endl;
 return (0);
}

 Save and run it. You should see the same output as before:

OBSERVE:

Total 211.5 Average 42.3

So... how does the f o r loop work? Take a look at the code:

OBSERVE:

for (x = 0 ; x < CLASS_SIZE ; x = x + 1)
{
 total = total + students[x];
}

In English, this loop might be written this way: "fo r x st art ing at zero , while x is less t han CLASS_SIZ E, x is
increment ed by o ne after we add each st udent value t o t he t o t al.

Since x starts at zero and our CLASS_SIZE is 5, the code t o t al = t o t al + st udent s[x] will run five times—with x
having the values 0 , 1, 2, 3, and 4.

A for loop typically has these parts:

OBSERVE:

for (/* Initialization */ ; /* Test */ ; /* Increment */)
{
 /* body of loop */
}

In our loop:

x = 0 is the init ializat io n co de . Arrays start at zero , so x must start at zero as well.
x < CLASS_SIZ E is the t est co de . Our array only has the number o f elements (5) specified by
CLASS_SIZE, but the indexes start at 0 so the last index will be 4; therefore, we want to stop looping before
x is equal to CLASS_SIZE.
x = x + 1 is the increment code. x will increase by one after each iteration.
t o t al = t o t al + st udent s[x] is the bo dy o f lo o p code, which updates the to tal.

To really see what the for loop is do ing, let's add some code to show the values o f x and t o t al inside the loop while
it's running:

CODE TO TYPE:

#include <iostream>

int main()
{
 const int CLASS_SIZE = 5;

 int x;

 float average = 0.0; // average of the items
 float total = 0.0; // the total of the data items
 float students[CLASS_SIZE] = { 34.0, 27.0, 46.5, 82.0, 22 }; // data to average a
nd total

 for (x = 0 ; x < CLASS_SIZE ; x = x + 1)
 {
 total = total + students[x];
 std::cout << "Students[x = " << x << "]: " << students[x] << "; total: " << to
tal << std::endl;
 }

 average = total / CLASS_SIZE;
 std::cout << "Total " << total << " Average " << average << std::endl;
 return (0);
}

 Save and run it and observe the output:

OBSERVE:

Students[x = 0]: 34; total: 34
Students[x = 1]: 27; total: 61
Students[x = 2]: 46.5; total: 107.5
Students[x = 3]: 82; total: 189.5
Students[x = 4]: 22; total: 211.5
Total 211.5 Average 42.3

A for loop can really make short work o f a big list! Suppose our class size grows to ten. We can quickly update our
program to handle this, simply by updating CLASS_SIZ E and entering values for the additional students. Update your
program as shown. Remember, arrays are zero-based, so we are adding students 5 through 9 .

CODE TO TYPE:

#include <iostream>

int main()
{
 const int CLASS_SIZE = 10;

 int x = 0;

 float average = 0.0; // average of the items
 float total = 0.0; // the total of the data items
 float students[CLASS_SIZE] =
 { 34.0, 27.0, 46.5, 82.0, 22, 72.3, 55.9, 91.2, 90.0, 43.8 }; // data to avera
ge and total

 for (x = 0 ; x < CLASS_SIZE ; x = x + 1)
 {
 total = total + students[x];
 std::cout << "Students[x = " << x << "]: " << students[x] << "; total: " << to
tal << std::endl;
 }

 average = total / CLASS_SIZE;
 std::cout << "Total " << total << " Average " << average << std::endl;
 return (0);
}

 Save and run it. See how we didn't have to change the rest o f the program—it just worked! Your output should look
like this:

OBSERVE:

Students[x = 0]: 34; total: 34
Students[x = 1]: 27; total: 61
Students[x = 2]: 46.5; total: 107.5
Students[x = 3]: 82; total: 189.5
Students[x = 4]: 22; total: 211.5
Students[x = 5]: 72.3; total: 283.8
Students[x = 6]: 55.9; total: 339.7
Students[x = 7]: 91.2; total: 430.9
Students[x = 8]: 90; total: 520.9
Students[x = 9]: 43.8; total: 564.7
Total 564.7 Average 56.47

Array Safety
C++ makes it easy to store a lo t o f information in an array. What happens if you make a mistake—like accidentally loop
over too many array elements? Edit the program as shown:

CODE TO TYPE:

//**
//*** WARNING: In order to see what happens when we violate the rules, this program del
iberately overflows an array.
//**
#include <iostream>

int main()
{
 const int CLASS_SIZE = 10;

 int x = 0;

 float average = 0.0; // average of the items
 float total = 0.0; // the total of the data items
 float students[CLASS_SIZE] =
 { 34.0, 27.0, 46.5, 82.0, 22 72,3, 55.9, 91.2, 90.0, 43.8 }; // data to averag
e and total

 for (x = 0 ; x < 15 ; x = x + 1) // OOPS!!
 {
 total = total + students[x];
 std::cout << "Students[x = " << x << "]: " << students[x] << "; total: " << to
tal << std::endl;
 }

 average = total / CLASS_SIZE;
 std::cout << "Total " << total << " Average " << average << std::endl;
 return (0);
}

Save the file. No error or warnings will be generated, because the computer assumes you know what you are do ing,
and has not checked to make sure you are staying within the bounds o f the st udent s array. What happens when you
try to run the program? Run it to find out!

 Your program may run, and it may crash. If it runs, you might see output like this:

OBSERVE:

Students[x = 0]: 34; total: 34
Students[x = 1]: 27; total: 61
Students[x = 2]: 46.5; total: 107.5
Students[x = 3]: 82; total: 189.5
Students[x = 4]: 22; total: 211.5
Students[x = 5]: 72.3; total: 283.8
Students[x = 6]: 55.9; total: 339.7
Students[x = 7]: 91.2; total: 430.9
Students[x = 8]: 90; total: 520.9
Students[x = 9]: 43.8; total: 564.7
Students[x = 10]: 3.21401e-039; total: 564.7
Students[x = 11]: 5.95261e-039; total: 564.7
Students[x = 12]: 1129.4; total: 1129.4
Students[x = 13]: 0; total: 1129.4
Students[x = 14]: 1.96182e-044; total: 1129.4
Total 211.5 Average 21.15

See the junk added at the end? Your specific output may look different. C++ didn't check to make sure you were
staying within the bounds o f your array, and happily went on with the program. It is like trying to get mail out o f 15
mailboxes, when only 10 physical mailboxes exist in your apartment building.

What happens if we try to write to an array location outside o f CLASS_SIZE? Try it:

Code to Edit: average.cpp

//**
//*** WARNING: In order to see what happens when we violate the rules, this program del
iberately overflows an array.
//**
#include <iostream>

int main()
{
 const int CLASS_SIZE = 10;

 int x = 0;

 float average = 0.0; // average of the items
 float total = 0.0; // the total of the data items
 float students[CLASS_SIZE] =
 { 34.0, 27.0, 46.5, 82.0, 22 72,3, 55.9, 91.2, 90.0, 43.8 }; // data to averag
e and total

 students[500] = 500.0;

 for (x = 0 ; x < 15 ; x = x + 1) // OOPS!!
 {
 total = total + students[x];
 std::cout << "x: " << x << " students[x]: " << students[x] << " total: " << to
tal << std::endl;
 }

 average = total / CLASS_SIZE;
 std::cout << "Total " << total << " Average " << average << std::endl;
 return (0);
}

Save the file. Once again, no error or warnings are generated, because the computer assumes you know what you are
do ing and has not checked to make sure you are staying within the bounds o f the st udent s array. What happens
when you try to run the program?

 Run it to find out! Your program will crash, and give an error like this:

C++ did not check to make sure your array index o f 500 was valid. Instead, that line executed, and crashed your
program. In C++, when you try to access or write something you are not supposed to access, any o f these things
might happen:

your program could crash.
your computer could crash, depending on the operating system.
your program could run and calculate things incorrectly.
your program could run normally, only to crash later (perhaps waiting until it's shipped to 10,000
customers, when it suddenly decides to wipe out all their important data!).

If you remember the good o ld days o f computers and operating systems—MS-DOS, Windows 95, and MacOS 7, to
name a few—you probably remember bugs in applications that could crash the entire computer. Those bugs were
often array problems just like this!

In some other languages, you might not need to worry so much about checking your array indices. In C++, you do. In a

future course, we will discuss ways to double-check your programs to make sure you are accessing arrays correctly.

Note
In the real world, almost no one checks the array indices before using them to access an array. Instead,
they run without checking and spend millions o f do llars later to debug the strange and hard-to-find bugs
caused by bad index values. CHECK YOUR CODE!

We covered a lo t in this lesson! We learned how to use arrays, and how to loop over arrays using for loops. In the next lesson
we'll learn about another type o f variable: strings. See you then!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

C++ Strings
C++ 1: Introduction to C++ Lesson 5

Strings in C++
Strings are sequences o f characters you can use in a computer program. There are two basic ways to use strings—the
newer C++ style strings (which we will learn about in this lesson), and o lder "C-Style" strings that we will review in the
next lesson.

To use C++ strings, we need to #include <st ring> at the top o f our programs. We can then declare a string with a
statement like:

OBSERVE:

std::string variableName; // comment

Let's see how this works. Create a pro ject named st ring, assign it to the C++1_Lesso ns working set, create a source
file named st ring.cpp, and enter the fo llowing code:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name

 first = "Joyce";
 last = "Kilmer";

 std::cout << "My name is " << first << " " << last << std::endl;
 return(0);
}

Replace we'll use Joyce Kilmer in the examples, but you should replace Joyce and Kilmer with any names you like. As
you can see, string constants are enclosed in double quotes ("). Remember that character constants are enclosed in
single quotes ('). It might help to remember that one tick (') is fo r a single character and multiple ticks (") fo r multiple
characters (strings).

 Save and run the program. You'll see something like:

OBSERVE:

My name is Joyce Kilmer

Excellent! So far, strings work exactly like any o ther variable such as an int o r f lo at .

We learned how to add two numbers in a previous lesson. You can perform a similar operation on strings—using the
plus operator (+), you can concatenate two strings. To see how this works, change your program as shown:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name

 first = "your first name";
 last = "your last name";
 full = first + " " + last;

 std::cout << "My name is " << full << std::endl;
 return(0);
}

 Save and run it. You'll see the same output:

OBSERVE:

My name is Joyce Kilmer

In this program, we concatenated the two variables f irst and last (with the space " " in between). What if we tried to
concatenate "Jo yce" , a space, and "Kilmer" directly? Change your program as shown:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name

 first = "Joyce";
 last = "Kilmer";
 full = "Joyce" + " " + "Kilmer";

 std::cout << "My name is " << full << std::endl;
 return(0);
}

Oops! Looks like C++ isn't happy with us. It gives the fo llowing error:

This is because o f the way the concatenate (+) operator is defined. There must be a st d::st ring on at least one side o f
the +.

Change your program to fix this problem:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name

 first = "Joyce";
 last = "Kilmer";
 full = first + " " + "Kilmer";

 std::cout << "My name is " << full << std::endl;
 return(0);
}

 Save and run it; you'll see the same results as before.

Characters in strings

You can access any character in the string using the subscript ([]) operator. Change st ring.cpp as shown:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name
 char first_initial; // The first initial

 first = "Joyce";
 last = "Kilmer";
 full = first + " " + last;
 first_initial = first[0]; // Assigns first_initial the value 'J'.

 std::cout << "My first initial is " << first_initial << std::endl;
 return(0);
}

 Save and run it, and observe the output:

OBSERVE:

My first initial is J

This [] syntax might remind you o f an array. This is because a string is just like an array o f characters!

There is a problem here—the index is not checked in this operation. So if the index is out o f range, the
expression returns an undefined value. In o ther words, this operation is not safe—and you know how we feel
about safety!

Fortunately, there is another way o f getting the character, the at () function. Change the program as shown:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name
 char first_initial; // The first initial

 first = "Joyce";
 last = "Kilmer";
 full = first + " " + last;
 first_initial = first.at(0); // Assigns first_initial the value 'J'. This is
 the safe way of doing this.

 std::cout << "My first initial is " << first_initial << std::endl;
 return(0);
}

 Save and run it. You'll see the same output as before:

OBSERVE:

My first initial is J

Now just fo r fun, change the line that gets the first initial to attempt to grab character 99 (an illegal index), as
shown below:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name
 char first_initial; // The first initial

 first = "Joyce";
 last = "Kilmer";
 full = first + " " + last;
 first_initial = first.at(99); // Assigns first_initial the value 'J'. This i
s the safe way of doing this

 std::cout << "My first initial is " << first_initial << std::endl;
 return(0);
}

 Save and run it. You'll see the fo llowing on the conso le:

OBSERVE:

This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

The program can't access the 99th character in the string, so it threw in the towel. This isn't quite a crash, but it
isn't a good way to end your program.

Other Functions

One of the more common things to do with a string is to extract a substring; fo r example, some substrings o f
the full name "Jo yce Kilmer" are "Joyce," "e Ki," and "Kilmer."

C++ strings let you take substrings using the subst r function. Let's try it!

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name
 char first_initial; // The first initial

 first = "Joyce";
 last = "Kilmer";
 full = first + " " + last;
 first_initial = first.at(99); // Assigns first_initial the value 'S'. This i
s the safe way of doing this

 std::cout << "My substring is " << full.substr(4, 5) << std::endl;
 return(0);
}

 Save and run it. You will see the fo llowing output:

OBSERVE:

My substring is e Kil

Let's take a look at the substr code:

OBSERVE:

full.substr(4, 5)

The 4 is the position o f the starting character fo r the substring—in this case, the 'e' in Joyce. The 5 is the
length o f the substring—in this example, the program returns the characters 'e,' space, 'K,' 'i,' and 'l.'

If you omit the second number, a different substring is returned. Try it:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name

 first = "Joyce";
 last = "Kilmer";
 full = first + " " + last;

 std::cout << "My substring is " << full.substr(4, 5) << std::endl;
 return(0);
}

 Save and run it. This time you will see:

OBSERVE:

My substring is e Kilmer

C++ also has a function to tell you how many characters are in a string. It's called lengt h()—let's try it:

CODE TO TYPE:

#include <iostream>
#include <string>

int main()
{
 std::string first; // First name
 std::string last; // Last name
 std::string full; // The full name

 first = "Joyce";
 last = "Kilmer";
 full = first + " " + last;

 std::cout << "My name has " << full.length() << " characters in it." <<std::
endl;
 return(0);
}

 Save and run it. Sure enough, it counts the characters, including spaces!

OBSERVE:

My name has 12 characters in it.

In the next lesson we will learn more about strings and discuss C-Strings. See you then!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

C-Style Strings
C++ 1: Introduction to C++ Lesson 6

What is a C-Style String?
In the last lesson we learned about C++ strings. There is an additional, different type o f string—the C-style string.

C-style strings are the primary string type o f the C language. Since C++ is a superset o f C, it too has use C-style
strings. In previous lessons we examined characters and arrays—a C-style string is essentially an array o f characters
with the special character null ('\0 ') at the end.

Since C-style strings are arrays, they have a fixed maximum length. "Dynamic" strings are possible, but they require
the programmer to manually manage memory—a process that is full o f pitfalls and gotchas. Many security problems
and bugs refer to buffer overflows—which are typically errors with C-style strings that result in memory corruption.

There are many who believe that you should never have a C-style string in a C++ program. Unfortunately "should" and
the "real world" are two quite different things. There is still a lo t o f legacy code out there that uses C-style strings. As a
programmer in the real world, you will see this type o f string and have to deal with it.

So let's start with an experimental C-style string program. Create a pro ject named c-st ring, assign it to your
C++1_Lesso ns working set, and create a program c-st ring.cpp containing the fo llowing:

Code to Type: c-string.cpp

#include <iostream>

int main()
{
 char name[] = {'S', 'a', 'm', '\0'}; // The name for this example

 std::cout << "The name is " << name << std::endl;
 return(0);
}

This assigns the value "Sam" to a C string name , which can be output to st d::co ut .

 Save and run it, and observe the output:

OBSERVE:

The name is Sam

Now what would happen if you didn't end the string with '\0 '? Let's see. Change your program as shown:

Code to Edit: c-string.cpp

#include <iostream>
int main()
{
 char name[] = {'S', 'a', 'm', '\0'}; // The name for this example
 char other[] = {'J', 'o', 'e'}; // Another name with an error

 std::cout << "The name is " << name << " and other is " << other << std::endl;
 return(0);
}

 Save and run it, and observe the output:

OBSERVE:

The name is Sam and other is Joew

http://en.wikipedia.org/wiki/Buffer_overflow

Your actual output might differ from this example—in fact, it might even look normal. This is another situation where the
behavior is undefined. If you do not put an end-of-string marker (\0) in your C-style string, it is anybody's guess what
will occur.

Remember when we accidentally used an array element we weren't supposed to use? What happened? Because there
was no end-of-string marker, C++ did not stop at the end o f o t her. It continued to write out characters from random
memory until it actually found an end-of-string character.

C++ allows for even more compact initialization, using double quotes ("). Let's use it to fix the error:

Code to Edit: c-string.cpp

#include <iostream>
int main()
{
 char name[] = {'S', 'a', 'm', '\0'}; // The name for this example
 char other[] = "Joe"; // Another name with an error

 std::cout << "The name is " << name << " and other is " << other << std::endl;
 return(0);
}

This form of initialization creates an array four characters long and assigns it four character values, the fourth and last
being the end-of-string character.

 Save and run it, and observe the output:

OBSERVE:

The name is Sam and other is Joe

You cannot assign a value to an existing C-style string. This is because a C string is an array and you cannot change
its value like you can with o ther variables. Try it:

Code to Edit: c-string.cpp

#include <iostream>
int main()
{
 char name[] = "Sam"; // The name for this example
 char other[] = "Joe"; // Another name with an error
 name = "Joe"; // Will this work?

 std::cout << "The name is " << name << " and other is " << other << std::endl;

 return(0);
}

When you save this file you will see an error:

This error is generated because C strings require the programmer to worry about memory and do extra work when
copying them. Think o f the mailbox analogy from the array lesson—here we created a mailbox with three slo ts,
containing the values "S," "a," and "m." Using name = "Jo e"; is like buying a new mailbox with three slo ts and trying
to shove the new mailbox with slo ts "J", "o" and "e" where the o ld mailbox is still hanging.

Instead o f trying to smash one mailbox in place o f another, we must manually open each slo t and copy the contents
from the new to the o ld. This is done using the st rncpy() function (see the reference information at cplusplus.com).
Note this reference uses an o ld header file (st ring.h) instead o f the current one (cst ring).

This function has three parameters:

strncpy() Syntax

std::strncpy(destination , source , size);

dest inat io n is where the data is to be put, so urce is the source o f the data, and size is the maximum number o f
characters to put in the destination.

Before we can use st rncpy, we need to get out our tape measure—an operator named sizeo f () . sizeof() returns the
size o f something in "char" units. If we use it on a C-style string, it will return the maximum number o f characters that
can be stored in the string.

This is very important because our strings (mailboxes) are fixed in size. If we try to copy too many characters from our
new mailbox to the o ld, bad things could happen. Copying too many characters is yet another way to overflow the
buffer and possibly cause the program to crash.

Let's see an example. Edit c-st ring.cpp as shown:

Code to Edit: c-string.cpp

#include <cstring>
#include <iostream>

int main()
{
 char name[4];// Short name

 std::cout << "Size is " << sizeof(name) << std::endl;
 std::strncpy(name, "Joe", sizeof(name));
 std::cout << "Name is now " << name << std::endl;

 return (0);
}

 Save and run it. You'll see:

OBSERVE:

Size is 4
Name is now Joe

You might be wondering why you see Size is 4—after all, Jo e is only three letters long! The fourth character is the end
of string ('\0 ') null character. Remember: this character is required, so you must take it into account.

What happens when we try to copy a larger string into a smaller variable? Let's try it:

http://www.cplusplus.com/reference/clibrary/cstring/strncpy/

Code to Edit: c-string.cpp

#include <cstring>
#include <iostream>

int main()
{
 char name[4]; // Short name

 std::cout << "Size is " << sizeof(name) << std::endl;
 std::strncpy(name, "Joe", sizeof(name));
 std::cout << "Name is now " << name << std::endl;

 std::strncpy(name, "Steve", sizeof(name));
 std::cout << "Name is now " << name << std::endl;

 return (0);
}

 Save and run it. This time, you'll see something like this:

OBSERVE:

Size is 4
Name is now Joe
Name is now Stev a"

The output from your program may be slightly different, see how "Steve" wasn't copied correctly, and the output
contains extra characters?

We used the sizeo f operator to compute the maximum number o f characters that can be stored in the variable name .
This included the null character. "Steve" is six characters—"Steve" plus the end-of-string character.

If the source string has fewer characters than the size o f the array, then st d::st rncpy() copies the string and adds an
end-of-string ('\0 ') to the end. But since the source is bigger here, it copies size's number o f characters and does not
append the end-of-string. So in order to make things work, we must do so ourselves:

Code to Edit: c-string.cpp

#include <cstring>
#include <iostream>

int main()
{
 char name[4]; // Short name

 std::cout << "Size is " << sizeof(name) << std::endl;
 std::strncpy(name, "Joe", sizeof(name));
 std::cout << "Name is now " << name << std::endl;

 std::strncpy(name, "Steve", sizeof(name));
 name[sizeof(name)-1] = '\0';
 std::cout << "Name is now " << name << std::endl;

 return (0);
}

Since sizeo f (name) is 4 in our example, sizeo f (name)-1 will be 3. Remember arrays (and C-style strings, which
are arrays o f characters) are zero-based, so 3 is the last mailbox in the name string.

 Save and run it. This time you'll see:

OBSERVE:

Size is 4
Name is now Joe
Name is now Ste

We only see the first three characters o f "Steve" because name is only big enough to contain four characters—"Ste"
plus the null character. Believe it o r not, changing the size o f C-style strings is not as straightforward as you might
expect. That topic will be covered in a future course.

Concatenation of C-Style Strings
In the last lesson, we covered the lengt h() function for C++-style strings. The function st d::st rlen() returns the length
of a C-style string. In o ther words, it returns the number o f characters actually in the string, as opposed to sizeo f () ,
which returns the capacity.

The function to perform concatenation o f C-style strings is st d::st rncat () . Unlike concatenation o f C++ strings,
concatenation o f C-style strings requires some planning to make sure you don't overflow any buffers. The function
takes three parameters:

OBSERVE:

std::strncat(destination , source, size);

You must carefully calculate size in order to make sure you don't overflow the dest inat io n. The easiest way to do
this is to always use the fo llowing code:

Concatenation Design Pattern

std::strncat(destination , source, sizeof(dest) - std::strlen(dest) - 1);
destination[sizeof(destination)-1] = '\0';

The calculation for the size parameter fo r st d::st rncat () works like this:

Co de Descript io n

sizeof(destination) Start with the size o f the destination string in characters.

- std::strlen(destination) Subtract the number o f characters already in the string.

- 1 Subtract one more for the end-of-string ('\0 ') character.

Let's try an example! Edit c-st ring.cpp as shown:

Code to Edit: c-string.cpp

#include <cstring>
#include <iostream>

int main()
{
 char name[25]; // Short name with plenty of space

 std::cout << "Size is " << sizeof(name) << std::endl;
 std::strncpy(name, "Joe", sizeof(name));
 std::cout << "Name is now " << name << std::endl;

 std::strncat(name, " Smith", sizeof(name) - std::strlen(name) - 1);
 name[sizeof(name)-1] = '\0';
 std::cout << "Name is now " << name << std::endl;

 return (0);
}

 Save and run it, and observe the output:

OBSERVE:

Size is 25
Name is now Joe
Name is now Joe Smith

Success!

Comparing Strings
The C-style string comparison function is st d::st rcmp() . It takes two parameters:

OBSERVE:

std::strcmp(string1, string2)

It returns:

0 if the strings are equal
A positive value if the first character that does not match has a greater value in string1 than in string2
A negative value if the first character that does not match has a greater value in string2 than in string1

Let's see how it works. Create a co mpare-c pro ject and assign it to your C++1_Lesso ns working set. Then, create a
program named co mpare-c.cpp as shown:

Code to Type: compare-c.cpp

#include <cstring>
#include <iostream>

int main()
{
 char str1[] = "Steve";
 char str2[] = "Steven";

 int result = std::strcmp(str1, str2);
 std::cout << "Result is " << result << std::endl;
 return (0);
}

 Save and run it, and observe the output:

OBSERVE:

Result is -1

You might be asking yourself why we can't use the == equality operator to check to see if two strings are the same.
Let's try it to see how it might work:

Code to Edit: compare-c.cpp

#include <cstring>
#include <iostream>

int main()
{
 char str1[] = "Steve";
 char str2[] = "Steve";

 if (str1 == str2)
 {
 std::cout << "Same!" << std::endl;
 }
 else
 {
 std::cout << "Not the same!" << std::endl;
 }

 return (0);
}

 Save and run it, and observe the output:

OBSERVE:

Not the same!

Why is this? The two strings obviously have the same value.

Using our mailbox metaphor, the == equality operator checks to see if the two mailboxes are the same (like if they
have the same serial number)—it doesn't check their contents. This fails because the mailboxes are not the same.

Tips

Converting C++ Strings to C-Style Strings

You can convert from C-style strings to C++ style strings, and vice versa. To get a C-style string from a C++-
style string, use the c_st r() function. You can assign a C-style string to a C++-style string. Try it:

Code to Edit: c-string.cpp

#include <iostream>
int main()
{
 char name[] = "Sam"; // The name for this example
 char other[] = "Joe"; // Another name
 char c_style[4]; // New variable to hold C++ string

 std::string cpp_style;

 cpp_style = name; // Assigning to a C++-style string

 std::strncpy(c_style, cpp_style.c_str(), 4); // Copy C-string to a variabl
e

 std::cout << "The name is " << name << " and other is " << other << std::en
dl;
 std::cout << "cpp_style as a C-style string is " << c_style << std::endl;

 return(0);
}

In this example we:

1. Copied a C-style string to a C++ style string, using direct assignment: cpp_style = name
2. Copied a C++ string to a C-style string, using c_str() and std::strncpy

 Save and run it, and observe the output. To us, the results look the same:

OBSERVE:

The name is Sam and other is Joe
cpp_style as a C-style string is Sam

Unsafe String Functions

Many people don't use the string copy design pattern we provided, and thus buffer overflow problems occur in
many programs. Instead, they use the function std::strcpy(). The standard form of this function is:

Unsafe Use o f strcpy()

// Unsafe. Do not use.
std::strcpy(destination, source);

Where dest inat io n is where the data will be copied into and so urce is the string to copy.

Parano id programmers will ask themselves "What happens if the source is bigger that the destination?" The
st rcpy() function does not check length and if the source is too big, it will happily write random memory,
corrupting your program.

Tip Parano ia, in programmers, is actually a good quality.

In the style guide, we recommend that you not use the st rcpy() function.

In the real world, you might encounter legacy code containing st rcpy()—a lo t o f code still uses this function.
So, what should you do when you see it? Ideally, to make the program safe, replace all st rcpy() functions
with st rncpy() , but any time you change a program there is risk—for example, you may not make the change
correctly. If the code is working, even if it is messy, the best thing to do is to leave it alone. Unless there is a
bug in the program that fo rces you to rewrite the code, leave working code alone.

There are two times you would want to upgrade st rcpy() to the C-string st rncpy() design pattern. The first is
if you are changing the code anyway. (Always leave code better than when you found it.) The second is when
you are trying to track down a memory corruption bug—in this case, the change might fix the bug.

Another unsafe function is std::strcat(). It performs much the same function as st d::st rcpy() , except that it
does concatenation instead o f copying.

std::strcat (unsafe)

// Unsafe. Do not use.
std::strcat(destination, source);

This function adds the so urce string to the end o f the dest inat io n with no regard for the size of the
destination.

The future of strcpy() and strcat()

People have done all sorts o f things to get around the limitations o f st rcpy() and st rcat () fo r years.
Currently, the OpenBSD fo lks have devised new functions, st rlcpy() and st rlcat () , designed to overcome
the safety problems with st rcpy() and st rcat () , respectively. However, their effo rt has not made it into the
standard yet.

For more information, see strlcopy in Wikipedia.

Comparisons to other types

C Strings vs. Arrays of Characters

http://www.cplusplus.com/reference/clibrary/cstring/strcpy/
style.html
http://www.cplusplus.com/reference/clibrary/cstring/strcat/
http://en.wikipedia.org/wiki/Strlcpy

C-style strings and arrays o f characters are two different things. An array o f characters is o f fixed length and
contains no markers or o ther special characters. In o ther words, char name[50] contains 50 characters o f
any type, no more or less.

Note In a character array, the null character ('\0 ') need not be present; it's just another character, with
no special meaning.

A C-style string is built on the character array type. It states that you have an array o f characters, with an end-
of-string marker ('\0 ') to end it. So, null ('\0 ') cannot be part o f the string.

So all C-style strings are arrays o f characters, but all arrays o f characters are not C-style strings. Let's try an
example. Edit your co mpare-c.cpp program as shown:

Code to Edit: compare-c.cpp

#include <cstring>
#include <iostream>

int main()
{
 char state[2] = {'C','A'};

 std::cout << "This probably looks funny: " << std::endl;
 std::cout << state << std::endl;

 std::cout << "This looks better: " << std::endl;
 std::cout << state[0] << state[1] << std::endl;

 return (0);
}

You might look at the state declaration and think it is an error, that it should be char st at e[3] in order to
reserve one character fo r the end o f string.

But this is not a mistake. st at e is not a C-style string; it's a character array. It ho lds two characters. No more,
no less (there are no one-character state name abbreviations).

 Save and run it, and observe the output. Generally, you'll see something like:

OBSERVE:

This probably looks funny:
CA ÿ"
This looks better:
CA

When you use st d::co ut << st at e << , C++ will assumes that state is a C-style string (it's not). It will then
look for the end-of-string marker (there is none) and write the state abbreviation fo llowed by some random
garbage.

You must write a character array one character at a time:

Writing a Character Array

std::cout << state[0] << state[1] << std::endl;

T he bo t t o m line: You can write out a C-style string using << but not a character array.

C-Style vs. C++ Style

There are advantages and disadvantages to using each type o f string.

Size C++ strings can store any length string automatically. You must explicitly declare the

Size maximum size o f C-style strings.

Memory

The memory used by C-style strings is precisely contro lled. They do not grow or shrink
depending on what data you put into them. C++ style strings manage their own memory.
They can grow and shrink. They can also use memory in surprising ways if you are not
careful.

Operations
Almost all o f the operations you can use on C++ style strings are safe. Almost all o f the
operations you can use on C-style strings can be dangerous. You must be very careful about
safety so you do not cause any buffer overflows.

Efficiency
C-style strings are more efficient that C++ style strings. However, as a practical matter, most
programs are not CPU limited so efficiency makes little difference in a program. Safety does,
and that's where C++ style strings win.

OS
Interaction

If you are interacting directly with an operating system like Windows or Linux, you will find that
many o f the lower-level operating system functions (raw read and o thers) use C-style
strings as arguments. This means that if you pass data from one part o f the OS to another,
C-style strings are more efficient.

Have you had enough o f strings yet? In our next lesson we'll finally move on from output to input, and we'll start learning how to
make decisions in our programs. See you there!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Reading Data and if
C++ 1: Introduction to C++ Lesson 7

Reading Strings
In earlier lessons we used st d::co ut to output data to the conso le. If we want to read data in from the conso le, we can
use—surprise!—st d::cin.

Let's look at a short program that demonstrates the use o f st d::cin. Create a pro ject named reading, assign it to the
C++1_Lesso ns working set, then type a reading.cpp program in it as shown:

Code to Type: reading.cpp

#include <iostream>

int main() {
 std::string name;

 std::cout << "Enter your name: ";
 std::cin >> name;

 std::cout << "You typed " << name << std::endl;
 return (0);
}

 Save and run it. Enter a first name, a space, and a last name (separated by a space) and press Ent er. You see
something like:

OBSERVE:

Enter your name: Jimi Hendrix
You typed Jimi

The program only reads the first name. You probably know "Jimi" by his first name, but that won't work for everyone!

But all is not lost! The so lution is to use the standard function std::getline. The general fo rm of this function is:

getline syntax

std::getline(input-stream , string);

The input-stream is the source o f the data—in our case, it's st d::cin. Change your reading program as shown:

Code to Edit: reading.cpp

#include <iostream>

int main() {
 std::string name;

 std::cout << "Enter your name: ";
 std::getline(std::cin, name);

 std::cout << "You typed " << name << std::endl;
 return (0);
}

 Save and run it again. Enter the first and last name and press Ent er. This time the result is much better:

http://www.cplusplus.com/reference/string/getline/

OBSERVE:

Enter your name: Jimi Hendrix
You typed Jimi Hendrix

st d::get line reads a full line up to and including the end-of- line character. The result (minus the end o f line) is stored
in the string.

Reading Integers
st d::cin and the >> operator work for all sorts o f variables, including integers. Edit your reading program as shown:

reading.cpp

#include <iostream>

int main() {
 int value = 0; // a value to double

 std::cout << "Enter a value: ";
 std::cin >> value;
 std::cout << "Twice " << value << " is " << value * 2 << std::endl;
 return (0);
}

 Save and run it, then click in the conso le window, type 123 and press Ent er. You will see:

OBSERVE:

Enter a value: 123
Twice 123 is 246

Let's look at this code more closely.

Observe: reading.cpp

#include <iostream>

int main() {
 int value = 0; // a value to double

 std::cout << "Enter a value: ";
 std::cin >> value;
 std::cout << "Twice " << value << " is " << value * 2 << std::endl;
 return (0);
}

Back in the first lesson, we learned that the << operator means to "put whatever's on the right into whatever's on the
left." Since we are using st d:cin and want to get data from the conso le, we use >> to go the o ther direction and "get
whatever's on the right from whatever's on the left." In our case, we get data from st d::cin and put it in the variable
named value .

Also , look at the line st d::co ut << "Ent er a value: " ;. Notice that there's no st d::endl at the end. We omitted this
deliberately to make this output line a prompt.

In real-world programming, parano ia is part o f the job. So one question you need to ask at this po int is "What happens
if I type something that isn't a number?" Let's try it! Run your program again, enter "Jimi Hendrix," and press Ent er.

This time you'll see the fo llowing:

OBSERVE:

Enter a value: Jimi Hendrix
Twice 0 is 0

When you try to assign an inappropriate type o f data to the value variable, it doesn't change.

if Statements
Now that we can read data, we are go ing to create a program that reads a number and tells you if it's even. Create a
pro ject named if , assign it to your C++1_Lesso ns working set. In that pro ject, create a program named if .cpp as
shown:

Code to Type: if.cpp

/*
 * if Show the use of the if statement
 *
 * In this case the program will tell you if a number
 * is even or odd.
 *
 * Usage:
 * Run the program.
 * Type in a number when prompted.
 * Get the answer.
 *
 */
#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if ((number % 2) == 0)
 {
 std::cout << number << " is even" << std::endl;
 }
 return(0);
}

 Save and run the program. Enter an even number like 8. You will see the fo llowing output:

OBSERVE:

Enter a number: 8
8 is even

If you enter an odd number like 7, you won't see any output at all.

How does the if statement work? The key line is:

if Statement in Use

if ((number % 2) == 0)

This says to C++, "compute the value o f the expression number % 2." The % is the modulus operator—it calculates
the remainder after division. If the value is equal to (==) zero , the program executes the statements in the fo llowing
block (enclosed in curly braces {}).

if statements have the fo llowing structure:

OBSERVE:

if (conditional test)
{
 Code to execute when conditional test is true.
}
else
{
 Code to execute when conditional test is false. You do not need to have an "else."
}

There are o ther comparison operators you can use (in if statements and elsewhere):

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Let's try a different comparison. Change your program as shown:

Code to Edit: if.cpp

#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if (number >= 100)
 {
 std::cout << number << " is big!" << std::endl;
 }
 else
 {
 std::cout << number << " is not so big." << std::endl;
 }
 return(0);
}

In this program, we changed our conditional test slightly and added an "else" clause.

 Save and run it. Enter 250 ; you will see:

OBSERVE:

Enter a number: 250
250 is big!

If you enter a smaller number, like -250, you'll see the o ther message instead:

OBSERVE:

Enter a number: -250
-250 is not so big.

if Abuse

if Abuse

Equality or Assignment?

In our first example o f the if statement, we used the == equality operator to see if a number was even or not.
What would happen if you used a single = instead? Try it:

Code to Edit: if.cpp

#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if (number = 100)
 {
 std::cout << number << " is one hundred!" << std::endl;
 }
 else
 {
 std::cout << number << " is not one hundred." << std::endl;
 }

 return(0);
}

 Save and run it, and enter 25 . You'll see:

OBSERVE:

Enter a number: 25
100 is big!

Try it with o ther numbers: -0 , -25, 150. No matter what you type, the computer thinks you entered 100!

This is because we didn't use the equalit y o perat o r—instead, we changed the value o f number. In o ther
words, this line:

OBSERVE:

if (number = 100)

was essentially interpreted as:

OBSERVE:

number = 100;
if (number != 0) {

This sort o f error can be tricky to spot. An easy way to avo id this issue is to always place constants on the left
side o f the comparison. Change your code to the fo llowing:

Code to Edit: if.cpp

#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if (100 = number)
 {
 std::cout << number << " is one hundred!" << std::endl;
 }
 else
 {
 std::cout << number << " is not one hundred." << std::endl;
 }

 return(0);
}

 Save your program. See how there is a new error:

This error indicates you are trying to change the value o f "100" to whatever is stored in number, but "100"
isn't a variable, so you cannot do that sort o f assignment.

Fix the error by using the == equality operator:

Code to Edit: if.cpp

#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if (100 == number)
 {
 std::cout << number << " is one hundred!" << std::endl;
 }
 else
 {
 std::cout << number << " is not one hundred." << std::endl;
 }

 return(0);
}

Blocks

C++ allows you to write if statements in a compact way. Change your program as shown:

Code to Edit: if.cpp

#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if (100 == number)
 {
 std::cout << number << " is one hundred!" << std::endl;
 }
 else
 {
 std::cout << number << " is not one hundred." << std::endl;
 }

 return(0);
}

 Save and run your program a few times with different numbers. You will see this program works just like
the prio r version. The if statement does not require you to use braces {}—it executes the statement
immediately fo llowing the if o r else .

OBSERVE:

if (conditional test)
 Code to execute when conditional test is true.
else
 (Optional) Code to execute when conditional test is false. You do not need t
o have an "else."

This can be very problematic, though. Change your program as shown (including spaces):

Code to Edit: if.cpp

#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if (50 <= number) // if #1
 if (100 == number) // if #2
 std::cout << number << " is one hundred!" << std::endl;
 else // else #1
 std::cout << number << " is not so big." << std::endl;
 else // else #2
 std::cout << number << " is ??? " << std::endl;

 return(0);
}

Confused? You should be! Without braces (and proper indentation), it is very hard to figure out what exactly
will happen in this program. Which else goes with which if ? Possible answers include:

if #1 goes with else #1
if #2 goes with else #1

if #1 goes with else #2
If you don't write code like this, you won't have to worry about silly questions like this.

The correct answer is number 4!

You need to know this so you can debug o ther people's code. People who value compact code over
readability, understandability, and safety. However, since we find readability, understandability, and safety
valuable and we write good code, we will never write code like this.

Note
Some people tell you to always use {} fo r the statements affected by an if . The Perl language
requires it. We considered this, but decided that, fo r the most part, letting the programmer decide
whether {} o r a single statement is clearer.

Conditional Shortcuts

If statements also let you take shortcuts in the co ndit io nal t est . In the C++ world, 0 is false, and anything
else is true. With this in mind, people have devised shortcuts, such as the fo llowing:

Code to Edit: if.cpp

#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if (! number)
 {
 std::cout << number << " is zero!" << std::endl;
 }
 else
 {
 std::cout << number << " is not zero." << std::endl;
 }

 return(0);
}

The ! is the logical negation operator—it adds a "not" to the condition. The conditional statement in this
program might read like "if no t number"—which is pretty confusing.

 Save and run the program. Enter 0 (zero); you'll see this:

OBSERVE:

Enter a number: 0
0 is zero.

If you enter a non-zero number (even -25), you'll see the fo llowing:

OBSERVE:

Enter a number: -25
-25 is not zero.

This code is not good because it isn't clear exactly what is go ing on. Instead, be explicit with your if
statements. Change your program as shown:

Code to Type: if.cpp

#include <iostream>

int main()
{
 int number; // A number we are going to check

 std::cout << "Enter a number: ";
 std::cin >> number;

 if (0 != number)
 {
 std::cout << number << " is not zero." << std::endl;
 }
 else
 {
 std::cout << number << " is zero." << std::endl;
 }

 return(0);
}

This program is clearer—the condition reads "if number is not equal to zero ." Much better!

You made it! In the next lesson we will shift gears and discuss some shortcuts that are common in C++ programs. See you
then!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Shortcuts
C++ 1: Introduction to C++ Lesson 8

There are many different ways to accomplish the same task in C++. Some code patterns occur very o ften, so the developers o f
C and C++ have included shortcuts that can make code shorter and easier to understand.

Operators
Consider the fo llowing operation:

Incrementing a Variable's Value

x = x + 5;

This code pattern occurs frequently in C++ (and o ther languages), so the makers o f C++ added a shortcut operator to
the language:

Incrementing with a Shortcut

x += 5;

Other shortcut operators are:

Lo nghand Sho rt cut

a = a - b; a -= b;

a = a * b; a *= b;

a = a / b; a /= b;

a = a % b; a %= b;

a = a + 1; a++;

a = a - 1; a--;

Let's experiment with some shortcut operators. Start a new pro ject named sho rt cut , and assign it to your
C++_Lesso ns working set. In the new pro ject, create a source file named sho rt cut .cpp.

Code to Type: shortcut.cpp

#include <iostream>

int main() {

 int x = 0; // to play

 std::cout << "x is " << x << std::endl;
 x += 5;
 std::cout << "x is " << x << std::endl;
 x++;
 std::cout << "x is " << x << std::endl;

 return(0);
}

 Save and run your program. You'll see the value o f x change:

OBSERVE:

x is 0
x is 5
x is 6

One of the most common uses o f these shortcuts is in f o r loops. Let's take a look:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {

 int x = 0; // to play

 for (x = 0 ; x < 25; x++)
 {
 std::cout << "x is " << x << std::endl;
 }

 return(0);
}

 Save and run it. You'll see:

OBSERVE:

x is 0
x is 1
x is 2
x is 3
x is 4
x is 5
x is 6
x is 7
x is 8
x is 9
x is 10
x is 11
x is 12
x is 13
x is 14
x is 15
x is 16
x is 17
x is 18
x is 19
x is 20
x is 21
x is 22
x is 23
x is 24

We can use += to have our loop skip by five instead:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {

 int x = 0; // to play

 for (x = 0 ; x < 25; x += 5)
 {
 std::cout << "x is " << x << std::endl;
 }

 return(0);
}

 Save and run it. See the difference:

OBSERVE:

x is 0
x is 5
x is 10
x is 15
x is 20

For Loops
It turns out the for loop has a few more tricks. Suppose we wanted to write a program to add several numbers, but no
more than ten. We don't want to include any negative numbers, and if we encounter a zero , we will know our list is
done.

We can make this happen with two shortcuts: co nt inue and break. Clear your program and type the fo llowing:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
 int total; // Total so far
 int count; // Count of the numbers
 int number; // A number to read

 total = 0;

 for (count = 0; count < 10; ++count)
 {
 std::cout << "Enter a number: ";
 std::cin >> number;

 // Skip all negative numbers
 if (number < 0) {
 std::cout << "Negative numbers don't count." << std::endl;
 continue;
 }

 if (number == 0) {
 std::cout << "I guess you want to end the list" << std::endl;
 break;
 }

 total += number;
 std::cout << "The new total is " << total << std::endl;
 }

 std::cout << "The grand total is " << total << std::endl;
 return(0);
}

 Save and run it. Enter a few positive numbers, a negative number, and finally a zero . You'll see something like this:

OBSERVE:

Enter a number: 1
The new total is 1
Enter a number: 1
The new total is 2
Enter a number: 1
The new total is 3
Enter a number: 1
The new total is 4
Enter a number: 1
The new total is 5
Enter a number: -5
Negative numbers don't count.
Enter a number: 9
The new total is 14
Enter a number: 0
I guess you want to end the list
The grand total is 14

When the program encounters a negative number, it outputs a message and then runs co nt inue . This skips the rest
o f the for loop, and goes on to the next number.

When you enter a zero , the program outputs a message and then runs break, which completely exits the for loop and
outputs the grand to tal.

Instead o f using co nt inue and break, you could have accomplished similar results by using if statements and
perhaps another variable, but continue and break make the loop much easier to understand.

Suppose you want to allow users to enter as many numbers as they want—and only quit the program when they enter

a zero . You can change your fo r loop to accomplish this as well:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
 int total; // Total so far
 int count; // Count of the numbers
 int number; // A number to read

 total = 0;

 for (;;)
 {
 std::cout << "Enter a number: ";
 std::cin >> number;

 // Skip all negative numbers
 if (number < 0) {
 std::cout << "Negative numbers don't count." << std::endl;
 continue;
 }

 if (number == 0) {
 std::cout << "I guess you want to end the list" << std::endl;
 break;
 }

 total += number;
 std::cout << "The new total is " << total << std::endl;

 }

 std::cout << "The grand total is " << total << std::endl;
 return(0);
}

 Save and run it. It will continue until you enter a zero .

Earlier, we discussed the sections o f a fo r loop:

OBSERVE:

for (/* Initialization */ ; /* Test */ ; /* Increment */)
{
 /* body of loop */
}

The initialization, test, and increment sections are all optional. Only the semico lons (;) are required.

WARNING This can create an infinite loop if you don't have an appropriate break in your code!

For Loop Misuse

The goal o f programming is to be as clear and correct as possible. However, some people think it's to use as
few characters as possible. I hope you never have to debug their code.

One o f the tricks they have is to put the comma (,) operator into a f o r statement.

Coding Horror

for (twos = 0, threes = 0; twos < 100; twos +=2, threes += 3)

The comma (,) operator can be used to string two C++ statements together and have the compiler treat them
as one. Do not use it! All it really does is make it easy to write bad code. In this case, we have two initialization
statements: t wo s = 0 and t hrees = 0 . Because o f the comma operator, C++ does not object to them both
being inside a f o r initialization.

The same ho lds true for the increment section. Two statements have been stuffed into a place where only one
should go.

What this loop is supposed to do is to count up two variables, t wo s by 2 and t hrees by 3, all in one loop.
What it really does is to cause good programmers to curse the people who think they are being clever by
writing such code.

Side Effects
A side effect is an effect that occurs in addition to the main effect o f a statement. C++ allows you to use the ++ and --
operators inside o ther expressions. Let's take a look. Clear your program and enter the fo llowing:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
 int total_size; // Total so far
 int current_size; // Count of the numbers

 total_size = 5;
 current_size = -3;

 current_size = ++total_size;

 std::cout << "current_size: " << current_size << std::endl;
 std::cout << "total_size: " << total_size << std::endl;

 return(0);
}

Do you know what the program will do?

 Save and run it. The results may surprise you:

OBSERVE:

current_size: 6
total_size: 6

This is bad code! The line current _size = ++t o t al_size; does two things (in this order):

1. Increments to tal_size.
2. Assigns the value o f to tal_size to current_size.

This is bad programming style because it makes the code harder to read. Two short operations are much easier to
maintain and understand than one complex one.

There is another problem with side effects. Change your program as shown:

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
 int total_size; // Total so far
 int current_size; // Count of the numbers

 total_size = 0;
 current_size = 1;

 total_size = (++current_size * 5) + (++current_size * 3);

 std::cout << "current_size: " << current_size << std::endl;
 std::cout << "total_size: " << total_size << std::endl;

 return(0);
}

 Save and run it. Once again, the output may surprise you:

OBSERVE:

current_size: 3
total_size: 19

The code total_size = (++current_size * 5) + (++current_size * 3) tells C++ to :

1. Increment current_size and multiply the result by 5
2. Increment current_size and multiply the result by 3
3. Add the results from steps 1 and 2 together.

There is no rule that tells C++ which step (step 1 or step 2) to execute first. Depending on the compiler, the execution
order could:

1. Increment the FIRST current_size from 1 to 2 and multiply the result by 5 and get 10.
2. Increment the SECOND current_size and multiply the result by 3 and get 9 .
3. Add the results from steps 1 and 2 together and get 19.

Or, it could:

1. Increment the SECOND current_size from 1 to 2 and multiply the result by 3 and get 6 .
2. Increment the FIRST current_size from 2 to 3 and multiply the result by 5and get 15.
3. Add the results from steps 1 and 2 together and get 21.

So, which result is right? They both are! The C++ standard allows for this ambiguity. That's one o f the reasons the style
guide prohibits this type o f coding. We want to make the code safer and more reliable.

You should never use the increment (++) and decrement (--) operators inside another expression, especially an
assignment statement. But some people do, so it's important to know how they work.

The prefix increment (++x) operator increments the variable and returns the result af t er incrementing.

The postfix increment (x++) operator increments the variable and returns the result bef o re incrementing.

The mnemonic I use is that if you see the ++ first, then C++ increments first, then returns the value. If you see the value
first, C++ returns the value first, then increments it.

Now let's rewrite our program, so it does one thing at a time, with no side effects.

Code to Edit: shortcut.cpp

#include <iostream>

int main() {
 int total_size; // Total so far
 int current_size; // Count of the numbers

 int first_term; // for first term
 int second_term; // for second term

 total_size = 0;
 current_size = 1;

 current_size += 1;
 first_term = current_size * 5;

 current_size += 1;
 second_term = current_size * 3;

 total_size = first_term + second_term;

 std::cout << "current_size: " << current_size << std::endl;
 std::cout << "total_size: " << total_size << std::endl;

 return(0);
}

This program is a little longer than the last, but it is very clear what is happening.

 Save and run it. You'll see:

OBSERVE:

current_size: 3
total_size: 19

We covered a lo t in this lesson! In the next we will examine another loop we can use in our programs: while loops. See you
then!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

While Loops
C++ 1: Introduction to C++ Lesson 9

while, break, and continue
Welcome back! In the previous lessons we have used for loops to do some repetitive work. In this lesson, we'll learn
about while loops—another way to do repetitive work.

The basic fo rm of the while loop is:

while Syntax

while (condition)
{
 statement;
}

In the last lesson, we used an "empty" fo r loop that would let us input as many numbers as we wanted, and give us the
grand to tal after we entered a zero . We can do the same thing using a while loop instead. Start a new pro ject named
while , and assign it to the C++1_Lesso ns working set. In the new pro ject, create a new file named while .cpp as
shown:

Code to Type: while.cpp

#include <iostream>

int main() {
 int total; // Total so far
 int number; // A number to read

 total = 0;

 while(true)
 {
 std::cout << "Enter a number: ";
 std::cin >> number;

 // Skip all negative numbers
 if (number < 0) {
 std::cout << "Negative numbers don't count." << std::endl;
 continue;
 }

 if (number == 0) {
 std::cout << "I guess you want to end the list" << std::endl;
 break;
 }

 total += number;
 std::cout << "The new total is " << total << std::endl;

 }

 std::cout << "The grand total is " << total << std::endl;
 return(0);
}

 Save and run your program. You'll soon notice it runs exactly the same as the for loop we used before—right down
to the co nt inue and break statements.

Suppose we want our program to run until we enter a zero OR our grand to tal is greater than 50. We can alter the
co ndit io n in our loop to accomplish this:

Code to Edit: while.cpp

#include <iostream>

int main() {
 int total; // Total so far
 int number; // A number to read

 total = 0;

 while(total <= 50)
 {
 std::cout << "Enter a number: ";
 std::cin >> number;

 // Skip all negative numbers
 if (number < 0) {
 std::cout << "Negative numbers don't count." << std::endl;
 continue;
 }

 if (number == 0) {
 std::cout << "I guess you want to end the list" << std::endl;
 break;
 }

 total += number;
 std::cout << "The new total is " << total << std::endl;

 }

 std::cout << "The grand total is " << total << std::endl;
 return(0);
}

 Save and run it. Enter the numbers 5, 10, 15, 20, and 1—you should see your program stop:

OBSERVE:

Enter a number: 5
The new total is 5
Enter a number: 10
The new total is 15
Enter a number: 15
The new total is 30
Enter a number: 20
The new total is 50
Enter a number: 1
The new total is 51
The grand total is 50

Fibonacci numbers
The Fibonacci numbers are numbers in a sequence starting with "0 1," where each subsequent number is the sum of
the previous two:

Fibonacci Number Calculations

0 + 1 = 1
 1 + 1 = 2
 1 + 2 = 3
 2 + 3 = 5
 3 + 5 = 8
 5 + 8 = 13... and so on.

http://en.wikipedia.org/wiki/Fibonacci_number

Thus, the first Fibonacci numbers are 0 , 1, 1, 2, 3, 5, 8 , and 13. (Yes, 1 is in there twice.)

We can use a while loop to calculate the sequence o f Fibonacci numbers less than 100. Create a new pro ject named
f ib and assign it to your C++1_Lesso ns working set, and in that pro ject, create a source file named f ib.cpp as
shown:

Code to Type: fib.cpp

#include <iostream>

int main()
{
 int old_number; // previous Fibonacci number
 int current_number; // current Fibonacci number
 int next_number; // next number in the series

 // start things out
 old_number = 0;
 current_number = 1;

 std::cout << "0 "; // Output first number

 while (current_number < 100) {
 std::cout << current_number << ' ';
 next_number = current_number + old_number;
 old_number = current_number;
 current_number = next_number;
 }
 std::cout << std::endl;

 return (0);
}

 Save and run it. You should see the Fibonacci sequence:

OBSERVE:

0 1 1 2 3 5 8 13 21 34 55 89

How did we do that? Let's look at the program more closely.

fib.cpp

#include <iostream>

int main()
{
 int old_number = 0; // previous Fibonacci number
 int current_number = 1; // current Fibonacci number
 int next_number; // next number in the series

 std::cout << old_number; // Output first number

 while (current_number < 100) {
 std::cout << current_number << ' ';
 next_number = current_number + old_number;
 old_number = current_number;
 current_number = next_number;
 }
 std::cout << std::endl;

 return (0);
}

From the formula for Fibonacci numbers, we know the starting values and that the next number is the sum of the

previous ("o ld") and current numbers, so we created variables for the o ld_number (set to 0), the current _number
(set to 1), and next _number (which we'll set in our loop).

The first Fibonacci number is 0—the initial value o f o ld_number—so we'll just output it before we start the loop. (But
rather than print "0", we'll use the variable, so if we ever ant to change it, we only need to change it in one place in the
program.)

We want to continue looping while the number is less than 100, so we can add a while lo o p to our program.

Inside the while loop, we display t he current number, then add t he o ld and current numbers t o get t he value
o f t he next number.

Now, to move the sequence along, we shift the values: mo ve t he current _number value t o o ld_number and
t he next _number value t o current _number before the next calculation.

Finally, we do a little housekeeping. Our program outputs everything on a single line, so we add an end-o f -line
charact er after the loop finishes.

Excellent! To get a better idea how Fibonacci numbers, and while loops work, let's add some co ut statements. Add
the co lorized code:

Code to Edit: fib.cpp

#include <iostream>
#include <iomanip>

int main()
{
 int old_number = 0; // previous Fibonacci number
 int current_number = 1; // current Fibonacci number
 int next_number; // next number in the series
 int iteration_count = 1;

 std::cout << "Iteration old current next <100?" << std::endl;

 while (current_number < 100) {

 std::cout << std::setw(2) << iteration_count;
 std::cout << std::setw(12) << old_number;
 std::cout << std::setw(9) << current_number;

 next_number = current_number + old_number;
 old_number = current_number;
 current_number = next_number;

 std::cout << std::setw(5) << next_number;
 if (current_number < 100)
 {
 std::cout << " T";
 }
 else
 {
 std::cout << " F";
 }
 std::cout << std::endl;

 iteration_count = iteration_count + 1;
 }
 std::cout << std::endl;

 return (0);
}

We included io manip—specifically the st d::set w() function—to help format our output. This function sets the padded
width o f the next item in the co ut chain. For example, the fo llowing code ensures that it erat io n_co de is output as
exactly two characters:

OBSERVE:

std::cout << std::setw(2) << iteration_count;

 Save and run it. This time, you'll see a beautifully fo rmatted table:

OBSERVE:

Iteration old current next <100?
 1 0 1 1 T
 2 1 1 2 T
 3 1 2 3 T
 4 2 3 5 T
 5 3 5 8 T
 6 5 8 13 T
 7 8 13 21 T
 8 13 21 34 T
 9 21 34 55 T
10 34 55 89 T
11 55 89 144 F

The output shows how variables are saved for the next trip around the while loop. By the tenth iteration we have the first
Fibonacci number (stored in current _number) that is greater than or equal to 100, so the program stops.

You've added some extremely helpful too ls to your C++ too l kit! In the next lesson, we'll discuss the scope o f our variables. See
you then!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Scope
C++ 1: Introduction to C++ Lesson 10

What is Scope?
Up to this po int, we've used very basic variable declarations. We've declared variables at the top o f our programs and
used them throughout the entire program. In o ther words, all variables existed through the entire program.

In this lesson, we'll see how to create variables that exist fo r only a portion o f the program.

We'll start with a short program. Create a pro ject named var-exp and assign it to your C++1_Lesso ns working set. In
this new pro ject, create a program named var-exp.cpp as shown:

Code to Type: var-exp.cpp

#include <iostream>

int main()
{
 std::string state = "Texas";
 std::cout << "State is " << state << std::endl;
 return (0);
}

 Save and run this program. As you might expect, you will see the fo llowing output:

OBSERVE:

State is Texas

Now, edit the program as shown:

#include <iostream> int main() { std::string state = "Texas"; std::cout << "State is " << state << std::endl; return (0); }

Code to Edit: var-exp.cpp

#include <iostream>

int main()
{
 std::string state = "Texas";
 std::cout << "State #1 is " << state << std::endl;
 {
 std::string city = "Austin";
 std::cout << "City is " << city << std::endl;
 }
 return (0);
}

 Save and run it. You'll see:

OBSERVE:

State #1 is Texas
City is Austin

Edit the program again as shown:

Code to Edit: var-exp.cpp

#include <iostream>

int main()
{
 std::string state = "Texas";
 std::cout << "State #1 is " << state << std::endl;
 {
 std::string city = "Austin";
 std::cout << "City is " << city << std::endl;
 }
 std::cout << "City #2 is " << city << std::endl;
 return (0);
}

 Save your program; this time you'll no tice an error:

The compiler is telling us that cit y isn't defined—but we did define it... didn't we?

Not quite. The variable cit y has a local scope. Scope is the portion o f a program in which the variable is known. cit y
only exists within the curly brace ({}) block enclosing it—not outside o f it.

Compare this to the st at e variable. It also has a local scope, but its enclosing braces include the entire program.

Is the st at e variable accessible from the middle o f our program? Let's see. Change your program:

}

Code to Edit: var-exp.cpp

#include <iostream>

int main()
{
 std::string state = "Texas";
 std::cout << "State #1 is " << state << std::endl;
 {
 std::string city = "Austin";
 std::cout << "City is " << city << std::endl;
 std::cout << "State #2 is " << state << std::endl;
 }
 std::cout << "City #2 is " << city << std::endl;
 return (0);
}

 Save and run it. You'll see:

OBSERVE:

State #1 is Texas
City is Austin
State #2 is Texas

Though we added a block in braces and a local variable to our list o f variables, st at e is still within the scope o f the
program.

Now, let's see if we can access st at e AFTER the block in braces. Change your program:

Code to Edit: var-exp.cpp

#include <iostream>

int main()
{
 std::string state = "Texas";
 std::cout << "State #1 is " << state << std::endl;
 {
 std::string city = "Austin";
 std::cout << "City is " << city << std::endl;
 std::cout << "State #2 is " << state << std::endl;
 }
 std::cout << "State #3 is " << state << std::endl;
 return (0);
}

 Save and run it. You'll see:

OBSERVE:

State #1 is Texas
City is Austin
State #2 is Texas
State #3 is Texas

Global Variables

Like their geographical counterparts, you're in the state when you're in the city, but you're not (necessarily) in
the city when you're in the state.

In our example, the st at e variable is actually a local variable. It exists only inside the curly braces that
enclose it (but it's still available within o ther braces nested in those braces). Right now that happens to be our
entire program, but we will deal with more complex programs in the next few lessons.

A variable that exists outside o f main() and in fact exists everywhere is called a global variable. st d::co ut ,
fo r example, is a global variable. It exists before main() starts and after it ends.

Let's declare our own global variable named co unt ry. Edit your program as shown:

Code to Edit: var-exp.cpp

#include <iostream>

std::string country = "USA"; // A global variable

int main()
{
 std::string state = "Texas";
 std::cout << "State #1 is " << state << std::endl;
 std::cout << "Country #1 is " << country << std::endl;
 {
 std::string city = "Austin";
 std::cout << "City is " << city << std::endl;
 std::cout << "State #2 is " << state << std::endl;
 std::cout << "Country #2 is " << country << std::endl;
 }
 std::cout << "State #3 is " << state << std::endl;
 std::cout << "Country #3 is " << country << std::endl;
 return (0);
}

 Save and run it. You'll see:

OBSERVE:

State #1 is Texas
Country #1 is USA
City is Austin
State #2 is Texas
Country #2 is USA
State #3 is Texas
Country #3 is USA

In the city, you can "see" the state and the country. In the state, you can "see" the country but not the city. In the
country, you can't see the state or city. It's an imperfect anao logy, but it's okay for the purpose o f illustration,
right?

Storage Class

The storage class o f a variable can be permanent or temporary. The local variables we've defined are
temporary. They are created when they are declared and disappear when their enclosing block ends.

Global variables are permanent. They are created (and initialized) when the program starts, and are not
destroyed until the program ends.

Let's create a quick program to take a look at this situation. Create a pro ject named var-t ypes and assign it
to the C++1_Lesso ns working set. In the new pro ject, create a program named var-t ypes.cpp as shown:

Code to Type: var-types.cpp

#include <iostream>
int global = 1; // Global variable to play around with

int main()
{
 int loop; // A loop counter

 for (loop = 0; loop < 3; ++loop) {
 int temp = 1; // A local variable to play around with

 std::cout << "global is " << global << std::endl;
 std::cout << "temp is " << temp << std::endl;
 ++global;
 ++temp;
 // Almost useless comment
 }
 return (0);
}

 Save and run it and observe the output:

Output o f var-types

global is 1
temp is 1
global is 2
temp is 1
global is 3
temp is 1

The value of temp never changes—but why? The answer: scope. Let's take a closer look at the life cycle o f
t emp.

var-types.cpp

#include <iostream>
int global = 1; // Global variable to play around with

int main()
{
 int loop; // A loop counter

 for (loop = 0; loop < 3; ++loop) {
 int temp = 1; // A local variable to play around with

 std::cout << "global is " << global << std::endl;
 std::cout << "temp is " << temp << std::endl;
 ++global;
 ++temp;
 // Almost useless comment
 }
 return (0);
}

The variable is created by the line int t emp = 1;. It then is incremented by the line ++t emp, so its value is 2.
It then is destroyed just after the line // Almo st useless co mment , so it now has no value because it
doesn't exist. The f o r loop starts another loop. The variable is born again with the line int t emp = 1;.

It's important to remember that the scope o f t emp is local and the storage class is temporary.

We can make a local variable permanent by putting the keyword st at ic in front o f it. Edit your program as
shown:

Code to Edit: var-types.cpp

#include <iostream>
int global = 1; // Global variable to play around with

int main()
{
 int loop; // A loop counter

 for (loop = 0; loop < 3; ++loop) {
 int temp = 1; // A local variable to play around with
 static int perm = 1; // A local, permanent variable to play with

 std::cout << "global is " << global << std::endl;
 std::cout << "temp is " << temp << std::endl;
 std::cout << "perm is " << perm << std::endl;
 ++global;
 ++temp;
 ++perm;
 // Almost useless comment
 }
 return (0);
}

 Now, save and run it again and observe the output:

Output o f var-types

global is 1
temp is 1
perm is 1
global is 2
temp is 1
perm is 2
global is 3
temp is 1
perm is 3

The storage class o f perm is permanent. It is created and initialized when the program is created, and that
means that it is initialized once. Every time through the loop it is incremented by one, unlike t emp, which is
re-initialized every time through the loop.

On the o ther hand, the variable perm always stays around.

Note
The st at ic keyword is the most overloaded keyword in C++. It has many different meanings,
depending on where you use it. For local variables, it changes the storage class to permanent.
We will examine its o ther uses as they arise.

for Loop Scope

In general, the scope o f a local variable is restricted to the block ({}) in which it resides. The f o r statement is
special in that you can declare the loop variable right inside the f o r itself.

Edit var-types.cpp as shown:

Code to Edit: var-types.cpp

#include <iostream>
int global = 1; // Global variable to play around with

int main()
{
 int loop; // A loop counter

 for (int loop = 0; loop < 3; ++loop) {
 int temp = 1; // A local variable to play around with
 static int perm = 1; // A local, permanent variable to play with

 std::cout << "loop is " << loop << std::endl;
 std::cout << "global is " << global << std::endl;
 std::cout << "temp is " << temp << std::endl;
 std::cout << "perm is " << perm << std::endl;
 ++global;
 ++temp;
 ++perm;
 // Almost useless comment
 }
 return (0);
}

 Save and run it. You'll see:

OBSERVE:

loop is 0
global is 1
temp is 1
perm is 1
loop is 1
global is 2
temp is 1
perm is 2
loop is 2
global is 3
temp is 1
perm is 3

In this case, the lo o p variable has a scope o f the entire body o f the f o r loop.

Hidden Variables

Now we'll discuss hidden variables. First let's see them in action. Create a program called hidden.cpp and
type in the program below.

Code to Type: hidden.cpp

/*
 * hidden -- A very good demonstration of what not to do.
 * More of a puzzle than a useful program.
 */
#include <iostream>

int main()
{
 int a_var = 2;
 int b_var = 5;

 std::cout << "a_var #1 is " << a_var << std::endl;
 std::cout << "b_var #1 is " << b_var << std::endl << std::endl;
 {
 int a_var = 3;
 std::cout << "a_var #2 is " << a_var << std::endl;
 std::cout << "b_var #2 is " << b_var << std::endl << std::endl;

 }
 std::cout << "a_var #3 is " << a_var << std::endl;
 std::cout << "b_var #3 is " << b_var << std::endl;

 return (0);
}

 Save and run it. You'll see:

OBSERVE:

a_var #1 is 2
b_var #1 is 5

a_var #2 is 3
b_var #2 is 5

a_var #3 is 2
b_var #3 is 5

It looks like a_var switched values in the middle o f the program to 3 and then back to 2. But did it?

Not quite. So what's happening? Let's start by looking at the scope o f b_var since we haven't played any
games with it.

Scope o f b_var

int main()
{
 int a_var = 2;
 int b_var = 5;

 std::cout << "a_var #1 is " << a_var << std::endl;
 std::cout << "b_var #1 is " << b_var << std::endl << std::endl;
 {
 int a_var = 3;
 std::cout << "a_var #2 is " << a_var << std::endl;
 std::cout << "b_var #2 is " << b_var << std::endl << std::endl;

 }
 std::cout << "a_var #3 is " << a_var << std::endl;
 std::cout << "b_var #3 is " << b_var << std::endl;

 return (0);
}

b_var's scope includes all o f the code shown in green. Now we'll show the scope o f int a_var = 3;—we
need to say int a_var = 3; to identify the variable instead o f a_var, because there are two a_var variables.
This confusion should provide a clue as to why hidden variables are a bad thing.

Here's the scope o f int a_var = 3;:

Scope o f a_var(3)

int main()
{
 int a_var = 2;
 int b_var = 5;

 std::cout << "a_var #1 is " << a_var << std::endl;
 std::cout << "b_var #1 is " << b_var << std::endl << std::endl;
 {
 int a_var = 3;
 std::cout << "a_var #2 is " << a_var << std::endl;
 std::cout << "b_var #2 is " << b_var << std::endl << std::endl;

 }
 std::cout << "a_var #3 is " << a_var << std::endl;
 std::cout << "b_var #3 is " << b_var << std::endl;

 return (0);
}

Now let's add int a_var = 2 to the mix:

Scope o f a_var(2) and a_var(3)

int main()
{
 int a_var = 2;
 int b_var = 5;

 std::cout << "a_var #1 is " << a_var << std::endl;
 std::cout << "b_var #1 is " << b_var << std::endl << std::endl;
 {
 int a_var = 3;
 std::cout << "a_var #2 is " << a_var << std::endl;
 std::cout << "b_var #2 is " << b_var << std::endl << std::endl;

 }
 std::cout << "a_var #3 is " << a_var << std::endl;
 std::cout << "b_var #3 is " << b_var << std::endl;

 return (0);
}

Because a_var(3) has the innermost scope where it is defined, it hides a_var(2) in the middle o f the program.
Thus, the scope for a_var(2) has a ho le in it.

In o ther words, the declaration o f a_var(3) hides a_var(2) in the dark red area.

Avo id using hidden variables whenever possible. That's because if you say something like "And here I print
the value o f a_var," someone has to ask you, "Which a_var?" There's enough confusion in the programing
world now without us adding more!

You made it! In the next lesson we will put scope to work with functions. Stay tuned!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Functions
C++ 1: Introduction to C++ Lesson 11

What is a Function?
In prio r lessons, our programs were fairly short. Repetition so far has been limited to for and while loops.

In this lesson we'll learn how to use functions to organize frequently-used code. A function is like a black box—you
provide the box with some parameters, and it returns the result.

Our First Function

Let's suppose we want to compute the area o f a right triangle (the formula is area = (base * height) / 2).

Create a pro ject named t riangle and assign it to your C++1_Lesso ns working set. In the new pro ject, create
a source file named t riangle .cpp as shown:

Code to Type: triangle.cpp

#include <iostream>
int main()
{
 float width;
 float height;
 float area;

 width = 5.0;
 height = 2.0;
 area = (width * height) / 2.0;
 std::cout << "Area of the first triangle is " << area << std::endl;

 return(0);
}

 Save and run the program. You'll see:

OBSERVE:

Area of the first triangle is 5

Excellent! Suppose you now want to calculate area for two more triangles. Extend your program as shown:

Code to Edit: triangle.cpp

#include <iostream>
int main()
{
 float width;
 float height;
 float area;

 width = 5.0;
 height = 2.0;
 area = (width * height) / 2.0;
 std::cout << "Area of the first triangle is " << area << std::endl;

 width = 3.8;
 height = 5.9;
 area = (width * height) / 2.0;
 std::cout << "Area of the second triangle is " << area << std::endl;

 width = 2.8;
 height = 1.6;
 area = (width * height) / 2.0;
 std::cout << "Area of the third triangle is " << area << std::endl;

 return (0);
}

 Save and run the program. You'll see:

OBSERVE:

Area of the first triangle is 5
Area of the second triangle is 11.21
Area of the third triangle is 2.24

In our program, we have lines o f code that repeat:

OBSERVE:

area = (width * height) / 2.0;
std::cout << "Area of the (nth) triangle is " << area << std::endl;

Let's take those lines o f code and turn them into a function. Edit your program:

Code to Edit: triangle.cpp

#include <iostream>

/*
 * triangle -- compute the area of a triangle
 *
 * Parameters
 * width -- the width of the triangle
 * height -- the height of the triangle
 *
 * Returns
 * the area of the triangle
 */

float triangle(float width, float height) {
 float area = (width * height) / 2.0;
 return (area);
}

int main()
{
 float width;
 float height;
 float area;

 width = 5.0;
 height = 2.0;
 area = (width * height) / 2.0;
 std::cout << "Area of the first triangle is " << area << std::endl;

 width = 3.8;
 height = 5.9;
 area = (width * height) / 2.0;
 std::cout << "Area of the second triangle is " << area << std::endl;

 width = 2.8;
 height = 1.6;
 area = (width * height) / 2.0;
 std::cout << "Area of the third triangle is " << area << std::endl;

 return (0);
}

Let's take a closer look at the triangle() function:

OBSERVE:

float triangle(float width, float height) {
 float area = (width * height) / 2.0;
 return (area);
}

The first line specifies the ret urn t ype , name , and paramet ers o f the function. Our function named
t riangle will return a f lo at value. It requires two parameters—the first is a f lo at named widt h, the second
is a f lo at named height . After calculating the area, the function ret urns it.

Now that we've defined our function, let's update our program to call it:

Code to Edit: triangle.cpp

#include <iostream>

/*
 * triangle -- compute the area of a triangle
 *
 * Parameters
 * width -- the width of the triangle
 * height -- the height of the triangle
 *
 * Returns
 * the area of the triangle
 */

float triangle(float width, float height) {
 float area = (width * height) / 2.0;
 return (area);
}

int main()
{
 float width;
 float height;
 float area;

 width = 5.0;
 height = 2.0;
 area = (width * height) / 2.0;
 area = triangle(5.0, 2.0);
 std::cout << "Area of the first triangle is " << area << std::endl;

 width = 3.8;
 height = 5.9;
 area = (width * height) / 2.0;
 area = triangle(3.8, 5.9);
 std::cout << "Area of the second triangle is " << area << std::endl;

 width = 2.8;
 height = 1.6;
 area = (width * height) / 2.0;
 area = triangle(2.8, 1.6);
 std::cout << "Area of the third triangle is " << area << std::endl;

 return (0);
}

 Save and run it. You'll see the same output as before:

OBSERVE:

Area of the first triangle is 5
Area of the second triangle is 11.21
Area of the third triangle is 2.24

For each triangle calculated, we replaced three lines o f code with one. We're making progress! Do you
another area where we could save a few lines o f code?

Void Functions and Array Parameters

In our program, we could also add code to the t riangle() function to display the message like::

OBSERVE:

float triangle(float width, float height) {
 float area = (width * height) / 2.0;

 std::cout << "Area of the triangle is " << area << std::endl;

 return (area);
}

This message would be a side effect o f the t riangle() function. A function has a side effect if it outputs
messages, modifies files, or o therwise performs some action besides returning a value. Generally speaking,
side effects are not a good idea.

Instead, let's create a separate function to output the message. Change your program:

Code to Edit: triangle.cpp

#include <iostream>

/*
 * triangle -- compute the area of a triangle
 *
 * Parameters
 * width -- the width of the triangle
 * height -- the height of the triangle
 *
 * Returns
 * the area of the triangle
 */
float triangle(float width, float height) {
 float area = (width * height) / 2.0;
 return (area);
}

/*
 * print_it -- output a message
 *
 * Parameters
 * area -- the area of the triangle
 * what -- the name of the triangle
 */
void print_it(float area, char what[])
{
 std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;
}

int main()
{
 float area; // Area of a triangle

 area = triangle(5.0, 2.0);
 std::cout << "Area of the first triangle is " << area << std::endl;

 area = triangle(3.8, 5.9);
 std::cout << "Area of the second triangle is " << area << std::endl;

 area = triangle(2.8, 1.6);
 std::cout << "Area of the third triangle is " << area << std::endl;

 return (0);
}

Let's take a closer look at print _it () :

OBSERVE:

void print_it(float area, char what[])
{
 std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;
}

This function named print _it () returns vo id, which means "nothing" in C++. In o ther words, our function
does not return any value. It has two parameters—a f lo at named area and a C-St yle st ring named what
(a character array named what). The character array parameter has no dimension. That is because the
dimension is determined by the code that calls the print _it () , as you will see shortly.

Note
Some other languages might call print _it () a procedure, because it does not return a value,
and call t riangle a function because it does return a value. C++ just has one construct, a
function.

Our function does not have a ret urn statement because it isn't required inside a vo id function. Let's add it,
and revise our program to call print _it () :

Code to Edit: triangle.cpp

#include <iostream>

/*
 * triangle -- compute the area of a triangle
 *
 * Parameters
 * width -- the width of the triangle
 * height -- the height of the triangle
 *
 * Returns
 * the area of the triangle
 */
float triangle(float width, float height) {
 float area = (width * height) / 2.0;
 return (area);
}

/*
 * print_it -- output a message
 *
 * Parameters
 * area -- the area of the triangle
 * what -- the name of the triangle
 */
void print_it(float area, char what[])
{
 std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;

 return;
}

int main()
{
 float area; // Area of a triangle

 area = triangle(5.0, 2.0);
 std::cout << "Area of the first triangle is " << area << std::endl;
 print_it(area, "first");

 area = triangle(3.8, 5.9);
 std::cout << "Area of the second triangle is " << area << std::endl;
 print_it(area, "second");

 area = triangle(2.8, 1.6);
 std::cout << "Area of the third triangle is " << area << std::endl;
 print_it(area, "third");

 return (0);
}

 Save and run it. You'll see the same output again:

OBSERVE:

The area of the first triangle is 5
The area of the second triangle is 11.21
The area of the third triangle is 2.24

Function Overloading

Our print _it () function works fine, but what if we didn't always want to pass the second parameter? In C++,
we can overload a function, which means that we can have two or more different functions with the same

name and different parameters.

Let's define a new print _it () with only one parameter instead o f two. Edit your program as shown:

Code to Edit: triangle.cpp

#include <iostream>

/*
 * triangle -- compute the area of a triangle
 *
 * Parameters
 * width -- the width of the triangle
 * height -- the height of the triangle
 *
 * Returns
 * the area of the triangle
 */
float triangle(float width, float height) {
 float area = (width * height) / 2.0;
 return (area);
}

/*
 * print_it -- output a message
 *
 * Parameters
 * area -- the area of the triangle
 * what -- the name of the triangle
 */
void print_it(float area, char what[])
{
 std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;

 return;
}

/*
 * print_it -- output a message without the "what"
 *
 * Parameters
 * area -- the area of the triangle
 */
void print_it(float area)
{
 std::cout << "The area of the triangle is " << area << std::endl;

 return;
}

int main()
{
 float area; // Area of a triangle

 area = triangle(5.0, 2.0);
 print_it(area, "first");

 area = triangle(3.8, 5.9);
 print_it(area, "second");

 area = triangle(2.8, 1.6);
 print_it(area, "third");

 return (0);
}

 Save and run it. You'll see this slightly different result:

OBSERVE:

The area of the triangle is 5
The area of the second triangle is 11.21
The area of the third triangle is 2.24

The first time we call print _it () with only one parameter, and C++ runs the correct print _it () function that
accepts one parameter (the second one in the program). The next two times, we call it with two parameters,
and C++ runs the correct function that accepts two parameters (the first one in the program).

C++ keeps track o f this by using function signatures. A function signature is the combination o f the function
name, return data type, parameter data types, and names. In our program, there are actually four functions:

1. float triangle(double width, double height)
2. vo id print_it(float area, char what[])
3. vo id print_it(float area)
4. int main()

In C++, the function name and parameters must be unique. In o ther words, you cannot define two separate
functions like this:

1. vo id print_it(float area)
2. int print_it(float area)

Default Parameters

C++ lets you define functions with default parameters. For example, you could decide that triangles have a
default height o f 2.0 . You can add a small bit o f code to the parameter list to specify this:

OBSERVE:

float triangle(float width, float height = 2.0) {

To see this change in action, edit your program:

Code to Edit: triangle.cpp

#include <iostream>

/*
 * triangle -- compute the area of a triangle
 *
 * Parameters
 * width -- the width of the triangle
 * height -- the height of the triangle
 *
 * Returns
 * the area of the triangle
 */
float triangle(float width, float height = 2.0) {
 float area = (width * height) / 2.0;
 return (area);
}

/*
 * print_it -- output a message
 *
 * Parameters
 * area -- the area of the triangle
 * what -- the name of the triangle
 */
void print_it(float area, char what[])
{
 std::cout << "The area of the " << what << " triangle is " << area << std::e
ndl;

 return;
}

void print_it(float area)
{
 std::cout << "The area of the triangle is " << area << std::endl;

 return;
}

int main()
{
 float area; // Area of a triangle

 area = triangle(5.0, 2.0);
 print_it(area);

 area = triangle(3.8, 5.9);
 print_it(area, "second");

 area = triangle(2.8, 1.6);
 print_it(area, "third");

 return (0);
}

 Save and run it. You'll see the same results as before:

OBSERVE:

The area of the first triangle is 5
The area of the second triangle is 11.21
The area of the third triangle is 2.24

If we DO provide a height, the function uses it; o tehrwise, it uses the default 2.0 .

WARNING
Using default parameters hides information and can make programs confusing. While
you may encounter default parameters in existing programs, you would be wise to avo id
using them in new programs.

We covered a lo t o f information in this lesson! In the next lesson, we'll continue our discussion o f parameters and types. Stay
tuned!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Parameters and Return Types
C++ 1: Introduction to C++ Lesson 12

Welcome back! In the last lesson we discussed functions, and learned how to write our own functions with parameters. In this
lesson, we'll explain just how parameters work.

Passing Parameters
C++ provides many ways o f passing parameters to functions. Knowing what cho ices you have and how to use them is
key to writing good C++ code.

Pass by Value

Let's start with a short program. Create a pro ject named var-pass and assign it to your C++1_Lesso ns
working set. In the new pro ject, create a program named var-pass.cpp as shown:

Code to Type: var-pass.cpp

#include <iostream>

void test(int a)
{
 std::cout << "test: a is " << a << std::endl;
 a = 5;
 std::cout << "test: a is " << a << std::endl;
}

int main()
{
 int i; // Variable to play around with

 i = 2;
 test(i);
 std::cout << "main: i is " << i << std::endl;
 return(0);
}

 Save and run the program, and observe the output:

Output o f var-pass

test: a is 2
test: a is 5
main: i is 2

We passed i as a parameter to t est () , where it was labeled a. We changed the value o f a inside t est () , but
that change did not make its way back to i. Why did this happen?

It happened because the parameters to the t est () function were passed by value. Internally, C++ copies the
values o f any variables passed by value and passes the copy to the function. Any changes to this copy will
no t be reflected in the calling procedure. This is the default way C++ passes parameters to functions.

Remember when we discussed how variables were like mailboxes? Passing by value is like making
photocopies o f your mail, then putting the copies in the mailbox (the function), keeping the originals safe.

C++ lets you pass by ref erence as well, using the reference (&) operator. Edit your program as shown:

Code to Edit: var-pass.cpp

#include <iostream>

void test(int& b)
{
 std::cout << "test: b is " << b << std::endl;
 b = 6;
 std::cout << "test: b is " << b << std::endl;
}

int main()
{
 int i; // Variable to play around with

 i = 2;
 test(i);
 std::cout << "main: i is " << i << std::endl;

 return(0);
}

 Save and run it. You see:

Output o f var-pass

test: b is 2
test: b is 6
main: i is 6

In this program, i passed by reference, so the t est () function changed its value: main: i is 6 !

With pass by reference, C++ makes the parameter b a reference to main's local variable i. A reference means
that these variables are the same thing. As a result, any change to b is a change to i.

Using the mailbox analogy again, passing by reference is like putting the original letter in the mailbox, so the
recipient (the function) can look at and potentially change it.

Array Parameters

Now let's see how functions work with arrays. We'll add an array parameter to our program.

Code to Edit: var-pass.cpp

#include <iostream>

void test(int k[])
{

 std::cout << "test: k[0] is " << k[0] << std::endl;
 k[0] = 7;
 std::cout << "test: k[0] is " << k[0] << std::endl;
}

int main()
{
 int k[3] = {10, 20, 30}; // Array to play around with

 test(k);
 std::cout << "main: k[0] is " << k[0] << std::endl;
 return(0);
}

 Save and run it. You'll see:

OBSERVE:

test: k[0] is 10
test: k[0] is 7
main: k[0] is 7

Notice that the value o f k[0] is changed, even though we didn't use the & reference operator. That's because
arrays are automatically passed by reference. In fact, there is no way to make them pass by value.

What happens if you pass k[0] to a function instead? Let's try it:

Code to Edit: var-pass.cpp

#include <iostream>

void test(int a)
{
 std::cout << "test: a is " << a << std::endl;
 a = 5;
 std::cout << "test: a is " << a << std::endl;
}

int main()
{
 int k[3] = {10, 20, 30}; // Array to play around with

 test(k[0]);
 std::cout << "main: k[0] is " << k[0] << std::endl;
 return(0);
}

 Save and run it. You'll see:

OBSERVE:

test: a is 10
test: a is 5
main: k[0] is 10

A single array element is just like a single variable—so by default, C++ passes by value.

Const Parameters

Let's now produce a program with a function that returns the maximum of two integers. Start a new pro ject
named max and assign it to your C++1_Lesso ns working set. Create a source file named max.cpp as
shown:

Code to Type: max.cpp

#include <iostream>

// Function comments
int max(int i1, int i2)
{
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 std::cout << "Max is " << max(i,j) << std::endl;
 return (0);
}

 Save and run it. You'll see:

OBSERVE:

Max is 2

Notice that the values o f i1 and i2 are never changed in the max() function. Given the nature o f the function,
they never should be changed.

But what if someone decided to change the parameter? Edit the program as shown:

Code to Edit: max.cpp

#include <iostream>

// Function comments
int max(int i1, int i2)
{
 i1 = 99;
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 std::cout << "Max is " << max(i,j) << std::endl;
 return (0);
}

 Save and run it. You'll see:

OBSERVE:

Max is 99

The function should not change the value o f the parameters! To help ensure that the parameters don't change,
put the modifier co nst in front o f them. Edit your program as shown:

Code to Edit: max.cpp

#include <iostream>

int max(const int i1, const int i2)
{
 i1 = 99;
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 std::cout << "Max is " << max(i,j) << std::endl;
 return (0);
}

 Save your program—you'll see this error:

Code that attempts to change the value o f a constant parameter results in a compile-time error. In this case,
the code i1 = 99 is the o ffender.

References

References let different variables po int to the same underlying value. It is like having a two-sided mailbox—
the postal worker opens the box on one side to deposit mail, and you open the box on the o ther side to
retrieve it. Both doors po int to the same contents. Let's take a deeper look at references. Change your code
as shown:

Code to Edit: max.cpp

#include <iostream>

int& max(const int& i1, const int& i2)
{
 i1 = 99;
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 std::cout << "Max is " << max(i,j) << std::endl;
 return (0);
}

 Save and run it—you'll see the original message again.

Now, let's add a new variable (l), which is a reference to j. We'll then zero this reference, which should cause i
to be zeroed. Change the code as shown:

Code to Edit: max.cpp

#include <iostream>

int& max(int& i1, int& i2)
{
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 std::cout << "Max is " << max(i,j) << std::endl;
 {
 int& l = j; // l now refers to j

 l = 0; // Since l is j, j is now zero
 std::cout << "j #1 is " << j << std::endl;
 }
 std::cout << "j #2 is " << j << std::endl;
 return (0);
}

 Save and run it. Sure enough, l and i bo th po int to the same place, and i ends up being set to 0 :

OBSERVE:

Max is 2
j #1 is 0
j #2 is 0

This is because our latest and greatest max() function returns a reference to i. Because it's a reference, we
can use it on the left side o f the equals sign (=) as well as the right.

Make the changes indicated in the program to remove the reference k and replace it with the reference max(i,
j).

Code to Edit: max.cpp

#include <iostream>

int& max(int& i1, int& i2)
{
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 std::cout << "Max is " << max(i,j) << std::endl;
 {
 max(i, j) = 0; // Assigning a reference

 l = 0; // Since l is j, j is now zero
 std::cout << "j #1 is " << j << std::endl;
 }
 std::cout << "j #2 is " << j << std::endl;

 return (0);
}

 Save and run it. You'll see:

OBSERVE:

Max is 2
j #1 is 0
j #2 is 0

Sure enough, the reference returned by max(i,j) , which po inted to the same place as j, was changed to zero .

Const Return Values

In the last example, we could assign a value to the reference returned by max(i,j) . To keep this from
happening, let's change the function so it returns a co nst reference.

Code to Edit: max.cpp

#include <iostream>

const int& max(int& i1, int& i2)
{
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 std::cout << "Max is " << max(i,j) << std::endl;
 {
 max(i, j) = 0; // Assigning a reference
 std::cout << "j #1 is " << j << std::endl;
 }
 std::cout << "j #2 is " << j << std::endl;

 return (0);
}

Once you save your file you will no tice that we can no longer assign a value to max() . Because it is a
constant, we can only retrieve the result, no t change it:

Problems with Reference Returns

Returning a reference as an int has its benefits, but it can be very tricky to use. Let's change our code so that
max() assigns the result to a local variable and returns that variable instead.

Code to Edit: max.cpp

#include <iostream>

const int& max(int& i1, int& i2)
{
 int result; // Which one to use
 if (i1 > i2)
 result = i1;
 else
 result = i2;

 // This is a bad thing to do
 return(result);
}

int main()
{
 int i = 1;
 int j = 2;

 std::cout << "Max is " << max(i,j) << std::endl;
 {
 max(i, j) = 0; // Assigning a reference
 std::cout << "i is " << i << std::endl;
 }
 return (0);
}

 Save it—you'll see a warning:

The compiler warns you that you are returning a reference to a local variable. This is reminding you that the
variable result will be destroyed when max() returns. This is like removing your mailbox from the wall—the
postal worker can't put anything into the box, and you can't either.

So... what does the reference generated by the ret urn statement refer to? Absolutely nothing. The value
referenced is not in scope, so it is not legal to reference it. This is yet another area o f undefined behavior in
C++. Your program might work just fine, or it could crash, or it could cause strange and mysterious data
errors.

When a reference refers to something that is no longer in scope, it's called a dangling reference. Yo u can't
(legally) ret urn a ref erence t o a lo cal variable f ro m inside a f unct io n.

Now let's try another experiment with our program. Edit the program so that it uses expressions as
parameters to max() :

Code to Edit: max.cpp

#include <iostream>

const int& max(int& i1, int& i2)
{
 int result; // Which one to use
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 int answer;
 answer = max(i+1, j+1);

 std::cout << "Max is " << answer << std::endl;
 return (0);
}

This program too has a dangling reference that is hard to spot, but the compiler won't let it by.

 Save it and you'll see:

When a function expects a reference parameter such as max() , the compiler performs a number o f
operations behind the scenes:

1. It creates a temporary variable and assigns it the value o f the expression.
2. It performs the function call.
3. It destroys the temporary variable.

So the code the compiler generates looks something like:

The compiler's version o f max.cpp

#include <iostream>

int& max(int& i1, int& i2)
{
 if (i1 > i2)
 return (i1);
 return(i2);
}

int main()
{
 int i = 1;
 int j = 2;

 int answer;

 {
 int tmp1 = i + 1;
 int tmp2 = j + 1;

 answer = max(tmp1, tmp2);
 // At this point answer is a reference to tmp2
 }
 // At this point tmp2 does not exist

 std::cout << "Max is " << answer << std::endl;
 return (0);
}

You will rarely need to use references to variables as return values, but when you do need to use them, be
very careful about what you are do ing.

You made it! In the next lesson we'll discuss your final pro ject fo r the course. Good luck!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Final Project
C++ 1: Introduction to C++ Lesson 13

Putting It All Together
At this po int we've learned enough to create your very own program from scratch.

Assignment

To start, create a pro ject named f inal_pro ject assigned to your C++1_Ho mewo rk working set, with a
source file named f inal_pro ject .cpp.

Your assignment is to create a program that will count the number o f words in a file. It is up to you to define
what a "word" is. "hello" is a word. But what about "high-five"—is that one word or two? And how about
something like "ground_point"? Some programmers might consider that one word and o thers think it was
two. Did you consider something like "O'Reilly"?

Whatever you decide to consider a word, document your decision in a file named requirement s.t xt .

The specification is as exact a description as you can get o f what the program is go ing to do. Sometimes you
don't know how a program is go ing to end up until you start coding. In that case, you start with a preliminary
specification and refine it as you go on.

At the end o f coding, the specification should be detailed enough that you can use it as a user guide.

Create a file named spec.t xt and write your specification in it.

Code Design

The design is a general outline o f how you are go ing to create your program.

The design for this word count program should be fairly short. A good paragraph describing the general
operation o f the code should do it. Create a file named design.t xt and enter your design.

Agile Development

Years ago there was programming technique called "fast pro to typing." Today, it has been renamed "agile
development." Basically, it means that you create the smallest working program you can. Test it, enhance it,
and repeat until you get what you want. The idea is that you start with a working copy and build a working
program on top o f that. That way, you have a working program to see where you are and to give you an idea
of what the computer can do. This lets you refine your specification as you learn more about what's
happening with your system.

In this case, there are three stages that we go through in our development:

1. Make a program that reads a character at a time, counting nothing.
2. Make the program count characters.
3. Change the program to count words.

Coding Notes

To help you get started, the fo llowing is code that will read each character from a file called input .t xt and will
output it. It uses f st ream .

Code to Type: final_pro ject.cpp

#include <iostream>
#include <fstream>

int main () {
 char c;
 std::ifstream myfile ("input.txt");

 // Make sure the file can be read from
 if (myfile.is_open())
 {
 // While we have not reached the end of file (EOF)
 while (! myfile.eof())
 {
 c = myfile.get();
 std::cout << c;
 }
 myfile.close();
 }

 else std::cout << "Unable to open file";

 return 0;
}

Create a file named input .t xt in your pro ject, add some appropriate text to it, and then save and run this
code to see how it works. Your program will prompt fo r user input instead o f using a file.

Testing

Testing comes next. Write up a test plan for your program named t est .t xt . Take care to test all major
components o f your program.

I would suggest that you create a file named "input.txt" containing the input that you want to use for testing the
program.

To actually test the program:

1. Open the input.txt file.
2. Select Edit | Select All.
3. Select Edit | Co py.
4. Run the program.
5. Click in the conso le and select Edit | Past e to paste the test file's contents into your program's
input.
6 . Type [Ct rl+Z] to signal end o f file.

Revisions

Your program counts words. Think o f how you might want to enhance it. Create a file named "rev.txt"
containing the wish list fo r your new program. Then be thankful that you've reached the end o f the lesson and
you don't have to implement any o f those revisions!

When you finish, hand in your pro ject. GOOD LUCK!

Copyright © 1998-2013 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

