
M AN819
Implementing Bootloader Firmware for the
PIC18C601/801 ROMless Microcontrollers
INTRODUCTION

The PIC18C601 and PIC18C801 microcontrollers are
the first members of Microchip’s PIC18 family with no
on-chip program memory. They offer the PIC18 archi-
tecture, with the ability to use different types and sizes
of external program memory (up to 2 Mbyte) to exactly
fit most applications.

In modern embedded applications, where features and
functionality are constantly evolving, FLASH memory is
an ideal choice for external program memory. Field
upgradability is almost always desirable in these sys-
tems, too. Most commonly available FLASH devices,
however, disable read access while being programmed
or erased. They also require special command
sequences for programming, and have longer erase
and write times than read times. As a result, systems
using FLASH technology require either a second mem-
ory device, or a microcontroller with built-in memory
space, in order to implement field reprogrammability.
PIC18C601/801 controllers do this by allowing part of
on-chip data memory to be reconfigured as program
memory.

To implement reprogrammability, the user must incor-
porate into their design, a bootloader — a firmware
mechanism that allows a new user application program
to be written to the system. The bootloader firmware
system must be able to recognize that new user code
is available and initiate itself (“invocation”), receive the
new code from some communication channel in man-
ageable segments and check it for communication
errors (“communication”), and program the memory
with the new data and without errors (“programming”).
It must also be flexible enough to be able to incorporate
new programming methods, as new FLASH devices
become available.

This application note discusses the general design
requirements for bootloader firmware in a ROMless
controller system. To illustrate the key points, a fully-
featured reference design, with an interface to external
host software, is described in detail. Information on
integrating a bootloader with user application code is
also covered.

The reader is expected to be familiar with the following:

• General PIC18 architecture

• The PIC18 instruction set
• External memory interface modes of the PIC18

ROMless devices, and
• Interface modes of different non-volatile memory

devices

PROGRAMMING A ROMLESS
SYSTEM: OVERVIEW

PIC18C601/801 controllers offer no on-chip program
memory. In normal operation, program instructions are
fetched and executed directly from the external mem-
ory. These microcontrollers also offer 1.5 Kbytes of on-
chip data memory. Of this, the last 512 bytes are des-
ignated as “Boot RAM”. This block can be configured to
act as either data or program memory; when set as pro-
gram memory, it provides the system designer a way to
program external FLASH devices without the need for
additional hardware. The memory maps for the control-
lers, showing Boot RAM enabled and disabled, are
presented in Figures 1 and 2.

When programs are executed from Boot RAM, the sys-
tem bus and all of its control signals are deactivated. If
required, the external system bus may be disabled and
turned into I/O port signals. While the Boot RAM is
enabled, any attempts to read or write to it are ignored.
Any TBLWT instructions attempted to addresses in the
Boot RAM space result in an external table write to the
external memory, instead. Similarly, TBLRD instructions
on the Boot RAM space, are performed on the external
memory.

Authors: Gaurang Kavaiya and
Nilesh Rajbharti
Microchip Technology Inc.
 2001 Microchip Technology Inc. DS00819A-page 1

AN819
A typical bootloader using the Boot RAM performs the
following steps:

1. Disable Boot RAM.
2. Transfer the programmer routine of the boot-

loader program from the external program mem-
ory to the Boot RAM, using TBLRD and MOVWF
instructions.

3. Enable the Boot RAM.

4. Execute the programmer routine as a data block
is received.

5. Perform the necessary programming on the
external memory by either executing the neces-
sary TBLRD and TBLWT instructions, or by
switching the system bus to I/O ports.

6. Continue to execute the programmer routine
from Boot RAM as data blocks are received.

7. Jump to a known valid external program mem-
ory location.

8. Reset the system when all data is programmed.
DS00819A-page 2  2001 Microchip Technology Inc.

AN819
FIGURE 1: MEMORY MAP AND PROGRAM STACK FOR THE PIC18C801

RESET Vector 0000h

High Priority Interrupt Vector 0008h

Low Priority Interrupt Vector 0018h

1FFFFFh

RESET Vector 0000h

High Priority Interrupt Vector 0008h

Low Priority Interrupt Vector 0018h

1FFFFFh

U
se

r
M

em
or

y
S

pa
ce

PC<20:0>

Stack Level 1

Stack Level 31

1FFFFFh

U
se

r
M

em
or

y
S

pa
ce

External
Table Memory

On-Chip
Boot RAM

External
Program
Memory

Internal Memory External Memory

PGRM = ‘1’

PGRM = ‘0’

1FFE00h
1FFDFFh

1FFE00h

External
Program
Memory

21

(Boot RAM disabled)

(Boot RAM enabled)
 2001 Microchip Technology Inc. DS00819A-page 3

AN819
FIGURE 2: MEMORY MAP AND PROGRAM STACK FOR THE PIC18C601

RESET Vector 0000h

High Priority Interrupt Vector 0008h

Low Priority Interrupt Vector 0018h

1FFFFFh

RESET Vector 0000h

High Priority Interrupt Vector 0008h

Low Priority Interrupt Vector 0018h

1FFFFFh

U
se

r
M

em
or

y
S

pa
ce

PC<20:0>

Stack Level 1

Stack Level 31

1FFFFFh

U
se

r
M

em
or

y
S

pa
ce

On-Chip
Boot RAM

External
Program
Memory

Internal Memory External Memory

PGRM = ‘1’

PGRM = ‘0’

1FFE00h
1FFDFFh

1FFE00h

External
Program
Memory

21

Read ‘0’

External
Table Memory

Read ‘0’

03FFFFh
040000h

03FFFFh
040000h

(Boot RAM disabled)

(Boot RAM enabled)
DS00819A-page 4  2001 Microchip Technology Inc.

AN819
GENERAL REQUIREMENTS
FOR THE BOOTLOADER

When implementing any in-system programmer, the
most basic requirement is that the system be able to
perform a large amount of memory programming with-
out error. Other key points to be considered for the
design are:

• Providing an option to enter Bootloader mode or
execute the existing application code

• Allowing for the use of the most popular file for-
mats for programming (such as INHX8 and
INHX32)

• Implementing a robust communication protocol
between the data source and the firmware, to
divide the data into manageable packets with the
required address and error detection information

• Providing the means for reading and verifying pro-
grammed data

• Creating a design that is sufficiently modular and
flexible, to support new programming algorithms,
as well as override and debug the default
programmer

In creating the reference design for this application
note, we decided that a flexible and robust system
would have three key components.

• Host software: This component should reside
on a separate (PC) system from the programming
target. It should provide a general purpose inter-
face to the target’s on-board programming firm-
ware, to allow the download of user selected
Intel® HEX or HEX 32 format files. It should also
support other device specific programming com-
mands, such as Device Erase. Finally, it should
use a robust communication protocol for error-
free data transfer.

• Core bootloader firmware: This firmware com-
ponent should detect if new user code is available
for programming. If so, it should manage the
receipt of new code from the host software, load-
ing of the appropriate firmware to Boot RAM, and
transfer of program execution to Boot RAM. If new
code is not available, it should transfer program
execution directly to existing user code.

• Programmer firmware: This firmware compo-
nent should handle the actual programming of
external memory. If an algorithm other than the
default FLASH programmer is required, it should
be downloadable from the host software.

THE HOST SOFTWARE

There are many ways to download new user code to a
device. To demonstrate the flexibility of the program-
ming system, the reference model uses a host software
application, running on an external system (in this
case, an IBM® compatible PC). This provides the ability
to handle multiple file formats and FLASH device fami-
lies, as well as take care of other device management
tasks. Users may opt to use other methods, such as
transferring code from EEPROMs, or downloading by
modem from the Internet.

The host software for the reference design is a 32-bit
application, designed to run under Microsoft®

Windows® operating system. The application runs all
commands from one window, using a standard Win-
dows compatible GUI. It is compatible with all 32-bit
Microsoft operating systems, and may be installed on
Windows NT® and Windows 2000 systems without
Administrator privileges.

A brief description of the host software and its user
interface is provided in Appendix E. Users interested in
further investigation are encouraged to download the
application code and experiment further.

BOOTLOADER FIRMWARE
COMPONENTS

We can summarize the requirements for the firmware
components of the bootloader as follows:

• Code resides at the RESET location
• Code is write protected against any accidental

erasure or programming
• Code checks for the availability of new user code

through some mechanism
• Code starts execution of existing user code, if no

new user code is available for download
• Code receives new user code via some communi-

cation channel
• Code erases the memory device (FLASH only)

• Code programs the new user code into memory
• Code verifies the programming of user code

The firmware of the reference design bootloader is
divided into two general parts: the core bootloader firm-
ware, which initiates and manages operation, and the
programmer firmware, which actually writes the new
information to the memory devices. In this design, they
are built from three distinct assembly files:

• bloader.asm, which handles bootloader invoca-
tion, operation and command decoding and
execution

• serial.asm, which manages communications
with the host software and protocol management

• “xxx.asm” (a user assigned name), which man-
ages the memory write and erase processes, and
contains the memory specific algorithms
 2001 Microchip Technology Inc. DS00819A-page 5

AN819
The flow chart in Figure 3 shows the relationship
between the firmware components and their assembly
file sources.

FIGURE 3: OVERVIEW OF THE BOOTLOADER FIRMWARE

Invoking the Bootloader

There are many ways to indicate whether new user
code should be downloaded. As examples, a designer
could use:

• a jumper or switch on a port pin

• a particular command sequence on a
communication channel

• the presence of a new device

The particular method chosen, depends on the way
that user code is to be transferred into the microcontrol-
ler. For example, if the new user code is stored on an
I2CTM EEPROM that is placed in a socket on a board,
then an address in EEPROM could be read to deter-
mine whether a new EEPROM is present. Alternatively,
the system can look for a bootloader command
sequence coming from the serial port; if the command
is not received in a specified period of time, the boot
loader gives control to the existing user program. While
this has the advantage of not using a hardware
resource, it has a primary disadvantage that the device
will experience a fixed delay every time it is RESET,
before running the application.

The reference design uses a “hardware” invocation by
monitoring one of the user defined port pins. Figure 4
shows how this is accomplished.

FIGURE 4: INVOKING THE
BOOTLOADER

Start

Invoke
Bootloader

Host

Parser
Core

Routine
Command
Handlers

Core

Routine

FLASH
Algorithm

End

Data

Invoke
Bootloader

Core
Bootloader

Programmer
Firmware

Invoke

Do Not Invoke

(serial.asm)

bloader.asm

“xxx.asm”

Start (Power-up)

Initialize User Defined
Pin as Input

Pin = 0?

Transfer to Bootloader
and Execute

Jump to User Defined
Vector and Execute Code

End

YES

NO
DS00819A-page 6  2001 Microchip Technology Inc.

AN819
Core Bootloader Firmware

Once invoked, the core bootloader firmware starts exe-
cution. It waits for a valid command from the host. Upon
receipt, it acknowledges the command back to the
host.

It then executes the command and sends a response
to the host

The main routine for the core bootloader is shown in
the flow chart in Figure 5. The individual command
handlers are detailed in Figures 6 through 11.

FIGURE 5: FLOW CHART OF MAIN PROGRAM LOOP FOR THE BOOTLOADER CORE

Start Bootloader

Initialize USART

Copy Default Programmer
to Boot RAM

Enable Boot RAM

Host data?

Parse Host Data

Acknowledge Host

Valid
command?

Send Error Code
to Host

G

Perform Computed
GOTO to Specific

Command Handler

Read Write Erase Read Write Erase

A B C D E F

Primary Memory Commands Boot RAM Commands

YES

YES

NO

NO

(Return from
command handlers)

(Bootloader
invoked on
power-up)

 2001 Microchip Technology Inc. DS00819A-page 7

AN819
FIGURE 6: READ COMMAND HANDLER

FIGURE 7: ERASE COMMAND HANDLER

FIGURE 8: WRITE COMMAND HANDLER

A

Initialize Data Counter
and FSR at Starting

Address of Data Buffer

Read Data from
Specified Address

Store Data in Buffer

Increment Address and

All
data

read?

Send all Read Data
to Host

G

Data Buffer Pointers

YES

NO

C

Transfer Control to
Programmer Firmware

in Boot RAM

Chip Erase
successful?

G

YES

NO

Send Erase Error
Code to Host

Send Erase Success
Code to Host

for Chip Erase

Initialize Data Counter
and FSR at Starting

Address of Data Buffer

Read Data from
Data Buffer

Generate Memory Location
Address, Byte Data and
Write Flag Information

Transfer Control to
Programmer Firmware

in Boot RAM

Write
successful?

All data
written?

Send Write Success
Code to Host

Send Write Error
Code to Host

B

G

NO

YES

YES

NO

for Write Operation
DS00819A-page 8  2001 Microchip Technology Inc.

AN819
FIGURE 9: BOOT RAM READ
COMMAND HANDLER

FIGURE 10: BOOT RAM ERASE
COMMAND HANDLER

FIGURE 11: BOOT RAM WRITE
COMMAND HANDLER

Configure Boot RAM as
General Purpose RAM

Initialize Data Counters
at Start of Data Buffer and

Boot RAM Address

Read Data from Specified
Memory Address

Increment Boot RAM
and Data Buffer Pointers

All
data

read?

Configure Boot RAM as
Program Memory

Send all Read Data
to Host

D

G

YES

NO

Configure Boot RAM as
General Purpose RAM

Initialize Data Counters
at Start of Data Buffer and

Boot RAM address

Fill all Locations
 with FFh Data

All
data

filled?

Configure Boot RAM as
Program Memory

Send Boot RAM Erase
Success Code to Host

F

G

YES

NO

Configure Boot RAM as
General Purpose RAM

Initialize Data Counters
at Start of Data Buffer and

Boot RAM Address

Write Data to Specified
Memory Address

Increment Boot RAM
and Data Buffer Pointers

All
data

written?

Configure Boot RAM as
Program Memory

Send Boot RAM Write
Success Code to Host

E

G

YES

NO
 2001 Microchip Technology Inc. DS00819A-page 9

AN819
Host Software Communications

The file ‘Serial.asm’ stores the serial interface code
for a particular protocol. The ‘Serial.inc’ file con-
tains definition of shared parameters for using this file.
This file must be included in the “.asm” file, where
these serial routines are used.

The ParseHostCommand function waits for a valid
command from host, and stays in the loop until a valid
packet is received. It parses valid commands on
receipt, and ignores all invalid packets. A flow chart of
this function is shown in Figure 12.

The Send Host Data functions send data to host in
defined packet, while Acknowledge Host Function
acknowledges the host for command reception. A flow
chart of the SendHostData is shown in Figure 13
(page 11).

FIGURE 12: FLOW CHART FOR THE ParseHostCommand ROUTINE

Start

STX?

DLE?

STX?

Save Packet Length

Save Command

Save Data Byte and
Increment Data
Buffer Pointer

All data
received?

Save Checksum

Checksum
verified?

DLE?

ETX?

Return to
Core Bootloader

H

H

(From Core Bootloader)

DLE De-stuffing Routine

= DLE?

received

Return and

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

Is data

NO

NO

YES

YES

Wait for data;

Wait for data;

Wait for data;

Wait for Data;

Wait for Data;

Wait for Data;

Wait for Data;

Wait for data;

Wait for data;

Wait for data;

Process Data Byte

Requires DLE de-stuffing

H

DLE?
DS00819A-page 10  2001 Microchip Technology Inc.

AN819
FIGURE 13: FLOW CHART FOR THE SendHostData ROUTINE

Start

Send STX - DLE -
STX Sequence

Send Packet Length;

Send Checksum

Send Extra DLE Byte

Is data
= DLE?

Return to
Core Bootloader

All data

sent?

YES

NO

YES

NO

DLE Stuffing Routine

(from Core Bootloader)

Initialize Checksum
Value to Length

Send Command;
Find new

Checksum

Send New Data;
Increment Data

Send DLE-ETX
Sequence

Pointer, find
New Checksum

Return and
Send Data Byte

Requires DLE stuffing
 2001 Microchip Technology Inc. DS00819A-page 11

AN819
FIRMWARE/SOFTWARE INTERFACE

The data received by the core boot firmware will usually
contain more than just program memory data. It will
normally also contain the address to which data is to be
written, the number of bytes transmitted and a check-
sum to detect errors. The firmware must decode, verify
and store the data, before writing it into program mem-
ory. If the data is not verified, it should again ask source
to retransmit it.

Because the available data RAM on-chip is limited in
comparison to the maximum possible program size
(2 MByte for the PIC18C801), the data to be pro-
grammed must be divided in small blocks. The boot-
loader must be able to control the reception of blocks,
since it cannot process any data sent to it while it is writ-
ing to its own memory. As data is transferred in blocks,
an error correction mechanism to take care of transmis-
sion errors becomes a requirement.

To identify transmission errors, a data communication
protocol is required. The protocol in the reference
design uses three instructions for the interface:

• Command, for instructions from host software to
the firmware

• Acknowledge, as a “return receipt” by the firm-
ware, for an instruction from the host software

• Response, containing the results of an instruction
after decoding and execution by the firmware

Command Format:

<STX><DLE><Len><Command>[<Data>…]
<Checksum><DLE><ETX>

where

<STX> is the “Start of TeXt” byte, used to synchro-
nize the start of a packet (literal value of 02h)

<DLE> is the Data Link Escape byte, used to delimit
the frame header or footer (literal value of 04h)

<Len> is the number of data bytes in the packet

<Command> is the encoded command byte

<Data> represents the parameter byte(s) for the
command, with a length of <Len> bytes

<Checksum> is the 8-bit 2’s complement of sum of
<Len>, <Command> and <Data>

<ETX> is the “End of TeXt” byte, used to mark the
end of the packet (literal value of 03h)

If the <Len>, <Command>, <Data> or <Checksum>
portion of the packet resembles DLE (i.e., has a value
of 04h), an extra DLE will be stuffed before that byte.
The stuffed DLEs will not change <Len> or <Check-
sum> value.

The receiver of the packet verifies the integrity of the
data by adding the <Len>, <Command>, <Data> and
<Checksum> bytes, excluding any stuffed DLEs. This
sum must be 00h in order to confirm the integrity of
received packet.

Acknowledge Format:

<STX><DLE><Len><ACK>[<Command>]
<Checksum><DLE><ETX>

where

<STX> is the “Start of TeXt” byte, used to synchro-
nize the start of a packet (literal value of 02h)

<DLE> is the Data Link Escape byte, used to delimit
the frame header or footer (literal value of 04h)

<ACK> is the Acknowledge byte (literal value of
06h)

<Command> is the encoded command byte

<Len> is a single byte of literal value 01h

<Checksum> is the 8-bit 2’s complement of sum of
<Len>, <Command> and <Data>

<ETX> is the “End of TeXt” byte, used to mark the
end of the packet (literal value of 03h)

If the <Len>, <Command>, <Data> or <Checksum> por-
tion of the packet resembles DLE (i.e., has a value of
04h), an extra DLE will be stuffed before that byte. The
stuffed DLE(s) will not change <Len> or <Checksum>
value.

The receiver of the packet verifies the integrity of the
data by adding the <Len>, <Command>, <Data> and
<Checksum> bytes, excluding any stuffed DLEs. This
sum must be 00h in order to confirm the integrity of
received packet.

Response Format:

<STX><DLE><Len><Result>[<Data>…]
<Checksum><DLE><ETX>

where

<STX> is the “Start of TeXt” byte, used to synchro-
nize the start of a packet (literal value of 02h)

<DLE> is the Data Link Escape byte, used to delimit
the frame header or footer (literal value of 04h)

<Result> is the encoded binary result byte

<Data> represents the parameter byte(s) for the
result, with a length of <Len> bytes

<Checksum> is the 8-bit 2’s complement of sum of
<Len>, <Command> and <Data>

<ETX> is the “End of Text” byte, used to mark the
end of the packet (literal value of 03h)

If the <Len>, <Command>, <Data> or <Checksum> por-
tion of the packet resembles DLE (i.e., has a value of
04h), an extra DLE will be stuffed before that byte. The
stuffed DLEs will not change <Len> or <Checksum>
value.

The receiver of the packet verifies the integrity of the
data by adding the <Len>, <Command>, <Data> and
<Checksum> bytes, excluding any stuffed DLEs. This
sum must be 00h in order to confirm the integrity of
received packet.
DS00819A-page 12  2001 Microchip Technology Inc.

AN819
Table 1 lists the preliminary commands included in the
reference design, as well as their parameters. Addi-
tional commands can be added if and when required.

TABLE 1: BOOTLOADER FIRMWARE COMMAND SET

Command Code Parameters Response Description

RD_VER 00h Len = 0
Command = RD_VER

Len = 1
Result = RD_VER
Data[0] = Version

Returns firmware version

RD_MEM 01h Len = 5
Command = RD_MEM
Data[0]=AddrLL
Data[1]=AddrLH
Data[2]=AddrUL
Data[3]=AddrUH
Data[4]=Len

Len = 5 + Len
Result = RD_MEM
Data[0]=AddrLL
Data[1]=AddrLH
Data[2]=AddrUL
Data[3]=AddrUH
Data[4]=Len
Data[5…5+Len]=Memory Data

Returns memory content
from given address

WR_MEM 02h Len = 6 + Len
Command = WR_MEM
Data[0]=AddrLL
Data[1]=AddrLH
Data[2]=AddrUL
Data[3]=AddrUH
Data[4]=Len
Data[5]=Flag
Data[6..6+Len]=Data

Len = 1
Result = WR_MEM
Data[0] = Number of bytes writ-
ten

Writes given memory
contents to given
address

WR_CLR 03h Len=0
Command = WR_CLR

Result = WR_CLR
Len = 1
Data[0] = Result Code
‘0’ = Success
‘1’ = 0 Error Code

Erases memory

RD_MEM_BOOT 0Bh Len = 5
Command =
RD_MEM_BOOT
Data[0]=AddrLL
Data[1]=AddrLH
Data[2]=AddrUL
Data[3]=AddrUH
Data[4]=Len

Len = 5 + Len
Result = RD_MEM
Data[0]=AddrLL
Data[1]=AddrLH
Data[2]=AddrUL
Data[3]=AddrUH
Data[4]=Len
Data[5…5+Len]=
Memory Data

Returns memory content
from boot memory at
given address

WR_MEM_BOOT 0Ch Len = 6 + Len
Command =
WR_MEM_BOOT
Data[0]=AddrLL
Data[1]=AddrLH
Data[2]=AddrUL
Data[3]=AddrUH
Data[4]=Len
Data[5]=Flag
Data[6..6+Len]=Data

Len = 1
Result = WR_MEM
Data[0] = Number of bytes written

Writes boot memory
contents to given
address

WR_CLR_BOOT 0Dh Len=0
Command =
WR_CLR_BOOT

Result = WR_CLR
Len = 1
Data[0] = Result Code
‘0’ = Success
‘1’ = 0 Error Code

Erases boot memory
 2001 Microchip Technology Inc. DS00819A-page 13

AN819
Programming Firmware

The file ‘xxx.asm’ stores the code for FLASH pro-
gramming. This file is memory specific, so the user may
need to change it depending on their specific require-
ment. The default FLASH programmer can be attached
with the bootloader; any FLASH programmer can be
downloaded on demand at a later time.

The actual implementation will vary, depending on the
memory device and interface mode used. Broadly,
FLASH devices can be divided into four families,
depending on their programming algorithm. In addition
to programming algorithm, implementation will change
based on external interface. The general programmer
algorithm is described in Figure 14. Examples of
specific algorithms for different FLASH families are
outlined in Figures 15 through 18.

It is important to note that these flow charts do not
include all programming algorithms for all FLASH
device families available on the market. Additional
information on FLASH families and programming com-
mands is provided in Appendixes C and D.

APIs FOR EXTERNAL MEMORY
PROGRAMMING AND ERASE FUNCTIONS

To provide a simple method for interfacing user
designed FLASH programming algorithms to the rest of
the code, Application Program Interfaces (or APIs)
have been designed for FLASH Erase and FLASH
Write routines. These APIs also allow the core boot-
loader and programmer firmware to share information,
as described later. The interfaces are described below.

Erase Function

Purpose: Erase all available memory locations.

Prototype: WREG Erase()

Input: None

Output:

WREG: Result code of this function

If WREG == 00h

Function was successful

Else

There was an error, which may be
explained by the non-zero value

Write Function

Purpose: Write an 8-bit value to a memory loca-
tion defined by 32-bit value.

Prototype: WREG Write (DWORD Address,
BYTE Data, BYTE Flag)

Input:

Address: 32-bit address of the location being writ-
ten

Data: 8-bit data value to be written to given
address

Flag: Specifies whether this is a first, intermediate,
last or only byte of total data to be written. The fol-
lowing table describes the valid values:

Output:

WREG: Result code for this function

If WREG == 00h,

Function was successful

Else

There was an error, which may be
explained by the non-zero value

Value Meaning

00h This is the first byte being written. User
may setup “Write” mode for external
memory in beginning of this function.

01h This is a last byte being written. User
must change external memory mode to
“Read Array”.

02h This is the only byte being written. User
may set up “Write” mode for external
memory in beginning of this function and
must change it to “Read Array” mode
before returning from this function.

All
other

values

This is an intermediate byte being writ-
ten. User may not need to change exter-
nal memory mode during this call.
DS00819A-page 14  2001 Microchip Technology Inc.

AN819
FIGURE 14: FLOW CHART FOR THE GENERAL PROGRAMMER FIRMWARE

Start

Programmer

Branch to Command Executor
Based on Jump Table

Initialize Device
(Set for TBLWT mode or
Disable External Bus and

Enable I/O Ports)

Call Chip Erase Function

Initialize Device
(Set for TBLWT mode or

Disable External Bus and
Enable I/O Ports)

Call FLASH Write Routine
for Byte Write at Address

Even
address?

Make Word from this Byte
and Previously Stored Byte

Call FLASH Write Routine
for Word Write to Address

Store Byte

(MSByte) is Received

ERASE WRITE

First
byte?

Does
supplied address

match with expected
next address?

Copy FFh into Buffer

Increment Data

Flag Address Mismatch

All
sector data
received?

Last
byte?

Did
address mismatch

occur?

Initialize Data
Pointer Buffer

Store Address for
this Data

Buffer Pointer

Copy Data into Buffer

Increment Data
Buffer Pointer

Call FLASH Write Routine
to Program Sector

until Odd Byte

Save pending
data in buffer

BYTE
WRITE

WORD
WRITE

SECTOR
WRITE

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

Restore Device Settings
for External Execution mode

Store Write/Erase

 in W Register

Return to
Command Handlers

(Calls from various
command handlers)

Success/Error Code
 2001 Microchip Technology Inc. DS00819A-page 15

AN819
FIGURE 15: COMMON “WAIT FOR END-
OF-WRITE” ROUTINES FOR
FLASH DEVICES

FIGURE 16: TYPICAL WRITE CYCLE
ROUTINE FOR SECTOR-
PROGRAM FLASH

Start

Wait for TWC

Return

Internal Timer Routine

Read Byte from Page

Read Same Byte

Do
DQ6 bits
match?

Toggle Bit Routine

Start

Return

Return

Start

Is DQ7=
true data?

Read DQ7
(Data for Last Byte Loaded)

Data # Polling Routine

YES

YES

NO

NO

Load Data AAh to
Address 5555h

Load Data 55h to
Address 2AAAh

Load Data 0Ah to
Address 5555h

(Write Command)

Set Page Address

Set Address to
Beginning of Sector

Load Data

Increment Address
Counter by 1

All
sector data

written?

Start
(Call from

Programmer)

Return to
Programmer

Wait for End

of Write
(Memory Specific(1))

YES

NO

Note 1: See Figure 15 for common examples.

Unlock
Sequence
DS00819A-page 16  2001 Microchip Technology Inc.

AN819
FIGURE 17: TYPICAL WRITE AND ERASE SEQUENCES FOR “A” AND “B” FLASH FAMILIES

Unlock
Sequence

Unlock
Sequence

Unlock
Sequence

Byte/Word Write Chip Erase

Load Data AAh to
Unlock Address 1(1)

Load Data 55h to
Unlock Address 2(1)

Load Data A0h to
Command Initiate Address(1)

(Write Command)

Write Data

Return to
Programmer

Start
(Call from

Programmer)

Start
(Call from

Programmer)

Initialize Block Address
(Next Block after

Bootloader)

Load Data AAh to

Load Data 55h to
Unlock Address 2(1)

Unlock Address 1(1)

Load Data 80h to
Command Initiate Address
(Block Erase Command 1)

Load Data AAh
Unlock Address 1(1)

Load Data 55h to
Unlock Address 2(1)

Load Data 30h to
any Address of Block

(Block Erase Command 2)

Last
Block?

Note 1: For FLASH family A:

Unlock address 1 — 555h
Unlock address 2 — 2AAh
Command Initiate — 555h

For FLASH family B:

Unlock address 1 — 5555h
Unlock address 2 — 2AAAh
Command Initiate — 5555h

2: See Figure 15 for common examples.

1

2

Increment to
Next Block

Return to
Programmer

YES

NO

at Supplied Address

Wait for end

of Write
(Memory Specific(2))

Wait for end
of Write

(Memory Specific(2))
 2001 Microchip Technology Inc. DS00819A-page 17

AN819
FIGURE 18: TYPICAL WRITE AND ERASE ROUTINES FOR “C” FAMILY FLASH DEVICES

Byte/Word Write Chip Erase

Start
(Call from

Programmer)

Start
(Call from

Programmer)

Write 70h

Read Status Register

SR<7> = 1?

Write 40h or 10h
(Location to be Written)

Write Word/Byte and
Supplied Address

SR<7> = 1?

Read Status Register

Full Status Check
(if desired)

Return to
Programmer

Return to
Programmer

Initialize Block Address
(next Block after

Bootloader)

Write 70h

Read Status Register

Read Status Register

SR<7> = 1?

SR<7> = 1?

Write 20h to
any Address of Block

Write D0h to
any Address of Block

Full Status Check
(if desired)

Last
Block?

Increment to
Next Block

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

to be Erased

to be Erased
DS00819A-page 18  2001 Microchip Technology Inc.

AN819
PARAMETER PASSING MECHANISM FOR
ASSEMBLY LANGUAGE

Normally, the default flash programmer is attached with
the core bootloader; an alternate programmer can be
downloaded from the host software later, if required.
This ability to change programmer firmware is why the
the core bootloader and programmer are built as sepa-
rate projects. In doing this, however, it becomes neces-
sary to provide a mechanism for sharing data and
functions between the two. It is also essential to pre-
vent the firmware components from using overlapping
areas of RAM. This can best be done by using an abso-
lute addressing scheme.

To enforce reasonable type checking, the generic code
portion will define and export certain variables. These
are listed in Example 1.

Generic code will populate these variables before call-
ing user supplied Write function. The user supplied
Write function will import these variables and use them
as needed.

WRITING NEW FLASH MEMORY ROUTINES
FOR THE BOOTLOADER

User supplied Write functions can use the provided
‘memrtnes.inc’ file, which contains the definition of
these parameters, as shown in Example 2. This way,
the core bootloader and programmer firmware can
share the data.

If memory routines are built separately from the boot-
loader, always use the “memrtnes.lkr” file (included
in the Zip archive available at the Microchip website) to
build them. This makes sure that the FLASH routines
do not overlap with monitor data RAM area.

Now that a system for sharing the data is established,
we need a mechanism to share the functions as well.
One solution is to fix the location for Write and Erase
functions themselves. This may create a problem if all
the required firmware does not fit in the allotted space.
We need some mechanism, so a user can place their
firmware at anywhere in available area. FLASH pro-
grammer specific code contains a “jump table” at the
beginning of code, which is what the bootloader uses to
call appropriate routines. This jump table allows user to
locate their actual functions anywhere in the 512-byte
area; they do not have to “origin” their functions at hard
coded addresses. When FLASH routines are down-
loaded by the host software, it “relocates” them at
beginning of Boot RAM; for this reason, users must
only use bra and rcall instructions for jumps.
Example 3 shows how this is done.

The best way to embed the memory routine code is to
use the template file “memrtnes.tpl”, which takes
care of all the definitions. The template is also included
in the Zip archive available at the Microchip website.

EXAMPLE 1: DEFINING COMMON VARIABLES FOR PASSING PARAMETERS

EXAMPLE 2: EXAMPLE CODE FOR memrtnes.inc

Note: For more information on using the tem-
plates, please refer to the User’s Manual
and on-line help for the MPLAB® develop-
ment system.

UDATA_ACS .00
Address RES .04 ; Parameter #1 for Write function
Byte RES .01 ; Parameter #2 for Write function
Flags RES .01 ; Parameter #3 for Write function

Address EQU .00 ; 32 bit Address of the location being written
Byte EQU .04 ; 8-bit data value to be written
Flags EQU .05 ; Specifies whether this is a first,

; intermediate, last or only one byte of
; total data to be written
 2001 Microchip Technology Inc. DS00819A-page 19

AN819
EXAMPLE 3: PROVIDING FOR RELOCATABLE WRITE AND ERASE FUNCTIONS

INTEGRATING THE BOOTLOADER
WITH USER CODE

The bootloader code usually uses the RESET location
and some additional program memory. It can also use
the interrupt; but, if an interrupt occurs while the code
is executing from Boot RAM, it will jump to the interrupt
service vector in FLASH program memory. This could
be dangerous if programming the new code into exter-
nal memory has not been completed. Thus, the on-
board programmer must not use interrupt driven code.
It should disable interrupts until it finishes programming
external memory.

The bootloader starts at the RESET location. To avoid
accidental erasure, this entire sector of program mem-
ory must be protected. As the interrupt vector also falls
in this range, the bootloader must relocate it. Addition-
ally, the bootloader must know where the application
code starts, to be able to execute it. Similarly, users may
want to change other bootloader related configuration
items for different systems, such as the pin monitored to
invoke the firmware, or the oscillator frequency used to
calculate the baud rate for serial communications.

All of these user code related parameters are defined
in the ‘UserCode.inc’ file. Users can edit this file to
quickly modify the firmware to suit their particular
requirements. An example is shown in Example 4
(page 21). Users should store their code in the next
sector after the Bootloader code. This location address
is defined in the UserCode label. In the same fashion,
interrupt vector relocation addresses are defined at
‘HighPriorIntServ’ and ‘LowPriorIntServ’ , for high

priority and low priority Interrupt Service Routines,
respectively. The pin monitored for bootloader invoca-
tion is defined by BootLoadChkPin . Both the Port
name and bit number should be defined here.

The bootloader code coexists with the user code on the
device and many of the resources used by the boot
code can also be used by the user code. The core boot-
loader and programmer firmware uses the resources
listed in Table 2.

TABLE 2: RESOURCES NEEDED FOR
THE BOOTLOADER

Bootloader Code section for Calling Write and Erase APIs

call 1FFE00h + @Command ;Write Command =0, Erase Command=2

In this instance, the FLASH Write function called is located at 1FFE00h, while the Erase function is located at
1FFE02h. The command handler must be located at these locations. This is done as follows:

Programmer CODE ;This section when copied to Boot RAM makes address 1FFE00
bra Write ;Branch to Write function
bra Erase ;Branch to Erase function

Write:

;(Insert Write routine here)

return

Erase:

;(Insert Erase routine here)

return

Resource

Bootloader Requirements

Core Boot
Firmware

Programmer
Firmware*

Program memory
(bytes)

1024 Up to 512

Data memory
(access RAM,
bytes)

32 0 to 3

Data memory
(general purpose
RAM, bytes)

255 Up to 512

I/O pins 1 System Bus or
I/O pins

Peripherals USART Generally none

* Requirements vary by specific implementation
and FLASH programming algorithm.
DS00819A-page 20  2001 Microchip Technology Inc.

AN819
EXAMPLE 4: SAMPLE UserCode.inc CONFIGURATION FILE

The program memory used by the bootloader cannot
be used for user code. However, actual memory con-
sumption will depend on the sector size, as the sector
containing bootloader code must be protected (and
therefore, cannot contain user code). Larger sector
sizes mean greater memory consumption; smaller sec-
tors mean lesser consumption. As the bootloader firm-
ware can consume significant data memory resources,
it is not likely that developers will want to reserve these
on an ongoing basis for code that is infrequently called.
As all the code is written in relocatable format,
MPLINKTM Object Linker will not allow the re-use of
resources used by the bootloader code, if application
code is merged with bootloader code to make a single
project. Therefore, combining user code and boot-
loader code into a single project should be avoided.

In a production environment, however, it is desirable to
program the entire FLASH device with the bootloader
firmware and user application code in a single shot. In
this case, the developer should build two separate HEX
files (bootloader and user code), then merge the two to
create a single HEX file. This allows the developer to
re-use the data memory resources used by the boot-
loader.

To avoid overlap of program memory, the developer
should use the appropriate linker script file. User code
should use a linker script file similar to the one shown
in Figure 5. This will prevent overlap of user code with
Bootloader. The text in bold defines the sector require-
ment. The text in bold italics shows the maximum
available program memory with device; this is modified
according to the physical memory connected to the
device. If more than one memory device is connected,
this file should reflect memory map of the system. The
use of a proper linker script file will ensure that the
linker places code and variables in the proper places.

The USART can be used by the user code. Any I/O
pin(s) monitored to invoke the bootloader can be used
as an output, by isolating their switches or jumpers with
a resistor.

In summary, all resources used by the bootloader,
except program memory, can also be used by the user
application code. Figure 19 shows the final combined
memory map of user code and bootloader firmware.

EXAMPLE 5: SAMPLE LINKER SCRIPT FILE

UserCode EQU 0x1000 ;User Code jump location
HighPriorIntServ EQU 0x1008 ;Higher priority interrupt

;service routine jump location
LowPriorIntServ EQU 0x1018 ;Lower priority interrupt

;service routine jump location
#define BootLoadChkPin PORTF,2 ;Boot load Checking port pin number
FOSC EQU D’16000000’ ;Oscillator Frequency

Note: Users can merge HEX files by using the
facilities available in some programmers.

Note: For additional information on linker scripts,
please refer to the Microchip MPLINK
User’s guide.

// File: UserCode.lkr
// Sample linker command file for User code

LIBPATH .

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=Bootloader START=0x2A END=0xFFF PROTECTED
CODEPAGE NAME=page START=0x1000 END=0x200000
CODEPAGE NAME=config START=0x300000 END=0x300007 PROTECTED
CODEPAGE NAME=idlocs START=0x3FFFFE END=0x3FFFFF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x7F
DATABANK NAME=gpr0 START=0x80 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1ff
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
DATABANK NAME=sfr START=0xF00 END=0xF7F PROTECTED
ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED
 2001 Microchip Technology Inc. DS00819A-page 21

AN819
FIGURE 19: MEMORY MAP FOR
COMBINED BOOTLOADER
AND USER CODE

CONCLUSION

Incorporating bootloader firmware into a micro-
controller based design allows for easy and efficient
field upgrades of a product, which in turn, can enhance
its functionality and value. Designs using the
PIC18C601/801 ROMless microcontrollers can easily
incorporate a bootloader to enhance their flexibility.

The reference design demonstrated in this note pro-
vides a flexible and modular framework for bootloader
firmware. To recap, some of the features included are:

• External host software with a simple GUI and the
flexibility to handle the most popular HEX file
formats

• A serial communications interface with a robust
data communication protocol, making it possible
to identify and correct communication errors

• Downloadable programmer firmware, which
allows for the development and substitution of
new FLASH programming algorithms

• Prewritten linker scripts, templates, and “include”
files for the efficient development of new memory
routines, the ability to share device resources and
overlap multiple code pieces, and the ability to
customize the firmware to user requirements

• The ability to map the external bus to I/O ports, to
allow the implementation of any memory pro-
gramming algorithm

Using the key components of the reference design will
allow developers to create their own custom bootloader
firmware, specifically tailored to their application’s
resources and requirements.

Relocated User
Interrupt Code

Bootloader Code

Boot RAM
(when PGRM = ‘1’)

User
Application

Code

0000h

1FFE00h

1FFFFFh

Protected sector
containing boot code

Note: Sizes of code areas not shown to scale.
DS00819A-page 22  2001 Microchip Technology Inc.

AN819
APPENDIX A: REFERENCES

Readers with additional questions on Microchip ROM-
less microcontrollers, the external memory interface
and FLASH memory programming, are referred to the
documents listed below for more information. They
may be downloaded from the Microchip corporate web-
site, at

www.microchip.com

• DS39541, “PIC18C601/801 Data Sheet”
• DS00778, “Implementing the External Memory

Interface on PIC18C601/801 MCUs”

APPENDIX B: SOFTWARE
DISCUSSED IN THIS
APPLICATION NOTE

Because of the overall length of all components, a com-
plete source file listing for the bootloader reference
design is not provided. Those users who are interested
in further exploring the bootloader firmware are encour-
aged to download the project files for their examination.

The software discussed in this application note (the
Host Software executable file and project files and tem-
plates for the bootloader firmware) are available as a
single WinZip archive file. The archive may be down-
loaded from the Microchip corporate Web site at:

www.microchip.com
 2001 Microchip Technology Inc. DS00819A-page 23

AN819
APPENDIX C: SUMMARY OF MEMORY DEVICES(1)

Manufacturer Part ID
Programming

Algorithm
Family(2)

Organization
Basic

Byte/Word
Addressing(4)

Remarks

AMD 29F series A x8

29F series A x16

29F series A x8/x16 Byte

ATMEL 29 Series
29 Series

 B(3)

 B(3)
x8

x16
Sector
Programming

49 Series B x8

49 Series B x16

49 Series B x8/x16 Byte

INTEL Boot Block C x8/x16 Byte

Strata FLASH/
FLASH File

C x8

Strata FLASH/
FLASH File

C x8/x16 Word

SHARP 28F series C x8

28F series C x16

28F series C x8/x16 Word

ST 29F series A x8

29F series A x16

29F series A x8/x16 Byte

Samsung FLASH products in this family have multiplexed address/data/command lines, and are
incompatible with PIC18C601/801 devices.

Catalyst Boot Block
FLASH

C x8

Bulk Erase
FLASH

(5) x8
x16

Note 1: This listing is provided only as an example of typical memory devices available. It is not meant to be
exhaustive.

2: Details of each programming algorithm family are provided in Appendix B.
3: For these devices, users must provide all data in the sector. The device will first erase the entire sector, then

program it. These devices do not support Sector Erase commands.
4: Applicable only to x8/x16 selectable devices.
5: These devices have a unique set of programming algorithms. They are omitted for the sake of brevity.
DS00819A-page 24  2001 Microchip Technology Inc.

AN819
Hyundai 29F series A x8

29F series A x8/x16 Byte

Micron Boot Block C x8

Boot Block C x8/x16 Byte

Even
Sectored

C x8

Even
Sectored

C x8/x16 Word

SST 39F Series B x8

29EE Series B(3) x8 Sector
Programming

NexFlash 29F series B x8

APPENDIX C: SUMMARY OF MEMORY DEVICES(1) (CONTINUED)

Manufacturer Part ID
Programming

Algorithm
Family(2)

Organization
Basic

Byte/Word
Addressing(4)

Remarks

Note 1: This listing is provided only as an example of typical memory devices available. It is not meant to be
exhaustive.

2: Details of each programming algorithm family are provided in Appendix B.
3: For these devices, users must provide all data in the sector. The device will first erase the entire sector, then

program it. These devices do not support Sector Erase commands.
4: Applicable only to x8/x16 selectable devices.
5: These devices have a unique set of programming algorithms. They are omitted for the sake of brevity.
 2001 Microchip Technology Inc. DS00819A-page 25

AN819
APPENDIX D: PROGRAMMING ALGORITHMS FOR
REPRESENTATIVE MEMORY DEVICES(1)

Command
Program

Algorithm

Bus Cycles

Cycles
needed

First Second Third Fourth Fifth Sixth

Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data

Read
mode/
RESET

A 1 X F0 — — — — — — — — — —

B 1 X F0 — — — — — — — — — —

C 1 X FF — — — — — — — — — —

Read
Mfg. ID

 A 4 555 AA 2AA 55 555 90 X00 01 — — — —

 B 4 5555 AA 2AAA 55 5555 90 XX00 01 — — — —

 C 2 X 90 (IA) (ID) — — — — — — — —

Read
Device ID

 A 4 555 AA 2AA 55 555 90 X01 AD — — — —

 B 4 5555 AA 2AAA 55 5555 90 XX01 20 — — — —

 C 2 X 90 (IA) (ID) — — — — — — — —

Write A 4 555 AA 2AA 55 555 A0 (WA) (WD) — — — —

 B 4 5555 AA 2AAA 55 555 A0 (WA) (WD) — — — —

 C 2 (WA) 40 (WA) (WD) — — — — — — — —

Block
Erase

 A 6 555 AA 2AA 55 555 80 555 AA 2AA 55 (BA) 30

 B 6 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 (BA) 30

 C 2 (BA) 20 (BA) D0 — — — — — — — —

Erase
Suspend

 A 1 X B0 — — — — — — — — — —

 B (2)

 C 1 X B0 — — — — — — — — — —

Erase
Resume

 A 1 X 30 — — — — — — — — — —

 B (2)

 C 1 X D0 — — — — — — — — — —

Chip Erase A 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10

 B 6 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 5555 10

 C 2 X 30 X D0 — — — — — — — —

Sector
Protect
Verify

 A 4 555 AA 2AA 55 555 90 (SGA) 00/01 — — — —

 B 4 5555 AA 2AAA 55 5555 90 (SGA) 00/01 — — — —

 C (2)

Legend: WA = Write Address, WD = Write Data, IA = Identifier Address, ID = Identifier Data,
BA = Block Address, SGA = Sector Group Address, X = Don’t Care

Note 1: The information provided in this table is for reference only, and is not meant to be a comprehensive description of the device
programming algorithms. For complete information, please refer to the manufacturer’s data sheet.

2: Instruction unimplemented in this programming algorithm family.
DS00819A-page 26  2001 Microchip Technology Inc.

AN819
APPENDIX E: THE HOST SOFTWARE WINDOW

As previously described, the host software for the ref-
erence design bootloader is implemented using a sin-
gle window (Figure E-1). All commands are available
from both the menu bar; most are also available from
either the icon-based toolbar (Figure E-2), or keyboard
shortcuts. File commands (New, Open, Save, etc.)
invoke the standard Windows dialog boxes for file loca-
tion, name and file format. A complete summary of all
available commands is given in Table E-1.

Also available on the Tool Bar is the option to change
the COM port setting used by the host system to com-
municate with the target. The selector is not duplicated
as a command menu option. The default port is COM1.

It is important to note that the host software is not a
HEX file editor; the display in the main window only
shows the current HEX file or memory device contents
loaded into the buffer. Developers who want to make
changes to a programmed device will still need to fol-
low the usual steps of the software development cycle,
using the appropriate software tools for code design
and compilation to a HEX file. Only then can the HEX
file be loaded into the host software and reprogrammed
into the device.

FIGURE E-1: HOST SOFTWARE WINDOW

FIGURE E-2: HOST SOFTWARE TOOLBAR

New

Open

Save

Program

Read

Write

Verify Abort (available during

Erase

Download
Memory Routines

COM Port Selector

operations only)
 2001 Microchip Technology Inc. DS00819A-page 27

AN819
TABLE E-1: SUMMARY OF HOST SOFTWARE COMMANDS

Menu Command
Keyboard
Shortcut

Description

File New <Ctrl-N> Clears the host software buffer and prepares for a new
HEX file to be loaded.

Open <Ctrl-O> Opens an existing Intel HEX file residing on the host sys-
tem and displays it in the main window. The software will
prompt for the file name and its location.

Close — Closes the currently open HEX file and clears the host
software buffer. If changes have occurred and have not
been saved, the user will be asked if they wish to save the
changes.

Save <Ctrl-S> Saves the currently displayed data to the open HEX file. If
no HEX file is open, invokes the “Save As” function.

Save As <F12> Save the currently displayed data as an Intel HEX file. A
dialog box will prompt for location and new file name.

Exit — Exit the host software without changing or saving the cur-
rently displayed data.

Operation Program <Ctrl-P> Programs the contents of the host software buffer to the
target memory device. For FLASH devices, this includes
erasing the target, writing to the target, then verifying the
data written.

Write <Ctrl-W> Downloads the current contents of the host software buffer
to the target device, without performing Erase or Verify
operations.

Read <Ctrl-R> Reads the code from the target memory device and dis-
plays it in the main window. The software will prompt for a
range of addresses to be read.

Erase <Ctrl-E> Erases the target memory device.

Verify <Ctrl-V> Verifies the current contents of the memory device against
the displayed file.

Download Memory Routines <Ctrl-M> Downloads the contents of the host software buffer to Boot
RAM of the target controller, and verifies after download.

Read Memory Routines — Reads the current contents of Boot RAM from the target
controller, and displays it in the main window.

Verify Memory Routines — Verifies the current contents of Boot RAM against the dis-
played file.

Abort <Ctrl-A> Terminates the current operation.

Help About — Displays the current revision of the host software.

Note: Interrupting a Program or Write operation with the Abort command can cause unpredictable memory states,
which may result in erratic operation. This may require erasing and reprogramming the target memory
device.
DS00819A-page 28  2001 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2001 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART,
PRO MATE, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microID,
microPort, Migratable Memory, MPASM, MPLIB, MPLINK,
MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select
Mode and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2001, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00819A - page 29

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

DS00819A-page 30  2001 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Two Prestige Place, Suite 130
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Rm. 531, North Building
Fujian Foreign Trade Center Hotel
73 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7557563 Fax: 86-591-7557572
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/01/01

WORLDWIDE SALES AND SERVICE

	INTRODUCTION
	Programming a ROMless System: Overview
	FIGURE 1: Memory map and Program Stack for the PIC18C801
	FIGURE 2: Memory Map and Program Stack for the PIC18C601

	General Requirements for the Bootloader
	The Host Software
	Bootloader Firmware Components
	FIGURE 3: Overview of the Bootloader Firmware
	Invoking the Bootloader
	FIGURE 4: Invoking the Bootloader

	Core Bootloader Firmware
	FIGURE 5: FLOW CHART OF MAIN PROGRAM LOOP FOR THE BOOTLOADER Core
	FIGURE 6: Read command handler
	FIGURE 7: Erase Command Handler
	FIGURE 8: Write Command Handler
	FIGURE 9: BOOT RAM READ COMMAND HANDLER
	FIGURE 10: bOOT ram eRASE cOMMAND hANDLER
	FIGURE 11: Boot RAM Write Command Handler

	Host Software Communications
	FIGURE 12: Flow Chart for the ParseHostCommand Routine
	FIGURE 13: Flow Chart for the SendHostData Routine
	Firmware/Software Interface
	TABLE 1: Bootloader firmware command set

	Programming Firmware
	APIs for External memory programming and erase functions
	FIGURE 14: Flow Chart for the General Programmer Firmware
	FIGURE 15: Common “Wait for End- of-Write” routines for Flash Devices
	FIGURE 16: Typical Write Cycle Routine for Sector- Program Flash
	FIGURE 17: Typical Write and Erase Sequences for “A” and “B” Flash Families
	FIGURE 18: Typical Write and Erase Routines for “C” Family Flash Devices

	Parameter passing mechanism for assembly language
	Writing new Flash memory routines for The BootLoader
	EXAMPLE 1: Defining Common Variables for Passing Parameters
	EXAMPLE 2: Example Code for memrtnes.inc
	EXAMPLE 3: Providing for Relocatable Write and Erase Functions

	Integrating the Bootloader with User Code
	TABLE 2: Resources Needed for the Bootloader
	EXAMPLE 4: Sample UserCode.inc configuration file
	EXAMPLE 5: Sample Linker Script File
	FIGURE 19: Memory Map for Combined Bootloader and User Code

	CONCLUSION
	Appendix A: References
	Appendix B: Software Discussed in This Application Note
	Appendix C: Summary of Memory Devices(1) �
	Appendix D: Programming Algorithms for Representative Memory Devices(1)
	Appendix E: The host software Window
	FIGURE E-1: Host Software Window
	FIGURE E-2: Host Software Toolbar
	TABLE E-1: Summary of Host Software Commands

	Worldwide Sales and Service

