Chapter

65 Integration with
Operating Systems

This chapter describes how to integrate code generated by the Cad-
vanced SDL to C Compiler with operating systems.

The different integration models (Light Integration, Threaded In-
tegration and Tight Integration) are explained in the introduction.

There is a separate annex for each supported RTOS where the OS
specific parts are described.

July 2003 Telelogic Tau 4.5 User’ s Manual 3199

Chapter 65 Integration with Operating Systems

Important!

Y ou are free to reuse the integrations supplied by Telelogic or mod-
ify them to your needs. The OS integrations are tested by Telelogic
but Telelogic does not guarantee that they will perform in your spe-
cific target environment (hardware, CPU, RTOS version etc.).
Please refer to “RTOS integrations” on page 9 in chapter 1, Plat-
forms and Products, in the Installation Guide for information about
host and target environments where the integration types have been
developed and tested.

Light and Threaded integrations
The Light and Threaded integrations are included in the delivery.

The standard product support and maintenance agreement only in-
cludes support for the Light and Threaded integrations available
from Telelogic if no changes have been made to the integrations.

Tight Integration

The Tight integration is meant to serve as atemplate, to be adapted
to your needs. It is available for you as afree download from the
Telelogic Support web site.

The standard product support and maintenance agreement does not
assist in adapting to your target environment.

Customer specific OS integrations

All OS integration models can be supported, enhanced and custom-
ized by using Telelogic’'s Professional Services.

Other integrations

Telelogic hasdevel oped alarge number of integrations based on the
company’ svast experience of integrating with all operating systems
on the market.

3200 Telelogic Tau 4.5 User’s Manual July 2003

Introduction

Introduction

July 2003

The code that is generated by the Cadvanced SDL to C compiler is de-
signed to run on different platforms. Thisisdone by letting al platform
dependent concepts be represented by C macros that can be expanded
appropriately for each environment. There are also types used in the
generated code that haveto be defined. Integration, asreferred to in this
chapter, is the process of adapting the generated code to a certain plat-
form.

This chapter describes the different models that are supported in Telel-
ogic Tau.

Note:

Throughout this chapter, annexes excluded, VxWorks terminology
has been used whenever there are differences between operating
systems. Particularly, thismeansthat theterm task has been used on
several occasions. The corresponding term would be thread for
Win32 and Solaris, process for OSE Delta, and task for Nucleus.

Different Integration Models

With Cadvanced, there arethree different run-time models, called Light
Integration, Threaded Integration and Tight Integration. Tight integra-
tions are then divided into two submodels, the Standard model and the
Instance-Set model. All models use the same generated code.

Y ou will find descriptions of the different models below, aswell as
guidelines for choosing between them.

Light integration

Thesimplest caseiscalled aLight integration because only aminimum
of interaction with the operating system isrequired; aLight integration
could even run on atarget system without any OS at all.

The complete SDL system runsas asingle OStask. Scheduling of SDL
processes is handled by the standard kernel, running a complete state
transition at atime (no preemption). Worst case scheduling latency is
thus the duration of the longest transition.

Communication between SDL processesis handled by the kernel; com-
munication between the SDL system and the environment is handled in

Telelogic Tau 4.5 User's Manual 3201

Chapter 65 Integration with Operating Systems

the two user supplied functions x1nEnv() and xout Env(). These func-
tions are platform dependent. See Figure 558.

rAPPLICATION LEVEL

OS task running SDT Light integration External OStask

SDL Sysiem (N\
(procas 1 Process 2 \

A
V' SDLKemd

|

I

|

|

I

|

|

— |

N g Code written in any language)

:SDLse_nd‘~--~ “SDL receive (Y language) |
\ primitive primitive |
|

|

I

|

|

AY
\ Environment functions

(&= E

| \

\

| OSLEVEL -
\ OSsed-~
| primitive

Figure 558: Signalling in the Light Integration Model.

An SDL process sends one internal and one external signal. xOutEnv() must be
written to call the OS send primitive. Thick borders denote OS tasks.

Other properties of a Light Integration:

» Thescheduling order can be controlled by process priorities and/or
signal priorities as set by the #pr10 directive.

* An SDL system can be partitioned, i.e. split into several executa-
bles. Each partition has its own kernel/schedul er and set of environ-
ment functions. Partitioning isexplained in ‘‘Partitioning” on page
2571 in chapter 57, The Cadvanced/Chasic SDL to C Compiler.

* Itiseasy to“goto target”: Write the environment functions and re-
compile the standard kernel with a cross compiler.

Threaded Integration

The main difference between a Light integration and a Threaded inte-
gration isthat any part of the SDL system can execute inits own thread
in a Threaded integration. A thread in a Threaded integration can exe-

3202 Telelogic Tau 4.5 User's Manual July 2003

Introduction

cute one or several SDL processes or even blocks. How the different
SDL objects should be mapped to threads is specified in the Deploy-
ment Editor. The user can specify thread-specific parameters like:
STACKSIZE, PRIORITY, MAXMESSAGEQUEUESIZE and
MAXMESSAGESIZE in the Deployment Editor. The Deployment Ed-
itor workstogether with the Targeting Expert to generate a Threaded in-
tegration.

Note:

A Threaded integration can only be generated using the Deployment
Editor and the Targeting Expert, i.e. the make feature in the Orga-
nizer CANNOT be used.

Communication and execution control in one thread is handled by the
SDL kernel and not the OS kernel. See Figure 559. This model shows
the default Threaded integration where OS semaphores are the only OS
primitives used in the signal sending. The xMainLoop () functionisthe
entry point for each thread.

| APPLICATIONLEVEL |
| / OStask in SDT Threaded OStask in SDT Threaded \
| SDL System Partition 1 SDL System Partition 2

Process3 Process 4

Figure 559: Signalling in Threaded Integration.

SDL Kernel functions are used for sending signals within or between threads. Thick
borders denote threads.

July 2003 Telelogic Tau 4.5 User's Manual 3203

Chapter 65 Integration with Operating Systems

3204

Semaphores are used frequently in Threaded to protect globally acces-
sible datalike input queues and export queues. Semaphores are also
used in the start-up to synchronize the execution of newly created
threads. We must ensure that no thread is allowed to start executing un-
til ALL threads have been created in the start-up phase.

Communication with externa threads (Threads not made from SDL
specifications) ishandled by the environment functionsin the sasme way
asfor aLight integration. Thereisthough one major difference and that
isthatitispossibleina Threaded to send signalsdirectly to an SDL pro-
cess with the sp1._output () function. The spr,_output () functionis
“thread-safe” because of the use of OS semaphores.

Variations of Threaded Integration

There are two different implementation of signal sending between
threadsin Threaded. The default model send signalsin the sameway as
in aLight integration but the input queues are protected by OS sema-
phores. In the alternative model, the signals are sent/received by
OS_Send and OS_Received. Inthe alternative model thereisno usefor
OS semaphores. Which model to use can be decided at compilation time
by setting the compilation switch

THREADED ALTERNATIVE SIGNAL_ SENDING.

Threaded Default

The sender of an SDL signal “takes’ a semaphore before accessing the
receiversinput queue. Thesignal isthen linked into the input queue and
the semaphoreis“given” back.

Thereceiver isnormally “waiting” for a semaphore. When asignal is
sent, the semaphoreis “released” by the sender. To send asignal, two
semaphores are normally needed. One semaphoreis protecting theinput
gueue and the other is used for synchronizing the sender and the receiv-
er. In Solaris, where we use POSI X threads and semaphores they are
called: xInputPortMutex and xInputPortCond.

One OSfeaturethat is needed in Threaded isa“ Conditional Wait”. We
areonly allowed towait for asignal until thefirstinternal timer expires.
In POSIX, thereis aprimitive called pthread cond wait () andin
Windows there is a similar concept called waitForsingleobject ()
where atime-out can be specified. In VxWorks and OSE, the only con-
cept where you can specify atime-out isOS_Receive. For synchroniza-

Telelogic Tau 4.5 User's Manual July 2003

Introduction

tion between the sender and receiver we are sending asmall
OS_Message (the character ‘¢’) in these two RTOS.

Threaded using OS Send and OS Receive

In this aternative implementation we are sending the signals using
OS_Send and OS_Receive. Signals are now sent to OS_Message
gueues. The sender sends the pointer to the SDL signal in an
OS_Messageto thereceiver' sOS_Queue. When the signal isreceived,
the SDL signal is unpacked and linked in to the receivers input queue.
The advantage with this implementation is that there is now synchroni-
zation between the sender and the receiver. Any number of threads can
send signals at the same time to a specific receiver without having to
wait for a semaphore.

Tight integration

We also provide an alternate run-time model, whichiscalled aTight in-
tegration because the generated code interacts directly with the under-
lying operating system when creating processes, sending signals, etc.

The SDL processes run as separate OS tasks as explained below. Sched-
uling is handled by the OS and is normally time-sliced, priority based
and preemptive.

Communication takes place using the inter-process communications
mechanisms offered by the OS, normally message queues. This applies
to signals sent between SDL processes as well as signals sent to or re-
ceived from the environment. There are no environment functions, asil-
lustrated in Figure 560.

July 2003 Telelogic Tau 4.5 User's Manual 3205

Chapter 65 Integration with Operating Systems

SDL SYSTEM

OS Task running OS Task running
an SDL process an SDL process External OS Task

|

|

|

|

|
(Code writtenin |
any language) |
|

|

|

Figure 560: Signalling in the Tight Integration Model.

An SDL process sends one internal and one external signal. OS primitives are al-
ways used. The SDL system is not an entity of its own. Thick borders denote OS
tasks.

Other properties of a Tight Integration:
» Thereisasingle timer task which handles all SDL timers.
e SDL Simulators cannot be tightly integrated with an RTOS.

« Execution traceis available in textual or MSC format.t

Variations on Tight integration

Tight integrations come in two varieties, the Standard model and the In-
stance-Set model. Consider an SDL system with processes as outlined

in Figure 561.

1. The MSC trace will be printed on standard output. To see the trace in an MSC
diagram, copy the text into afile and read it into the MSC Editor.

3206 Telelogic Tau 4.5 User's Manual July 2003

Introduction

July 2003

[Prsl (4,1oﬂ [Prsz (1,1)] [Prs3 (o,ﬂ

Figure 561: A partial SDL system

This system will be used for explaining the different models of Tight Integration.

Tight Standard

Inthe standard model of aTight integration every SDL processinstance
is mapped to its own OS task. Tasks are created and destroyed dynam-
ically as SDL process instances are created and terminated.

The example system will initially run as five OS tasks (four for Prsl,
and one for Prs2). Up to 13 tasks may be created as needed.

Tight Instance-Set

In the Instance-Set model of a Tight integration every SDL processin-
stance set is mapped to its own OS task. Tasks are created statically
when the SDL systemisinitialized and are never destroyed. Thusthere
may be OS tasks that have no SDL process instances to run.

The example system will run asthree OStasks regardl ess of the number
of process instances (one task each for Prsl, Prs2 and Prs3).

Choosing between Light, Threaded and Tight
Integration

Choosing between the three integration models depends on many fac-
tors. Some of them are related to properties of the SDL system, others
relate to the target environment. Important factors to consider are:

» Thetrade-off between performance and scheduling latency.
» How complex interaction the system has with the environment.
* Whether an operating system will be used or not.

¢ Memory management

Telelogic Tau 4.5 User's Manual 3207

Chapter 65 Integration with Operating Systems

3208

Performance vs. scheduling latency

Generally, the Light integration model provides better performance
than a Tight integration, but worst-case scheduling latency is the dura-
tion of the longest state transition.

A Tight integrationisnormally preferable when low scheduling latency
isimportant. On the other hand, performance suffersfrom the overhead
associated with OS scheduling and inter-process communications.

Another consideration isthat blocking calls (either inlined in SDL code
or as part of environment functions) will completely stop execution of
alLight integration for the duration of the call. Making blocking callsin
aTight integration will only stop the thread making the call.

The Threaded integration is in a sense a combination of the other two
integration models. An application part that makes blocking calls can be
mapped to a separate OS thread. Other parts, where fast inter-process
communication is important, can be mapped to another OS thread. In-
ternally inthisthread, signal exchange will be handled in the same way
asinalLight integration.

Environment interaction

If interaction with the environment is simple then aLight integration is
the best choice, especialy if the system sendsmany signalsand receives
few. Y ou can generate templatesfor the environment functionsfrom the
SDL suiteand just add code for converting between the signal represen-
tation and the actual environment hardware or software.

If interaction with the environment is complex then a Tight integration
isprobably the easiest to use, since you only need to interface to the op-
erating system queues. Thisisthe case if you need process behavior in
the interaction (for example, to establish a communications session be-
fore sending the signal).

Other cases where a Tight integration might be the best choice are

* when the environment consists of many OS tasks written in other
languages than SDL

» when external processes send signals directly to SDL processes
rather than to the SDL system in general

» when there are many signals passing to and from the environment

Telelogic Tau 4.5 User's Manual July 2003

Introduction

July 2003

In a Threaded integration, the integration with the environment should
normally be handled in the environment functions in the same way as
for aLight integration. It is possible though in Threaded to send signals
directly toan SDL processwith the spr,_output () function without in-
volving the xInEnv () function.

Operating system issues

If you will not use an OS at all then you have to select aLight integra-
tion. In addition, you will have to provide some simple functions for
getting system time and handling memory allocation (depending on
compiler and libraries, standard C library functions can often be used).

If you use an OS that takes care of load balancing between CPUs then
you should select a Tight integration, because |oad balancing normally
uses threads as the load unit to distribute.

If you want to distribute your SDL System over several nodes (CPUSs)
you should use the Threaded integration together with the TCP/IP fea
ture.

Considerations when choosing between Tight and Threaded

Overall, Telelogic recommends using the Threaded integration
mode, unless there are specific technical reasons to prefer one of the
other integration models.

The two most important reasons for choosing the Threaded model are:

1. The Threaded integration out-perform a Tight Integration in most
situations, e g implementation of Timers and creation of tasksis
about 100% faster in Threaded.

2. InThreaded you are not limited to two partitioning models. Any
mapping between SDL objects and threads can be specified in the
Deployment editor.

For amore comprehensivelist of the differences between Threaded and
Tight see the following sections.

Advantages of Threaded

» Thedefault model isvery simple to implement for anew OS. A
working prototype should normally take 2-3 days.

Telelogic Tau 4.5 User's Manual 3209

Chapter 65 Integration with Operating Systems

The Threaded model can be used together with the TCP/IP feature.

The Threaded model is supporting all partitioning models (1 pro-
cessinstance/1 or many processinstance-set/1 or many blocks/1 en-
tire system mapped to one Thread.

The user can easily specify Thread specific parameters like: stack
size, Thread priority, Thread message queue size and maximum
message size for each Thread.

The Thread specific code for all supported OSis placed in onefile.

Advantages of Tight

Simple mapping od SDL conceptsto OS primitives.

Simpleinteractionswith environment (at least in the default model),
by direct call to the OS message passing primitives.

Support textual and M SC-pr textual trace in console window when
executing.

Disadvantages of Threaded

Slightly more difficult to interact with the environment. An external
function/thread must use the SDL_ Output function when sending
signalsto an SDL process.

Disadvantages of Tight

3210

Very difficult and time consuming to support a new OS.
Can only support two partitioning models.

Very inefficient Timer model.

Telelogic Tau 4.5 User's Manual July 2003

Common Features

Common Features

July 2003

Thissection describesthe parts of theintegration that are commonto the
different models, but also some important differences.

Note:

Many of the data structures and macros described in this section are
described in more detail in chapter 62, The Master Library. That
chapter is, however, focused on aLight Integration. Somethings, es-
pecially thelistings of data structures, are not correct in every detail
for Tight Integrations but should still be very useful.

The Use of Macros

A source file generated by an SDL to C compiler isindependent from
the choice of integration model and operating system. Instead of system
calls, it uses macros that have to be defined el sewhere when the system
isbuilt. Each SDL concept is represented by one or more C macros.
These macros will have different definitions for different integration
models and operating systems. Telelogic Tau provides a number of in-
tegration packagesfor thispurpose. InaLight I ntegration, many macros
are expanded into functions of the standard kernel. A Tight Integration
has lower level macros that are defined in separate files for each oper-
ating system, and finally expanded into OS primitives or certain OS de-
pendent constructions.

Below isan example of generated code for signal sending. Codein cap-
ital letters are the SDL suite macros. The bracketed numbers indicate
corresponding lines of code. For a description of the different macros,
see chapter 62, The Master Library.

Telelogic Tau 4.5 User's Manual 3211

Chapter 65 Integration with Operating Systems

Sig2 >

3212

SDL symbol: Output
Generated code before macro expansion:

[1] ALLOC_SIGNAL(sig2, ySigN z3 sig2,
TO_PROCESS (Env, &yEnvR env),
XSIGNALHEADERTYPE)

SIGNAL ALLOC_ERROR
[2] SDL_20UTPUT_COMPUTED_TO (

xDefaultPrioSignal,
(xIdNode *)0, sig2,
ySigN_z3_sig2,
TO_PROCESS (Env, &yEnvR env),
0, “sig2")

SIGNAL ALLOC_ERROR_END

Generated code after macro expansion for a Light Integration:

[1] yOutputSignal = xGetSignal
((&ySigR_z3_sig2),
(* (&yEnvR_env) ->
ActivePrsList !=
(xPrsNode) 0 ?
(* (&yEnvR_env) ->
ActivePrsList) ->Self :
xSysD.SDL_NULL_Var) ,
yVarP->Self) ;

[2] SDL_Output (yOutputSignal,
(xIdNode *) 0);

File Structure

Note:

The source file and examples for Tight Integration are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

The Generated Files

An integration uses one or more of four files that can be generated by
the Code Generator. All integrations require the C source file
<systemname>.c, Whereastheinterfacefile <systemnames . ifcisop-
tional. For aTight Integration the signal number file <systemnames . hs
may beused, and for aLight Integration thefile sctenv . c, representing
the environment, can be used.

The source file uses the highest level set of macros, that are defined in
the different integration packages.

Telelogic Tau 4.5 User's Manual July 2003

Common Features

The Integration Packages

The files containing the necessary macro definitions and support func-
tions are organized as shown in Figure 562. For each operating system
there is one package for the Light Integration, and one for the Tight In-
tegration. Although the filesin different packages may have the same
name they do not necessarily contain the sasme code. The principlesfor
Tight Integration packages are described more thoroughly in “ Tight In-
tegration” on page 3249. Details about each operating system can be
found in the annexes.

sdtdir

simple.sdt
RTOS simple.ssy
I Examples — Simple bl1.sbk
prl.spr
dynprl.spr

VxWorks

... <other RTOS>

sctcommon.h
scthooks.h_template
sctos.c

— INCLUDE-| Sctpred.c

sctpred.h

sctsdl.c
scttypes.h

— SDL—— pidlistpr Special version for Tight Integrations

sctvxworks.c
— VxWorks — TightIntegration sctvxworks.h

sdt2vxworks.c

| ...<other RTOS>

Figure 562: File structure for the RTOS integrations

July 2003 Telelogic Tau 4.5 User's Manual 3213

Chapter 65 Integration with Operating Systems

3214

There is also an 1NcLUDE directory containing source files common to
all supported operating systems. These files are described in “File
Structure” on page 2951 in chapter 62, The Master Library. Below are

some additional comments on thesefiles:

scthooks. h!

This file contains macro hooks into the system. These hooks are
used for customizing a Tight Integration, for example by adding ex-
ternal tasks. See the examples to find out how thisis done.

All the hook macros are initially empty.

sctcommon . h:

Thisfile contains general macros for al Tight Integrations
sctos.c:

Thisfile containsfunctionsthat are operating system and/or compil-
er dependent, like allocation and free of dynamic memory.

sctpred.h and sctpred.c:

Thisisthe header and source file where all the SDL predefined
datatypes are implemented.

sctsdl.c:

Thisfile contains SDL support functions, the timer task and the tim-
er support functions. It is non-OS-specific and calls many second
level OS-specific macros defined in sct<RTOS> . h.

scttypes.h!

Thisfile contains the general datatype definitions for signals,
IdNodes, €tc. It aso contains the macro definitions found in gener-
ated code. Note that thisfile is non-OS-specific. This meansthat if
acall to an OS-specific primitive is needed, then a second level of
macro is defined, according to the following model.

In the generated code:

ALLOC_SIGNAL_PAR(ok, ySigN z3 ok, TO PROCESS (Env,
&yEnvR_env), yPDef z3 ok)

In scttypes.h:

Telelogic Tau 4.5 User's Manual July 2003

Common Features

#define ALLOC_SIGNAL PAR(SIG NAME, SIG_IDNODE, \
RECEIVER, SIG PAR_TYPE) \
RTOSALLOC SIGNAL PAR(SIG NAME, SIG IDNODE, \
RECEIVER, SIG_PAR TYPE)

IN sct<RTOS> . h:

#define RTOSALLOC SIGNAL PAR(SIG _NAME, SIG IDNODE, \
RECEIVER, SIG PAR_TYPE) \
yOutputSignalPtr = \
xAlloc (sizeof (xSignalHeaderRec) + \
sizeof (SIG_PAR _TYPE)); \
yOutputSignalPtr->SigP = yOutputSignalPtr+1; \
yoOutputSignalPtr->SignalCode = SIG NAME; \
yOutputSignalPtr->Sender = SDL_SELF;

TheExamples directory containsasimple SDL system that also usesan
external process (aseparate OStask). For each supported operating sys-
tem there isan implementation of this, demonstrating how to hook into
the integration package. Further description of the example can be
found in “A Simple Example” on page 3264.

Naming Conventions

Names of variables, datatypes and support functions in generated code
and package files often start with one of the lettersx, y and z.

The general rules (there are some exceptions) are:

» Names and objects starting with an ‘X’ represent general datatypes
and support functionsin the kernel.

Examples: extern XCONST struct xVarIdStruct,
xInputSignal, xFindReceiver

* Namesstartingwith a'y’ are names of IdNodes representing SDL
variables, process states, channels, blocks, datatypes for signals,
PAD functions, etc. in generated code.

Examples: extern XCONST struct xVarIdStruct
yVarR_z012 okmess, ySigR z3 ok, yPAD z0l prl

» Names and objects starting with a‘z’ are SDL variables, SDL
names, process state names, etc. in generated code.

Examples: #define z010 idle 1, z012 okmess

July 2003 Telelogic Tau 4.5 User's Manual 3215

Chapter 65 Integration with Operating Systems

The Symbol Table

All signals, blocks, processes, channels, etc. in an SDL system have a
corresponding representation in the symbol table described in chapter
62, The Master Library. This symbol table consists of nodes (1dNodes)
each representing one entity of the system. The 1dNodes are pointersto
structs. See the following example:

extern XCONST struct xPrsIdStruct yPrsR z02 dynprl;
#define yPrsN z02 dynprl (&yPrsR_z02 dynprl)

Then andther just before zo2 dynpri indicateif itisanode (v)
or arecord (R).

Memory Allocation

The xal1oc function isaways used when all ocating dynamic memory.
Thefunctionisplaced inthe sctos . c file, but in the Tight Integrations
the body of the function isfound in the sct<rTOS>.h file.

Start-up

The yinit functioniscalled during start-up of the SDL system. It is
responsiblefor creating all static processesand for initializing SDL syn-
onyms.

Implementation of SDL Concepts

SDL Processes

An SDL process consists of three parts in generated code: Instance set
common data, instance specific data and dynamic behavior.

Instance set common data

Variables and structures that are common to all instances of a process
are stored in arecord of the type xprsidstruct, definedin
scttypes.h. Thisrecord isreferenced by a node in the symbol table.

Instance specific data

Variables and structures of the process instance are declared viathe
macro PROCESS_VARS. Thismacro is defined in different waysin the
Light and the two models of Tight Integration. It contains state informa-

3216 Telelogic Tau 4.5 User's Manual July 2003

Common Features

July 2003

tion, local variables, pointersto parent and offspring, etc. Oneimportant
entry isthe Restartaddress, pointing out which transition to execute
when the PAD function runs (see below).

Dynamic behavior

The dynamic behavior of an SDL processisimplemented in a PAD
function (Process Activity Definition). The PAD function isused some-
what differently in the different integration models:

* IntheLight Integration the scheduler callsthe PAD function of the
process. The PAD function then returns to the scheduler when the
transition is finished.

» Inthe Standard Model Tight Integration the PAD functioniscalled
when the process is started and does not return until process termi-
nation. It then contains amain loop where oneiteration corresponds
to one transition.

» Thelnstance Set Model Tight Integration containsamix of thetwo.

Below isthe code for ending atransition, before and after macro expan-
sion for aLight Integration.

SDL symbol: Nextstate
Generated code before macro expansion:

* NEXTSTATE -
* #SDTREF (SDL, /ti/RTOS/MANUAL/SDL/simple.spr (1),
143(55,100),1)

#ifdef XCASELABELS

[1] case 6:

#endif
[2] XAT_LAST_SYMBOL
[3] SDL_DASH NEXTSTATE

Generated code after macro expansion for aLight Integration:

* NEXTSTATE -
* #SDTREF (SDL, /ti/RTOS/MANUAL/SDL/simple.spr (1),
143(55,100),1)

______ */
[1] case 6:
[2] xGRSetSymbol (-1);
[3] SDL_NextState (VarP, yVarP->State);

return;

Telelogic Tau 4.5 User's Manual 3217

Chapter 65 Integration with Operating Systems

3218

Signal Queues
Basically, every process has at |east one signal queue.

* InalLight Integration each process instance has an input queue.

* Inthe Standard Model Tight Integration thereisan input queue and
a save queue for each instance.

* Inthelnstance Set Model Tight Integration thereis an input queue
and asave queuefor every instance set. Thesetwo queuesare shared
by all the instances.

All signalsthat are sent to aprocess arrive in the input queue. The save
gueue is used to keep signals that cannot be handled in the current state
but should be saved for future use. Thisistightly connected to the SDL
Save concept, but is also used in the implementation of timers. For a
Light Integration there are no save queues. Instead, al signals that
should be saved will remain in the input queue until they can be re-
ceived.

Process Priorities

The use of process priorities requires some caution. Priorities can be set
with the #pr10 directive in the SDL suite, but there is no mapping of
priorities for different platforms. The generated code will use exactly
the values specified in the SDL system. Thiswill not be aproblemin a
Light Integration, but for Tight Integrationsthe result may not be the ex-
pected.

Example 536: Process priority problems

Assume that Processl hasits priority set to 100 using the #PRI0 100
directiveand Process2 has #Pr10 50. Thesepriority valueswill beused
as-is by the underlying scheduler.

Inthe SDL Suite simulators and Light integrations, the highest priority
is0. In VxWorks, 0 isthe highest priority, whereasin pSOS the highest
priority is 255.

Thusthe simulated system, aLight integration for any operating system
and a Tight integration for VxWorks will all run Process2 at a higher
priority than Processl. In contrast, aTight integration for pSOSwill run
Processl at a higher priority than Process2!

Telelogic Tau 4.5 User's Manual July 2003

Common Features

Pri(2,2)

July 2003

Process Creation

Regardless of the integration model there are a number of things that
have to be done when an SDL process instance is created. The structs
that represent the instance have to be created. It needs a representation
in the symbol tree and asignal queue, except in the Instance Set M odel
of Tight Integration where the signal queue belongs to the instance set.
A start-up signal is also always allocated and sent to the process.

SDL symbol: SDL Static Create
Generated code before macro expansion:

JREK IRk KKk Rk kk ko ko ko khhkkkkkhh kR hkkhkhkhkkkkhkkkkkk kK k%

SECTION Initialization
**/

extern void yInit XPP((void))

INIT_PROCESS_TYPE (prl,z01_prl,yPrsN_z01l_prl,”z01_prl”,
SDL_INTEGER_LIT(2),SDL_INTEGER_LIT(2),
yVDef z01 prl, xDefaultPrioProcess,
yPAD_z01 prl)

#ifdef SDL_STATIC_CREATE
for (Temp=1; Temp<=SDL_INTEGER LIT(2); Temp++) {
SDL_STATIC_CREATE (prl,z0l1 _prl,yPrsN z01l prl,
"prl”,ySigN z01l pril,
yPDef_z01_prl,yVDef z0l pril,
xDefaultPrioProcess,yPAD z01l prl,1)

}
#endif

Generated Code after macro expansion for a Light Integration:

/**
SECTION Initialization

ok kkkkkkk ok kkkkkkkkkkkkkkhkkkhkkkhkkhkkkkhkkkhkkhhkkkhkkk k% /

extern void
yvInit ()

for (Temp = 1; Temp <= 2; Temp++) {
SDL_Create (xGetSignal ((&ySigR_z01l prl)

xSysD.SDL_NULL Var, xSysD.SDL_NULL_Var),
(&yPrsR_z01 prl), 1);

Telelogic Tau 4.5 User's Manual 3219

Chapter 65 Integration with Operating Systems

SDL Signals

Signal Sending

In generated code a signal sending is handled by two macros:
ALLOC_SIGNAL (Or ALLOC SIGNAL_PAR for asigna with parameters)
and sp1,_20UTPUT_xxxx (there are different macros depending on how
the SDL output was defined, e.g. with or without an explicit TO).

SDL symbol: Output
go > Generated code before macro expansion:

[1] ALLOC_SIGNAL(go,ySigN_z03_go,TO PROCESS (p,yPrsN_z09 p),
XSIGNALHEADERTYPE)
SIGNAL ALLOC_ERROR
[2] SDL_20UTPUT_COMPUTED_TO (xDefaultPrioSignal, (xIdNode*)0, go,

ySigN z03 go,TO_PROCESS (p, yPrsN z09 p), 0, “Go”)
SIGNAL ALLOC_ERROR_END
XBETWEEN_SYMBOLS (4, 579)

Generated code after macro expansion for a VxWorks Tight Integra-

tion:

[1] yOutputSignalPtr = xAlloc (sizeof (xSignalHeaderRec)) ;
[1] yOutputSignalPtr->SignalCode = 2;

[1] yOutputSignalPtr->Sender = yVarP->Self;

[2] Err = msgQSend (xTo_Process ((&yPrsR_z09 p)),

[2] (char*) *&yOutputSignalPtr,

[2] sizeof (xSignalHeaderRec) + 0, 0, 0);
[2] xFree ((void **) &yOutputSignalPtr) ;

[2] if (Err == (-1)

[2] taskLock () ;

[2] printf (“Error during %s found in VXWORKS

[2] function %s. Error code %s\n”, “OUTPUT”,

[2] “msgQSend”, strerror ((*_ errno ())));

[2] taskUnlock () ;

[2] }

In this example the signal is called go and has no parameters. The
SDL_20UTPUT COMPUTED TO macro indicates that it was sent without
an explicit TO.

SDL Procedures

An SDL procedure is represented by afunction similar to aPPAD func-
tion. Before aprocedure is called there are two support functions that
need to be called: xGetprd and xAddprdcall.

The xgetprd function allocates an xprdstruct for the called proce-
dure and returns an xprdNode pointing to the struct.

3220 Telelogic Tau 4.5 User's Manual July 2003

Common Features

SET
(Now+5,T1)

July 2003

The xaddprdcall function adds the new procedure call in the calling
process’ Activeprd list (an element in the xPrsstruct).

The procedureis called with a pointer to the instance data of the calling
SDL process. Thisisbecause the procedure must be ableto useinternal
variables in the calling process.

Before a procedure returnsto the caller it performs an xReleasepPrd
call. This function removes the call from the activeprd list.

SDL Timers

SDL timers are represented by signals. All active timer signals are kept
in asorted list, either within the single task of aLight Integration or in
acertain timer task in aTight Integration. When atimer expires, thesig-
nal representing it is sent to the SDL process that set it.

SDL symbol: SET Timer
Generated code before macro expansion:

* SET T1
* #SDTREF (SDL, /ti/RTOS/MANUAL/SDL/dynprl.spr (1),
119(55,25),1)

#ifdef XCASELABELS

[1] case 2:
#endif
[2] SDL_SET_DUR (xPlus_SDL_Time (SDL_NOW,
[3] SDL_DURATION LIT(5.0, 5, 0)),
[4] SDL,_DURATION LIT(5.0, 5, 0), tl, ySigN z021 t1,

yTim_tl, “T1”)
Generated code after macro expansion for aLight Integration:
* SET T1

* #SDTREF (SDL, /ti/RTOS/MANUAL/SDL/dynprl.spr (1),
119(55,25),1)

______ */
[1] case 2:
[2] SDL_Set (xPlus_SDL Duration (SDL_Now (),
[3] SDL_Duration_Lit (5, 0)), xGetSignal
[4] ((&ySigR_z021 tl1), yVarP->Self,

yVarP—>Self))7

Telelogic Tau 4.5 User's Manual 3221

Chapter 65 Integration with Operating Systems

Light Integration

A Light Integration is a stand-al one executabl e which can be generated
with or without asimulator. An executable that should run under UNIX
can use the precompiled kernels. Only the environment functions need
to be written by the user.

PAD Functions

The PAD function is called by the scheduler when its processisin turn
to execute atransition. The scheduler calls the PAD function with a
symbol table node of the type xprsNode, pointing to the instance spe-
cific data of the instance that is scheduled.

Start-Up

A Light Integration starts when the generated main function is called.
The start-up phase works like this (pseudocode shown in italics):

void main(void)

{

xMainInit () ;
Code from #MAIN

xMainLoop () ;

}

void xMainInit (void)

{

xInitEnv () ;
Init of internal structures

Y ou must supply the x1nitEnv () function toinitialize external code

and hardware, etc. (thisis of course application dependent). This func-
tionisplaced in the same program maodul e (environment module) asthe
xInEnv () and xoutEnv () functions. The xMainLoop () function con-
tains an eternal loop, which constitutes the scheduler itself. See below:

3222 Telelogic Tau 4.5 User's Manual July 2003

Light Integration

July 2003

void xMainLoop (void)

{

while (1)

{
xInEnv(...)
if (a timer has expired)
send the corresponding timer signal
else if (a process can execute a transition)

remove the signal from the input port
set up Sender in the process to Sender of the signal
call the PAD function for the process

}
}

Connection to the Environment

Signals going in and out of the SDL system are handled in the two user
written functionsxInenv and xout Env. Thereisatemplatefilefor writ-
ing these two function in the standard distribution. Thisfile can be
found af <installation directorys/sdt/

sdtdir/<your platform os versionssdtdir/INCLUDE/
sctenv.c.

Running a Light Integration under an External
RTOS

Since there are some fundamental differences between different RTOS
we can only give a general idea of how to generate a Light Integration
under an external RTOS here. Typical things that may be different in
different RTOS:

» If you are dlowed to have a main function in your application.
« If your start-up function must be specified in a configuration file.

» If thecross compiler requires additional OS-specific header filesto
be included.

» |Ifitispossibleto run the application in a simulated target environ-
ment.

» Syntax for the makefile.

Telelogic Tau 4.5 User's Manual 3223

Chapter 65 Integration with Operating Systems

General Steps

The normal steps to create a Light Integration under an external RTOS
can be summarized as follows:

1. Copy the source and header files for an application kernel from the
installation of the SDL suite. The files are residing in the following
directory:

<installation directory>/sdt/
sdtdir/<your host and os versions>sdtdir/INCLUDE.

2. Generate an <applications.c filewith the SDL to C Compiler.

Note:
The code generator option Cadvanced must be used.

3. Generate an environment header file (an option in the Organizer
Make diaog).

4. Edit the sctenv.c template file to handle your in and out environ-
ment signals. Include the generated <applications.ifc file (the
environment header file).

5. Create amakefile or edit the generated makefile. Write entries for
the kernel source files, the environment file and the application file.

6. Set the appropriate compilation switches for your RTOS and your
compiler.

7. Compilethe application and the kernel file to create arelocatable
object file.

8. Download.

3224 Telelogic Tau 4.5 User's Manual July 2003

Threaded Integration

Threaded Integration

July 2003

Introduction

Thefirst part of this section is about the Threaded integration. The sec-
ond part is about the TCP/IP feature. With the Threaded and TCP/IP
features you can partition an SDL system into severa threads that can
execute in adistributed environment.

Implementation Details for Threaded
The main areas where a Threaded differs from a Light integration are:

» Symbol table structures and global variables
* Process creation

» Signal sending

Symbol Table Structures and Global Variables

Each thread hasaglobal variable of type xsystembata in Threaded. In
Light, thereisonly oneglobal variable of thistypefor the entire system.
In Threaded this variableisinitialized in yinit () and is one of the pa-
rameters in the macro for creating a new thread.

The data structure xsystembata has a couple of new entries:

#ifdef THREADED
xInputPortRec xNewSignals;
THREADED THREAD_ VARS
#endif

The entry xNewsignals isused when anew signal isreceived. Thesig-
nal isfirst linked into the receiver’'s xNewsignals queue beforeitis
handled in the receiver’'s xMainLoop () .

The entry THREADED THREAD VARS iSamacro that contains different
thread variables like the semaphore handles xTnput Port.

Global variables are declared in the macro THREADED GLOBAL VARS:
#elif THREADSOLARIS

#define THREADED GLOBAL VARS \
pthread mutex_ t xListMutex; \

Telelogic Tau 4.5 User's Manual 3225

Chapter 65 Integration with Operating Systems

3226

pthread mutex_ t xExportMutex; \

sem_t xInitSem; \
int xNumberOfThreads;
int QueueCounter;

int xInitPhase;

pthread_attr_t Attributes ;
#endif /* THREADED ALTERNATIVE_ SIGNAL SENDING */

#endif

Process Creation
There are three macros related to the creation of threadsin a Threaded:

THREADED START THREAD (F,

SYSD, THREAD STACKSIZE,

THREAD PRIO, THREAD MAXQUEUESIZE, THREAD MAXMESSIZE)

Thismacro is used if thereis only one thread to be created for all
instances (Instance Set) of an SDL process (or another SDL object).

The parameters are:
Parameters Explanation
F The entry point of thethread, i.e.
the SDL kernel function xMain-
Loop ()
SYSD A variable of type xsystembata

THREAD_ STACKSIZE

The stacksize for the thread is
specified in the Deployment Edi-
tor

THREAD_ PRIO

The thread priority specified in
the Deployment Editor

THREAD MAXQUEUESIZE

The maximum number of mes-
sages/signals in the input queue
of the thread, as specified in the
Deployment Editor. This parame-
ter isonly used if the alternate
signal sending model is used.

Telelogic Tau 4.5 User's Manual July 2003

Threaded Integration

July 2003

Parameters Explanation

THREAD MAXMESSIZE The maximum size of ames-
sage/signal. This parameter isig-
nored at the moment in both im-
plementation models. The maxi-
mum size of amessage/signal in
the aternate signal sending mod-
el isawaysthe size of the pointer
toan SDL signal (sizeof (xSig-
nalNode).

Note:

Thread parametersfor individual threads can be specified in the De-
ployment Editor. If no values are specified, default values will be
used.

SDL_CREATE (PROC_NAME, PROC IDNODE, PROC NAME STRING)

Thismacro is used for creation of dynamic processes (processes
created during run-time).

It is defined exactly the same way in Threaded asin Light. It will
call the SDL kernel function sp1,_create().

spL_create() will create anew thread if, for instance, there should
be one thread for each instance of an SDL process. See the follow-
ing extract from the spr, create () function:

#ifdef THREADED
if (PrsId->SysD == 0) {
THREADED START_ THREAD (xMainLoop, StartUpSig-
>Receiver.LocalPId->PrsP->SysD, PrsId->ThreadParam-
>ThreadStackSize, PrsId->ThreadParam->ThreadPrio,
PrsId->ThreadParam->MaxQueuelLength, PrsId-
§ThreadParam—>MaxMesSize);

#endif

Please note that the thread parameters are taken from the xpPrsTdnN-
ode for the process.

SDI,_STATIC CREATE (PROC_NAME, PREFIX PROC_NAME,
PROC_IDNODE, PROC_NAME STRING, STARTUP IDNODE,

Telelogic Tau 4.5 User's Manual 3227

Chapter 65 Integration with Operating Systems

STARTUP_PAR TYPE, PRIV_DATA TYPE, PRIO,
PAD FUNCTION, BLOCK INST NUMBER)

Thismacro is used for creating static processes (processes that are
created at system start-up). It will be called fromtheyinit () func-
tion and ismapped to the SDL kernel function spr,_create () inthe
same way asin the SDL_CREATE macro.

ThexMainLoop () functionistheentry point for thethread. Firstinthis
function is the macro

THREADED_ THREAD BEGINNING (SYSD)

The main purpose of this macro isto wait for the start-up semaphore
xInitSem. No thread isallowed to start executing until ALL static pro-
cesses/threads have been created.

Sending Signals

In the default model, signals are sent in the same way asfor aLight in-
tegration except that they arefirst linked into the xNewsignalS queue.

In the xMainLoop () function, the xNewsignals queueis checked for
new entries. If anew signal isavailable, it is sent to the process itself
with the spL._output () function. See the following extract from the
xMainLoop () function:

THREADED_LOCK_INPUTPORT(((XSyStemData *)SysD))

while (((xSystemData *)SysD)->xNewSignals.Suc != (xSig-
nalNode) & ((xSystemData *)SysD) ->xNewSignals)
SDL_Output (((xSystemData *)SysD) ->xNewSignals.Suc
xSigPrioPar (((xSystemData *)SysD) ->xNewSignals.Suc-
>Prio), 0);

THREADED UNLOCK_INPUTPORT (((xSystemData *)SysD))

The Alternative Signal Sending Model.

In the aternative signal sending model, an OS message/signal is sent
containing a pointer to the SDL signal. For this, a message queue must
be created for each thread at thread creation. How thisis done differs
from OSto OS. See: Signalling in Threaded Integration.

The sender sendsthe pointer to the SDL signal with the OS_Send prim-
itive. Thereceiver receivesthe message, extractsthe pointer to the SDL

3228 Telelogic Tau 4.5 User's Manual July 2003

Threaded Integration

signa and linksit into the xNewSignal queue. After this, thesignal is
handled in the same way as in the default model.

New Macros

The same source files are used in a Threaded integration asin a Light.
Theonly SDL kernel sourcefilesthat are affected by the Threaded in-
tegration are scttypes.h, sctsdl.c and sctos.c.

Most of the OS specific codeisfound in the scttypes.h file. The fol-
lowing macros are new for Threaded:

MACRO NAME Explanation

THREADWIN32 Main macro for Threaded Win-
dows integration

THREADSOLARIS Main macro for Threaded Solaris
integration

THREADVXWORKS Main macro for Threaded Vx-
Works integration

THRAEDOSE Main macro for Threaded OSE
integration

THREADED ALTERNATIVE SIGN
AL_SENDING

Main macro for using the alterna-
tive signal sending model.

THREADED POSIX THREADS

Main macro for the Threaded in-
tegration model defining the ker-
nel specifics

THREADED

Internal macro used only in the
kernel source files

THREADED TRACE

Enabling textual execution trace

THREADED OSTRACE

This macro is mapped to a printf
statement.

THREADED_ERROR

Enabling textual error printout
when calling OS primitives.

THREADED ERROR_VAR

Defines avariable used in
THREADED_ERROR_RESULTS.

Telelogic Tau 4.5 User’s Manual

3229

Chapter 65 Integration with Operating Systems

3230

MACRO NAME

Explanation

THREADED ERROR_RESULT

Stores the return result after call-
ing an OS primitive.

THREADED_ ERROR_REPORT

Checks the value of the return
variable and if ERROR makes a
printout.

THREADED ERROR_REPORT_NUL
L

Checks the value of the return
variable and if ERROR makes a
printout.

THREADED_ERROR_REPORT NEG

Checks the value of the return
variable and if ERROR makes a
printout.

THREADED ERROR_REPORT OPE
N NEG

Checks the value of the return
variable and if ERROR makes a
printout.

THREADED ERROR REPORT WAT
T_NEG

Checks the value of the return
variable and if ERROR makes a
printout.

THREADED_ GLOBAL_VARS

Global variable defines.

THREADED_ GLOBAL_INIT

Initialization of global variables
like semaphores.

THREADED THREAD VARS

Definitions of thread variables.

THREADED_THREAD_INIT

Initialization of thread variables.

THREADED THREAD BEGINNING

Wait for xInitSem to be released.

THREADED LOCK_ INPUTPORT

Protect the input queue by taking
the semaphore.

THREADED_ UNLOCK_ INPUTPORT

Releasing the semaphore for the
input queue.

THREADED WAIT AND UNLOCK
INPUTPORT

Wait for next message/signal to
arrive or thenext internal timer to
expire.

THREADED_SIGNAL_AND_ UNLOC
K_INPUTPORT

Send a signal and release the
semaphore for the input queue.

Telelogic Tau 4.5 User's Manual

July 2003

Threaded Integration

July 2003

MACRO NAME

Explanation

THREADED LISTREAD START

Protect global active and avail-
able lists with a semaphore be-
forereadingit.

THREADED LISTWRITE_ START

Protect global active and avail-
able lists with a semaphore be-
fore writing to it.

THREADED_ LISTACCESS_ END

Releasethe semaphore protecting
aglobal active or available list.

THREADED_ EXPORT_ START

Protect export and import actions
by taking a semaphore

THREADED EXPORT END

Rel ease the semaphore after ex-
port and import actions.

THREADED_START THREAD

Start anew thread.

THREADED_ STOP_THREAD

Terminate a thread.

THREADED AFTER_THREAD STA
RT

Synchronizethestart-up of newly
created threads.

THREADED_ SEND OUTPUT

Send messages/signals. Used in
both models.

Textual and MSC Trace in Threaded

Textual SDL Trace, similar to the Textual Tracein Telelogic Tau Sim-
ulator, can beturned on by selecting the flag SDL trace (will set theflag
THREADED XTRACE) inthe Target Library/Kernel window in Targeting
Expert.

On-line M SC traceis possible when running an application under a soft-
kernel on Windows or UNIX. Select the flag MSC trace (will set the
flag THREADED MSCTRACE) in the Target Library/Kernel window in
Targeting Expert.

API for interfacing a Threaded Integration

An API isavailable with a number of useful functions/MACROS that
will facilitate the work of sending/receiving signals between external
processes/threads and an SDL Threaded Application.

Telelogic Tau 4.5 User's Manual 3231

Chapter 65 Integration with Operating Systems

The following functions and MACROS are available:

SDL_PId xThreadedRegExtTask()

This function will return an SDL Pld representing the calling External
process/thread. It worksin the following way:

1. Get aThreadld for the calling process/thread.

2. Allocateand assignan SDL struct (xPrsIdrec) representing the ex-
ternal process/thread.

3. Cadll the SDL kernel function xcetp1d () to get an spL_PId.

4. I1f MSCtraceisonit will generate an entry for the process/thread in
the MSC diagram.

5. Allocateandinitializean SDL “system datarecord” for the external
process/thread.

6. Create aqueue for the calling process/thread.
7. Assign the “system datarecord” entry in the spr,_p1d.

8. Returnthe spr_pi1d.

xSignalNode xThreadedReceiveSDLSig(SDL_PId)

Thisfunction will wait for an SDL signal indefinitely. When asignal ar-
rives the signal will be taken out of the queue and return the signal. If
MSC traceis on the signal will also be traced in the MSC diagram.

xSignalNode xThreadedReceiveSDLSig_WithTimeOut(SDL_PId,
SDL_Duration)

Thisfunction will work in the same way as xThreadedReceiveSDL-
Sig() except that it will only wait for the specified time.

THREADED_ASSIGN_SDL_SIG_PARAMS(sigptr,signame,paramno,pa
ram)

This macro will use the macro token operator ## to concatenate the
sigptr, signame, paramno into a simple assignment of the signal param-
eter with the specified number.

3232 Telelogic Tau 4.5 User's Manual July 2003

Threaded Integration

July 2003

Note:

This macro should only be used with simple datatypes where assign-
ments can be done using the simple assignment operator “="

THREADED_GET_SDL_SIG_PARAM(sigptr,signame,paramno,param)

This macro will assign the user’ s param the va ue of the signal parame-
ter with the specified number.

Note:

This macro should only be used with simple datatypes where assign-
ments can be done using the simple assignment operator “="

SDL_Output()

Thisisthe standard SDL kernel function that should be used when send-
ing signal into aThreaded Application. The following must be done be-
foreasignal can be sent from an external process/thread into a Threaded
Application.

1. Usethe
xThreadedRegExtTask/xThreadedRegExtTask WithQueue
function to get an sp1,_p1d.

2. Call the SDL kernel function xcetsignal with the following pa-
rameters. signalid, Receiver, Sender.

3. Assign signa parameters using the APl macro
THREADED ASSIGN_ SDL_SIG PARAMS ()

4, Call the SDL_Output function with the SDL signal.

For an example see Annex 6: Building a Threaded I ntegration

THREADED_START_EXTTASK

Thismacro isnormally empty. It is called after al static SDL threads
arecreated inthe THREADED AFTER_THREAD START macro (lastin gen-
erated c file for application).

By defining this macro to user can make the application start external
tasks.

Telelogic Tau 4.5 User's Manua 3233

Chapter 65 Integration with Operating Systems

3234

THREADED_SIMPLE_EXAMPLE

If this flag is defined the external tasks in the simple example will be

started.

Implementation Details for Different RTOS

VxWorks

The Threaded integration for VxWorksis devel oped and tested using a

Solaris Softkernel in Tornado 2.

The following vxWorks header files are used:

#ifdef THREADVXWORKS

#include "errno.h"
#include "vxWorks.h"
#include "semLib.h"
#include "msgQLib.h"

/* msgQCreate msgQDelete ms-

gQSend msgQReceive *//* msgQNumMsgs */

#include "taskLib.h"
#include "semaphore.h"
#endif

/* taskSpawn */
/* POSIX semaphores */

The following VxWorks primitives have been used:

VxWorks primitives

Explanation

sem_init(..),
sem _wait(..),
sem_post(..),
sem_destroy(..),

POSIX semaphores are frequent-
ly used, e.g. to protect the input
gueue, to synchronize start-up...

msgQCreate(..),
msgQReceive(..),
msgQSend (. .),
msgQDelete (. .)

M essage queues are used in both
modelsin VxWorks. The mes-
sage queueis created in the
THREADED START THREAD MAC-
RO.

Telelogic Tau 4.5 User's Manual

July 2003

Threaded Integration

July 2003

VxWorks primitives Explanation
taskSpawn(..), taskSpawn is used for creating a
taskDelete(..)

‘ thread. The name entry is not
taskSuspend(..) used

taskSuspend is only used by the
“Main” thread. Itis called from

the macro
THREADED AFTER THREAD STA
RT.

taskIdSelf () Used in taskDelete() and taskSus-
pend()

Thread Parameters Default values

DEFAULT STACKSIZE 800

DEFAULT PRIO 100

DEFAULT MAXQUEUESIZE 250

DEFAULT MAXMESSIZE sizeof (xSignalNode)

Solaris

The Threaded integration for Solaris is developed and tested in the fol-
lowing environment:

Sun Solaris 2.6 with Sun WorkShop compiler cc version 5.0.
Included header files for Solaris:

#elif THREADSOLARIS

#include <pthread.h>

#include <semaphore.h>

#ifdef THREADED ALTERNATIVE SIGNAL_SENDING
#include <mqueue.hs>

#include <signal.h>

#include <time.h>

#endif /* THREADED ALTERNATIVE SIGNAL SENDING */
#endif

The following Solaris primitives have been used:

Telelogic Tau 4.5 User's Manua 3235

Chapter 65 Integration with Operating Systems

3236

Solaris primitives

Explanation

sem_init(..),
sem wait(..),
sem_post(..),

pthread mutex init(..)
pthread mutex lock(..)
pthread mutex unlock(..),
pthread mutex destroy(..)

’
’

pthread cond init(..),
pthread cond wait(..),
pthread cond timedwait (..
)
pthread cond signal(..),
pthread cond destroy(..)

The sem_.. primitives are only
used in the start-up to synchro-
nize static processes/threads.

The pthread_mutex_.. primitives
are used to protect the input
gueues and other queues.

The pthread_cond_... primitives
are used to synchronize sender
and receiver in the default model.

pthread attr init(..),
pthread:attr:setstacksize
(..),
pthread attr setschedpoli
cy(..),

thread attr setdetachstat
e(..),
pthread attr setscope(..)

Thepthread attr_.. primitivesare
used to set the attributes of a
thread before it is created.

mg_open(..),
mg_close(..),
mg_receive(..),
mg_unlink(..),
mg_send (. .)

These primitive are only used in
the alternative signal sending
model.

pthread create(..),
pthread exit(..),

These primitives are used when a
thread is created and when it ter-
minates.

timer settime(..),
timer delete(..)

These primitives are used for set-
ting atimer before the
mq_receive() iscalled intheal-
ternative signal sending model.
The time-out for the timer isthe
duration for the next internal
SDL timer to expire. When the
timer expiresthe signa_handler
function setsthe error messageto
EINTR.

Telelogic Tau 4.5 User's Manual

July 2003

Threaded Integration

Thread Parameters

Default values

DEFAULT STACKSIZE 15000

DEFAULT_ PRIO 10

DEFAULT MAXQUEUESIZE 128

DEFAULT MAXMESSIZE sizeof (xSignalNode)

OSE

The Threaded integration for OSE have been devel oped and tested with
an OSE Softkernel (version 4.3) on Solaris 2.6 using the gcc compiler

(version 2.95).

The following OSE header fileisinclude:

#ifdef THREADOSE
#include "ose.h"

#endif /* THREADOSE */

The following OSE primitives have been used:

OSE Primitives

Explanation

create sem(..),
wait_sem(..),
signal_ sem(..),

These primitivesare used for pro-
tecting input queues, other
gueues and for synchronizing
start-up

receive(..),
receive w_tmo(..),
send(..)

These primitive are used for re-
ceiving/sending signalsin both
models.

Receive/send is also used to pass
the start-up parameter xSysD toa
new thread, since OSE does not
support start-up parametersinthe
create_process primitive.

alloc(..),
free buf(..)

These primitives are used for al-
locating and returning OSE sig-
nals.

July 2003 Telelogic Tau 4.5 User's Manual 3237

Chapter 65 Integration with Operating Systems

OSE Primitives Explanation

start(..) This primitiveisused for starting
anewly created thread.

kill proc(..) Thisprimitive terminates athread

stop(..) This primitive stop the execution
of athread. Used in the
THREADED AFTER_THREAD STA
RT Macro.

current_process () Used inthekill_proc() and stop()
cals.

create_process (. .) Thisprimitiveisused for creating
Threads.

Thread Parameters Default values

DEFAULT STACKSIZE 1024

DEFAULT PRIO 8

DEFAULT MAXQUEUESIZE 1024

DEFAULT MAXMESSIZE sizeof (xSignaNode)

Declaration of xMainL oop().

The declaration and definition of the thread’ s entry point (xMain-
Loop()) is special in OSE:

Declaration in scttypes.h;

#elif THREADOSE

extern OSENTRYPOINT xMainLoop;

#else

extern void xMainLoop XPP((xSystemData *)) ;
#endif

Definition in sctsdl.c:

#elif THREADOSE

3238 Telelogic Tau 4.5 User's Manual July 2003

Threaded Integration

July 2003

0S_PROCESS (xMainLoop)
#else
#ifndef XNOPROTO
void xMainLoop (xSystemData * SysD)
#else
void xMainLoop (SysD)
xSystemData * SysD;
#endif
#endif

Definition of NIL.

NIL isdefined in the OSE kernel and must not be redefined in the SDL
kernel.

#ifndef THREADOSE

#define NIL O

#endif /* THREADOSE */

Forward declaration of xSignalNode.

The xSignalNode must have forward declaration very early in the sct-
types.h file sinceit isused in the union SIGNAL definition.

typedef struct xSignalStruct *xSignalNode;
union SIGNAL

{

SIGSELECT sigNo;
xSignalNode SDLSig;
xSystemDataPtr SysD;

#ifndef THREADOSE
typedef struct xSignalStruct *xSignalNode;
#endif /* THREADOSE */

Windows

The Threaded integration for Windowsis developed and tested on Win-
dows 2000 Professiona with the Borland C++ compiler, version 5.02.

Telelogic Tau 4.5 User's Manual 3239

Chapter 65 Integration with Operating Systems

3240

The following header files for Windows are included:

#ifdef THREADWIN32
#include "limits.h"
#include "windows.h"
#include "dos.h"

The following Windows primitives are used in the Threaded integra-

tion:

Windows primitives

Explanation

CreateSemaphore (. .)
ReleaseSemaphore (.
WaitForSingleObject
CloseHandle(..)

’

2

(..),

These primitivesare used for pro-
tecting input queues, other
gueues and synchronization in
start-up.

One extra semaphore, xInit-
Queue, isused when anewly cre-
ated thread is creating hisown in-
put queue.

PeekMessage (. .)

This primitiveis used in the
THREADED THREAD BEGINNING
macro in the alternative signal
sending model. This primitive
force the thread to create ames-
sage queue. It is used together
with the xInitQueue semaphore.

GetMessage (..),
PostThreadMessage (.

2.

These primitives are used for re-
ceiving/sending messagesin the
alternative signal sending model.

SetTimer(..),
KillTimer(..)

These primitives are used to set
an OS timer that will signal the
thread when it expires. The time-
out of thistimer isthe duration
until the next internal SDL timer
expires for thisthread.

The window message will be set
towm_TiMER if the OStimer ex-
pires.

Telelogic Tau 4.5 User's Manual July 2003

Threaded Integration

July 2003

Windows primitives Explanation

CreateThread(..), These primitives are used for cre-

ExitThread(..) ating and terminating threads.

SetThreadPriority (. .) This primitive is used for setting
the priority of the thread.

SuspendThread (. .) Cadled by the “main” thread in
the macro
THREADED AFTER THREAD STA
RT

GetCurrentThread () Used in the SuspendT hread mac-
ro.

Thread Parameters Default values

DEFAULT STACKSIZE 0 (Automatically resized by OS)

DEFAULT_PRIO THREAD PRIORITY NORMAL

DEFAULT MAXQUEUESIZE 1024

DEFAULT MAXMESSIZE sizeof (xSignalNode)

Signal Sending over TCP/IP

Introduction

For applications using the Threaded integration model, a plug-in mod-
ulefor TCP/IP communication isavailable. The modul e supports signal
sending between distributed SDL applicationsviaaTCP/IP connection.
ASCII Encoding/Decoding is used for the conversion between signal
and transport format. The module is delivered as C source code which
isintegrated and built together with code generated by the CAdvanced
SDL to C Compiler.

The TCP/IP adapter supports the four operating systems for which
Threaded integrations are available. These are Windows, Solaris, Vx-
Works and OSE.

Telelogic Tau 4.5 User's Manual 3241

Chapter 65 Integration with Operating Systems

Architecture

The TCP/IP functions are called from the environment functions
xInitEnv and xoutEnv. The functions are included by setting the
xENV_1INC flagto “tcpipcomm.h” . The tcpipcomm.h file contains
#define directives that translates macros in the environment file to
function calls in the TCP/IP adapter.

When asignal is sent to the environment using the xout Env function,
xSendSignal iscaled. A connectionisset up with aremoteserver. The
signal destinationisspecified using auser-implemented function. When
the connection is accepted, the signal is encoded into ASCII format and
sent viaa TCP/IP socket. The session is then closed.

From x1nitEnv, athread is started which polls a socket for incoming

connections. When aconnection from aremoteclient isaccepted, anew
thread is started, which receives and decodes datafor one signal. When
the signal is decoded, it isinserted in the signal queue of the SDL sys-
tem. The thread finishes its execution after the connection is closed.

An executing SDL system thus acts as a server when signals arere-
ceived from the environment and as a client when a signal should be
sent to the environment.

The environment file of an SDL application may not be modified if the
TCP/IP adapter is to be used. Making modifications may override the
TCP/IP signal sending functionality. If you want to use the TCP/IP
adapter together with other external code from an environment file,
please consult “ Configuration” on page 3246.

File Structure
The TCP/IP adapter consists of four files, located in $sdtdir/tcpip/.

* tcpipcomm.c should be compiled and linked with the generated C
code

* tcpipcomm.hisaC header file which isincluded from the generat-
ed environment file

e tcpipthr.h and tepipsock.h are header filesthat are included
from tepipcomm. c and tcpipcomm. h.

3242 Telelogic Tau 4.5 User's Manual July 2003

Threaded Integration

July 2003

The tcpip directory isreferenced relative to the ssdtdir variable.

Hint: Using TCP/IP with a new $sdtdir

If youusean ssdtdir that isdifferent from the default ssdtdir (in
the SDL suite installation directory), be sure to copy the tcpip di-
rectory to the new location. Otherwise, you may encounter problems
in finding the TCP/IP files at compilation.

Note: Pointers as Signal Parameters

Distributed components execute in separate memory spaces. Care
must be taken so that pointers are not sent as signal parameters over

TCP/IP and used in a remote component.

Routing of Signals

For each signal that issent from your SDL application, you must specify
adestination in the form of an 1P address (or host name) and a TCP port
number. Thisinformation should be accessed from a routing function
which is called when asignal is sent from the SDL application.

The routing function is made accessible from the TCP/I P adapter by set-
ting theflag xrouTiNG INC tothe nameof arouting header file. Thisis
aplain C header filewherethe macro xFINDDEST (OUTSIG, SIGNAME,
1P, PorT) isdefined asafunction. ouTsic and SIGNAME arein param-
eters. 1p and PORT are out parameters.

ouTs1c should be declared as xsignalNode*. From this parameter,
signal data such as parameters can be accessed. steNaME holds the
name of the signal and is declared as char*. In many cases, the signal
name is sufficient routing information. The 1p and porT variables
should be set to the host address and port number. 1r should be declared
as char* and PORT aS int*.

The routing function should be implemented in a C file which is com-
piled and linked together with the application. The server |P address
should be given as char*, 9. *255.255.255.255” (dotted decimal
notation) or “*server.the company.com” (hostname notation). The
server port number should be given as int, e.g. 888s.

Telelogic Tau 4.5 User's Manual 3243

Chapter 65 Integration with Operating Systems

On the server side, the IP address is inherent to the host that the appli-
cation resides on. The port number on which a server should listen for
incoming connections should be specified using the flag xsERVPORT.

Note: Usage of Port Numbers

Generally, TCP port numbers below 1024 are reserved by operating
system services or internet applications. For instance, the port num-
bers 21 and 23 are used by FTP and port number 80 is used by HT-
TP. If aport number is occupied, you will get an error message at

start-up and the server thread will not start. It is recommended that
you select port numbers larger than 1024 for your SDL application.

Example 537: TCP/IP Adapter Routing Settings

Thisexample shows asituation where different signals should be direct-
ed to different recipients. An SDL system is partitioned into three com-
ponents (i.e. executable files) using the Threaded integration model.
From component 1, two different signals can be sent. Sig1 should be
sent to component 2 and Sig2 should be sent to component 3.

Component 2 resides on ahost called “host2”. It uses port number
7001 for listening for incoming connections, which means that
XSERVPORT iSSet t0 7001 (XSERVPORT=7001). Component 3 resides
on *host3” and listens on port number 7001 (XSERVPORT=7001) .
Please note that the ports are not in conflict since the hosts are different.

For component 1, arouting function is implemented. The flag
XROUTING INC iSsetto “router.h”. Therouting header file has the
following contents:

#define XFINDDEST (OUTSIG, SIGNAME, IP, PORT)\
xGetDestination (OUTSIG, SIGNAME, IP, PORT)

Therouting C file, router. ¢, contains the implemented function:
#include “stdlib.h”

void xGetDestination (xSignalNode *sig, char
*gsigName, char *IPAddr, int *Port)

if (strcmp(sigName, “Sigl”) == 0)

strcpy (IPAddr, "host2\0") ;
(*Port)= 7001; /* Dereferencing */

else 1f (strcmp(sigName, “Sig2”) == 0)

strcpy (IPAddr, "host3\0");

3244 Telelogic Tau 4.5 User’s Manual July 2003

Threaded Integration

July 2003

(*Port)= 7001;

return;

router. c isthen compiled and linked together with the generated code,
the coder library and the TCP/IP adapter. This example shows afairly
trivial routing scenario. Therouting is based only on the name of the
signal. The xSignalNode pointer is not used.

Error Handling

The TCP/IP adapter contains basic error handling. Error checks are per-
formed when encoding/decoding, socket and thread functions are in-
voked. If THREADED ERROR isdefined, an error message is printed on
stdout with the name of the function where the error occurred. A plat-
form-dependent error code is included in the error message. For a de-
scription of the error code, consult the User’s Manual of your target op-
erating system.

An error implies that the function where the error occurred exits. Clean-
up is performed, which means that the application can continue its exe-
cution.

A special caseto consider iswhen an error occurs in the server thread
function, which runs statically during the execution. The thread exits
and must be restarted manually.

If THREADED TRACE isdefined, the execution of the TCP/IP adapter is
logged onto stdout when signal s are encoded, sent, received and decod-
ed.

Example 538: TCP/IP Adapter Error Message

An error occurs when a signal should be sent viathe TCP/IP adapter.
The following is logged on stdout:

ERROR xSendSignal/SCM_CONNECT: 146
Thetarget platformis Solaris. The error code indicates that the connec-
tion was refused, probably because aserver can not be found at the spec-
ified address. xsendsignal exits and the application continuesits exe-
cution.

Telelogic Tau 4.5 User's Manual 3245

Chapter 65 Integration with Operating Systems

3246

Configuration

The TCP/IP adapter is configured using compilation flags. The basic
configuration can be done using the TCP/IP Connection Wizard in the
Targeting Expert.

Including the TCP/IP adapter

The TCP/IP adapter requires environment files, environment header
filesand ASCII encoding/decoding for correct operation. These options
are activated when the TCP/IP Signal Sending check box isenabled in
the Targeting Expert’s TCP/IP Connection Wizard.

Server Port Number

For acomponent that receives signals, a TCP port number must be spec-
ified. The server thread usesthis port number to listen for incoming con-
nections.

The port number is set in atext box in the TCP/IP Connection Wizard.
Y ou can also set the port manually by setting the flag xsErveorT to the
desired value. If no port number is specified, the port number is set to

5000 by defaullt.

Routing

Y ou must manually implement a routing function, so that adestination
is specified for every SDL signal that is sent to the environment. The
function must be declared in a C header file. Thefileis specifiedin a
text box in the TCP/IP Connection Wizard or by setting the flag
XROUTING INC to the header file name.

The routing function implementation should be placedinaCfilethat is
compiled and linked with the other code. It is specified using either the
text box in the TCP/IP Connection Wizard or by including it in the com-
piler settings manually. See Example 537 for an example of how arout-
ing function isimplemented.

Using the TCP/IP Adapter with Other Environment Functionality

The TCP/IP adapter header file (t cpipcomm. h) isincluded from theen-
vironment file of acomponent. Thefile tcpipcomm.h contains #de-
fine statementsfor macros in the environment functions that invoke
TCP/IP functions.

Telelogic Tau 4.5 User's Manual July 2003

Threaded Integration

July 2003

If you want to use other functionality in parallel with the TCP/IP adapt-
er, these macros can be defined outside t cpipcomm. h. By setting the
flag xexTENV_1INC to the header file you wish to use, your header fileis
included from tcpipcomm. h. Thisenablesyou to insert your code with-
out modifying tcpipcomm. h. Please note that the xexTeENV flag can not
be set in the TCP/IP Connection Wizard. It must be set manually.

Before using the xexTeENvV_1NC flag, look carefully at the #define state-
mentsin tepipcomm.h. These must bevalid for proper operation of the
TCP/IP adapter.

Hint: Using External env Code with the TCP/IP Adapter

When combining the TCP/IP adapter with other environment func-
tions, always preprocess the environment file to verify that the code
is expanded as expected.

Example 539: External Code in Combination with the TCP/IP Adapter

A filecalled mycomm. h contains declarations of functionsthat should be
used in parallel with the TCP/IP adapter. From the xInitEnv function,
an initialization function should be called (1nitcomm ()). From the
xInEnv function, afunction for polling communication (ReadComm ())
should be invoked.

INn mycomm. h, the following is inserted:

#define XENV_INIT Initcomm();\
xInitSignalSender () ;
xInitSignalReceiver (

#define XENV_IN START ReadComm() ;

\
) ;

7

xInitsignalSender and xInitSignalReceiver aretaken from
tcpipcomm. h, Which contains the following:

#ifndef XENV_INIT

#define XENV_ INIT xInitSignalSender () ;\
xInitSignalReceiver() ;

#endif

#ifndef XENV_IN START

#define XENV_IN_START

#endif

The#definesin tcpipcomm. h areoverridden. Still, theoriginal callsare
invoked, which ensures that the TCP/I P adapter executes properly.

Telelogic Tau 4.5 User's Manual 3247

Chapter 65 Integration with Operating Systems

Using Thread Parameters

Some thread parameters in the TCP/IP adapter can be set to fine-tune
performance of your Threaded SDL application. The TCP/IP adapter
threads do not use OS queues. Two parameters can be set: Thread Pri-
ority and Thread Stack Size. These are set manually using flags. They
can not be set using the TCP/IP Communication Wizard.

The server wait thread uses the following flags:

XSERVTHRPRIO
XSERVTHRSTACK
The signal receiver threads use the following flags:
XRECVTHRPRIO
XRECVTHRSTACK
Set the flags to values that are specific to the target platform used.

3248 Telelogic Tau 4.5 User's Manual July 2003

Tight Integration

Tight Integration

July 2003

Note:

The sourcefile and examplesfor Tight Integrations are not included
in the standard delivery. They are availabl e as free downloads from
Telelogic Support web site.

Note:

This presentation is focused on the general principles and models
used in a Tight Integration. When specific RTOS primitives are
needed in the presentation, examples from the VxWorks implemen-
tation are used. The implementation and RTOS calls used in other
integrations are covered in separate annexes to this chapter, one for

each supported RTOS.

There are two models of Tight Integration. In the Standard Model one
SDL process instance is mapped to one OS task. In the Instance Set
Model an entireinstance set (all instances of aprocess) ismapped to one
OStask. Scheduling between OS tasks is managed by the RTOS sched-
uler; thismeans that preemption isnormally used, though only onanin-
stance set level inthe Instance Set Model. SDL semanticsare preserved
inaTight Integration, for example setting atimer implies an automatic
reset first.

The start-up of asystem, i.e. creation of static processes, initialization
of synonyms and creation of an environment task and atimer task, is
handled by a generated initialization function called yInit. Normally
this function is called from another initialization function, where some
additional initializations take place beforethe y1nit functioniscalled.

Timersin the system are handled by one central timer task. Thistask re-
ceives messages!, each containing arequest to set atimer, and will send
messages back as the timers expire.

Common Features
File Structure

Thefilesrelated to thetight integration concept are placed in the follow-
ing directory in theinstalation: <installation directo-

1. SDL signalswill be implemented as messages in VxWorks.

Telelogic Tau 4.5 User's Manual 3249

Chapter 65 Integration with Operating Systems

ry>/sdt/sdtdir/RTOS/<operating systems/TightIntegra-
tion/. The samefiles are used for both the Standard Model and the In-
stance Set Model.

Each RTOS directory contains the following files:
® sSct<RTOS>.h!

Thisfile containsthe second level of macros (see the commentsfor
scttypes.h in“The Integration Packages’ on page 3213). All
macros are using OS-specific calls or types.

® Sct<RTOS>.c:
Thisfile contains OS-specific support functions.
® sdt2<RTOS>.c!

Most RTOS require that signals/messages are represented with an
integer value. Thisisthe source file for a utility program for gener-
ating signal identities. Each signal will be assigned an integer value.
The output will be afile with the suffix .hs. Thisfileis automati-
cally included in the application.

Inthe SDL suite, the .hs file can aso be generated by the SDL to
C Compiler by turning on the option Generate signal number file in
the Make dialog. The .ns fileisincluded in the application if the
compilation switch XINCLUDE_HS FILE iS Set.

The SDL_PId Type

Thespr,_p1d (SDL Process|D) type hasdifferent meaningsin the Stan-
dard and the Instance Set Models. In the Standard Model it represents
the message queue, while it represents the process instance in the In-
stance Set Model. Thisis because the entire instance set will have the
same message queue in the last case.

#ifdef X ONE_TASK PER INSTANCE SET
typedef xEPrsNode SDL_PId;

#else

typedef MSG_Q ID SDL_PId;

#endif

3250 Telelogic Tau 4.5 User’s Manual July 2003

Tight Integration

July 2003

Signals

Thesignal header consists of astruct with information needed to handle
the signal inside an SDL system. The signal header struct is defined in
the RTOS-specific file sct<RTOS> . h.

typedef struct xSignalHeaderStruct *xSignalHeader;
typedef struct xSignalHeaderStruct {

int SignalCode;
xSignalHeader Pre, Suc;
SDL_PId Sender;
void *SigP;
#ifdef X ONE TASK PER INSTANCE SET
SDL_PId Receiver;
#endif
#ifdef XMSC_TRACE
int SignalId;
int IsTimer;
#endif

} xSignalHeaderRec;

Thesignal header storessignalcode, inthiscase aninteger, two point-
ers pre and suc used when saving the signal in the save queue, and
Sender, holding the sp1._p1d of the sending SDL process. In the In-
stance Set Model thereis an extra parameter Receiver, necessary to
make a distinction between the SDL processes in an instance set task.

If thesignal contains parametersthey are allocated in the same function
call. Example:

OutputSignalPtr = xAlloc (sizeof (xSignalHeaderRec)
+ sizeof (yPDef z05 s2));

The second parameter to thexa11oc functionisastruct representing the
signal parameters of the signal. In this case, with oneinteger, it isde-
fined in the following way:
typedef struct {
SIGNAL_VARS

SDL_Integer Paraml;
} yPDef z05 s2;

The macro s1eNAL,_vARS iSin most RTOS empty.

Thereisan extraelement inthe signalteader defined asavoid point-
er. Thispointer sigp is set to point to the parameter area.

OutputSignalPtr->SigP = OutputSignalPtr+1;

Telelogic Tau 4.5 User's Manual 3251

Chapter 65 Integration with Operating Systems

This pointer is used in the Signal-Free-Function to address the parame-
ter-part of either a signal-structure as also atimer-signal-structure.

Note:
The SDL signal parameters are always named Param1, Param2, €tC.

Assignment of the signal parameter is done in generated code and not
in amacro. Example:

SIGNAL ALLOC_ERROR

yAssF_SDL Integer(((yPDef z05 s2%*)
OUTSIGNAL DATA PTR)->Paraml ,yVarP->z023 paraml,
XASS) ;

The macro ouTSIGNAL DATA PTR macro is defined:

#define OUTSIGNAL_ DATA PTR (yOutputSignalPtr->SigP)

After expansion of the whole expression the code will be:

((yPDef z05_s2 *) ((xSignalHeader) yOutputSignalPtr
+ 1))->Paraml = yVarP->z023 paraml;

Signal reception

The support function xInputsignal is used for receiving signalsin
both models of Tight Integration. The implementation and the parame-
ters are different though.

Timer Signals

A timer signal isdefined similarly to an ordinary signal but will contain
some additional elements representing time-out time, etc. The timer
header struct looks like this:

typedef struct xTimerHeaderStruct *xTimerHeader;
typedef struct xTimerHeaderStruct (

int SignalCode;
xTimerHeader Pre, Suc;
SDL_PId Sender;
void *3igP;
#ifdef X ONE TASK PER INSTANCE SET
SDL_PId Receiver;
#endif
#ifdef XMSC_ TRACE
int SignalId;
int IsTimer;
#endif
SDL_Time TimerTime;

3252 Telelogic Tau 4.5 User's Manual July 2003

Tight Integration

July 2003

int TimerToSetOrReset;
xbool (* vEqQ) () ;
xbool TestParams;

xTimerHeader Param;
} xTimerHeaderRec;

Note:

Anordinary signal isidentical to thefirst part of atimer signal. This
makesit possibleto type-cast between the two types aslong asonly
elementsin the common part of the headers are used.

Time

When the System time is required, for example when using NOW, the
macro sp1,_Now is used. The macro isin turn mapped to the function
SDL_Clock () (insctos.c). Thisfunction isimplemented differently
depending on the RTOS representation of time. In VxWorks it returns
theresult of callingthe RTOSfunction t ickGet. SDL_Time isnormally
implemented as int Of unsigned long int.

Mapping Between SDL Time and RTOS Time

The macro spr._DpurRATION LIT Specifiesthe mapping between the
SDL timein seconds and the local RTOS representation of time. In Vx-
Worksthe system timeisgiveninticks and the translation is defined as
follows:

#define SDL DURATION LIT(R,I,D) \
((I)*1000 + (D)/1000000)
R isthe rea type representation of the timein seconds. 1 and p are the
integer and decimal parts of an integer type representation of the time.
1 isin seconds and D in nanoseconds. The code generator will generate
al three numbers but either r, or 1 and o will be used depending on the
RTOS.

Timers

All timer activity in the SDL system is handled by a dedicated timer
task. The timer task accepts requests in the form of messages (in Vx-
Works). It then keeps the requests for setting atimer sorted in atimer
gueue and uses some OS mechanism to wait for thefirst request to time
out. The mechanism used can be either an OStimer, or atimeout in the
waiting for new requests. When arequest timesout, thetimer task sends
asignal back to thetask that first sent the request. Thefunction callsand

Telelogic Tau 4.5 User's Manua 3253

Chapter 65 Integration with Operating Systems

3254

OS signaling involved in setting and waiting for an SDL timer can be
viewed in Figure 563.

SDL process Timer task

xSDLReset()

ResetTimer (Timerl)

XxSDLResetInTimerTask()

ResetTimer

i

T
|
|

T Timerl !

aa xSDL Set()

|

|

|

|

|

|

|

1

Timerl

—

|
|
I
Figure 563: Function calls and OS signaling when setting and waiting for a timer.

UML notation is being used, thus the full arrowheads represent function calls and
the half arrowheads represent messages. Parameters have been left out, except for
the name of the timer in the ResetTimer request. Note that a reset is performed first,
as required in the SDL specification.

To be able to implement the full semantics of SDL timers a number of
support functions have been implemented:

e xSDLActive

Checkswhether an SDL timer isactiveand returnstrueor false. The
function passes the question on to the timer task in the form of are-
guest.

Telelogic Tau 4.5 User's Manual July 2003

Tight Integration

July 2003

e xSDLActiveInTimerTask

Called by thetimer task upon request. Checksif an SDL timer isac-
tive and returns true or false.

e xSDLReset

Resets an SDL timer by sending a request to the timer task. While
waiting for areply all new signalsto the calling task are saved inthe
save gqueue. In the case of an Instance Set Model Tight Integration
this means that no instance of the process can execute atransition
until areply isreceived. If thereply statesthat thetimer couldn’t be
found it might be in the save queue or the input queue of the task
because it has recently expired. If so, it issimply removed. SDL se-
mantics require that areset is always performed implicitly prior to
setting atimer.

e xSDLResetInTimerTask

Called by the timer task when arequest has been made for resetting
atimer. Checks the timer queue to see if the timer to reset is there.
If thetimer isfound, it isremoved and the dataareait holdsisfreed.
A message is sent back to the task that made the request, telling
whether the timer was found or not.

e xSDLSet

Called by the timer task when arequest has been made for setting a
timer. This function sorts the request into the timer queue.

Addressing SDL Processes

There aretwo waysto address SDL processes from an external task. Ei-
ther the xFindreceiver function can be calledto find an arbitrary re-
ceiver, or thefile pidlist.pr canbeusedto providealist of the SDL
processes and then addressthereceiver explicitly viatheinput queue ID
of its OS task.

The xFindReceiver Function

When sending asignal into the SDL system where the receiver is not
known a support function called xFindrReceiver can be used. This
function takes the following parameters:

e ThelD of thesigna

Telelogic Tau 4.5 User's Manua 3255

Chapter 65 Integration with Operating Systems

3256

The sender ID (in this case an SDL_PId representing the environ-
ment)

An optional VIA-list.

The following files are needed to get access to SDL types, signal num-
bersand signal parameter types: scttypes.h, <system name>.hs and
<system_name>.ifc.

Example of how to usethe xFindreceiver function:

#include ”scttypes.h”
#include ”<system name>.ifc”
#include ”"<system name>.hs”

void MyExtTask (void)

xSignalHeader yOutputSignalPtr;
int Err;

/*Allocate signal header and signal parameter
buffer */
yOutputSignalPtr =
(xSignalHeader)xAlloc (sizeof (xSignalHeaderRec)
+ sizeof (yPDef go) ;

/*Setup signal header */
yOutputSignalPtr->SignalCode = go;
yOutputSignalPtr->Sender = XEnvPId;

/*Give value 100 to integer parameter */
((yPDef go *) (yOutputSignalPtr+1))->Paraml = 100;

/*Send signal from environment */

Err = msgQSend (xFindReceiver (go, xEnvPrs, 0),
(char*) yOutputSignalPtr,
sizeof (xSignalHederRec) +sizeof (yPDef go),
0 ,0);

Thefollowing types, signal definitions and global variablesare usedin
the example:

xEnvPId: An SDL Pld representing the environment, from
scttypes.h

xEnvPrs: A PrsNode representing the environment, from
scttypes.h

xSignalHeader: A datatype representing an SDL signal, from
scttypes.h

Telelogic Tau 4.5 User's Manual July 2003

Tight Integration

July 2003

e yPDef go: A datatype representing the signal parameter types,

from <system names>.ifc

e go: An SDL signal, from <system name>.ifc

The File pidlist.pr

An dternative way to get the Pld for the Receiver isto usean ADT de-
finedinthe ADT library called pidlist.pr. Thisfiledefinesan ADT
called PidList and an operator called Pld_L it. With thisADT it is pos-
sible to directly address any static process instance in the system, both
from internal SDL processes and from external OS-tasks. Y ou can find
moreinformation about thisfeaturein “How to Obtain PId Literals’ on
page 3178 in chapter 63, The ADT Library.

Note:
If you need thepidlist.pr ADT inaTight Integration then you
must use the version in the

<installation directory>/sdt/sdtdir/RTOS/SDL/
directory.

The Standard Model

In the Standard Model of the Tight Integration each SDL processisim-
plemented as an OStask. Preemption and the use of process prioritiesis
only limited to what the OS supports.

Processes

Process Creation

An SDL processis created in the following way (in the VxWorks inte-
gration):

1. A start-up signa isalocated.

2. A message queueis created. Some operating systems create the
message queue automatically when the task is created. Thisis ex-
plained for each operating system in the annexes to this chapter.

3. Thetask is created with the message queue ID as a start-up param-
eter. Inthe case of VxWorks, thetask will have aname starting with
VXWORKSPAD . Thisisafunction which will first initialize somein-
ternal variables and then call the PAD function.

Telelogic Tau 4.5 User's Manual 3257

Chapter 65 Integration with Operating Systems

3258

A function (xal1locPrs) is called to create a representation of the
new instance in the global symbol tree.

The start-up signal is sent. When this signal is received in the task
the start transition of the processis executed.

Process Termination
The following actions are carried out when a process terminates:

1
2.
3.

The save queue and the message queue are emptied.
The save queue is deleted.

A message is sent to the xTimerTask With arequest to remove al
active timers of the process.

xFreePrs iS called to free the prsNode.

5. The message queueis deleted. In some operating systems thisis

6.

done automatically when the task is deleted.
The task is deleted.

PAD functions

Each PAD (ProcessActivity Definition) function will contain an eternal
loop with an OS receive statement. When a process instance is created
it isthe PAD function that is called in the OS Create primitive.

The start-up and execution of a PAD function works like this:

1

The support function xInputsignal is called. This function will
wait for the start-up signal, that is always received first, and then re-
turn to the PAD function.

ThePAD function goestothelabel Label Execute Transition.
Thislabel isthe start of a code block containing a switch statement
that evaluates the process variable Restartaddress. The code un-
der each different case then representsatransition. At theend of this
block the process variable state is updated and execution contin-
uesat Label New Transition.

InLabel New Transition anew call ismadeto xInputSignal
and execution then continues at Label Execute Transition.

The structure of a PAD function is described below (with pseudo-code
shown in italics):

Telelogic Tau 4.5 User's Manual July 2003

Tight Integration

void yPAD z01l prl (void *VarP)

Variable declarations
xInputSignal is called to receive the start-up signal

Label New Transition:
xInputSignal is called to receive a signal

Label Execute_Transition:

Local declarations
switch (yVarP->RestartAddress) ({
case O0:

Execute the start transition

Update the process state variable
goto Label New Transition;
case 1:

Execute the transition

Update the process state variable
goto Label New Transition;

Scheduling

Since each SDL processisimplemented as an OS task, scheduling be-
tween processes will be handled completely by the OS.

Start-up

Start-up of a Standard Model Tight Integration can be described as fol-
lows (pseudocode is shown in italics):

MyMain () {

/* initialization of semaphores etc */
yInit () ;

Give startup semaphores

taskSuspend (Mymain) ;

yInit () {
Create the timer task
Create an environment task or only an environment queue
for(i:l;i<:NoOfStaticProcessTypes;i++){
for(j=1;j<=NoOfStaticInstancesOfEachProcesstype;
Jeo 1
Allocate a startup signal
Create a message queue

July 2003 Telelogic Tau 4.5 User's Manual 3259

Chapter 65 Integration with Operating Systems

Create a task
Call xAllocPrs
Send the startup signal

}
Assign SDL synonyms

The semaphore is used for synchronizing start-up of static processes.
No static processisallowed to executeitsstart transition beforeall static
processes are created, because a start transition can have signal sending
to other static instances.

ThewmyMain function is placed among other support functionsin thefile
sctsdl.c.

The y1nit function is generated by the code generator and placed last
in the generated file for the system.

The Instance Set Model

The Instance Set Model is based on the same principles as the Standard
Model with the difference that the instance set is the basic unit rather
than the process instance.

Processes

Both the instances and the instance sets are represented in the symbol
table. In addition to the three parts that always make up an SDL process
thereisalso an extra struct for the instance set, defining for examplethe
input gqueue which is common to all the instances. Further, thereis a
PAD function for each instance, but also for the instance set.

Process Representation

An SDL_PId isrepresented by an xEprsNode, pointing to an
xEPrsStruct. AN xEPrsNode a SO represents aprocessinstancein the
symbol table both in the Standard Model and the Instance Set Model.

typedef struct xEPrsStruct

xEPrsNode NextPrs;

SDL_PId Self;

xPrsIdNode NameNode ;

int BlockInstNumber;
xPrsNode VarPp;

} xEPrsRec;

3260 Telelogic Tau 4.5 User’s Manual July 2003

Tight Integration

July 2003

Instance Set Data

The datatype xPrsInstanceSetvars isonly used in the Instance Set
Moddl. It defines common datafor all instances of the set, like the save
gueue and the size of the instance data.

typedef struct {
xSignalHeader SaveQ;
xSignalHeader CurrentInSaveQ;
xSignalHeader yInSignalPtr;
char name [100] ;
unsigned PrsDataSize;

} xPrsInstanceSetVars.

PAD functions

In the Instance Set Model there is a PAD function for each processin-
stance but also for each instance set. The instance set PAD functions
will be called at system start-up and contain an eternal loop in the same
fashion as PAD functionsin the Standard Model. Instance PAD func-
tions are only called to execute transitions.

Process Creation

All instance sets, even for dynamic processes, are created at system
start-up. Sincethe OStask and the signal queues are created with thein-
stance set, the creation of an instance requires less labor than in the
Standard Model. For the instance set creation the macro

INIT PROCESS TYPE isused.

Process Termination

The instance set task is never terminated. Termination of a processin-
stance will not remove the save queue, the input queue and the task.
Thisisdoneat system termination. All queues, including the active tim-
er queue, are emptied of messages to the terminated process though.

Signal queues

The message queue id of thereceiver’ sinstance set is accessed through
NameNode in the receiver’s xErPrsstruct and the variable procID.
ExanuﬂefrOﬁ]xSDLResetInTimerProcess

Err=msgQSend ((MSG_Q ID) (yInSignalPointer->Sender)
->NameNode->PROCID, (char *) yInSignalPointer,
sizeof (xTimerHeaderRec), 0, 0);

In this case the receiver isthe same as the origina sender.

Telelogic Tau 4.5 User's Manual 3261

Chapter 65 Integration with Operating Systems

Signal sending

A support function xiandle sigisused when sending signals, instead
of the macro rRTossEND as in the Standard Model. This differenceis
shown in bold in the code below:

#ifdef X ONE_TASK PER_INSTANCE SET
#define SDL_20UTPUT (PRIO, VIA, SIG NAME, SIG IDNODE, \
RECEIVER, SIG PAR SIZE, SIG NAME STRING)\
XOS TRACE OUTPUT(SIG NAME STRING) \
XMSC_TRACE_OUTPUT (RECEIVER, yOutputSignalPtr, \
SIG_NAME_ STRING) \
xHandle Slg(yOutputSlgnalPtr SDL_SELF,SIG_PAR SIZE,\
RECEIVER (RTOSTASK TYPE) RECEIVER-> \
NameNode->PROCID RTOSHANDLESIG PAR),
#else
#define SDL 2OUTPUT(PRIO VIA, SIG NAME, SIG IDNODE, \
RECEIVER, SIG PAR SIZE, SIG NAME STRING)\
XOS TRACE OUTPUT(SIG NAME STRING) \
XMSC TRACE OUTPUT(RECEIVER yOutputSignalPtr, \
SIG_NAME_ STRING) \
RTOSSEND(&yOutputSlgnalPtr, RECEIVER, SIG_PAR SIZE)
#endif

Scheduling

Scheduling between instance sets is handled by the operating system.
Within the instance sets, however, scheduling is based on the signal
gueue. When the instance set PAD function is executing, it takes the
first signa in the input queue and calls the PAD function of the ad-
dressed SDL process. The instance PAD function then executes one
transition and returns control to the scheduling loop of the instance set
PAD function.

Integrating with external code

You can easily integrate the SDL system with external code, for exam-
plewritten in C. Just use the hooks described below for inserting
C statementsin the main () function of the SDL system.

The hooks arein the form of #define macros located in afile called
scthooks.h. A filecalled scthooks.h _template With empty macros
can be found in the 1ncLUDE directory. Use thisfile as atemplate for
your own application. Y ou will find usage examplesin the Examples
directory.

HOOK_GLOBAL DECLARATIONS
This hook lets you declare function prototypes etc. at file scope.

3262 Telelogic Tau 4.5 User's Manual July 2003

Limitations for Integrations

HOOK_MATN DECLARATIONS

This hook lets you declare variables for use in themain () function.

HOOK_MAIN START OF CODE

Any code inserted here will execute first in themain () function.

HOOK_MATIN AFTER PROCESS_ RELEASE

Any codeinserted here will execute as soon as all static processes have
been created and are allowed to run.

HOOK MAIN AFTER SIGNAL RECEPTION

Themain () function of the SDL system enters an infinite loop after
having created all static processes. Thisloop is used to receive signals
sent to the environment queue.

UsetheHooK MAIN AFTER_SIGNAL RECEPTION toinsert codefor pro-
cessing these signals.

Limitations for Integrations

July 2003

Ingeneral, the samerestrictionsasfor the SDL to C Compiler apply, but
Tight integrations have some further restrictions. The detailed limita-
tionsfor Light and Tight integrations are listed in the Release Guide.

Telelogic Tau 4.5 User's Manua 3263

Chapter 65 Integration with Operating Systems

A Simple Example

3264

This section describes an example system named Simple. The annexes
show how to integrate the example with different operating systems.

The example demonstrates the following techniques:
* How tointegrate an SDL system with an operating system

» How to make the environment communicate with the SDL system
in aLight integration

* How tomakean external processwrittenin C communicate with the
SDL systemin aTight integration

* How to usethe specia Tight Integration version of the ADT
pidlist.pr.

The Simple System

System Simple . __
I*#include 'pidlist.pr’ */
r"-""“".\

1(1)

SYNONYM prl PldList = PId_Lit(#Code(&yPrsR_Prl))); h‘

SIGNAL

Go(Integer),

Ok(Integer);
SYNONYM startinstancel Integer=1,;
SYNONYM startinstance2 Integer=2;

C1
BlI1
[ox] [c0]

Figure 564: System Simple

The SDL representation of Simple consists of asingle block Bl1. Seen
from the outside, the system accepts the signal Go and responds after
about five seconds by sending the signal Ok. The signal Go may be sent
twice to the system.

Telelogic Tau 4.5 User's Manual July 2003

A Simple Example

July 2003

Block BI1

Block BI1 1(1)

SIGNAL
Terminating;
R1 Pri/*#NAME 'Brl’ */(2,2)

Ok] [Go] L

[Terminating]

C1

R2

DynPr1(0,2)

Figure 565: Block Bl1

Block BI1 has two processes. The static process Pr1 and the dynamic
process DynPrl. DynPrlis created by Pr1 and can send the signal Ter-
minating back to its parent. Prl handles all the interaction with the en-
vironment, through the signals Go and Ok.

Telelogic Tau 4.5 User's Manua 3265

Chapter 65 Integration with Operating Systems

Process Pr1

Process Prl 1(2)

DCL
Param Integer,
ExtSender PId;

Go(Parany

m

tSender:=sendler

'

param
Startinstancel Startinstance2 else
/*#CODE /*#CODE I*#CODE
printf("Signal Go received "+ printf("Signal Go receivedl "+ rintf("Wrong signal "4
"in Prl:Instancel\n['); "in Prl:Instance2\nl"); "parameter received\n'));
+ 3 ’
1
DynPrl1

Ok(Param) t& ExtSender

Figure 566: Process Prl

Process Prl isastatic process with two instances. It hastwo states, Idle
and Wait. In the Idle state the process waits for the signal Go with an
integer parameter representing the instance number of this instance. It
then prints the instance number to the standard output, creates one in-

3266 Telelogic Tau 4.5 User's Manual July 2003

A Simple Example

July 2003

stance of DynPrl and entersthe Wait state. In the Wait stateit waitsfor
the signal Terminating from the created instance of DynPr1, sends Ok
back to the environment and goes back into the Wait state. Since the
Terminating signal will only be received once, the processis going to
remain in the Wait state forever.

Process DynPr1

Process DynPrl 1(2)
| A
i i

TIMER

t1:=5; SET(t1)

Wait_t1

Terminating O Parent

Figure 567: Process DynPrl

The dynamic process DynPrl has no instances at system start and a
maximum of two instances. Each instance of Pr1 creates oneinstance of
DynPrl. DynPrl sets the timer t1 to five seconds, waits for atimeout,
sends the signal Terminating to its creator and finally terminates.

Connection to the Environment

The environment is handled in different ways depending on the integra-
tion model. See below for details.

Telelogic Tau 4.5 User's Manual 3267

Chapter 65 Integration with Operating Systems

Building and Running a Light Integration

This section will take you through the general steps required to build a
Light Integration for the Simple example. The procedure works the
same for most operating systems. Please also check the annexes for im-
portant information about your operating system.

General Steps for a Light Integration
1. Create aworking directory and an INCLUDE directory below it.

Note:

$(sdtdir) = <installation
directorys>/sdt/sdtdir/<machine dependent dirs>

where <machine dependent dirs iS sunos5sdtdir on SuUnOS
5, hppasdtdir on HP, and wini3se in Windows.

2. COpya”f“eSﬂOH]$(sdtdir)/RTOS/Examples/Simple/<se—
lected RTOS>/LightIntegration totheworking directory.

3. Copy thefollowing files to the 1ncLUDE directory:

(sdtdir) /INCLUDE/sctlocal.h
(sdtdir) /INCLUDE/sctpred.c
(sdtdir) /INCLUDE/sctsdl.c
(sdtdir) /INCLUDE/sctos.c
(sdtdir) /INCLUDE/sctpred.h
(sdtdir) /INCLUDE/scttypes.h

4. Open the system file
$ (sdtdir) /RTOS/Examples/Simple/simple.sdt

$
s
$
s
$
$

5. Change the destination directory to your working directory
6. Settheoptions Lower Case and Generate environment header file.

7. Select the Cadvanced SDL to C Compiler and generate an applica-
tion.

8. Edit themakefile supplied with the exampleto fit your environ-
ment. Normally you will only have to point out the directory where
the RTOS is installed.

9. Usethe makefileto build an executable.

10. Download the executable to target or run it under akernel simulator
(“soft kernel™).

3268 Telelogic Tau 4.5 User's Manual July 2003

A Simple Example

Result From Running the System
The output when running the exampl e should be:

Signal Go received in Prl:Instancel
Signal Go received in Prl:Instance2
Signal Ok received with the following parameter:1
Signal Ok received with the following parameter:2

The xInEnv Function

Thisiswherethe start-up signal Goissent. Inareal system xInEnv may
be used for polling hardware devices for data. The code looks like this:

xSignalNode S;
static int SendGo = 0;

if (SendGo<=1) {
if (SendGo==0) {

S = xGetSignal(go, prll[1l], xEnv) ;

((yPDef go *) (S))->Paraml = startinstancel;
else {

S = xGetSignal(go, prll[2], xEnv) ;

((yPDef go *) (S))->Paraml = startinstance2;

SDL_Output (S, xSigPrioPar (xDefaultPrioSignal)
(xIdNode *)0);
SendGo++;

Thesignal Goissent thefirst and the second timex1nenviscalled. The
parameters startinstancel and startinstance2 areinteger con-
stantsdefined inthe SDL system, asinteger synonyM's. They are made
available by generating and including thefile simple.ifc.

The xOutEnv Function
The code in xoutEnv for receiving the signal Ok looks like this:

if (((*S)->NameNode) == ok) {
printf (*Signal Ok received with the following
parameter:%lu\n”,
((yPDef ok *) (*S))->Paraml) ;
xReleaseSignal(S);
return;

Thesigna Ok a'so has an integer parameter, the value of this should be
1lif itissent by Prlinstance oneand 2 if it is sent by instance two.

July 2003 Telelogic Tau 4.5 User's Manual 3269

Chapter 65 Integration with Operating Systems

Building and Running a Tight Integration

This section will take you through the general steps required to build a
Tight Integration for the Simple example. The procedure works the
same for most operating systems. Please also check the annexes for im-
portant information about your operating system.

Note:

The sourcefile and examplesfor Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

General Steps for a Tight Integration
1. Create aworking directory and an INCLUDE directory below it.

Note:
$(sdtdir) = <installation

directory>/sdt/sdtdir/<machine dependent dirs

where <machine dependent dirs IS sunos5sdtdir on SunOS
5, hppasdtdir onHP, and wini3se in Windows.

2. Copy al filesfrom ¢ (sdtdir) /RTOS/Examples/Simple/<se-
lected RTOS>/TightIntegration totheworking directory.

3. Copy al filesfrom ¢ (sdtdir) /RTOS/Examples/Simple/<se-
lected RTOS>/TightIntegration/INCLUDE tothe NCLUDE
directory.

4. Open the system file
$ (sdtdir) /RTOS/Examples/Simple/simle.sdt

5. Change the destination directory to your working directory.

6. Set the options Lower Case, Generate environment header file and
Generate signal number file.

7. Select the Cadvanced SDL to C Compiler and generate an applica-
tion.

8. Edit themakefile supplied with the exampleto fit your environ-
ment. Normally you will only have to point out the directory where
the RTOSisinstalled.

3270 Telelogic Tau 4.5 User’s Manual July 2003

A Simple Example

9. Usethe makefile to build an executable.

10. Download the executableto target or run it under akernel simulator
(“soft kernel™).

Result From Running the System

The output when running the example depends on what kind of trace has
been enabled. If you set xMsc_TRACE it should be similar to the follow-

ing:

System Init_ Proc: instancehead process Environment;
msc RTOS Trace;

Prll: instancehead process Prl;

Prl2: instancehead process Prl;

Prll: condition Idle;

Prl2: condition Idle;

Prll: in Go,0 from MyExtTask3;

Signal Go received in Prl:Instancel
dynprl4: instancehead process dynprl;

Prll : create dynprl4;

Prll: condition Wait;

Prl2: in Go,1 from MyExtTask3;

Signal Go received in Prl:Instance2
dynprl5: instancehead process dynprl;

Prl2 : create dynprl5;

Prl2: condition Wait;

dynprld: set T1,2 (5000); /* #SDTNOW(269) */
dynprl4d: condition wait;

dynprl5: set T1,3 (5000); /* #SDTNOW(276) */
dynprl5: condition wait;

dynprld: timeout T1,2; /* #SDTNOW(5284) */
dynprl4d: out Terminating,4 to Prll;
dynprl4: endinstance;

Prll: in Terminating,4 from dynprl4;

Prll: out Ok,5 to MyExtTask3;

Ok received in MyExtTask with paramer = 1
dynprl5: timeout T1,3; /* #SDTNOW(5463) */
dynprl5: out Terminating,6 to Prl2;
dynprl5: endinstance;

Prl2: in Terminating, 6 from dynprls;

Prl2: out Ok,7 to MyExtTask3;

Ok received in MyExtTask with paramer = 2

Setting the xos TracE flag should result in the following output:
** Process Prl:9901455 created **
** Process Prl:9901456 created **

** Process instance 9901455 *x*
Prl: nextstate Idle

July 2003 Telelogic Tau 4.5 User's Manual 3271

Chapter 65 Integration with Operating Systems

** Process instance 9901456 **
Prl: nextstate Idle

** Process instance 9901455 **

Prl: input signal Go

Signal Go received in Prl:Instancel
Prl: process dynprl:9901458 created
Prl: nextstate Wait

** Process instance 9901456 *+*
Prl: input signal Go
Signal Go received in Prl:Instance?2

** Process instance 9901458 *x*

DynPrl: Set timer T1
Process instance 9901459
DynPrl: nextstate wait

** Process instance 9901458 *+*
DynPrl: input signal T1

DynPrl: signal Terminating sent
DynPrl: stopped

** Process instance 9901455 *+*

Prl: input signal Terminating

Prl: signal Ok sent

Prl: dash nextstate

Ok received in MyExtTask with parameter = 1

** Process instance 99014516 **
DynPrl: input signal T1

DynPrl: signal Terminating sent
DynPrl: stopped

** Process instance 99014513 **

Prl: input signal Terminating

Prl: signal Ok sent

Prl: dash nextstate

Ok received in MyExtTask with parameter = 2

Standard Model

Inthe standard model each instance of the Pr1 and the DynPr1 processes
will be represented by an OS task (in all four tasks). The environment

isrepresented by atask called MyExtTask. Thistask is external to the

SDL system.

3272 Telelogic Tau 4.5 User's Manual July 2003

A Simple Example

July 2003

Instance Set Model

In the instance set model there will be two OS tasks, one each for Prl
and DynPr1. The environment is represented by atask called
MyExTask, just asin the standard model. Thistask is external to the
SDL system.

How Signals are Sent to and from the Environment

Thereis an external task called MyExtTask which iswrittenin C. It
sends the signal Go into the SDL system and receives the signal Ok
back by using services in the operating system.

TheHOOK MAIN AFTER PROCESS RELEASE M&CrOin scttypes.his
used to create MyExt Task as soon as the SDL system allowed to run.

The source code for the external task isplaced in thefilemyExt Task. c.
Thisfileis specific to the selected operating system becauseit callsthe
operating system directly.

Telelogic Tau 4.5 User's Manual 3273

Chapter 65 Integration with Operating Systems

Tight Integration Code Reference

This section explains data types, procedures and macros used in a Tight
Integration (Light Integrations are explained in the Master Library).

General Macros

XPP(x)
The macro xpp isused in function declarations to specify the function
parameters. It is defined like this:

#define XPP(x) x
if function prototypes according to ANSI C can be used.

xptrint
The following type is al'so always defined:

#define xptrint unsigned
where xptrint should be an int type with the same size as a pointer.

xPrsNode and xPrdNode

typedef struct xPrsStruct *xPrsNode;

typedef struct xPrdStruct *xPrdNode;
xPrsNode and xPrdNode are pointers to structs holding instance data
for an instance of a process or a procedure. Note that some parts of the
structs are OS-dependent.

xInputAction, xNotInSignalSet ...
These defines specify the different ways of handling asignal.

Macros to Exclude Unnecessary Code

The following macros are defined to exclude unnecessary code for
IdNode vVariables etc.:

#define XNOSTARTUPIDNODE
#define XOPTSIGPARA
#define XOPTDC

#define XOPTFPAR

#define XOPTSTRUCT
#define XOPTLIT

3274 Telelogic Tau 4.5 User’s Manual July 2003

Tight Integration Code Reference

July 2003

#define XOPTSORT
#define XNOUSEOFSERVICE

Macros to activate Signal-Free-Functions

The following macro must be defined to activate the Signal-Free-Func-
tions. Thisis necessary if signals and timers with string parameter (dy-
namic allocated) are used - to avoid memory leaks.

#define XFREESIGNALFUNCS

If strings not are used as parametersin signal s thisflag should not be set
causeit doeslead to some performance deterioration. (Normally this de-
fineis set in the make-file).

For timer string parameters the define

#define XTIMERSWITHSTRINGPARAMS

must be set.

The following macro must be defined to activate the Signal-Free-Func-
tions. Thisis necessary if signals and timers with string parameter (dy-
namic allocated) are used - to avoid memory leaks.

#define XFREESIGNALFUNCS

Default Priorities

One group of macros defines default priorities for processes and sig-
nals:

#ifndef xDefaultPrioProcess

#define xDefaultPrioProcess RTOSPRIODEFAULT
#endif

#ifndef xDefaultPrioSignal

#define xDefaultPrioSignal RTOSPRIODEFAULT

#endif
Macros to Implement SDL

First in this section is a macro defining the symbol table root:

xIdNode xSymbolTableRoot ;

Telelogic Tau 4.5 User's Manual 3275

Chapter 65 Integration with Operating Systems

XPROCESSDEF_C and XPROCESSDEF_H

These macros define the start-up function for aPAD function. Itisthis
function that is called in the task creation. As mentioned before this
function will after some variable initializations call the PAD function.
The definition of the start-up function variesin different RTOS, that is
why there is a second OS-specific macro here.

STARTUPSIGNAL, ALLOCPRSSIGNAL, etc.

Each signal in an application is assigned a unique integer value. The
values 31992 through 32000 are reserved for internal signals like the
start-up signal.

Variables in the PAD Function

PROCESS_VARS, PROCEDURE_VARS

These macros definethe e ementsin the xPrsstruct and xPrdStruct
respectively.

YPAD_YSVARP

Thismacro definesavariabl e representing apointer to asignal’ s param-
eter area.

YPAD_YVARP

This macro defines the variable yvarp which represents the processin-
stance data.

LOOP_LABEL, LOOP_LABEL_PRD,
LOOP_LABEL_PRD_NOSTATE

These three macros define the eternal 1oop inside processes, procedures
and procedures without a state.

START_STATE

Each state in a process and procedure is represented as an integer. The
Start state will ways have the value 0.

3276 Telelogic Tau 4.5 User’s Manual July 2003

Tight Integration Code Reference

Using OSE Trace Features

Note:

Telelogic has noticed that the OSE-trace feature can make the appli-
cation crash in some situations. This seems to happen when a SDL

process (OSE-task) sends asignal immediately before terminating.

If you come acrossthis problem, first check if the application works
correctly when generated without OSE-trace.

July 2003 Telelogic Tau 4.5 User's Manual 3277

Chapter 65 Integration with Operating Systems

Annex 1: Integration for OSE Delta

Introduction

Thisannex briefly describes the OSE Deltamodels and primitives used
in the SDL suite OSE tight integration. The presentation is focused on
the differences from the OSE classic model described in the previous
annex.

One section describes how to set up and run asimple test examplein
both alight and tight integration.

Note:

Third-party productsreferred to in thismanual may have limitations
that haveimpact onthe usability of Telelogic Tau. Please consult the
supplier's support organization or the third-party product'stechnical
reference documentation for up-to-date information about such lim-
itations.

Principles

Thisintegration is devel oped with OSE Delta Soft Kernel 3.2 and tested
on a Sun workstation with SUnOS Release 5.6.

The main differences between the OSE Deltaand the OSE Classic mod-
e are:

» The OSE Deltamodel uses three semaphores to avoid synchroniza-
tion problemsin SDL start transitions.

* Thetimerisimplemented in systimer.c, which issupplied by
ENEA. Thisisnot accurate and isonly for demonstration purposes.
Y ou will have to supply asuitable timer implementation for the tar-
get environment.

3278 Telelogic Tau 4.5 User's Manual July 2003

Annex 1: Integration for OSE Delta

Running the Test Example: Simple

Note:

The sourcefile and examplesfor Tight Integrations are not included
in the standard delivery. They are availabl e as free downloads from
Telelogic Support web site.

Prerequisites

Thistest exampleis developed as an OSE Delta application on a Sun
workstation. The makefile and compilation switches are set up for the
application to run under an OSE Simulator for OS68. If you are using
another configuration of OSE you probably need to edit the provided

makefile.
dtdi
St i simple.sdt
RTOS simple.ssy
bl1.sbk
Examples pri.spr
’> Simple dynprl.spr

OSEDeIta Sctenvlc
Lightintegration makefi!e
osemain.con, softose.con

MyExtTask.c

Tigh“ntegration makeﬁle, pldllstpl’
scthooks.h, sctose_d.h, sctose_d.c

X <other RTOS> osemain.con, softose.con

INCLUDE

Figure 568: File structure for the Simple example
Light Integration

Limitations for the Light Integration
Please see the Release Guide.

July 2003 Telelogic Tau 4.5 User's Manual 3279

Chapter 65 Integration with Operating Systems

3280

Building a Light Integration

Please seethe“ Building and Running aLight Integration” on page 3268
for instructions.

Tight Integration

Limitations for the Tight Integration

Please read the Release Guide for details about limitations that apply to
al systems using Tight Integration.

Building a Tight Integration

Please seethe “ Building and Running aTight Integration” on page 3270
for instructions.

How Signals are Sent to and from the Environment.

The signal Go is sent from an external task myExtTask. The code for
thistask is placed inthe program file MyExt Task. c. Thisisthe same as
used for OSE Classic.

Telelogic Tau 4.5 User's Manual July 2003

Annex 2: Integration for VxWorks

Annex 2: Integration for VxWorks

July 2003

Introduction

This annex describes briefly the VxWorks models and primitives used

inthe SDL SuiteVxWorkstight integration. The presentation isfocused
on the differences from the general model described earlier in this chap-
ter.

One section describes how to set up and run asimple test examplein
both alight and tight integration.

Note:

Third-party productsreferred to in this manual may havelimitations
that haveimpact onthe usability of Telelogic Tau. Please consult the
supplier's support organization or the third-party product's technical

reference documentation for up-to-date information about such lim-
itations.

Principles

Thisintegration is developed with VxWorks Tornado 1.0 version and
tested under VxSim version 5.3 on a Sun workstation with SunOS 4.1.4.

The main differences between VxWorks and the general model are:

e TheVxWorks msgQreceive copiesthe Signal into abuffer when
itisreceived. The sender makesfree of the signal immediately after
it has been sent and the receiver allocates a buffer (signal) before a
receive statement.

* Anextraoptimization flag xopTsIGNALALLOC has been introduced
for the VxWorkstight integration. When freeing asignal’ smemory,
we placeit in an availlist so that subsequent signal memory alloca-
tion calls can check to seeif suitable sized memory already exists
which may be reused. Otherwise memory is allocated as hormal.

Telelogic Tau 4.5 User's Manual 3281

Chapter 65 Integration with Operating Systems

3282

Running the Test Example: Simple

Note:

The sourcefileand examplesfor Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

Prerequisites

Thistest exampleisdeveloped asaVxWorks Tornado application on a
Sun workstation. The makefile and compilation switches are set up for
the application to run under an VxSim target simulator. If you areusing
another configuration of VxWorks you probably need to edit the pro-
vided makefile.

dtdi
Satar simple.sdt

t RTOS simple.ssy

bl1.sbk
Examples pri.spr

’> Simple dynprl.spr

VXWOI’kS Sctenvlc
Lightintegration— mMakefile

<possibly links to other files>

MyExtTask.c
Tightintegration — makefile
scthooks.h

<other RTOS> <possibly links to other files>

INCLUDE

Figure 569: File structure for the Simple example

Note:

A VxWorks application is not alowed to contain a main function.
The name of the generated main is changed to “root” with the com-
pilation switch -DXMATN NAME=root.

Telelogic Tau 4.5 User's Manual July 2003

Annex 2: Integration for VxWorks

July 2003

Light Integration

Limitations for the Light Integration
Please see the Release Guide.

Building a Light Integration

Please seethe“ Building and Running aL ight Integration” on page 3268
for instructions.

Tight Integration

Limitations for the Tight Integration

Please read the Rel ease Guide for details about limitationsthat apply to
al systemsusing Tight Integration.

Building a Tight Integration

Please seethe “Building and Running aTight Integration” on page 3270
for instructions.

Telelogic Tau 4.5 User's Manua 3283

Chapter 65 Integration with Operating Systems

Annex 3: Integration for Win32

Thisannex briefly describes integration with Win32. The presentation
isfocused on the differences from the general model described earlier
in this chapter.

Note:

Third-party productsreferred to in thismanual may have limitations
that haveimpact onthe usability of Telelogic Tau. Please consult the
supplier's support organization or the third-party product'stechnical
reference documentation for up-to-date information about such lim-
itations.

Principles

Thisintegration is developed using the Microsoft 32-bit C/C++ Com-
piler Version 11.00.7022 and tested on NT 4.0, NT 3.51 and Windows
95 platforms. Theintegration isalso compiled with Borland C++ 5.2 for
Win32 and tested on NT 4.0, NT 3.51 and Windows 95 platforms.

The main differences between integration with Win32 and the general
model are:

» Threads are created with the Win32 primitive CreateThread(). The
thread is then automatically given an input queue the first time it
calsaUSER or GDI function

» XxAllocisimplemented with Win32 function Heapalloc ().
» XxFreeisimplemented with Win32 function HeapFree ().

» Thetimer implementation uses the Win32 get Tickcount () func-
tion.

Running the Test Example: Simple

Note:

The sourcefile and examplesfor Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

3284 Telelogic Tau 4.5 User's Manual July 2003

Annex 3: Integration for Win32

Prerequisites

Thistest exampleisdevel oped asaWin32 console application on aPC.
The makefilesand compilation switches are set up for the application to
compileusing either the Borland or the Microsoft compiler listed above.
There is a separate makefile for each compiler.

sdtdir

simple.sdt

RTOS simple.ssy
bl1.sbk
Examples pri.spr

’» Simple dynprl.spr

Win32 sctenv.c
Lightintegration—| makefile _
<possibly links to other files>

MyExtTask.c

Tightintegration — makefile
. scthooks.h
" <other RTOS> <possibly links to other files>

INCLUDE

Figure 570: File structure for the Simple example
Light Integration

Limitations for the Light Integration
Please see the Release Guide.

Building a Light Integration

Please seethe“ Building and Running aL ight Integration” on page 3268
for instructions.

There are different makefiles provided for Borland compilers and Mi-
crosoft compilers.

July 2003 Telelogic Tau 4.5 User's Manual 3285

Chapter 65 Integration with Operating Systems

Tight Integration

Limitations for the Tight Integration

Please read the Release Guide for details about limitations that apply to
all systems using Tight Integration.

Building a Tight Integration

Please seethe “ Building and Running aTight Integration” on page 3270
for instructions.

There are different makefiles provided for Borland compilers and Mi-
crosoft compilers.

Note:

The command line length limitation for the Borland compiler can
sometimes be exceeded. If this happens, you should define the
DEFINE MACROS at the beginning of the sctwin32.hfile.

Compiler Flags
The following defines (#ifdef) are used in thisintegration:

* WIN32_ INTEGRATION: Ensuresthatthe sctwin32.h fileisinclud-
edin each Cfile. Must be set in all cases.

e x0S_TRACE: Givesatextual trace for most of the SDL eventsby us-
ing printf to some device. Thisflag should not be used together with
XMSC_TRACE.

« xMsc_TRACE: Will give atextua trace in the format of MSC/PR
Z.120 by using printf. Thistraceis possibleto view in the MSC Ed-
itor included in Telelogic Tau. Thisflag should not be used together
with xos TRACE.

» xMsc EDITOR: Used together with the xmsc Track flag, the MSC
trace is automatically displayed in the M SC Editor. Note that you
must have the Organizer open on your machine.

* X ONE TASK PER INSTANCE SET: Statesthat the Instance Set
Model isused. The Standard Model is otherwise chosen by default.

» xerr: When thisflag is defined, the return status of all Win32 func-
tion calls will be printed.

3286 Telelogic Tau 4.5 User's Manual July 2003

Annex 3: Integration for Win32

July 2003

XINCLUDE_HS FILE: Includesthe system signal header file which
isrequired for tight integrations. This file maps signal namesto in-
tegers.

xrTOSTIME: Should always be set for al tight integrations.

XUSING_scep: Thisshould be set when using the preprocessor
SCCD to ensure that the windows header files are not included on
the preprocessor pass. Thefilesareincluded though on the compiler
pass and this ensures that the preprocessed C files only contain the
expanded the SDL suite macros. It also helpsgreatly to speed up the
process. Note that this flag only works with the Microsoft compiler
and should not be used with any other compiler.

xwiNcE: Thisflag alowsyou to compile the integration for Mi-
crosoft WinCE target systems. Thisflag should not be used together
with the MSC trace flags.

Telelogic Tau 4.5 User's Manual 3287

Chapter 65 Integration with Operating Systems

Annex 4: Integration for Solaris 2.6

Introduction

This annex describes briefly the Solaris 2.6 model and primitives used
in the SDL Suite Solaris 2.6 tight integration. The presentation is fo-
cused on the differences from the general model described earlier inthis
chapter.

One section describes how to set up and run asimple test examplefor a
tight integration.

Note:

The Solaris 2.6 tight integration is fully POSIX compliant. For this
reason it will not work with earlier versions of Solaris.

Note:

Third-party productsreferred to in thismanual may have limitations
that haveimpact onthe usability of Telelogic Tau. Please consult the
supplier's support organization or the third-party product'stechnical
reference documentation for up-to-date information about such lim-
itations.

Principles

Thisintegration is developed using cc:WorkShop Compilers 4.2 with
Solaris 2.6 running on a workstation.

The main differences between the Solaris 2.6 integration and the gener-
al model are:

* Inthefile sctsolaris.h, themacroswhich containthe Solaris2.6
specific function calls are implemented. Thefile sctsolaris.c
contains the Solaris 2.6 integration specific functions.

* TheSolaris 2.6 integration isfully POSIX compliant. SDL process-
es are mapped to POSIX threads using the pthread create ()
function and POSI X queues are created for each thread using
mg_open (). The threads are suspended when its corresponding
gueue is empty.

3288 Telelogic Tau 4.5 User's Manual July 2003

Annex 4: Integration for Solaris 2.6

Running the Test Example: Simple

Note:

The sourcefile and examplesfor Tight Integrations are not included
in the standard delivery. They are availabl e as free downloads from
Telelogic Support web site.

Prerequisites

Thistest exampleis developed as a Solaris 2.6 application on awork-
station. The makefile and compilation switches are set up for the appli-
cation to run under Solaris 2.6 using the cc:WorkShop Compilers 4.2

compiler.
sdtdir simple.sdt
RTOS simple.ssy
bl1.sbk
Examples prl.spr
’» Simple dynprl.spr

Solal’is Sctenvlc
Lightintegration— makefile
<possibly links to other files>

MyExtTask.c

Tightintegration —| makefile
scthooks.h

__<other RTOS> <possibly links to other files>

INCLUDE

Figure 571: File Structure for the Simple example.
Light Integration

Limitations for the Light Integration
Please see the Release Guide.

Building a Light Integration

Please seethe “ Building and Running aLight Integration” on page 3268
for instructions.

July 2003 Telelogic Tau 4.5 User's Manual 3289

Chapter 65 Integration with Operating Systems

3290

Tight Integration

Limitations for the Tight Integration

Please read the Release Guide for details about limitations that apply to
all systems using Tight Integration.

Building a Tight Integration

Please seethe “ Building and Running aTight Integration” on page 3270
for instructions.

Compiler Flags
The following defines (#ifdef) are used in thisintegration:

SOLARIS_INTEGRATION: Ensuresthat the sctsolaris.h fileis
included in each C file. Must be set in all cases.

x0s_TRACE: Givesatextual tracefor most of the SDL eventsby us-
ing printf to some device. Thisflag should not be used together with
XMSC_TRACE.

xMsc_TRACE: Will give atextual trace in the format of MSC/PR
Z.120 by using printf. Thistraceis possible to view in the MSC Ed-
itor included in Telelogic Tau. Thisflag should not be used together
with xos TRACE.

xMsc_EDITOR: Used together with the xmsc_TrACE flag, the MSC
trace is automatically displayed in the MSC Editor. Note that you
must have the Organizer open on your machine.

X_ONE TASK PER INSTANCE SET: Should be defined when the al-
ternative runtime model isto be used.

XINCLUDE_HS FILE: Includesthe system signal header file which
isrequired for tight integrations. This file maps signal namesto in-
tegers.

xrRTOSTIME: Should always be set for al tight integrations.

Telelogic Tau 4.5 User's Manual July 2003

Annex 5: Generic POSIX Tight Integration

Annex 5: Generic POSIX Tight Integration

Introduction.

Note:

The Generic POSIX integration is based on the Solaris integration.
For adescription and instructions on how to generate and run the ex-
ample see “Annex 4: Integration for Solaris 2.6” on page 3288.

July 2003 Telelogic Tau 4.5 User's Manual 3291

Chapter 65 Integration with Operating Systems

Annex 6: Building a Threaded Integration

Introduction

ThisTutorial, on how to create a Threaded integration, is developed on
a Windows machine and is intended to be run under a Windows OS.

If you want to use this exampl e on another machine and for another OS,
please remember to choose the appropriate integration and compiler for
your OSin the Targeting Expert.

Preparations

The same SDL source files for the example Simple, that is used in the
Light integration example will be used in this tutorial.

Copy the Source files for the Example: Simple
1. Create your own test directory and enter it.

2. Copy the SDL sourcefilesfor the example Simple:

cp <installation>/sdt/sdtdir/RTOS/Example/Sim-
ple/*.s*

3. Copy the environment file from the Win32/ThreadedlI ntegration di-
rectory:

cp <your Installations>/sdt/sdtdir/RTOS/Examples/Sim-
ple/Win32/ThreadedIntegration/MyExtTask.c

4. Startthe SDL suite and open the system filefor the Simple example.

Partition the system using the Deployment Editor
1. Create anew deployment diagram and call it Simple.

2. Edit the deployment diagram according to the figure below, see:
Signalling in Threaded Integration.

3292 Telelogic Tau 4.5 User's Manual July 2003

Annex 6: Building a Threaded Integration

X DP Editor - Simple;/1 rw Simple.sdp * — Il:l |i|
File Edit VYiew Pages Diagrams Window Tools Help
Simple
Simple

Figure 572 Deployment Diagram for the example Simple

3. Makesurethat you got the multiplicity right onthe aggregation line
from the component to thread.

To check this you can double click on the line. The right value
should be:

— 1 - Onaggregation line from component to thread Prl.
— * - 0n aggregation line from component to thread DynPr1.

July 2003 Telelogic Tau 4.5 User's Manual 3293

Chapter 65 Integration with Operating Systems

3294

The multiplicity on the aggregation lines specifies how the compo-
nent should be mapped to threads.

— A “*’ means that each instance of the component should be
mapped to an individual thread.

— A name meansthat the entire component should be mapped to a
thread.

In our example this means that there should be one thread for all in-
stances of Prl and one thread for each instance of DynPrl.

Double-click the component symbol. Inthe Symbol Detailswindow

- specify that the integration model should be Threaded, see: Signal-

ling in Threaded Integration.

X symbol Details - Component — ||:|| Xl

Stereotype: H

Properties:

:
Gusdifisy H
i

Integration Model:| Threaded =

Closel Helpl

Figure 573 Symbol Details for the Component Simple
Double-click the thread symbol for Prl. Specify the following

' Thread Parameters for the Thread P1:

Thread Stack Size = 2048
Thread Priority =8
Queue Size =128
Max Signal Size =1024

Double-click the object symbol and specify that the stereotype

. should be Process and that the qualifier (for Pr1) should be:

— Simple/BlV/Prl.

Make the appropriate specifications for the object Symbol for
DynPr1(Quadlifier = Simple/Bl1/DynPrl).

Telelogic Tau 4.5 User's Manual July 2003

Annex 6: Building a Threaded Integration

July 2003

Save the deployment diagram.

Select the deployment diagram in the Organizer and open the Tar-
geting Expert from the Generate menu.

Choose the integration: Threaded Integrations->Win32 threaded.

lect No!

. Youwill be prompted if you want to generate the sdl_cfg.hfile. Se-

. Disablethe Generation of Environment Function by deselecting En-

vironment Functions in the Environment section of the window.

. Click on the Compiler/Linker/Make line in the Partitioning Dia-

gram Model. Y ou should now seethefollowing inthe Targeting Ex-
pert window, see:: The Compile/Linker/Make Window in Targeting

Expert.

=i SDL Targeting Expert — Zhome/d Ir/THREADEXAMPLE/Simple.pdm
File Edit Make Tools Help
| [U gt - 1000 povaitie) | @] [Setats_thesaded aig
Partiioning Diagram Hocel Comer | Sourse Fles | Gompier Pl | Askitional Comler | Lirker | Make |
O single n A
O simple A
o) B Compier Description
8 My Solaris threacdd The complars oions shout ay the paceoders
o B e 0 - object fe
1~ include path (ie. nchude’ + ‘Coder Indude’)
Compler nane: [gog Derait
Optiorss THRERDS i5 —o 4 Default
Comple 2 C++
Compie as cebug
Usrary PR’ | DTHREADSOLARIS, Default
Incluge ~1. -13 [sctuseincludel Defait
Corttn. InGlud: |15 (s ot CODERDIR) -13 (s€t TCP IPDIRY, Default
. extersion: |7 Dot
 parser andassembler description
The placeholders
%3 —input fi
%o - output fle
should be usedlin the aptians
Cparser rame: Defalt
vl Options; oot || [
- =2
I Howe 11 ¥ ol 11 T e]
ot | [Z] Toroet enecutoble N _DPEI/Simple._ DPE2/My_Solaris t

Figure 574: The Compile/Linker/Make Window in Targeting Expert.

Telelogic Tau 4.5 User’s Manual

3295

Chapter 65 Integration with Operating Systems

3296

13.

14.

15.

16.

17.

Definethe following flag: THREADED _SIMPLE_EXAMPLE in
the Compiler description/Options window. This flag will start the
External threads in the simple example.

Define the following Compilation flags:
— THREADED_XTRACE,
— THREADED_MSCTRACE

by selecting the flags: SDL trace and MSC trace in the Target li-
brary/Kernel window

Add the myExtTask.c file as anew sourcefile.

Click on the Source Files entry in the window and add the myExt -
Task.c filein the sourcefilelist.

Save the settings. Y ou are now prompted again to generate config-
uration file, thistime select Yes.

Y ou should now be back in the Analyze/Generate code window and
be ready to generate the application.

Doafull Makeand if you have followed theinstructions the Target-
ing Expert will now analyze, generate code, generate makefile,
compile and link the application.

Run the application simple.sct. Please note that you haveto traverse
down in the generated directory structure to find the application.

Y ou will find the application in a subdirectory similar to this path:

— <your test directory>/Simple. DPE981536368/Sim-
ple. DPEl/Simple. DPE2/Win32 threaded/....

The output you should see when you run the application should be as
follows:

Telelogic Tau 4.5 User's Manual July 2003

Annex 6: Building a Threaded Integration

Connected with the Postmaster.

x OUTPUT of go to Pri:1

o Parameter(s) : 1

xx NEXTSTATE Idle

> QUTPUT of go to Pri1:2

i Parameter(s) : 2

xxx NEXTSTATE Idle

Signal Go received in Pri:Instancel

x CRERTE DynPri:1

<xx NEXTSTATE Wait

Signal Go received in Prl1:Instance2
CREATE DynPri:2
SET on timer t1 at 17.5580
NEXTSTATE Wait_t1
NEXTSTATE Wait
SET on timer t1 at 17.5880
NEXTSTATE Wait_t1

TIMER signal was sent
Timer : ot

Receiver : DynPri:1

Now : 17.5650
OUTPUT of t1 to DynPri:1
PROCEDURE START Prd

doing much
PROCEDURE RETURN Prd
OUTPUT of terminating to Pri:1

TIMER signal was sent
Timer : ot
Receiver : DynPri:2
Now : 17.6050
QUTPUT of t1 to DynPri1:2
STOP (no signals Were discarded)
PROCEDURE START Prd
OUTPUT of ok to enu:1
Parameter(s) : 1
Signal Ok received with the following parameter:1
NEXTSTATE Wait
doing much
PROCEDURE RETURN Prd
OUTPUT of terminating te Pri:2
STOP (no signals were discarded)
OUTPUT of ok to enu:1
Parameter(s) : 2
Signal Ok received with the following parameter:2
xxx NEXTSTATE Wait

Figure 575 Textual SDL trace for Simple example.

July 2003 Telelogic Tau 4.5 User’s Manual 3297

Chapter 65

Integration with Operating Systems

3298

MSC Simulstor Trace pryrem—
gerereddy
DL SimaGEbn 43

procsss prosss precess precess
; ; i e
g] [] [z | [Ewens] [Enas
L3
.
g

process

Bri
<o ORPILLS

oy

G -
R N A R N B e~)
==
//
I i
& L]
]
@)

Figure 576 MSC trace for Simple Example

Telelogic Tau 4.5 User’s Manual

July 2003

	65 Integration with Operating Systems
	Introduction
	Different Integration Models
	Light integration
	Threaded Integration
	Variations of Threaded Integration
	Tight integration
	Variations on Tight integration

	Choosing between Light, Threaded and Tight Integration
	Performance vs. scheduling latency
	Environment interaction
	Operating system issues
	Considerations when choosing between Tight and Threaded

	Common Features
	The Use of Macros
	File Structure
	The Generated Files
	The Integration Packages

	Naming Conventions
	The Symbol Table
	Memory Allocation
	Start-up
	Implementation of SDL Concepts
	SDL Processes
	SDL Signals
	SDL Procedures
	SDL Timers

	Light Integration
	PAD Functions
	Start-Up
	Connection to the Environment
	Running a Light Integration under an External RTOS
	General Steps

	Threaded Integration
	Introduction
	Implementation Details for Threaded
	Symbol Table Structures and Global Variables
	Process Creation
	Sending Signals
	New Macros
	Textual and MSC Trace in Threaded
	API for interfacing a Threaded Integration
	Implementation Details for Different RTOS

	Signal Sending over TCP/IP
	Introduction
	Architecture
	File Structure
	Routing of Signals
	Error Handling
	Configuration

	Tight Integration
	Common Features
	File Structure
	The SDL_PId Type
	Signals
	Time
	Timers
	Addressing SDL Processes

	The Standard Model
	Processes
	Scheduling
	Start-up

	The Instance Set Model
	Processes
	Signal sending
	Scheduling

	Integrating with external code

	Limitations for Integrations
	A Simple Example
	The Simple System
	Block Bl1
	Process Pr1
	Process DynPr1
	Connection to the Environment

	Building and Running a Light Integration
	General Steps for a Light Integration
	Result From Running the System
	The xInEnv Function
	The xOutEnv Function

	Building and Running a Tight Integration
	General Steps for a Tight Integration
	Result From Running the System
	Standard Model
	Instance Set Model
	How Signals are Sent to and from the Environment

	Tight Integration Code Reference
	General Macros
	XPP(x)
	xptrint
	xPrsNode and xPrdNode
	xInputAction, xNotInSignalSet ...
	Macros to Exclude Unnecessary Code
	Macros to activate Signal-Free-Functions
	Default Priorities

	Macros to Implement SDL
	XPROCESSDEF_C and XPROCESSDEF_H
	STARTUPSIGNAL, ALLOCPRSSIGNAL, etc.

	Variables in the PAD Function
	PROCESS_VARS, PROCEDURE_VARS
	YPAD_YSVARP
	YPAD_YVARP
	LOOP_LABEL, LOOP_LABEL_PRD, LOOP_LABEL_PRD_NOSTATE
	START_STATE

	Using OSE Trace Features

	Annex 1: Integration for OSE Delta
	Introduction
	Principles
	Running the Test Example: Simple
	Prerequisites

	Light Integration
	Limitations for the Light Integration
	Building a Light Integration

	Tight Integration
	Limitations for the Tight Integration
	Building a Tight Integration
	How Signals are Sent to and from the Environment.

	Annex 2: Integration for VxWorks
	Introduction
	Principles
	Running the Test Example: Simple
	Prerequisites

	Light Integration
	Limitations for the Light Integration
	Building a Light Integration

	Tight Integration
	Limitations for the Tight Integration
	Building a Tight Integration

	Annex 3: Integration for Win32
	Principles
	Running the Test Example: Simple
	Prerequisites

	Light Integration
	Limitations for the Light Integration
	Building a Light Integration

	Tight Integration
	Limitations for the Tight Integration
	Building a Tight Integration
	Compiler Flags

	Annex 4: Integration for Solaris 2.6
	Introduction
	Principles
	Running the Test Example: Simple
	Prerequisites

	Light Integration
	Limitations for the Light Integration
	Building a Light Integration

	Tight Integration
	Limitations for the Tight Integration
	Building a Tight Integration
	Compiler Flags

	Annex 5: Generic POSIX Tight Integration
	Introduction.

	Annex 6: Building a Threaded Integration
	Introduction
	Preparations
	Copy the Source files for the Example: Simple
	Partition the system using the Deployment Editor

