
July 2003 Telelo

Chapter
�� ���������	�
����

��������
�������
�������	
������������������������	������������	������������	��
�	�����������������
����������
�	�������������

������������������	������������������� ����	����!����	���� ��
���	�����	��������� ����	����"�	���#
�	�����������������$�������

��������	���
		���	���#�����	����$

�����%�&�����������&��
�
�������
	���	�����������
gic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
Important!

You are free to reuse the integrations supplied by Telelogic or mod-
ify them to your needs. The OS integrations are tested by Telelogic
but Telelogic does not guarantee that they will perform in your spe-
cific target environment (hardware, CPU, RTOS version etc.).
Please refer to “RTOS integrations” on page 9 in chapter 1, �����
�	���
���
��	������
��
���
����������	�
����� for information about
host and target environments where the integration types have been
developed and tested.

������	������	���������	�����

The Light and Threaded integrations are included in the delivery.

The standard product support and maintenance agreement ���� in-
cludes support for the Light and Threaded integrations available
from Telelogic if �����	���� have been made to the integrations.

������ ����	����

The Tight integration is meant to serve as a ���
�	��, to be adapted
to your needs. It is available for you as a free download from the
Telelogic Support web site.

The standard product support and maintenance agreement ��������
assist in adapting to your target environment.

�$�������
�������&�������	�����

All OS integration models can be supported, enhanced and custom-
ized by using Telelogic’s Professional Services.

&���������	�����

Telelogic has developed a large number of integrations based on the
company’s vast experience of integrating with all operating systems
on the market.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

� ����$�����
���������	��
The code that is generated by the Cadvanced SDL to C compiler is de-
signed to run on different platforms. This is done by letting all platform
dependent concepts be represented by C macros that can be expanded
appropriately for each environment. There are also types used in the
generated code that have to be defined. Integration, as referred to in this
chapter, is the process of adapting the generated code to a certain plat-
form.

This chapter describes the different models that are supported in Telel-
ogic Tau.

	���������������	��������
With Cadvanced, there are three different run-time models, called Light
Integration, Threaded Integration and Tight Integration. Tight integra-
tions are then divided into two submodels, the Standard model and the
Instance-Set model. All models use the same generated code.

You will find descriptions of the different models below, as well as
guidelines for choosing between them.

�	���	�������	��

The simplest case is called a Light integration because only a minimum
of interaction with the operating system is required; a Light integration
could even run on a target system without any OS at all.

The complete SDL system runs as a single OS task. Scheduling of SDL
processes is handled by the standard kernel, running a complete state
transition at a time (no preemption). Worst case scheduling latency is
thus the duration of the longest transition.

Communication between SDL processes is handled by the kernel; com-
munication between the SDL system and the environment is handled in

�����

Throughout this chapter, annexes excluded, VxWorks terminology
has been used whenever there are differences between operating
systems. Particularly, this means that the term ���� has been used on
several occasions. The corresponding term would be ������ for
Win32 and Solaris, ��	���� for OSE Delta, and ���� for Nucleus.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
the two user supplied functions xInEnv() and xOutEnv(). These func-
tions are platform dependent. See Figure 558.

Other properties of a Light Integration:

• The scheduling order can be controlled by process priorities and/or
signal priorities as set by the #PRIO directive.

• An SDL system can be partitioned, i.e. split into several executa-
bles. Each partition has its own kernel/scheduler and set of environ-
ment functions. Partitioning is explained in ��������	�����
	�
����

� !"
��
�������
 !�
#��
$��%�����&$'����
�()
�	
$
$	������.

• It is easy to “go to target”: Write the environment functions and re-
compile the standard kernel with a cross compiler.

����������������	��

The main difference between a Light integration and a Threaded inte-
gration is that any part of the SDL system can execute in its own thread
in a Threaded integration. A thread in a Threaded integration can exe-

������ ���	
���������
��
���
�����
����������
������

��
���
�������
�����
���
�������
��
���
�������
������
xOutEnv��
����
 �

!������
��
���
���
"�
����
�������#��
$���%
 ������
������
"�
��%��

Process 1 Process 2

SDL send SDL receive
primitive primitive

 OS send
primitive

 OS receive
primitive

xInEnvxOutEnv

SDL Kernel

SDL System

OS task running SDT Light integration

APPLICATION LEVEL

OS LEVEL

Environment functions

External OS task

(Code written in any language)
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

� ����$�����
cute one or several SDL processes or even blocks. How the different
SDL objects should be mapped to threads is specified in the Deploy-
ment Editor. The user can specify thread-specific parameters like:
STACKSIZE, PRIORITY, MAXMESSAGEQUEUESIZE and
MAXMESSAGESIZE in the Deployment Editor. The Deployment Ed-
itor works together with the Targeting Expert to generate a Threaded in-
tegration.

Communication and execution control in one thread is handled by the
SDL kernel and not the OS kernel. See Figure 559. This model shows
the default Threaded integration where OS semaphores are the only OS
primitives used in the signal sending. The xMainLoop() function is the
entry point for each thread.

�����

A Threaded integration can only be generated using the Deployment
Editor and the Targeting Expert, i.e. the make feature in the Orga-
nizer CANNOT be used.

������ ��&	
���������
��
$������
�����������

���
'�����
(��������
��
����
(��
�������
������
!�����
��
 ��!���
�������
$���%

 ������
������
�������

Process 1 Process 2

SDL send SDL receive
primitive primitive

xOutEnv

SDL System Partition 1

APPLICATION LEVEL

OS LEVEL

Environment functions

Process 3 Process 4

SDL Kernel

OS task in SDT Threaded OS task in SDT Threaded

primitive
SDL send

primitive
SDL receive

SDL System Partition 2

 OS semaphores
/*To protect the receiver’s

input queue*/

xInEnv

xMainLoopxMainLoop
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
Semaphores are used frequently in Threaded to protect globally acces-
sible data like input queues and export queues. Semaphores are also
used in the start-up to synchronize the execution of newly created
threads. We must ensure that no thread is allowed to start executing un-
til ALL threads have been created in the start-up phase.

Communication with external threads (Threads not made from SDL
specifications) is handled by the environment functions in the same way
as for a Light integration. There is though one major difference and that
is that it is possible in a Threaded to send signals directly to an SDL pro-
cess with the SDL_Output() function. The SDL_Output() function is
“thread-safe” because of the use of OS semaphores.

���	��	���������������������	��

There are two different implementation of signal sending between
threads in Threaded. The default model send signals in the same way as
in a Light integration but the input queues are protected by OS sema-
phores. In the alternative model, the signals are sent/received by
OS_Send and OS_Received. In the alternative model there is no use for
OS semaphores. Which model to use can be decided at compilation time
by setting the compilation switch
THREADED_ALTERNATIVE_SIGNAL_SENDING.

�����������	�
��

The sender of an SDL signal “takes” a semaphore before accessing the
receivers input queue. The signal is then linked into the input queue and
the semaphore is “given” back.

The receiver is normally “waiting” for a semaphore. When a signal is
sent, the semaphore is “released” by the sender. To send a signal, two
semaphores are normally needed. One semaphore is protecting the input
queue and the other is used for synchronizing the sender and the receiv-
er. In Solaris, where we use POSIX threads and semaphores they are
called: xInputPortMutex and xInputPortCond.

One OS feature that is needed in Threaded is a “Conditional Wait”. We
are only allowed to wait for a signal until the first internal timer expires.
In POSIX, there is a primitive called pthread_cond_wait() and in
Windows there is a similar concept called WaitForSingleObject()
where a time-out can be specified. In VxWorks and OSE, the only con-
cept where you can specify a time-out is OS_Receive. For synchroniza-
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

� ����$�����
tion between the sender and receiver we are sending a small
OS_Message (the character ‘c’) in these two RTOS.

���������
��������������������������

In this alternative implementation we are sending the signals using
OS_Send and OS_Receive. Signals are now sent to OS_Message
queues. The sender sends the pointer to the SDL signal in an
OS_Message to the receiver’s OS_Queue. When the signal is received,
the SDL signal is unpacked and linked in to the receivers input queue.
The advantage with this implementation is that there is now synchroni-
zation between the sender and the receiver. Any number of threads can
send signals at the same time to a specific receiver without having to
wait for a semaphore.

�	���	�������	��

We also provide an alternate run-time model, which is called a Tight in-
tegration because the generated code interacts directly with the under-
lying operating system when creating processes, sending signals, etc.

The SDL processes run as separate OS tasks as explained below. Sched-
uling is handled by the OS and is normally time-sliced, priority based
and preemptive.

Communication takes place using the inter-process communications
mechanisms offered by the OS, normally message queues. This applies
to signals sent between SDL processes as well as signals sent to or re-
ceived from the environment. There are no environment functions, as il-
lustrated in Figure 560.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
Other properties of a Tight Integration:

• There is a single timer task which handles all SDL timers.

• SDL Simulators cannot be tightly integrated with an RTOS.

• Execution trace is available in textual or MSC format.1

���	��	������	���	�������	��

Tight integrations come in two varieties, the Standard model and the In-
stance-Set model. Consider an SDL system with processes as outlined
in Figure 561.

������ �)*	
���������
��
���
$����
����������
������

��
���
�������
�����
���
�������
��
���
�������
������
"�
�������#��
��
�+

!,�
�����
$��
���
�,����
��
���
�
�����,
�(
���
�!��
$���%
 ������
������
"�

��%��

1. The MSC trace will be printed on standard output. To see the trace in an MSC
diagram, copy the text into a file and read it into the MSC Editor.

Process 2

 OS send
primitive

 OS receive
primitive

External OS Task

APPLICATION LEVEL

OS LEVEL

Process 1

OS Task running
an SDL process

OS Task running
an SDL process

SDL SYSTEM

(Code written in
any language)
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

� ����$�����
��������������

In the standard model of a Tight integration every SDL process instance
is mapped to its own OS task. Tasks are created and destroyed dynam-
ically as SDL process instances are created and terminated.

The example system will initially run as five OS tasks (four for Prs1,
and one for Prs2). Up to 13 tasks may be created as needed.

�����������������

In the Instance-Set model of a Tight integration every SDL process in-
stance set is mapped to its own OS task. Tasks are created statically
when the SDL system is initialized and are never destroyed. Thus there
may be OS tasks that have no SDL process instances to run.

The example system will run as three OS tasks regardless of the number
of process instances (one task each for Prs1, Prs2 and Prs3).

�����	����������	����������������	���
��������	��
Choosing between the three integration models depends on many fac-
tors. Some of them are related to properties of the SDL system, others
relate to the target environment. Important factors to consider are:

• The trade-off between performance and scheduling latency.

• How complex interaction the system has with the environment.

• Whether an operating system will be used or not.

• Memory management

������ �)-	
�
�����
���
�,����

$���
�,����
!���
 �
����
(��
���������
���
��((�����
������
�(
$����
�����������

Prs1 Prs2(4,10) (1,1) Prs3 (0,2)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���	

��	
�� �� ����	����������&
�	�������������
������������� �������	��������!

Generally, the Light integration model provides better performance
than a Tight integration, but worst-case scheduling latency is the dura-
tion of the longest state transition.

A Tight integration is normally preferable when low scheduling latency
is important. On the other hand, performance suffers from the overhead
associated with OS scheduling and inter-process communications.

Another consideration is that blocking calls (either inlined in SDL code
or as part of environment functions) will completely stop execution of
a Light integration for the duration of the call. Making blocking calls in
a Tight integration will only stop the thread making the call.

The Threaded integration is in a sense a combination of the other two
integration models. An application part that makes blocking calls can be
mapped to a separate OS thread. Other parts, where fast inter-process
communication is important, can be mapped to another OS thread. In-
ternally in this thread, signal exchange will be handled in the same way
as in a Light integration.

"��	�������	�������	��

If interaction with the environment is simple then a Light integration is
the best choice, especially if the system sends many signals and receives
few. You can generate templates for the environment functions from the
SDL suite and just add code for converting between the signal represen-
tation and the actual environment hardware or software.

If interaction with the environment is complex then a Tight integration
is probably the easiest to use, since you only need to interface to the op-
erating system queues. This is the case if you need process behavior in
the interaction (for example, to establish a communications session be-
fore sending the signal).

Other cases where a Tight integration might be the best choice are

• when the environment consists of many OS tasks written in other
languages than SDL

• when external processes send signals directly to SDL processes
rather than to the SDL system in general

• when there are many signals passing to and from the environment
���
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

� ����$�����
In a Threaded integration, the integration with the environment should
normally be handled in the environment functions in the same way as
for a Light integration. It is possible though in Threaded to send signals
directly to an SDL process with the SDL_Output() function without in-
volving the xInEnv() function.

#$����	���!����	�����

If you will not use an OS at all then you have to select a Light integra-
tion. In addition, you will have to provide some simple functions for
getting system time and handling memory allocation (depending on
compiler and libraries, standard C library functions can often be used).

If you use an OS that takes care of load balancing between CPUs then
you should select a Tight integration, because load balancing normally
uses threads as the load unit to distribute.

If you want to distribute your SDL System over several nodes (CPUs)
you should use the Threaded integration together with the TCP/IP fea-
ture.

����	�����	������������	����������	��������������

&��	��!���������������������$������������	���������	�����
����!�$�����������	���
��������������	���	��������
���������������
����������	������������

The two most important reasons for choosing the Threaded model are:

1. The Threaded integration out-perform a Tight Integration in most
situations, e g implementation of Timers and creation of tasks is
about 100% faster in Threaded.

2. In Threaded you are not limited to two partitioning models. Any
mapping between SDL objects and threads can be specified in the
Deployment editor.

For a more comprehensive list of the differences between Threaded and
Tight see the following sections.

�����������	����������

• The default model is very simple to implement for a new OS. A
working prototype should normally take 2-3 days.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
• The Threaded model can be used together with the TCP/IP feature.

• The Threaded model is supporting all partitioning models (1 pro-
cess instance/1 or many process instance-set/1 or many blocks/1 en-
tire system mapped to one Thread.

• The user can easily specify Thread specific parameters like: stack
size, Thread priority, Thread message queue size and maximum
message size for each Thread.

• The Thread specific code for all supported OS is placed in one file.

�����������	������

• Simple mapping od SDL concepts to OS primitives.

• Simple interactions with environment (at least in the default model),
by direct call to the OS message passing primitives.

• Support textual and MSC-pr textual trace in console window when
executing.

�������������	����������

• Slightly more difficult to interact with the environment. An external
function/thread must use the SDL_Output function when sending
signals to an SDL process.

�������������	������

• Very difficult and time consuming to support a new OS.

• Can only support two partitioning models.

• Very inefficient Timer model.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

��������'�	�$��
������%�������
This section describes the parts of the integration that are common to the
different models, but also some important differences.

���&����������
A source file generated by an SDL to C compiler is independent from
the choice of integration model and operating system. Instead of system
calls, it uses macros that have to be defined elsewhere when the system
is built. Each SDL concept is represented by one or more C macros.
These macros will have different definitions for different integration
models and operating systems. Telelogic Tau provides a number of in-
tegration packages for this purpose. In a Light Integration, many macros
are expanded into functions of the standard kernel. A Tight Integration
has lower level macros that are defined in separate files for each oper-
ating system, and finally expanded into OS primitives or certain OS de-
pendent constructions.

Below is an example of generated code for signal sending. Code in cap-
ital letters are the SDL suite macros. The bracketed numbers indicate
corresponding lines of code. For a description of the different macros,
see chapter 62, #��
*�����
)�'����.

�����

Many of the data structures and macros described in this section are
described in more detail in chapter 62, #��
*�����
)�'����. That
chapter is, however, focused on a Light Integration. Some things, es-
pecially the listings of data structures, are not correct in every detail
for Tight Integrations but should still be very useful.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
%	��'��������

���(��������%	���

An integration uses one or more of four files that can be generated by
the Code Generator. All integrations require the C source file
<systemname>.c, whereas the interface file <systemname>.ifc is op-
tional. For a Tight Integration the signal number file <systemname>.hs
may be used, and for a Light Integration the file sctenv.c, representing
the environment, can be used.

The source file uses the highest level set of macros, that are defined in
the different integration packages.

����������(�&$�
$�
Generated code before macro expansion:

[1] ALLOC_SIGNAL(sig2, ySigN_z3_sig2,
 TO_PROCESS(Env, &yEnvR_env),
 XSIGNALHEADERTYPE)
 SIGNAL_ALLOC_ERROR
[2] SDL_2OUTPUT_COMPUTED_TO(
 xDefaultPrioSignal,
 (xIdNode *)0, sig2,
 ySigN_z3_sig2,
 TO_PROCESS(Env, &yEnvR_env),
 0, “Sig2”)
 SIGNAL_ALLOC_ERROR_END

Generated code after macro expansion for a Light Integration:

[1] yOutputSignal = xGetSignal
 ((&ySigR_z3_sig2),
 (*(&yEnvR_env)->
 ActivePrsList !=
 (xPrsNode) 0 ?
 (*(&yEnvR_env)->
 ActivePrsList)->Self :
 xSysD.SDL_NULL_Var),
 yVarP->Self);
[2] SDL_Output (yOutputSignal,
 (xIdNode *) 0);

�����

The source file and examples for Tight Integration are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

 Sig2
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

��������'�	�$��
�����������	�����)����

The files containing the necessary macro definitions and support func-
tions are organized as shown in Figure 562. For each operating system
there is one package for the Light Integration, and one for the Tight In-
tegration. Although the files in different packages may have the same
name they do not necessarily contain the same code. The principles for
Tight Integration packages are described more thoroughly in “Tight In-
tegration” on page 3249. Details about each operating system can be
found in the annexes.

������ �).	
����
���������
(��
���
/$"�
�����������

sdtdir

RTOS

VxWorks

...<other RTOS>

TightIntegration sctvxworks.h

SDL

INCLUDE

sdt2vxworks.c

sctcommon.h

Examples

pidlist.pr ���������������	��������������������

Simple bl1.sbk
pr1.spr
dynpr1.spr

simple.sdt
simple.ssy

VxWorks

... <other RTOS>

scthooks.h_template

 scttypes.h

���������

sctsdl.c
��������	

sctos.c

sctvxworks.c
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
There is also an INCLUDE directory containing source files common to
all supported operating systems. These files are described in “File
Structure” on page 2951 in chapter 62, #��
*�����
)�'����. Below are
some additional comments on these files:

• scthooks.h:

This file contains macro hooks into the system. These hooks are
used for customizing a Tight Integration, for example by adding ex-
ternal tasks. See the examples to find out how this is done.

All the hook macros are initially empty.

• sctcommon.h:

This file contains general macros for all Tight Integrations

• sctos.c:

This file contains functions that are operating system and/or compil-
er dependent, like allocation and free of dynamic memory.

• sctpred.h and sctpred.c:

This is the header and source file where all the SDL predefined
datatypes are implemented.

• sctsdl.c:

This file contains SDL support functions, the timer task and the tim-
er support functions. It is non-OS-specific and calls many second
level OS-specific macros defined in sct<RTOS>.h.

• scttypes.h:

This file contains the general datatype definitions for signals,
IdNodes, etc. It also contains the macro definitions found in gener-
ated code. Note that this file is non-OS-specific. This means that if
a call to an OS-specific primitive is needed, then a second level of
macro is defined, according to the following model.

In the generated code:

ALLOC_SIGNAL_PAR(ok, ySigN_z3_ok, TO_PROCESS(Env,
&yEnvR_env), yPDef_z3_ok)

In scttypes.h:
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

��������'�	�$��
#define ALLOC_SIGNAL_PAR(SIG_NAME, SIG_IDNODE, \
 RECEIVER, SIG_PAR_TYPE) \
 RTOSALLOC_SIGNAL_PAR(SIG_NAME, SIG_IDNODE, \
 RECEIVER, SIG_PAR_TYPE)

In sct<RTOS>.h:

#define RTOSALLOC_SIGNAL_PAR(SIG_NAME,SIG_IDNODE,\
 RECEIVER, SIG_PAR_TYPE) \
 yOutputSignalPtr = \
 xAlloc(sizeof(xSignalHeaderRec)+ \
 sizeof(SIG_PAR_TYPE)); \
 yOutputSignalPtr->SigP = yOutputSignalPtr+1; \
 yOutputSignalPtr->SignalCode = SIG_NAME; \
 yOutputSignalPtr->Sender = SDL_SELF;

The Examples directory contains a simple SDL system that also uses an
external process (a separate OS task). For each supported operating sys-
tem there is an implementation of this, demonstrating how to hook into
the integration package. Further description of the example can be
found in “A Simple Example” on page 3264.

���	���������	���
Names of variables, datatypes and support functions in generated code
and package files often start with one of the letters x, y and z.

The general rules (there are some exceptions) are:

• Names and objects starting with an ‘x’ represent general datatypes
and support functions in the kernel.

Examples: extern XCONST struct xVarIdStruct,
xInputSignal, xFindReceiver

• Names starting with a ‘y’ are names of IdNodes representing SDL
variables, process states, channels, blocks, datatypes for signals,
PAD functions, etc. in generated code.

Examples: extern XCONST struct xVarIdStruct
yVarR_z012_okmess, ySigR_z3_ok, yPAD_z01_pr1

• Names and objects starting with a ‘z’ are SDL variables, SDL
names, process state names, etc. in generated code.

Examples: #define z010_idle 1, z012_okmess
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
���'!���������
All signals, blocks, processes, channels, etc. in an SDL system have a
corresponding representation in the symbol table described in chapter
62, #��
*�����
)�'����. This symbol table consists of nodes (IdNodes)
each representing one entity of the system. The IdNodes are pointers to
structs. See the following example:

extern XCONST struct xPrsIdStruct yPrsR_z02_dynpr1;
#define yPrsN_z02_dynpr1 (&yPrsR_z02_dynpr1)

The N_ and the R_ just before z02_dynpr1 indicate if it is a node (N_)
or a record (R_).

�����!*������	��
The xAlloc function is always used when allocating dynamic memory.
The function is placed in the sctos.c file, but in the Tight Integrations
the body of the function is found in the sct<RTOS>.h file.

'����+�$
The yInit function is called during start-up of the SDL system. It is
responsible for creating all static processes and for initializing SDL syn-
onyms.

��$��������	����'
������$��

'
����������

An SDL process consists of three parts in generated code: Instance set
common data, instance specific data and dynamic behavior.

����������������������

Variables and structures that are common to all instances of a process
are stored in a record of the type xPrsIdStruct, defined in
scttypes.h. This record is referenced by a node in the symbol table.

������������	�������

Variables and structures of the process instance are declared via the
macro PROCESS_VARS. This macro is defined in different ways in the
Light and the two models of Tight Integration. It contains state informa-
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

��������'�	�$��
tion, local variables, pointers to parent and offspring, etc. One important
entry is the RestartAddress, pointing out which transition to execute
when the PAD function runs (see below).

����������������

The dynamic behavior of an SDL process is implemented in a PAD
function (Process Activity Definition). The PAD function is used some-
what differently in the different integration models:

• In the Light Integration the scheduler calls the PAD function of the
process. The PAD function then returns to the scheduler when the
transition is finished.

• In the Standard Model Tight Integration the PAD function is called
when the process is started and does not return until process termi-
nation. It then contains a main loop where one iteration corresponds
to one transition.

• The Instance Set Model Tight Integration contains a mix of the two.

Below is the code for ending a transition, before and after macro expan-
sion for a Light Integration.

����������(�)�#���	��
Generated code before macro expansion:

 /*-----
 * NEXTSTATE -
 * #SDTREF(SDL,/ti/RTOS/MANUAL/SDL/simple.spr(1),
 143(55,100),1)
 ------*/
 #ifdef XCASELABELS
[1] case 6:
 #endif
[2] XAT_LAST_SYMBOL
[3] SDL_DASH_NEXTSTATE

Generated code after macro expansion for a Light Integration:

 /*-----
 * NEXTSTATE -
 * #SDTREF(SDL,/ti/RTOS/MANUAL/SDL/simple.spr(1),
 143(55,100),1)
 ------*/

[1] case 6:

[2] xGRSetSymbol (-1);
[3] SDL_NextState (VarP, yVarP->State);
 return;

-

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���	

��	
�� �� ����	����������&
�	�������������
��������
�
�

Basically, every process has at least one signal queue.

• In a Light Integration each process instance has an input queue.
• In the Standard Model Tight Integration there is an input queue and

a save queue for each instance.
• In the Instance Set Model Tight Integration there is an input queue

and a save queue for every instance set. These two queues are shared
by all the instances.

All signals that are sent to a process arrive in the input queue. The save
queue is used to keep signals that cannot be handled in the current state
but should be saved for future use. This is tightly connected to the SDL
Save concept, but is also used in the implementation of timers. For a
Light Integration there are no save queues. Instead, all signals that
should be saved will remain in the input queue until they can be re-
ceived.

���������������

The use of process priorities requires some caution. Priorities can be set
with the #PRIO directive in the SDL suite, but there is no mapping of
priorities for different platforms. The generated code will use exactly
the values specified in the SDL system. This will not be a problem in a
Light Integration, but for Tight Integrations the result may not be the ex-
pected.

 !����� "#$%����������������������� &&&&&&&&&&&&&&&&&&&&&&&&

Assume that Process1 has its priority set to 100 using the #PRIO 100
directive and Process2 has #PRIO 50. These priority values will be used
as-is by the underlying scheduler.

In the SDL Suite simulators and Light integrations, the highest priority
is 0. In VxWorks, 0 is the highest priority, whereas in pSOS the highest
priority is 255.

Thus the simulated system, a Light integration for any operating system
and a Tight integration for VxWorks will all run Process2 at a higher
priority than Process1. In contrast, a Tight integration for pSOS will run
Process1 at a higher priority than Process2!

&&
���
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

��������'�	�$��
������'�������

Regardless of the integration model there are a number of things that
have to be done when an SDL process instance is created. The structs
that represent the instance have to be created. It needs a representation
in the symbol tree and a signal queue, except in the Instance Set Model
of Tight Integration where the signal queue belongs to the instance set.
A start-up signal is also always allocated and sent to the process.

����������(�������	������	��
Generated code before macro expansion:

 /**
 SECTION Initialization
 **/

 extern void yInit XPP((void))
 {
 int Temp;

 INIT_PROCESS_TYPE(pr1,z01_pr1,yPrsN_z01_pr1,”z01_pr1”,
 SDL_INTEGER_LIT(2),SDL_INTEGER_LIT(2),
 yVDef_z01_pr1, xDefaultPrioProcess,
 yPAD_z01_pr1)
 #ifdef SDL_STATIC_CREATE
[1] for (Temp=1; Temp<=SDL_INTEGER_LIT(2); Temp++) {
[2] SDL_STATIC_CREATE(pr1,z01_pr1,yPrsN_z01_pr1,
 ”pr1”,ySigN_z01_pr1,
 yPDef_z01_pr1,yVDef_z01_pr1,
 xDefaultPrioProcess,yPAD_z01_pr1,1)
 }
 #endif

Generated Code after macro expansion for a Light Integration:

 /**
 SECTION Initialization
 **/
 extern void
 yInit ()
 {
 int Temp;

[1] for (Temp = 1; Temp <= 2; Temp++) {

[2] SDL_Create (xGetSignal ((&ySigR_z01_pr1),
 xSysD.SDL_NULL_Var, xSysD.SDL_NULL_Var),
 (&yPrsR_z01_pr1), 1);
 }

Pr1(2,2)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
'
�'	�����

��������������

In generated code a signal sending is handled by two macros:
ALLOC_SIGNAL (or ALLOC_SIGNAL_PAR for a signal with parameters)
and SDL_2OUTPUT_xxxx (there are different macros depending on how
the SDL output was defined, e.g. with or without an explicit TO).

In this example the signal is called go and has no parameters. The
SDL_2OUTPUT_COMPUTED_TO macro indicates that it was sent without
an explicit TO.

'
�����������

An SDL procedure is represented by a function similar to a PAD func-
tion. Before a procedure is called there are two support functions that
need to be called: xGetPrd and xAddPrdCall.

The xGetPrd function allocates an xPrdStruct for the called proce-
dure and returns an xPrdNode pointing to the struct.

����������(�&$�
$�
Generated code before macro expansion:

[1] ALLOC_SIGNAL(go,ySigN_z03_go,TO_PROCESS(p,yPrsN_z09_p),
 XSIGNALHEADERTYPE)
 SIGNAL_ALLOC_ERROR
[2] SDL_2OUTPUT_COMPUTED_TO(xDefaultPrioSignal,(xIdNode*)0, go,
 ySigN_z03_go,TO_PROCESS(p, yPrsN_z09_p), 0, “Go”)
 SIGNAL_ALLOC_ERROR_END
 XBETWEEN_SYMBOLS(4, 579)

Generated code after macro expansion for a VxWorks Tight Integra-
tion:

[1] yOutputSignalPtr = xAlloc(sizeof(xSignalHeaderRec));
[1] yOutputSignalPtr->SignalCode = 2;
[1] yOutputSignalPtr->Sender = yVarP->Self;
[2] Err = msgQSend (xTo_Process ((&yPrsR_z09_p)),
[2] (char*)*&yOutputSignalPtr,
[2] sizeof(xSignalHeaderRec) + 0, 0, 0);
[2] xFree ((void **) &yOutputSignalPtr);
[2] if (Err == (-1)) {
[2] taskLock ();
[2] printf (“Error during %s found in VXWORKS
[2] function %s. Error code %s\n”, “OUTPUT”,
[2] “msgQSend”, strerror ((*__errno ())));
[2] taskUnlock ();
[2] }

 go
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

��������'�	�$��
The xAddPrdCall function adds the new procedure call in the calling
process’ ActivePrd list (an element in the xPrsStruct).

The procedure is called with a pointer to the instance data of the calling
SDL process. This is because the procedure must be able to use internal
variables in the calling process.

Before a procedure returns to the caller it performs an xReleasePrd
call. This function removes the call from the ActivePrd list.

'
��	����

SDL timers are represented by signals. All active timer signals are kept
in a sorted list, either within the single task of a Light Integration or in
a certain timer task in a Tight Integration. When a timer expires, the sig-
nal representing it is sent to the SDL process that set it.

����������(��*������
Generated code before macro expansion:

 /*-----
 * SET T1
 * #SDTREF(SDL,/ti/RTOS/MANUAL/SDL/dynpr1.spr(1),
 119(55,25),1)
 ------*/
 #ifdef XCASELABELS
[1] case 2:
 #endif
[2] SDL_SET_DUR(xPlus_SDL_Time(SDL_NOW,
[3] SDL_DURATION_LIT(5.0, 5, 0)),
[4] SDL_DURATION_LIT(5.0, 5, 0), t1, ySigN_z021_t1,
 yTim_t1, “T1”)

Generated code after macro expansion for a Light Integration:

 /*-----
 * SET T1
 * #SDTREF(SDL,/ti/RTOS/MANUAL/SDL/dynpr1.spr(1),
 119(55,25),1)
 ------*/

[1] case 2:

[2] SDL_Set (xPlus_SDL_Duration (SDL_Now (),
[3] SDL_Duration_Lit (5, 0)), xGetSignal
[4] ((&ySigR_z021_t1), yVarP->Self,
 yVarP->Self));

SET
(Now+5,T1)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
�	�����������	��
A Light Integration is a stand-alone executable which can be generated
with or without a simulator. An executable that should run under UNIX
can use the precompiled kernels. Only the environment functions need
to be written by the user.

�*
%����	���
The PAD function is called by the scheduler when its process is in turn
to execute a transition. The scheduler calls the PAD function with a
symbol table node of the type xPrsNode, pointing to the instance spe-
cific data of the instance that is scheduled.

'����+&$
A Light Integration starts when the generated main function is called.
The start-up phase works like this (pseudocode shown in �������):

void main(void)
{
 xMainInit();
 $	��
��	�
+*,�-
 xMainLoop();
}

void xMainInit(void)
{
 xInitEnv();
 ����
	�
��������
����������
}

You must supply the xInitEnv() function to initialize external code
and hardware, etc. (this is of course application dependent). This func-
tion is placed in the same program module (environment module) as the
xInEnv() and xOutEnv() functions. The xMainLoop() function con-
tains an eternal loop, which constitutes the scheduler itself. See below:
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����
void xMainLoop (void)
{
 while (1)
 {

.��/�%01112

if (�
�����
���
�.�����)

����
���
�	�����	�����
�����
������

else if (�
��	����
���
�.�����
�
��������	�)
 {

���	%�
���
������
��	�
���
�����
�	��

���
��
������
��
���
��	����
�	
������
	�
���
������

����
���
�,(
������	�
�	�
���
��	����
 }
 }
}

�������	�������"��	�������
Signals going in and out of the SDL system are handled in the two user
written functions xInEnv and xOutEnv. There is a template file for writ-
ing these two function in the standard distribution. This file can be
found at <installation directory>/sdt/
sdtdir/<your platform os version>sdtdir/INCLUDE/

sctenv.c.

,���	����	�����������	���������"-������
,�#'
Since there are some fundamental differences between different RTOS
we can only give a general idea of how to generate a Light Integration
under an external RTOS here. Typical things that may be different in
different RTOS:

• If you are allowed to have a main function in your application.

• If your start-up function must be specified in a configuration file.

• If the cross compiler requires additional OS-specific header files to
be included.

• If it is possible to run the application in a simulated target environ-
ment.

• Syntax for the makefile.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
(������'��$�

The normal steps to create a Light Integration under an external RTOS
can be summarized as follows:

1. Copy the source and header files for an application kernel from the
installation of the SDL suite. The files are residing in the following
directory:

<installation directory>/sdt/

sdtdir/<your host and os version>sdtdir/INCLUDE.

2. Generate an <application>.c file with the SDL to C Compiler.

3. Generate an environment header file (an option in the Organizer
*��� dialog).

4. Edit the sctenv.c template file to handle your in and out environ-
ment signals. Include the generated <application>.ifc file (the
environment header file).

5. Create a makefile or edit the generated makefile. Write entries for
the kernel source files, the environment file and the application file.

6. Set the appropriate compilation switches for your RTOS and your
compiler.

7. Compile the application and the kernel file to create a relocatable
object file.

8. Download.

�����

The code generator option $��%����� �$�� be used.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
����������������	��

���������	��
The first part of this section is about the Threaded integration. The sec-
ond part is about the TCP/IP feature. With the Threaded and TCP/IP
features you can partition an SDL system into several threads that can
execute in a distributed environment.

��$��������	��
���	�������������
The main areas where a Threaded differs from a Light integration are:

• Symbol table structures and global variables

• Process creation

• Signal sending

'!���������'������������(��������	�����

Each thread has a global variable of type xSystemData in Threaded. In
Light, there is only one global variable of this type for the entire system.
In Threaded this variable is initialized in yInit() and is one of the pa-
rameters in the macro for creating a new thread.

The data structure xSystemData has a couple of new entries:

...
#ifdef THREADED
 xInputPortRec xNewSignals;
 THREADED_THREAD_VARS
#endif
...

The entry xNewSignals is used when a new signal is received. The sig-
nal is first linked into the receiver’s xNewSignals queue before it is
handled in the receiver’s xMainLoop().

The entry THREADED_THREAD_VARS is a macro that contains different
thread variables like the semaphore handles xInputPort.

Global variables are declared in the macro THREADED_GLOBAL_VARS:

#elif THREADSOLARIS
.....
#define THREADED_GLOBAL_VARS \
 pthread_mutex_t xListMutex; \
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
 pthread_mutex_t xExportMutex; \
 sem_t xInitSem; \
 int xNumberOfThreads; \
 int QueueCounter; \
 int xInitPhase; \
 pthread_attr_t Attributes ;
#endif /* THREADED_ALTERNATIVE_SIGNAL_SENDING */
#endif

������������	��

There are three macros related to the creation of threads in a Threaded:

• THREADED_START_THREAD(F, SYSD, THREAD_STACKSIZE,
THREAD_PRIO, THREAD_MAXQUEUESIZE, THREAD_MAXMESSIZE)

This macro is used if there is only one thread to be created for all
instances (Instance Set) of an SDL process (or another SDL object).
The parameters are:

+		����� *#
�	�	����

F The entry point of the thread, i.e.
the SDL kernel function xMain-
Loop()

SYSD A variable of type xSystemData

THREAD_STACKSIZE The stacksize for the thread is
specified in the Deployment Edi-
tor

THREAD_PRIO The thread priority specified in
the Deployment Editor

THREAD_MAXQUEUESIZE The maximum number of mes-
sages/signals in the input queue
of the thread, as specified in the
Deployment Editor. This parame-
ter is only used if the alternate
signal sending model is used.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
• SDL_CREATE(PROC_NAME, PROC_IDNODE, PROC_NAME_STRING)

This macro is used for creation of dynamic processes (processes
created during run-time).

It is defined exactly the same way in Threaded as in Light. It will
call the SDL kernel function SDL_Create().

SDL_Create() will create a new thread if, for instance, there should
be one thread for each instance of an SDL process. See the follow-
ing extract from the SDL_Create() function:

...................
#ifdef THREADED
 if (PrsId->SysD == 0) {
 THREADED_START_THREAD(xMainLoop, StartUpSig-
>Receiver.LocalPId->PrsP->SysD, PrsId->ThreadParam-
>ThreadStackSize, PrsId->ThreadParam->ThreadPrio,
PrsId->ThreadParam->MaxQueueLength, PrsId-
>ThreadParam->MaxMesSize);
}
#endif
....................

Please note that the thread parameters are taken from the xPrsIdN-
ode for the process.

SDL_STATIC_CREATE(PROC_NAME, PREFIX_PROC_NAME,
PROC_IDNODE, PROC_NAME_STRING, STARTUP_IDNODE,

THREAD_MAXMESSIZE The maximum size of a mes-
sage/signal. This parameter is ig-
nored at the moment in both im-
plementation models. The maxi-
mum size of a message/signal in
the alternate signal sending mod-
el is always the size of the pointer
to an SDL signal (sizeof(xSig-
nalNode).

�����

Thread parameters for individual threads can be specified in the De-
ployment Editor. If no values are specified, default values will be
used.

+		����� *#
�	�	����
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���	

��	
�� �� ����	����������&
�	�������������
STARTUP_PAR_TYPE, PRIV_DATA_TYPE, PRIO,
PAD_FUNCTION, BLOCK_INST_NUMBER)

This macro is used for creating static processes (processes that are
created at system start-up). It will be called from the yInit() func-
tion and is mapped to the SDL kernel function SDL_Create() in the
same way as in the SDL_CREATE macro.

The xMainLoop() function is the entry point for the thread. First in this
function is the macro

THREADED_THREAD_BEGINNING(SYSD)

The main purpose of this macro is to wait for the start-up semaphore
xInitSem. No thread is allowed to start executing until ALL static pro-
cesses/threads have been created.

'���	��'	�����

In the default model, signals are sent in the same way as for a Light in-
tegration except that they are first linked into the xNewSignals queue.

In the xMainLoop() function, the xNewSignals queue is checked for
new entries. If a new signal is available, it is sent to the process itself
with the SDL_Output() function. See the following extract from the
xMainLoop() function:

........

THREADED_LOCK_INPUTPORT(((xSystemData *)SysD))
while (((xSystemData *)SysD)->xNewSignals.Suc != (xSig-
nalNode)&((xSystemData *)SysD)->xNewSignals)
SDL_Output(((xSystemData *)SysD)->xNewSignals.Suc
xSigPrioPar(((xSystemData *)SysD)->xNewSignals.Suc-
>Prio), 0);
THREADED_UNLOCK_INPUTPORT(((xSystemData *)SysD))

.........

�������������������������������(����)

In the alternative signal sending model, an OS message/signal is sent
containing a pointer to the SDL signal. For this, a message queue must
be created for each thread at thread creation. How this is done differs
from OS to OS. See : Signalling in Threaded Integration.

The sender sends the pointer to the SDL signal with the OS_Send prim-
itive. The receiver receives the message, extracts the pointer to the SDL
���
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
signal and links it into the xNewSignal queue. After this, the signal is
handled in the same way as in the default model.

���������

The same source files are used in a Threaded integration as in a Light.
The only SDL kernel source files that are affected by the Threaded in-
tegration are scttypes.h, sctsdl.c and sctos.c.

Most of the OS specific code is found in the scttypes.h file. The fol-
lowing macros are new for Threaded:

,-�%&�)-,*� *#
�	�	����

THREADWIN32 Main macro for Threaded Win-
dows integration

THREADSOLARIS Main macro for Threaded Solaris
integration

THREADVXWORKS Main macro for Threaded Vx-
Works integration

THRAEDOSE Main macro for Threaded OSE
integration

THREADED_ALTERNATIVE_SIGN
AL_SENDING

Main macro for using the alterna-
tive signal sending model.

THREADED_POSIX_THREADS Main macro for the Threaded in-
tegration model defining the ker-
nel specifics

THREADED Internal macro used only in the
kernel source files

THREADED_TRACE Enabling textual execution trace

THREADED_OSTRACE This macro is mapped to a printf
statement.

THREADED_ERROR Enabling textual error printout
when calling OS primitives.

THREADED_ERROR_VAR Defines a variable used in
THREADED_ERROR_RESULTS.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
THREADED_ERROR_RESULT Stores the return result after call-
ing an OS primitive.

THREADED_ERROR_REPORT Checks the value of the return
variable and if ERROR makes a
printout.

THREADED_ERROR_REPORT_NUL
L

Checks the value of the return
variable and if ERROR makes a
printout.

THREADED_ERROR_REPORT_NEG Checks the value of the return
variable and if ERROR makes a
printout.

THREADED_ERROR_REPORT_OPE
N_NEG

Checks the value of the return
variable and if ERROR makes a
printout.

THREADED_ERROR_REPORT_WAI
T_NEG

Checks the value of the return
variable and if ERROR makes a
printout.

THREADED_GLOBAL_VARS Global variable defines.

THREADED_GLOBAL_INIT Initialization of global variables
like semaphores.

THREADED_THREAD_VARS Definitions of thread variables.

THREADED_THREAD_INIT Initialization of thread variables.

THREADED_THREAD_BEGINNING Wait for xInitSem to be released.

THREADED_LOCK_INPUTPORT Protect the input queue by taking
the semaphore.

THREADED_UNLOCK_INPUTPORT Releasing the semaphore for the
input queue.

THREADED_WAIT_AND_UNLOCK_
INPUTPORT

Wait for next message/signal to
arrive or the next internal timer to
expire.

THREADED_SIGNAL_AND_UNLOC
K_INPUTPORT

Send a signal and release the
semaphore for the input queue.

,-�%&�)-,*� *#
�	�	����
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
��-��������'������	���������

Textual SDL Trace, similar to the Textual Trace in Telelogic Tau Sim-
ulator, can be turned on by selecting the flag �()
�����
(will set the flag
THREADED_XTRACE) in the Target Library/Kernel window in Targeting
Expert.

On-line MSC trace is possible when running an application under a soft-
kernel on Windows or UNIX. Select the flag *�$
����� (will set the
flag THREADED_MSCTRACE) in the Target Library/Kernel window in
Targeting Expert.

*�����	�������	�������������������	��

An API is available with a number of useful functions/MACROS that
will facilitate the work of sending/receiving signals between external
processes/threads and an SDL Threaded Application.

THREADED_LISTREAD_START Protect global active and avail-
able lists with a semaphore be-
fore reading it.

THREADED_LISTWRITE_START Protect global active and avail-
able lists with a semaphore be-
fore writing to it.

THREADED_LISTACCESS_END Release the semaphore protecting
a global active or available list.

THREADED_EXPORT_START Protect export and import actions
by taking a semaphore

THREADED_EXPORT_END Release the semaphore after ex-
port and import actions.

THREADED_START_THREAD Start a new thread.

THREADED_STOP_THREAD Terminate a thread.

THREADED_AFTER_THREAD_STA
RT

Synchronize the start-up of newly
created threads.

THREADED_SEND_OUTPUT Send messages/signals. Used in
both models.

,-�%&�)-,*� *#
�	�	����
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
The following functions and MACROS are available:

��*+����!����������� !���,-.

This function will return an SDL PId representing the calling External
process/thread. It works in the following way:

1. Get a ThreadId for the calling process/thread.

2. Allocate and assign an SDL struct (xPrsIdRec) representing the ex-
ternal process/thread.

3. Call the SDL kernel function xGetPId() to get an SDL_PId.

4. If MSC trace is on it will generate an entry for the process/thread in
the MSC diagram.

5. Allocate and initialize an SDL “system data record” for the external
process/thread.

6. Create a queue for the calling process/thread.

7. Assign the “system data record” entry in the SDL_PId.

8. Return the SDL_PId.

!������/����!�����������������*���-��*+���.

This function will wait for an SDL signal indefinitely. When a signal ar-
rives the signal will be taken out of the queue and return the signal. If
MSC trace is on the signal will also be traced in the MSC diagram.

!������/����!�����������������*���+0��������
�-��*+���1�
��*+�
������.

This function will work in the same way as xThreadedReceiveSDL-
Sig() except that it will only wait for the specified time)

�2� �� �+����3/+��*+��3+����(�-�����1������1�������1��
���.

This macro will use the macro token operator ## to concatenate the
sigptr, signame, paramno into a simple assignment of the signal param-
eter with the specified number.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
�2� �� �+3 �+��*+��3+����(-�����1������1�������1�����.

This macro will assign the user’s param the value of the signal parame-
ter with the specified number.

��*+�
��
�-.

This is the standard SDL kernel function that should be used when send-
ing signal into a Threaded Application. The following must be done be-
fore a signal can be sent from an external process/thread into a Threaded
Application.

1. Use the
xThreadedRegExtTask/xThreadedRegExtTask_WithQueue�
function to get an�SDL_PId.

2. Call the SDL kernel function xGetSignal with the following pa-
rameters: signalId, Receiver, Sender.

3. Assign signal parameters using the API macro
THREADED_ASSIGN_SDL_SIG_PARAMS()

4. Call the SDL_Output function with the SDL signal.

For an example see Annex 6: Building a Threaded Integration

�2� �� �+�����+ 4����5

This macro is normally empty. It is called after all static SDL threads
are created in the THREADED_AFTER_THREAD_START macro (last in gen-
erated c file for application).

By defining this macro to user can make the application start external
tasks.

�����

This macro should only be used with simple datatypes where assign-
ments can be done using the simple assignment operator “=”

�����

This macro should only be used with simple datatypes where assign-
ments can be done using the simple assignment operator “=”
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
�2� �� �+��(�* + 4�(�*

If this flag is defined the external tasks in the simple example will be
started.

��$��������	��
���	�����
	�������,�#'

6!0��,

The Threaded integration for VxWorks is developed and tested using a
Solaris Softkernel in Tornado 2.

The following vxWorks header files are used:

#ifdef THREADVXWORKS

#include "errno.h"
#include "vxWorks.h"
#include "semLib.h"
#include "msgQLib.h" /* msgQCreate msgQDelete ms-
gQSend msgQReceive *//* msgQNumMsgs */
#include "taskLib.h" /* taskSpawn */
#include "semaphore.h" /* POSIX semaphores */
#endif

The following VxWorks primitives have been used:

.#/�0��
��������� *#
�	�	����

sem_init(..),
sem_wait(..),
sem_post(..),
sem_destroy(..),

POSIX semaphores are frequent-
ly used, e.g. to protect the input
queue, to synchronize start-up...

msgQCreate(..),
msgQReceive(..),
msgQSend(..),
msgQDelete(..)

Message queues are used in both
models in VxWorks. The mes-
sage queue is created in the
THREADED_START_THREAD MAC-

RO.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
������

The Threaded integration for Solaris is developed and tested in the fol-
lowing environment:

Sun Solaris 2.6 with Sun WorkShop compiler cc version 5.0.

Included header files for Solaris:

#elif THREADSOLARIS
#include <pthread.h>
#include <semaphore.h>
#ifdef THREADED_ALTERNATIVE_SIGNAL_SENDING
#include <mqueue.h>
#include <signal.h>
#include <time.h>
#endif /* THREADED_ALTERNATIVE_SIGNAL_SENDING */
#endif

The following Solaris primitives have been used:

taskSpawn(..),
taskDelete(..),
taskSuspend(..)

taskSpawn is used for creating a
thread. The name entry is not
used.
 taskSuspend is only used by the
“Main” thread. It is called from
the macro
THREADED_AFTER_THREAD_STA

RT.

taskIdSelf() Used in taskDelete() and taskSus-
pend()

���	��+		����� ���	$����	�$��

DEFAULT_STACKSIZE 800

DEFAULT_PRIO 100

DEFAULT_MAXQUEUESIZE 250

DEFAULT_MAXMESSIZE sizeof(xSignalNode)

.#/�0��
��������� *#
�	�	����
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
���	���
�������� *#
�	�	����

sem_init(..),
sem_wait(..),
sem_post(..),

pthread_mutex_init(..),
pthread_mutex_lock(..),
pthread_mutex_unlock(..),
pthread_mutex_destroy(..)

pthread_cond_init(..),
pthread_cond_wait(..),
pthread_cond_timedwait(..
),
pthread_cond_signal(..),
pthread_cond_destroy(..)

The sem_.. primitives are only
used in the start-up to synchro-
nize static processes/threads.

The pthread_mutex_.. primitives
are used to protect the input
queues and other queues.

The pthread_cond_... primitives
are used to synchronize sender
and receiver in the default model.

pthread_attr_init(..),
pthread_attr_setstacksize
(..),
pthread_attr_setschedpoli
cy(..),
thread_attr_setdetachstat
e(..),
pthread_attr_setscope(..)

The pthread_attr_.. primitives are
used to set the attributes of a
thread before it is created.

mq_open(..),
mq_close(..),
mq_receive(..),
mq_unlink(..),
mq_send(..)

These primitive are only used in
the alternative signal sending
model.

pthread_create(..),
pthread_exit(..),

These primitives are used when a
thread is created and when it ter-
minates.

timer_settime(..),
timer_delete(..)

These primitives are used for set-
ting a timer before the
mq_receive() is called in the al-
ternative signal sending model.
The time-out for the timer is the
duration for the next internal
SDL timer to expire. When the
timer expires the signal_handler
function sets the error message to
EINTR.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
��

The Threaded integration for OSE have been developed and tested with
an OSE Softkernel (version 4.3) on Solaris 2.6 using the gcc compiler
(version 2.95).

The following OSE header file is include:

#ifdef THREADOSE
#include "ose.h"
#endif /* THREADOSE */

The following OSE primitives have been used:

���	��+		����� ���	$����	�$��

DEFAULT_STACKSIZE 15000

DEFAULT_PRIO 10

DEFAULT_MAXQUEUESIZE 128

DEFAULT_MAXMESSIZE sizeof(xSignalNode)

&�*�+�������� *#
�	�	����

create_sem(..),
wait_sem(..),
signal_sem(..),

These primitives are used for pro-
tecting input queues, other
queues and for synchronizing
start-up

receive(..),
receive_w_tmo(..),
send(..)

These primitive are used for re-
ceiving/sending signals in both
models.
Receive/send is also used to pass
the start-up parameter xSysD to a
new thread, since OSE does not
support start-up parameters in the
create_process primitive.

alloc(..),
free_buf(..)

These primitives are used for al-
locating and returning OSE sig-
nals.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���	

��	
�� �� ����	����������&
�	�������������
Declaration of xMainLoop().

The declaration and definition of the thread’s entry point (xMain-
Loop()) is special in OSE:

Declaration in scttypes.h;

.......
#elif THREADOSE
extern OSENTRYPOINT xMainLoop;
#else
extern void xMainLoop XPP((xSystemData *));
#endif

Definition in sctsdl.c:
......

#elif THREADOSE

start(..) This primitive is used for starting
a newly created thread.

kill_proc(..) This primitive terminates a thread

stop(..) This primitive stop the execution
of a thread. Used in the
THREADED_AFTER_THREAD_STA

RT macro.

current_process() Used in the kill_proc() and stop()
calls.

create_process(..) This primitive is used for creating
Threads.

���	��+		����� ���	$����	�$��

DEFAULT_STACKSIZE 1024

DEFAULT_PRIO 8

DEFAULT_MAXQUEUESIZE 1024

DEFAULT_MAXMESSIZE sizeof(xSignalNode)

&�*�+�������� *#
�	�	����
���
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
OS_PROCESS(xMainLoop)

#else

#ifndef XNOPROTO

void xMainLoop (xSystemData * SysD)

#else

void xMainLoop (SysD)

 xSystemData * SysD;

#endif

#endif

..............

Definition of NIL.

NIL is defined in the OSE kernel and must not be redefined in the SDL
kernel.
#ifndef THREADOSE

#define NIL 0

#endif /* THREADOSE */

Forward declaration of xSignalNode.

The xSignalNode must have forward declaration very early in the sct-
types.h file since it is used in the union SIGNAL definition.

.............
typedef struct xSignalStruct *xSignalNode;
union SIGNAL
{
 SIGSELECT sigNo;
 xSignalNode SDLSig;
 xSystemDataPtr SysD;
};

.....

Further down in the scttypes.h file.

.....
#ifndef THREADOSE
typedef struct xSignalStruct *xSignalNode;
#endif /* THREADOSE */
.....

0����7

The Threaded integration for Windows is developed and tested on Win-
dows 2000 Professional with the Borland C++ compiler, version 5.02.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
The following header files for Windows are included:

#ifdef THREADWIN32
#include "limits.h"
#include "windows.h"
#include "dos.h"
......

The following Windows primitives are used in the Threaded integra-
tion:

/�������
�������� *#
�	�	����

CreateSemaphore(..),
ReleaseSemaphore(..),
WaitForSingleObject(..),
CloseHandle(..)

These primitives are used for pro-
tecting input queues, other
queues and synchronization in
start-up.
One extra semaphore, xInit-
Queue, is used when a newly cre-
ated thread is creating his own in-
put queue.

PeekMessage(..) This primitive is used in the
THREADED_THREAD_BEGINNING
macro in the alternative signal
sending model. This primitive
force the thread to create a mes-
sage queue. It is used together
with the xInitQueue semaphore.

GetMessage(..),
PostThreadMessage(..),

These primitives are used for re-
ceiving/sending messages in the
alternative signal sending model.

SetTimer(..),
KillTimer(..)

These primitives are used to set
an OS timer that will signal the
thread when it expires. The time-
out of this timer is the duration
until the next internal SDL timer
expires for this thread.
The window message will be set
to WM_TIMER if the OS timer ex-
pires.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
'	����'���	���������.��

���������	��

For applications using the Threaded integration model, a plug-in mod-
ule for TCP/IP communication is available. The module supports signal
sending between distributed SDL applications via a TCP/IP connection.
ASCII Encoding/Decoding is used for the conversion between signal
and transport format. The module is delivered as C source code which
is integrated and built together with code generated by the CAdvanced
SDL to C Compiler.

The TCP/IP adapter supports the four operating systems for which
Threaded integrations are available. These are Windows, Solaris, Vx-
Works and OSE.

CreateThread(..),
ExitThread(..)

These primitives are used for cre-
ating and terminating threads.

SetThreadPriority(..) This primitive is used for setting
the priority of the thread.

SuspendThread(..) Called by the “main” thread in
the macro
THREADED_AFTER_THREAD_STA

RT

GetCurrentThread() Used in the SuspendThread mac-
ro.

���	��+		����� ���	$����	�$��

DEFAULT_STACKSIZE 0 (Automatically resized by OS)

DEFAULT_PRIO THREAD_PRIORITY_NORMAL

DEFAULT_MAXQUEUESIZE 1024

DEFAULT_MAXMESSIZE sizeof(xSignalNode)

/�������
�������� *#
�	�	����
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
*���	�������

The TCP/IP functions are called from the environment functions
xInitEnv and xOutEnv. The functions are included by setting the
XENV_INC flag to “tcpipcomm.h”. The tcpipcomm.h file contains
#define directives that translates macros in the environment file to
function calls in the TCP/IP adapter.

When a signal is sent to the environment using the xOutEnv function,
xSendSignal is called. A connection is set up with a remote server. The
signal destination is specified using a user-implemented function. When
the connection is accepted, the signal is encoded into ASCII format and
sent via a TCP/IP socket. The session is then closed.

From xInitEnv, a thread is started which polls a socket for incoming
connections. When a connection from a remote client is accepted, a new
thread is started, which receives and decodes data for one signal. When
the signal is decoded, it is inserted in the signal queue of the SDL sys-
tem. The thread finishes its execution after the connection is closed.

An executing SDL system thus acts as a server when signals are re-
ceived from the environment and as a client when a signal should be
sent to the environment.

The environment file of an SDL application may not be modified if the
TCP/IP adapter is to be used. Making modifications may override the
TCP/IP signal sending functionality. If you want to use the TCP/IP
adapter together with other external code from an environment file,
please consult “Configuration” on page 3246.

%	��'��������

The TCP/IP adapter consists of four files, located in $sdtdir/tcpip/.

• tcpipcomm.c should be compiled and linked with the generated C
code

• tcpipcomm.h is a C header file which is included from the generat-
ed environment file

• tcpipthr.h and tcpipsock.h are header files that are included
from tcpipcomm.c and tcpipcomm.h.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
The tcpip directory is referenced relative to the $sdtdir variable.

,���	����'	�����

For each signal that is sent from your SDL application, you must specify
a destination in the form of an IP address (or host name) and a TCP port
number. This information should be accessed from a routing function
which is called when a signal is sent from the SDL application.

The routing function is made accessible from the TCP/IP adapter by set-
ting the flag XROUTING_INC to the name of a routing header file. This is
a plain C header file where the macro XFINDDEST(OUTSIG, SIGNAME,
IP, PORT) is defined as a function. OUTSIG and SIGNAME are �� param-
eters. IP and PORT are �$� parameters.

OUTSIG should be declared as xSignalNode*. From this parameter,
signal data such as parameters can be accessed. SIGNAME holds the
name of the signal and is declared as char*. In many cases, the signal
name is sufficient routing information. The IP and PORT variables
should be set to the host address and port number. IP should be declared
as char* and PORT as int*.

The routing function should be implemented in a C file which is com-
piled and linked together with the application. The server IP address
should be given as char*, e.g. “255.255.255.255” (dotted decimal
notation) or “server.the_company.com” (hostname notation). The
server port number should be given as int, e.g. 8888.

/	���&�	�����.���	������0����	�

If you use an $sdtdir that is different from the default $sdtdir (in
the SDL suite installation directory), be sure to copy the ����� di-
rectory to the new location. Otherwise, you may encounter problems
in finding the TCP/IP files at compilation.

�������	�������'	��������������

Distributed components execute in separate memory spaces. Care
must be taken so that pointers are not sent as signal parameters over
TCP/IP and used in a remote component.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
On the server side, the IP address is inherent to the host that the appli-
cation resides on. The port number on which a server should listen for
incoming connections should be specified using the flag XSERVPORT.

 !����� "#8%��'�9�������������
������������� &&&&&&&&&&&&&&&&&&

This example shows a situation where different signals should be direct-
ed to different recipients. An SDL system is partitioned into three com-
ponents (i.e. executable files) using the Threaded integration model.
From component 1, two different signals can be sent. Sig1 should be
sent to component 2 and Sig2 should be sent to component 3.

Component 2 resides on a host called “host2”. It uses port number
7001 for listening for incoming connections, which means that
XSERVPORT is set to 7001 (XSERVPORT=7001). Component 3 resides
on “host3” and listens on port number 7001 (XSERVPORT=7001).
Please note that the ports are not in conflict since the hosts are different.

For component 1, a routing function is implemented. The flag
XROUTING_INC is set to “router.h”. The routing header file has the
following contents:

#define XFINDDEST(OUTSIG, SIGNAME, IP, PORT)\
xGetDestination(OUTSIG, SIGNAME, IP, PORT)

The routing C file, router.c, contains the implemented function:

#include “stdlib.h”

void xGetDestination(xSignalNode *sig, char
*sigName, char *IPAddr, int *Port)
{
 if (strcmp(sigName, “Sig1”) == 0)
 {
 strcpy(IPAddr, "host2\0");
 (*Port)= 7001; /* Dereferencing */
 }
 else if (strcmp(sigName, “Sig2”) == 0)
 {
 strcpy(IPAddr, "host3\0");

�����&�����������������

Generally, TCP port numbers below 1024 are reserved by operating
system services or internet applications. For instance, the port num-
bers 21 and 23 are used by FTP and port number 80 is used by HT-
TP. If a port number is occupied, you will get an error message at
start-up and the server thread will not start. It is recommended that
you select port numbers larger than 1024 for your SDL application.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
 (*Port)= 7001;
 }

 return;
}

router.c is then compiled and linked together with the generated code,
the coder library and the TCP/IP adapter. This example shows a fairly
trivial routing scenario. The routing is based only on the name of the
signal. The xSignalNode pointer is not used.

&&

"����/����	��

The TCP/IP adapter contains basic error handling. Error checks are per-
formed when encoding/decoding, socket and thread functions are in-
voked. If THREADED_ERROR is defined, an error message is printed on
stdout with the name of the function where the error occurred. A plat-
form-dependent error code is included in the error message. For a de-
scription of the error code, consult the User’s Manual of your target op-
erating system.

An error implies that the function where the error occurred exits. Clean-
up is performed, which means that the application can continue its exe-
cution.

A special case to consider is when an error occurs in the server thread
function, which runs statically during the execution. The thread exits
and must be restarted manually.

If THREADED_TRACE is defined, the execution of the TCP/IP adapter is
logged onto stdout when signals are encoded, sent, received and decod-
ed.

 !����� "#:%��'�9����������� �����(�����&&&&&&&&&&&&&&&&&&&&

An error occurs when a signal should be sent via the TCP/IP adapter.
The following is logged on stdout:

ERROR xSendSignal/SCM_CONNECT: 146

The target platform is Solaris. The error code indicates that the connec-
tion was refused, probably because a server can not be found at the spec-
ified address. xSendSignal exits and the application continues its exe-
cution.

&&
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
����	�����	��

The TCP/IP adapter is configured using compilation flags. The basic
configuration can be done using the TCP/IP Connection Wizard in the
Targeting Expert.

����
����������'�9����������

The TCP/IP adapter requires environment files, environment header
files and ASCII encoding/decoding for correct operation. These options
are activated when the TCP/IP Signal Sending check box is enabled in
the Targeting Expert’s TCP/IP Connection Wizard.

������������/
����

For a component that receives signals, a TCP port number must be spec-
ified. The server thread uses this port number to listen for incoming con-
nections.

The port number is set in a text box in the TCP/IP Connection Wizard.
You can also set the port manually by setting the flag XSERVPORT to the
desired value. If no port number is specified, the port number is set to
5000 by default.

��
����

You must manually implement a routing function, so that a destination
is specified for every SDL signal that is sent to the environment. The
function must be declared in a C header file. The file is specified in a
text box in the TCP/IP Connection Wizard or by setting the flag
XROUTING_INC to the header file name.

The routing function implementation should be placed in a C file that is
compiled and linked with the other code. It is specified using either the
text box in the TCP/IP Connection Wizard or by including it in the com-
piler settings manually. See Example 537 for an example of how a rout-
ing function is implemented.

;���������'�9�����������7���������� �����������<
�����������

The TCP/IP adapter header file (tcpipcomm.h) is included from the en-
vironment file of a component. The file tcpipcomm.h contains #de-
fine statements for macros in the environment functions that invoke
TCP/IP functions.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

����	���� ����	����
If you want to use other functionality in parallel with the TCP/IP adapt-
er, these macros can be defined outside tcpipcomm.h. By setting the
flag XEXTENV_INC to the header file you wish to use, your header file is
included from tcpipcomm.h. This enables you to insert your code with-
out modifying tcpipcomm.h. Please note that the XEXTENV flag can not
be set in the TCP/IP Connection Wizard. It must be set manually.

Before using the XEXTENV_INC flag, look carefully at the #define state-
ments in tcpipcomm.h. These must be valid for proper operation of the
TCP/IP adapter.

 !����� "#=%� !�������'�������'�����������7���������'�9�����������

A file called mycomm.h contains declarations of functions that should be
used in parallel with the TCP/IP adapter. From the xInitEnv function,
an initialization function should be called (InitComm()). From the
xInEnv function, a function for polling communication (ReadComm())
should be invoked.

In mycomm.h, the following is inserted:

#define XENV_INIT Initcomm();\
 xInitSignalSender();\
 xInitSignalReceiver();
#define XENV_IN_START ReadComm();

xInitsignalSender and xInitSignalReceiver are taken from
tcpipcomm.h, which contains the following:

#ifndef XENV_INIT
#define XENV_INIT xInitSignalSender();\
 xInitSignalReceiver();
#endif
#ifndef XENV_IN_START
#define XENV_IN_START
#endif

The #defines in tcpipcomm.h are overridden. Still, the original calls are
invoked, which ensures that the TCP/IP adapter executes properly.

&&

/	���&�	��"-��������������	��������.��*��$���

When combining the TCP/IP adapter with other environment func-
tions, always preprocess the environment file to verify that the code
is expanded as expected.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���	

��	
�� �� ����	����������&
�	�������������
;��������������������

Some thread parameters in the TCP/IP adapter can be set to fine-tune
performance of your Threaded SDL application. The TCP/IP adapter
threads do not use OS queues. Two parameters can be set: Thread Pri-
ority and Thread Stack Size. These are set manually using flags. They
can not be set using the TCP/IP Communication Wizard.

The server wait thread uses the following flags:

XSERVTHRPRIO
XSERVTHRSTACK

The signal receiver threads use the following flags:

XRECVTHRPRIO
XRECVTHRSTACK

Set the flags to values that are specific to the target platform used.
���
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����
�	�����������	��

There are two models of Tight Integration. In the Standard Model one
SDL process instance is mapped to one OS task. In the Instance Set
Model an entire instance set (all instances of a process) is mapped to one
OS task. Scheduling between OS tasks is managed by the RTOS sched-
uler; this means that preemption is normally used, though only on an in-
stance set level in the Instance Set Model. SDL semantics are preserved
in a Tight Integration, for example setting a timer implies an automatic
reset first.

The start-up of a system, i.e. creation of static processes, initialization
of synonyms and creation of an environment task and a timer task, is
handled by a generated initialization function called yInit. Normally
this function is called from another initialization function, where some
additional initializations take place before the yInit function is called.

Timers in the system are handled by one central timer task. This task re-
ceives messages1, each containing a request to set a timer, and will send
messages back as the timers expire.

������%�������

%	��'��������

The files related to the tight integration concept are placed in the follow-
ing directory in the installation: <installation directo-

�����

The source file and examples for Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

�����

This presentation is focused on the general principles and models
used in a Tight Integration. When specific RTOS primitives are
needed in the presentation, examples from the VxWorks implemen-
tation are used. The implementation and RTOS calls used in other
integrations are covered in separate annexes to this chapter, one for
each supported RTOS.

1. SDL signals will be implemented as messages in VxWorks.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
ry>/sdt/sdtdir/RTOS/<operating system>/TightIntegra-

tion/. The same files are used for both the Standard Model and the In-
stance Set Model.

Each RTOS directory contains the following files:

• sct<RTOS>.h:

This file contains the second level of macros (see the comments for
scttypes.h in “The Integration Packages” on page 3213). All
macros are using OS-specific calls or types.

• sct<RTOS>.c:

This file contains OS-specific support functions.

• sdt2<RTOS>.c:

Most RTOS require that signals/messages are represented with an
integer value. This is the source file for a utility program for gener-
ating signal identities. Each signal will be assigned an integer value.
The output will be a file with the suffix .hs. This file is automati-
cally included in the application.

In the SDL suite, the .hs file can also be generated by the SDL to
C Compiler by turning on the option ��������
������
���'��
���� in
the *��� dialog. The .hs file is included in the application if the
compilation switch XINCLUDE_HS_FILE is set.

���'
�1����!$�

The SDL_PId (SDL Process ID) type has different meanings in the Stan-
dard and the Instance Set Models. In the Standard Model it represents
the message queue, while it represents the process instance in the In-
stance Set Model. This is because the entire instance set will have the
same message queue in the last case.

#ifdef X_ONE_TASK_PER_INSTANCE_SET
typedef xEPrsNode SDL_PId;
#else
typedef MSG_Q_ID SDL_PId;
#endif
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����
'	�����

The signal header consists of a struct with information needed to handle
the signal inside an SDL system. The signal header struct is defined in
the RTOS-specific file sct<RTOS>.h.

typedef struct xSignalHeaderStruct *xSignalHeader;
typedef struct xSignalHeaderStruct {
 int SignalCode;
 xSignalHeader Pre, Suc;
 SDL_PId Sender;
 void *SigP;
 #ifdef X_ONE_TASK_PER_INSTANCE_SET
 SDL_PId Receiver;
 #endif
 #ifdef XMSC_TRACE
 int SignalId;
 int IsTimer;
 #endif
} xSignalHeaderRec;

The signal header stores SignalCode, in this case an integer, two point-
ers Pre and Suc used when saving the signal in the save queue, and
Sender, holding the SDL_PId of the sending SDL process. In the In-
stance Set Model there is an extra parameter Receiver, necessary to
make a distinction between the SDL processes in an instance set task.

If the signal contains parameters they are allocated in the same function
call. Example:

OutputSignalPtr = xAlloc (sizeof (xSignalHeaderRec)
+ sizeof(yPDef_z05_s2));

The second parameter to the xAlloc function is a struct representing the
signal parameters of the signal. In this case, with one integer, it is de-
fined in the following way:

typedef struct {
 SIGNAL_VARS
 SDL_Integer Param1;
} yPDef_z05_s2;

The macro SIGNAL_VARS is in most RTOS empty.

There is an extra element in the SignalHeader defined as a void point-
er. This pointer SigP is set to point to the parameter area.

 OutputSignalPtr->SigP = OutputSignalPtr+1;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
This pointer is used in the Signal-Free-Function to address the parame-
ter-part of either a signal-structure as also a timer-signal-structure.

Assignment of the signal parameter is done in generated code and not
in a macro. Example:

SIGNAL_ALLOC_ERROR
yAssF_SDL_Integer(((yPDef_z05_s2*)
 OUTSIGNAL_DATA_PTR)->Param1 ,yVarP->z023_param1,
 XASS);

The macro OUTSIGNAL_DATA_PTR macro is defined:

#define OUTSIGNAL_DATA_PTR (yOutputSignalPtr->SigP)

After expansion of the whole expression the code will be:

((yPDef_z05_s2 *) ((xSignalHeader) yOutputSignalPtr
+ 1))->Param1 = yVarP->z023_param1;

����������������

The support function xInputSignal is used for receiving signals in
both models of Tight Integration. The implementation and the parame-
ters are different though.

������������

A timer signal is defined similarly to an ordinary signal but will contain
some additional elements representing time-out time, etc. The timer
header struct looks like this:

typedef struct xTimerHeaderStruct *xTimerHeader;
typedef struct xTimerHeaderStruct {
 int SignalCode;
 xTimerHeader Pre, Suc;
 SDL_PId Sender;
 void *SigP;
#ifdef X_ONE_TASK_PER_INSTANCE_SET
 SDL_PId Receiver;
#endif
#ifdef XMSC_TRACE
 int SignalId;
 int IsTimer;
#endif
 SDL_Time TimerTime;

�����

The SDL signal parameters are always named Param1, Param2, etc.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����
 int TimerToSetOrReset;
 xbool (* yEq)();
 xbool TestParams;
 xTimerHeader Param;
} xTimerHeaderRec;

�	��

When the System time is required, for example when using NOW, the
macro SDL_NOW is used. The macro is in turn mapped to the function
SDL_Clock() (in sctos.c). This function is implemented differently
depending on the RTOS representation of time. In VxWorks it returns
the result of calling the RTOS function tickGet. SDL_Time is normally
implemented as int or unsigned long int.

(�������>��7������*�������������������

The macro SDL_DURATION_LIT specifies the mapping between the
SDL time in seconds and the local RTOS representation of time. In Vx-
Works the system time is given in ticks and the translation is defined as
follows:

#define SDL_DURATION_LIT(R,I,D) \
 ((I)*1000 + (D)/1000000)

R is the real type representation of the time in seconds. I and D are the
integer and decimal parts of an integer type representation of the time.
I is in seconds and D in nanoseconds. The code generator will generate
all three numbers but either R, or I and D will be used depending on the
RTOS.

�	����

All timer activity in the SDL system is handled by a dedicated timer
task. The timer task accepts requests in the form of messages (in Vx-
Works). It then keeps the requests for setting a timer sorted in a timer
queue and uses some OS mechanism to wait for the first request to time
out. The mechanism used can be either an OS timer, or a timeout in the
waiting for new requests. When a request times out, the timer task sends
a signal back to the task that first sent the request. The function calls and

�����

An ordinary signal is identical to the first part of a timer signal. This
makes it possible to type-cast between the two types as long as only
elements in the common part of the headers are used.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
OS signaling involved in setting and waiting for an SDL timer can be
viewed in Figure 563.

To be able to implement the full semantics of SDL timers a number of
support functions have been implemented:

• xSDLActive

Checks whether an SDL timer is active and returns true or false. The
function passes the question on to the timer task in the form of a re-
quest.

������ �)0	
��������
����
��
"�
��������
!���
�������
��
!�����
(��

������

1��
�������
��
 ����
����2
����
���
(���
���!����
���������
(�������
����
��

���
��(
���!����
���������
��������
3�������
�#�
 ���
��(�
���2
������
(��

���
���
�(
���
�����
��
���
/����$����
��4�����
5���
���

�����
��
���(�����
(����2

�
��4�����
��
���
���
�����(�������

xSDLReset()

xSDLResetInTimerTask()

xSDLSet()

SDL process Timer task

ResetTimer (Timer1)

ResetTimer

Timer1

Timer1
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����
• xSDLActiveInTimerTask

Called by the timer task upon request. Checks if an SDL timer is ac-
tive and returns true or false.

• xSDLReset

Resets an SDL timer by sending a request to the timer task. While
waiting for a reply all new signals to the calling task are saved in the
save queue. In the case of an Instance Set Model Tight Integration
this means that no instance of the process can execute a transition
until a reply is received. If the reply states that the timer couldn’t be
found it might be in the save queue or the input queue of the task
because it has recently expired. If so, it is simply removed. SDL se-
mantics require that a reset is always performed implicitly prior to
setting a timer.

• xSDLResetInTimerTask

Called by the timer task when a request has been made for resetting
a timer. Checks the timer queue to see if the timer to reset is there.
If the timer is found, it is removed and the data area it holds is freed.
A message is sent back to the task that made the request, telling
whether the timer was found or not.

• xSDLSet

Called by the timer task when a request has been made for setting a
timer. This function sorts the request into the timer queue.

*������	��'
����������

There are two ways to address SDL processes from an external task. Ei-
ther the xFindReceiver function can be called to find an arbitrary re-
ceiver, or the file pidlist.pr can be used to provide a list of the SDL
processes and then address the receiver explicitly via the input queue ID
of its OS task.

����!<������������<
������

When sending a signal into the SDL system where the receiver is not
known a support function called xFindReceiver can be used. This
function takes the following parameters:

• The ID of the signal
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
• The sender ID (in this case an SDL_PId representing the environ-
ment)

• An optional VIA-list.

The following files are needed to get access to SDL types, signal num-
bers and signal parameter types: scttypes.h, <system_name>.hs and
<system_name>.ifc.

Example of how to use the xFindReceiver function:

#include ”scttypes.h”
#include ”<system_name>.ifc”
#include ”<system_name>.hs”

void MyExtTask(void) {

 xSignalHeader yOutputSignalPtr;
 int Err;

 /*Allocate signal header and signal parameter
 buffer */
 yOutputSignalPtr =
 (xSignalHeader)xAlloc(sizeof(xSignalHeaderRec)
 + sizeof(yPDef_go);

 /*Setup signal header */
 yOutputSignalPtr->SignalCode = go;
 yOutputSignalPtr->Sender = xEnvPId;

 /*Give value 100 to integer parameter */
 ((yPDef_go *)(yOutputSignalPtr+1))->Param1 = 100;

 /*Send signal from environment */
 Err = msgQSend(xFindReceiver(go, xEnvPrs, 0),
 (char*) yOutputSignalPtr,
 sizeof(xSignalHederRec)+sizeof(yPDef_go),
 0 ,0);
}

The following types, signal definitions and global variables are used in
the example:

• xEnvPId: An SDL PId representing the environment, from
scttypes.h

• xEnvPrs: A PrsNode representing the environment, from
scttypes.h

• xSignalHeader: A datatype representing an SDL signal, from
scttypes.h
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����
• yPDef_go: A datatype representing the signal parameter types,
from <system_name>.ifc

• go: An SDL signal, from <system_name>.ifc

����<����������)��

An alternative way to get the PId for the Receiver is to use an ADT de-
fined in the ADT library called pidlist.pr. This file defines an ADT
called PidList and an operator called PId_Lit. With this ADT it is pos-
sible to directly address any static process instance in the system, both
from internal SDL processes and from external OS-tasks. You can find
more information about this feature in “How to Obtain PId Literals” on
page 3178 in chapter 63, #��
,(#
)�'����.

���'������������
In the Standard Model of the Tight Integration each SDL process is im-
plemented as an OS task. Preemption and the use of process priorities is
only limited to what the OS supports.

���������

������'�������

An SDL process is created in the following way (in the VxWorks inte-
gration):

1. A start-up signal is allocated.

2. A message queue is created. Some operating systems create the
message queue automatically when the task is created. This is ex-
plained for each operating system in the annexes to this chapter.

3. The task is created with the message queue ID as a start-up param-
eter. In the case of VxWorks, the task will have a name starting with
VXWORKSPAD_. This is a function which will first initialize some in-
ternal variables and then call the PAD function.

�����

If you need the pidlist.pr ADT in a Tight Integration then you
must use the version in the
<installation directory>/sdt/sdtdir/RTOS/SDL/
directory.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���	

��	
�� �� ����	����������&
�	�������������
4. A function (xAllocPrs) is called to create a representation of the
new instance in the global symbol tree.

5. The start-up signal is sent. When this signal is received in the task
the start transition of the process is executed.

�����������������

The following actions are carried out when a process terminates:

1. The save queue and the message queue are emptied.

2. The save queue is deleted.

3. A message is sent to the xTimerTask with a request to remove all
active timers of the process.

4. xFreePrs is called to free the PrsNode.

5. The message queue is deleted. In some operating systems this is
done automatically when the task is deleted.

6. The task is deleted.

����	
������

Each PAD (Process Activity Definition) function will contain an eternal
loop with an OS receive statement. When a process instance is created
it is the PAD function that is called in the OS Create primitive.

The start-up and execution of a PAD function works like this:

1. The support function xInputSignal is called. This function will
wait for the start-up signal, that is always received first, and then re-
turn to the PAD function.

2. The PAD function goes to the label Label_Execute_Transition.
This label is the start of a code block containing a switch statement
that evaluates the process variable RestartAddress. The code un-
der each different case then represents a transition. At the end of this
block the process variable State is updated and execution contin-
ues at Label_New_Transition.

3. In Label_New_Transition a new call is made to xInputSignal
and execution then continues at Label_Execute_Transition.

The structure of a PAD function is described below (with pseudo-code
shown in �������):
���
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����
void yPAD_z01_pr1 (void *VarP)
{
 3����'��
���������	��
 .�����������
��
������
�	
�����%�
���
��������
������

 goto Label_Execute_Transition;

 Label_New_Transition:
 .�����������
��
������
�	
�����%�
�
������

 Label_Execute_Transition:
)	���
���������	��
 switch (yVarP->RestartAddress) {
 case 0:
 /.�����
���
�����
��������	�
 4�����
���
��	����
�����
%����'��
 goto Label_New_Transition;
 case 1:
 /.�����
���
��������	�
 4�����
���
��	����
�����
%����'��
 goto Label_New_Transition;

 }

}

'������	��

Since each SDL process is implemented as an OS task, scheduling be-
tween processes will be handled completely by the OS.

'����+�$

Start-up of a Standard Model Tight Integration can be described as fol-
lows (pseudocode is shown in �������):

MyMain() {
/* initialization of semaphores etc */
 yInit();
 ��%�
�������
������	���
 taskSuspend(Mymain);
}

yInit() {
 $�����
���
�����
����
 $�����
��
��%��	�����
����
	�
	���
��
��%��	�����
5����
 for(i=1;i<=NoOfStaticProcessTypes;i++){
 for(j=1;j<=NoOfStaticInstancesOfEachProcesstype;
 j++){
 ,��	����
�
�������
������
 $�����
�
�������
5����
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
 $�����
�
����
 $���
.,��	����
 ����
���
�������
������
 }
 }

,�����
�()
���	����
}

The semaphore is used for synchronizing start-up of static processes.
No static process is allowed to execute its start transition before all static
processes are created, because a start transition can have signal sending
to other static instances.

The MyMain function is placed among other support functions in the file
sctsdl.c.

The yInit function is generated by the code generator and placed last
in the generated file for the system.

�����������'�������
The Instance Set Model is based on the same principles as the Standard
Model with the difference that the instance set is the basic unit rather
than the process instance.

���������

Both the instances and the instance sets are represented in the symbol
table. In addition to the three parts that always make up an SDL process
there is also an extra struct for the instance set, defining for example the
input queue which is common to all the instances. Further, there is a
PAD function for each instance, but also for the instance set.

�������������������

An SDL_PId is represented by an xEPrsNode, pointing to an
xEPrsStruct. An xEPrsNode also represents a process instance in the
symbol table both in the Standard Model and the Instance Set Model.

typedef struct xEPrsStruct {
 xEPrsNode NextPrs;
 SDL_PId Self;
 xPrsIdNode NameNode;
 int BlockInstNumber;
 xPrsNode VarP;
} xEPrsRec;
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����
����������������

The datatype xPrsInstanceSetVars is only used in the Instance Set
Model. It defines common data for all instances of the set, like the save
queue and the size of the instance data.

typedef struct {
 xSignalHeader SaveQ;
 xSignalHeader CurrentInSaveQ;
 xSignalHeader yInSignalPtr;
 char name[100];
 unsigned PrsDataSize;
} xPrsInstanceSetVars.

����	
������

In the Instance Set Model there is a PAD function for each process in-
stance but also for each instance set. The instance set PAD functions
will be called at system start-up and contain an eternal loop in the same
fashion as PAD functions in the Standard Model. Instance PAD func-
tions are only called to execute transitions.

������'�������

All instance sets, even for dynamic processes, are created at system
start-up. Since the OS task and the signal queues are created with the in-
stance set, the creation of an instance requires less labor than in the
Standard Model. For the instance set creation the macro
INIT_PROCESS_TYPE is used.

�����������������

The instance set task is never terminated. Termination of a process in-
stance will not remove the save queue, the input queue and the task.
This is done at system termination. All queues, including the active tim-
er queue, are emptied of messages to the terminated process though.

�������?
�
�

The message queue id of the receiver’s instance set is accessed through
NameNode in the receiver’s xEPrsStruct and the variable PROCID.

Example from xSDLResetInTimerProcess:

Err=msgQSend ((MSG_Q_ID) (yInSignalPointer->Sender)
 ->NameNode->PROCID, (char *) yInSignalPointer,
 sizeof (xTimerHeaderRec), 0, 0);

In this case the receiver is the same as the original sender.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
'	��������	��

A support function xHandle_Sig is used when sending signals, instead
of the macro RTOSSEND as in the Standard Model. This difference is
shown in ���� in the code below:

#ifdef X_ONE_TASK_PER_INSTANCE_SET
#define SDL_2OUTPUT(PRIO, VIA, SIG_NAME, SIG_IDNODE,\
 RECEIVER, SIG_PAR_SIZE, SIG_NAME_STRING)\
 XOS_TRACE_OUTPUT(SIG_NAME_STRING) \
 XMSC_TRACE_OUTPUT(RECEIVER, yOutputSignalPtr, \
 SIG_NAME_STRING) \
 ����	
����������������
�����������������������
 ��!��"�����#�#�$�#%��&��!��"��'(�
)�*�)+	�'(���!�� �#���)���������&,
#else
#define SDL_2OUTPUT(PRIO, VIA, SIG_NAME, SIG_IDNODE, \
 RECEIVER, SIG_PAR_SIZE, SIG_NAME_STRING)\
 XOS_TRACE_OUTPUT(SIG_NAME_STRING) \
 XMSC_TRACE_OUTPUT(RECEIVER, yOutputSignalPtr,\
 SIG_NAME_STRING) \
 �#��)��-�����������
���� ��!��"�������������&
#endif

'������	��

Scheduling between instance sets is handled by the operating system.
Within the instance sets, however, scheduling is based on the signal
queue. When the instance set PAD function is executing, it takes the
first signal in the input queue and calls the PAD function of the ad-
dressed SDL process. The instance PAD function then executes one
transition and returns control to the scheduling loop of the instance set
PAD function.

��������	���	���-����������
You can easily integrate the SDL system with external code, for exam-
ple written in C. Just use the hooks described below for inserting
C statements in the main() function of the SDL system.

The hooks are in the form of #define macros located in a file called
scthooks.h. A file called scthooks.h_template with empty macros
can be found in the INCLUDE directory. Use this file as a template for
your own application. You will find usage examples in the Examples
directory.

���$����.�����!����#��)

This hook lets you declare function prototypes etc. at file scope.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������	��������� ����	�����
���$�/��)���!����#��)

This hook lets you declare variables for use in the main() function.

���$�/��)�#��#����!���

Any code inserted here will execute first in the main() function.

���$�/��)���#������!��������

Any code inserted here will execute as soon as all static processes have
been created and are allowed to run.

���$�/��)���#�����)�����!��#��)

The main() function of the SDL system enters an infinite loop after
having created all static processes. This loop is used to receive signals
sent to the environment queue.

Use the HOOK_MAIN_AFTER_SIGNAL_RECEPTION to insert code for pro-
cessing these signals.

�	�	���	��������������	���
In general, the same restrictions as for the SDL to C Compiler apply, but
Tight integrations have some further restrictions. The detailed limita-
tions for Light and Tight integrations are listed in the Release Guide.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
*'	�$��"-��$��
This section describes an example system named Simple. The annexes
show how to integrate the example with different operating systems.

The example demonstrates the following techniques:

• How to integrate an SDL system with an operating system

• How to make the environment communicate with the SDL system
in a Light integration

• How to make an external process written in C communicate with the
SDL system in a Tight integration

• How to use the special Tight Integration version of the ADT
pidlist.pr .

���'	�$��'!����

The SDL representation of Simple consists of a single block Bl1. Seen
from the outside, the system accepts the signal Go and responds after
about five seconds by sending the signal Ok. The signal Go may be sent
twice to the system.

������ �)6	
�,����
������

System Simple 1(1)
/*#include ’pidlist.pr’ */

SYNONYM pr1 PIdList = PId_Lit(#Code(’&yPrsR_Pr1’));

SIGNAL
Go(Integer),
Ok(Integer);

SYNONYM startinstance1 Integer=1;
SYNONYM startinstance2 Integer=2;

Bl1
C1

Ok Go
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-����
���*#	�
��
2���)2�3

Block Bl1 has two processes. The static process Pr1 and the dynamic
process DynPr1. DynPr1 is created by Pr1 and can send the signal Ter-
minating back to its parent. Pr1 handles all the interaction with the en-
vironment, through the signals Go and Ok.

������ �)�	
7���%
7�-

Block Bl1 1(1)

SIGNAL
Terminating;

Pr1/*#NAME ’Pr1’ */(2,2)

DynPr1(0,2)

C1
R1

Ok Go

R2
Terminating
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
���������3

Process Pr1 is a static process with two instances. It has two states, Idle
and Wait. In the Idle state the process waits for the signal Go with an
integer parameter representing the instance number of this instance. It
then prints the instance number to the standard output, creates one in-

������ �))	
3������
3�-

Process Pr1 1(1)

DCL
Param Integer,
ExtSender PId;

Idle

Go(Param)

ExtSender:=sender

param

’’
/*#CODE

printf("Signal Go received "+
 "in Pr1:Instance1\n");

*/

’’
/*#CODE

printf("Signal Go received "+
 "in Pr1:Instance2\n");

*/

’’
/*#CODE

printf("Wrong signal "+
"parameter received\n");

*/

DynPr1

Wait

Terminating

Ok(Param) to ExtSender

-

StartInstance1 StartInstance2 else
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-����
���*#	�
��
stance of DynPr1 and enters the Wait state. In the Wait state it waits for
the signal Terminating from the created instance of DynPr1, sends Ok
back to the environment and goes back into the Wait state. Since the
Terminating signal will only be received once, the process is going to
remain in the Wait state forever.

�������
!���3

The dynamic process DynPr1 has no instances at system start and a
maximum of two instances. Each instance of Pr1 creates one instance of
DynPr1. DynPr1 sets the timer t1 to five seconds, waits for a timeout,
sends the signal Terminating to its creator and finally terminates.

�������	�������"��	�������

The environment is handled in different ways depending on the integra-
tion model. See below for details.

������ �)8	
3������
�,�3�-

Process DynPr1 1(1)

TIMER
t1:=5; SET(t1)

Wait_t1

t1

Terminating TO Parent
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���	

��	
�� �� ����	����������&
�	�������������
2�	��	�����,���	����	�����������	��
This section will take you through the general steps required to build a
Light Integration for the Simple example. The procedure works the
same for most operating systems. Please also check the annexes for im-
portant information about your operating system.

(������'��$������	�����������	��

1. Create a working directory and an INCLUDE directory below it.

2. Copy all files from $(sdtdir)/RTOS/Examples/Simple/<se-
lected RTOS>/LightIntegration to the working directory.

3. Copy the following files to the INCLUDE directory:

$(sdtdir)/INCLUDE/sctlocal.h
$(sdtdir)/INCLUDE/sctpred.c
$(sdtdir)/INCLUDE/sctsdl.c
$(sdtdir)/INCLUDE/sctos.c
$(sdtdir)/INCLUDE/sctpred.h
$(sdtdir)/INCLUDE/scttypes.h

4. Open the system file
$(sdtdir)/RTOS/Examples/Simple/simple.sdt

5. Change the destination directory to your working directory

6. Set the options)	���
$��� and ��������
��%��	�����
������
����.

7. Select the Cadvanced SDL to C Compiler and generate an applica-
tion.

8. Edit the makefile supplied with the example to fit your environ-
ment. Normally you will only have to point out the directory where
the RTOS is installed.

9. Use the makefile to build an executable.

10. Download the executable to target or run it under a kernel simulator
(“soft kernel”).

�����
$(sdtdir) = <installation
directory>/sdt/sdtdir/<machine dependent dir>

where <machine dependent dir> is sunos5sdtdir on SunOS
5, hppasdtdir on HP, and wini386 in Windows.
���
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-����
���*#	�
��
,�����%���,���	�����'!����

The output when running the example should be:

Signal Go received in Pr1:Instance1
Signal Go received in Pr1:Instance2
Signal Ok received with the following parameter:1
Signal Ok received with the following parameter:2

���-��"��%����	��

This is where the start-up signal Go is sent. In a real system xInEnv may
be used for polling hardware devices for data. The code looks like this:

xSignalNode S;
static int SendGo = 0;

if(SendGo<=1){
 if(SendGo==0) {
 S = xGetSignal(go, pr1[1], xEnv);
 ((yPDef_go *)(S))->Param1 = startinstance1;
 }
 else {
 S = xGetSignal(go, pr1[2], xEnv);
 ((yPDef_go *)(S))->Param1 = startinstance2;
 }
 SDL_Output(S, xSigPrioPar(xDefaultPrioSignal)
 (xIdNode *)0);
 SendGo++;

The signal Go is sent the first and the second time xInEnv is called. The
parameters startinstance1 and startinstance2 are integer con-
stants defined in the SDL system, as integer SYNONYM’s. They are made
available by generating and including the file simple.ifc.

���-#��"��%����	��

The code in xOutEnv for receiving the signal Ok looks like this:

if (((*S)->NameNode) == ok) {
 printf(“Signal Ok received with the following
 parameter:%lu\n”,
 ((yPDef_ok *)(*S))->Param1);
 xReleaseSignal(S);
 return;

The signal Ok also has an integer parameter, the value of this should be
1 if it is sent by Pr1 instance one and 2 if it is sent by instance two.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
2�	��	�����,���	����	�����������	��
This section will take you through the general steps required to build a
Tight Integration for the Simple example. The procedure works the
same for most operating systems. Please also check the annexes for im-
portant information about your operating system.

(������'��$������	�����������	��

1. Create a working directory and an INCLUDE directory below it.

2. Copy all files from $(sdtdir)/RTOS/Examples/Simple/<se-
lected RTOS>/TightIntegration to the working directory.

3. Copy all files from $(sdtdir)/RTOS/Examples/Simple/<se-
lected RTOS>/TightIntegration/INCLUDE to the INCLUDE
directory.

4. Open the system file
$(sdtdir)/RTOS/Examples/Simple/simle.sdt

5. Change the destination directory to your working directory.

6. Set the options)	���
$���, ��������
��%��	�����
������
���� and
��������
������
���'��
����.

7. Select the Cadvanced SDL to C Compiler and generate an applica-
tion.

8. Edit the makefile supplied with the example to fit your environ-
ment. Normally you will only have to point out the directory where
the RTOS is installed.

�����

The source file and examples for Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

�����
$(sdtdir) = <installation
directory>/sdt/sdtdir/<machine dependent dir>

where <machine dependent dir> is sunos5sdtdir on SunOS
5, hppasdtdir on HP, and wini386 in Windows.
��	� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-����
���*#	�
��
9. Use the makefile to build an executable.

10. Download the executable to target or run it under a kernel simulator
(“soft kernel”).

,�����%���,���	�����'!����

The output when running the example depends on what kind of trace has
been enabled. If you set XMSC_TRACE it should be similar to the follow-
ing:

System_Init_Proc: instancehead process Environment;
msc RTOS_Trace;
Pr11: instancehead process Pr1;
Pr12: instancehead process Pr1;
Pr11: condition Idle;
Pr12: condition Idle;
Pr11: in Go,0 from MyExtTask3;
Signal Go received in Pr1:Instance1
dynpr14: instancehead process dynpr1;
Pr11 : create dynpr14;
Pr11: condition Wait;
Pr12: in Go,1 from MyExtTask3;
Signal Go received in Pr1:Instance2
dynpr15: instancehead process dynpr1;
Pr12 : create dynpr15;
Pr12: condition Wait;
dynpr14: set T1,2 (5000); /* #SDTNOW(269) */
dynpr14: condition wait;
dynpr15: set T1,3 (5000); /* #SDTNOW(276) */
dynpr15: condition wait;
dynpr14: timeout T1,2; /* #SDTNOW(5284) */
dynpr14: out Terminating,4 to Pr11;
dynpr14: endinstance;
Pr11: in Terminating,4 from dynpr14;
Pr11: out Ok,5 to MyExtTask3;
Ok received in MyExtTask with paramer = 1
dynpr15: timeout T1,3; /* #SDTNOW(5463) */
dynpr15: out Terminating,6 to Pr12;
dynpr15: endinstance;
Pr12: in Terminating,6 from dynpr15;
Pr12: out Ok,7 to MyExtTask3;
Ok received in MyExtTask with paramer = 2

Setting the XOS_TRACE flag should result in the following output:

** Process Pr1:9901455 created **

** Process Pr1:9901456 created **

** Process instance 9901455 **
Pr1: nextstate Idle
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��	�

��	
�� �� ����	����������&
�	�������������
** Process instance 9901456 **
Pr1: nextstate Idle

** Process instance 9901455 **
Pr1: input signal Go
Signal Go received in Pr1:Instance1
Pr1: process dynpr1:9901458 created
Pr1: nextstate Wait

** Process instance 9901456 **
Pr1: input signal Go
Signal Go received in Pr1:Instance2

** Process instance 9901458 **

DynPr1: Set timer T1
Process instance 9901459
DynPr1: nextstate wait

** Process instance 9901458 **
DynPr1: input signal T1
DynPr1: signal Terminating sent
DynPr1: stopped

** Process instance 9901455 **
Pr1: input signal Terminating
Pr1: signal Ok sent
Pr1: dash nextstate
Ok received in MyExtTask with parameter = 1

** Process instance 99014516 **
DynPr1: input signal T1
DynPr1: signal Terminating sent
DynPr1: stopped

** Process instance 99014513 **
Pr1: input signal Terminating
Pr1: signal Ok sent
Pr1: dash nextstate
Ok received in MyExtTask with parameter = 2

'������������

In the standard model each instance of the Pr1 and the DynPr1 processes
will be represented by an OS task (in all four tasks). The environment
is represented by a task called MyExtTask. This task is external to the
SDL system.
��	� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-����
���*#	�
��
��������'�������

In the instance set model there will be two OS tasks, one each for Pr1
and DynPr1. The environment is represented by a task called
MyExTask, just as in the standard model. This task is external to the
SDL system.

/��'	��������'���������������"��	�������

There is an external task called MyExtTask which is written in C. It
sends the signal Go into the SDL system and receives the signal Ok
back by using services in the operating system.

The HOOK_MAIN_AFTER_PROCESS_RELEASE macro in scttypes.h is
used to create MyExtTask as soon as the SDL system allowed to run.

The source code for the external task is placed in the file MyExtTask.c.
This file is specific to the selected operating system because it calls the
operating system directly.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��	�

��	
�� �� ����	����������&
�	�������������
�	�����������	������,��������
This section explains data types, procedures and macros used in a Tight
Integration (Light Integrations are explained in the Master Library).

(������������

4��5-6

The macro XPP is used in function declarations to specify the function
parameters. It is defined like this:

#define XPP(x) x

if function prototypes according to ANSI C can be used.

-$��	��

The following type is also always defined:

#define xptrint unsigned

where xptrint should be an int type with the same size as a pointer.

-����������-�������

typedef struct xPrsStruct *xPrsNode;
typedef struct xPrdStruct *xPrdNode;

xPrsNode and xPrdNode are pointers to structs holding instance data
for an instance of a process or a procedure. Note that some parts of the
structs are OS-dependent.

-��$��*��	���-�����'	����'��

These defines specify the different ways of handling a signal.

��������"-�����&���������!����

The following macros are defined to exclude unnecessary code for
IdNode variables etc.:

#define XNOSTARTUPIDNODE
#define XOPTSIGPARA
#define XOPTDC
#define XOPTFPAR
#define XOPTSTRUCT
#define XOPTLIT
��	� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����������%�������
#define XOPTSORT
#define XNOUSEOFSERVICE
......

�����������	����'	����+%���+%����	���

The following macro must be defined to activate the Signal-Free-Func-
tions. This is necessary if signals and timers with string parameter (dy-
namic allocated) are used - to avoid memory leaks.

#define XFREESIGNALFUNCS

If strings not are used as parameters in signals this flag should not be set
cause it does lead to some performance deterioration. (Normally this de-
fine is set in the make-file).

For timer string parameters the define

#define XTIMERSWITHSTRINGPARAMS

must be set.

The following macro must be defined to activate the Signal-Free-Func-
tions. This is necessary if signals and timers with string parameter (dy-
namic allocated) are used - to avoid memory leaks.

#define XFREESIGNALFUNCS

��������	��	�	��

One group of macros defines default priorities for processes and sig-
nals:

#ifndef xDefaultPrioProcess
#define xDefaultPrioProcess RTOSPRIODEFAULT
#endif

#ifndef xDefaultPrioSignal
#define xDefaultPrioSignal RTOSPRIODEFAULT
#endif
...

����������$������'
�
First in this section is a macro defining the symbol table root:

xIdNode xSymbolTableRoot;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��	�

��	
�� �� ����	����������&
�	�������������
4�,#�"''
"%1����4�,#�"''
"%1/

These macros define the start-up function for a PAD function. It is this
function that is called in the task creation. As mentioned before this
function will after some variable initializations call the PAD function.
The definition of the start-up function varies in different RTOS, that is
why there is a second OS-specific macro here.

'�*,�&�'�(�*��*��#��,''�(�*�����

Each signal in an application is assigned a unique integer value. The
values 31992 through 32000 are reserved for internal signals like the
start-up signal.

���	�����	�����*
%����	��

�,#�"''1�*,'��,#�"
&,"1�*,'

These macros define the elements in the xPrsStruct and xPrdStruct
respectively.

7�*
17'�*,�

This macro defines a variable representing a pointer to a signal’s param-
eter area.

7�*
17�*,�

This macro defines the variable yVarP which represents the process in-
stance data.

�##�1�*2"���##�1�*2"�1�,
�
�##�1�*2"�1�,
1�#'�*�"

These three macros define the eternal loop inside processes, procedures
and procedures without a state.

'�*,�1'�*�"

Each state in a process and procedure is represented as an integer. The
Start state will always have the value 0.
��	� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

������� ����	����������%�������
&�	��#'"�����%�������
�����

Telelogic has noticed that the OSE-trace feature can make the appli-
cation crash in some situations. This seems to happen when a SDL
process (OSE-task) sends a signal immediately before terminating.
If you come across this problem, first check if the application works
correctly when generated without OSE-trace.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��		

��	
�� �� ����	����������&
�	�������������
*���-3���������	�����#'"
����

���������	��
This annex briefly describes the OSE Delta models and primitives used
in the SDL suite OSE tight integration. The presentation is focused on
the differences from the OSE classic model described in the previous
annex.

One section describes how to set up and run a simple test example in
both a light and tight integration.

��	��	$���
This integration is developed with OSE Delta Soft Kernel 3.2 and tested
on a Sun workstation with SunOS Release 5.6.

The main differences between the OSE Delta and the OSE Classic mod-
el are:

• The OSE Delta model uses three semaphores to avoid synchroniza-
tion problems in SDL start transitions.

• The timer is implemented in systimer.c, which is supplied by
ENEA. This is not accurate and is only for demonstration purposes.
You will have to supply a suitable timer implementation for the tar-
get environment.

�����

Third-party products referred to in this manual may have limitations
that have impact on the usability of Telelogic Tau. Please consult the
supplier's support organization or the third-party product's technical
reference documentation for up-to-date information about such lim-
itations.
��	
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#�1(� ����	��������&�*�����	
,���	���������"-��$���'	�$��

�����8�	�	���

This test example is developed as an OSE Delta application on a Sun
workstation. The makefile and compilation switches are set up for the
application to run under an OSE Simulator for OS68. If you are using
another configuration of OSE you probably need to edit the provided
makefile.

�	�����������	��

�	�	���	����������	�����������	��

Please see the Release Guide.

�����

The source file and examples for Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

������ �)�	
����
���������
(��
���
������
������

RTOS

Examples

Simple

bl1.sbk
pr1.spr
dynpr1.spr

simple.sdt
simple.ssy

OSEDelta

<other RTOS>

LightIntegration

TightIntegration
MyExtTask.c
makefile, pidlist.pr
scthooks.h, sctose_d.h, sctose_d.c
osemain.con, softose.con

sctenv.c
makefile
osemain.con, softose.con

sdtdir

INCLUDE
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��	�

��	
�� �� ����	����������&
�	�������������
2�	��	����	�����������	��

Please see the “Building and Running a Light Integration” on page 3268
for instructions.

�	�����������	��

�	�	���	����������	�����������	��

Please read the Release Guide for details about limitations that apply to
all systems using Tight Integration.

2�	��	����	�����������	��

Please see the “Building and Running a Tight Integration” on page 3270
for instructions.

/��'	��������'���������������"��	�������

The signal Go is sent from an external task MyExtTask. The code for
this task is placed in the program file MyExtTask.c. This is the same as
used for OSE Classic.
��
� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#�2(� ����	��������.#/�0�
*���-9���������	������-:��)�

���������	��
This annex describes briefly the VxWorks models and primitives used
in the SDL Suite VxWorks tight integration. The presentation is focused
on the differences from the general model described earlier in this chap-
ter.

One section describes how to set up and run a simple test example in
both a light and tight integration.

��	��	$���
This integration is developed with VxWorks Tornado 1.0 version and
tested under VxSim version 5.3 on a Sun workstation with SunOS 4.1.4.

The main differences between VxWorks and the general model are:

• The VxWorks msgQReceive copies the Signal into a buffer when
it is received. The sender makes free of the signal immediately after
it has been sent and the receiver allocates a buffer (signal) before a
receive statement.

• An extra optimization flag XOPTSIGNALALLOC has been introduced
for the VxWorks tight integration. When freeing a signal’s memory,
we place it in an availlist so that subsequent signal memory alloca-
tion calls can check to see if suitable sized memory already exists
which may be reused. Otherwise memory is allocated as normal.

�����

Third-party products referred to in this manual may have limitations
that have impact on the usability of Telelogic Tau. Please consult the
supplier's support organization or the third-party product's technical
reference documentation for up-to-date information about such lim-
itations.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��
�

��	
�� �� ����	����������&
�	�������������
,���	���������"-��$���'	�$��

�����8�	�	���

This test example is developed as a VxWorks Tornado application on a
Sun workstation. The makefile and compilation switches are set up for
the application to run under an VxSim target simulator. If you are using
another configuration of VxWorks you probably need to edit the pro-
vided makefile.

�����

The source file and examples for Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

������ �)&	
����
���������
(��
���
������
������

�����

A VxWorks application is not allowed to contain a main function.
The name of the generated main is changed to “root” with the com-
pilation switch -DXMAIN_NAME=root.

RTOS

Examples

Simple

bl1.sbk
pr1.spr
dynpr1.spr

simple.sdt
simple.ssy

VxWorks

... <other RTOS>

LightIntegration

TightIntegration
MyExtTask.c
makefile
scthooks.h
<possibly links to other files>

sctenv.c
makefile
<possibly links to other files>

sdtdir

INCLUDE
��
� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#�2(� ����	��������.#/�0�
�	�����������	��

�	�	���	����������	�����������	��

Please see the Release Guide.

2�	��	����	�����������	��

Please see the “Building and Running a Light Integration” on page 3268
for instructions.

�	�����������	��

�	�	���	����������	�����������	��

Please read the Release Guide for details about limitations that apply to
all systems using Tight Integration.

2�	��	����	�����������	��

Please see the “Building and Running a Tight Integration” on page 3270
for instructions.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��
�

��	
�� �� ����	����������&
�	�������������
*���-;���������	�����:	�;9
This annex briefly describes integration with Win32. The presentation
is focused on the differences from the general model described earlier
in this chapter.

��	��	$���
This integration is developed using the Microsoft 32-bit C/C++ Com-
piler Version 11.00.7022 and tested on NT 4.0, NT 3.51 and Windows
95 platforms. The integration is also compiled with Borland C++ 5.2 for
Win32 and tested on NT 4.0, NT 3.51 and Windows 95 platforms.

The main differences between integration with Win32 and the general
model are:

• Threads are created with the Win32 primitive CreateThread(). The
thread is then automatically given an input queue the first time it
calls a USER or GDI function

• xAlloc is implemented with Win32 function HeapAlloc().

• xFree is implemented with Win32 function HeapFree().

• The timer implementation uses the Win32 GetTickCount() func-
tion.

,���	���������"-��$���'	�$��

�����

Third-party products referred to in this manual may have limitations
that have impact on the usability of Telelogic Tau. Please consult the
supplier's support organization or the third-party product's technical
reference documentation for up-to-date information about such lim-
itations.

�����

The source file and examples for Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.
��
� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#�3(� ����	��������/��32
�����8�	�	���

This test example is developed as a Win32 console application on a PC.
The makefiles and compilation switches are set up for the application to
compile using either the Borland or the Microsoft compiler listed above.
There is a separate makefile for each compiler.

�	�����������	��

�	�	���	����������	�����������	��

Please see the Release Guide.

2�	��	����	�����������	��

Please see the “Building and Running a Light Integration” on page 3268
for instructions.

There are different makefiles provided for Borland compilers and Mi-
crosoft compilers.

������ �8*	
����
���������
(��
���
������
������

RTOS

Examples

Simple

bl1.sbk
pr1.spr
dynpr1.spr

simple.sdt
simple.ssy

Win32

... <other RTOS>

LightIntegration

TightIntegration
MyExtTask.c
makefile
scthooks.h
<possibly links to other files>

sctenv.c
makefile
<possibly links to other files>

sdtdir

INCLUDE
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��
�

��	
�� �� ����	����������&
�	�������������
�	�����������	��

�	�	���	����������	�����������	��

Please read the Release Guide for details about limitations that apply to
all systems using Tight Integration.

2�	��	����	�����������	��

Please see the “Building and Running a Tight Integration” on page 3270
for instructions.

There are different makefiles provided for Borland compilers and Mi-
crosoft compilers.

���$	���%����

The following defines (#ifdef) are used in this integration:

• WIN32_INTEGRATION: Ensures that the sctwin32.h file is includ-
ed in each C file. Must be set in all cases.

• XOS_TRACE: Gives a textual trace for most of the SDL events by us-
ing printf to some device. This flag should not be used together with
XMSC_TRACE.

• XMSC_TRACE: Will give a textual trace in the format of MSC/PR
Z.120 by using printf. This trace is possible to view in the MSC Ed-
itor included in Telelogic Tau. This flag should not be used together
with XOS_TRACE.

• XMSC_EDITOR: Used together with the XMSC_TRACE flag, the MSC
trace is automatically displayed in the MSC Editor. Note that you
must have the Organizer open on your machine.

• X_ONE_TASK_PER_INSTANCE_SET: States that the Instance Set
Model is used. The Standard Model is otherwise chosen by default.

• XERR: When this flag is defined, the return status of all Win32 func-
tion calls will be printed.

�����

The command line length limitation for the Borland compiler can
sometimes be exceeded. If this happens, you should define the
DEFINE MACROS at the beginning of the sctwin32.h file.
��
� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#�3(� ����	��������/��32
• XINCLUDE_HS_FILE: Includes the system signal header file which
is required for tight integrations. This file maps signal names to in-
tegers.

• XRTOSTIME: Should always be set for all tight integrations.

• XUSING_SCCD: This should be set when using the preprocessor
SCCD to ensure that the windows header files are not included on
the preprocessor pass. The files are included though on the compiler
pass and this ensures that the preprocessed C files only contain the
expanded the SDL suite macros. It also helps greatly to speed up the
process. Note that this flag only works with the Microsoft compiler
and should not be used with any other compiler.

• XWINCE: This flag allows you to compile the integration for Mi-
crosoft WinCE target systems. This flag should not be used together
with the MSC trace flags.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��
	

��	
�� �� ����	����������&
�	�������������
*���-<���������	�����'����	�9 =

���������	��
This annex describes briefly the Solaris 2.6 model and primitives used
in the SDL Suite Solaris 2.6 tight integration. The presentation is fo-
cused on the differences from the general model described earlier in this
chapter.

One section describes how to set up and run a simple test example for a
tight integration.

��	��	$���
This integration is developed using cc:WorkShop Compilers 4.2 with
Solaris 2.6 running on a workstation.

The main differences between the Solaris 2.6 integration and the gener-
al model are:

• In the file sctsolaris.h, the macros which contain the Solaris 2.6
specific function calls are implemented. The file sctsolaris.c
contains the Solaris 2.6 integration specific functions.

• The Solaris 2.6 integration is fully POSIX compliant. SDL process-
es are mapped to POSIX threads using the pthread_create()
function and POSIX queues are created for each thread using
mq_open(). The threads are suspended when its corresponding
queue is empty.

�����

The Solaris 2.6 tight integration is fully POSIX compliant. For this
reason it will not work with earlier versions of Solaris.

�����

Third-party products referred to in this manual may have limitations
that have impact on the usability of Telelogic Tau. Please consult the
supplier's support organization or the third-party product's technical
reference documentation for up-to-date information about such lim-
itations.
��

 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#�4(� ����	�����������	���2��
,���	���������"-��$���'	�$��

�����8�	�	���

This test example is developed as a Solaris 2.6 application on a work-
station. The makefile and compilation switches are set up for the appli-
cation to run under Solaris 2.6 using the cc:WorkShop Compilers 4.2
compiler.

�	�����������	��

�	�	���	����������	�����������	��

Please see the Release Guide.

2�	��	����	�����������	��

Please see the “Building and Running a Light Integration” on page 3268
for instructions.

�����

The source file and examples for Tight Integrations are not included
in the standard delivery. They are available as free downloads from
Telelogic Support web site.

������ �8-	
����
���������
(��
���
������
�������

RTOS

Examples

Simple

bl1.sbk
pr1.spr
dynpr1.spr

simple.sdt
simple.ssy

Solaris

... <other RTOS>

LightIntegration

TightIntegration
MyExtTask.c
makefile
scthooks.h
<possibly links to other files>

sctenv.c
makefile
<possibly links to other files>

sdtdir

INCLUDE
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ��
�

��	
�� �� ����	����������&
�	�������������
�	�����������	��

�	�	���	����������	�����������	��

Please read the Release Guide for details about limitations that apply to
all systems using Tight Integration.

2�	��	����	�����������	��

Please see the “Building and Running a Tight Integration” on page 3270
for instructions.

���$	���%����

The following defines (#ifdef) are used in this integration:

• SOLARIS_INTEGRATION: Ensures that the sctsolaris.h file is
included in each C file. Must be set in all cases.

• XOS_TRACE: Gives a textual trace for most of the SDL events by us-
ing printf to some device. This flag should not be used together with
XMSC_TRACE.

• XMSC_TRACE: Will give a textual trace in the format of MSC/PR
Z.120 by using printf. This trace is possible to view in the MSC Ed-
itor included in Telelogic Tau. This flag should not be used together
with XOS_TRACE.

• XMSC_EDITOR: Used together with the XMSC_TRACE flag, the MSC
trace is automatically displayed in the MSC Editor. Note that you
must have the Organizer open on your machine.

• X_ONE_TASK_PER_INSTANCE_SET: Should be defined when the al-
ternative runtime model is to be used.

• XINCLUDE_HS_FILE: Includes the system signal header file which
is required for tight integrations. This file maps signal names to in-
tegers.

• XRTOSTIME: Should always be set for all tight integrations.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#��(�5������+&� 6������� ����	����
*���->�(����	��#'�4�	�����������	��

���������	��
�����

The Generic POSIX integration is based on the Solaris integration.
For a description and instructions on how to generate and run the ex-
ample see “Annex 4: Integration for Solaris 2.6” on page 3288.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
*���-=�2�	��	�������������������	��

���������	��
This Tutorial, on how to create a Threaded integration, is developed on
a Windows machine and is intended to be run under a Windows OS.
If you want to use this example on another machine and for another OS,
please remember to choose the appropriate integration and compiler for
your OS in the Targeting Expert.

���$����	���
The same SDL source files for the example Simple, that is used in the
Light integration example will be used in this tutorial.

��$!���'������	���������"-��$���'	�$��

1. Create your own test directory and enter it.

2. Copy the SDL source files for the example Simple:

cp <installation>/sdt/sdtdir/RTOS/Example/Sim-

ple/*.s*

3. Copy the environment file from the Win32/ThreadedIntegration di-
rectory:

cp <your Installation>/sdt/sdtdir/RTOS/Examples/Sim-

ple/Win32/ThreadedIntegration/MyExtTask.c

4. Start the SDL suite and open the system file for the Simple example.

����	�	������!������	�����
�$��!����"�	���

1. Create a new deployment diagram and call it Simple.

2. Edit the deployment diagram according to the figure below, see :
Signalling in Threaded Integration.
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#��(�7$�������	����	���� ����	����
3. Make sure that you got the multiplicity right on the aggregation line
from the component to thread.

To check this you can double click on the line. The right value
should be:

– 1 - On aggregation line from component to thread Pr1.

– * - On aggregation line from component to thread DynPr1.

������ �8.
�����,����
�����
(��
���
������
������
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
The multiplicity on the aggregation lines specifies how the compo-
nent should be mapped to threads.

– A ‘*’ means that each instance of the component should be
mapped to an individual thread.

– A name means that the entire component should be mapped to a
thread.

In our example this means that there should be one thread for 	�� in-
stances of Pr1 and one thread for �	�� instance of DynPr1.

4. Double-click the component symbol. In the Symbol Details window
specify that the integration model should be Threaded, see : Signal-
ling in Threaded Integration.

5. Double-click the thread symbol for Pr1. Specify the following
Thread Parameters for the Thread P1:

Thread Stack Size = 2048
Thread Priority = 8
Queue Size = 128
Max Signal Size = 1024

6. Double-click the object symbol and specify that the stereotype
should be Process and that the qualifier (for Pr1) should be:

– Simple/Bl1/Pr1.

Make the appropriate specifications for the object Symbol for
DynPr1(Qualifier = Simple/Bl1/DynPr1).

������ �80
�,� ��
������
(��
���
9��������
������
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#��(�7$�������	����	���� ����	����
7. Save the deployment diagram.

8. Select the deployment diagram in the Organizer and open the Tar-
geting Expert from the Generate menu.

9. Choose the integration: Threaded Integrations->Win32 threaded.

10. You will be prompted if you want to generate the sdl_cfg.h file. Se-
lect No!

11. Disable the Generation of Environment Function by deselecting En-
vironment Functions in the Environment section of the window.

12. Click on the Compiler/Linker/Make line in the Partitioning Dia-
gram Model. You should now see the following in the Targeting Ex-
pert window, see:: The Compile/Linker/Make Window in Targeting
Expert.

������ �86	
$��
9������:���%��:�%�
;����!
��
$�������
<������
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ����

��	
�� �� ����	����������&
�	�������������
13. Define the following flag: THREADED_SIMPLE_EXAMPLE in
the Compiler description/Options window. This flag will start the
External threads in the simple example.

14. Define the following Compilation flags:

– THREADED_XTRACE,

– THREADED_MSCTRACE

by selecting the flags: �()
�����
���
*�$ trace in the #�����
���
'����&6�����
����	�

15. Add the MyExtTask.c file as a new source file.

Click on the Source Files entry in the window and add the MyExt-
Task.c file in the source file list.

Save the settings. You are now prompted again to generate config-
uration file, this time select Yes.

16. You should now be back in the Analyze/Generate code window and
be ready to generate the application.

Do a full Make and if you have followed the instructions the Target-
ing Expert will now analyze, generate code, generate makefile,
compile and link the application.

17. Run the application simple.sct. Please note that you have to traverse
down in the generated directory structure to find the application.

You will find the application in a subdirectory similar to this path:

– <your test directory>/Simple._DPE981536368/Sim-
ple._DPE1/Simple._DPE2/Win32_threaded/....

The output you should see when you run the application should be as
follows:
���� ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

�-���#��(�7$�������	����	���� ����	����
������ �8�
$�����
���
����
(��
������
�������
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 ���	

��	
�� �� ����	����������&
�	�������������
������ �8)
��9
����
(��
������
<�����
���
 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	65 Integration with Operating Systems
	Introduction
	Different Integration Models
	Light integration
	Threaded Integration
	Variations of Threaded Integration
	Tight integration
	Variations on Tight integration

	Choosing between Light, Threaded and Tight Integration
	Performance vs. scheduling latency
	Environment interaction
	Operating system issues
	Considerations when choosing between Tight and Threaded

	Common Features
	The Use of Macros
	File Structure
	The Generated Files
	The Integration Packages

	Naming Conventions
	The Symbol Table
	Memory Allocation
	Start-up
	Implementation of SDL Concepts
	SDL Processes
	SDL Signals
	SDL Procedures
	SDL Timers

	Light Integration
	PAD Functions
	Start-Up
	Connection to the Environment
	Running a Light Integration under an External RTOS
	General Steps

	Threaded Integration
	Introduction
	Implementation Details for Threaded
	Symbol Table Structures and Global Variables
	Process Creation
	Sending Signals
	New Macros
	Textual and MSC Trace in Threaded
	API for interfacing a Threaded Integration
	Implementation Details for Different RTOS

	Signal Sending over TCP/IP
	Introduction
	Architecture
	File Structure
	Routing of Signals
	Error Handling
	Configuration

	Tight Integration
	Common Features
	File Structure
	The SDL_PId Type
	Signals
	Time
	Timers
	Addressing SDL Processes

	The Standard Model
	Processes
	Scheduling
	Start-up

	The Instance Set Model
	Processes
	Signal sending
	Scheduling

	Integrating with external code

	Limitations for Integrations
	A Simple Example
	The Simple System
	Block Bl1
	Process Pr1
	Process DynPr1
	Connection to the Environment

	Building and Running a Light Integration
	General Steps for a Light Integration
	Result From Running the System
	The xInEnv Function
	The xOutEnv Function

	Building and Running a Tight Integration
	General Steps for a Tight Integration
	Result From Running the System
	Standard Model
	Instance Set Model
	How Signals are Sent to and from the Environment

	Tight Integration Code Reference
	General Macros
	XPP(x)
	xptrint
	xPrsNode and xPrdNode
	xInputAction, xNotInSignalSet ...
	Macros to Exclude Unnecessary Code
	Macros to activate Signal-Free-Functions
	Default Priorities

	Macros to Implement SDL
	XPROCESSDEF_C and XPROCESSDEF_H
	STARTUPSIGNAL, ALLOCPRSSIGNAL, etc.

	Variables in the PAD Function
	PROCESS_VARS, PROCEDURE_VARS
	YPAD_YSVARP
	YPAD_YVARP
	LOOP_LABEL, LOOP_LABEL_PRD, LOOP_LABEL_PRD_NOSTATE
	START_STATE

	Using OSE Trace Features

	Annex 1: Integration for OSE Delta
	Introduction
	Principles
	Running the Test Example: Simple
	Prerequisites

	Light Integration
	Limitations for the Light Integration
	Building a Light Integration

	Tight Integration
	Limitations for the Tight Integration
	Building a Tight Integration
	How Signals are Sent to and from the Environment.

	Annex 2: Integration for VxWorks
	Introduction
	Principles
	Running the Test Example: Simple
	Prerequisites

	Light Integration
	Limitations for the Light Integration
	Building a Light Integration

	Tight Integration
	Limitations for the Tight Integration
	Building a Tight Integration

	Annex 3: Integration for Win32
	Principles
	Running the Test Example: Simple
	Prerequisites

	Light Integration
	Limitations for the Light Integration
	Building a Light Integration

	Tight Integration
	Limitations for the Tight Integration
	Building a Tight Integration
	Compiler Flags

	Annex 4: Integration for Solaris 2.6
	Introduction
	Principles
	Running the Test Example: Simple
	Prerequisites

	Light Integration
	Limitations for the Light Integration
	Building a Light Integration

	Tight Integration
	Limitations for the Tight Integration
	Building a Tight Integration
	Compiler Flags

	Annex 5: Generic POSIX Tight Integration
	Introduction.

	Annex 6: Building a Threaded Integration
	Introduction
	Preparations
	Copy the Source files for the Example: Simple
	Partition the system using the Deployment Editor

