
 A T T E N T I O N

 Know Your Computer and Be Sure You Are Using the Correct Software

 SWTPC has offered, or is now offering, three types of 6809
computers. In order to make SWTPC supplied software work correctly it is
necessary to recognize what type of computer you have. Below is a
description of each of the three types and some of the characteristics
of each. The nomenclature for the motherboard of each type of computer
is printed on the motherboard for easy identification.

 /09

 The /09 computer is any SWTPC 6809 computer which uses an MP-B or
MP-B2 motherboard. This computer uses the single port MP-S serial
interface and the MP-L and MP-LA parallel interfaces. This computer can
have up to 56K of 4K, 8K, 16K and 32K memory boards. Its chassis RESET
button is on the right side of the front panel.

 69A and 69K

 The 69A and 69K computers use the MP-B3 motherboard. The 69A and
69K are identical except that the A is factory.assembled and the K is
the kit version. Each interface port in this type computer requires 16
addresses and uses the MP-S2 serial and MP-L2 parallel interface boards.
This computer can have up to 56K of 4K, 8K, 16K and 32K memory boards.
Its chassis RESET button is on the left side of the front panel.

 S/09

 The S/09 computer uses the MP-MB motherboard. Each interface port
in this computer requires 16 addresses and uses the MP-S2 serial and
MP-L2 parallel interfaces. This computer also contains a standard
parallel output port and an integral interrupt timer on the MP-ID board.
The S/09 can use up to 384K of 128K memory array boards. Its chassis
RESET button is on the left side of the front panel.

 Be Sure To Use The Correct Software

 Although the /09, 69A, 69K and S/09 computers are all basically the
same, small differences in I/O port assignments, speed, features and
memory types dictate that certain programs, such as printer drivers,
function differently on the various models. After booting the system
diskette, FLEX will automatically configure the operating system as
completely as it can to certain initial values of speed, CPU type, etc.
A special utility (SBOX) has been supplied to examine and change the
initial values and computer type. After booting the supplied diskette,
this utility should be run to be sure that ALL of the displayed
characteristics match EXACTLY with the computer being used. Any
necessary changes can be made using the SBOX utility. This will usually
be necessary only on 109 computers and 69A/69K computers operating at 2
MHZ.

SWTPC MODIFICATION--APPLICATION NOTICE AN #113

Product: FLEX 2.6 DOS
Date: February 26, 1980

 Configuring FLEX 2.6 for Computers with MP-B3 Motherboards
 (69A, 69K computers, not S/09 Computers)

 FLEX 2.6 may incorrectly auto configure on computers with MP-B3
motherboards by indicating the presence of an internal interval timer.
This can be checked by running the SBOX utility contained on the FLEX
2.6 disk. If the utility responds with:

 -- Interval Timer = Yes

then the SBOX utility must be used to set the Interval Timer response to
NO. This must be done even if the system has an optional MP-T interrupt
timer plugged on to the system. The timer configurator of the SBOX
utility is concerned with the presence of the 6840 type timer which is
standard on S/09 computers rather than the optional MP-T timer board.
S/09 computers are the only ones at the time of this writing that should
respond with "Interval Timer = Yes" response.

 To set the Interval Timer response to NO, enter the following:

 SBOX,TIMER=NO

 The SBOX command will change and confirm that the timer parameter
has been properly set.

 +++SBOX

 SWTPC Configurator -- Version 2.1
 -- Memory Size = __K
 -- I/O Port Size = 16
 -- CPU Clock Rate = 1 MHz
 -- Power Line Frequency = __Hz
 -- Extended Addressing = No
 -- Interval Timer = No
 -- Real Time Clock = No
 -- Upper Case Only = Yes

 If the Interval Timer parameter is not properly set as outlined
above the P command and printer spooling will not function correctly.

 - 1 -

General Notes

Technical Systems Consultants, Inc.

GENERAL NOTES

This section contains suggestions on getting FLEX™ 9.0 up on your system
and on compatibility with your existing hardware and software. This
manual assumes you already have a working disk system and are familiar
with the basics of floppy disk systems such as proper disk handling
techniques, inserting and removing disks from the drives, etc.

One important point should be made in regard to getting FLEX "up and
running". You receive only one disk and it is crucial that you protect
this disk with your life. If you take the following steps, you might
save yourself a lot of headaches and additional expense:

 1) Write-protect the FLEX disk before you ever insert it into a drive.
 Consult your disk system hardware manual or the FLEX User's Manual
 for details on write-protecting a disk.

 2) Boot up the FLEX system and once running copy all files from the
 original FLEX disk to a new disk. Next perform a LINK command to
 FLEX.SYS on this new disk.

 3) Now remove the original FLEX disk and store it in a safe place. It
 should never be used again unless you wipe out all the new FLEX
 disks you make and need to repeat this procedure. Use the new FLEX
 disk you have made for all future disk work.

FLEX™ is a trademark of Technical Systems Consultants, Inc.

 -1-

FLEX General Notes

 HARDWARE REQUIREMENTS

This section discusses the hardware requirements for running FLEX 9.0.
This version is setup for th6 Southwest Technical Products Corporation's
disk systems: the MF-68 or MF-69 5-inch minidiskette, the DMAF1 or DMAF2
8-inch diskette, and the CDS-1 Winchester disk unit.

Memory Requirements

The FLEX disk operating system itself resides in the range of $C000 to
$DFFF. This means you will need 8K of memory starting at $C000. You
should be certain your particular system can accept memory in this
region.

You must also have "User Memory" (RAM) starting at location $0000 and
running continuously up from there. The more user memory you have in
your system the better off you will be. This is because you will be
able to run larger Programs and because software which works with files
that are larger than memory can hold (such as the editor or sort/merge)
will operate more efficiently and quickly. Although FLEX resides at
$C000, certain of its commands utilize the lower end of this user RAM
space. A minimum of 12K of RAM is required for such purposes.

Monitor ROM

As sold, this version of FLEX requires the S-BUG monitor ROM from SWTPc
(or equivalent). FLEX 9.0 has its own internal terminal I/O routines,
so S-BUG's are not used. These routines assume an ACIA at location
$E004. S-BUG is required, however, for setting up interrupt vectors.

There are two exceptions to this ROM requirement. The first is that the
interrupt vectors need not be set if no program will use interrupts.
Note that many programs such as printer spooling, the SWTPc Editors,
etc., do make use of interrupts. Thus if you did not require printer
spooling or editing you would not require any monitor ROM at all except
for booting the system up and to jump to when exiting FLEX. The second
exception is to make use of the user adaptable version of FLEX which is
supplied on disk along with the standard version. See 'Adapting FLEX to
Custom Monitors' for details.

Printer Spooling

FLEX 9.0 Version 2.6 supports printer spooling which allows you to list
a file (or files) on a line printer at the same time as you perform
other FLEX operations such as editing, assembling, running BASIC, etc.
In order to do this, FLEX requires an S/09 computer system, or an MP-T
interrupt timer board on I/O port #5 for /09, 69/A and 69/K computer
systems.

 -2-

 FLEX General Notes

DISK COMPATIBILITY

Disks created under 6809 FLEX 9.0 are compatible with those created
under 6800 FLEX 1.0 on the 8" drives or 6800 FLEX 2.0 on the 5" drives.
The reverse is also true, meaning that FLEX 9.0 can read disks created
by one of those 6800 FLEX systems. This means that transferring text
files will require nothing more than copying with the COPY command. In
fact it is not even necessary to put the files on a new disk. As long
as a disk is being used for work files only (no disk command files) it
may be used interchangeably.

The one place where the disks are different is in the bootstrap loader
which the NEWDISK command places on track 0 when a disk is initialized.
Obviously the loader must be different for 6800 and 68C9. This simply
means that a disk initialized with the 6809 NEWDISK command cannot be
used to boot 6800 FLEX and vice versa.

The new double-density system is an exception to all the above. It
cannot be used to read disks created by the original 6800 single-density
svstem. Any disks, however, created as single-density with the new
double-density version of NEWDISK (done by answering 'N' to the prompt
'Double-Sided Disk?') can be read on either a single or double density
system. This is because the new double-density NEWDISK writes FF's in
certain gap areas whereas the old single-density NEWDISK wrote 00's.
The single-density controller board (which uses the Western Digital
1771) can read either type, but the double-density board (which uses the
Western Digital 1791) can only read the type with FF's.

 SOFTWARE COMPATIBILITY

6809 object code is NOT at all compatible with 6800 object code. This
means you cannot run binary command files from a 6800 system on a 6809
system. Since 6809 FLEX can read a 6800 FLEX disk and vice versa you
must be careful not to execute a 6800 command in a 6809 system and
again, vice versa.

Where the 6809 and 6800 ARE compatible is in the source code. Thus, if
you have the source listing for a 6800 program on disk, it can be
reassembled by the 6809 assembler to produce executable 6809 object
code. Of course if the program calls any routines from FLEX, these
addresses will have to be changed since 6809 FLEX resides at $C000 (6800
FLEX is at $A000). This is usually a matter of simply changing all
occurrences of '$A' to '$C' and all '$B' to '$D' with the editor.

 -3-

FLEX General Notes

 ADAPTING FLEX

The FLEX 9.0 disk supplied has two copies of the FLEX object code. One
is called FLEX.SYS and is ready to boot up with SWTPc disk hardware.
The second is called FLEX.COR which represents the CORe or main body of
FLEX. It differs from the bootable form of FLEX in that it does not
have any terminal or disk I/O routines built in. This allows the user
to modify these I/O drivers, if desired, to produce a customized version
of FLEX. Note that in order to produce this customized version you must
have FLEX up and running so you will need the bootable version
(FLEX.SYS). The customized terminal and disk I/O routines are supplied
in two packages. We will discuss them separately and then examine how
to add them onto FLEX.COR to produce a new, customized, bootable version
of FLEX.

The CUSTOM I/O DRIVER PACKAGE

This package allows the user to alter the functioning of the terminal
I/O and the functioning of printer spooling. Nine routines and two
interrupt vectors are set up in this package. There is a space reserved
for these routines beginning at location $D370 and ending at $D3E6. The
address of these 11 items must be setup in a jump table found at
locations $D3E7 thru $D3FB. A copy of the Custom I/O Driver Package
used to produce FLEX.SYS is included at the end of the General Notes
section. Use it as a guide for writing your own.

A description of each routine and vector follows.

INCH
The address of the input character routine should be placed at $D3FB.
This routine should get one input character from the terminal and return
it in 'A' with the parity bit cleared. It should also echo the
character to the output device. Only 'A' and the condition codes may be
modified.

OUTCH
The address of the output character should be placed at $D3F9. This
routine should output the character found in 'A' to the output device.
No registers should be modified except condition codes.

STAT
The address of the STAT routine should be placed at $D3F7. This routine
checks the status of the input device. That is to say, it checks to see
if a character has been typed on the keyboard. If so, a Not-Equal
condition should be returned. If no character has been typed, an Equal
to zero condition should be returned. No registers may be modified
except condition codes.

TINIT
The address of the terminal initialization routine should be placed at
$D3F5. This routine performs any necessary initialization for terminal
I/O to take place. Any register may be modified except 'S'.

 -4-

 FLEX General Notes

MONITR

This is the address to which execution will transfer when FLEX is
exited. It is generailly the reentry point of the system's monitor ROM
The address should be placed at $D3F3.

TMINT
The address of the timer initialization routine should be placed at
$D3F1. This routine performs any necessary initialization for the
interrupt timer used by the printer spooling process. Any register may
be modified except 'S'.

TMON
The address of the timer on routine should be placed at $D3EF. This
routines "turns the timer on" or in other words starts the interval IRQ
interrupts. Any registers execpt 'S' may be modified.

TMOFF
The address of the timer off routine should be placed at $D3ED. This
routine "turns the timer off" or in other words stops the interval IRQ
interrupts. Any registers except 'S' may be modified.

IRQVEC
The IRQ vector is an address of a two byte location in RAM where FLEX
can stuff the address of its IRQ interrupt handler routine. In other
words, when an IRQ interrupt occurs control should be transferred to the
address stored at the location specified by the IRQ vector. This IRQ
vector location (address) should be placed at $D3EB.

SWIVEC
The SWI3 vector is an address of a two byte location in RAM where FLEX
can stuff the address of its SWI3 interrupt handler routine. In other
words, when an SWI3 interrupt occurs control should be transferred to
the address stored at the location specified by the SWI3 vector. This
SWI3 vector location (address) should be placed at $D3E9.

IHNDLR
The Interrupt Handler routine is the one which will be executed when an
IRQ interrupt occurs. If using printer spooling, the routine should
first clear the interrupt condtion and then jump to the 'change process'
routine of the printer spooler at $C700. If not using printer spooling.
this routine can be setup to do whatever the user desires. If it is
desirable to do both printer spooling and have IRQ's from another device
(besides the spooler clock), this routine would have to determine which
device had caused the interrupt and handle it accordingly. The address
of this routine should be placed at $D3E7.

 -5-

FLEX General Notes

The CUSTOM DISK DRIVER PACKAGE

This package supplies all the disk functions required by FLEX. There
are eight routines in all:

 READ Reads a single sector
 WRITE Writes a single sector
 VERIFY Verifys a single sector
 RESTORE Restores the head to track 0
 DRIVE Selects the desired drive
 CHECK Checks a drive for a ready condition
 QUICK Same as CHECK but with no delay
 INIT Initializes any necessary values
 WARM Does any Warm Start initialization

These routines and what is required of them are decribed in the Advanced
Programmer's Guide in the section titled 'DISK DRIVERS'. There is a
jump table which contains the address of all these routines at $DE00.
This table is as follows:

 DE00 JMP READ
 DE03 JMP WRITE
 DE06 JMP VERIFY
 DE09 JMP RESTOR
 DE0C JMP DRIVE
 DE0F JMP CHECK
 DE12 JMP QUICK
 DE15 JMP INIT
 DE18 JMP WARM

Immediately following this jump table there is a space for the disk
driver routines. In the general case this space would start at $DE1B
and run through $DFFF. In the SWTPc system with S-BUG installed, that
entire space is not available due to the fact that S-BUG uses RAM in the
area of $DFA0 to $DFFF for variables and stack. Thus the driver routine
area is limited in this case to $DE18 through $DF9F.

The actual source listings for the SWTPc drivers are not included, but a
skeletal Custom Disk Driver Package is included at the end of this
section which should assist you in writing your own package.

PUTTING THE CUSTOM FLEX TOGETHER

Once you have written and assembled a Custom I/O and Custom Disk Driver
packages, you are ready to append them to the core of FLEX (FLEX.COR) to
produce a new, bootable version. This is done with the APPEND utility
if FLEX, but before we get into that there is a very important point
which must be covered.

 *** IMPORTANT ***

 -6-

 FLEX General Notes

The copy of FLEX on disk is much like any other standard binary file.
IT MUST HAVE A TRANSFER ADDRESS IN ORDER TO WORK! It is also important
to note that unlike other binary files FLEX can have ONLY ONE transfer
address and it MUST BE THE LAST THING IN THE FILE! The simplest way of
getting that transfer address into the file is by use of the END
statement in the assembler. We recommend you put a transfer address on
the END statement of the Custom I/O Driver Package and make sure it is
the last thing in the final FLEX file.

Assuming you have put a transfer address on the Custom I/O Driver
Package with an end statement of the form:

 END $CD00

You can now create a new version of FLEX by appending the custom disk
drivers and custom I/O drivers onto FLEX.COR. You should use the APPEND
command for this purpose as shown:

 +++APPEND FLEX.COR DRVRS.BIN CUSTOMIO.BIN NEWFLEX.SYS

This command assumes the object file you created for the Custom Disk
Drivers is called DRVRS.BIN and the Custom I/O Drivers are in a file
called CUSTOMIO.BIN. The new, custom version of FLEX is called
NEWFLEX.SYS. In order to boot up this NEWFLEX.SYS you must link it with
the LINK command (see the FLEX User's and Advanced Progammer's Manuals).
The command would be of the form:

 +++LINK NEWFLEX.SYS

The disk containing your newly made and linked FLEX can now be booted
with the normal boot, procedure.

 -7-

SKELETAL DISK DRIVER PACKAGE 7-18-79 TXC 6809 XASMB PAGE 1

 * SKELETAL 6809 DISK DRIVER PACKAGE
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * BOX 2574
 * WEST LAFAYETTE, INDIANA 47906
 *

 * THE DRIVER ROUTINES PERFORM THE FOLLOWING
 * 1. READ SINGLE SECTOR - DREAD
 * 2. WRITE SINGLE SECTOR - DWRITE
 * 3. VERIFY WRITE OPERATION - VERIFY
 * 4. RESTORE HEAD TO TRACK 00 - RESTORE
 * 5. DRIVE SELECTION - DRIVE
 * 6. CHECK READY - DCHECK
 * 7. QUICK CHECK READY - DQUICK
 * 8. COLD START INITIALIZATION - DINIT
 * 9. WARM START INITIALIZATION - DWARM
 *
 * SYSTEM CONSTANTS
 *
 * THIS SPACE IS WHERE ANY NECESSARY EQUATES MIGHT
 * BE PLACED, SUCH AS DISK CONTROLLER REGISTER
 * LOCATIONS, SECT0R LENGTH, ETC.
 *

 **

 DE00 ORG $DE00

 * JUMP TABLE

 DE00 7E DE23 DREAD JMP READ
 DE03 7E DE28 DWRITE JMP WRITE
 DE06 7E DE2D DVERFY JMP VERIFY
 DE09 7E DE31 RESTOR JMP RST
 DE0C 7E DE35 DRIVE JMP DRV
 DE0F 7E DE39 DCHECK JMP CHECK
 DE12 7E DE3F DQUICK JMP QUICK
 DE15 7E DE1B DINIT JMP INIT
 DE18 7E DE1F DWARM JMP WARM

SKELETAL DISK DRIVER PACKAGE 7-18-79 TXC 6809 XASMB PAGE 2

 **

 * VARIABLE STORAGE

 * IF ANY VARIABLES ARE REQUIRED, THEY MIGHT BE PLACED
 * HERE. THIS MIGHT INCLUDE VARIABLES LIKE CURRENT
 * DRIVE, CURRENT TRACK FOR EACH DRIVE, OR TEMPORARY
 * STORAGE LOCATIONS.

 **

 * INIT
 *
 * INITIALIZES THE NECESSARY DRIVER VARIABLES.

 DE1B 12 INIT NOP THIS ROUTINE IS CALLED
 DE1C 12 NOP DURING FMS INITIALIZATION
 DE1D 12 NOP AT COLD START
 DE1E 39 RTS

 * WARM
 *
 * WARM START INITIALIZATION

 DE1F 12 WARM NOP THIS ROUTINE IS CALLED
 DE20 12 NOP DURING FMS INITIALIZATION
 DE21 12 NOP AT WARM START
 DE22 39 RTS

 * READ
 *
 * READ ONE SECTOR

 DE23 12 READ NOP READS THE SECTOR POINTED
 DE24 12 NOP TO BY TRACK IN 'A'
 DE25 12 NOP AND SECTOR IN 'B'.
 DE26 12 NOP 'X' POINTS TO FCB.
 DE27 39 RTS

 * WRITE
 *
 * WRITE ONE SECTOR

 DE28 12 WRITE NOP WRITES THE SECTOR POINTED
 DE29 12 NOP TO BY TRACK IN 'A'
 DE2A 12 NOP AND SECTOR IN 'B'.
 DE2B 12 NOP 'X' POINTS TO FCB.
 DE2C 39 RTS

SKELETAL DISK DRIVER PACKAGE 7-18-79 TSC 6809 XASMB PAGE 3

 * VERIFY
 *
 * VERIFY LAST TRACK WRITTEN

 DE2D 12 VERIFY NOP THE SECTOR JUST
 DE2E 12 NOP WRITTEN IS VERIFIED.
 DE2F 12 NOP NO PARAMETERS ARE SUPPLIED.
 DE30 39 RTS

 * RST
 *
 * RST RESTORES THE HEAD TO 00

 DE31 12 RST NOP HEAD RESTORED TO TRACK
 DE32 12 NOP ZERO ON DRIVE POINTED
 DE33 12 NOP TO BY FCB AT 'X'.
 DE34 39 RTS

 * DRV
 *
 * DRV SELECTS THE DRIVE.

 DE35 12 DRV NOP THE DRIVE NUMBER FOUND
 DE36 12 NOP IN FCB POINTED TO BY 'X'
 DE37 12 NOP IS SELECTED.
 DE38 39 RTS

 * CHECK
 *
 * CHECK FOR DRIVE READY

 DE39 12 CHECK NOP THE DRIVE POINTED TO
 DE3A 12 NOP BY FCB AT 'X' IS CHECKED
 DE3B 12 NOP FOR A READY STATE AFTER
 DE3C 12 NOP DELAYING FOR DRIVES TO
 DE3D 12 NOP COME UP TO SPEED.
 DE3E 39 RTS

 * QUICK
 *
 * QUICK CHECK FOR READY

 DE3F 12 QUICK NOP THE DRIVE POINTED TO
 DE40 12 NOP BY FCB AT 'X' IS CHECKED
 DE41 12 NOP FOR READY STATE WITHOUT
 DE42 12 NOP DELAYING FOR DRIVES TO
 DE43 12 NOP COME UP TO SPEED.
 DE44 39 RTS

 END

CUSTOM I/O DRIVER PACKAGE 7-18-79 TSC 6809 XASMB PAGE 1

 * CUSTOM I/O DRIVER PACKAGE
 *
 * CONTAINS ALL TERMINAL I/O DRIVERS AND INTERRUPT
 *

 * SYSTEM EQUATES

 C700 CHPR EQU $C700 CHANGE PROCESS ROUTINE

 * *
 * I/O ROUTINE VECTOR TABLE *
 * *
 D3E7 ORG $D3E7 TABLE STARTS AT $D3E7 *
 * *
 DEE7 D3CB IHNDLR FDB IHND IRQ INTERRUPT HANDLER *
 D3E9 DFC2 SWIVEC FDB $DFC2 SWI3 VECTOR LOCATION *
 D3EB DFC8 IRQVEC FDB $DFC8 IRQ VECTOR LOCATION *
 D3ED D3C4 TMOFF FDB TOFF TIMER OFF ROUTINE *
 D3EF D3BD TMON FDB TON TIMER ON ROUTINE *
 D3F1 D3A7 TMINT FDB TINT TIMER INITIALIZATION ROUTINE *
 D3F3 F814 MONITR FDB $F814 MONITOR RETURN ADDRESS *
 D3F5 D370 TINIT FDB INIT TERMINAL INITIALIZATION *
 DEF7 D39C STAT FDB STATUS CHECK TERMINAL STATUS *
 DEF9 D38B OUTCH FDB OUTPUT TERMINAL CHAR OUTPUT *
 D3FB D37D INCH FDB INPUT TERMINAL CHAR INPUT *
 * *

 * ACTUAL ROUTINES START HERE

 D370 ORG $D370

 * TERMINAL INITIALIZE ROUTINE

 D370 86 13 INIT LDA #$13 RESET ACIA
 D372 A7 9F D3E5 STA [ACIAC]
 D376 86 11 LDA #$11 CONFIGURE ACIA
 D378 A7 9F D3E5 STA [ACIAC]
 D37C 39 RTS

 * TERMINAL INPUT CHARACTER ROUTINE

 D37D A6 9F D3E5 INPUT LDA [ACIAC] GET STATUS
 D381 84 01 ANDA #$01 CHARACTER PRESENT?
 D383 27 F8 BEQ INPUT LOOP IF NOT
 D385 A6 9F D3E3 LDA [ACIAD] GET THE CHARACTER
 D389 84 7F ANDA #$7F STRIP PARITY

CUSTOM I/O DRIVER PACKAGE 7-18-79 TSC 6809 XASMB PAGE 2

 * TERMINAL OUTPUT CHARACTER ROUTINE

 D38B 34 02 OUTPUT PSHS A SAVE CHARACTER
 D38D A6 9F D3E5 OUTPU2 LDA [ACIAC] TRANSMIT BUFFER EMPTY?
 D391 84 02 ANDA #$02
 D393 27 F8 BEQ OUTPU2 WAIT IF NOT
 D395 35 02 PULS A RESTORE CHARACTER
 D397 A7 9F D3E3 STA [ACIAD] OUTPUT IT
 D39B 39 RTS

 * TERMINAL STATUS CHECK (CHECK FOR CHARACTER HIT)

 D39C 34 02 STATUS PSHS A SAVE A REG.
 D39E A6 9F D3E5 LDA [ACIAC] GET STATUS
 D3A2 84 01 ANDA #$01 CHECK FOR CHARACTER
 D3A4 35 02 PULS A RESTORE A REG.
 D3A6 39 RTS

 * TIMER INITIALIZE ROUTINE

 D3A7 BE D3E1 TINT LDX TMP1A GET PIA ADDRESS
 D3AA 86 FF LDA #$FF
 D3AC A7 84 STA 0,X
 D3AE 86 3C LDA #$3C
 D3B0 A7 01 STA 1,X
 D3B2 86 8F LDA #$8F
 D3B4 A7 84 STA 0,X
 D3B6 A6 84 LDA 0,X
 D3B8 86 3D LDA #$3D
 D3BA A7 01 STA 1,X
 D3BC 39 RTS

 * TIMER ON ROUTINE

 D3BD 86 04 LDA #$04 TURN ON TIMER
 D3BF A7 9F D3E1 STA [TMPIA]
 D3C3 39 RTS

 * TIMER OFF ROUTINE

 D3C4 86 8F LDA #$8F TURN OFF TIMER
 D3C6 A7 9F D3E1 STA [TMPIA]
 D3CA 39 RTS

 * IRQ INTERRUPT HANDLER ROUTINE

 D3CB A6 9F D3E1 IHND STA [TMPIA] RESET INTERRUPTS
 D3CF 7E C700 JMP CHPR GO TO SPOOLER

CUSTOM I/O DRIVER PACKAGE 7-18-79 TSC 6809 XASMB PAGE 3

 * ACIA AND PIA ADDRESS FOR SUPPLIED ROUTINES

 D3E1 ORG $D3E1

 D3E1 E012 TMPIA FDB $E012 TIMER PIA ADDRESS
 D3E3 E005 ACIAD FDB $E005 ACIA DATA REG. ADR.
 D3E5 E004 ACIAC FDB $E004 ACIA CONTROL REG. ADR.

 * END STATEMENT HAS FLEX TRANSFER ADDRESS!

 END $CD00

