

93-514:سند شماره

User Manual PROMAX Ladder’s

1

Use the Internal PLC LADDER

Using the CAN OPEN protocol is enabled TASK PLC to control fast I/O. This provides for the use of special instructions that
are optimized for cycle management PLC, consequently any instructions belonging to the BASIC TASK can create system
malfunction. Language the PLC used is very simple and practical and can also be generated by a compiler LADDER chart.
Various bits of memory instructions operate, set / reset outputs, input management, timers etc that is needed to build a
functional PLC cycle. It should be noted that the PLC is shared with the TASK PLC and hence the instructions to HIGH LEVEL
are handled latter’s, greatly reducing the load on the PLC. The TASK PLC has a high priority and is executed in a sampling
time determined by the configuration of VTB .The Task PLC can be written with the EDITOR specific integrated in VTB or
using the application PLC Ladder which consists of a graphics system contacts very simple and intuitive.

ACTIVATION PLC EDITOR
PLC Editor is activated by the Project window by selecting the TASK PLC ICON. Then you go to an ASCII EDITOR where you
can write a PLC program using the instructions explained below.

The PLC application is saved in the PROJECT and charged accordingly without loss of information. Enter instructions in the
task PLC than those plc , may cause a malfunction of the program.

NOTES ON THE TASK PLC
The TASK PLC runs in a INTERRUPT at regular intervals by stopping the TASK PLC. The two TASK can share all kinds of
variables being careful only with the 32-bit variables (LONG, FLOAT). This is because since the two may happen that the
asynchronous TASK PLC is INTERRUPTED by the PLC when upgrading a 32-bit variable (since this requires two instructions
ASSEMBLER) if the TASK PLC uses the same variable can be an incorrect reading or writing (from TASK PLC) of the variable.
If the two shared variables using TASK 32-bit is recommended to select the shared variable flag in the page of page
variables, VTB will perform well in automatic control. This system, however, slows the operation of the application.

Icon for activation PLC EDITOR

2

The next system is WRONG because the control of VAR1 type LONG made in Task PLC can generate ERRORS.

Example: variables used:

 var1 long ‘counter declared in the MAIN
 var3 char ‘declaration for variable bit
 var2 var3.1 ‘bits declared in TASK PLC used by PLC

Main
If var1 > 1000
 ……
 …...
endif

TASK PLC
PLC_LD var2
PLC_CUP var1

If you do not want to use shared variables or you want additional control, this is the correct system:

Example: variables used:

 var1 long ‘counter declared in the MAIN
 var3 char ‘declaration for variable bit
 var2 var3.1 ‘bits declared in MAIN TASK used by PLC
 var4 var3.2 ‘synchronism bit of TASK

Main
 If var4 = 1 ‘Check the status of bit synchronization
 ……
 …...
endif

TASK PLC
PLC_LD var2
PLC_CUP var1
PLC_CMP var1
PLC_GT 1000
PLC_OUT var4

3

NOTES ON THE LIMITATION OF LADDER
The ladder has limitations related to the construction of the circuit. These restrictions only concern the objects related to
the family of TIMER, FACES, and FUNCTIONS .In practice these types of items shouldn’t have no right to the knot of the
Circuit functional.

Another limitation concerns the functions related to counters, These are considered output and therefore should always be
there at the end of the block.

OPERATION OF COMPILER LADDER
The compiler allows you to manage LADDER PLC cycles using the classical graphical representation of electrical circuits, this
greatly simplifies the management of PLC applications. In practice the PLC application is divided to blocks which contain an
electrical circuit more or less complex. A block always begins with the elements of INPUT and OUTPUT ends with elements,
can be inserted between these elements and processing conditioning (timers, counters, etc..).
A block can be represented in its minimum configuration in the following example:

In this example, the input which may be any bit of memory, determines the set of output that can be any bit of memory.
The blocks may be endless, and may contain more complex networks of the previous example.

BLOCK MARKER
The MARKER block is used to identify the selected block. This turns solid RED when selecting

BLOCK MARKER

4

SETTING OF A FUNCTION PLC
A PLC function has parameters which must be set , this is done by clicking the right button on the grid that contains the PLC,
and inserting in its own window pop up the various values . The parameters of each function will be described below.

SELECTION OF ONE OR MORE ELEMENTS OF A BLOCK
The selection of one or more elements of a block is a very important feature of the compiler ladder, this because some
functions operate only on selected items. An item is selected when the background of the grid that contains it becomes
YELLOW. To select a single element of a block simply click with the left mouse button on element concerned, in addition to
element is also selected the whole block (BLOCK MARKER the change of color). To select multiple items in a lock hold down
the SHIFT key () on the keyboard and click with the left mouse button on the relevant elements, or select the various
elements within the rectangular window designed by dragging the MOUSE. For UNCHECK one or more items, simply click
the left mouse button in an empty grid.

CANCELLATION AND MOVE SELECTED

CANCELLATION OF SELECTED
Care for the cancellation of one or more elements selected, simply press the Delete key on the keyboard. Deleted items can
still be recovered with the Undo button on the menu bar.

MOVE OF THE ELEMENTS SELECTED
This allows you to move the selected items in the grid. To activate the shift button is selected must LOCK / UNLOCK THE
ELEMENTS, as it is sufficient to click with the left mouse button on the selected items, hold it down, drag the items to the
desired location.

Gird PLC Function of containment

Pop Up window parameters for inclusion

5

MENU BUTTONS
Following describes all the functionality of the toolbar buttons in the menus related to the compiler LADDER.

Undo
Retrieves the last I/O element block erased.

LOCK / UNLOCK THE ELEMENTS
It allows you to lock or unlock the displacement of selected items.

COPY SELECTED ELEMENTS
The selected items are copied to memory, to the actual copy, simply click with the left mouse button in the desired grid
point

ADD BLOCK
Adds an empty block in the ladder diagram . The block is added after the last.

CLEAR THE BLOCK SELECTED
The block with the MARKER selected is deleted. The Undo function makes it possible to block recovery.

INSERT A BLOCK AFTER THE SELECTED
Is inserted into an empty block next to the one that has the MARKER selected.

ADD A ROW TO BLOCK SELECTED
A row is added to the block that has the selected marker.

COPY ALL THE ELEMENTS OF SELECTED BLOCK
All elements of the selected block are copied into memory. To make an actual copy in the grid, then click with the left
mouse button in a grid point where it affects insert the new block that contains the copy of the selected one.

SEARCH FOR AN ITEM
Search a symbol of an element in all the blocks of application. The results will be presented in the dialog box. Clicking on
the result, the block will be brought to the foreground.

6

FIND A BLOCK
Search a name of a block, the results are similar to the function Search Element.

SAVE FILE PRESENT
Save the 'LADDER current application.

LADDER APPLICATION COMPILER
The ladder application is compiled by checking various errors. If the outcome is positive is generated in an OBJECT MACRO
CLASS PLC OBJ with name chosen by the compilation window .To use the PLC application filled out, simply insert the object
in the MAIN PAGE of application VTB.

TEXT TO LOOK INCLUSION

ACTION RESULTS

MACRO NAME CLASS
 NAME OF 'THE SUBJECT

COMMENT OF THE

RESULTS OF COMPLETION

LIST OF VARIABLES

EXTENDING THE SEARCH FOR THE
 COMMENTS OF 'THE SUBJECT

7

DEBUG USE LADDER

In this mode, displays the status of the various circuits that make up the pattern LADDER. It is useful to make the DEBUG
dell application, as you can see both the state will make a force on the variables that compose the circuit. A closed loop or
other assets are represented by the color GREEN .To make the FORCING of the various bits or variables, simply click with
the left mouse button on the circuit concerned ,and enter the desired value in special POP UP window.

POP UP WINDOW FOR FORCING BIT

8

LIST INSTRUCTIONS PLC LADDER

CIRCUIT CONTACT
It allows you to combine one or more objects ladder. Click on one end of an object, then click on the other end of the
object to merge . Set contact through multiple ends , these will all be united.

LOAD BIT
Operation logic block start. Upload the specified bit.

PARAMETERS:
Variable . Name of the variable associated bit (default LDnn). Enter the name of the variable to be loaded.
 The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
A Numeric Value: Enter 0 or 1 in the INITIALIZE
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the BIT field DEFAULTS

First end

POINT KINGDOM

Second end

9

LOAD BIT DENIED
Operation logic block start. Loads the bit indicated by denying the content.

PARAMETERS:
Variable . Name of the variable associated bit (default LDnn). Enter the name of the variable to be loaded.
 The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
A Numeric Value: Enter 0 or 1 in the INITIALIZE
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the BIT field DEFAULTS

Output
Operation logic block end. The logical result of all the previous circuit is transferred to 'exit' s output remains active until
the result is TRUE.

PARAMETERS:
Variable . Name of the variable associated bit (default OUTnn). Enter the name of the variable to set.
 The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
A Numeric Value: Enter 0 or 1 in the INITIALIZE
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the BIT field DEFAULTS

OUTPUT DENIED
Operation logic block end. The logical result of all the previous circuit is transferred to release denying the content, the
output remains active until the result is TRUE DENIED.

PARAMETERS:
Variable . Name of the variable associated bit (default OUTnn). Enter the name of the variable to set.
 The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
A Numeric Value: Enter 0 or 1 in the INITIALIZE
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the BIT field DEFAULTS

10

Set Output
Operation logic block end. Set the relay latching according to the result of the entire circuit prior-logical output remains
active until it is operated RESET.

PARAMETERS:
Variable . Name of the variable associated bit (default SETnn). Enter the name of the variable to set.
 The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
None

Reset Output
Operation logic block end. Resets the relay in latching according to the logical result of the entire circuit prior-output
remains reset until it is operated in a set.

PARAMETERS:
Variable . Name of the variable associated bit (default RESnn). Enter the name of the variable to set.
 The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
None

Ondelay Timer
Delay to ignition switch output, the output is activated with delay TON to ignition pulse.

PARAMETERS:
Time. Delay time in milliseconds
Variable . Name of the variable associated timer (default TONnn). Enter the name of the variable that contains

the time. The variable can be existing, in this case it is declared in application VTB
Type Variable Variable type INT (max 32768 Ms) or LONG. INT variables are faster as management

 INITIALIZATION:
A Numeric Value: enter the value in the field in Ms TIME
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the TIME

11

Off Delay Timer
Delay shutdowns of 'exit' s output is switched off with the TOFF to delay pulse off.

PARAMETERS:
Time. Delay time in milliseconds
Variable . Name of the variable associated timer (default TOFFnn). Enter the name of the variable that contains

the time. The variable can be existing, in this case it is declared in application VTB
Type Variable Variable type INT (max 32768 Ms) or LONG. INT variables are faster as management

 INITIALIZATION:
A Numeric Value: enter the value in the field in Ms TIME
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the TIME

Tp Timer

Activate output for the time TP, the output is activated on the rising edge of the pulse, for the time indicated.

PARAMETERS:
Time. Activation time in milliseconds
Variable . Name of the variable associated timer (default TPnn). Enter the name of the variable that contains the

time. The variable can be existing, in this case it is declared in application VTB
Type Variable Variable type INT (max 32768 Ms) or LONG. INT variables are faster as management

 INITIALIZATION:
A Numeric Value: enter the value in the field in Ms TIME
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the TIME

Rising Edge
Activate output on the rising edge of the pulse.

PARAMETERS:
Variable . Name of the variable associated bit (default UPnn). Enter the name of the variable support.
 The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
A Numeric Value: Enter 0 or 1 in the INITIALIZE
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the BIT field DEFAULTS

12

Falling Edge
Activate output on the falling edge of the pulse.

PARAMETERS:
Variable . Name of the variable associated bit (default UPnn). Enter the name of the variable support.
 The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
A Numeric Value: Enter 0 or 1 in the INITIALIZE
Do not initialize: the variable is not initialized with any value
A Variable: enter the name of a variable in the BIT field DEFAULTS

Up Counter
Increment the counter.

PARAMETERS:
Variable . Name of the variable associated counter variable (default CUPnn). Enter the name of the variable

Support.The variable can be existing, in this case it is declared in application VTB

INITIALIZATION:
None

Down Counter
Decrements the counter.

PARAMETERS:
Variable . Name of the variable associated counter variable (default CDNnn). Enter the name of the variable

Support .The variable can be existing, in this case it is declared in application VTB
Type Variable Type of the variable CHAR INT etc.

INITIALIZATION:
None

Reset Counter
Reset the counter.

PARAMETERS:
Variable . Name of the variable associated counter variable (default CRESnn). Enter the name of the variable to

reset. The variable can be existing, in this case it is declared in application VTB
Type Variable Type of the variable CHAR INT etc.

INITIALIZATION:
None

13

COMPARISON OF TWO VARIABLES
Compare the content of two variables.

PARAMETERS
Variable 1 Name of the first variable to be compared (default COMP_1nn). The variable can be any, in this case it is

declared in application VTB

Type var1 type variable1 CHAR or INT etc..

 Variable 2 The name of the second variable to be compared (default COMP_2nn). The variable can be any,in this case
it is declared in application VTB

Type var2 type variable2 CHAR or INT etc..

Type Comparison Conditions for comparison.

 = True condition if variable1 equal to variable2

 <> True condition if variable1 to variable2 different

 > True condition if variable1 variable2 more

 <True condition if less than variable1 variable2

 > = True condition if greater than or equal to variable2 variable1

 <= True condition if less than or equal to variable2 variable1

INITIALIZATION:
A Numeric Value: enter the value in the field DEFAULTS
Do not initialize: the variables are not initialized with any value
A Variable: enter the name of a variable in the INITIALIZE

14

WRITING CODE VTB
The TXT element allows you to write code to VTB internal application LADDER. Therefore they can be used all the
instructions that recognizes VTB .This function is very powerful because it allows to optimize the LADDER application, for
example by inserting cycles ENDIF IF that affect one or more blocks LADDER. In example shown below, the block 2 is
scanned only when the variable AUTOMATIC is equal to 1.This in effect creates an optimization of the speed of execution of
the PLC cycle, as it may exclude entire sections that are related to a condition.

PARAMETERS
No one

INITIALIZATION
None

COMMENTS ALL INSIDE A BLOCK
The REM element allows you to write comments all inside of a block. Since this is an OBJECT must necessarily be was added
at the beginning or end of a block. Comments may contain text that is ignored, however, at the time of compilation.
To enter the text you just click with the right mouse button on REM inserted object, and then enter the title and
description.

PARAMETERS
No one

INITIALIZATION
None

15

TEXT LIST INSTRUCTIONS PLC
PLC_LD

Syntax Operation Function Example

PLC_LD Var

Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Logical operation start

BIT type variable declaration
Var1  var.2 (original variable)

PLC_LD var1

PLC_LDN

Syntax Operation Function Example

PLC_LDN Var
Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Start logical operation
denied

BIT type variable declaration
Var1  var.2 (original variable)
 PLC_LDN var1

PLC_AND

Syntax Operation Function Example

PLC_AND Var

Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Logical AND operation

Variable declaration
Var1  var.2
Var2  var.1

PLC_LD Var2
PLC_AND Var1

PLC_ANDN

Syntax Operation Function Example

PLC_ANDN Var

Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Logical AND DENIED

Variable declaration
Var1  var.2
Var2  var.1

PLC_LD Var2
PLC_ANDN Var1

PLC_OR

Syntax Operation Function Example

PLC_OR Var

Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Logical OR operation

Variable declaration
Var1  var.2
Var2  var.1

PLC_LD Var2
PLC_OR Var1

16

PLC_ORN

Syntax Operation Function Example

PLC_ORN Var

Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Logical operation OR
DENIED

Variable declaration
Var1  var.2
Var2  var.1

PLC_LD Var2
PLC_ORN Var1

PLC_PUSH

Syntax Operation Function Example

PLC_PUSH

ACC

PUSH dell ACC in STACK

Variable declaration
Var1  var.2
Var2  var.1

PLC_LD Var2
PLC_OR Var1
PLC_PUSH

PLC_ANDS

Syntax Operation Function Example

PLC_ANDS

ACC

Logical AND STACK
with the ACC

Variable declaration
Var1  var.2
Var2  var.1
Var3  var.3

PLC_LD var2
PLC_OR var1
PLC_PUSH
PLC_LD var3
PLC_ANDS

PLC_ORS

Syntax Operation Function Example

PLC_ORS

ACC

Logical OR STACK with
the ACC

Variable declaration
Var1  var.2
Var2  var.1
Var3  var.3

PLC_LD var2
PLC_OR var1
PLC_PUSH
PLC_LD var3
PLC_ORS

17

 PLC_OUT

Syntax Operation Function Example

PLC_OUT

Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Sends the contents of
the accumulator in the
BIT output

Variable declaration
Var1  var.2

PLC_LD var1
PLC_OUT

PLC_OUTN

Syntax Operation Function Example

PLC_OUTN

Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Send the contents of
DENIED in BIT
accumulator output

Variable declaration
Var1  var.2

PLC_LD var1
PLC_OUTN

PLC_SET

Syntax Operation Function Example

PLC_SET

Variable Bit declared in MAIN. In
the case of the compiler LADDER he
thinks the statement

Set the relay in SELF
based on the content
of ACCUMULATOR

Variable declaration
Var1  var.2

PLC_LD var1
PLC_SET

PLC_RES

Syntax Operation Function Example

PLC_RES

Variable Bit declared in MAIN. In
the case of the compiler LADDER
he thinks the statement

Resets the relay in
SELF based on the
content of
ACCUMULATOR

Variable declaration
Var1  var.2

PLC_LD var1
PLC_RES

18

PLC_TON
Syntax Operation Function Example

PLC_TON

Variable vector of positions 2 or
UINT or LONG declared in MAIN. In
the case of the compiler LADDER he
thinks the declaration and all
INITIALIZATION.

NOTES:
Not using the compiler LADDER
need to initialize the variable in the
INIT MAIN. Where VARIABLE (0)
contains the millisecond value of
the TARGET TIMER, VARIABLE (1)
contains the starting value and the
present value

Delay to ignition switch
output. The output is
activated with delay
TON to ignition pulse.

The output can be any
one of the blocks
PLC_OUT
PLC_OUTN
PLC_SET
PLC_RES

Variable declaration
Var1  var.2
Var2  var.1
Tempo(2) as long

Initialize TIMER
Tempo(0) = 1000 ‘ 1 sec
Tempo(1)=1000 ‘ 1 sec

PLC_LD var1
PLC_TON tempo()
PLC_SET var2

PLC_TOFF

Syntax Operation Function Example

PLC_TOFF

Variable vector of positions 2 or
UINT or LONG declared in MAIN. In
the case of the compiler LADDER he
thinks the declaration and all
INITIALIZATION.

NOTES:
Not using the compiler LADDER
need to initialize the variable in the
INIT MAIN. Where VARIABLE (0)
contains the millisecond value of
the TARGET TIMER, VARIABLE (1)
contains the starting value and the
present value

Off Delay of output.
The output is switched
off with the TOFF to
delay pulse off.

The output can be any
one of the blocks
PLC_OUT
PLC_OUTN
PLC_SET
PLC_RES

Variable declaration
Var1  var.2
Var2  var.1
Tempo(2) as long

Initialize TIMER
Tempo(0) = 1000 ‘ 1 sec
Tempo(1)=0

PLC_LD var1
PLC_TOFF tempo()
PLC_SET var2

19

PLC_TP

Syntax Operation Function Example

PLC_TP

Variable vector of positions 2 or
UINT or LONG declared in MAIN. In
the case of the compiler LADDER he
thinks the declaration and all
INITIALIZATION.

NOTES:
Not using the compiler LADDER
need to initialize the variable in the
INIT MAIN. Where VARIABLE (0)
contains the millisecond value of
the TARGET TIMER, VARIABLE (1)
must be CLEARED

Activate output for the
time TP. The output is
activated on the rising
edge of the
accumulator.

The output can be any
one of the blocks
PLC_OUT
PLC_OUTN
PLC_SET
PLC_RES

Variable declaration
Var1  var.2
Var2  var.1
Tempo(2) as long

Initialize TIMER
Tempo(0) = 1000 ‘ 1 sec
Tempo(1)=0 ‘ reset

PLC_LD var1
PLC_TP tempo()
PLC_SET var2

PLC_UP
Syntax Operation Function Example

PLC_UP

CHAR or UCHAR variable declared
in MAIN. In the case of the
compiler LADDER he thinks the
statement. The variable must be
initialized with the INIT MAIN
DEFAULT value of the STATE

Turning on the FRONT
OUTPUT RISE of
BATTERY.

The output can be any
one of the blocks
PLC_OUT
PLC_OUTN
PLC_SET
PLC_RES

Var1  var.2
Var2  var.1
Old_stato as char
Initialization STATE

Old_stato=0

PLC_LD var1
PLC_UP old_stato
PLC_OUT

20

PLC_DOWN
Syntax Operation Function Example

PLC_DOWN

CHAR or UCHAR variable declared
in MAIN. In the case of the
compiler LADDER he thinks the
statement. The variable must be
initialized with the INIT MAIN
DEFAULT value of the STATE

OUTPUT FACE DOWN
on the activation of the
ACC.

The output can be any
one of the blocks
PLC_OUT
PLC_OUTN
PLC_SET
PLC_RES

Variable declaration
Var1  var.2
Var2  var.1
Old_stato as char

Initialization STATE
Old_stato=0

PLC_LD var1
PLC_DOWN old_stato
PLC_OUT

PLC_CUP

Syntax Operation Function Example

PLC_CUP

Variable LONG - INT - UINT - CHAR -
UCHAR declared in MAIN. In the
case of the compiler LADDER he
thinks the statement. The variable
can be pre-set at any TASK VTB.

UP counter. The count
is INCREASED if the ACC
is ON

Variable declaration
Var1  var.2
Contad long

PLC_LD var1
PLC_CUP contad

PLC_CDOWN

Syntax Operation Function Example

PLC_CDOWN

Variable LONG - INT - UINT - CHAR -
UCHAR declared in MAIN. In the
case of the compiler LADDER he
thinks the statement. The variable
can be pre-set at any TASK VTB.

UP counter. The count
is INCREASED if the ACC
is ON

Variable declaration
Var1  var.2
Contad long

PLC_LD var1
PLC_CDOWN contad

PLC_CRES

Syntax Operation Function Example

PLC_CRES

Variable LONG - INT - UINT - CHAR -
UCHAR declared in MAIN. In the
case of the compiler LADDER he
thinks the statement.

Reset based on the
contents of the
accumulator counter
the UP or DOWN

Variable declaration
Var1  var.2
Conta long

PLC_LD var1
PLC_CRES conta

21

PLC_CMP

Syntax Operation Function Example

PLC_CMP

Variable to compare LONG - INT -
UINT - CHAR - UCHAR declared in
the MAIN or CONSTANT inserted
directly. In the case of the compiler
LADDER he thinks the statement.

NOTES:
PLC_CMP phase begins for
comparison (in LADDER is not
present) must be followed by one
of the following instructions:
PLC_EQ
PLC_NE
PLC_GT
PLC_GE
PLC_LT
PLC_LE

Comparison of two
variables

Variable declaration
Var1 int
Var2 int

PLC_CMP var1
PLC_EQ var2
(see var1=var2
accumulatore=1)

PLC_EQ
Syntax Operation Function Example

PLC_EQ

Variable Comparison LONG - INT -
UINT - CHAR - UCHAR declared in
the MAIN or CONSTANT inserted
directly. In the case of the compiler
LADDER he thinks the statement.

NOTES:
The education PLC_EQ must always
be preceded by:

PLC_CMP Var1

Comparison if EQUAL.
If the two variables are
the SAME content of
accumulator is set to 1
(TRUE)

Variable declaration
Var1 int
Var2 int

PLC_CMP var1
PLC_EQ var2
(see var1=var2
accumulatore=1)

22

PLC_NE

Syntax Operation Function Example

PLC_NE

Variable Comparison LONG - INT -
UINT - CHAR - UCHAR declared in
the MAIN or CONSTANT inserted
directly. In the case of the compiler
LADDER he thinks the statement.

NOTES:
The education PLC_NE must always
be preceded by:

PLC_CMP Var1

Comparison if
DIFFERENT. If the two
variables are
DIFFERENT the content
of accumulator is set to
1 (TRUE)

Variable declaration
Var1 int
Var2 int

PLC_CMP var1
PLC_NE var2
(se var1=var2 accumulatore=1)

PLC_GT

Syntax Operation Function Example

PLC_GT

Variable Comparison LONG - INT -
UINT - CHAR - UCHAR declared in
the MAIN or CONSTANT inserted
directly. In the case of the compiler
LADDER he thinks the statement.

NOTES:
The education PLC_GT must always
be preceded by:

PLC_CMP Var1

Comparison if AJEURE.
If the variable VAR1
VAR2 is GREATER than
the content of
accumulator is set to 1
(TRUE)

Variable declaration
Var1 int
Var2 int

PLC_CMP var1

PLC_GT var2

PLC_GE

Syntax Operation Function Example

PLC_GE

Variable Comparison LONG - INT -
UINT - CHAR - UCHAR declared in
the MAIN or CONSTANT inserted
directly. In the case of the compiler
LADDER he thinks the statement.

NOTES:
The education PLC_GE must always
be preceded by:

PLC_CMP Var1

Comparison if Greater
than. If the variable
VAR1 to VAR2 is
greater than the
content of accumulator
is set to 1 (TRUE)

Variable declaration
Var1 int
Var2 int

PLC_CMP var1
PLC_GE var2

23

PLC_LT

Syntax Operation Function Example

PLC_LT

Variable Comparison LONG - INT - UINT
- CHAR - UCHAR declared in the MAIN
or CONSTANT inserted directly. In the
case of the compiler LADDER he thinks
the statement.

NOTES:
The education PLC_LT must always be
preceded by:

PLC_CMP Var1

Comparison if LESS. If the
variable VAR1 VAR2 is
LESS than the content of
accumulator is set to 1
(TRUE)

Variable declaration
Var1 int
Var2 int

PLC_CMP var1
PLC_LT var2

PLC_LE
Syntax Operation Function Example

PLC_LE

Variable Comparison LONG - INT -
UINT - CHAR - UCHAR declared in
the MAIN or CONSTANT inserted
directly. In the case of the compiler
LADDER he thinks the statement.

NOTES:
The education PLC_LE must always
be preceded by:

PLC_CMP Var1

Comparison Less than
though. If the variable
VAR1 VAR2 is less than
or equal to the
contents of the
accumulator is set to 1
(TRUE)

Variable declaration
Var1 int
Var2 int

PLC_CMP var1
PLC_LE var2

24

	PLC_CMP Var1
	PLC_CMP Var1
	PLC_CMP Var1
	PLC_CMP Var1
	PLC_CMP Var1
	PLC_CMP Var1

