
Qualitative Analysis for Beginners

(using TAMS Analyzer)

Matthew Weinstein

mweinste@kent.edu

http://tamsys.sourceforge.net/

© 2005 by Matthew Weinstein, all rights reserved

Introduction

This document provides an overview and tutorials for starting qualitative

researchers using TAMS Analyzer (TA).

The first chapter provides a birds eye view of TA and the way it fits into

qualitative research. It is a personal account of doing qualitative research and using

TA to track data and answer research questions. Other people may use the tools in

TA very differently, but this should provide at least one vision of how you might

use this digital tool with your project. To be clear the research I discuss, in the

abstract, assumes a single researcher. TA has multi-user capabilities. Using TA in a

multi-user environment is not simple and is discussed in a different document. The

point of part one is not to teach you “how” to do anything, merely to outline the

ways that TA is used to solve different problems at different stages in a research

project.

The second chapter moves to specifics and talks about the way that coding works.

Coding is the process by which passages in documents are assigned meanings. It

also talks about setting up a project initially. Coding is very flexible in TA. A code

(i.e., a “word” indicating what a passage of a text means) can mark 0 characters, a

few characters, or a whole document.

The third and final chapter of this primer covers analysis, the process of mining a

document that has been coded for information. Some of this information may be

quantitative (e.g., How many times did I use code X?) but most will be qualitative

(What are the examples of codes X, Y, and Z organized by gender of the

interviewee?).

These chapters are in no sense to be taken as a comprehensive description of TA or

its capabilities. When you have completed this introduction you can read through

the user guide and release notes for descriptions of the full extent of TA’s abilities.

 1

Living the qualitative life in a digital age…

…with TAMS Analyzer

Matthew Weinstein

mweinste@kent.edu

http://tamsys.sourceforge.net/

What does it look like to do qualitative research in a digital age? For many qualitative

researchers computers with their number crunching capacities seem anathema as research

tools for uncovering textual meanings, cultures as symbol systems, and practices as

defined in anthropology, ethnomethodology, cultural studies, and other fields engaged in

qualitative studies. Yet computers have been involved in analysis of language since the

1950s and the dawn of artificial intelligence research. There are now numerous programs

available for qualitative researchers including NVivo, Nud*st, MaxQDA, Atlas/ti,

HyperResearch, Qualrus, Transana and many others. I developed TAMS Analyzer (TA)

because there were no packages oriented towards textual analysis and qualitative research

for Macintosh OS X when I desperately needed one in 2002. I have continued to extend

and develop the program over the years. Note that I have not used any other qualitative

packages, and, as a result, TA is a bit sui generis. However, I did use computers for

qualitative research while working on my dissertation in the early 1990s (Weinstein,

1998) I used a programmable word processor called Nisus, an outliner called More for

analysis, and Panorama, a very flexible database good at manipulating large chunks of

text quickly. Mixing and matching programs was important for me then. In 2002, none of

the programs I had used had been updated for the new Macintosh operating system. TA

was my answer. In many ways TA’s design with open, in-text codes, reflects the

heterogeneous way I dealt with data early on. The codes are naked, ugly, visible for

anyone to see, and any program to use. It’s a virtue and a handicap.

Somewhere I read that unlike quantitative software every qualitative package is different.

Skills developed on one package don’t easily transfer to others. The language different

software programs use to describe their operations varies as well. Qualitative research is

rather non-paradigmatic in Kuhn’s sense of the word: we don’t share a common

language/problem model/solution model/world view. That said, when I met with the

creator of MaxQDA recently, we were able to compare features and assess our software’s

various strengths and weaknesses almost instantly. So what you learn here will be

different, at least slightly, from what you would learn with other software, but there are

commonalities as well.

This first chapter introduces how TA works at the most conceptual level, i.e., how it links

to the qualitative research process. This chapter will not have any screen shots and few

tricks. It is about how to think about using qualitative research tools in the course of a

research cycle.

To tell this story I have flattened out the research process. But I think this pattern and

growth in the research cycle will be recognizable to those that have done qualitative

studies with TA and probably similar packages.

 2

I. Phase 1: In the field and on the computer

Most qualitative data sets are defined by 3 types of objects: interviews, observations, and

artifacts. While these can’t be considered comprehensive (surveys, just as a start), they

still dominate those fields engaged in qualitative research projects. Obviously, depending

on the question being asked, the balance of these types of objects will vary. For the

studies I’ve recently become involved in, interviews have often provided the bulk of data.

Digitization starts in the field. Field notes are often typed straight into laptops these days.

Digital video is increasingly what is analyzed rather than the observation notes

themselves. TA is a text oriented package. This doesn’t mean that you can’t use other

forms of data like digital audio and video, but that they are not analyzed directly. Instead

they are linked to a log or transcript using time codes and it is the log/transcript that is

coded and analyzed. TA is very smart about this and can use the time codes to leap to the

important spot in the video or the other direction (move the scrub bar and leap to the

nearest time code in the log).

For my projects I’ve been “taping” my interviews using an Olympus™ DM-10 digital

recorder. I’m a real convert to this equipment. The sound quality, if you use the highest

setting, is crystal clear. It’s also smaller and quieter (100% quiet) than the old recorders,

even those little micro-cassette ones. Once the interview is over I can connect the

recorder to my computer (standard USB cable) and drag the file to my Mac. Now this is a

bit technical but I feel the need to share: the only hitch with what I’ve said is that the

DM-10 saves the files in WMA format (Microsoft™). Luckily there is a tool called

MPlayer which is free and which if you know the right settings converts this to WAV that

then can be turned into an MP3 file using iTunes.1 Both of the last two formats are TA

friendly, it’s just that WAV files are huge, and I have no audio complaints about the

MP3s which are 1/10 the size.

Writing field notes can be done straight into TA. Document-artifacts should be converted

to RTF format to be useful. Microsoft™ Word is the best way to do this, though other

conversion tools exist. As for multimedia files they need to be converted to some format

that Quicktime™ supports (AIFF, WAV, MP3, etc.).

The first phase of my projects involve frequent scene shifts between “the field” and the

computer. At this point in the research cycle I’m using TA to transcribe interviews—TA

has a little transcription machine built into each document window—or to make logs of

video. I’ve also entered any codes, i.e., words or short phrases that name themes, up

front. I’m also adding codes as I see themes emerge while transcribing.

There is another type of decision I’m making as I enter codes at this point. This concerns

the types of independent variables that I will use later on in analysis. These include who

is being interviewed/observed, the times of particular observations or points in the

interview (aka time codes), SES/geography/gender/race or other sociological factors I’m

1 I have been using the command line version of MPlayer which is available through the

Fink project. I type “mplayer -ao pcm myfile.wma” and a wav file is generated from the

wma.

 3

interested in. Some of these should be done as data is entered (the time codes for

instance). It’s just easier that way, and TA has some tools that automate the process.

Others I can enter later, though if I know that a particular type of data is going to be of

interest, I can enter it as I go along. TA has ways of saying ‘in this file the gender is

“male”’ or ‘the city is “NY”’ etc, so you don’t have to mark every instance with that

information. You can also automate this information by telling TA that if “Bob” is the

speaker he is from NYC, is male, Latino, and bald. Any time something is identified as

from “Bob” that other information will be entered automatically. The types of

information I am talking about here I call context codes, since they provide information

about the context for the data (they describe who the speaker is more than what s/he

said).

This identifying of context and data codes continues until I have collected the body of

interviews and observations in my data set, or until the interviews and observations are

not generating new themes. Then it’s time to go deep.

II. Phase 2: Going deep

Phase 2 begins by reading and rereading your (forgive the change of “address”) data and

checking and applying the themes throughout your database. You are adding themes, and

every time you do, you need to return to every document to see where those themes

apply. While not as physically taxing as transcription, this is in some ways the most

tedious work in a qualitative study. The work ends when you’ve stopped adding themes.

I’ve found two tools in TA are absolutely essential in this part of the process. The first is

the definition button, but as more codes (i.e., themes) are added this has to be

supplemented by searches for particular themes/codes. Normally these searches are used

for analysis, but at this point in the process they are used to remind yourself of the

meaning of a code. The search returns a window which lets you page through each

instance of the code applied to a passage of text. Reading the passages you’ve coded a

particular way allows you to inductively recall the meaning of the code. For complex

themes, more than the definition, this gives you clues as to tone/topic/theme the code

was intended to identify.

Once you have coded all of your documents and identified the major themes it’s time to

deepen those themes. Given a theme like “negative behavior” (TA actually doesn’t allow

spaces in code names, so it would probably be negativeBehvior or negative_behavior),

you would want to further classify each passage as to the type of negative behavior. This

part of the process I call reanalysis. Reanalysis involves looking at the instances of a

particlar code to alter your original coding scheme. To do a reanalysis, you do a search

for the code you are interested in breaking down and then lock out most of my editing

capabilities by throwing the software in “reanalysis mode” (hint, it’s on the project

menu). This will keep you from doing anything to your source files that would make

them out of synch with your search results. Next, you’ll sort through the results of that

search and try to identify the key types of “negativeBehavior”. If one type is name

calling then you will “mark” the examples of name calling and “recode” them as

“negativeBehavior>nameCalling”. The “>” is TA’s way of indicating that nameCalling

is a subtype or subcode of negativeBehavior. You can add subcodes to subcodes by just

naming your codes with another level of the “>” sign. You would then continue marking

 4

the next type of negative behavior (throwingSpitWads) and doing the same thing.

Eventually “negativeBehavior” turns into a whole family of types of “negativeBehavior”

all under a top level with that name.

The real challenge here is to try to categorize each instance that you come across of your

top level code of interest. Usually some are too vague to be classified and are thrown

into miscellaneous subcode, but you want to limit the number of these, if possible.

For some projects this may be enough. You have now created a typology for the themes

you’re studying. By repeated reanalysis you can add layers of nuance to each code. You

can also create very sophisticated counts of these codes and subcodes for reports. The

counts are designed to be exported to Excel and to be analyzed using pivot tables and

other advanced features.

However, for many projects, there is a need or desire to think big again, or to think

outside of your initial coding scheme, and that is where phase 3 begins.

III. Phase 3: From deep to broad

After breaking down codes into subcodes and subcodes of subcodes, you are ready for

the real analytic phase. By now you have moved from “raw” data to “cooked” data, data

that signifies. The third phase involves massive searching of your data and, using a

unique feature of TA, searching searches, winnowing down the results of searches until

you find exactly the data you need and the pattern of codes in your data. TA provides

both search for codes and search for data (string searches). It also supports a very

powerful, standardized formatting language called regular expressions (regex) for

specifying very complex lexical patterns. Note that while TA provides tools to bookmark

data, search for significant patterns of code and text, and to combine searches in a variety

of ways, e.g., to find the intersection of searches, the real art of finding patterns within

your data largely depends on your imagination.

Eventually, you may come to find that families of codes also have relations to other

families of codes, or codes to codes not in the same family. These non-familial groupings

of themes are called “code sets” in TA. Code sets are simply arbitrary groupings of

codes, ones that are related and unrelated. Code sets can be named with full sentences;

you don’t have the “no spaces” restriction of code names. In my work, I have found that I

use code sets to represent ideas that I want to test my “well coded” data against. For

example, in a recent study of pre-service teachers using science fiction to teach science

content, I started to identify which of the codes I created were related to teaching science

for citizenship (rather than as a way to make more scientists). These codes were in

various code families, but all related to issues like empowerment, equity, health and

environment. I created a set of those codes, and was able to determine that there was no

particular gender/sex bias to embracing those themes. I had not done gender analysis of

this data prior to this, but it took about a minute to tell TA what the sex/gender of each of

my interviewees was (this was done using an “if” command in TA: “if” the interview is

with “Bob” sex is male, “if” the interview is with Sally, sex is female). Then, having

created the code set, I ran a search of all my coded passages (about 10 seconds), and then

asked for a concept map (a “graph”) of the relation of “sex” to “social issues”. I also

looked at how social issues broke down by each of my interviewees. The point is that I

can ask questions about these large, ad hoc, cross familial categories by getting either

 5

maps or counts of codes or other variables (context codes) I create against these code

sets.

This has described a pretty typical research cycle using TA. There is one more part of this

that deserves a comment or two, and that is how do you get images out of TA that

communicate what you have discovered.

IV. From analysis to print

Having done the analysis, reanalysis, and code set analysis you will want to share your

findings with the “world” (i.e., the other 5 people as fascinated by your topic as you). TA

has a wide variety of reports including code counts, cross counts of codes (how many

code X and code Y apply to the same data), counts or concept maps (graphs) of the

relation ships among codes, context codes, and code sets. Most of the table style graphs

can be saved as a tab delimited text files, perfect for Excel™ or Word ™, the code set

report is generated as an html file which can be copied and pasted right into Excel™ to

generate sums, averages, etc. The concept-map style graphs are generated through a

program called Graphviz.app which can “export” graphs in many graphic formats (tiff,

jpg, etc.).

To be honest, most of the graphs generated by TA I use for analysis not for presentation.

I do count on TA to find the exact quotes I want to use in my papers, and TA allows me

to copy the quotes without all of the coding information, which my readers don’t

necessarily want to see. When I have needed a graphic (a pie chart of code counts, for

instance), I’ve saved the counts to a text file and used Excel™ to do the actual drawing

rather than TA. Remember that one of the inclinations behind TA’s design was to make

sure its data was available for other programs to do some of the heavy lifting.

V. Conclusion

My idea behind this short piece was been to show how a researcher might use software to

make sense of qualitative data in a digital age. For TA it means keeping track of lots of

themes, and sub-themes, and uber-themes, and cross themes. As with many digital issues,

the payoff comes with scale. If you’re analyzing one short interview, Post-Its™ are

probably the way to go. If you’re dealing with 3-100 interviews, Post-Its™ are out of the

question, and it’s time to use TA or one of its cousins.

Now for the details: how do you go about creating codes, importing or creating

documents, linking media files to logs, and search for coded information. The basics will

be described in the rest of the “For Beginners” series, the details expanded upon in the

user manual and release notes.

Recap:
Phase What I’m doing TA Feature
1 Creating a project

Generating initial themes
Transcribing
Importing documents

New project
Define codes
New & import document
Transcriber
On-the-fly code creation

2 Coding
Recoding

Define codes
On-the-fly code creation
Search for codes
Selection of codes in
searches
Near selection in searches
String searches
Code definition
Add code
Recode
Data comparison table

3 Code sets
Reporting

Code sets
Search for codes and code
sets
Graph reports
Code counts
Data comparison table
Summary reports

 6

 7

Coding for Beginners with TAMS Analyzer: A tutorial

Matthew Weinstein

mweinste@kent.edu

http://tamsys.sourceforge.net/

(updated for TA 3.0)

This is not comprehensive documentation of the TAMS Analyzer. It is more

of a tutorial, or actually the necessary nuts and bolts to get going on a

qualitative research project. From this documentation, users can read the

documentation for the program and the coding system.

I. What is coding?

Coding is simply a way of transforming raw information into data. In

qualitative research (i.e., research relying primarily on interviews,

observations, document collection) analysis proceeds by sifting through

these raw (or if transcribed, semi-raw) pieces of information and

deciding what each portion represents. In even modest size projects this

can produce what is known as a data burden, i.e., too much information

to be comfortably handled. Coding is one way to handle this. Using

computers, sticky-notes, or scribbles in margins (and much more

complex systems have been devised) relevant passages are “coded,” i.e.,

labeled as to what that passage represents. Single chunks of text should

be able to receive multiple codes, and in most modern coding systems

they can receive various refinements to those codes, i.e., they can be

subcoded (this isn’t just an example of X--whatever that may be--but a

subtype of X called Y; in TAMS the code would be X>Y; the “>”

symbol is used to indicate various levels of sub-coding). An example

would help....

Consider a project involving studying the sounds that children think

animals make. We might begin to collect songs and rhymes that have

animal sounds in them as well as interviews about animal sounds. Of

course, Old MacDonald would be part of our data. Take just this verse:

Old Macdonald had a farm EIEIO

and on his farm he had a pig, EIEIO

with an oink oink here and an oink oink there

here an oink, there an oink, everywhere an oink, oink

Old Macdonald had a farm EIEIO

 8

We would like to mark “oink, oink” as the sound a pig makes. Now we

may have a lot of codes and collect a lot of different information,

including a lot of peripheral information about what children think

animals are, so we need to design our code system carefully so we’ll be

able to keep track of all the information we’ll have coming in. For our

study, whenever we have an example of a sound we’ll mark it with the

code “sound” and then a subcode for the type of animal it is. So we

would want to mark “oink, oink” with (and I’m using TAMS sytax here;

if you use a different system this would be different) with “sound>pig”.

If we get information about what children know about pigs we will mark

it “idea>pig”. How we do that will be described later, but it could be

done a lot of ways: sticky’s hanging off the side with idea>pig on it, for

instance. Computer coding usually involves selecting the text and

somehow picking the code from a list.

II. What is TAMS?

TAMS, which stands for text analysis markup system, is simply a way of

indicating in texts what the codes you’re using are. It looks a lot like

html and xml, which are languages used for making web pages, and I

certainly was influenced by those ways of marking up text. The idea was

to make a system that was easy to use; easy to see; and flexible enough

that it could be done with any number of tools. Before I wrote TAMS

Analyzer, for instance, I used a word processor for coding and a small

program (still available at the TAMS website) to pull out the information

I needed; then I used programs like Excel to do the actual analysis of

that data.

To mark up text you surround the part of the text you are interested in by

“tags” which have in them a “code.” Together they look like this:

{mycode}. To indicate the end of the section of text you’re interested in

you put another tag with a “/” in front of the code name: {/mycode}. So

in our animal example we would “type” into the text “{sound>pig}”

before the words “oink, oink” and “{/sound>pig}” after those immortal

words (oink, oink). Now that text has been coded! It would look like

“{sound>pig}oink, oink{/sound>pig}” This means in TAMS that “oink,

oink” is an example of sound subtype pig. You could do it with any

wordprocessor!

III. What is TAMS Analyzer (aka TA)?

TAMS Analyzer was my attempt, after using TAMS for a while, to

create a more complete application for coding, searching for codes, and

 9

recoding (going back through and adding levels to the codes). TA is still

not the whole megilla, it doesn’t have graphing, for instance. For many

projects you will still want to save the results and use Excel or other

programs (Panorama is a wonderful database for this sort of analysis) to

do the more refined counting and graphing of results; but TA can take

you at least 4/5 of the way there! For many simple projects it may be all

you need.

IV. Starting TA and understanding the parts

When you first run TA you will see the “New project” creator:

.

Figure 1. New Project Creator

Using this you pick the location and give the name to the new project.

Do not use any “extension” when entering the name. (1) For this tutorial

call it “Children’s songs”. (2) Before you click create determine where

tams should save this information by using the browse button to pick the

folder where you want your project saved. Finally, because this is a file

we will work with throughout the tutorial, let’s add the project to the

work menu. (3) Click the “Add to work menu” check, and (4) then click

the create button.

You will notice that you have one very complicated window. It is called

the workbench or project window. Every research project you have has

to have one of these. The file associated with this window (it has the

extension xtprj for XML Tams Project) contains project wide

information like the location of your interviews and other files as well as

the codes (which will be explained later) and their definitions. Note that

the Project window will save itself as changes are made!

 10

A. The Workbench window

The workbench or project window ties your files together. The

purpose of the workbench is threefold. This is the window you use to

define your codes. It is also the window where you can put together

multi-file searches. Finally, it is the window that allows you to save

and recall your whole project (a topic we wont explore in this

introduction; see the documents for a brief discussion of saving

projects)

The info tab is used for

setting information for

multi-user projects

The Files tab has opetions for add-

ing files to projects, opening exist-

ing projects, and assembling

multifile searches

Use the search tab for
mining the information you’ve

coded, for autocoding,

and otherwise exploring your

data

Define codes allows you to

create, define, and set colors

for the codes you use in your

project

Code sets provides a

means to group codes

together into larger themes

Figure 1. The Workbench

We will begin by clicking on the file tab so we can create a new

document in our project. The workbench will then look like this:

 11

The left hand panel

and buttons are for

managing the files in

your project (interviews,

field notes, transcripts, etc.)

The right hand panel and

buttons are for managing the

“Search list”, i.e., the list of files

that are examined when you want

to analyze the pattern of codes

in your text

The init button is used

to designate, which file

in the left hand panel

is the first file searched.

These buttons are used

to add files to and

remove them from the

search list and

These are used to share files

in multi-person projects

Figure 2. The Files Tab

B. Document Windows

To make a document window you need to click the new button on

the project window. The new button is right over the “Files” list

view on the right side of the workbench window, under the dividing

line:

 12

Figure 2. The New Button On The Workbench Files Tab

Makes Blank Documents Windows

Click the new button, and you will be prompted for a name. Type

MacDonaldsFarm:

Figure 3. Naming Data Files

Once you click “Ok” you will see an almost blank document

window. Starting with TAMS Analyzer 3.0, the window actually

starts with a little bit of helpful text at the top of the window.

Leave it there and start your data below the text in braces.

The document window is a sort of specialized word processor (or

text editor) designed for coding data.

Here is my guided tour of the document window: In document

windows there is a toolbar running across the top which is where you

 13

can put text and codes you use a lot. The document window toolbar

also has a button to move the workbench to the front and to save the

current document. Underneath this are two tabs, like those for a

rolodex. One says edit, the other says search. We’ll just work in Edit

mode for now, which is the one that the document window starts in.

The other tab is for searching for data in this particular file.

The Edit pane is divided (for practical purposes) into two halves: the

left side which has buttons and fields for managing codes (well,

there’s one button here which toggles the ruler, but everything else is

about codes on the left side of the window. On the right side is a big

pane which is where you can enter your text. (Note: this was

written before 2.41 when an additional set of buttons was added

to the left side of the window. While everything in this

documentation holds, you do have to overlook the “media

player”: a sort of built-in transcription machine which has

buttons labeled +, <<, >, ^ and v. To read more about the media

player see the Audio-Visual How To in the How Tos folder.)

 14

Coding side of the
document window where
new codes are added and
old codes are listed...

Text area where you type in your
data (or import it from another
word processor). TA can use both
rtf and text documents.

Media (audio and visual)
control panel/player.

Figure 4. The Document Window And Its Parts (Edit mode)

The buttons are worth a little explanation. The ruler button toggles a

ruler in the Text Area (the right hand side), the other five buttons

deal with codes.

 15

Type in a new code

here and

press the “New”

button

Existing codes will be

listed in the panel

here

Figure 5. Adding A New Code Using The Button Panel

Code to toolbar: This button will take whatever code is selected in

the code list and make a toolbar button for it... Makes it easy to

access codes you use a lot.

Def: This button will pop up a definition of the code in a window, to

remind you what your codes meant when you first used them

Select +: One of the most powerful and almost hidden features of

TAMS Analyzer is the “hot code list.” This feature is most useful

when you’ve created dozens or even hundreds of codes. To search

for a code so you can apply it, just type some words into the coding

field (where “sound>pig” is) and hit return. Only those codes that

contain those words in the code or definition will be listed in codes.

If you want to expand the list of shown codes, fill in a different word

into the coding field and click “Select +”. The “+” here really means

more (as in show more codes). To see all of your codes delete any

text in the coding field and hit return.

Code: Applies the selected code to the selected text. Rarely used.

Normally you would just select your text and double click the code

name in the code list.

 16

New. Obviously my program isn’t telepathic, it has to learn the

codes from you to place in the code list. To add a new code you type

it in the little window under the button and press “New”. (See figure

2)

Once a new code is added it will appear in a list under the word

Codes (in the above window, no codes have been added to the

project yet). As we will discuss in the next section, the general way

you code text is by selecting the text you want in the right side of the

window and double clicking the code from the list on the left side.

But this will be handled in the next section: my purpose here is just

to point out the anatomy of this window.

C. Other windows

There are a couple of other important windows which I’m not going

to talk about yet... The most important of these are the windows that

contain your “results”, by which I mean the results of searches for

relevant data. This will be discussed in Analysis for Beginners with

TAMS Analyzer, a document also included with the program.

V. How do I code in TA?

A. Adding codes with the project window

We’ve seen one way to add new codes: select some text, fill in a

code into the code field, and then click the new button. Sometimes,

however, a researcher comes to a project with codes already in mind

and needs to enter them, even before transcribing an interview and

applying the codes as you find them. One way to add such “a priori”

codes is through the define codes tab on the Workbench. To find

this, move your workbench to the front and click on the tab called

“Define codes”. The workbench should now look as follows:

 17

Figure 6. Creating New Codes

The name of our first code will be sound>goat. We’ll enter that next

to “Name.” In the big box underneath the name box enter the

definition: “Marks text showing what children think goat sounds

should be”

Figure 7. Filling In New Codes

Let’s enter a second code. Click the “Save/Clear” button and add a

code “sound>dog” with the definition “Marks text showing what

dogs sound like to children”.

 18

When you are done typing the definition, either click a different tab,

or press the “Save/Clear” button. The program will save the

definition in the project window,

B. Adding a new code from the document window

Let’s code “Old MacDonald’s farm,” or at least one verse so that we

get the idea. This reiterates what we talked about initially with the

“New” button. Make sure you have an open document window. If

you don’t already, Click the “New” button on the workbench.

This is the new button you should be
looking for, not the one in the code buttons.

Figure 8. The new button to make a new window

This should provide a blank window.

Type the pig verse into the window:

 19

Verse 1:

Old Macdonald had a farm EIEIO

and on his farm he had a pig, EIEIO

with an oink oink here and an oink, oink there

here an oink, there an oink, everywhere an oink, oink

Old Macdonald had a farm EIEIO

This will go on the right hand side. Let’s now assign the code

“sound>pig” to the “oink, oink”. Select “oink, oink” and then on the

left hand side type in “sound>pig”:

Figure 9. Creating a new code

Then click the New button. This is the one in the button panel. A

dialogue will drop down asking for the code’s definition.

 20

Figure 10. Adding a Definition

Clicking the Ok button will have 3 effects:

1. This code and definition will be added to the code list in the

workbench

2. The code list on the left of your document window now has a new

code in it (sound>pig) and

3. “oink, oink” has now been coded:

 21

Two of the

effects of the

New button

Figure 11. The Effects Of The New Button

C. Using existing codes

Once you’ve taught your project a bunch of new codes applying

existing codes is a breeze. Simply select text and double click the

code from the code list (that’s the list of codes on the left side of

each document window). We could just keep selecting “oink”’s for

instance and double click sound>pig from the left side of the

window.

With a second code “sound>cat” the document might look like this:

Old Macdonald had a farm EIEIO

and on his farm he had a pig, EIEIO

with an {sound>pig}oink, oink{/sound>pig} here and an

{sound>pig}oink, oink{/sound>pig} there

here an oink, there an oink, everywhere an {sound>pig}oink,

oink{/sound>pig}

 22

Old Macdonald had a farm EIEIO

Old Macdonald had a farm EIEIO

and on his farm he had a cat, EIEIO

with a {sound>cat}meow, meow{/sound>cat} here and a meow,

meow there

here a meow, there a meow, everywhere a {sound>cat}meow,

meow{/sound>cat}

Old Macdonald had a farm EIEIO

While this will be dealt with later: codes can be overlapped and

nested. Both of the following are perfectly fine. In the following

example I’ve also coded the place that children think animal lives

with a setting code, here subcoded to setting>rural:

{setting>rural}Old Macdonald had a farm EIEIO

and on his farm he had a cat, EIEIO

with a {sound>cat}meow, meow{/sound>cat} here and a meow,

meow there

here a meow, there a meow, everywhere a {sound>cat}meow,

meow{/sound>cat}

Old Macdonald had a farm EIEIO{/setting>rural}

Here, the sound code (sound>cat) is twice coded inside a stretch of

setting>rural.

D. Recalling the definition of a code

When you have a lot of codes and sub-codes (pig is a subcode of

sound in our example) it is often hard to remember the definition you

gave a code. No problem. Click one time on the code you’re curious

about from the code list and click the “Def” button. There’s one on

the workbench and on your document window. Your definition will

pop up:

 23

Figure 12. Code definition

E. Working with codes

As has been noted codes can be overlapped and nested. Furthermore,

related codes can be nested and overlapped. There are no problems

for instance with

{a}This is my {a>b} text {/a>b}{/a}

even though a>b is a subtype of a. That’s fine. From TAMS point of

view they are as different as pickles and tomatoes. That doesn’t

mean that codes can’t cause trouble; they certainly can. See the

section on “Problems with codes.”

There are several tools that make working with codes easy. These are

on the Coding menu. Often while coding I find that I want to

relocate the beginning or end tag. I’ll read the next paragraph and

realize that should be included in the coded passage. Start by

selecting the code. One way to do that is to click in the middle of the

tag and pick “Find current code” from the menu. That will select the

whole tag. Now you can use the mouse to drag and drop the end tag

to a new location.

You may also want to find the other end of a code pair. By a code

pair I mean the front code (that is the one that looks like {a}) and the

back code (the one with the slash: {/a}). Just click in the middle of

one end and pick “Find paired code” from the Coding menu.

 24

Sometimes you may want to just move through the document code

by code. This is easily done with repeated use of “Find current code”

and “Find next code”.

Deleting code pairs is also something that TA makes easy. If you

have just inserted the code by double clicking or using new, you can

pick undo from the edit menu (though for new codes, this will not do

anything to the code list, only to the document). Alternatively you

can click on one of the tags (i.e., anywhere inside the braces) and

pick “Delete code pair” from the Coding menu.

Finally, all of the codes in a selection of text can be removed by (1)

selecting the portion of text you want stripped and (2) picking

“Remove codes from selection”.

F. Problems coding

There are a number of problems with coding that can crop up; and

TA provides two tools to help you catch these problems.

1. Broken up codes: sometimes the mouse slips and tags can end up

in tags: {setting>ru{sound>cat}ral}. Here {sound>cat} has

accidentally been inserted inside of {setting>rural}. This will not

make any sense to TA. If you pick “Check for pairs” this will select

problem tags, basically tags that don’t seem to have an end or

beginning. The one it shows you probably is not the problem tag, but

it will be near the problem tag. It is a clue as to where the problem is.

For some reason, TA can’t find it’s other end.

2. Incomplete codes: Sometimes in working with a document, a tag

at one end or the other will get deleted. The solution is the same as

for problem #1. Choose “Check for pairs” off of the Coding menu. A

tag will be selected if there are problems (i.e., if there are not an even

of beginning and ending tags). This is a clue to the problem; for

some reason, TA did not find a match for this.

3. Nested codes: Sometimes the same codes can end up inside each

other. This might be represented by the following situation:

 {a}Some text{a} that I’m {/a} trying to code {/a}.

 25

This is not the sort of nested code that works with TA. It would be

fine if the inner code was any code including a subcode of a; if it

were a>b, for instance. The problem is that TA can’t figure out

where the passage ends, and it will choose the shortest passage. The

phrase “trying to code” is not seen by TA. These problems can be

found by picking “Check for nested” from the Coding menu.

The moral of the story is clear, run “Check for pairs” and “Check for

nested” often.

G. Saving

TA does not automatically save document windows. Save often.

Remember: result and document windows you must save on your own.

VI. Concluding comments

This is only the “A’s” of the ABC’s of coding. Once codes are added

as described, you will find them available to every file in your

project.

TAMS provides all sorts of additional tools for working with codes.

There are also different types of codes, to start with. There are codes

that describe entire documents (this file is an interview), there are

codes that describe a section of a file (this is bob talking), and the

codes we’ve been working with, which are called data codes, and

which identify themes. See the users guide.

Some of the things that you might pursue through the users guide,

exploring the program preferences, and continuing to work with your

data are:

• How to assign colors to different codes

• How to group codes together into code sets

• How add comments to a particular coded passage

• How to use results windows to add layers of codes to already

coded passages.

 26

 27

Analysis for Beginners with TAMS Analzyer: A tutorial
Matthew Weinstein
mweinste@kent.edu

http://tamsys.sourceforge.net/
(updated for TA 3.0)

1. What you need to use this documentation

At this point you should have read through document called Coding for Beginners. If you
have, hopefully you know the difference between workbench windows and document
windows, you know that I use project windows and workbench windows interchangeably
and can now create documents, enter data, create data codes, and apply those codes to
sections of your document.

We'll be using a modified version of the Old McD. from Coding for Beginners for this
analysis (which is merely to introduce you to the basic procedures for analysis):

{!context verse}

{verse}1{/verse}
{setting>rural}Old Macdonald had a farm EIEIO
and on his farm he had a pig, EIEIO
with an {sound>pig}oink, oink{/sound>pig} here and an
{sound>pig}oink, oink{/sound>pig} there
here an oink, there an oink, everywhere an
{sound>pig}oink, oink{/sound>pig}
Old Macdonald had a farm EIEIO{/setting>rural}

{verse}2{/verse}
{setting>rural}Old Macdonald had a farm EIEIO
and on his farm he had a cat, EIEIO
with a {sound>cat}meow, meow{/sound>cat} here and a
meow, meow there
here a meow, there a meow, everywhere a
{sound>cat}meow, meow{/sound>cat}
Old Macdonald had a farm EIEIO{/setting>rural}

This version of our old data introduces some very “not for beginners” ideas. The first of
which is the metatag. A metatag is an instruction to the tams program. It’s the way the
researcher specifies how TAMS should treat the data. Metatags are always surrounded by
braces “{“ and “}”, just like codes, but begin with an exclamation mark (!). Our new
document begins with a critical metatag: repeat.

You should find the project all set up in the documentation folder.

 28

A. Context metatag
The context metatag tells TA that the following list of codes are different than normal
data codes. These codes are used to indicate information that gives context to the data
codes rather than the data codes themselves. In interviews the speaker’s name might be a
good context code. In field notes the time index, or location, or observer might all be
context codes. We are telling TAMS that when it returns information about our data we
want it to include this other information (who is speaking, the time code for field notes,
or in this example the verse #) with the relevant data. This ability to attach information to
each other is one of the real strengths of TAMS, but you can see that it is not exactly
coding for beginners. Note that the context values have to precede the data that they are
coding (actually if you read the user guide you can structure a document so that you can
assign the context codes at different points—but for unstructured documents what I have
said is true: the context values need to be set before the data codes.) Note: For people
who have read earlier versions of this documentation, !context is synonymous for
the older code !repeat.

Examples:

1.

{!context speaker}

{speaker}bob{/speaker}: {identity}this is me{/identity}
{speaker}mary{/speaker}: {identity>negation}no it's not{/identity>negation}

2.
{!context speaker, time}

{time}110{/time}
{speaker}bob{/speaker}: {identity}this is me{/identity}
{speaker}mary{/speaker}: {identity>negation}no it's not{/identity>negation}

{time}225{/time}
{speaker}bob{/speaker}: {identity}I can prove it{/identity}
{speaker}mary{/speaker}: ok do so

2. What is analysis?
Analysis is a process of finding out what information is present in your data and what that
information means. Practically, it is the process of taking codes and finding out what
pattern they form and testing meanings for that pattern (through searching for negative
instances, for instance). To find these patterns in TAMS you ask the program to turn
your interviews into tables that you can use to count instances of particular codes (or
collections of codes) etc. In essence, what TAMS is all about is taking those codes and
turning your interviews, field notes, etc., into a database (or spread sheet) that you can

 29

browse, sort or further search in a variety of ways. It is this culling through the data
which is the heart of analysis.

3. Searching, sorting, selecting, and comparing: the grand plan
At the beginning of your analysis, after you have coded your documents, there are three
essential operations you need to master: searching, sorting and selecting. In addition you
need to be able to generate tables that represent your searching, selecting and sorting
operations. That is what this tutorial will concentrate on. When you have a comfort with
these four operations you should go on to explore data sets, autosets, and set operations.
But those topics are not for beginners.

4. Searching
Searching is the procedure by which you take your coded data and turn it into a nice
table-like database/spreadsheet. In this tutorial we will use the workbench for searching;
though each document window has an individual search tab that you can use to find
information just in just that document. The steps for searching for information are easy
enough: specify a search list (which documents should the program look through),
specify search criteria (do you want to find just one code or a series of codes, or all your
coded passages?) and press the search button. This will give you a “results window,” i.e.,
a database/table of the passages that meet the criteria you established.

A. Creating a search list
First we have to indicate what documents our program should search through. Often we
have lots of documents in a project that may represent searchable aspects of our work as
well as other items that we do not want to search. To create a search list we use the “Files
Tab” which contains a list of files in our project, and use the buttons in the center of the
workbench to move items from the file list (the list of the documents in our project) to the
search list (those that TAMS should search). If you want all of your documents brought
over use the >> button. If you want to empty the search list of all documents use the <<
button. Otherwise click on one file in the file list (that ‘s the left hand list at the bottom)
and click on > to add it to the search list. If you want to remove a file click on it in the
search list and click the < button.

You can also change the order of files to be searched by using the ^ and v buttons on the
left hand side of the screen.

 30

The File List The Search List

Buttons to shuffle the
order of files in the Search List

Buttons to add and remove files
from the Search List

Figure 1: Assembling A Search List On The Workbench in the Files Tab

For our project (included with this documentation), we have one file in the file list. We
need to add that file, “oldMacD.rtf,” to the search list, so click on it on the left side of the
project window and press the button labeled “Add >” to add it to the list of files to be
searched.

B. Executing a search
We have our search list now; we need to tell tams what to search for. This we do through
the “Search” tab of the workbench window. Our first search will be what is called an
“unlimited” search, meaning we’re not putting any limits on what data is returned: we
want it all. This will demonstrate how TAMS turns raw stuff (interviews) into tables. To
do an unlimited search make sure that the field marked “Search” is empty, that the pop-
up menu underneath the check boxes says “Simple” and leave the “raw” box checked and
the other two unchecked and press the button marked Search.

 31

Figure 2. TAMS Prompting for a Result File Name

TAMS will now prompt you for a name for your search. Just leave the field blank, don’t
touch the “Temporary” check box, and hit the “Ok” button. This will automatically create
a temporary result file, i.e., the next time you run TAMS it will throw out these results.
This is typically what you want. Most results are exploratory and are not intended for
permanent storage. If you do want to save the results permanently you can use the File-
>Save as… option to give the file a real name and making sure that “Temporary” is not
checked. That way you can keep the results file.

Figure 3. A Results Window

 32

What you get is a results window: This is the window that lets YOU analyze your data.
There are a lot of parts of a result window, so briefly:

1. There is a panel of buttons that you can configure and by default includes buttons
for taking you back to your project window (Workbench), back to your document
windows (find record), and for refreshing this window if one of your documents
changes among other functions

2. Then is a status panel which gives you information about your results. It tells you

how many records are showing, a check box which tells you whether any of your
documents have changed (which means you should hit the refresh button) and a
description of the data you’re seeing. In this case it tells us that we have done an
unlimited search. At the far right side is a little button that is used for doing
“Select near” analysis: i.e., give me all examples of people talking about pigs near
(within 5 lines or any definition of near you develop) people talking about goats.

3. Below the status panel is a large pane that shows us the data of the selected

record. To select a different record, click on a different row of the table below.
This is the browser pane.

4. Finally, occupying the whole bottom of the window, there is the table of records:

one row represents one passage of text that met the criteria we asked for.

A simple, unlimited search returns a row for every coded passage in our data. If a section
of text has two codes: “{code1}{code2}This is my text{/code2}{/code1}”, for instance,
that text will appear in two different rows in the table of records, one for code1 and one
for code2 (yes, this might mean that there is redundancy. A non-simple search removes
the redundancy and returns one row for every stretch of text surrounded by codes (no
how many codes are embedded in that text, but you lose information that way).

By clicking on one of the rows you can use your up and down arrow to browse through
your data, examining the passages in the browser pane. If you want to look at one row of
the data in its original context double-click the row.

Finally, it is worth examining the columns given to you in the table of records. The first
column is a simple numbering of the shown records. Next will appear all of your
universal and repeat values. Here we can see which verse each coded passage came from.
If we had an interview we could see who was speaking. Next comes the code of the
passage, followed by the data, followed by comments we’ve attached to the codes
(another non-beginner function), the name of the coder if you are using multiple coders,
the name of the document, followed by the number of characters into the document that
the passage started, and finally the initials of the person who has checked out this
document, which only applies to multi-researcher projects. The columns that tams creates
always start with the “_” (underscore) character.

 33

Sorting is very easy at this point! We can sort the data just by clicking on a header and
pressing the sort button. This is not the best way to sort information though, a subject we
will address in a future section.

C. Searching for specifics

There is a lot that can be done in unlimited searches, and more often than not that’s what
I use to explore my data. Often however, the researcher wants to see only a single code or
a few codes. While that is possible to do in an unlimited search (see the section on
“selecting data”) it’s easier just to search specifically for the codes of interest.

The easiest way to search for a specific code is to simply double-click the code from the
list of codes on the workbench. So if we want to see all of the sections of text coded as
sound>pig we could double click sound>pig from the list and hit the search button. Then
only the sound pig records would appear in the results window. To clear the search field
click the button called “Clear” on the work bench.

1. Double click from this
code list which you
want to search for...

2. The code will automatically
be entered as the search string

3. Then press
the search
button

This area is used to
modify the list of codes to those
that you are most interested in

You can examine the definitions
of your codes by selecting the code
and clicking this button.

Figure 4. Searching for a Single Code

 34

You could have also just typed the name of the code into the box labeled “Search:”

What If you were looking for either sound>cat or sound>pig? Simple:

1. Make sure that the Search: box is empty by pressing the “Clear” button.
2. Double click sound>cat off of the list
3. Type in a comma and a space after sound>cat in the Search: field box.
4. Double click sound>pig.
5. Press the search button

Alternatively you could have typed in “sound>cat, sound>pig” into the search box with
the keyboard, and then pressed the search button. You could keep adding commas and
different codes. If you wanted to search for three codes you could type “sound>cat,
sound>pig, setting>rural”, for instance.

The codes sound>pig and sound>cat are part of a family of codes called sound. If we just
look for sound we will get everything that is in the sound family including anything
labeled sound, sound>pig, sound>cat, sound>cat>persian, etc. If I only want to look for
those things that are sound and not sound>cat, etc., I have to click the “Exact” box under
the search. Otherwise TAMS assumes I want the whole family.

Finally, and this is almost a beyond beginner item. If I want passages that have two
codes, i.e., the intersection of coded passages, I would need to use a plus sign between
the codes. In other words if I want to see the part of my document that is sound>pig and
setting>rural at the same time I would type “sound>pig +setting>rural” into the search
field.

If you feel comfortable with all of this you can learn a few other tricks to searching by
clicking the search tab on a document window and looking at the Help box.

5. Sorting
Finding information is the first part of analysis. We’re half done with the topic of finding
information, but before continuing I want to offer as an interlude some notes on arranging
information. This is the art of sorting, and TAMS can do very complex sorts. While
beyond this tutorial, TAMS can also remember sort orders and use them in macros that
are very powerful for finding key information across searches.

I’ve already noted that a simple way to sort is to click on a column in a results window
and hit the sort button. The problem with this method of sorting is you have no control
over the type of sorting that the program is doing. The more powerful sorting tools are
under the “Results->Sort up” and “Results->Sort down” menus. These allow you to
control the direction of the sort (Should A or Z be first? If A is first you are sorting up; if
Z is first you are sorting down) and allow you to nest sorts, e.g., first sort A-Z on one
column and then sort A-Z on a different column. That way you can sort by file name and
then sort by the codes; the result will be all of the codes sorted by file name!

 35

Alternatively, you may put three or four documents in your search list and then want to
see how many documents use each code. So you want to sort by the codes and then sort
within each code by document. Specifically you would click on the column with the
header _code and then pick “Results->Sort Up->alpha” (i.e., alphabetically) Then you
would click on the header of the column labeled _doc and pick “Results->Sort up->alpha
within” The word within means keep the first column sorted appropriately, but rearrange
items that match in the first column according to the currently selected column.” You
could sort by any number of columns within each other. If you want to start over, just
sort NOT within the others. Just pick “Results->Sort up->alpha” or whatever item is
appropriate.

Figure 5. Column _code is Now Selected for Searching or Selecting

TAMS can sort alphabetically, numerically either by integer or real (floating point)
comparison, by date (though you must pick the format first by picking it from the
Results->Sort options…->Date format menu item first—it’s best if there’s only one date
format in a project), and by code. This latter type of sort is really not part of a beginners
tutorial, but just so that you know, if I set the code level to 1 (by picking the “Results-
>Sort options->Code level” dialogue) sound>cat and sound>dog will be taken to be
identical for the purposes of sorting since they match at the FIRST (this is the meaning of
code level 1) level of codes. Picking code level 2 means both level 1 and 2 must match.
Ok, that’s for another lesson.

Now you can organize your data as well as find it!

6. Selecting
The third type of operation you need to know about is selecting. Selecting can be thought
of as finding information inside of a search. It’s a way of searching searches; or better

 36

stated, searching results files. Remember that a results window is a fairly complete
database, and a good database should be searchable. The terminology is confusing
because selecting also refers to the way that we pick things on the screen with our mouse:
select column _code, select the first field, etc. I’ll try to use “pick” instead of select for
the latter type of operation.

Let’s take as an example of finding how many sound>cat codes there are out of the total
number of coded passages. To start with, do an unlimited search: Go to your workbench
and press the clear button and then the search button. You should now have a result
window with one line for every coded passage in the document: one line per code.

We can see that we coded 7 passages not counting our repeat codes by looking right
under the buttons on the results window:

Figure 6. We found 7 coded passages (and all 7 are showing)

Let’s find the sound>cat codes. Pick the _code column by clicking on its header. Then
pick the Results->Select… menu option:

Figure 7. Picking Select…

 37

This provides a dialogue box into which you can type the phrase you are looking for:
sound>cat.

Figure 8. Selecting “sound>cat”

After clicking OK only those records that have sound>cat will be showing!

Figure 9. After selecting “sound>cat”

Now only two records are showing. And the count indicator under the buttons shows us
that 2 out of 7 total records are sound>cat.

 38

To see all of the records again pick “Results->Select all”

That’s the heart of selecting. We could modify this in a whole variety of ways mostly
shown in the menu displayed in Fig. 6. We could switch the records that are showing and
the ones not showing (so only records that were not sound>cat were visible) by picking
“Results->select reverse”; we could select additional records from the total pool of found
records by picking a column and picking “Results->Select additional.” We could keep
whittling down the records showing by doing more picking more columns and doing
“Results->Select…” again and again. Finally we could whittle down our findings by
picking a column and picking “Results->Remove from selection…” By combining these
and using different columns: your _code column, your repeat columns, and your _data
column you can find many patterns inside your data.

7. Comparing data

When you have searched, sorted and selected your data you will want to see it. TAMS
Analyzer lets you browse your data one row at a time and see the results, toggle whether
the tags are showing, etc. But it’s important often to see all of your data in one table,
side-by-side, so you can see how different interviewees responded to a question or
address topic (code) X. TAMS has a very powerful tool that generates html tables that
you can copy and paste into your word process called the Data Comparison table. After
you have the selection of data you want to examine pick “Reports->Data comparison
table”. This is the dialogue you will be confronted with:

2. By default sets the
criteria for the col-
umns of the table

3. By default sets the
criteria for the rows

of the table

1. Switches the
rows and col-

umns

4. Sets the criteria
for what is filled in

the inside of the table

5. Controls the justifi-
cation for the differ-
ent parts of the table

Figure 10. Data comparison dialogue

While this is a very complex dialogue it is also very powerful. It can provide counts and
subcounts as well as show you the data or other information (codes, comments) that you
are interested in. My metaphor for this dialogue is that it is a sandbox: you try things, see
how they look, and then try different things. The dialogue wont go away until you click
exit. So it’s really designed to allow you to experiment til you have the data the way you
want for analysis or for reporting. It is non-destructive to your data.

 39

Just to illustrate the most basic features of this report, I’m going to generate a table from
Old Macdonald project of all the pig sounds. So I select from my results window the pig
sounds by selecting the _code column, picking “Results->Select…” and filling in pig and
hitting return. Now pick “Reports->Data comparison table”. Across the top we’ll put the
codes that we have selected, so make sure the pull down menu in the area pointed to in
box 2 in Figure 10, says “Codes”. We’ll break it down by file along the vertical axis, so
pick “_doc” from the pull down menu indicated by box 3.

Now we have to pick what we want to see in our table. In this example we want to see the
actual data for that code, so select the _data bar from the table pointed to by box 4 in
figure 10. Now just click “Show report” This is what you should see in your default web
browser:

Figure 11. Results from data comparison table

In this simple, foolish example we see that in oldMacD.rtf, the sound>pig code was used
3 times all with the same data: “oink, oink”.

As a second example, I’m going to look at what sounds are associated with what verses.
I’ll need to exit the dialogue, and select all of the sound codes from the table. (Hint from
the results menu pick select all, and then pick “Results->Select…” and fill in “sound”).
Again pick “Reports->Data comparison table”. Again leave the top as codes, pick versus
for the vertical dimension (area pointed to by box 3), and pick data again from the table
pointed to by box 4. Click “Show report”:

Figure 12. Results from data comparison

That should allow you to get going. A couple of hints: if you wish the codes to go down
the side, and the verses to go across the top, check the “Switch axes” switch (Indicated by
box 1 in figure 10). Also you can select multiple fields to display in the table by shift
clicking and option clicking items in the Box 4 table. You can also rearrange the list in

 40

the box 4 table by dragging items around. You’ll also want to explore what the count and
grouping options pointed to by box 4 do to your table! Have fun; think “sand box”.

8. A more complicated example… Less for beginners

Before concluding this tutorial I want to work through a more advanced example of
selecting. This is an alternative way of finding the intersection of coded passages by
using Result->Select… It also shows some of the issues that can result from such
searches. For this example I’m going to use this small passage:

R: Well, my high school was known as a trouble
school. There were a lot of fights, and kids, uhm
wandering around, and most of us worked in factories
on the [city’s] east side. Most of us partied rather
than worked.

We’ll code this as follows:

R: {school>trouble}Well, my high school was known as a
trouble school. {aspirations}We weren't going
anywhere. {/aspirations}{violence}There were a lot of
fights{/violence}, and {truancy}kids, uhm wandering
around{/truancy}, and {aspirations}most of us worked
in factories on the [city’s] east side{/aspirations}.
{gratification>delayed}Most of us partied rather than
worked.{/gratification>delayed}{/school>trouble}

Now let’s imagine that we are searching for the intersection of discourses we’ve labeled
“school>trouble” and “aspirations.” Maybe we want to see how high school image and
occupational aspirations correlate. One way to find these intersections is through
searching for “school>trouble+aspirations.” You can also find this from an unlimited
search, however. Reasons for doing so include the ability to do “set mathematics” i.e., the
ability to look at how groups of coded passages intersect with each other. To do this
we’re going to work from an unlimited search; that means we hit the search button with
no criteria filled in.

 41

Figure 13. Picking _code

Once we have done a search we are going to look for records that have both. As a first
cut, let’s work with just those records that have “school>trouble” Select the _code
column by clicking it’s header, and pick Results->Select… Fill in “school>trouble” and
hit “ok.”

Figure 14. Selecting _code

Now we need to find the records that are left that have “aspirations” (in our example
there is only one record to search, but that just points to the artifice of the example). Pick
the _data column this time. Then pick Results->Select and enter “{aspirations”. As the
search string: voila: what you see are records that have both codes.

 42

WARNING: In our example we would get a different number of records if we first
searched for “aspirations” in the _code column and then “{school>trouble” in the _data
column. We would eventually see the same text as we browsed through the records, but
you should know that the number of records would be different. Finding how many
passages coded with A have code B turns out not to be the same question as how many
passages coded with B also have code A. Why? The first time we would get the passage
marked as orange as the result of the first and second search:

R: {school>trouble}Well, my highschool was known as a
trouble school. {aspirations}We weren't going
anywhere. {/aspirations}{violence}There were a
lot of fights{/violence}, and {truancy}kids, uhm
wandering around{/truancy}, and {aspirations}most
of us worked in factories on the [city’s] east
side{/aspirations}. {gratification>delayed}Most
of us partied rather than
worked.{/gratification>delayed}{/school>trouble}

The second time we would get the following two orange passages returned separately.

R: {school>trouble}Well, my highschool was known as a
trouble school. {aspirations}We weren't going
anywhere. {/aspirations}{violence}There were a
lot of fights{/violence}, and {truancy}kids, uhm
wandering around{/truancy}, and {aspirations}most
of us worked in factories on the [city’s] east
side{/aspirations}. {gratification>delayed}Most
of us partied rather than
worked.{/gratification>delayed}{/school>trouble}

If you want a count of intersections of the two codes rather than a count of how many of
coded passage X also has some of Y, you should do a search from the workbench with
the + sign: aspirations+school>trouble.

9. Concluding remarks

At this point you have some idea of how to search, sort, and select. You should also be
able to designate some codes as context codes to identify contextual information. From
here some simple additional things to learn include personalizing the toolbar on results
windows, adding and viewing comments in results windows, and exporting data to the
clipboard so that it can printed in Microsoft Word, Appleworks, or the word processor of
your choice. An even more advanced step would include learning about “reanalysis,” i.e.,
transforming your data files based on your results files. This includes recoding your files
(actually changing the code of a given passage) and adding codes around given passages.
Finally, there is a lot to be explored in terms of reporting, including simple reports
(counts of codes) and complex reports (data summaries and dot graphs).These are all

 43

described in the user guide. Have fun exploring this complex but powerful software
program.

	Title
	Introduction
	Living the qualitative life
	In the field and on the computer
	Going deep
	From deep to broad
	From analysis to print
	Conclusion
	Recap

	Coding for beginners
	What is coding?
	What is TAMS?
	What is TAMS Analyzer (aka TA)?
	Starting TA and understanding the parts
	The Workbench window
	Document Windows
	Other windows

	How do I code in TA?
	Adding codes with the project window
	Adding a new code from the document window
	Using existing codes
	Recalling the definition of a code
	Working with codes
	Problems coding
	G. Saving

	Concluding comments

	Analysis for beginners
	What you need to use this documentation
	Context metatag

	What is analysis?
	Searching, sorting, selecting, and comparing: the grand plan
	Searching
	Creating a search list
	Executing a search
	Searching for specifics

	Sorting
	Selecting
	Comparing data
	A more complicated example… Less for beginners
	Concluding remarks

