

An OpenMath based Unit Converter

David Prangle

Batchelor of Science in Computer Science with Honours
The University of Bath

May 2007

An OpenMath based Unit Converter

I

This dissertation may be made available for consultation within the
University Library and may be photocopied or lent to other
libraries for the purposes of consultation.

Signed:

An OpenMath based Unit Converter

II

An OpenMath based Unit Converter

Submitted by: David Prangle

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author.
The Intellectual Property Rights of the products produced as part of the project
belong to the University of Bath (see
http://www.bath.ac.uk/ordinances/#intelprop).

This copy of the dissertation has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its author and
that no quotation from the dissertation and no information derived from it may be
published without the prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the
requirements of the degree of Batchelor of Science in the Department of Computer
Science. No portion of the work in this dissertation has been submitted in support of
an application for any other degree or qualification of this or any other university or
institution of learning. Except where specifically acknowledged, it is the work of the
author.

Signed:

An OpenMath based Unit Converter

III

Abstract

The OpenMath framework provides the protocol for interactive
mathematics on the Internet; this is done through the use of Content
Dictionaries that store the semantic meaning of mathematical symbols.
This facilitates the transformation between the OpenMath representation
and their corresponding internal representation within the application
and as a result should increase the robustness of mathematical
software.

This dissertation attempts to demonstrate the suitable of OpenMath as a
basis for specialised applications. In the marketplace there are a number
of standard mathematical unit converters, however I would like to
analyse the efficiency of OpenMath as a platform for a mathematical
unit converter.

OpenMath as a language is still very early in its development cycle and
is yet to be utilised by the mathematical community. By demonstrating
OpenMath as a suitable foundation for a unit converter I hope to create
an extensible unit converter and increase the use of OpenMath in future
projects.

An OpenMath based Unit Converter

i

Contents

CONTENTS ...I

LIST OF FIGURES ...III

LIST OF TABLES ... IV

ACKNOWLEDGEMENTS ... V

INTRODUCTION ... 1

LITERATURE SURVEY ... 3

2.1 AN INTRODUCTION TO OPENMATH .. 4
2.1.1 OpenMath, The Background .. 4
2.1.2 OpenMath, The Specifics .. 5

2.2 PARSER APIS.. 11
2.2.1 SAX .. 11
2.2.2 DOM... 11
2.2.3 JDOM... 11

2.3 EXISTING PROJECTS.. 12
2.3.1 OpenMath Browser .. 12
2.3.2 OpenMath Web Service Package ... 12
2.3.3 Algebra Interactive & ActiveMath.. 13
2.3.4 Existing Unit Converters ... 13

REQUIREMENTS ... 14

3.1 REQUIREMENTS ELICITATION AND ANALYSIS... 15
3.1.1 Methodology ... 15
3.1.2 Hardware and Software Considerations ... 15
3.1.3 Carrying out Conversions ... 16
3.1.4 Searching Content Dictionaries.. 16
3.1.5 Adding New Libraries .. 16
3.1.6 User Interface .. 16

3.2 REQUIREMENTS SPECIFICATION... 18
3.2.1 Functional requirements ... 18
3.2.2 Non-Functional requirements... 20

3.3 REQUIREMENTS VALIDATION ... 20

DESIGN & IMPLEMENTATION ... 21

4.1 DESIGN & IMPLEMENTATION PROCESS... 22
4.2 CREATING AN OPENMATH CONTENT DICTIONARY .. 22

An OpenMath based Unit Converter

ii

4.2.1 Anatomy of a Content Dictionary .. 23
4.3 THE SIMPLE CASE ... 25

4.3.1 Reading in a Content Dictionary .. 25
4.3.2 Extracting a list of relevant Conversions .. 26
4.3.3 Searching the List of Nodes ... 26
4.3.4 Extract the Details ... 27
4.3.5 Carry out the Conversion.. 29

4.4 HIGH LEVEL DESIGN ... 29
4.4.1 Carrying out longer transformations ... 31
4.4.2 Developing a GUI... 33
4.4.3 Adding Multiple Dictionaries ... 35
4.4.4 Reading/Searching multiple dictionaries .. 37

TESTING & RESULTS .. 38

5.1 TEST PLAN.. 39
5.2 TESTING FUNCTIONAL REQUIREMENTS .. 39
5.3 TESTING NON-FUNCTIONAL REQUIREMENTS .. 41

5.3.1 Usability Study ... 41
5.3.2 Usability Study Results.. 42
5.3.3 Testing Summary... 42

CONCLUSIONS .. 44

6.1 PROJECT CRITIQUE ... 45
6.2 THE FUTURE – THE UNIT CONVERTER ... 46

6.2.1 Writing Content Dictionaries .. 46
6.2.2 Formalising a Phrase-book ... 46

6.3 THE FUTURE – OPENMATH ... 47
6.4 SUMMARY ... 47

BIBLIOGRAPHY .. 48

USER DOCUMENTATION ... 50

RAW RESULTS OUTPUT ... 54

CODE .. 59

An OpenMath based Unit Converter

iii

List of Figures

FIGURE 1. OPENMATH ARCHITECTURE..5
FIGURE 2. EVOLUTIONARY DESIGN MODEL ..22
FIGURE 3. MAIN SYSTEM STRUCTURE...30
FIGURE 4. MAIN SYSTEM GUI ..33
FIGURE 5. GUI TO DISPLAYING THE RESULT ...34
FIGURE 6. ADDING A CONTENT DICTIONARY ...35
FIGURE 7. TEST 1 RESULTS ...55
FIGURE 8. TEST 3 RESULTS ...55
FIGURE 9. TEST 4 RESULTS ...56
FIGURE 10. TEST 5 RESULTS ...56
FIGURE 11. TEST 6 RESULTS ...56
FIGURE 12. TEST 7 RESULTS ...57
FIGURE 13. TEST 8 RESULTS ...57
FIGURE 14. TEST 9 RESULTS ...57
FIGURE 15. TEST 10 RESULTS ...58

An OpenMath based Unit Converter

iv

List of Tables

TABLE 1 USABILITY STUDY RESULTS .. 42

An OpenMath based Unit Converter

v

Acknowledgements

I would like to thank Professor Davenport and the rest of the computer science
department, both staff and students, for all of their help and guidance.

I would also like to say thank you to my family and friends, their relentless support
really pulled me through.

Thank You

An OpenMath based Unit Converter

1

1

Introduction

An OpenMath based Unit Converter

2

The Internet is growing rapidly and as a result is bringing around some exciting
opportunities in the computing community. People are able to communicate at a
much faster rate and as the Internet becomes an ever-increasing part of our
everyday lives access to particular fields of interest is greatly improved. OpenMath is
one of those fields, as a language it is relatively young; development was started
just 13 years ago.

Due to the relatively minute amount of research made into OpenMaths it is highly
under-utilised, research to date has mainly been focusing on the improvement of
the language and as a result the development of OpenMath is yet to manifest itself
in any programs that can truly demonstrate the advantages.

OpenMath describes the logical structure of mathematical formula and concepts
(The OpenMath Society, 2006). It is widely accepted as a basic protocol for
mathematical interaction and communication. It provides semantic-rich
mathematical symbols through constructing a set of content dictionaries; content
dictionaries are central to the OpenMath philosophy of transmitting mathematical
information. It is the OpenMath content dictionaries which actually hold the
meanings of the objects being transmitted (Buswell et al, 2004 Page 34). The
content dictionaries are defined in two different ways: XML or binary encoding.

To support the computers mathematic interaction XML encoding is necessary. XML,
The Extensible Markup Language, is a W3C-endorsed standard for document
markup. It is a markup language for documents containing structured information;
in essence it defines a generic syntax used to mark up data with simple, human
readable tags (O’Reilly, 2001, Page 1). When XML was first introduced, it was hailed
as the cornerstone of a new kind of technology that would permit interoperable
Web services, this means you can write your own program that will interact with,
message and manipulate data in XML documents.

To summaries, mathematical conversions can be formally defined in XML encoded
content dictionaries. I am going to investigate the possibility of designing a system
that can read and manipulate the content dictionaries to draw on a result for a
conversion requested by the user.

The main strength of OpenMath is that applications can be used which can handle
every Content Dictionary or a changeable number of Content Dictionaries, perhaps
after being sent Content Dictionaries in some way (Buswell at al, 2004). This is the
main reason OpenMath was decided upon as a foundation.

There are a number of unit converters written in many different languages that are
readily available on the Internet; by not using OpenMath the converters have
limitations. Current converts in the marketplace can only carry out conversions that
have been written into the system. OpenMath is extensible, by basing a converter
on OpenMath it means any number of content dictionaries can be added to the
program at any time, these new Dictionaries can then be used to carry out more
conversions.

An OpenMath based Unit Converter

3

2

Literature Survey

An OpenMath based Unit Converter

4

2.1 An Introduction to OpenMath

OpenMath as a language was formalized in The OpenMath Standard (Caprotti et al.
2004)

2.1.1 OpenMath, The Background

OpenMath is a standard for representing mathematical data in as unambiguous a
way as possible, it can be used to exchange mathematical objects between
computer programs, stored in databases, or published on the worldwide web
(Caprotti, 2004). It is tightly focused on representing semantic information and is
not intended to be used directly for presentation, although tools exist to facilitate
this. OpenMath originated from the Computer Algebra community and since 1997 its
development has been partially funded by the European Union under a multimedia
ESPRIT project. Computer Algebra packages were getting bigger and more unwieldy
and it seemed reasonable to adopt a generic "plug and play" architecture to allow
specialised programs to be used from general purpose environments. There were
plenty of mechanisms for connecting software components together, but no
common format for representing the underlying data objects. It quickly became
clear that any standard had to be vendor-neutral and that objects encoded in
OpenMath should not be too verbose. In 1998, the Worldwide Web Consortium
(W3C) produced its first recommendation for the Extensible Mark-up Language
(XML), intended to be a universal format for representing structured information on
the worldwide web. It was swiftly followed by the first MathML recommendation
which is an XML application oriented mainly towards the presentation of
mathematical expressions, OpenMath was then derived from these developments.
To date there have been three main projects focused on the development of
OpenMath as a language, in 1995 the Editing and Computing Project was launched.
This was the organisation of five workshops open to all that have been interested in
the project. These initial meetings were mainly of a political nature, a steering
committee was elected to management the OpenMath development. This project
ran for 2 years and produced OpenMath v1.0 with prototype Phrasebooks. The
Esprit project was funded by the European Union between 1997 and 2000; this
project carried on with the further development of the language and was in turn
replaced by the OpenMath Thematic Network. This ran from July 2001 until June
2004 and was also sponsored by the European Union; it was a logical follow on
from the Esprit project. The projects main aims were to organise workshops
bringing together people working on OpenMath from around the world, provide a
continued focus-point for the development of the OpenMath Standard and Content
Dictionaries, coordinate the development of OpenMath and MathML tools and
applications and to disseminate information about OpenMath and MathML; the
projects produced the OpenMath standard we use today, v2.0.

An OpenMath based Unit Converter

5

2.1.2 OpenMath, The Specifics

OpenMaths is a relatively new field of research, it is emerging as a standard for
encoding the meaning of a mathematical object rather than just creating a visual
representation. OpenMath allows the free exchange of mathematical objects
between software systems and human beings; it enables the manipulation and
computing of mathematical expressions embedded in web pages and is designed to
be machine-generated and machine-readable.
Typical uses include:

• displaying in a browser
• exchanging between software systems
• cutting and pasting for use in different contexts
• testing to see if mathematically sound
• increasing document interaction

2.1.2.1 The Architecture

Within OpenMath there are three layers of representation of a mathematical object.
The first is the internal representation used by an application, the private layer. The
second is an abstract layer, this is the representation as an OpenMath object, these
two layers may, in some cases, be the same. The third is a communication layer
that translates the OpenMath object representation into a stream of bytes. An
application dependent program manipulates the mathematical objects using its
internal representation; it can convert them to OpenMath objects and communicate
them by using the byte stream representation of OpenMath objects, shown below:

Figure 1. OpenMath Architecture

 General Transport

Layer
(XML or Binary)

A-Specific
Representation

A-Specific
Representation

A-Specific
Representation

A-Specific
Representation

A-Specific
Representation

B-Specific
Representation

Possible Object
Shortcut

Program A Program B

Phrasebook B
CDs

Phrasebook A
CDs

OpenMath Encoding OpenMath Encoding

An OpenMath based Unit Converter

6

2.1.2.2 Content Dictionaries

Content Dictionaries (CDs) are central to the OpenMath philosophy of transmitting
mathematical information; they actually hold the meanings of the objects being
transmitted. For example if application A is talking to application B, and sends, say,
an equation involving multiplication of matrices, then A and B must agree on what a
matrix is, and on what matrix multiplication is, and even on what constitutes an
equation (Buswell, 2004). A content dictionary holds the meanings of various
mathematical “words”, it is not content dictionaries themselves which are being
transmitted, but some “mathematics” whose definitions are held independent to the
application within the content dictionaries, with a set of symbol definitions A and B
can now talk in a common “language”.
In many cases, the content dictionaries that an application understands will be
constant, and be built-in to the application’s mathematical use. However
applications can be developed that can handle every content dictionary or a
changeable number of content dictionaries, perhaps after being sent content
dictionaries in some way.

A Content Dictionary consists of the following mandatory pieces of information:

1. A name
2. A description of the Content Dictionary
3. A revision date, the date of the last change to the Content Dictionary. Dates

should be stored in the ISO-compliant format YYYY-MM-DD, e.g. 1985-03-
15.

4. A review date, a date until which the content dictionary is guaranteed to
remain unchanged

5. A version number which consists of a major and revision part – If the status
is not experimental the version number should be a positive integer. When
the major number is increased the revision number is normally reset to zero

6. A status, which can be:

• Official: approved by the OpenMath society
• Experimental: under development and thus liable to change
• Private: used by a private group of OpenMath users
• Obsolete: kept only for archival purposes

7. A CD base which, when combined with the CD name, forms a unique
identifier for the Content Dictionary. It may or may not refer to an actual
location from which it can be retrieved

8. A series of one or more symbol definitions

An OpenMath based Unit Converter

7

2.1.2.3 Writing Content Dictionaries

The symbols contained in a content dictionary form the mechanism by which
OpenMath achieves its goal of being an extensible framework for exchanging
semantically rich representations of mathematical objects (Davenport, 2000). The
motivation for writing a new CD would be that there are some semantics that one
wishes to exchange. When writing a new content dictionary you need to ensure
that:

• There must be a new piece of semantic information to convey

• It must be possible to informally write down the semantics that the
author of the CD intends to convey

• There must be a motivation for wishing to convey the information in a
content dictionary. An excellent example of this would be to define
further units that could then be used in the unit converter.

A well written content dictionary should contain:

• Examples. Every symbol defined in a CD should have at least one example,
either as such (i.e. <Example>), or via an FMP which uses it. In general
FMPs are more useful because formal systems can also read the FMP
whereas examples provide no further semantics. As examples illustrate uses
unlike FMPs a combination of the two is usually compromised upon.

• If an FMP is given, then the equivalent CMP should also be given and if
possible the conversion should be done as well. CMPs should be written in
English and in full, no abbreviations.

• FMPs should be as comprehensive as sensibly possible whereas examples
are generally a lot more concise.

• The CDUses field, which lists all of the other CDs which have symbols
occurring in this CD should be correct.

• It is naive to expect a CD to be completely self-contained so restraint is
necessary. Particularly, a CD should not be using other CDs which are less
“official” that itself.

• The corresponding STS file should be written, these signatures should be as
helpful as possible.

An OpenMath based Unit Converter

8

2.1.2.4 Phrasebooks

The Phrasebook is an internal interface that carries out the conversion of an
OpenMath object to/from the internal representation in a software application. It is
envisioned that a software application dealing with a specific area of mathematics
declares which content dictionaries it understands, this means the translation can
be governed by the content dictionaries and specifics of the application. Essentially,
the Phrasebook of the application is able to translate OpenMath objects built using
symbols from these content dictionaries to/from the internal mathematical objects
of the application.

2.1.2.5 Objects

OpenMath uses objects as a representation of mathematical entities. The objects
can then be communicated among various software applications whilst preserving
their semantics.
Basic OpenMath objects are one of the following:

• Integer – No predefined range.
• IEE Floating point number – Double precision floating-point numbers.
• Character String – Corresponds to “Characters” in XML.
• Bytearray – Sequence of Bytes.
• Symbols – Encodes three fields of information,

o Symbol name – Sequence of Characters
o Content Dictionary name – the location of the symbol definition
o Content Dictionary base URI or cdbase – used to disambiguate

multiple Content Dictionaries. The URI usually follows the standard:
URI = cdbase-value + ‘/’ + cdvalue + ‘#’ + name-value
Example: Symbol sin in cd transcl and cdbase
http://openmath.org/cd = http://openmath.org/cd/transcl#sin

Objects can also be derived:

• Foreign – Used to import a non-OpenMath object into an OpenMath
application.

• Application – Constructs an object from a sequence of one or more
OpenMath objects. The first child of an application is referred to as it’s
“head” while the remaining objects are called its arguments.
Example: application(sin, x) corresponds to sin(x)
 application(Rational,1,2) corresponds to 1/2

• Binding – Is constructed from an object, a sequence of zero or more other
variables followed by another object. The first object is the Binder.
Example: binding(lambda,x,application(plus,x,2) corresponds to λ x.x + 2

• Attribution – Decorates an object with a sequence of one or more pairs
made up of an OpenMath symbol, the “attribute” and an associate object,
the “value of the attribute”. The value of the attribute can be an attribute
itself.

An OpenMath based Unit Converter

9

Example: attribution(attribution(A,S1 A1,……,ShAh),Sh+1Ah+1,……SnAn) is
equivalent to attribution(A,S1A1,……ShAh,Sh+1Ah+1,……SnAn)

• Error – Is made up from an OpenMath symbol and a sequence of zero or
more OpenMath objects.

Interesting Note - OpenMath objects do not specify any computational behaviour,
they merely represent mathematical expressions. The OpenMath philosophy is to
leave an application to decide what it does with an object once it has received it.
OpenMath is not a query or programming language. Because of this, OpenMath
does not prescribe a way of forcing “evaluation” or “simplification” of objects. Thus,
the same object 2+3 could be transformed to 5 by a computer algebra system, or
displayed as 2+3 by a typesetting tool.

2.1.2.6 Symbols

A symbol is used to construct an OpenMath object if it is the first child of an
OpenMath application, binding or error object, or an even-indexed child of an
attribution object (i.e. the key in a (key, value) pair). The role of an OpenMath
symbol is the restriction on how it may be used to construct a compound OpenMath
object. A symbol cannot have more than one role and cannot be used to construct a
compound object in a way which requires a different role. The possible roles are:

• Binder - first child of a binding object.
• Attribution - used as key in an attribution object i.e. the first element of a

(key, value) pair. This can be used as a clarification of how the attribution
should be interpreted.

• Semantic-attribution - This is the same as attribution except that it modifies
the meaning of the attributed OpenMath object and thus cannot be ignored
by an application, without changing the meaning.

• Error - first child of an error object.
• Application - first child of an application object.
• Constant - The symbol cannot be used to construct a compound object.

2.1.2.7 OpenMath Vs MathML

MathML and the OpenMath development cycles have been strongly linked, there is
an obvious overlap in both the people researching and developing the languages as
well as the actual logic itself. MathML has been developed to provide both content
and presentation mechanisms, it is a fixed set of mathematical operators that define
a default presentation. The mathematical range of MathML can be extended by
attaching semantic meanings to expressions. These external semantics may be in
any form, but one obvious contender is to extend MathML using OpenMath to define
the semantics. OpenMath, during the course of its development has matured and
found a natural role as the encoding of Mathematics in situations where more

An OpenMath based Unit Converter

10

precision or richness is required than may easily be obtained by using MathML. The
preciseness of OpenMath will be required ahead of MathML for the unit converter as
it will enable more advanced and obscure conversions. This fixed range and default
presentation makes it more suitable for being embedded in web browsers than
OpenMath. For further detail about the conversion between OpenMath and MathML
see Conversion between MathML and OpenMath (Carlisle, 2001).

2.1.2.8 eXtensible Markup Language (XML)

OpenMath defines two ways to encode its objects: XML and binary encoding. To
support the computers mathematic interaction XML encoding is necessary. When
XML was first introduced, it was hailed as the cornerstone of a new kind of
technology that would permit interoperable Web services. XML provides a
standardized way to represent structured and typed data. XML has been
incorporated into every aspect of application and enterprise development. It is now
a part of networking protocols, Web servers, operating systems, programming
languages, application servers etc.

XML is a markup language for documents containing structured information. A
markup language is a mechanism to identify structures in a document. XML defines
a generic syntax used to mark up data with simple human-tags. It provides a
standard format for computer documents. This format is flexible enough to be
customised for domains as diverse as web sites, electronic data interchange,
software configuration, remote procedure calls and more.

Since XML was first introduced it has been involved nearly everywhere information
is managed. XML is intended to be understandable by both humans and
applications. Therefore, the syntax for XML is very simple and can be understood
easily by humans. At the same time the XML document is strictly formed with
absolute minimum optional features so that the application can read it as well.

An OpenMath based Unit Converter

11

2.2 Parser APIs

A parser is essential to an XML-aware application. It takes the XML document as an
input and generates data which can then be manipulated and handled by other XML
tools or APIs. The three APIs I explored were SAX, DOM and JDOM.

2.2.1 SAX

SAX is an event driven API for XML, it provides a set of classes for inserting and
manipulating. Put simply, when an XML document is in the process of parsing
events occur. These events then provide the points that application code can insert
into and manipulate. Its sequential parsing process does not allow for random
access to an XML document so forward and backward movement among elements
is difficult. The OpenMath content dictionaries are small XML documents, although
SAX requires a lot less memory than DOM, given a project of this type DOM is
definitely a more suitable choice.

2.2.2 DOM

The Document Object Model (DOM) is a tree structure based parsing API and part
of W3C recommendation. SAX provides access to data during the parsing process
whereas DOM has the facility to provide access to the data both during and after
the parsing process.

2.2.3 JDOM

JDOM is a Java-based Document Object Model for XML that integrates with DOM
and SAX and uses parsers to build the document. Similarly to DOM, JDOM provides
the tree-structure representation of XML documents. JDOM has been developed
specifically for Java and is often more convenient as it requires less coding in purely
Java applications, as my project will focus on Java I have decided to use JDOM.

An OpenMath based Unit Converter

12

2.3 Existing Projects

OpenMath is still in its early stages of development and as a result there are very
few projects utilising it.

2.3.1 OpenMath Browser

This project attempted to demonstrate the possibility of constructing an automatic
query system, which can benefit both human readers and Phrasebooks or other
OpenMath-aware applications that need to access content dictionaries remotely.
The implemented system was developed as a Java XML Web Application and
comprised of two parts:

• One part of the system was based on SOAP and handled queries from
applications

• The second part was based on Cocoon XSP and handled queries from
human readers.

The two parts were then designed to share the same core implementation based on
DOM.

2.3.2 OpenMath Web Service Package

This was development in 2003 and had three main goals:

• Add functionality to the interface between the mathematical software
applications and content dictionaries. The interface should be able to extract
information from the content dictionaries and respond to the applications.
The applications can then use the information and create new content
dictionaries automatically.

• Build a user interface between human beings and content dictionaries,
hence, the user can retrieve information they want from content dictionaries.
This was meant as an aid to people who are interested in building some kind
of OpenMath tool. For Example, a designer of a Phrasebook, to obtain
information about content dictionaries more easily.

• Web services are still evolving; there is an overwhelmingly long list of
proposed standards and the complex interactions between each of them.
The final goal of the project was to try to implement these proposed
standards and provide a successful practical example for the industry.

This project comprised of two parts, the first component handled user’s requests on
the Web via HTTP and the second handled requests from applications connected
through the Internet. The purpose of the project was to allow mathematical
software to create new content dictionaries automatically; this would facilitate the

An OpenMath based Unit Converter

13

transformation between the OpenMath representation and their corresponding
representation within an application. As a result of this project the robustness of
OpenMath was increased and it has now become more diverse to fit different kinds
of mathematical software.

The purpose of these projects was to increase the robustness of OpenMath and
make it more available to different kinds of mathematical software and projects
being developed. In both systems there were issues with speed, reliability, security
and error handling but on the whole they were deemed a success.

2.3.3 Algebra Interactive & ActiveMath

Algebra Interactive and ActiveMath are two pioneering systems that use OpenMath
as a semantic foundation. They focus on web-learning HTML-based books for
undergraduate students in all fields of science, e.g. mathematics, computer science,
physics and engineering.

The main themes throughout both systems range from the elementary structures of
the integers, polynomial rings in one variable to the abstract notions of groups,
rings and fields; the systems tend to focus on an algorithmic approach to these
algebraic structures.

The books provide the required knowledge for users of any aptitude as well as
numerous exercises to work through. The programs also provide further, more
novel features; these include interactive examples and tools, such as a Concept Map
Tool or Plotting Tools.

2.3.4 Existing Unit Converters

There are a whole host of unit converters already available on the internet that
have all been written in a number of different languages. As the back end of my
system will be centred on OpenMath a review of how existing systems carry out
conversions is not necessary, however, it is important to highlight some of the
similarities and strength of the front ends. There tends to be a given format
amongst the unit converters available on the internet:

• A text box is usually used to enter the amount you would like to convert into
the system

• The source and destination units are typically stored in lists or drop down
boxes.

• The design of the system is usually kept very simple with minimal distraction
or confusion for the user.

An OpenMath based Unit Converter

14

3

Requirements

An OpenMath based Unit Converter

15

This project has two key goals:

1 To be able to read new Content Dictionaries into the system

2 To be able to read and utilize the information available in the content
dictionaries to carry out conversions

The requirements process will begin with the requirements elicitation and analysis,
all of the requirements highlighted will be gathered from the analysis of previous
OpenMath projects and existing unit converters.

Once the requirements elicitation has been carried out I will draw up both the
functional and non-functional requirements, as well as any optional requirements
that are not core to the system but would add value.

To finish, the requirements validation will ensure that the requirements specification
satisfies the original problem and that all requirements are complete, consistent,
verifiable and realistic.

3.1 Requirements elicitation and analysis

3.1.1 Methodology

The requirements elicitation will focus on a few primary sources of requirements.
Firstly, a number of requirements can be drawn from the core goals identified in the
Literature Survey. Furthermore the literature survey has enabled me to review
previous OpenMath projects and existing unit converters in the marketplace, by
examining the flaws within these systems I will be able to draw upon further
requirements and constraints for my system.

3.1.2 Hardware and Software Considerations

Most unit converters have been made available on the Internet; this is because they
do not require a great deal of processing power and the Internet acts as a gateway
to the largest concentration of users. It is important to note a few things, firstly for
the converter to compete in the existing marketplace it should be easily transferable
to become an Internet application and it should run on most standard PC’s. The
system is going to be written in XML and Java on a 4 year old laptop running a
Pentium 4 processor so no obvious issues should arise with respect to these
requirements.

An OpenMath based Unit Converter

16

3.1.3 Carrying out Conversions

When a user attempts to carry out a conversion the amount to convert, source unit
and destination unit all need to be considered. The system will have to search
through the content dictionaries to match the source and destination units with a
valid definition and use that information to carry out the conversion.

3.1.4 Searching Content Dictionaries

When a conversion is carried out by the user the system will need to search through
the bank of content dictionaries to ensure firstly the conversion is possible and
secondly how the conversion will be carried out. This will need to work for a number
of content dictionaries and shouldn’t be constrained by the layout or design of any
particular dictionary.

It may well be the case that for some conversions there is not a direct mapping
from the source unit to the destination unit. In this case is will be necessary for the
system to search through multiple content dictionaries to create a chain of
conversions in order to find a route from the source to the destination unit.

3.1.5 Adding New Libraries

Having reviewed a number of unit converters on the Internet it was quite apparent
that they all had limitations when it came to the number of units it is possible to
convert between. When carrying out the literature review quite a few advantages of
OpenMath were highlighted, the central reason for using OpenMath as a foundation
for a specific application is that it is extensible. It is essential that the system be
able to add new content dictionaries, the content dictionaries store all of the
conversion details and by being able to add further content dictionaries to the
system it will provide more possible conversions. In theory, as OpenMath grows as
a language more content dictionaries will be produced, hence increasing the
conversions available in the converter.

Secondly, when the content dictionaries are added to the system it is essential that
the new units are made available to the user. This is a similar process to when a
conversion is carried out but rather than extracting the conversion details the unit
details will need to be gathered and added to the interface.

3.1.6 User Interface

It should be noted that at this point the design and completeness of the user
interface is secondary in importance to the process of converting units using
OpenMath. As I am using OpenMath as the foundation of the unit converter the

An OpenMath based Unit Converter

17

back end is going to be very different to that of the unit converters currently
available, hence, there was very little merit behind me carrying out a thorough
review of existing products. However, even the most advanced unit converter is
pointless without the means to interact efficiently with it. A graphical interface will
be design and implemented but some attention to styling will be sacrificed in order
to allow additional effort to be placed upon the primary focus of the project.

An OpenMath based Unit Converter

18

3.2 Requirements Specification

3.2.1 Functional requirements

The functional requirements are a specification stating what the system will and
won’t do, the system will:

1. Be able to add new content dictionaries to the system

1.1. Search and add content dictionary via the front end

2. (Simple Case)

2.1. Carry out conversions using just one content dictionary achieving a 99%
success rate

2.1.1. Search through a content dictionary to find a conversion that
matches the given source and destination units

2.1.2. Extract the corresponding conversion amount from the content
dictionary

2.1.3. Interpret the conversion and apply it to the figure the user inputted

3. (Complex Case)

3.1. Carry out conversions using multiple units achieving a 99% success rate

3.1.1. Search through all content dictionaries to find conversions that
include the source unit

3.1.2. If a direct conversion is not available carry out an intermediate
conversion

3.1.3. Continue the loop taking the intermediate destination unit as your
new source unit until the requested destination unit is reached

4. Provide a simple front-end that collates all of the functionality of the system

5. Display all available units on the front end

5.1. When the system is initially ran it should search through all existing content
dictionaries to add the units to the front end

5.2. When adding new content dictionaries the system must make the new units
available as source and destination units on the front end

6. Error Handling

6.1. If a file you are attempting to add is not a content dictionary, return the
appropriate error

An OpenMath based Unit Converter

19

6.2. If two selected units are not a compatible conversion, error handle
accordingly

6.3. If any of the required details are not entered before the convert button is
pressed, return an error.

7. Finalise the Process

7.1. When a conversion is carried out the result should be clearly displayed for
the user and the system should be ready to carry out another conversion.

8. Time to start up

8.1. When the system is turned in it should take no longer than 15 seconds till it
is fully operational and all the functionality that it provides is available to the
user.

9. Time to execute user commands

9.1. When the user instructs the system to perform an operation the system
should begin that operation immediately. The operation should have
provided the user with the desired result within 2 seconds of the user
executing the command.

10. Reliability

10.1. When the user instructs the system to perform an operation the system
should begin that operation immediately. The operation should have
provided the user with the desired result within 2 seconds of the user
executing the command

11. Robustness

11.1. The system should be able to run for long periods of time without failing
and causing the user disruption.

11.2. The system should recover from failure in under 15 seconds In the event
that the system does fail then it needs to be able to be reset and quickly
become functional to the user again in order to cause minimum annoyance.

An OpenMath based Unit Converter

20

3.2.2 Non-Functional requirements

The non-functional requirements specify those requirements that cannot be
precisely measured by success or failure, they are subjective. They are:

1. The front end should be simple and easy to use. It should respond fast enough
that it is usable

2. Future improvements should be catered for in the design

2.1. New operations and modifications to improve efficiency should be easy to
add to the system

3. The user manual should provide the user with clear and simple instructions on
the functionality of the system, including illustrations of its use.

3.3 Requirements Validation

The goal of the requirements validation is to attempt to confirm the correctness and
completeness of the requirements specification. The tools for carrying out this
process are usually a structured or informal walk-through.

Once I had drawn up my requirements I carried out an informal walk-through with
Professor Davenport, essentially, this involved me and Professor Davenport running
through a summary of my completed requirements. The purpose of the informal
walk-through was firstly for Professor Davenport to highlight and remove any
glaring errors in the specification and from there he could then confirm that I am
heading in the right direction and highlight any further work or ideas that are worth
exploring.

The validation process was fairly successful, Professor Davenport was happy with
the direction that I was taking and the work that I had already implement, however,
there were a few extra points that Professor Davenport felt were worth addressing:

• I should explore how content dictionaries are written and ensure that my
system can add a content dictionary written by myself

• Try to explore some more complex conversions and incorporate them into
the system.

An OpenMath based Unit Converter

21

4

Design & Implementation

An OpenMath based Unit Converter

22

4.1 Design & Implementation Process

Having researched OpenMath and drawn up the requirements of my project, I now
moved onto the design and implementation stage. Having not worked with
OpenMath before I felt it would be best to adopt almost an iterative or evolutionary
development processes. The basic idea behind iterative enhancement is to develop
a software system incrementally. This would then allow me to take advantage of
the skills learnt during the development and testing of earlier deliverables of the
system.

Key steps in the process were to start with a simple implementation of the software
requirements and iteratively enhance the sequence of versions until the full system
is implemented. At each iteration, design modifications are made and new
functional capabilities are added. This is demonstrated in the diagram below:

Figure 2. Evolutionary Design Model

4.2 Creating an OpenMath Content Dictionary

Having explored the content dictionaries online I felt the best approach to fully
understand the task I am undertaking would be to design my own content
dictionary. As it was a topic that has not been covered yet I produced a Pressure
content dictionary.

An OpenMath based Unit Converter

23

4.2.1 Anatomy of a Content Dictionary

As previously mentioned in section 1.1.1.1 there is a standard motivation and
process when designing content dictionaries. Below I am going to highlight some of
the key areas of a content dictionary that I will need to manipulate in my system.
The following example shows the body of a conversion between feet and metres.

<CDDefinition>
<Name> foot </Name>
<Description>
This symbol represents the measure of one foot. This is the standard
imperial measure for distance.
</Description>
<CMP> 1 foot = 0.3048 metres </CMP>

<FMP><OMOBJ>
 <OMA>
 <OMS name="eq" cd="relation1"/>
 <OMA>
 <OMS name="times" cd="arith1"/>
 <OMI> 1 </OMI>
 <OMS name="foot" cd="units_imperial1"/>
 </OMA>
 <OMA>
 <OMS name="times" cd="arith1"/>
 <OMF> 0.3048 </OMF>
 <OMS name="metre" cd="units_metric1"/>
 </OMA>
 </OMA>
</OMOBJ></FMP>

</CDDefinition>

As I have previously stated one of the main advantages of XML is that it is designed
to be both human and machine readable, although a great deal of the content
dictionary is simple to understand for completeness I will run through want each
section. The previous example shows how to derive metres from feet. It states that
1 times foot equals 0.3048 times metre; most content dictionaries definitions follow
the same format.

<CDDefinition> Element

This defines the starting point at which a definition will come together for a
conversion.

An OpenMath based Unit Converter

24

<Name> Element

This simply defines the name given to the conversion that is about to be formalised.

<Description> Element

This is a standard written description of what conversion is about to be defined.

<CMP> Element

The CMP stands for the Commented Mathematical Properties. This is another
written description of the conversion but in a more formalized manner.

<FMP> Element

The FMP stands for the Formal Mathematical Properties. This is where the
formalized mathematical definition of an element is included in the dictionary.

<OMOBJ> Element

The OMOBJ element defines an OpenMath Object. Formally, an OpenMath object is
a labelled tree whose leaves are the basic OpenMath objects integers, IEEE double
precision floats, unicode strings, byte arrays, variables or symbols.

<OMA> Element

OMA is an application element. It is an element that contains a sub tree of elements
and allows you to add additional information to an object.

<OMS> Element

The OMS element defines an OpenMath Symbol. These are interesting because they
consist of a name and a reference to a definition in an external content dictionary.
Using XML notation where the element name OMS indicates an OpenMath symbol,

the above example: <OMS name="eq" cd="relation1"/> represents the standard
equals function, as defined in the content dictionary "relation1".
<OMI> Element

The OMI is an OpenMath Integer, the OMI element encapsulates the value of the
Integer.

<OMF> Element

An OpenMath based Unit Converter

25

The OMF is an OpenMath Float; the OMF element encapsulates the value of the
Float.

<OMV> Element

The OMV is an OpenMath Variable; the OMV element encapsulates the value of the
Integer.

Following the guidelines set out in On Writing OpenMath Content Dictionaries,
(Davenport, 2000) I have produced my own content dictionary that outlines some
pressure conversions, these includes Pascal, Newton’s per square Metre, Pounds per
square Metre and Pounds per square Foot; See Appendix D.

4.3 The Simple Case

The initial step in the design process is to interpret the content dictionaries and
attempt to carry out a simple conversion. After review the content dictionaries the
simplest conversion and starting point would be to pass the initial system:

• The amount to convert = 1

• The unit to convert from (Source Unit) = Foot

• The unit to convert to (Destination Unit) = Metre

Given these details the system should then:

• Read in one content dictionary

o units_imperial1.ocd as it contains the required conversion from feet
to metres

• Search through the content dictionary extracting a list of all the conversions
that involve the source unit

• Search the list of conversions to find the conversion that involves both the
source and destination unit.

• Extract the required details and carry out the conversion

4.3.1 Reading in a Content Dictionary

Reading in the content dictionaries is the job of the SAXBuilder. The SAXBuilder
builds a JDOM document from files, streams, readers, URLs, or a SAX InputSource
instance using a SAX parser. As it is only reading in a single file stored in a

An OpenMath based Unit Converter

26

convenient location it was just a case of initialising a new SAXBuilder and building a
document using the .build() method shown below:

SAXBuilder parser = new SAXBuilder();
Document response = parser.build("units_imperial1.ocd");

4.3.2 Extracting a list of relevant Conversions

XPath is a W3C-defined language and an official W3C recommendation. The XPath
language provides a simple, concise syntax for selecting nodes from an XML
document. Using XPath I was able to search through the XML document produced
by the SAXBuilder to extract all nodes that match the source unit, in this case foot,
as each node was found it was added to a List. Finally the list was cast to an
ArrayList for easier manipulation.

XPath x =
XPath.newInstance("/CD/CDDefinition/FMP/OMOBJ/OMA[OMA/OMS/@name='"+src
Unit+"']");
List srcNodesList = x.selectNodes(response);
ArrayList srcNodes = (ArrayList) srcNodesList;

As you can see from the code above, using XPath is just a case of entering the
correct path so you can match the source unit to the predicate expression.

[OMA/OMS/@name='"+srcUnit+"']

In this case I want to add the OMA where the name within the OMS is equal to the
srcUnit or Foot.

4.3.3 Searching the List of Nodes

Within our ArrayList we now contain a number of nodes; these correspond to all of
the conversions within the content dictionary that involve the source unit. The next
step is to iterate through the ArrayList to match both the source and destination
units with a node. This will confirm that a conversion is possible and enable us to
extract the corresponding details.

As the nodes within the List are in fact elements, when iterating through the
ArrayList we must first cast each node to an element.

Element el = (Element) srcNodes.get(i);

An OpenMath based Unit Converter

27

By using XPath again, we are able to match the source and destination units with
the names within each element and start to extract the required conversion details.

Element srcOma = (Element)
XPath.selectSingleNode(el,"OMA[OMS/@name='"+srcUnit+"']");
Element dstOma = (Element)
XPath.selectSingleNode(el,"OMA[OMS/@name='"+dstUnit+"']");

4.3.4 Extract the Details

Now the required elements have been established I need to extract all of the
information about the destination unit so the conversion can be carried out. It is
simple a case of applying XPaths to the element dstOma; extracting the conversion
operator as an attribute and the conversion value as an element, which then needs
to be cast from a String to a Double.

String dstOp =
((Attribute)XPath.selectSingleNode(dstOma,"OMS/@name")).getValue();
String dstBase =
((Element)XPath.selectSingleNode(dstOma,"OMI")).getValue().trim();
dblBase = (double) Integer.parseInt(dstBase);

InvertOp

Previously I stated that the content dictionary defined the conversion between feet
and metres as 1 times foot equals 0.3048 times metre. This posses a problem
because there is no guarantee that it will always be 1 times the source unit.

To solve this problem I had to gather the source unit information in the same
manner as with the destination unit details, as you can see the same XPaths as
before are used to extract the source operator as an attribute and the source unit
value as an element.

String invOp =
invertOp(((Attribute)XPath.selectSingleNode(srcOma,"OMS/@name")).getValue());
String srcBase =
((Element)XPath.selectSingleNode(srcOma,"OMI")).getValue().trim();
double dblBase = (double) Integer.parseInt(srcBase);
double norm = normalise(srcVal,dblBase,invOp);

An OpenMath based Unit Converter

28

The difference comes when the source unit operator is then passed into the
invertOp method; this is a straightforward method that returns the opposite of the
operator you passed into it.

public static String invertOp(String operator)
{
 if (operator.equals("times")) return "divide";
 if (operator.equals("divide")) return "times";
 if (operator.equals("add")) return "minus";
 if (operator.equals("minus")) return "add";
 return "unknown";
}

Finally the amount to convert, source unit value and inverted operator are passed
into the normalise function.

public static double normalise(double srcVal, double baseVal, String operator)
{
 if (operator.equals("divide")) {
 return srcVal/baseVal;
 }
 return 0;
}

This function will apply the inverted operator on the amount you wish to convert
and the source unit value. By doing this it means that no matter what the source
unit value may be it has been catered for, leaving a simple method to finish the
conversion process.

Example: If I wanted to convert 10 feet into metres

The content dictionary defines the conversion as 1 times foot equals 0.3048 times
metre but equally it could be defined as 2 times foot equals 0.6096.

The normalise function will do:

• 10/1 = 10, which will then be times by 0.3048 in the final method

• 10/2 = 5, which will then be times by 0.6096 in the final method

Resulting in the same answer.

An OpenMath based Unit Converter

29

4.3.5 Carry out the Conversion

By normalising the amount you want to convert it means the apply method is very
simple. It takes in the normalised amount you want to convert, the destination
conversion value and the destination operator and returns the answer.

public static double apply(double arg1, double arg2, String operator)
{
 if (operator.equals("times")) {
 return arg1*arg2;
 }
 return 0;
}

4.4 High Level Design

With the simple case completed it gave me a chance to have a better look at the
real structure of the system. At which time I decided there were four key areas that
I should focus on:

• Carrying out longer transformations

• Developing a GUI

• Adding content dictionaries

• Reading/Searching multiple dictionaries

The main body of the system will follow the structure of the follow chart over page:

An OpenMath based Unit Converter

30

Figure 3. Main System Structure

Input Number and
Units

Carry out
Conversion

Take the next
available destination
unit from the current

source unit

Is a direct
conversion

possible from
the source to

the destination?

Has unit
been used
already?

Carry out conversion

Yes

Yes

No

Destination unit
becomes new source

unit

Yes

Destination
unit

reached?

No

Yes

Restart process
at next iteration

Return Result

An OpenMath based Unit Converter

31

4.4.1 Carrying out longer transformations

Currently the system searches through all of the possible conversions to try and find
an exact match with the source and destination units; however, it could be the case
that a conversion is only possible with an intermediate step. For example using the
imperial content dictionary a conversion from metres to yards would have to go
through feet. The most suitable way of demonstrating this would be with an
example:

Search(A, D, amount2conv, visitedlist(0))

 Lookup(A)

 D Not Found

B and E Returned

Search(B, D, convert(amount2conv, A, B), visitedlist(A))

 Lookup(B)

 D Not Found

A and C Returned, Ignore A

Search(C, D, Convert(Pre-value, B, C), visitedlist(A,B))

 Lookup(C)

 D Found

Return Convert(Pre-value, C, D))

This method carries out a conversion from A to D. Initially it searches from a
conversion directly from A to D, if that is not possible it will look to see what other
conversions are possible, in this case B and E. It then converts from A to B and
adds A to the list of units that have already been used. The cycle then continues
with an attempt to convert from B to D.

If a direct conversion is not possible then the Search method will enter into another
for loop, this will enable us to iterate over all of the conversions that involve the
source unit. Although we do not know what the destination unit will be for each
intermediate conversion we can extract it using the XPath.

Attribute a = (Attribute)
XPath.selectSingleNode(N,"OMA/OMS[2][@name!='"+srcUnit+"']/@name");
String N_string = a.getValue();

An OpenMath based Unit Converter

32

By making an arbitrary variable (N_string) the new destination unit, the conversion
method can now be called for a conversion from the source unit to the N_string.
The search method will then call itself with the newly worked out amount to convert
and the current destination unit (N_string) as the new source unit. The cycle
continues until the conversion is carried out or there are no more conversions
available, hence, it is not possible with the given content dictionaries.

There is some administration that needs to take place before this method will work.
In the previous example there was a ‘been visited’ list. This is essential because
without checking that a unit has already been used at an intermediate stage it could
loop endlessly over the same units.

The beenVisited method is called before any intermediate steps are taken; it takes
the list of units that have been visited and compares the contents with the N_string,
or new destination unit. If the unit has already been visited, the method returns
false and the loop in the search method starts its next iteration. The loop in search
then finds another possible destination unit which is again checked by beenVisited,
this cycle continues until a suitable destination unit is found or the conversion is just
not possible.

public static boolean beenVisited(ArrayList visited, String unit)
{
 for(int k=0; k<visited.size(); k++)
 {
 if(visited.get(k).equals(unit))
 {
 return true;
 }
 }
 return false;
}

For this process to work successfully, before the search method calls itself to start
another iteration the source unit needs to be added to the visited array.

An OpenMath based Unit Converter

33

4.4.2 Developing a GUI

Having reviewed some of the existing unit converters in the marketplace I was not
going to spend a great deal of time producing the GUI. The GUI has a few basic
requirements:

• Must be able to enter a number

• Must be able to select a source and destination unit to convert

• Must have a button for carrying out the conversion

• Must have a button to add content dictionaries

• Must have a way of presenting the conversion answer

Figure 4. Main system GUI

public static JTextField convertAmount = new JTextField("1")
public static JComboBox convertFrom = new JComboBox()
public static JComboBox convertTo = new JComboBox()
public static JButton processButton = new JButton("Add")
public static JButton convertButton = new JButton("Convert")

I toyed with a variety of approaches for the GUI but felt the best approach would
be to keep it as simple as possible. The processes of carrying out a conversion could

An OpenMath based Unit Converter

34

no be easier, enter the amount you would like to convert, select the unit you would
like to convert from and to and press the convert button.

Once the convert button has been pressed the system implements an ActionListener
and selects the conversion amount from the JTextField, which is then cast to a
double. As well as that the AcvtionListener gathers the source and destination units
from their Combo Boxes, each of them then being cast to a string. The search
method is then called to start the conversion process.

if (event.getSource()== convertButton)
{
 ArrayList visited = new ArrayList();
 String srcUnit = (String) convertFrom.getSelectedItem()
 double srcVal = Double.parseDouble(convertAmount.getText().trim())
 String dstUnit = (String) convertTo.getSelectedItem()
 double result = search(srcUnit, dstUnit, srcVal, visited)
}

If a solution is found a new JOptionPane is shown with the solution otherwise an
error message will appear informing the user that the conversion they are
attempting is not possible.

Figure 5. GUI to displaying the result

An OpenMath based Unit Converter

35

4.4.3 Adding Multiple Dictionaries

Figure 6. Adding a Content Dictionary

Click Add CD button

Select file

Is selected
file a

directory?

Open Directory
Yes

Yes

No

Return Error
Is selected

file a
content

dictionary?

No

Add CD to the list of
available CD’s in the

system

Search CD for the new
units available, add
them to the GUI

An OpenMath based Unit Converter

36

The add new library button also has an ActionListener, when this button is pressed
a new instance of the class FileChoose() launches. This opens a new JPanel that
contains a JFileChooser, a JFileChooser provides a simple mechanism for the user to
choose a file.

The file chooser works in the standard manner, the user can search through the
directories and when they have found the required content dictionary can use the
Open button to load it into the system. When the Open button is pressed the
approveSelection() method is called.

Once the file chooser has verified that the file selected is not a directory it will then
check the length of the filename and last 4 digits. This is a verification process that
checks to ensure the file selected is a content dictionary; the last 4 digits of a
content dictionary should always be .ocd. A check for .ocd at the end of the file
means if the user has selected the wrong type of file the system can return and
error and the user can try again. See the code over page:

An OpenMath based Unit Converter

37

int filenameLength = filename.length();
if (filenameLength<4 || !filename.substring(filenameLength - 4,
filenameLength).equalsIgnoreCase(".ocd"))
{
 JOptionPane.showMessageDialog(null, "Error, Please add a valid Content
Dictionary")
}
else {
 Unit_Converter.addcd(getSelectedFile());
 chooser.dispose();
}

When the correct file has been opened the system will pass the content dictionary
into the addcd() method in the Unit Converter class, and close the JPanel. The
addcd method then adds the new content dictionary to the list of content
dictionaries already in the system and passes the content dictionary into the
readCD() method.

The purpose of the readCD method is to update the combo boxes on the GUI; the
content dictionary is passed into the method and parsed by the SAXBuilder, XPath is
used to extract the names of all of the available units in that content dictionary and
they’re added to a list of nodes. The list is checked for any duplicates and the
resulting list is added to the combo boxes on the GUI, this now makes the new
conversions available to the user.

4.4.4 Reading/Searching multiple dictionaries

Now there are multiple dictionaries in the system the search method needs to be
edited to ensure all of the content dictionaries are being checked for relevant
conversions. The content dictionaries are stored in a list so a loop is necessary at
the start of the searching method so that the existing search process can be carried
out on every content dictionary.
As well as that the SAXBuilder code needs to be edited so that a different content
dictionary is parsed during each iteration, this is done by selecting the content
dictionary at the location corresponding to the for loop and casting it to a string.

for(int y=0;y<=files.size();y++)
{
 SAXBuilder parser = new SAXBuilder();
 Document response = parser.build((String) files.get(y));

An OpenMath based Unit Converter

38

5

Testing & Results

An OpenMath based Unit Converter

39

5.1 Test Plan

The testing document aims to show that each of outlined requirements have been
met successfully, this is going to be split into two parts. Initially I am going to test
that my system has met the functional requirements highlighted in the specification
stage. I am then going to carry out a usability study with some possible users to
analyse the design and usability of the front end.

5.2 Testing Functional Requirements

The functional requirements are a specification stating what the system will and
won’t do; they are generally yes or no answers so I designed a number of tests to
see if the system can carry them out, the results are as follows:

Tests 1 & 2: Requirements 1 & 5: Adding new content dictionaries to the system

 Test Carried Out: Add the Pressure content dictionary via the front end

Expected Result: The content dictionary should be added to the system so
the units; Pascal, Newton’s per square Metre, Pound’s per square Metre and
Pound’s per square Foot should all be made available for conversions

Successful: Yes, see Figure 5.1 in Appendix B

Test Carried Out: Using the front end add a number of different content
dictionaries from the OpenMath website

Expected Result: The content dictionaries should be added to the system
and all of the expected units are made available for conversions

Successful: No. Some of the content dictionaries where not compatible with
the system, as a result the units were added but the conversions are not available.

Test 3, 4 & 5: Requirements 2 & 7: Carry out conversions using just one content
dictionary achieving a 99% success rate

 Test Carried Out: Using 1 as the conversion amount converted between:

 Pascal and Newton’s per square Metre

 Pascal and Pound’s per square Metre

 Pascal and Pound’s per square Foot

Expected Result: The answer should return for each conversion respectively

Successful: Yes, see Figures 5.2, 5.3, 5.4 in Appendix B

An OpenMath based Unit Converter

40

Test 6: Requirement 3: Carry out conversions using multiple units achieving a
99% success rate

 Test Carried Out: Using 1 as the conversion amount converted between:

 Miles and Metres

Expected Result: Although this conversion isn’t formally defined it should use
feet as an intermediate step, the answer should return for the conversion

Successful: Yes, see Figure 5.5 in Appendix B

Test 7: Requirements 4 & 8: Provide a simple front-end that collates all of the
functionality of the system

Test Carried Out: Run the System

Expected Result: The front end should appear within 2 seconds

Successful: Yes, see Figure 5.6 in Appendix B

Tests 8, 9 & 10: Requirement 6: Error Handling

Test Carried Out: Attempt to carry out a conversion without a conversion
amount filled in

Expected Result: An error should be returned

Successful: Yes, see Figure 5.7 in Appendix B

Test Carried Out: Attempt to add a Word file instead of a content dictionary

Expected Result: As the file is not a valid content dictionary an error should
be returned

Successful: Yes, see Figure 5.8 in Appendix B

Test Carried Out: Carry out a conversion between Metres and Pascal

Expected Result: The conversion is not possible so an error should be
returned

Successful: Yes, see Figure 5.9 in Appendix B

Requirements 9 & 10: Time to execute user commands & Reliability

An OpenMath based Unit Converter

41

Test Carried Out: All of the above

Expected Result: All of the tests should be successful and the operation
should have provided the user with the desired result within 2 seconds

Successful: Yes

Requirement 11: Robustness

Test Carried Out: Keep the system running for 5 hours carrying out a
number of different tests including failure cases

Expected Result: All of the tests should run successfully and in the failure
case the system should recover and be operational within 15 seconds

Successful: Yes, the only test that went wrong was when adding certain
content dictionaries. Although the dictionaries failed to add properly the system did
not crash and was still operational.

5.3 Testing Non-Functional Requirements

The non-functional requirements specify those requirements that cannot be
precisely measured by success or failure, they are subjective. For this reason,
testing in real-world environments and user feedback often plays a key part in the
validation of non-functional requirements.

5.3.1 Usability Study

There are a number of different ways to carry out a usability study; I decided to
carry out some short exercises with a sample of possible users. Ten people were
given the user guide and asked to ‘play’ with the system for five to ten minutes. To
ensure the users tested all aspects of the system they were given a small list of
tasks they were asked to complete; add at least one content dictionary, carry out at
least one successful conversion and try to break the system. They were then asked
to give it a mark out of ten for:

• How simple and easy to use the front end is

• How useable they felt the system is

Although the design and completeness of the user interface was always secondary
in importance to the process of converting units using OpenMath the results of the
usability study were still important because even the most advanced unit converter
is pointless without a means to interact efficiently with it.

An OpenMath based Unit Converter

42

5.3.2 Usability Study Results

After all ten users had tested my system the results came out as follow:

Table 1 Usability Study Results

User No. 1 2 3 4 5 6 7 8 9 10

Front End
/10

8 8 9 10 9 8 9 10 8 8

Usability
/10

8 7 8 9 8 7 8 7 8 9

The final results were:

• How simple and easy to use the front end is… 8.7/10

• How useable they felt the system is… 7.9/10

Verbal discussions with the different users did not raise any major issues with the
design and usability of the front end. Most felt that the system itself was simple
enough to navigate and given the user guide as a backup they couldn’t foresee any
major problems occurring. The reason the usability had a slightly lower score
compared with the actual design was because of the error reporting. Not all of the
content dictionaries are compatible with the system and when a non-compatible
content dictionary is added there was often some confusion because the user is not
made aware of this.

5.3.3 Testing Summary

The original goal of this project was to create a system that would demonstrate
OpenMath as a suitable foundation for a unit converter and in turn create an
extensible unit converter; the requirements specification firmly defined these
parameters. The majority of tests carried out on my functional requirements were a
success; the testing demonstrated that the system could carry out conversions and
add content dictionaries, hence, increasing the number of conversion available.

Despite the fact that that the non-functional requirements are harder to test than
the functional requirements, they were also deemed to have been met. The
usability study demonstrated that after a host of different users tested the system
they felt that the front end and system usability were both more than adequate.

An OpenMath based Unit Converter

43

The main problem highlighted during both rounds of testing was the fact that not all
content dictionaries are compatible with the system, this is discussed further in the
conclusion.

An OpenMath based Unit Converter

44

6

Conclusions

An OpenMath based Unit Converter

45

6.1 Project Critique

At the beginning of this project the task set to me was to research the OpenMath
language and investigate its suitability as the foundation for an extensible unit
converter. This broke down into two major sections, the inclusion of content
dictionaries into the system and evaluating the input to return the answer or an
error.

I set out studying OpenMath as a language and given my lack of knowledge on
OpenMath and XML followed what I deemed to be quite a sensible development
process. By carrying out my implementation in an evolutionary manner it meant
that as I developed the system I could learn about some of the more advanced
features and incorporate them in the system at a later date.

The main draw back of an evolutionary approach is that it can be very easy to lose
control of the development process. By carrying out quite an informal approach to
evolutionary design and implementation it has had a negative affect on my coding.
Java programs by definition are generally highly modularised with clear class
diagrams and code layout. Unfortunately this is not the case within my system, a
number of the methods within the main body of the system should really be
separated into different classes; the program as a whole could really do with being
modularised.

Due to my coding it could mean that future development of the system could well
be slowed. Not only will it make it a lot harder for other programmers to read
through and understand the processes I’ve implemented thus far but future
changes will also be more difficult to incorporate. One of my non-functional
requirements was to ensure that future improvements were catered for in the
design, hence, new operations and modifications to improve efficiency should be
easy to add to the system. Although I feel a better system was produced due to my
implementation style it has resulted in this requirement not really being met.

I enjoyed researching and implementing this project, OpenMath is a fascinating
language and it was refreshing to work in a field that still has scope for
development.

To critique myself I would say that I have achieved my primary objectives. Although
the system is limited by the number of content dictionaries it is compatible with, it is
capable of reading in a variety of content dictionaries and based on the details
stored in those dictionaries, carry out conversions.

An OpenMath based Unit Converter

46

6.2 The Future – The Unit Converter

6.2.1 Writing Content Dictionaries

One of the main disadvantages of OpenMath is that as yet is does not have mass
appeal and as a result there is not wide spread understand of the language. The
unique selling point behind an OpenMath based unit converter is that it is
extensible. However, at this moment in time the only way users can add content
dictionaries to the system is to search through the list of dictionaries, gather the
required information and add the dictionary that relates to the conversion they want
to perform. Although the content dictionaries are written in XML and that is
designed to be both machine and human readable this is not a particularly practical
approach for non-computer literate users.

To ensure all types of users fully utilise the system a sensible addition would be a
section of the program that can write content dictionaries for the user. Phrase-
books are available to convert other languages to OpenMath, for example:

OMA>

<OMS cd="Basic" name="segment"/>

1

2

</OMA>

Is written by:

OMApplication om1 = new OMApplication(functor1,params1);

 Vector params2 = new Vector();

 params2.addElement(new OMInteger(1));

 params2.addElement(new OMInteger(3));

This means that if a conversion is not already available the user could enter the two
units they want to convert between as well as some of the core conversion details,
a phrase-book could then be used to produce the content dictionary on their behalf.

6.2.2 Formalising a Phrase-book

Suppose you have two applications communicating by sending OpenMath objects to
each other, a client program and a computational server. It is very unlikely that the
applications internal data structure will be OpenMath, hence, translations between
the internal representation and OpenMath are going to have to take place. The
piece of software that does this is usually called the phrase-book.

An OpenMath based Unit Converter

47

It is possible to write a phrase-book which can handle any piece of OpenMath, in
practice this means you can write an OpenMath phrase-book that will handle a fixed
set of content dictionaries and symbols. What "handle" means will vary from case to
case: in my system it attempts to evaluate the input and return a result or an error.

At present my system is interpreting content dictionaries using a standard XPath
location. This enables access to a number of different units and conversions but
only those of the same format. If I were to continue developing this project the
main area worth developing is to write a formal phrase-book. Within the phrase-
book I would be able to define a number of ways of interpreting the content
dictionaries and in doing so I would be able to access a great deal more conversions
increasing the extensibility of the converter.

6.3 The Future – OpenMath

OpenMath avoids defining what the "right" behaviour is in a given circumstance and
leaves that up to the phrase-book writer, it is also possible that a piece of software
could have multiple phrase-books associated with it for different purposes (The
OpenMath Society, 2006). This means that a whole host of different systems can be
produced that utilize a mixture of content dictionaries.

There are a number of different content dictionaries already written and available
on the Internet that cover a variety of topics. A good example of this is the
dimension1 content dictionary. This content dictionary defines units such as length,
area, velocity, time, speed etc. These content dictionaries really highlight the
advantages of OpenMath, using a phrase-book that can interpret these content
dictionaries a mathematical tutor or teaching aid could be produced. A mathematical
tutor would be able to read the content dictionaries and return the relations in a
more legible manner; furthermore the content dictionaries can be used to work out
the result of equations for the user. For Example, given the length and time
travelled the system can work out the acceleration.

6.4 Summary

OpenMath as a language is highly underutilised, it is an excellent way of formally
defining the semantics of and relations between mathematical objects and as a
result I can see the use of the language increasing greatly over the coming years.
Due to the way that OpenMath is formalised it provides the perfect foundation for a
mathematical system to build on. As more OpenMath based applications are being
produced it means there will be more content dictionaries and phrase-books being
built. This in turn will increase the understanding, functionality and usability of the
language, greatly increasing its popularity.

An OpenMath based Unit Converter

48

Bibliography

• Bray, T., Paoli, J., 1998

Extensible Markup Language (XML) 1.0, Available at:

http://www.w3.org/TR/1998/REC-xml-19980210.pdf

• Buswell. S., Caprotti, O., Carlisle, D.P., Dewar, M.C., Gaëtano, M.
and Kohlhase, M., 2004

The OpenMath Standard. Available at:

 http://www.openmath.org/standard/om20-2004-06-30//omstd20.pdf

• Carlisle, D., Davenport, J. Dewar, M., Hur, N., Naylor, W., 2001

Conversion between MathML and OpenMath, Available at:

http://www.openmath.org/documents/om-mml.pdf

• Cohen, M.A, Cuypers, H., Sterk, H.

Algebra Interactive Available at:

http://www.win.tue.nl/~ida/home.html

• Davenport, J., 1999

A Small OpenMath Type System, Available at:

 http://www.openmath.org/standard/sts.pdf

• Davenport. J, 2000

On Writing OpenMath Content Dictionaries. Available at:

http://www.openmath.org/documents/writingCDs.pdf

• Davenport, J., Naylor, W., 2003

Units and Dimensions in OpenMath, Available at:

http://www.openmath.org/documents/Units.pdf

• Harold, E.R., Means, W.S., 2001

XML: In a Nutshell, United States: O’Reilly & Associates, Inc

• McLaughlin, B., 2001

Java & XML, 2nd Edition, United States: O’Reilly & Associates, Inc

An OpenMath based Unit Converter

49

• Neimeyer, P., Knudsen, J., 2005

Learning Java, 3rd Edition, United States: O’Reilly Media, Inc

• OpenMath Consortium, 1999

The OpenMath Project Final Report, Available at:

http://www.openmath.org/projects/esprit/final/index.html

• Piroumian, V., 1999

Java GUI Development, United States: Sams Publishing

• Seppala, M., 1995

Report of OpenMath Activities, Editing and Computing. Available at:

http://www.openmath.org/projects/EditingAndComputingReport.pdf

• Sommerville, I., 2001

Software Engineering, 6th Edition, United States: Addison Wesley

• Stiller, E., LeBlanc, C., 2002

Project Based Software Engineering, United States: Addison Wesley

• Van Der Vlist, E., 2002

XML Schema, United States: O’Reilly & Associates, Inc

• Walsh, N., 1998

A Technical Introduction to XML, Available at:

http://www.xml.com

• W3C, 2005

Document Object Model (DOM), Available at:

http://www.w3.org/DOM/

• Yu Terrance, 1998

Poly Math, Available at:

http://pdg.cecm.sfu.ca/openmath0.5/lib/phrasebook.html

An OpenMath based Unit Converter

50

Appendix A

User Documentation

An OpenMath based Unit Converter

51

An OpenMath based Unit Converter

52

An OpenMath based Unit Converter

53

An OpenMath based Unit Converter

54

Appendix B

Raw results output

An OpenMath based Unit Converter

55

Figure 7. Test 1 Results

Figure 8. Test 3 Results

An OpenMath based Unit Converter

56

Figure 9. Test 4 Results

Figure 10. Test 5 Results

Figure 11. Test 6 Results

An OpenMath based Unit Converter

57

Figure 12. Test 7 Results

Figure 13. Test 8 Results

Figure 14. Test 9 Results

An OpenMath based Unit Converter

58

Figure 15. Test 10 Results

An OpenMath based Unit Converter

59

Appendix C

Code

An OpenMath based Unit Converter

60

Pressure.ocd

<CD>
<CDName> pressure </CDName>
<CDStatus> experimental </CDStatus>
<CDDate> 2007-04-11 </CDDate>
<CDVersion> 1 </CDVersion>
<CDUses>
<CDName>arith1</CDName>
<CDName>relation1</CDName>
</CDUses>

<Description>
This CD defines symbols to represent pressure measurements.
</Description>

<CDDefinition>
<Name> pascal </Name>
<Description>
This symbol represents the measure of one Newton per square metre.
This is the standard SI measure for pressure.
</Description>

<CMP> 1 pascal = 1 newton_per_sqr_metre </CMP>
<FMP><OMOBJ>
 <OMA>
 <OMS name="eq" cd="relation1"/>
 <OMA>
 <OMS name="times" cd="arith1"/>
 <OMI> 1 </OMI>
 <OMS name="pascal" cd="pressure"/>
 </OMA>
 <OMA>
 <OMS name="times" cd="arith1"/>
 <OMI> 1 </OMI>
 <OMS name="newton_per_sqr_metre" cd="pressure"/>
 </OMA>
 </OMA>
</OMOBJ></FMP>

</CDDefinition>

<CDDefinition>
<Name> pound_per_sqr_metre </Name>
<Description>
This symbol represents the measure of one Pound per square metre.
This is the standard SI measure for pressure.
</Description>
<CMP> 1 pound_per_sqr_metre = 4.4483 pascal </CMP>

<FMP><OMOBJ>

An OpenMath based Unit Converter

61

 <OMA>
 <OMS name="eq" cd="relation1"/>
 <OMA>
 <OMS name="times" cd="arith1"/>
 <OMI> 1 </OMI>
 <OMS name="pound_per_sqr_metre" cd="pressure"/>
 </OMA>
 <OMA>
 <OMS name="times" cd="arith1"/>
 <OMF> 4.4483 </OMF>
 <OMS name="pascal" cd="pressure"/>
 </OMA>
 </OMA>
</OMOBJ></FMP>

</CDDefinition>

<CDDefinition>
<Name> pound_per_sqr_foot </Name>
<Description>
This symbol represents the measure of one Pound per square foot.
This is the standard SI measure for pressure.
</Description>
<CMP> 1 pound_per_sqr_foot = 47.8803 pascal </CMP>

<FMP><OMOBJ>
 <OMA>
 <OMS name="eq" cd="relation1"/>
 <OMA>
 <OMS name="times" cd="arith1"/>
 <OMI> 1 </OMI>
 <OMS name="pound_per_sqr_foot" cd="pressure"/>
 </OMA>
 <OMA>
 <OMS name="times" cd="arith1"/>
 <OMF> 47.8803 </OMF>
 <OMS name="pascal" cd="pressure"/>
 </OMA>
 </OMA>
</OMOBJ></FMP>

</CDDefinition>

</CD>

An OpenMath based Unit Converter

62

FileChoose.java

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;

public class FileChoose extends JFrame
{
 public FileChoose()
 {
 super("");
 JPanel pane = new JPanel(new FlowLayout());

 Dave fc = new Dave(new File("."), this);
 Box box = Box.createVerticalBox();
 box.add(Box.createRigidArea(new Dimension(0, 10)));
 box.add(fc);
 pane.add(box);
 setSize(500, 370);
 setLocation(400,200);
 setContentPane(pane);
 }

 public void launchFrame()
 {
 setVisible(true);
 }

 private class Dave extends JFileChooser
 {
 FileChoose chooser;
 public Dave(File f, FileChoose chooser)
 {
 super(f);
 this.chooser = chooser;
 }
 public void approveSelection()
 {
 // If the selected file is a directory open it
 if (getSelectedFile().isDirectory()) {
 setCurrentDirectory(getSelectedFile());
 }
 else {
 // Otherwise check to make sure the last 4 digits are .ocd, if so
add the CD to the system.
 String filename = getSelectedFile().toString();
 int filenameLength = filename.length();
 if (filenameLength<4 || !filename.substring(filenameLength - 4,
filenameLength).equalsIgnoreCase(".ocd"))
 {

An OpenMath based Unit Converter

63

 // If the last 4 digits are not .ocd display an error
message.
 JOptionPane.showMessageDialog(null, "Error, Please add a
valid Content Dictionary");
 }
 else {
 Unit_Converter.addcd(getSelectedFile());
 chooser.dispose();
 }
 }

 }
 public void cancelSelection()
 {
 chooser.dispose();
 }
 }
}

An OpenMath based Unit Converter

64

Unit_Converter.java

import java.util.*;
import java.net.*;
import java.io.*;
import org.jdom.*;
import org.jdom.xpath.*;
import org.jdom.output.XMLOutputter;
import org.jdom.input.SAXBuilder;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

public class Unit_Converter extends JFrame implements ActionListener
{
 // Initialise global variables
 public static JFrame frame = new JFrame();
 public static JPanel screen = new JPanel(new FlowLayout());
 public static JTextField convertAmount = new JTextField("1");
 public static JComboBox convertFrom = new JComboBox();
 public static JComboBox convertTo = new JComboBox();
 public static JButton processButton = new JButton("Add");
 public static JButton convertButton = new JButton("Convert");
 public static JFileChooser addNewLibrary = new JFileChooser(new
File("."));
 public static java.util.List files = new LinkedList();

 // Add the new Content Dictionary to the current list
 public static void addcd(File f)
 {
 files.add(f.toString());
 readCD(f.toString());
 }

 // Invert the operator applied to the srcUnit
 public static String invertOp(String operator)
 {
 if (operator.equals("times")) return "divide";
 if (operator.equals("divide")) return "times";
 if (operator.equals("add")) return "minus";
 if (operator.equals("minus")) return "add";
 return "unknown";
 }

 // Carry out the operator applied to the srcUnit
 public static double normalise(double srcVal, double baseVal,
String operator)
 {
 if (operator.equals("divide")) {

An OpenMath based Unit Converter

65

 return srcVal/baseVal;
 }
 return 0;
 }

 // Carry out the final operation
 public static double apply(double arg1, double arg2, String
operator)
 {
 if (operator.equals("times")) {
 return arg1*arg2;
 }
 return 0;
 }

 // Find the value within the Element, whether thats the source or
destination Element
 public static double getValue(Element oma)
 {
 // Search the OMA for the element value, this method makes it
independent of whether it's a float or integer
 try {
 Element ele;
 String value;
 // Integer
 ele = ((Element)XPath.selectSingleNode(oma,"OMI"));
 if (ele != null) {
 // Trim the content dictionary value
 value = ele.getValue().trim();
 return (double) Integer.parseInt(value);
 }
 // Float
 ele = ((Element)XPath.selectSingleNode(oma,"OMF"));
 if (ele != null) {
 value = ele.getValue().trim();
 return (double) Double.parseDouble(value);
 }
 }
 catch (Exception e) {
 }
 return 0.0;
 }

 // Do the maths
 public static double convert(Element el, String sourceUnit, String
destinationUnit, double value)
 {
 double result = 0.0;
 try {
 // Search the list to find the section that focuses on the
srcUnit & dstUnit
 // Match the Source and Destination values

An OpenMath based Unit Converter

66

 Element srcOma = (Element)
XPath.selectSingleNode(el,"OMA[OMS/@name='"+sourceUnit+"']");
 Element dstOma = (Element)
XPath.selectSingleNode(el,"OMA[OMS/@name='"+destinationUnit+"']");

 // Focuses on the source unit
 // Call the invertOp method - reverse the operation thats
applied to the source unit
 String invOp =
invertOp(((Attribute)XPath.selectSingleNode(srcOma,"OMS/@name")).get
Value());
 // Make srcBase a double
 double dblBase = getValue(srcOma); //(double)
Integer.parseInt(srcBase);
 // Carry out the normalise method
 double norm = normalise(value,dblBase,invOp);

 // Retrieve the destination value from the content
dictionary
 String dstOp =
((Attribute)XPath.selectSingleNode(dstOma,"OMS/@name")).getValue();
 // Make dstBase a double
 dblBase = getValue(dstOma); //(double)
Integer.parseInt(dstBase);

 // Carry out the apply method
 result = apply(norm,dblBase,dstOp);
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }
 return result;
 }

 // Search for the correct conversion
 public static double search(String srcUnit, String dstUnit, double
srcVal, ArrayList visited)
 {
 // This loop ensures the method searches through all of the
 // content dictionaries in the system.
 for(int y=0;y<=files.size();y++)
 {
 try {
 SAXBuilder parser = new SAXBuilder();
 Document response = parser.build((String) files.get(y));

 // sourceNodes = lookup source unit
 // Extract all sections that focus on the srcUnit, add them to
a list

An OpenMath based Unit Converter

67

 XPath x =
XPath.newInstance("/CD/CDDefinition/FMP/OMOBJ/OMA[OMA/OMS/@name='"+s
rcUnit+"']");
 java.util.List sourceNodes = x.selectNodes(response);
 ArrayList srcNodes = (ArrayList) sourceNodes;

 // loop over all source units in list
 // for all nodes in sourceNodes
 for(int i=0;i<srcNodes.size();i++)
 {
 // Search the list to find the section that focuses on the
srcUnit & dstUnit
 Element el = (Element) srcNodes.get(i);
 Element dstOma = (Element)
XPath.selectSingleNode(el,"OMA[OMS/@name='"+dstUnit+"']");
 if (dstOma != null) {
 // If there is a match for the dstUnit, Carry out the
conversion method
 return convert(el, srcUnit, dstUnit, srcVal);
 }
 }

 // for all nodes N in sourceNodes
 for(int j=0;j<srcNodes.size(); j++)
 {
 // if srcUnit is not in visited
 if (!beenVisited(visited, srcUnit))
 {
 // Return the attribute in the element that isn't the
source unit
 Element N = (Element) srcNodes.get(j);
 Attribute a = (Attribute)
XPath.selectSingleNode(N,"OMA/OMS[2][@name!='"+srcUnit+"']/@name");
 // N_string is out new element, it becomes the new dstUnit
 String N_string = a.getValue();
 // A conversion is carried out from the srcUnit to N-
string
 double newSrcVal = convert(N, srcUnit, N_string, srcVal);
 // Every srcUnit is added to a list of all units visited
to no conversions are repeated
 visited.add(srcUnit);
 // N_string is now the srcUnit
 // Search is called again to try and find a conversion
from N_string to the original dstUnit
 double val = search(N_string, dstUnit, newSrcVal,
visited);
 if (val != -999)
 {
 return val;
 }
 }
 }

An OpenMath based Unit Converter

68

 }
 catch (Exception e) {
 System.err.println(e);
 }
 }
 return -999;
 }

 // Do a check to see if the unit is in the visited array list
 // This means it should be ignored
 public static boolean beenVisited(ArrayList visited, String unit)
 {
 for(int k=0; k<visited.size(); k++)
 {
 if(visited.get(k).equals(unit))
 {
 return true;
 }
 }
 return false;
 }

 // read new Content Dictionaries into the converter
 public static void readCD(String nameCD)
 {
 try {
 // Read in the file
 SAXBuilder parser = new SAXBuilder();
 Document cd = parser.build(nameCD);
 // Extract the information from the correct path and add the
names to the ArrayList
 XPath x =
XPath.newInstance("/CD/CDDefinition/FMP/OMOBJ/OMA/OMA/OMS[2]/@name")
;
 java.util.List nodes = x.selectNodes(cd);
 ArrayList allNodes = (ArrayList) nodes;

 // Search through the list removing any duplicates
 for(int k=0;k<allNodes.size();k++)
 {
 String name = ((Attribute) allNodes.get(k)).getValue();
 for (int d=(k+1);d<allNodes.size();d++)
 {
 String compare = ((Attribute) allNodes.get(d)).getValue();
 if (compare.equals(name))
 {
 allNodes.remove(d);
 allNodes.trimToSize();
 }
 }
 convertFrom.addItem(name);
 convertTo.addItem(name);

An OpenMath based Unit Converter

69

 }

 }
 catch (Exception e) {
 System.err.println(e);
 }
 }

 public Unit_Converter()
 {
 // Initialise the Instance Variables
 JPanel screen = new JPanel(new FlowLayout());
 JLabel title = new JLabel("Convert A Unit The OpenMath Way");
 JLabel convertF = new JLabel("Convert From...");
 JLabel convertT = new JLabel("Convert To...");
 JLabel addNewL = new JLabel("Add A New Library");
 JLabel spacer = new JLabel();

 // Set the sizes of the variables
 screen.setPreferredSize(new Dimension(500, 240));

 title.setPreferredSize(new Dimension(255, 40));
 convertF.setPreferredSize(new Dimension(245, 30));
 convertAmount.setPreferredSize(new Dimension(50, 20));
 convertFrom.setPreferredSize(new Dimension(150, 20));
 convertT.setPreferredSize(new Dimension(300, 30));
 convertTo.setPreferredSize(new Dimension(150, 20));
 addNewL.setPreferredSize(new Dimension(450, 40));
 spacer.setPreferredSize(new Dimension(350, 40));
 processButton.setPreferredSize(new Dimension(75, 20));
 convertButton.setPreferredSize(new Dimension(100, 30));

 // Set borders on the TextPanes
 convertAmount.setBorder(new LineBorder(Color.black));
 convertFrom.setBorder(new LineBorder(Color.black));
 convertTo.setBorder(new LineBorder(Color.black));

 // Add the elements to the Screen
 screen.add(title);
 screen.add(convertF);
 screen.add(convertAmount);
 screen.add(convertFrom);
 screen.add(convertT);
 screen.add(convertTo);
 screen.add(spacer);
 screen.add(convertButton);
 screen.add(addNewL);
 screen.add(processButton);

 frame.setTitle("");
 frame.show();
 frame.setLocation(400, 200);

An OpenMath based Unit Converter

70

 frame.setContentPane(screen);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();

 // Add action listeners to the relevant parts of the GUI
 convertFrom.addActionListener(this);
 convertButton.addActionListener(this);
 processButton.addActionListener(this);

 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource()== convertButton)
 {
 try {
 // Read in the details and start the conversion process
 ArrayList visited = new ArrayList();
 String srcUnit = (String) convertFrom.getSelectedItem();
 double srcVal =
Double.parseDouble(convertAmount.getText().trim());
 String dstUnit = (String) convertTo.getSelectedItem();
 double result = search(srcUnit, dstUnit, srcVal, visited);
 // Return the result
 if (result != -999)
 {
 JOptionPane.showMessageDialog(null, srcVal + " " +
srcUnit + " = " + result + " " + dstUnit);
 }
 else {
 JOptionPane.showMessageDialog(null, "Sorry, that
conversion is not mathematically possible");
 }
 }
 catch (Exception e) {
 JOptionPane.showMessageDialog(null, "Please make sure you
have entered a value for the Amount to Convert and both the Source
and Destination Units");
 }
 }

 if (event.getSource()== processButton)
 {
 new FileChoose().launchFrame();
 }

 }

 public static void main(String[] args) {
 Unit_Converter uc = new Unit_Converter();
 }

}

