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Executive Summary

This design report describes the design tradeoffs in our attempt to design an extension
to the commercially available AR Drone 2.0. This extension, along with the commercial
drone, together are described as the flying, room-identifying, autonomous robot (F.R.I.A.R.).
The goals for the F.R.I.A.R. project are:

1. establish a two way wireless connection between a ground control station (laptop)
and our robot to transmit commands

2. autonomously navigate down a straight hallway maintaining a perpendicular distance
to the wall

3. detect obstacles of the robot, and avoid them if necessary

4. use AR Drone 2.0’s built in camera to read room numbers from the number plaques
of the Shelby Center at Auburn University.

Unfortunately, we ran into many problems in our attempt to accomplish these goals.
Our prototype is wirelessly controlled manually from a laptop. It can detect obstacles
but cannot navigate autonomously and does not have any on board image processing.

We also developed software to enhance the video steam from the commercial AR drone
by removing the barrel distortion. This image enhancement software was not integrated
into our prototype.

Parrot, the manufacturer of the AR drone, has licensing restrictions on software using
their API to interface with their drone. Our software interfaces with their API, so we
are restricted by their software license.
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1. Introduction

The Flying, Room-Identifying, Autonomous Robot project is a hardware and software
extension to the commercially available AR Drone 2.0. The goals of the project are

1. establish a two way wireless connection between a ground control station (GCS)
and our robot to transmit commands

2. autonomously navigate down a straight hallway maintaining a perpendicular distance
to the wall

3. detect obstacles of the robot, and avoid them if necessary

4. use AR Drone 2.0’s built in camera to read room numbers from the number plaques
of the Shelby Center at Auburn University.

We failed on many fronts. Our resulting prototype is uses sonar sensors to detect
obstacles, but is manually controlled by a user over a wireless interface. Our room
number plaque detection algorithm failed, but we did develop software to remove barrel
distortion. This software was not integrated with the embedded system.

Dr. Murray, an associate professor in Auburn University’s Department of Industrial
and Systems Engineering, has provided our team with a Parrot AR 2.0 drone to use
for the project. The previous groups working for Dr. Murray developed software to
communicate between the Raspberry Pi and the drone.

PARROT’s software license agreement restricts the use of their software exclusively
to education and entertainment purposes. The obstacle avoidance capabilities of our
robot could be useful for a variety of applications. Obstacle avoidance is a must for any
autonomous robot, and owners of a drone for any user controlled game will likely feel
much more comfortable about lending the game to a friend if the robot can prevent itself
from crashing. The room-number identification feature is extremely useful for navigation
in a variety of indoor applications.

We will now describe the organization of the rest of the report. Section 7 describes the
PARROT licensing agreement and the effects on our project. Section 2 gives an overview
of the entire system. Section 3 describes our progress on developing communication
between the robot and a GCS. Section 4 describes the hardware involved in obstacle
detection and the software that needs to be developed. Section 5 describes the current
state of our navigation software and how we intend to improve it. Section 6 outlines our
planned process for detecting and reading plaques from drone-collected images. Section
8 describes the budget of our project, and section 9 describes the project schedule.
Section 10 states conclusions of this report. Details extending certain sections of the
report are included in the appendices.

2. System Overview

The F.R.I.A.R. has three separate hardware systems: the Ground Control Station
(GCS), the Embedded Controller, and the AR Drone 2.0. These three systems are

1



F.R.I.A.R. Cycle 2 Design Report 2

linked by wireless communication shown in Figure 1. Most of our work is on the
Embedded System which manages three key subsystems: Obstacle Detection, Navigation
and Obstacle Avoidance, and Computer Vision. The Navigation and Obstacle avoidance
and the Computer Vision subsystems do not work.

Figure 1: Wireless communication between hardware systems: the GCS is represented by
the PC, the Embedded System is represented by the Raspberry Pi processor,
and the AR Drone 2.0 is represented by the picture of a quadrotor robot

The Obstacle Detection subsystem consists of five sonar range finders and the software
to read and interpret the data provided. The software is implemented in c++ and will
run on board the Raspberry Pi. A printed circuit board was designed and manufactured
to more reliably power and connect the sonar range finders to the Raspberry Pi.

The Navigation and Obstacle Avoidance subsystem is purely a software construct.
The goal was for this system to take input from the obstacle detection subsystem to
autonomously pilot the AR Parrot Drone. Unfortunately, we did not get the autonomous
navigation to work properly. However, to debug our system, we did design a manual
remote control of the AR Drone through the embedded system. This remote control
interface works well.

The Computer Vision subsystem consists of the AR Parrot Drone’s on board camera
as well as software to recognize room numbers on the walls given an image file of the
camera’s view. Unfortunately, we did not manage to get the feature detection algorithms
to detect room number plaques. We also did not manage to access the AR Parrot Drone’s
video stream.

Communication between these systems is vital to the correct operation of FRIAR.
Built into the AR Parrot Drone is a wi-fi hot spot which shall communicate with the
Raspberry Pi via the User Datagram Protocol (UDP). Navigation commands are sent
over this bridge. The Sonars will communicate with the Raspberry Pi through a pulse
width modulated signal. Finally, a ground station communicates with the Raspberry Pi
via Xbee hardware. The remote control interface is through this link.

2
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The above configuration was chosen after considering the alternatives and their tradeoffs
and strengths. The Raspberry Pi was chosen for is small size and versatility. Although
not exceptionally powerful, the Pi is a fully functioning computer the size of credit
card and running on little power. The ARM architecture and Linux based operating
system (Raspbian) allow the drone to run almost any software and can interface with
most devices designed to run on a normal computer, such as wi-fi adapters and other
USB devices. The Pis general purpose input output (GPIO) pins allow various sensors
to interface directly with the Pi. A microcontroller was considered in place of the Pi
but while it did greatly expand the GPIO capability it would cost more, and add more
weight, to interface the microcontroller with wi-fi and XBee than it would with the Pi.
Wi-fi and XBee shields would need to be bought for the microcontroller. It would also
limit the ability to run the Computer Vision subsystem on the drone itself to what
packages and software the microcontroller can run.

The Ground Control Stations needed so that a user can communication to the drone
while in flight. We planned for the GCS is to tell the drone when to start searching
and receive any signals from the drone while in flight or to update the drones goal, but
instead it is used for manual control of the done. I

Custom code was written for the Pi to allow more flexibility with integrating the
subsystems. There is open source code, such as JavaDrone and NodeJS, that would
do most of what the project needed but it was determined that trying to modify the
code for either one would be more difficult. The open source code available was also not
meant to run on a Pi and the code may not have run as well on the Pi as on a computer.
An example would be the time it takes to execute a system call, while both the Pi and
a computer can execute the call the computer is much more powerful and faster than
the Pi so runtime may be an issue.

3. Ground Station Communication

In order for the robot to talk back with the Ground Control Station (GCS) two Xbee
modules are used. Originally the robot used the Mavlinks protocol to communicate
with the GCS. This proved difficult and rather cumbersome for the minimum amount of
communication needed between the robot and the GCS. In order to simplify and reduce
the number of packets sent, simple ASCII character communication is used. This allows
us to test the flight control command code and send simple predetermined messages
between the robot and the GCS. Using this method we have successfully used to GCS to
remotely control the robot and verify that the flight control codes function as expected.
Not using the Xbee with the ZBee protocol is for the same reason as not using Mavlinks,
all the features and associated and complexity was not need for the amount and type of
communication needed. The Pi communicates with the AR Drone using UDP over an
ad-hoc wi-fi connection. This is a feature of the AR Drone and could not be changed.
A wi-fi USB adapter was added to the Pi so it could communicate with the AR Drone.

3
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4. Obstacle Detection

As mentioned previously, the obstacle detection system will consist of both software
and four sonar range finders. The particular range finder that we will use is an LV-
MaxSonar-EZ1. This sonar can detect obstacles between 6 and 254 inches away. It
produces 20 readings per second and can operate on 3.3 volts. Four of the five range
finders are positioned as shown in the Figure 2. The fifth sonar is positioned on top of
the drone for ceiling detection.

Figure 2: Sonar positions on the drone. Green represents the sonar beams, black
represents the sonars, and blue is the drone.

Together, these range finders are able to determine if there is an obstacle immediately
left, right, in front, or behind the Drone. In order to interpret this data however it must
be connected to the general purpose input output (GPIO) pins on the Raspberry Pi.
Over these connections, the sensors will emit a PWM signal with a frequency of 20 Hz.
To read this signal, interrupt driven software will be used to interrupt on both rising and
falling edges. The rising edge will start a timer and the falling edge will stop the timer.
The time difference will then be proportional to the distance the object is away from
the sensor. One issue with this technique is that the Raspberry Pi cannot queue more
than one interrupt at a time, thus, it seemed that some sort of scheduling technique will
be developed to ensure all sensors are read accurately, and none are drowned out by
the others interrupt requests. Unfortunately, the only known technique for enabling and
disabling interrupts is too computationally expensive to use practically in an algorithm.
Fortunately, through counting interrupts over a given period of time, it was determined

4
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that the sensors interrupt evenly enough that the sensors do not drown themselves out.

4.1. Hardware Design

Our main hardware features includes four LV-MaxSonar-EZ0 range finding sensors being
read by the Raspberry Pi embedded computer. Each of the four sensors can output data
in a variety of formats including PWM. The PWM signal was chosen as the output signal
to be used for reasons listed below in the tradeoffs section. To physically connect the four
sonar sensors to the Raspberry Pi required 12 wires, or three wires per sonar (positive
supply, negative supply, and PWM). The Pi has 17 general purpose pins that can be
used for PWM signals, but only two pairs of supply pins. Due to this limitation, as well
as previous reports of power delivery errors, it was decided that a printed circuit board
would be designed to deliver power to all four sonar sensors.

4.2. LV-MaxSonar-EZ0

This sonar sensor is capable of detecting objects between 6 and 254 inches with a 1 inch
resolution. It produces 20 readings per second and is able to output the readings in
three formats: PWM, RS232 serial, and analog voltage. It can use either 3.3V or 5V
input voltage. The following diagram from the LV-MaxSonar-EZ0s datasheet shows its
sonar beam detection characteristics.

Figure 3: Sonar beam detection characteristics of LV-MaxSonar-EZ0 from [12].

4.3. Printed Circuit Board

For reliability issues involving power distribution, a printed circuit board was designed to
facilitate PWM and power connections to each sonar. Because printed circuit boards can
be costly, the board was designed to be expandable and redundant. This expandability

5
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mainly comes from the extra pads added to handle up to ten EZ0 sonar sensors on a
single board. In addition to this, extra pads were placed on the board to allow for power
filtering through the use of bypass capacitors if needed. Drill holes were placed to help
mount the board to the Raspberry Pi. Below shows the PCB design, with green as the
top layer and red as the bottom layer.

Figure 4: Printed circuit board layout for sonar sensor power and signal connections.
The top layer is in green. The bottom layer is in red. Holes and pins are in
blue.

4.4. Sensor Sampling Software

The software for sampling each sonar sensor primarily relies on the interrupt driven
design principal. When a PWM signal rises or falls, an interrupt service routine (ISR)
is entered. If the ISR is a rising edge, it takes the current time and stores it. If the
ISR is a falling edge, the current time is subtracted by the time previously stored. The
distance that the sonar sensor is directly proportional to the time difference between the
two clocked times. Four of these ISRs are implemented to each service one sonar sensor.

4.5. Design Tradeoffs

Since the Raspberry Pi does not support analog input pins, only the RS232 or PWM
signals will be feasible to use for sonar data communication. The RS232 serial signal
runs at 9600 baud and requires 5 bytes of data per sonar reading, thus requiring a time of
approximately 5 milliseconds per reading. For the 700 mhz processor on the Raspberry
Pi, this is equivalent to 3.5 million operations, which is much more than the PWM signal
sampling would require. Due to these factors, PWM was the chosen method of input.

Another design issue was whether or not to schedule the interrupts from the sonar
sensors. The problem with allowing free running interrupts as we did was that the
Raspberry Pi does not queue more than one interrupt at a time. In other words, if the
code was already in an ISR, and two more interrupts occurred before the code finished,

6
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one of those interrupts would simply be dropped. To solve this, a round-robin scheme
was developed to circularly turn on and off interrupts. This was effective to not crowd
out any interrupts, but the system call required to enable or disable interrupts was too
time costly. In the end, it was decided that it was unlikely that three interrupts would
occur at once, and through experimentation, it was discovered that this rarely happened
at all.

5. Navigation

In any autonomous or semi-autonomous robot, obstacle avoidance is a must. Our design
uses sonars to sense around the robot. These exteroceptive sensors serve two purposes.
Primarily, the prevent the robot from colliding into objects. The sonars are also used
for navigation. A previous research group developed software to right wall follow using
sonar sensors, but they were unable to test it because they did not manage to interface
well with their sensors. We analyzed the code to predict what modifications would be
needed.

The basic flow of the program begins after initializing variables, the drone begins to
search for a wall on the right. If it does not if it finds one, the drone turns until the wall
is on the right otherwise, it moves forward until it find an obstacle/wall. When a wall
is found, it sets wall located to true so that it does not attempt to go through the wall.
Next the drone checks if there is an obstacle on the right, and no obstacle in front. The
drone then will proceed forward until an obstacle is found. When an obstacle is detected
in front of the drone, it will either turn right or left. We intend to modify this portion
of the code so that it hovers for a moment or two before attempting to go around the
obstacle. When an obstacle (the wall) is no longer detected on the right, the drone will
turn, and hover momentarily. Currently the program instructs the drone to turn until
it finds a wall on the right, after stabilizing the drone then proceeds forward.

We predict that the previous group’s algorithm is not robust to some circumstances,
such as tight corners or recessed doors, so the algorithm will be modified to pass these
edge conditions.

6. Computer Vision

The goal of the computer vision component of the F.R.I.A.R. project was to develop
code to process the video feed of the PARROT drone on the raspberry pi. This code
was to detect room number plaques and read room numbers. Constraints on the design
include processing power, available memory, and processing time. This task was broken
into the following basic steps:

• Distortion correction

• Feature detection

• Feature description

7
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• Feature matching

• Plaque classification

• Transform of training images

• Digit Classification

Distortion correction removes the distortion caused by the fisheye lens of the camera.
Feature detection selects a set of locations in the current frame. Feature description
extracts descriptors of those locations. Feature matching compares those descriptors to
those extracted from feature locations on a training plaque. Homography estimation
uses the spatial geometry of the feature matches to estimate a transformation mapping
locations in the training plaque to locations in the current frame. The transformation
generates a transformed plaque from the current frame which is the same size and
orientation as the training plaque. Plaque classification classifies the transformed image
as either a plaque or not a plaque. Digit classification reads each image on the plaque.

Programming Language

n development of this code, we had to choose a programming language. Table 1 shows
some tradeoffs involved in this decision, where 1-3 are rankings between the different
options. C++ was chosen because of its ability to run on the raspberry pi, and for
compatibility with code being developed by other members of the team in C++. Its
computational speed is also a plus.

Table 1: Comparison of Computer Vision Programming Language Options

MATLAB C++ PYTHON
Familiarity with language Yes No No
Able to run on Raspberry Pi No Yes Yes
Development speed fast slow medium
Computational speed slow fast medium
integration with embedded software need to translate same language feasible

Development Environment

We considered three development environments for our computer vision code: Windows,
Ubuntu VM, and a Raspberry Pi VM. Windows was already set up and ready to go, but
is least like the final intended running environment of the code. This could potentially
lead to operating system related bugs upon integration. The raspberry pi VM is the most
like the final running environment. However, if memory constraints hindered progress,
optimization and development could be necessary to attempt at the same time, which
tends to lead towards less readable code and more bugs. The Ubuntu VM offered the
best of both worlds, close enough to the final environment to avoid serious bugs upon
integration, but avoiding potential memory and speed issues that could hinder the pace
of development. For these reasons, we chose to develop on a Ubuntu virtual machine.

8
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6.1. Distortion Correction

General problem and approach

The drone camera uses a fisheye lens, which causes distortion towards the corners of the
image. This can be seen in Figure 5, which shows an image captured by the PARROT
drone. In any detection process, it is desirable for the representation of the sought object
to be independent of its position in the image. The simplest means to way to achieve
such a representation is to develop a mapping from pixel locations in an undistorted
image representation Iu to the corresponding locations in the distorted image Id. We

Figure 5: Image from drone camera with barrel distortion.

outlined our distortion correction process as follows:

• Model the distortion

• Generate mapping from undistorted locations to distorted locations

• interpolation (bilinear)

We noted that the only operation of these that is necessary to be computed on the
raspberry pi is the interpolation. For code not designed to run on the raspberry pi, the
limitations on coding language and development environment are not relevant. We used
the languages of MATLAB and C++ for tasks within modeling and mapping.

The Model

From visual inspection of video collected from the PARROT drone, we judged that the
distortion could be characterized as barrel distortion. Images depicting barrel distortion
are shown in Figure 6. [h] Brown [3] suggests a model that is equipped to handle barrel
distortion. This model maps coordinates from the distorted domain to the undistorted
domain and is defined in Appendix A.

9
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Figure 6: An image created in MATLAB (left) and the same image after barrel distortion
(right)

Generating the needed mapping

The Brown distortion equations map coordinates from the distorted image to the undistorted
image. The mapping required in the restoration process maps coordinates from the
undistorted image to the distorted image. This means some sort of inversion process is
required in order to use our chosen model. Browns distortion equations are nonlinear
and multivariate. Finding their inverse is a nontrivial problem. However, mappings are
only needed from pixel locations in the undistorted image. If closely enough spaced
points from the distorted image are mapped to the undistorted image, an approximate
inverse could be computed for the necessary locations.

Of course, we would prefer not to compute the distance between every undistorted
pixel and the locations in the undistorted image mapped from locations in the distorted
image. One way to avoid this is to map regions of pixels from the distorted image
to the undistorted image, and only compute distances for undistorted pixels in the
corresponding region in the undistorted image. If we ignored the highest order parameters
K3 and P3, we could compute the borders of this region in the undistorted image closed-
form using quartic equations, and then from them construct inequalities defining the
region. However, quartic equations tend to not have completely stable computations
[13], and it is not a simple task to develop a vectorized approach for MATLAB code.

Given these limitations, we opted for a simpler approach. Instead of computing
the region of the undistorted image exactly, we instead calculate a larger region that
encompasses it. We determined the size of the larger region by mapping the corners of a
rectangular region in one quadrant of the distorted image to their corresponding locations
in the undistorted image (the sides of this rectangle are parallel to the axis). Since
within quadrant undistorted vertical and horizontal lines map to monotonic functions,
the rectangular region in the undistorted image containing all four mapped points will
encompass all the locations mapped from the corresponding region in the distorted
image. This approach imposes no limitations on the parameters of the model. The

10
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tradeoffs between these different approaches are summarized in Table 2. We decided to
use approach C.

Table 2: Tradeoffs in Approaches to Inverting Brown’s Distortion Equations

Testing Mapping Procedure

We implemented MATLAB code to produce a distorted image from an undistorted
image, given a set of distortion parameters. With a distorted image of known distortion
parameters, we tested our restoration process on synthetic images (one test is shown
in Figure 6). In this manner, we were able to test this process independently from
parameter estimation. In our tests, the restored images were visually indistinguishable
from the originals.

Getting the Model Parameters

To calculate the model parameters, we used open source code available in the sample
code of the OpenCV library. Our camera calibration process is explained in the user
manual.

11
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Figure 7: The original image (left), the distorted image (middle), and the restored image
(right)

Testing the Model Parameters

To test the model parameters, we used the code described in the Generating the Needed
Mapping section to attempt to remove the distortion on images captured we captured
on the camera of the PARROT drone. The first attempt is shown in Figure 8. As can
be seen, the distortion worsened. The operation on the image appears to be the inverse
of the desired one.

Updating the model to match the observed behavior of the OpenCV output, we see
improved results as shown in Figure 9. This observed OpenCV model is described
in Appendix A. This model maps coordinates locations in the undistorted image to
coordinate locations in the distorted image, so the inversion process described in the
section Generating the Needed Mapping is no longer necessary.

Figure 8: Using documented model for OpenCV, attempting to reverse the distortion in
the left image produces the result on the right. Many pixels in the corners are
not defined.

In this distortion removal process, we are altering the sampling density (samples per
pixel). This leaves the potential that aliasing could occur. Assuming uniform sampling
density in the distorted image, if r, c are the coordinates of the distorted image, and r’, c’
are the coordinates of the undistorted image, then sampling density S can be calculated

12



F.R.I.A.R. Cycle 2 Design Report 13

Figure 9: Distorted images (top and bottom left) and the corresponding images with
distortion removed (top and bottom right)

as in equation 1.

S =

∣∣∣∣ δrδcδr′δc′

∣∣∣∣ (1)

We calculated the sampling density for our distortion parameters. The resulting sampling
density image is shown in Figure 10. As can be seen, there is no risk of substantial
aliasing. Looking at row and column partial derivatives separately, row and column
respective sampling densities are 1.0014 samples/pixel and 1.0008 samples/pixel respectively.

6.2. Feature Detection, Description, and Matching

Assessing the plaque-likeness of every single pixel location would be very computationally
expensive. Feature detection is the selection of regions in the image that are likely
informative and insensitive to prospective and illumination changes. We decided to use
FAST for feature detection. The feature detection algorithm is built into OpenCV and
is described in [4] and [5]. We use the BRIEF feature description algorithm will be used
to describe those locations [10]. Neither FAST nor BRIEF is robust to scale changes,
so we constructed an image pyramid (a stack of images that have been smoothed and
down-sampled to various degrees) and ran FAST on each pyramid level. Each BRIEF
descriptor was extracted from the same pyramid level that the feature point was detected.

For each detected feature in the drone camera image, the training descriptor of
minimum Hamming distance is considered its match. These matches were then filtered
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Figure 10: The sampling density of Iu as a function of r′,c′.

through thresholding. Example screenshots of feature detection and feature matching
are shown in Figure 11 and Figure 12 respectively.

Figure 11: An image of a plaque (left) and the feature points detected (right)

6.3. Plaque Classification and Transform of Training Images

Given a set of thresholded matches found as described in subsection 6.2, an appropriate
transformation must be determined so that the numbers can be classified. We used the
RANSAC algorithm built into OpenCV to estimate the orientation based on the spatial
locations of the matches. RANSAC is robust to outliers, so for a given set of matches,
it can find an orientation even if some of the matches are incorrect.

Once the homography was estimated, we used it to map the training image to the
corresponding locations in the drone camera image. Through bilinear interpolation, we
constructed the current frame equivalent of the training image, with identical size and
orientation. Once the potential plaque has been aligned with the training image, we use
normalized cross-correlation to compare the two images. We mask out the locations of
the digits so that they do not contribute to this confidence measure. If the correlation

14
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Figure 12: Matchings between points detected on a training image (right) and the current
frame (left).

is above 0.9, the detected potential plaque is classified as a plaque, and our program
proceeds to digit classification.

6.4. Digit Classification

The locations of the room number digits on training images are known. Given a
linear transformation mapping the training images to the drone camera image, expected
locations for each digit in the drone camera image are known. We collected images of
digits on plaques and resized them to the scale of the digits on the training plaque.

To classify digits, digit images are extracted from the newly classified plaque. These
digit images are thresholded by their arithmetic mean, so that a pixel is 1 if it is greater
than the mean and 0 otherwise. The thresholded digit images are then compared with
the collected digit images through cross-correlation. Each digit on the plaque in the
drone camera image is assumed to be in the same class as the training image digit
that correlates highest with it. We calculated the cross-correlation between our training
digits, shown in Table 3. Larger values in the off diagonal suggest a higher likelihood
of a digit of the type of that row being misclassified as the corresponding column digit
type.

6.5. Evaluation of algorithm

In testing, we were unable to detect plaques and thus unable to classify digits. FAST
feature detection predictably selected locations with detail, such as the corners of the
plaque and its lettering. Many matches were correct and many more mapped to very
similar-looking regions. However, due to the lack of detail on the plaque and that
many parts of the plaque look very similar, and the algorithm ultimately was not robust
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Table 3: Normalized Cross-Correlations Between Training Digits

enough to handle this problem. Another difficulty with our approach was that the
feature detection algorithm tends to select features on the lettering, which has no match
in the other frame.

Given more time, we could limit orientations to more local spreads, which could make
the algorithm more robust to false positives and filter out the high frequency content
for feature detection so that the letters would not be so devastating to our approach.
Alternatively we could switch to a line-based approach, which likely would demonstrate
a higher performance in such a low-detail environment.

Despite failing to locate plaques, we did successfully implement our algorithm and
were able to demonstrate its shortcomings toward this task.

6.6. Computer Vision Summary

We were able to remove through software the distortion caused by a fisheye lens. We
encountered errors in the documentation of OpenCV parameter estimation, but we were
able to adjust the distortion model to fit observed behavior of the output of OpenCV.
We did not use the model to produce distortion removal code on the raspberry pi. We
successfully implemented a feature algorithm to estimate the orientation of a plaque in
an image, but the algorithm itself was not robust enough to handle the problem

7. AR Drone 2.0 License

In our initial proposal, one of our proposed goals was for our robot to autonomously map
floor plans. Parrot, the company that produces the AR Drone 2.0 that our project is
based on, attaches a license agreement to their documentation prohibiting the use of their
API, SDK, and documentation for any purpose other than education or entertainment.
The license agreement also explicitly prohibits cartography[1]. Our software, and most
software available for the AR Drone 2.0, heavily relies on the AR Drone 2.0 API described
in[2], so we had to change the objectives of our project. However, our design plan was not
affected because we believe that the obstacle avoidance and computer vision capabilities
of the proposed F.R.I.A.R. will be useful in educational and entertainment purposes.

16



F.R.I.A.R. Cycle 2 Design Report 17

8. Budget

All items on the budget are per unit costs that would be recurring costs if this product
was manufactured.

Table 4: Budget

Product Quantity Unit Price Total Price Purchaser Vender
AR Parrot Drone 2.0 1 $278.07 $278.07 Dr. Murray Amazon
Raspberry PI 2.0 1 $41.00 $41.00 Dr. Murray Amazon
LV-MaxSonar-EZ1 5 $29.95 $149.75 Dr. Murray maxbotix
AR Parrot Drone Battery 1 $49.99 $49.99 Dr. Murray Amazon
Xbee 2 $22.95 $45.90 Dr. Murray sparkfun
Xbee USB Adapter 1 $24.95 $24.95 Dr. Murray sparkfun
Xbee Breakout Board 1 $9.95 $9.95 Dr. Murray sparkfun
Wiring 3 $2.50 $ 7.50 Dr. Murray sparkfun

Total Cost $599.61

Our budget has not swayed very much at all from our original budget. We are using
sonars and wires already in the lab, so we did not spend money on either from the initial
budget.

9. Schedule

Our initial projected schedule was very ambitious. We did not get everything we wanted
to accomplish done. A detailed comparison of the present schedule and the projected
schedule is shown in Appendix B.

10. Conclusion

We set ambitious goals for the F.R.I.A.R. project, and we fell substancially short.
However, we did develop some significant deliverables. Our mounted embedded system
with sonar sensors can be used by future developers to develop autonomous navigation
of the AR Drone. Our manual control interface is useful for debugging such a system.
The distortion removal model and software can be used in a variety of applications.
Anyone using the webcam on the AR drone will likely be interested in restoring the
image by removing the barrel distortion. Our barrel distortion removal software also
could be useful in removing barrel or pincushion distortions from other cameras, and
our user manual describes in detail how to use the OpenCV software to measure the
parameters to then use the distortion removal software. The feature detection software
does not work because the object of interest (room number plaques) is too smooth. The
feature detection software likely could be adapted to locate more distinct objects.
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Appendix A Distortion Model Comparison

A.1 Brown Distortion Model

Brown [3] suggests a model (2) can be used to represent barrel distortion (shown in
Figure 6):

x′ = x+ x

(
3∑

n=1

Knr
2n

)
+ (P1(r

2 + 2x2) + 2P2xy)(1 + P3r
2n)

y′ = y + y(

(
3∑

n=1

Knr
2n

)
+ (2P1xy + P2((r

2 + 2y2)))(1 + P3r
2n)

(2)

in which x, y denote the coordinates corrected for distortion, x,y denote the measured
coordinates, P1,P2, and P3 are coefficients of decentering distortion, and K1,K2, and
K3 are coefficients of radial distortion. x′,y′ and x,y are shifted so that the center of
distortion is at the origin, and both sets of coordinates are normalized by the focal
length. The variable r =

√
x2 + y2 represents the normalized distance from the center

of distortion in the distorted image domain.

A.2 OpenCV Distortion Model

While OpenCV claimed in their documentation to be using the Brown distortion model
described above, we observed a different model from the distortion parameters calculated
using their code. The following model is our revised model for compatibility with their
numbers:

x = x′ + x′

(
3∑

n=1

Knr
′2n

)
+ (P1(r

′2 + 2x′2) + 2P2x
′y′)(1 + P3r

′2n)

y = y′ + y′(

(
3∑

n=1

Knr
′2n

)
+ (2P1x

′y′ + P2((r
′2 + 2y′2)))(1 + P3r

′2n)

(3)

in which x, y denote the coordinates corrected for distortion, x,y denote the measured
coordinates, Once again, P1, P2, and P3 are coefficients of decentering distortion, and
K1, K2, and K3 are coefficients of radial distortion. Like before, x′, y′ and x, y are
shifted so that the center of distortion is at the origin, and both sets of coordinates are
normalized by the focal length. The variable r′ =

√
x′2 + y′2 represents the normalized

distance from the center of distortion in the undistorted image domain.

Appendix B Detailed Schedule Comparison

The timeline in Figure 13 is split into many different tasks, which are described below.
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Concept

The working concept is a short description of our project.

Proposal

The proposal outlines the objectives of the project. The objectives of the project were
revised to comply with Parrot’s software license.

Design Report

This document is the design report. The design report is a technical document summarizing
design specifications, justifications for engineering decisions, simulation results and evaluation,
a budget, and other relevant information.

Website

The website of the team shows the progress of the design team on this project and
showcases our work.

Presentation

Presentations on the status of this project are given after the proposal phase, cycle 1 of
the design phase, and cycle II of the design phase.

Concept Video

A video illustrating the objectives of this project was developed for the proposal phase of
our project. Another video was developed demonstating the capabilities of the project.

Status Reports

A weekly status report was produced summarizing hours worked, weekly accomplishments,
new obstacles, and other information.

Order Parts

Dr. Murray has generously offered to purchase this team an AR Parrot Drone and other
parts related to our project.

OA Sensors

Sonar sensors were mounted onto the drone to detect obstacles.
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Sensor Integration

A printed circuit board was designed to connect the sonar sensors to the Raspberry Pi.
Software was developed to read the sonar sensor data using the Raspberry Pi.

OA Software

The sonar sensors were successfully used to detect objects and to maintain perpendicular
distance to a wall. A glitch in our drone prevented us from rotating the drone. As a
result, full navigation, including obstacle avoidance, was not implemented.

Power Supply

We had initially hoped to replace the battery with a longer lasting battery. We ran out
of time and did not replace the battery.

RC Comm

In order to test the obstacle avoidance software, a remote control communication protocol
to give instructions to the robot was designed.

Auto RC Comm

For the safety of the robot and nearby humans, an autonomous robot should still have
some human control. This communication will require less human intervention than the
remote control communication, so the protocol will likely be slightly different. We did
not complete this aspect of our project.

Navigation

Our goal is for the robot to autonomously navigate by following the wall.

Plaque Detection

The robot needs to be able to identify plaques to simplify the number recognition
problems. We failed this aspect of the project.

Number Recognition

The robot needs to be able to read room numbers autonomously. We failed the plaque
recognition part of the project, so the code developed for the room number reading was
never fully tested.
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User Manual

Our project is meant to be an extension of the commercially available AR drone 2.0.
The User Manual document provides instructions for the use, assembly, and storage of
our robot, as well as safety recommendations and other useful information.
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Proposal Cycle 1 Cycle 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Concept

Proposal

Design Report

Website

Presentation

Concept Video

User Manual

Status Reports

Order Parts

OA Sensors

Sensor Integration

OA Software

Power Supply

RC Comm

Auto RC Comm

Navigation

Number Recognition

Plaque Detection

Figure 13: Timeline: Projected time worked that was worked is in green. Projected time
overruns are in red. Time projected not spent is in white.
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