

CLC Free Workbench User manual

User manual for CLC Free Workbench 3.0 Windows, Mac OS X and Linux

July 6, 2006

CLC bio Gustav Wieds Vej 10 Dk-8000 Aarhus C Denmark

Contents

I	Intro	oduction	7
1	Intro	duction to CLC Free Workbench	8
	1.1	Contact information	9
	1.2	Download and installation	9
	1.3	System requirements	12
	1.4	About CLC Workbenches	13
	1.5	When the program is installed: Getting started	14
	1.6	Network configuration	16
	1.7	Adjusting the maximum amount of memory	17
	1.8	The format of the user manual	18
2	Tuto	rials	20
	2.1	Tutorial: Starting up the program	21
	2.2	Tutorial: View sequence	24
	2.3	Tutorial: GenBank search and download	25
	2.4	Tutorial: Align protein sequences	27
	2.5	Tutorial: Create and modify a phylogenetic tree	28
	2.6	Tutorial: Detect restriction sites	30
	2.7	Tutorial: Sequence information	31
	2.8	Tips and tricks for the experienced user	33
11	Bas	sic Program Functionalities	40
3	Usei	' Interface	41
	3.1	Navigation Area	42

	3.2	View Area	48
	3.3	Zoom and selection in View Area	53
	3.4	Toolbox and Status Bar	56
	3.5	Workspace	57
	3.6	List of shortcuts	58
4	Usei	r preferences	60
		General preferences	61
	4.2	Default View preferences	61
	4.3	Advanced preferences	62
	4.4	Export/import of preferences	62
	4.5	View preference style sheet	62
5	Print	ting	65
	5.1	Selecting which part of the view to print	65
	5.2	Page setup	66
	5.3	Print preview	66
6	Imp	ort/export of data and graphics	68
Ŭ	-	Bioinformatic data formats	68
	6.2	External files	73
	6.3		73
		Copy/paste view output	76
	0.4		10
7	Hist	ory	78
	7.1	Element history	78
8	Hand	dling of results	80
	8.1	How to handle results of analyses	80
111	Bio	binformatics	83
9	Data	abase search	84
	9.1	GenBank search	84

10 Viewing and editing sequences	88
10.1 View sequence	
10.2 Sequence information	
10.3 View as text	
10.4 Creating a new sequence	
10.5 Sequence Lists	
10.6 Circular DNA	100
11 General sequence analyses	102
11.1 Sequence statistics	102
11.2 Shuffle sequence	105
11.3 Join sequences	105
12 Nucleotide analyses	108
12.1 Convert DNA to RNA	108
12.2 Convert RNA to DNA	109
12.3 Reverse complements of sequences	
12.4 Translation of DNA or RNA to protein	111
12.5 Find open reading frames	111
13 Restriction site analyses	115
13.1 Restriction sites and enzyme lists	115
13.2 Restriction site analysis	115
13.3 Restriction enzyme lists	118
14 Sequence alignment	120
14.1 Create an alignment	
14.2 View alignments	
14.3 Edit alignments	
14.4 Bioinformatics explained: Multiple alignments	126
15 Phylogenetic trees	129
15.1 Inferring phylogenetic trees	
15.2 Bioinformatics explained: phylogenetics	132

V Index

IV	V Appendix 1	
A	Comparison of workbenches	138
В	Formats for import and export	141
	B.1 List of bioinformatic data formats	141
	B.2 List of graphics data formats	142
Bit	liography	143

Part I

Introduction

Chapter 1

Introduction to CLC Free Workbench

Contents

1.1	Contact information	9
1.2	Download and installation	9
	1.2.1 Program download	9
	1.2.2 Installation on Microsoft Windows	0
	1.2.3 Installation on Mac OS X	1
	1.2.4 Installation on Linux with an installer	1
	1.2.5 Installation on Linux with an RPM-package	2
1.3	System requirements	2
1.4	About CLC Workbenches	.3
	1.4.1 New program feature request	3
	1.4.2 Report program errors	3
	1.4.3 Free vs. commercial workbenches	4
1.5	When the program is installed: Getting started	.4
	1.5.1 Basic concepts of using CLC Workbenches	4
	1.5.2 Quick start	5
	1.5.3 Import of example data	6
1.6	Network configuration 1	6
1.7	Adjusting the maximum amount of memory	7
	1.7.1 Microsoft Windows	7
	1.7.2 Mac OS X	7
	1.7.3 Linux	8
1.8	The format of the user manual	8
	1.8.1 Text formats	9

Welcome to CLC Free Workbench 3.0 - a software package supporting your daily bioinformatics work.

We strongly encourage you to read this user manual in order to get the best possible basis for working with the software package.

1.1 Contact information

The CLC Free Workbench 3.0 is developed by:

CLC bio A/S Science Park Aarhus Gustav Wieds Vej 10 8000 Aarhus C Denmark

http://www.clcbio.com

VAT no.: DK 28 30 50 87

Telephone: +45 70 22 32 44 Fax: +45 86 20 12 22

E-mail: info@clcbio.com

If you have questions or comments regarding the program, you are welcome to contact our support function:

E-mail: support@clcbio.com

1.2 Download and installation

The *CLC Free Workbench* is developed for Windows, Mac OS X and Linux. The software for either platform can be downloaded from http://www.clcbio.com/download.

Furthermore the program can be sent on a CD-Rom by regular mail. To receive the program by regular mail, please write an e-mail to support@clcbio.com, including your postal address.

1.2.1 Program download

The program is available for download on http://www.clcbio.com/download.

Before you download the program you are asked to fill in the **Download** dialog.

In the dialog you must choose:

- Which operating system you use
- Whether you want to include Java or not (this is necessary if you haven't already installed Java)
- Whether you would like to receive information about future releases

Depending on your operating system and your Internet browser, you are taken through some download options.

When the download of the installer (an application which facilitates the installation of the program) is complete, follow the platform specific instructions below to complete the installation procedure.

Figure 1.1: Download dialog.

1.2.2 Installation on Microsoft Windows

Starting the installation process is done in one of the following ways:

If you have downloaded an installer:

Locate the downloaded installer and double-click the icon. The default location for downloaded files is your desktop.

If you are installing from a CD:

Insert the CD into your CD-ROM drive.

Choose the "Install CLC Free Workbench" from the menu displayed.

If you already have Java installed on your computer you can choose "Install *CLC Free Workbench* without Java".

Installing the program is done in the following steps:

- On the welcome screen, click Next.
- Read and accept the License agreement and click Next.
- Choose where you would like to install the application and click Next.
- Choose a name for the Start Menu folder used to launch *CLC Free Workbench* and click Next.
- Choose where you would like to create shortcuts for launching *CLC Free Workbench* and click Next.

• Wait for the installation process to complete, choose whether you would like to launch *CLC Free Workbench* right away, and click Finish.

When the installation is complete the program can be launched from the Start Menu or from one of the shortcuts you choose to create.

1.2.3 Installation on Mac OS X

Starting the installation process is done in one of the following ways:

```
If you have downloaded an installer:
```

Locate the downloaded installer and double-click the icon. The default location for downloaded files is your desktop.

If you are installing from a CD:

Insert the CD into your CD-ROM drive and open it by double-clicking on the CD icon on your desktop.

Launch the installer by double-clicking on the "CLC Free Workbench" icon.

Installing the program is done in the following steps:

- On the welcome screen, click Next.
- Read and accept the License agreement and click Next.
- Choose where you would like to install the application and click Next.
- Choose whether you would like to create desktop icon for launching *CLC Free Workbench* and click Next.
- Wait for the installation process to complete, choose whether you would like to launch *CLC Free Workbench* right away, and click Finish.

When the installation is complete the program can be launched from your Applications folder, or from the desktop shortcut you choose to create. If you like, you can drag the application icon to the dock for easy access.

1.2.4 Installation on Linux with an installer

Navigate to the directory containing the installer and execute it. This can be done by running a command similar to:

sh CLCFreeWorkbench_2_5_2_JRE.sh.sh

If you are installing from a CD the installers are located in the "linux" directory.

Installing the program is done in the following steps:

- On the welcome screen, click Next.
- Read and accept the License agreement and click Next.
- Choose where you would like to install the application and click Next. For a system-wide installation you can choose for example /opt or /usr/local. If you do not have root privileges you can choose to install in your home directory.
- Choose where you would like to create symbolic links to the program
 DO NOT create symbolic links in the same location as the application.
 Symbolic links should be installed in a location which is included in your environment PATH.
 For a system-wide installation you can choose for example /usr/local/bin. If you do not have root privileges you can create a 'bin' directory in your home directory and install symbolic links there. You can also choose not to create symbolic links.
- Wait for the installation process to complete and click Finish.

If you choose to create symbolic links in a location which is included in your PATH, the program can be executed by running the command:

clcfreewb2

Otherwise you start the application by navigating to the location where you choose to install it and running the command:

./clcfreewb2

1.2.5 Installation on Linux with an RPM-package

Navigate to the directory containing the rpm-package and install it using the rpm-tool by running a command similar to:

rpm -ivh CLCFreeWorkbench_2_5_2_JRE.sh.rpm

If you are installing from a CD the rpm-packages are located in the "RPMS" directory. Installation of RPM-packages usually requires root-privileges.

When the installation process is finished the program can be executed by running the command:

clcfreewb2

1.3 System requirements

The system requirements of CLC Free Workbench 3.0 are these:

- Windows 2000 or Windows XP
- Mac OS X 10.3 or newer
- Linux: Redhat or SuSE

- 256 MB RAM required
- 512 MB RAM recommended
- 1024 x 768 display recommended

1.4 About CLC Workbenches

In November 2005 CLC bio released two Workbenches: *CLC Free Workbench* and *CLC Protein Workbench*. *CLC Protein Workbench* is developed from the free version, giving it the well-tested user friendliness and look & feel. However, the *CLC Protein Workbench* includes a range of more advanced analyses.

In March 2006, *CLC* Gene Workbench and *CLC* Combined Workbench were added to the product portfolio of CLC bio. Like *CLC* Protein Workbench, *CLC* Gene Workbench builds on *CLC* Free Workbench. It shares some of the advanced product features of *CLC* Protein Workbench, and it has additional advanced features. *CLC* Combined Workbench holds all basic and advanced features of the *CLC* Workbenches.

For an overview of which features the four workbenches include, see http://www.clcbio.com/features.

All workbenches will be improved continuously. If you have a CLC Free Workbench or a commercial workbench, and you are interested in receiving news about updates, you should register your e-mail and contact data on http://www.clcbio.com, if you haven't already registered when you downloaded the program.

1.4.1 New program feature request

The CLC team is continuously improving the program with our users' interest in mind. Therefore, we welcome all requests from users, and they can be submitted from our homepage http://www.clcbio.com. Likewise, you are more than welcome to suggest new features or more general improvements to the program on support@clcbio.com.

1.4.2 Report program errors

CLC bio is doing everything possible to eliminate program errors. Nevertheless, some errors might have escaped our attention. If you discover an error in the program, you can use the **Report a Program Error** function in the **Help** menu of the program to report it. In the **Report a Program Error** dialog you are asked to write your e-mail address. This is because we would like to be able to contact you for further information about the error or for helping you with the problem.

Notice that no personal information is send via the error report. Only the information which can be seen in the **Program Error Submission Dialog** is submitted.

You can also write an e-mail to support@clcbio.com. Remember to specify how the program error can be reproduced.

All errors will be treated seriously and with gratitude.

We appreciate your help.

Start in safe mode

If the program becomes unstable on start-up, you can start it in **Safe mode**. This is done be pressing down the Shift button while the program starts.

When starting in safe mode, the user settings (e.g. the settings in the **Side Panel**) are deleted and cannot be restored. Your data stored in the **Navigation Area** is not deleted.

1.4.3 Free vs. commercial workbenches

The advanced analyses of the commercial workbenches, *CLC Protein Workbench* and *CLC Gene Workbench* are not present in *CLC Free Workbench*. Likewise, some advanced analyses are available in *CLC Gene Workbench* but not in *CLC Protein Workbench*, and visa versa. All types of basic and advanced analyses are available in *CLC Combined Workbench*.

However, the output of the commercial workbenches can be viewed in all other workbenches. This allows you to share the result of your advanced analyses from e.g. *CLC Combined Workbench*, with people working with e.g. *CLC Free Workbench*. They will be able to view the results of your analyses, but not redo the analyses.

The CLC Workbenches are developed for Windows, Mac and Linux platforms. Data can be exported/imported between the different platforms in the same easy way as when exporting/importing between two computers with e.g. Windows.

This is illustrated in figure 1.2.

1.5 When the program is installed: Getting started

CLC Free Workbench 3.0 includes an extensive **Help** function, which can be found in the **Help** menu of the program's **Menu bar**. The **Help** function can also be launched by pressing F1. The help topics are sorted in a table of contents and the topics can be searched.

1.5.1 Basic concepts of using CLC Workbenches

Here is a short list of basic concepts of how to use CLC Free Workbench:

- All data for use in the *CLC Free Workbench* should be stored inside the program in the **Navigation Area**. This means that you have to either import some of your own data or use e.g. the GenBank search function (A).
- The data can be viewed in a number of ways. First, click the element (e.g. a sequence) in the **Navigation Area** and then click **Show**() to find a proper way to view the data (see figure 1.3 for an example).
- When a view is opened, there are three basic ways of interacting:
 - Using the Side Panel to the right to specify how the data should be displayed (these settings are not associated with your data but they can be saved by clicking the icon (IIII) in the upper right corner of the Side Panel).
 - 2. Using right-click menus e.g. to edit a sequence (in this case you have to make a selection first using the selection mode($\langle \rangle$)).

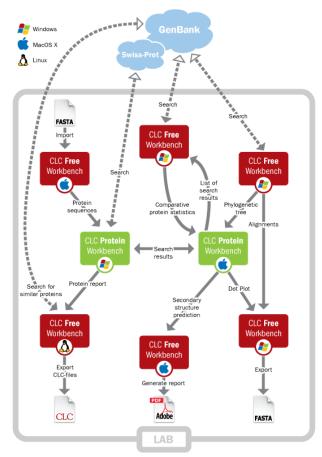


Figure 1.2: An example of how research can be organized and how data can flow between users of different workbenches, working on different platforms.

- 3. Using the Zoom ($\frac{1}{2}$) / ($\frac{1}{2}$) tools.
- In the Toolbox, you find all the tools for analyzing and working on your data. In order to use these tools, your data must be stored in a project in the **Navigation Area**

Figure 1.3: The different ways of viewing DNA sequences.

1.5.2 Quick start

When the program opens for the first time, the background of the workspace is visible. In the background are three quick start shortcuts, which will help you getting started. These can be

seen in figure 1.4.

Figure 1.4: Three available Quick start short cuts, available in the background of the workspace.

The function of the three quick start shortcuts is explained here:

- **Import data.** Opens the **Import** dialog, which you let you browse for, and import data from your file system.
- New sequence. Opens a dialog which allows you to enter your own sequence.
- **Read tutorials.** Opens the tutorials a menu with a number of tutorials. These are also available from the **Help** menu in the **Menu bar**.

It might be easier to understand the logic of the program by trying to do simple operations on existing data. Therefore *CLC Free Workbench 3.0* includes an example data set, which can be found on our web page, or downloaded from the program (Also found in the **Help** menu).

1.5.3 Import of example data

When downloading *CLC Free Workbench 3.0* you are asked if you would like to import an example data set. If you accept, the data is downloaded automatically and saved in the program. If you didn't download the data, or for some other reason need to download the data again, you have two options.

You can click (Install example data in the Help menu of the program. This installs the data automatically. You can also go to our website at http://www.clcbio.com, Software/CLC Free Workbench/Example data, and download the example data from there.

If you download the file from the website, you need to import it into the program. See chapter 6.1 for more about importing data.

1.6 Network configuration

If you use a proxy server to access the Internet you must configure *CLC Free Workbench 3.0* to use this. Otherwise you will not be able to perform any on-line activities (e.g. searching GenBank). *CLC Free Workbench 3.0* supports the use of a HTTP-proxy and an anonymous SOCKS-proxy.

To configure your proxy settings, open *CLC Free Workbench 3.0*, and go to the **Advanced**-tab of the **Preferences** dialog (figure 1.5) and enter the appropriate information.

You have the choice between a HTTP-proxy and a SOCKS-proxy. *CLC Free Workbench 3.0* only supports the use of a SOCKS-proxy that does not require authorization.

If you have any problems with these settings you should contact your systems administrator.

Preferer	ices 🛛 🔀
	Proxy Settings (Takes effect after restart)
	Use HTTP Proxy Server
503	HTTP Proxy: proxy.mydomain Port: 3128
General	V HTTP Proxy Requires Login
	Account: proxyuser
	Password: ******
View	Use SOCKS Proxy Server SOCKS Host: Port: 1080 You may have to restart the application for these changes to take effect
Advanced	
	✓ OK X Close Export Import

Figure 1.5: Adjusting proxy preferences.

1.7 Adjusting the maximum amount of memory

If you have a large amount of memory (RAM) available in your system and need to work with very large data objects, you can manually change the maximum amount of memory available to the program. Doing so is a somewhat complicated, unsupported procedure and may cause the program to fail if done incorrectly.

Depending on your operating system you may have to repeat these changes if you update *CLC Free Workbench* 3.0 to a newer version.

1.7.1 Microsoft Windows

- Locate the CLC Free Workbench 3.0 directory inside your Program Files directory and open it
- Create a new, empty text-file called clcwb.vmoptions (make sure the filename does not end with ".txt")
- Add a single line to the file with a syntax similar to:

-Xmx512m

It is very important that the line looks exactly like the one in the example above, and that you only change the value of the number (512 in the example). For the best performance you should not choose a number greater than the amount (in megabytes) of physical memory available on your system.

1.7.2 Mac OS X

- Locate the CLC Free Workbench program file in your Applications folder
- Right-click / control-click the file and choose "Show Package Contents" from the pop-up menu
- Open the file called "Info.plist" located inside the "Contents" folder using the "Property List Editor" application or a text editor like "TextEdit"

• Edit the Root/Java/VMOptions property, and set the maximum amount of memory to a desired value. The property has a specific syntax similar to:

-Xmx512m

It is very important that you only change the value of the number, 512 in the example above, to the amount of megabytes you want. For the best performance you should not choose a number greater than the amount of physical memory available on your system.

1.7.3 Linux

- Locate the directory where you installed CLC Free Workbench 3.0 and open it.
- Create a new, empty text-file called "clcwb.vmoptions".
- Add a single line to the file with a syntax similar to:

-Xmx512m

It is very important that the line looks exactly like the one in the example above, and that you only change the value of the number (512 in the example). For the best performance you should not choose a number greater than the amount (in megabytes) of physical memory available on your system.

1.8 The format of the user manual

This user manual offers support to Windows, Mac OS X and Linux users. The software is very similar on these operating systems. In areas where differences exist, these will be described separately. However, the term "right-click" is used throughout the manual, but some Mac users may have to use Ctrl+click in order to perform a "right-click" (if they have a single-button mouse).

The most recent version of the user manuals can be downloaded from http://www.clcbio.com/usermanuals.

The user manual consists of four parts.

- The **first part** includes the introduction and some tutorials showing how to apply the most significant functionalities of *CLC Free Workbench 3.0*.
- The **second part** describes in detail how to operate all the program's basic functionalities.
- The **third part** digs deeper into some of the bioinformatic features of the program. In this part, you will also find our "Bioinformatics explained" sections. These sections elaborate on the algorithms and analyses of *CLC Free Workbench 3.0* and provide more general knowledge of bioinformatic concepts.
- The fourth part is the Appendix and Index.

Each chapter includes a short table of contents.

1.8.1 Text formats

In order to produce a clearly laid-out content in this manual, different formats are applied:

- A feature in the program is in bold starting with capital letters. (Example: Navigation Area)
- An explanation of how a particular function is activated, is illustrated by "|" and bold. (E.g.: select the element | Edit | Rename)
- Icons, such as "((A))", are included in order to ease the navigation in the **Toolbox**.
- The format of the program name is bold and italic: CLC Free Workbench 3.0
- The captions of displayed screenshots are in *italic*.

Chapter 2

Tutorials

Contents

2.1	Tutorial: Starting up the program	21
	2.1.1 Creating a project and a folder	22
	2.1.2 Import data	22
	2.1.3 Supported data formats	22
2.2	Tutorial: View sequence	24
2.3	Tutorial: GenBank search and download	25
	2.3.1 Saving the search	26
	2.3.2 Searching for matching objects	26
	2.3.3 Saving the sequence	27
2.4	Tutorial: Align protein sequences	27
	2.4.1 Alignment dialog	27
2.5	Tutorial: Create and modify a phylogenetic tree	28
	2.5.1 Tree layout	29
2.6	Tutorial: Detect restriction sites	30
	2.6.1 View restriction site	30
2.7	Tutorial: Sequence information	31
2.8	Tips and tricks for the experienced user	33
	2.8.1 Open and arrange views using drag and drop	34
	2.8.2 Find element in the Navigation Area	34
	2.8.3 Find specific annotations on a sequence	34
	2.8.4 Split sequences into several lines	35
	2.8.5 Make a new sequence of a coding region	35
	2.8.6 Get overview and detail of a sequence at the same time	36
	2.8.7 Smart selecting in sequences and alignments	36
	2.8.8 Quickly import sequences using copy-paste	37
	2.8.9 Perform analyses on many elements	38
	2.8.10 Drag elements to the Toolbox	38
	2.8.11 Export elements while preserving history	38
	2.8.12 Avoid the mouse trap - use keyboard shortcuts	39

This chapter contains tutorials representing some of the features of *CLC Free Workbench* 3.0. The first tutorials are meant as a short introduction to operating the program. The last tutorials give examples of how to use some of the main features of *CLC Free Workbench* 3.0. The tutorials are also available as interactive Flash tutorials on http://www.clcbio.com/tutorials.

2.1 Tutorial: Starting up the program

This brief tutorial will take you through the most basic steps of working with *CLC Free Workbench*. The tutorial introduces the user interface, demonstrates how to create a project, and demonstrates how to import your own existing data into the program.

When you open CLC Free Workbench for the first time, the user interface looks like figure 2.1.

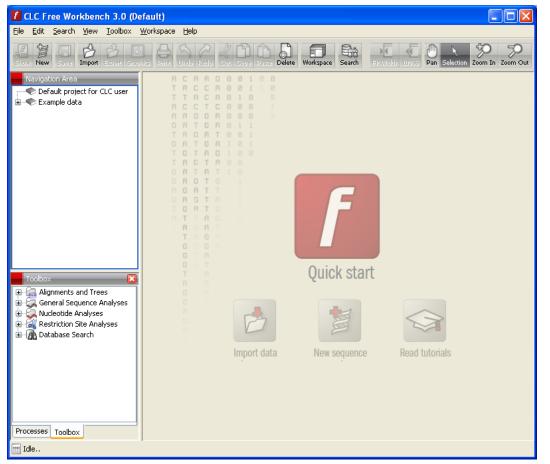


Figure 2.1: The user interface as it looks when you start the program for the first time. (Windows version of **CLC Free Workbench**. The interface is similar for Mac and Linux.)

At this stage, the important issues are the Navigation Area and the View Area.

The **Navigation Area** to the left is where you keep all your data for use in the program. Most analyses of *CLC Free Workbench* require that the data is saved in the **Navigation Area**. There are several ways to get data into the **Navigation Area**, and this tutorial describes how to import existing data.

The **View Area** is the main area to the right. This is where the data can be 'viewed'. In general, a **View** is a display of a piece of data, and the **View Area** can include several **Views**. The **Views** are represented by tabs, and can be organized e.g. by using 'drag and drop'.

2.1.1 Creating a project and a folder

When *CLC Free Workbench* is started there is one default project in the **Navigation Area**. Create an additional project by:

```
File in the Menu Bar | New | Project (\ll)
or Ctrl + R (\Re + R on Mac)
```

Name the project 'Test' and press Enter.

The data in the project can be further organized into folders. Create a folder in the 'Test' project by:

```
Right-click the 'Test'-project in the Navigation Area | New | Folder (\cong) or Ctrl + F (\Re + F on Mac)
```

Name the folder 'Subfolder' and press Enter.

2.1.2 Import data

Next, we want to import a sequence called HUMDINUC.fsa (FASTA format) from our own Desktop into the new 'Subfolder'. (This file is chosen for demonstration purposes only - you may have another file on your desktop, which you can use to follow this tutorial. You can import all kinds of files.)

In order to import the HUMDINUC.fsa file:

Import (\cong) in the Toolbar | select FASTA (.fsa/.fasta) in the (Files of type) drop down menu | navigate to HUMDINUC.fsa on the desktop | Select

For files of FASTA or PIR format, you are asked to state which type of sequence you are importing. (This will ensure that *CLC Free Workbench* treats the sequence in the correct way.)

$\textbf{Click DNA/RNA} \mid \textbf{OK}$

The sequence is imported into the project or folder that was selected in the **Naviagation Area**, before you clicked **Import**. Double-click the sequence in the **Navigation Area** to view it. The final result looks like figure 2.2.

2.1.3 Supported data formats

CLC Free Workbench can import and export the following formats:

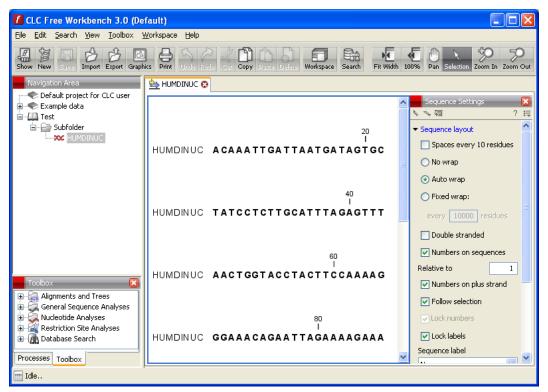


Figure 2.2: The HUMDINUC file is imported and opened.

File type	Suffix	File format used for
Phylip Alignment	.phy	alignments
GCG Alignment	.msf	alignments
Clustal Alignment	.aln	alignments
Newick	.nwk	trees
FASTA	.fsa/.fasta	sequences
GenBank	.gbk/.gb/.gp	sequences
GCG sequence	.gcg	sequences (only import)
PIR (NBRF)	.pir	sequences (only import)
Staden	.sdn	sequences (only import)
VectorNTI		sequences (only import)
DNAstrider	.str/.strider	sequences
Swiss-Prot	.swp	protein sequences
Lasergene sequence	.pro	protein sequence (only import)
Lasergene sequence	.seq	nucleotide sequence (only import)
Embl	.embl	nucleotide sequences
Nexus	.nxs/.nexus	sequences, trees, alignments, and sequence lists
CLC	.clc	sequences, trees, alignments, reports, etc.
Text	.txt	all data in a textual format
ABI		Trace files (only import)
AB1		Trace files (only import)
SCF2		Trace files (only import)
SCF3		Trace files (only import)
Phred		Trace files (only import)
mmCIF	.cif	structure (only import)
PDB	.pdb	structure (only import)
Preferences	.cpf	CLC workbench preferences

Notice that *CLC Free Workbench* can import 'external' files, too. This means that *CLC Free Workbench* can import all files and display them in the **Navigation Area**, while the above mentioned formats are the types which can be read by *CLC Free Workbench*.

2.2 Tutorial: View sequence

This brief tutorial will take you through some different ways to display a sequence in the program. The tutorial introduces zooming on a sequence, dragging tabs, and opening selection in new view.

We will be working with DNA sequence 'AY738615'. Double-click the sequence in the **Navigation Area** to open it. The sequence is displayed with annotations above it. (To provide a better view of the sequence, hide the **Side Panel**. This is done by clicking the red X (\boxtimes) at the top right corner of the **Side Panel** (in the right side of the **View Area**). (See figure 2.3).

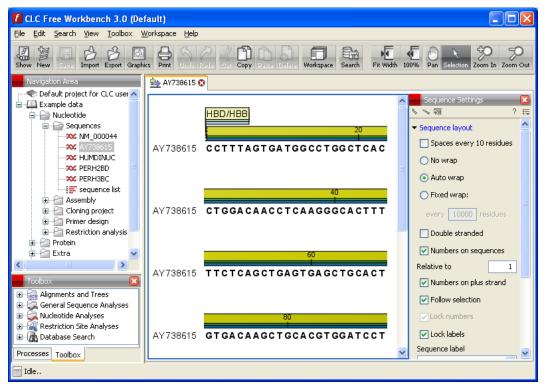


Figure 2.3: DNA sequence 'AY738615' opened in a view. The view preferences has been hidden to provide more space for the view.

As default, *CLC Free Workbench* displays a sequence with annotations (colored arrows on the sequence) and zoomed to see the residues.

In this tutorial we want to have an overview of the whole sequence. Hence;

click Zoom Out (\Im) in the Toolbar | click the sequence until you can see the whole sequence

In the following we will show how the same sequence can be displayed in two different views:

double-click sequence 'AY738615' in the Navigation Area

This opens an additional tab. Drag this tab to the bottom of the view. (See figure 2.4).

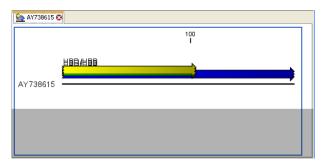


Figure 2.4: Dragging the tab down to the bottom of the view will display a gray area indicating that the tab can be "dropped" here and split the view.

The result is two views of the same sequence in the **View Area**, as can be seen in figure 2.5.

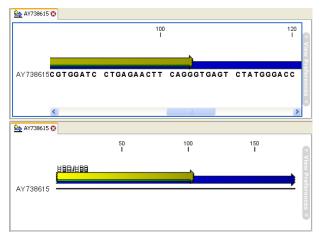


Figure 2.5: The resulting two views which are split horizontally.

If you want to display a part of the sequence, it is possible to select it, and open it in another view:

click Selection ($\$) in Toolbar | select a part of the sequence | right-click the selected part of the sequence in the top view | Open Selection in New View

This opens a third display of sequence 'AY738615'. However, only the part which was selected. In order to make room for displaying the selection of the sequence (the most recent view), drag the tab of the view down, next to the tab of the bottom view.

2.3 Tutorial: GenBank search and download

The *CLC Free Workbench* allows you to search the NCBI GenBank database directly from the program, giving you the opportunity to both open, view, analyze and save the search results without using any other applications. To conduct a search in NCBI GenBank from *CLC Free Workbench* you must be connected to the Internet.

This tutorial shows how to find a complete human hemoglobin DNA sequence in a situation where you do not know the accession number of the sequence.

To start the search:

```
Search | Search NCBI Entrez (A)
```

This opens the search view. We are searching for a DNA sequence, hence:

Nucleotide

Now we are going to **Adjust Parameters** for the search. By clicking **More Choices** you activate an additional set of fields where you can enter search criteria. Each search criterion consists of a drop down menu and a text field. In the drop down menu you choose which part of the NCBI database to search, and in the text field you enter what to search for:

Click More Choices until three search criteria are available | choose Organism in the first drop down menu | write 'human' in the adjoining text field | choose All Fields in the second drop down menu | write 'hemoglobin' in the adjoining text field | choose All Fields in the third drop down menu | write 'complete' in the adjoining text field

Choose datab	ase: 💿 Nucleotide 🔿 Protein					
All Fields	human					
All Fields						
All Fields	complete					
	Add search parameters Append wildcard (*) to search words	A Start search	<u> </u>			
Accession 🔬	Definition	Modification D				
3C010230	Homo sapiens chromosome 10 open reading frame 83, mRNA (cDNA clo		^			
C015537		2004/06/29				
C032122	Homo sapiens hemoglobin, alpha 2, mRNA (cDNA clone MGC:29691 IMA					
C032264	Mus musculus hemoglobin, beta adult minor chain, mRNA (cDNA clone M					
C043020	Mus musculus hemoglobin alpha, adult chain 1, mRNA (cDNA clone MGC					
C050661	Homo sapiens hemoglobin, alpha 2, mRNA (cDNA clone MGC:60177 IMA					
3C051988	Mus musculus hemoglobin X, alpha-like embryonic chain in Hba complex,					
3C052008 Mus musculus hemoglobin Z, beta-like embryonic chain, mRNA (cDNA cl 2006/04/27						
3C056686	· · · · · · · · · · · · · · · · · · ·					
3C057014	Mus musculus hemoglobin Y, beta-like embryonic chain, transcript varia					
3C069307	Homo sapiens hemoglobin, delta, mRNA (cDNA clone MGC:96894 IMAG	2004/06/30	~			

Figure 2.6: NCBI search view.

Now you have two choices: Either to click **Start search**(**(()**) to commence the search in NCBI, or to click **Save search parameters**(**()**) to choose where to save the search.

2.3.1 Saving the search

If you click 'Save search parameters', the program does not save the search results, but rather the search criteria. This allows you to perform exactly the same search later on.

In this tutorial, we are not certain of the quality of our search criteria, and therefore we choose not to save them. Consequently, click **Start search**(\square) to perform the search.

2.3.2 Searching for matching objects

When the search is complete, the list of hits is shown. If the desired complete human hemoglobin DNA sequence is found, the sequence can be viewed by double-clicking it in the list of hits from the search. If the desired sequence is not shown, you can click the 'More' button below the list to see more hits.

2.3.3 Saving the sequence

The sequences which are found during the search can be displayed by double-clicking in the list of hits. However, this does not save the sequence. It is necessary to save the sequences before any analysis can be conducted. A sequence is saved like this:

click the tab with the name of the sequence | Save in the toolbar (\square)

```
or click the tab with the name of the sequence | Ctrl + S (\Re + S on Mac)
```

When you close the view of the sequence, you are asked if you want to save the file.

If you do not want to view the sequence first, the sequence can be saved by dragging it from the list of hits into the **Navigation Area**.

2.4 Tutorial: Align protein sequences

It is possible to create multiple alignments of nucleotide and protein sequences. *CLC Free Workbench* offers several opportunities to view alignments. The alignments can be used for building phylogenetic trees.

The sequences must be saved in the **Navigation Area** in order to be included in an alignment. To save a sequence which is displayed in the **View Area**, click the tab of the sequence and press Ctrl + S (or $\Re + S$ on Mac). In this tutorial eight protein sequences from the Example data will be aligned. (See figure 2.7).

Figure 2.7: Eight protein sequences in a Protein project in the Navigation Area.

To begin aligning the protein sequences:

```
select the sequences | right-click either of the sequences | Toolbox | Alignments and Trees(
```

2.4.1 Alignment dialog

This opens the dialog shown in fig. 2.8.

It is possible to add and remove sequences from **Selected Elements** list. When the relevant proteins are selected there are two options: Click **Next** to adjust parameters for the alignment.

Clicking **Next** opens the dialog shown in fig. 2.9.

Leave the parameters at their default settings. An explanation of the parameters can be found in the program's **Help** function (2) or in the user manual on http://www.clcbio.com/ download.

Click Finish to start the alignment process which is shown in the Toolbox under the Processes

 Select sequences or alignments of same type 	Select sequences or alignments of same ty Projects:		pe Selected Elements:		
	Example data		A P68053		
	Nucleotide Protein		A P68063		
	Protein Protein Official and a structures		A P68225		
	Sequences		Nr P68228		
	CAA24102		Ar P68231		
	CAA32220		N P68873		
	NP_058652		A P68945		
	A P68046 A P68053 A P68053 A P68025 A P68025 A P68025 A P68025 A P68025 A P68021 A P68073 A P68073 A P68073 A P68074 E EXT a B P P formed analyses E RADME	 <td></td><td></td>			

Figure 2.8: The alignment dialog displaying the 8 chosen protein sequences.

f Create Alignment	
 Select sequences or alignments of same type Set parameters 	Set parameters
	Gap settings Gap open cost: 10,0 Gap extension cost: 1,0 End gap cost: As any other v
	Fast alignment Redo alignments Use fixpoints
	Previous Next Finish X Cancel

Figure 2.9: The alignment dialog displaying the available parameters which can be adjusted.

tab. When the program is finished calculating it displays the alignment (see fig. 2.10):

Notice! The new alignment is not saved automatically. (The text on the tab is bold and italic to illustrate this.)

To save the alignment, drag the tab of the alignment view into the **Navigation Area**.

2.5 Tutorial: Create and modify a phylogenetic tree

You can make a phylogenetic tree from an existing alignment. (See how to create an alignment in 'Tutorial: Align protein sequence').

We use the 'P04443_alignment' located in Performed Analyses: Protein Workbench in the Example data. To create a phylogonetic tree:

right-click the 'P04443_alignment' in the Navigation Area | Toolbox | Alignments and Trees(

A dialog opens where you can confirm your selection of the alignment. Moving to the next step in the dialog you can choose between the neighbor joining and the UPGMA algorithms for making

P68046_alignme	ent 😵							
		20		40	1	Alignment Setting		
P68046	- VHLTADEKA	AVTALWGKVN	VDEVGGEALG		39	ショーの回	? 8	
P68053	VHLTGEEKA	AVTALWGKVN	VDEVGGEALG	RLLVVYPWTQ	39	 Sequence layout 	1	^
P680033	MVHLTPEEKN	AVTTLWGKVN	VDEVGGEALG	RELVVYPWTO	40	Spaces every 1	0 residues	
P68873	MVHLTPEEKS	AVTALWGKVN	VDEVGGEALG	RELVVYPWTO	40		0103/0005	
P68228	MVNLSGDEKN	AVHGLWSKVK	VDEVGGEALG	RLLVVYPWTR	40	🚫 No wrap		
P68228 P68231	MVHLSGDEKN	AVHGLWSKVK	VDEVGGEALG	RLLVVYPWTR	40	 Auto wrap 		
P68063	- VHWTAEEKQ	LITGLWGKVN	VADCGALALA	RELIVYPWTO	39	- · ·		
P68945	VHWTAEEKQ		VADCGALALA	RELIVYPWTO	39	Fixed wrap:		
		-			35	every 60		
Consensus	MVHLTAEEKN	AVTGLWGKVN	VDEVGGEALG	RLLVVYPWTQ				
Conservation						Numbers on sec	quences	
						Relative to	1	
		60		80				
						Follow selection		
P68046	RFFDSFGDLS	S P DA VMG N P K	VKAHGKKVL N	SFSDGLKNLD	79	Lock numbers		
P68053	RFFDSFGDL S	S P DA VMG N P K	VKAHG <mark>kkvl</mark> n	SFSEGLKNLD	79			
P68225	RFFESFGDL S	S P D A VMG N P K	VKAHG <mark>KKVL</mark> G	A F S D G L N H L D	80	 Lock labels 		
P68873	RFFESFGDLS	T P D A VMG N P K	V K A H G K K V L G	AFSDGLAHLD	80	Sequence label		
P68228	RFFESFGDLS	T A D A VMN N P K	V K A H G <mark>s k v l n</mark>	SFGDGLSHLD	80	Name	~	
P68231	RFFESFGDL S	T A D A VMN N P K	V K A H G <mark>s k v l n</mark>	SFGDGLNHLD	80	Show selection	hoves	
P68063	RFFASFGNL S	SPTAIIGNPM	VRAHGKKVLT	SFGEAVKNLD	79			
P68945	RFFSSFGNLS	SPTALLGNPM	VRAHGKKVLT	SEGDAVKNLD	79 🗅	🖉 🔲 Identical residu	es as dots 🛛 🎽	≤

Figure 2.10: The resulting alignment.

trees. You also have the option of including a bootstrap analysis of the result.

Click **Finish** to start the calculation, which can be seen in the **Toolbox** under the **Processes** tab, and after a short while a tree appears in the **View Area** (figure 2.11).

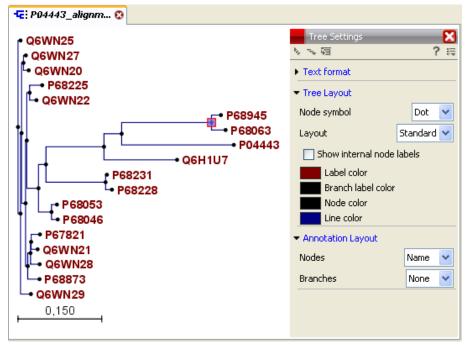


Figure 2.11: After choosing which algorithm should be used, the tree appears in the View Area. The Side panel in the right side of the view allows you to adjust the way the tree is displayed.

2.5.1 Tree layout

Using the **View preferences** (in the right side of the interface) of the tree view, you can edit the way the tree is displayed. Click **Tree Layout** and open the **Layout** drop down menu. Here you can choose between standard and topology layout. The topology layout can help to give an overview of the tree if some of the branches are very short.

When the sequences include the appropriate annotation, it is possible to choose between the accession number and the species names at the leaves of the tree. Sequences downloaded from

GenBank, for example, have this information. The **Annotation Layout** preferences allows these different node annotations as well as different annotation on the branches.

The branch annotation includes the bootstrap value, if this was selected when the tree was calculated. It is also possible to annotate the branches with their lengths.

2.6 Tutorial: Detect restriction sites

This tutorial will show you how to find restriction sites and annotate them on a sequence.

Suppose you are working with sequence PERH3BC from the example data, (can be downloaded from http://www.clcbio.com/download) and you wish to know which restriction enzymes will cut this sequence exactly once and create a 3[°] overhang. Do the following:

select the PERH3BC sequence from the Primer design folder | Toolbox in the Menu Bar | Restriction Site Analyses (\overrightarrow{a}) | Restriction sites (\overrightarrow{s})

The dialog shown in (fig. 2.12) opens, and you can confirm or change your selection of input sequence.

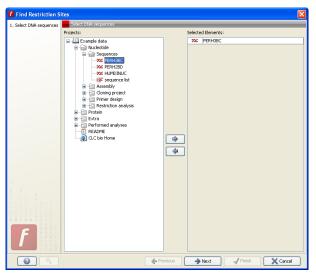


Figure 2.12: Choosing sequence PERH3BC.

In the next step you uncheck "Blunt ends" and "5[´] overhang" since we only wish to use enzymes with a "3[´] overhang". Then click **Select all** (see figure 2.13).

Click Next and choose both textual and graphical output. (See figure 2.14).

Click **Finish** to start the restriction site analysis.

2.6.1 View restriction site

The restriction sites are shown in two views: one view is in a textual format and the other view displays the sites as annotations on the sequence. To see both views at once:

View in the menu bar | Split Horizontally (___)

The result is shown in figure 2.15.

	1. Select DNA sequences	Filter enzyme			_		_	
All available Only include enzymes which have Minimum recognition sequence length: 0 Outy include enzymes which have O to sum include enzymes enzymes include enzymes enz	2. Filter enzymes	Choose from er	nzyme set					
Minimum recognition sequence length; Image: Constraint of the sequence length; Image: Constrainton of the sequence length; Image: Constraint of th				All availa	ole 💌			
Minimum recognition sequence length; Image: Constraint of the sequence length; Image: Constrainton of the sequence length; Image: Constraint of th		Only include en	zymes which have					
□ But end: □ 3 overlag: □ 3 overlag: □ 5 overlag: <td></td> <td></td> <td></td> <td></td> <td>and he athe</td> <td></td> <td></td> <td></td>					and he athe			
Coversing Coversing Coversing Coversion Coversion			PI		ance length: p	•		
Country Country			L .	Blunt ends				
Ensues that comply with other Regularity Popularity Include Name Recorption S. Overhang Methylation s Popularity Include Name Recorption S. Overhang Methylation s Popularity Include Name Recorption S. Overhang Methylation s Popularity Include Resolution Statt Recorption S. Include Include Include Biol Recorption Statt Recorption Include				3' overhang				
Engines that comply with other Texpess that any other Texp			F	5' overhang				
Include Name Recognition S Overhang Methylation S Popularity ID AxSII opgators 5' Smethylcytosine * ID Fish CI oards 5' * * ID Binul acting 5' * * * ID Binul acting 5' *]				
Ø Assil popekogs 3' 5-methylycome * Ø Pisti roporky 3' * * Ø Pisti roporky 3' * * Ø Septil scopp 3' * * Ø Septil scopp 3' * * Ø Bovizi pegoek 3' * * Ø Septil sagenoment 3' * * Ø Satil pegoek 3' * * * Ø Satil pegoek 3' * * * Ø Bessil degone 3' * * * Ø Bessil degone 3' * * * Ø Bessil degone 3' * * * Ø Bessil degong 3' * * * Ø Bessi		Enzymes that o	omply with criteria					
v 1594C1 sord 3' * v Prist rappcy 3' * v Bruil stopp 3' * v Bruil asgrinnett * * v Bruil asgrinnett * * v Statl asgrinnett * * v Bass digane * * v Bass stopp * * v Bastopp stopp		Include	Name	Recognition S	Overhang	Methylation s	Popularity	
v Psit yopnovy 3' * v Sopfil cocyop 3' * v Sopfil cocyop 3' * v Sopfil cocyop 3' * v Bolv 21 opgook 3' * v Fail aegomment 3' * v Chal gabck 3' * v Chal gabck 3' * v Bassil adogn 3' * v Baskil bdocen 3' * v Baskil adogn 3' * v Baskil adogn * * v Baskil adogn * * v Baskil			AsiSI	gcgatogc	3	5-methylcytosine	*	
Ø Bruit scopp 3' * Ø Soft * * Ø Bruit sogonov 3' * Ø Satt sogonov * * Ø Bruit sogonov 3' * Ø Bruit sogonov			Tsp4CI	acngt	3		*	
Ø sigeti Ø Sigeti Ø Sigeti Ø * Ø Balvi 22 gegov. Si * Ø Fall asgromment. Si * Ø Satt gegov. Si * Ø Oal gede. Si * Ø HorcHttl aords * * Ø Balvi 21 gede. Si * Ø Bassi aordgen. Si * Ø Bassi aordge. 3 * Ø Bassi aordge. 3 * Ø Bassi aordge. 3 * Ø Bassi		Image: A state of the state	PssI	rggnccy	3		*	
Ø Bb/121 progree 9' * Ø Fall aegorinnettik 9' * Ø Satl gegetik 9' ************************************		Image: A state of the state	BmuI	actggg	3		*	
v Fail asgromment 3' * v Sati gaptic 3' * v Ohal gaptic 3' * v Hoy-CHUI aongl 3' * v Bassl aongl 3' * v Baskl aongl * * v Babel opopon			SgrBI	ccgcgg	3'			
Ø Satt popte 3' * Ø Ond gete 3' * Ø Hoy-CHIII angt 3' * Ø Bessi getgene 3' * Ø Bessi getgene 3' * Ø Bessi angt 3' * Ø Bessi oppgen * * Ø Bessi oppgen		Image: A state of the state	Bbv12I	gwgcwc	3'			_
Ø Otal gate g' *** Ø Hoy-CHIII annyt g' * Ø Bassli drigmn g' * Ø Bassli acogn g' * Ø Bassli		Image: A state of the state	Fall	aagnnnnnctt	3		•	_
V brochttill songt 3' * V Bessi stagp 3' * V Bessi dtorea 3' * V Bessi occops 3' * V Bessi parameter * * V Bessi parameter * *		Image: A state of the state	SstI	gagete	3		•	_
Ø Bessil ø/gone 3' * Ø Bessil actop 3' * Ø Bessil actop 3' * Ø Beskil bondt 3' * Ø Beskil bondt 3' * Ø Beskil bongt 3' * Ø Beskil octop 3' * Ø Beskil borgoc 3' * Ø Beskil porgoc 3' * Ø Beskil porgoc 3' * Ø Beskil porgoc 3' * Ø Beskil porgrammitig * *		Image: A state of the state	ChaI	gatc	3		***	
Ø Berit actga 3' * Ø Bolf ptatcc 3' * Ø Bolf acrgs 3' * Ø Bolf gtatcc 3' * Ø Bolf gtatca * *			HpyCH4III	acngt	3		8	_
Ø BoW opstress 3' * Ø Batkell bangk 3' * Ø Bagal obcopa 3' * Ø Bagal obcopa 3' * Ø Bagal obcopa 3' * Ø Babel opsgos 3' *			BseSI	gkgcmc	3		8	_
Ø B494C1 angle 3' * Ø Bsg1 pdpxag 3' ** Ø TspOWL acqpa 3' * Ø Beal opcycc 3' * Ø Beal opcycc 3' * Ø EstPH parrenningz 3' *			BsrSI	actog	3		8	_
Ø Bsgl dpdcka 3' ** Ø TspOwi oogpa 3' * Ø Bbel opgooc 3' * Ø Bbel opgooc 3' * Ø Bbel opgooc 3' * Ø BskPi pormnintgic 3' *			BciVI	gtatcc	3		8	_
Ø TspOWI pogopie 3' * Ø Bbeli opcopie 3' * Ø Gabrit sogopie 3' * Ø Gabrit sogopie 3' * Ø Bakeri opermininge 3' *			Bst4CI	acngt	3		8	_
Ø Biblit ppgopc 3' * Ø Cabitit sepgop 3' * Ø BakkPi pcarrinning 3' *			BsgI	gtgcag	3		**	
V CeMI 00000 3' * V BstAPI opermnetor 3' *			TspGWI	acgga	3		8	
BstAPI gcommintgc 3 *			BbeI	ggcgcc	3		8	
			CstMI	aaggag	3		*	
				gcannnntgc	3		*	
Select all Deselect all	1111			. ·		1	0.0	
				Select all	Deselect all			

Figure 2.13: Setting parameters for restriction site detection.

Find Restriction S	ites 🛛 🛛 🔀
Select DNA sequences Fiker enzymes Set exclusion criteria and output options	Set exclusion onterta and output options
	Evolude enzymes based on number of matches Evolude enzymes with less matches than: Evolude enzymes with nore matches than: 1 Cutput options Output options ✓ Create output as annotations on sequence ✓ Separate restynction finguments on gel ✓ Separate restynction finguments on gel ✓

Figure 2.14: Selecting enzymes.

Notice! The results are not automatically saved.

To save the result:

```
Right-click the tab | File | Save ( ]
```

2.7 Tutorial: Sequence information

This tutorial shows you how to see background information about a sequence, including an overview of its annotations.

Suppose you are working with the HUMHBB sequence from the example data, (The Example data can be installed in the program by: clicking **Install Example Data** from the **Help** menu in the **Menu Bar**. The Example data can also be downloaded from http://www.clcbio.com/download.) and you wish to see more background information about this sequence. This can be done using the **Sequence Info** functionality of *CLC Free Workbench*:

Figure 2.15: The result of the restriction site detection is displayed as text, and in this tutorial the View shares the View Area with a View of the PERH3BC sequence displaying the restriction sites (split-screen-view).

Select HUMHBB in the Navigation Area | Show (\blacksquare) in Menu Bar | Sequence Info (\ddagger)

This opens a new view shown in figure 2.16.

х нимнвв
▶ Description
▶ Comments
▶ KeyWords
▶ Gb Division
▶ Length
▶ Modification Date
▶ Organism
▶ Annotation Map

Figure 2.16: The initial view of sequence info of HUMHBB.

The sequence is originally downloaded from GenBank, and it is the information from the GenBank file which is shown as a list of headings. Click the heading **Modification Date** to see when the sequence was modified in GenBank.

At the bottom there is an **Annotation Map** providing an overview of the annotations on the sequence. The annotations are divided into types. We are interested in the coding sequences of HUMHBB:

Click Annotation Map | Click CDS

The seven coding sequences are displayed with the corresponding positions in GenBank syntax. In order to make full use of the **Annotation Map**, open a normal view of the HUMHBB sequence below the **Sequence Info**:

Select the HUMHBB in the Navigation Area \mid Drag it to the bottom of the View Area until a gray shadow appears

Now, clicking a coding sequences in the **Annotation Map** will make a selection representing the coding sequence in the view below . You can see that the selection matches the CDS annotation the yellow boxes in figure 2.17).

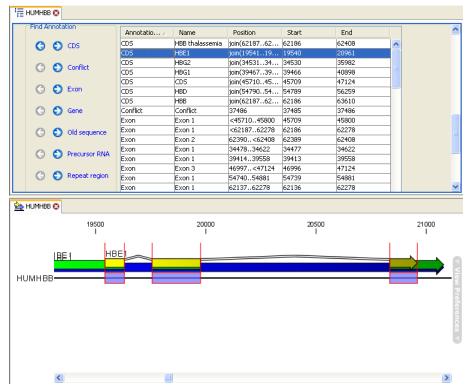


Figure 2.17: Two views of the HUMHBB sequence. The upper view shows the coding sequences (CDS), and the bottom view shows a selection corresponding to the CDS chosen in the upper view.

2.8 Tips and tricks for the experienced user

In this tutorial you will get to know a number of ways to cut corners when using *CLC Free Workbench*. The following sections will show you how to get your tasks done quickly and easily. When you are using the program it is hard to discover these shortcuts yourself which is the reason why this tutorial was written.

The tutorial assumes that you have used the program for a while, since the basic usages are not explained.

2.8.1 Open and arrange views using drag and drop

Instead of opening views using double click or **Show**, you can use drag and drop both to open and arrange views. Drag and drop is supported both within the **Navigation Area**, within the **View Area** and between the two areas:

- **1. Drag and drop an element within the Navigation Area:** Moves the element to the drop location.
- 2. Drag an element from the Navigation Area to the View Area: Opens the element in a new view. The view will be opened in the part of the View Area where the element is dropped.
- **3. Drag the tab of a view within the View Area:** If there are other views open, this will split the **View Area** and make it possible to see several views at the time.
- **4. Drag the tab of a view into the Navigation Area:** If the view is new and has not been saved to a project before, this will save the view at the drop location. If the view is already represented in the **Navigation Area**, this will save a copy of the view at the drop location.

2.8.2 Find element in the Navigation Area

If you have a view of e.g. a sequence and you wish to know in which project this sequence is saved, use the **Find in Project** function:

right-click the tab of the view | View | Find in Project()

This will select the sequence in the **Navigation Area** (see figure 2.18).

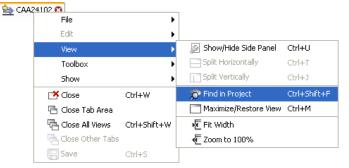


Figure 2.18: This will select the sequence in the Navigation Area.

You can also use the shortcut key: Ctrl + Shift + F on Windows or \Re + Shift + F on Mac.

2.8.3 Find specific annotations on a sequence

If you are looking for a specific annotation on a sequence, you may benefit from viewing the **Sequence info** while keeping an ordinary view of the sequence on the screen. In the **Sequence info** you find an Annotation map which displays all the annotations of the sequence. The annotations serve as links, selecting the annotation in the ordinary view of the sequence (see figure 2.19).

For sequences with many annotations, it is easier to navigate using these links compared to of scrolling in the ordinary view of the sequence.

• CDS CDS HBB thalassemia join(6218762 62186 62408 • Conflict • Conflict CDS HBG2 join(3453134 34530 35961 • O • Exon CDS HBG1 join(3453134 34530 35961 • O • Exon CDS HBG1 join(3453134 34530 35962 • O • Exon CDS HBG1 join(3453134 34530 35962 • O • Exon CDS HBB join(6218762 54789 56259 • O • On Exon Exon • Exon • Exon • Exon • Exon Exon Exon • Exon • Exon • Exon • Exon • Exon Exon <th></th> <th>ation</th> <th>Annotatio A</th> <th>Name</th> <th>Position</th> <th>Start</th> <th>End</th> <th></th> <th></th>		ation	Annotatio A	Name	Position	Start	End		
○ CDS HBE1 join(1954119 19540 20961 ○ Conflict CDS HBG2 join(3453134 34530 35982 ○ Exon CDS HBG1 join(3453134 34566 40898 ○ Exon CDS HBD join(4571045 45709 47124 ○ Gene Conflict Conflict 37486 37485 37486 ○ Old sequence Exon Exon 1 <4571045800	0.0	CDS	CDS	HBB thalassemia	join(6218762	62186	62408	~	
○ Conflict CDS HBG2 join(3453134 34530 35982 ○ O Exon Join(346739 39466 40898 ○ O Exon CDS Join(5479045, 45709 47124 ○ O Gene CDS HBD Join(5479045, 45709 47124 ○ O Gene Conflict Conflict 37486 37485 ○ O ld sequence Exon Exon 1 <4571045800		1 000	CDS	HBE1					
Connect CDS HBG1 join(3946739 39466 40898 CDS CDS CDS join(4571045 45709 47124 CDS CDS CDS join(4571045 45709 47124 CDS Gene CDS HBB join(6279045 62186 63610 CDS HBB join(6271045 62186 63610 Conflict 37486 CDS HBB join(6271045 62186 62278 Exon Exon Exon Exon Exon Exon Exon Exon 62186 62278 CDS Repeat region Exon Exon 1 3447834622 34477 34662 2408 Exon Exon 1 3411439558 Exon Exon 1 34147734622 34477 34662 Exon Exon 1 6213762278 62136 62278 Exon Exon 1 6213762278	0.0		CDS	HBG2			35982		
○ ● Exon CDS HBD join(5479054 54789 56259 ○ ● Gene CDS HBB join(6218762 62166 63610 ○ ● Old sequence Exon Exon Exon 62278 62289 62289 ○ ● Precursor RNA ● Exon Exon 1 <4571045800	90	Conflict	CDS	HBG1			40898		
O Gene CDS HBB join(C2187.62 62186 63610 CDS HBB join(C2187.62 62186 63610 Conflict Conflict 37486 37486 Conflict Conflict 37496 62187.62278 Exon Exon 1 <45710.45800	_		CDS	CDS	join(4571045	45709	47124		
O Gene CDS HBB join(6218762) 62186 63610 O Old sequence Exon Exon 62100 45709 45800 O Old sequence Exon Exon 26290 62209 62208 Precursor RNA Exon Exon 3447834622 34477 34622 Exon Exon 1 3447834622 34417 34622 Exon Exon 1 3447834622 34417 34622 Exon Exon 1 3447054881 54739 54881 Exon Exon 6213762278 62136	- O O) Exon	CDS	HBD	join(5479054	54789	56259		
Gene Conflict Conflict 37486 37485 37486 Conflict Conflict 37486 37485 37486 Conflict Conflict 20100 45300 45000 Conflict Exon Exon 6218762278 62186 62278 Conflict Exon Exon 26200662080 62399 62408 Exon Exon Exon 1 3447834622 34477 34622 Exon Exon Exon 1 394785 39413 39558 Exon Exon Exon 1 5474054881 54739 54481 Exon Exon Exon 1 5474054881 54739 54881 Exon Exon Exon 1 6213762278 62136 62278 HUMHBB<			CDS	HBB			63610	1	
O Old sequence O Old sequence O Precursor RNA O Precursor RNA O Repeat region Exon Exon 1 S Repeat region HUMHBB<	00	Gene	Conflict	Conflict			37486	1	
Construction Exon Exon 2 62390<62408			Exon	Exon 1		45709	45800	1	
Image: Second	0.0	Old sequence	Exon	Exon 1	<6218762278	62186	62278	1	
Image: Second		old sequence	Exon	Exon 2	62390<62408	62389	62408	1	
C O Exon 1 3941439588 39413 39588 Exon Exon 3 46996 47124 Exon Exon 1 5474054881 54739 54881 Exon Exon 1 6213762278 62136 62278	0.0			Exon 1	3447834622	34477	34622	1	
O Repeat region Exon Exon 5474054881 54739 54881 Exon Exon Exon 6213762278 62136 62278 HUMHBB € 1 20000 20500 21000 1 1 20000 20500 21000 1 1 1 1 1	00	Precursor RNA	Exon	Exon 1	3941439558	39413	39558	1	
HUMHBB C 19500 20000 20500 21000 IBE1 HBE			Exon	Exon 3	46997<47124	46996	47124		
HUMHBB C 19500 20000 20500 21000 IBE1 HBE	60	Repeat region	Exon	Exon 1	5474054881	54739	54881	1	
HUMHBB C 19500 20000 20500 21000 IBE1 HBE									
		19500 I		20000 I		20500 I		21000 I	
	IB	E1 HE	E						
									_

Figure 2.19: Clicking the HBE1 coding region in the top view selects the annotation on the sequence in the bottom view.

2.8.4 Split sequences into several lines

Producing graphics of long sequences can be a strenuous task, especially if you have not discovered the "Wrap sequence" option. If you just export graphics of a long sequence without wrapping, you will get an extremely wide graphics file which probably has be edited in a graphics program before use. Wrapping the sequence allows you to control the width and height of the graphics file (see figure 2.20).

 Sequence layout
Spaces every 10 residues
🚫 No wrap
💿 Auto wrap
 Fixed wrap:
every 10000 residues
Double stranded

Figure 2.20: Wrapping the sequence automatically.

2.8.5 Make a new sequence of a coding region

If you have a genomic sequence containing a coding region, you can easily make a new sequence which only consists of the coding region (see figure 2.21):

right-click the coding region's annotation | Open Annotation in New View

This will open a new sequence which only consists of the residues covered by the annotation.

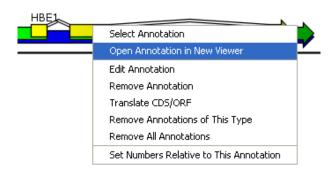


Figure 2.21: Opening the coding region in a new view.

2.8.6 Get overview and detail of a sequence at the same time

If you have a large sequence and you want to be able to get an overview of the whole and still keep the details of the residues, you can use the **Split views** functionality. In the example below (figure 2.22), the end of the red annotation is examined in detail in the bottom view, and in the upper view you have the overview of the whole alignment.

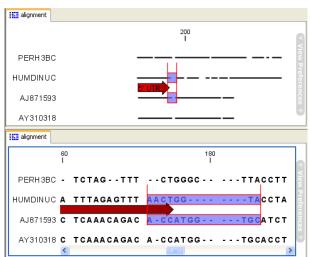


Figure 2.22: Using the split views and follow selection functionalities.

In this example, a selection was made in the upper view, and the bottom view automatically scrolls to display this selection (this behavior can be turned off by unchecking the "Follow selection" option in the **Side Panel**).

2.8.7 Smart selecting in sequences and alignments

There are a number of ways to select residues in sequences and alignments:

- **Using the mouse.** This is the most basic way of selecting. Place the mouse cursor where you want the selection to start, press and hold the mouse button, move the mouse to the location where the selection should end and release the mouse button.
- **Using the mouse in combination with the Shift key.** If you have made a selection and want to extend or reduce the selection, hold the Shift key while clicking the location where you want the boundary of the selection.

- **Using the arrow keys in combination with the Shift key.** If you have made a selection and want to extend or reduce the selection, hold the Shift key while pressing the left and right arrow keys.
- Using the mouse in combination with the Ctrl (for Windows) or 光 (for Mac) key. By holding this key, you can make multiple selections that are not contiguous.
- **Selecting an annotation.** Double-click an annotation in order to select the residues that the annotation covers. This is especially helpful if the annotation is not contiguous (as the CDS region in figure 2.21).
- **Using the Search function.** At the bottom of **Side Panel** to the right, there is a search field, which can be used for selections (use Ctrl + F on Windows or # + F on Mac). You can both search for annotations, residues or positions. The result of the search is a selection (as shown in figure 2.23). Remember to separate the start and end numbers with two punctuation marks (..).

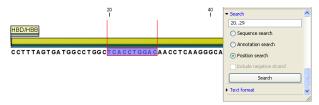


Figure 2.23: Making a selection from position 20 to 29 (both included) using the Search function.

No matter how you make your selection, you can see the start and end positions in right part of the status bar below the **View Area**.

2.8.8 Quickly import sequences using copy-paste

Instead of using the **Import** () function to import a sequence, you can use copy-paste. If you have copied the sequence from a source outside the program (e.g. a webpage or text document), you can paste it into the text field in the **Create new sequence** dialog (shown in figure 2.24).

Name:		
Common name:		
Species:		
Type: •	INA 💿 DNA	
	🕦 🔿 RNA	
	🚑 🔿 Protein	
	Circular	
Description:		
Keywords:		
Comments:		
Sequence (requi	ired):	0

Figure 2.24: Pasting a sequence into the text field at the bottom is a quick way of importing sequence data.

This dialog lets you paste all kinds of characters into the text field, including numbers and spaces. If you have pasted e.g. numbers into the field, just press and hold the space key on your keyboard until the numbers have been deleted. Spaces are not included in the new sequence.

2.8.9 Perform analyses on many elements

If you have a folder with a lot of mixed elements (e.g. both nucleotide and protein sequences, alignments, reports), you can often select the whole folder for an analysis, even if the analysis should only be performed on a special type of element (e.g. nucleotide sequences). In the example below (figure 2.25), the dialog says "Select nucleotide sequences", but the project contains both protein and nucleotide sequences. Instead of carefully pinpointing the nucleotide sequences, you can just press Ctrl+A (\Re +A on Mac), selecting all the visible elements. When you add these elements (\Rightarrow), the protein sequences are filtered out.

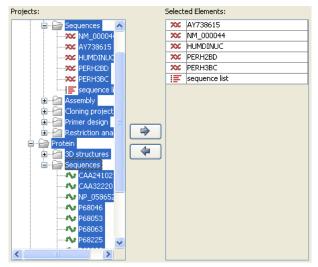


Figure 2.25: Selecting protein and dna sequences, but the dialog automatically filters out the protein sequences.

2.8.10 Drag elements to the Toolbox

If you have selected e.g. some protein sequences in the **Navigation Area** that you wish to use for creating an alignment,

2.8.11 Export elements while preserving history

If you have created e.g. an alignment and wish to export it to a colleague with the detailed history of all the source sequences, you can select the alignment and all the sequences for export. There is, however, a much easier way to do this (see figure 2.26):

Select the alignment | File | Export with dependent elements

This will export the alignment including all the source sequences in one clc-file. When your colleague import the alignment, its detailed history is preserved.

File Edit Search V	/iew	Toolbox	Workspace	Help
Show 3			Ctrl+O	
Extract Sequence	ces			
New				•
Show				•
Close			Ctrl+W	
🕒 Close Tab Area				
Close All Views			Ctrl+Shi	ft+₩
Close Other Tab	os			
E Save			Ctrl+S	
🔐 Import			Ctrl+I	
🔐 Import VectorN	TI Data	i		
🔐 Export			Ctrl+E	
📑 Export with Dep	benden	t Element	s	
Export Graphics			Ctrl+G	
🖨 Page Setup				
👌 Print			Ctrl+P	
Exit			Alt+F4	

Figure 2.26: Export with dependent elements in order to preserve the detailed history of an element.

2.8.12 Avoid the mouse trap - use keyboard shortcuts

Many tasks can be performed without using the mouse. When you do the same task again and again, you can save some time by learning its shortcut key. As an example you can navigate and zoom a view of sequence or an alignment using the keyboard:

- Navigate the view using the four arrow keys. This is equivalent to scrolling with the mouse using the scroll bars.
- Use the '+' and '-' keys to zoom in and out. This is equivalent to using the zoom modes in the toolbar.

Note that you have to click once inside the view with the mouse first in order to use this functionality.

There are many other shortcuts in *CLC Free Workbench*which may save you a lot of time when performing repetitive tasks. See section **3.6** for a list of available shortcuts.

Part II

Basic Program Functionalities

Chapter 3

User Interface

Contents

3.1	Naviga	ation Area	42
	3.1.1	Data structure	42
	3.1.2	Create new projects and folders	43
	3.1.3	Multiselecting elements	44
	3.1.4	Moving and copying elements	44
	3.1.5	Change element names	45
	3.1.6	Delete elements	46
	3.1.7	Show folder elements in View	47
	3.1.8	Sequence properties	48
3.2	View /	Area	48
	3.2.1	Open View	48
	3.2.2	Close Views	49
	3.2.3	Save changes in a View	50
	3.2.4	Undo/Redo	50
	3.2.5	Arrange Views in View Area	51
	3.2.6	Side Panel	52
3.3	Zoom	and selection in View Area	53
	3.3.1	Zoom In	53
	3.3.2	Zoom Out	55
	3.3.3	Fit Width	55
	3.3.4	Zoom to 100%	55
	3.3.5	Move	55
	3.3.6	Selection	55
3.4	Toolbo	ox and Status Bar	56
	3.4.1	Processes	56
	3.4.2	Toolbox	56
	3.4.3	Status Bar	57
3.5	Works	pace	57
	3.5.1	Create Workspace	57
	3.5.2	Select Workspace	57

 3.5.3 Delete Workspace
 57

 3.6 List of shortcuts
 58

This chapter provides an overview of the different areas in the user interface of *CLC Free Workbench 3.0.* As can be seen from figure **3.1** this includes a **Navigation Area**, **View Area**, **Menu Bar**, **Toolbar**, **Status Bar** and **Toolbox**.

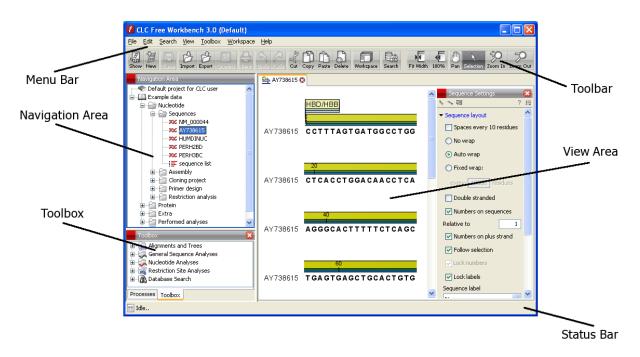


Figure 3.1: The user interface consists of the Menu Bar, Toolbar, Status Bar, Navigation Area, Toolbox, and View Area.

3.1 Navigation Area

The **Navigation Area** is located in the left side of the workbench, under the **Toolbar**. It is used for organizing and navigating data. The **Navigation Area** displays a **Project Tree** (see figure 3.2), which is similar to the way files and folders are usually displayed on your computer. The **Project Tree** contains one or more projects. The elements which are available in the **Navigation Area** remain the same when changing **Workspaces** (see section 3.5).

A project can be a collection of elements which are related, e.g. because the elements are used in the same assignment or research project.

The word 'Element' is used to refer to sequences, saved searches, lists, folders etc. In other words, everything which can be stored in a project in the **Navigation Area**.

3.1.1 Data structure

Elements, or data, in *CLC Free Workbench 3.0* are stored in a kind of database. Hence, the data cannot be browsed from e.g. Windows Explorer or similar file systems. However, elements are available from the **Navigation Area**. To open an element:

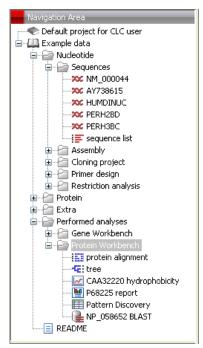


Figure 3.2: The Navigation Area.

Double-click the element

or Click the element | Show (4) in the Toolbar | Select the desired way to view the element

This will open a View in the View Area, which is described in the next section.

Adding data

Data can be added to a project in a number of ways. Files can be imported from the file system, and elements from the **Navigation Area** can also be exported to the file system. (For more about import and export, see chapter 6.)

Furthermore, an element can be added to a project by dragging it into the **Navigation Area**. Elements on lists, e.g. search hits or sequence lists, can also be dragged to the **Navigation Area**.

When dragging from the **View Area** to the **Navigation Area**, the element, e.g. a sequence, an alignment, or a search report, is selected by clicking on the tab and dragging it into the navigation area. If the element already exists, you are asked whether you want to save a copy.

If a piece of data is dropped on a folder or a project, the data is placed at the bottom of the list of elements in the folder or project in question.

If a piece of data is dropped on an element, which is not a folder or a project, the data is added just after that element.

3.1.2 Create new projects and folders

In the **Navigation Area** all files and folders are stored in one or more projects. Creating a new project can be done in two ways:

right-click an element in the Navigation Area | New | New Project (

or File | New | New Project (

Regardless of which element is selected when you create a new project, the new project is placed at the bottom of the **Project Tree**.

You can move the project manually by selecting it and dragging it to the desired location. Projects are always placed at the upper-most level in the **Project Tree**.

In order to organize your files, they can be placed in folders. Creating a new folder can be done in two ways:

right-click an element in the Navigation Area | New | New Folder (

or File | New | New Folder (🗁)

If a project or a folder is selected in the **Navigation Area** when adding a new folder, the new folder is added at the bottom of the project or folder. If an element is selected, the new folder is added right below that element.

You can move the folder manually by selecting it and dragging it to the desired location.

3.1.3 Multiselecting elements

Multiselecting elements in the Navigation Area can be done in the following ways:

- Holding down the <Ctrl> key while clicking on multiple elements selects the elements that have been clicked.
- Selecting one element, and selecting another element while holding down the <Shift> key selects all the elements listed between the two locations (the two end locations included).
- Selecting one element, and moving the curser with the arrow-keys while holding down the <Shift> key, enables you to increase the number of elements selected.

3.1.4 Moving and copying elements

Elements can be moved and copied in two ways: using the copy, cut and paste functions, or using drag and drop.

Copy, cut and paste elements

Copies of elements, folders, and projects can be made with the copy/paste function which can be applied in a number of ways:

select the files to copy | right-click one of the selected files | Copy ([b]) | right-click the location to insert files into | Paste ([b])

- or select the files to copy | Ctrl + C (\Re + C on Mac) | select where to insert files | Ctrl + P (\Re + P on Mac)
- or select the files to copy | Edit in the Menu Bar | Copy (
) | select where to insert files | Edit in the Menu Bar | Paste (
)

If there is already an element of that name, the pasted element will be renamed by appending a number at the end of the name. Elements can also be moved instead of copied. This is done with the cut/paste function.

select the files to cut | right-click one of the selected files | Cut (\mathcal{K}) | right-click the location to insert files into | Paste (\mathbb{R})

or select the files to cut | Ctrl + X (\Re + X on Mac) | select where to insert files | Ctrl + V (\Re + V on Mac)

When you have cut the element, it disappears until you activate the paste function.

Move using drag and drop

Using drag and drop in the Navigation Area, as well as in general, is a four-step process:

click the element \mid click on the element again, and hold left mouse button \mid drag the element to the desired location \mid let go of mouse button

This allows you to:

- Move elements between different projects and folders in the Project Tree
- Drag from the **Navigation Area** to the **View Area**: A new **View** is opened in an existing **View Area** if the element is dragged from the **Navigation Area** and dropped next to the tab(s) in that **View Area**.
- Drag from the **View Area** to the **Navigation Area**: The element, e.g. a sequence, alignment, search report etc. is saved where it is dropped. If the element already exists, you are asked whether you want to save a copy. You drag from the **View Area** by dragging the tab of the desired element.

Use of drag and drop is supported throughout the program. Further description of the function is found in connection with the relevant functions.

3.1.5 Change element names

This section describes two ways of changing the names of sequences in the **Navigation Area**. In the first part, the sequences themselves are not changed - it's their representation that changes. The second part describes how to change the name of the element.

Change how sequences are displayed

Sequence elements can be displayed in the **Navigation Area** with different types of information:

- Name (this is the default information to be shown).
- Accession (sequences downloaded from databases like GenBank have an accession number).
- Species.

- Species (accession).
- Common Species.
- Common Species (accession).

Whether sequences can be displayed with this information depends on their origin. Sequences that you have created yourself or imported might not include this information, and you will only be able to see them represented by their name. However, sequences downloaded from databases like GenBank will include this information. To change how sequences are displayed:

right-click any element or folder in the Navigation Area | Sequence Representation | select format

This will only affect sequence elements, and the display of other types of elements, e.g. alignments, trees and external files, will be not be changed. If a sequence does not have this information, there will be no text next to the sequence icon.

Rename element

Renaming a project, folder, piece of data etc. can be done in three different ways:

right-click the element | Rename

```
or select the element | Edit in the Menu Bar | Rename
```

or select the element | F2

When the editing of the name has finished; press enter or select another element in the **Navigation Area**. If you want to discard the changes instead, press the **Esc**-key.

3.1.6 Delete elements

Deleting a project, folder, piece of data, etc. can be done in two ways:

```
right-click the element | Delete ( 🔚 )
```

or select the element | press Delete key

This will cause the element to be moved to a Recycle Bin where it is kept as a precaution.

Restore Deleted Elements

The elements in the **Recycle Bin** can be restored and saved in the **Navigation Area** again. This is done by:

Edit in the Menu Bar | Restore Deleted Elements (\hat{m})

This opens the dialog shown in fig. 3.3.

The dialog shows a list of all the deleted elements. Select the elements you want to restore and click next. This opens the dialog shown in fig. 3.4.

Choose where to restore the deleted elements. Click Finish

Notice! Only files which were saved in the Navigation Area, and then deleted, can be restored.

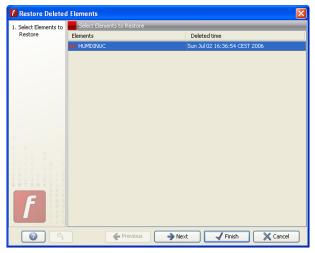


Figure 3.3: The Restore Deleted Elements dialog.

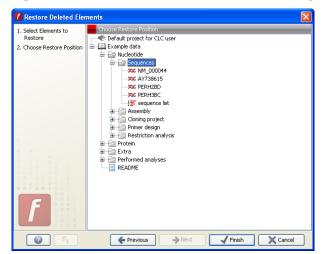


Figure 3.4: The Restore Deleted Elements dialog.

The deleted elements remain in the **Recycle Bin** until the **Recycle Bin** is emptied. To empty the bin:

Edit in the Menu Bar | Empty recycle bin (📆)

3.1.7 Show folder elements in View

A project or a folder might contain large amounts of elements. It is possible to view the elements of a folder or project in the **View Area**:

select a project | Show (4) in the Toolbar | Folder Contents (2)

When the elements are shown in the **View**, they can be sorted by clicking the heading of each of the columns. You can further refine the sorting by pressing Ctrl while clicking the heading of another column.

Sorting the elements in a **View** does not affect the ordering of the elements in the **Navigation Area**.

Notice! The View only displays one layer of the Project Tree at a time.

3.1.8 Sequence properties

Sequences downloaded from databases have a number of properties, which can be displayed using the **Sequence Properties** function:

Right-click a sequence in the Navigation Area |Properties

This will show a dialog as shown in figure 3.5.

Figure 3.5: Sequence properties for the HUMDINUC sequence.

For a more comprehensive view of sequence information, see section 10.2.

3.2 View Area

The **View Area** is the right-hand part of the workbench interface, displaying your current work. The **View Area** may consist of one or more **Views**, represented by tabs at the top of the **View Area**.

This is illustrated in figure 3.6.

Notice I.e., the tab concept is central to working with *CLC Free Workbench* 3.0, because several operations can be performed by dragging the tab of a view, and extended right-click menus can be activated from the tabs.

This chapter deals with the handling of **Views** inside a **View Area**. Furthermore, it deals with rearranging the **Views**.

Section 3.3 deals with the zooming and selecting functions.

3.2.1 Open View

Opening a View can be done in a number of ways:

double-click an element in the Navigation Area

- or select an element in the Navigation Area \mid File \mid Show \mid Select the desired way to view the element
- or select an element in the Navigation Area | Ctrl + O (\Re + B on Mac)

Opening a **View** while another **View** is already open, will show the new **View** in front of the other **View**. The **View** that was already open can be brought to front by clicking its tab.

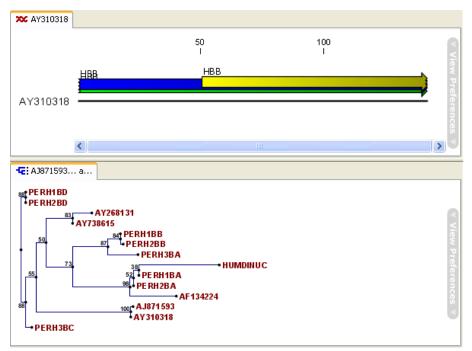


Figure 3.6: A View Area can enclose several Views, each View is indicated with a tab (see top left View, which shows protein P12675). Furthermore, several Views can be shown at the same time (in this example, three views are displayed).

Notice! If you right-click an open tab of any element, click **Show**, and then choose a different view of the same element, this new view is automatically opened in a split-view, allowing you to see both views.

See section 3.1.4 for instructions on how to open a **View** using drag and drop.

3.2.2 Close Views

When a View is closed, the View Area remains open as long as there is at least one open View.

A View is closed by:

right-click the tab of the View \mid Close

- or select the View | Ctrl + W
- or hold down the Ctrl-button | Click the tab of the view while the button is pressed

By right-clicking a tab, the following close options exist. See figure 3.7

- Close. See above.
- Close Tab Area. Closes all tabs in the tab area.
- Close All Views. Closes all tabs, in all tab areas. Leaves an empty workspace.
- Close Other Tabs. Closes all other tabs in the particular tab area.

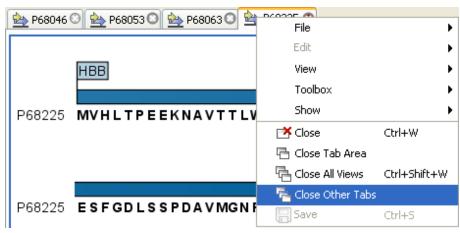


Figure 3.7: By right-clicking a tab, several close options are available.

3.2.3 Save changes in a View

When changes are made in a view, the text on the tab appears *bold and italic*. This indicates that the changes are not saved. The **Save** function may be activated in two ways:

Click the tab of the View you want to save | Save (\square) in the toolbar.

or Click the tab of the View you want to save | Ctrl + S (\Re + S on Mac)

If you close a **View** containing an element that has been changed since you opened it, you are asked if you want to save.

When saving a new view that has not been opened from the Navigation Area (e.g. when opening a sequence from a list of search hits), a save dialog appears (figure 3.8).

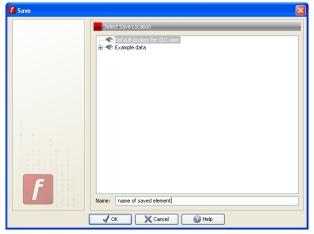


Figure 3.8: Save dialog.

In the dialog you select the folder or project in which you want to save the element.

After naming the element, press **OK**

3.2.4 Undo/Redo

If you make a change in a view, e.g. remove an annotation in a sequence or modify a tree, you can undo the action. In general, **Undo** applies to all changes you can make when right-clicking in

a view. Undo is done by:

Click undo () in the Toolbar

- or Edit | Undo ()
- or **Ctrl + Z**

If you want to undo several actions, just repeat the steps above. To reverse the undo action:

Click the redo icon in the Toolbar

- or Edit | Redo (/?)
- or Ctrl + Y

Notice! Actions in the **Navigation Area**, e.g. renaming and moving elements, cannot be undone. However, you can restore deleted elements (see section 3.1.6).

You can set the number of possible undo actions in the Preferences dialog (see section 4).

3.2.5 Arrange Views in View Area

Views are arranged in the **View Area** by their tabs. The order of the **Views** can be changed using drag and drop. E.g. drag the tab of one **View** onto the tab of a another. The tab of the first **View** is now placed at the right side of the other tab.

If a tab is dragged into a **View**, an area of the **View** is made gray (see fig. 3.9) illustrating that the view will be placed in this part of the **View Area**.

The results of this action is illustrated in figure 3.10.

You can also split a View Area horizontally or vertically using the menus.

Splitting horisontally may be done this way:

right-click a tab of the View | View | Split Horizontally (___)

This action opens the chosen **View** below the existing **View**. (See figure 3.11). When the split is made vertically, the new **View** opens to the right of the existing **View**.

Splitting the **View Area** can be undone by dragging e.g. the tab of the bottom view to the tab of the top view. This is marked by a gray area on the top of the view.

Maximize/Restore size of View

The **Maximize/Restore View** function allows you to see a **View** in maximized mode, meaning a mode where no other **Views** nor the **Navigation Area** is shown.

Maximizing a View can be done in the following ways:

select View | Ctrl + M

- or select View | View | Maximize/restore size of View (
- or select View | right-click the tab | View | Maximize/restore View (
- or double-click the tab of View

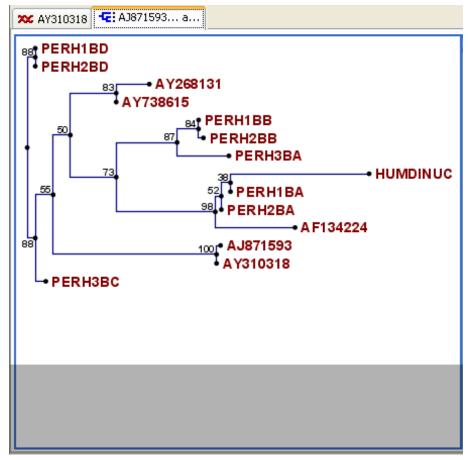


Figure 3.9: When dragging a View, a gray area indicates where the View will be shown.

The following restores the size of the View:

Ctrl + M

- or View | Maximize/restore size of View (
- or click close-button (23) in the corner of the View Area
- or double-click title of View

3.2.6 Side Panel

The **Side Panel** allows you to change the way the contents of a view are displayed. The options in the **Side Panel** depend on the kind of data in the **View**, and they are described in the relevant sections about sequences, alignments, trees etc.

Side Panel are activated in this way:

select the View | Ctrl + U (\Re + U on Mac)

or right-click the tab of the View | View | Show/Hide Side Panel (

Notice! Changes made to the **Side Panel** will not be saved when you save the **View**. See how to save the changes in the **Side Panel** in chapter 4.

The Side Panel consists of a number of groups of preferences (depending on the kind of data

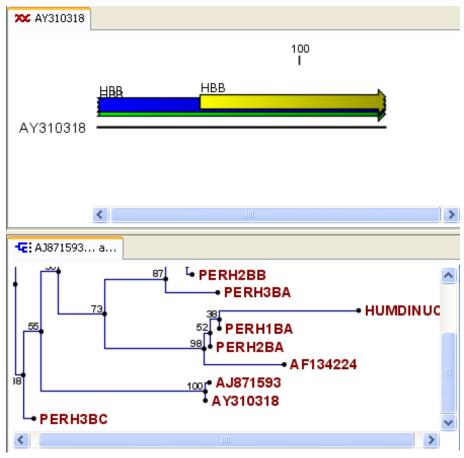


Figure 3.10: A horizontal split-screen. The two Views split the View Area.

being viewed), which can be expanded and collapsed by clicking the header of the group. You can also expand or collapse all the groups by clicking the icons $(\neg,)/(\neg,)$ at the top.

3.3 Zoom and selection in View Area

The mode toolbar items in the right side of the **Toolbar** apply to the function of the mouse pointer. When e.g. **Zoom Out** is selected, the **Zoom Out**-function is applied each time you click in a **View** where zooming is relevant (texts, tables and lists cannot be zoomed). The chosen mode is active until another mode toolbar item is selected. (**Fit Width** and **Zoom to 100%** do not apply to the mouse pointer.)

3.3.1 Zoom In

There are two ways to **Zoom In**:

The first way enables you to zoom in, step by step, on a sequence:

or Click Zoom In (5) in the toolbar | click-and-drag a box around a part of the view | the view now zooms in on the part you selected

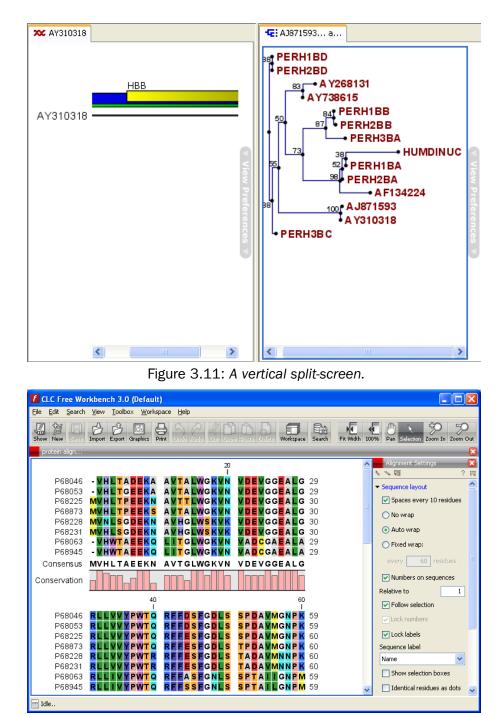


Figure 3.12: A maximized View. The function hides the Navigation Area and the Toolbox.

When you choose the Zoom In mode, the mouse pointer changes to a magnifying glass to reflect the mouse mode.

If you press the **Shift** button on your keyboard while clicking in a **View**, the zoom function is reversed. Hence, clicking on a sequence in this way while the **Zoom In** mode toolbar item is selected, zooms out instead of zooming in.

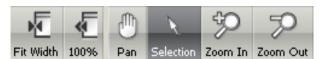


Figure 3.13: The mode toolbar items.

3.3.2 Zoom Out

It is possible to zoom out, step by step, on a sequence:

When you choose the Zoom In mode, the mouse pointer changes to a magnifying glass to reflect the mouse mode.

If you want to get a quick overview of a sequence or a tree, use the **Fit Width** function instead of the **Zoom Out** function.

If you press **Shift** while clicking in a **View**, the zoom function is reversed. Hence, clicking on a sequence in this way while the **Zoom Out** mode toolbar item is selected, zooms in instead of zooming out.

3.3.3 Fit Width

The **Fith Width** (1) function adjusts the content of the **View** so that both ends of the sequence, alignment, or tree is visible in the **View** in question. (This function does not change the mode of the mouse pointer.)

3.3.4 Zoom to 100%

The **Zoom to 100%** ($\overline{\mathbf{4}}$) function zooms the content of the **View** so that it is displayed with the highest degree of detail. (This function does not change the mode of the mouse pointer.)

3.3.5 Move

The Move mode allows you to drag the content of a **View**. E.g. if you are studying a sequence, you can click anywhere in the sequence and hold the mouse button. By moving the mouse you move the sequence in the **View**.

3.3.6 Selection

The Selection mode (\mathbb{N}) is used for selecting in a **View** (selecting a part of a sequence, selecting nodes in a tree etc.). It is also used for moving e.g. branches in a tree or sequences in an alignment.

When you make a selection on a sequence or in an alignment, the location is shown in the bottom right corner of your workbench. E.g. '23²⁴' means that the selection is between two residues. '23' means that the residue at position 23 is selected, and finally '23..25' means that 23, 24 and 25 are selected. By holding ctrl / \Re you can make multiple selections.

3.4 Toolbox and Status Bar

The **Toolbox** is placed in the left side of the user interface of *CLC Free Workbench 3.0* below the **Navigation Area**.

The Toolbox shows a Processes tab and a Toolbox tab.

3.4.1 Processes

By clicking the **Processes** tab, the **Toolbox** displays previous and running processes, e.g. an NCBI search or a calculation of an alignment. The running processes can be stopped, paused, and resumed.

Active buttons are blue.

If a process is terminated, the stop, pause, and play buttons of the process in question are made gray.

The terminated processes can be removed by:

View | Remove Terminated Processes (X)

Running and paused processes are not deleted.

Toolbox				X
Aligning sequences				^
	54 %		\triangleright	
Download process				Ξ
	16 %		\triangleright	
DB: nucleotide, huma	n			
	100 %		\triangleright	
Aligning sequences				
	100 %		\triangleright	~
Processes Toolbox			 	
🖬 Aligning sequences	5 I I I	T	 	٦

Figure 3.14: Two running, and a number of terminated processes in the Toolbox.

If you close the program while there are running processes, a dialog will ask if you are sure that you want to close the program. Closing the program will stop the process, and it cannot be restarted when you open the program again.

3.4.2 Toolbox

The content of the Toolbox tab in the Toolbox corresponds to Toolbox in the Menu Bar.

The **Toolbox** can be hidden, so that the **Navigation Area** is enlarged and thereby displays more elements:

View | Show/Hide Toolbox

The tools in the toolbox can be accessed by double-clicking or by dragging elements from the **Navigation Area** to an item in the **Toolbox**.

3.4.3 Status Bar

As can be seen from figure 3.1, the **Status Bar** is located at the bottom of the window. In the left side of the bar is an indication of whether the computer is making calculations or whether it is idle. The right side of the **Status Bar** indicates the range of the selection of a sequence. (See chapter 3.3.6 for more about the Selection mode button.)

3.5 Workspace

If you are working on a project and have arranged the views for this project, you can save this arrangement using **Workspaces**. A Workspace remembers the way you have arranged the views, and you can switch between different workspaces.

The **Navigation Area** always contains the same data across **Workspaces**. It is, however, possible to open different folders in the different **Workspaces**. Consequently, the program allows you to display different clusters of the data in separate **Workspaces**.

All **Workspaces** are automatically saved when closing down *CLC Free Workbench 3.0*. The next time you run the program, the **Workspaces** are reopened exactly as you left them.

Notice! It is not possible to run more than one version of *CLC Free Workbench 3.0* at a time. Use two or more **Workspaces** instead.

3.5.1 Create Workspace

When working with large amounts of data, it might be a good idea to split the work into two or more **Workspaces**. As default the *CLC Free Workbench* opens one **Workspace**, (the largest window in the right side of the workbench, see 3.1). Additional **Workspaces** are created in the following way:

Workspace in the Menu Bar) | Create Workspace | enter name of Workspace | OK

When the new **Workspace** is created, the heading of the program frame displays the name of the new **Workspace**. Initially, the **Project Tree** in the **Navigation Area** is collapsed and the **View Area** is empty and ready to work with. (See figure 3.15).

3.5.2 Select Workspace

When there is more than one **Workspace** in the workbench, there are two ways to switch between them:

Workspace () in the Toolbar | Select the Workspace to activate

or Workspace in the Menu Bar | Select Workspace (
) | choose which Workspace to activate | OK

The name of the selected **Workspace** is shown after "*CLC Free Workbench 3.0*" at the top left corner of the main window, in this case: (default).

3.5.3 Delete Workspace

Deleting a **Workspace** can be done in the following way:

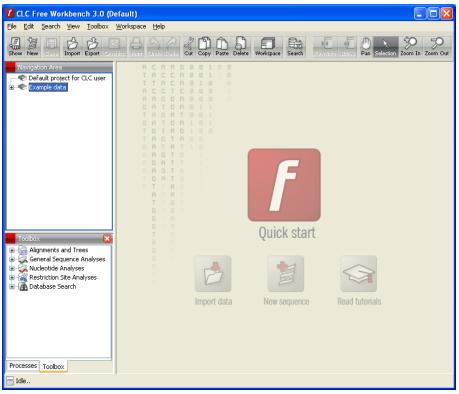


Figure 3.15: An empty Workspace.

Workspace in the Menu Bar \mid Delete Workspace \mid choose which Workspace to delete \mid OK

Notice! Be careful to select the right **Workspace** when deleting. The delete action cannot be undone. (However, no data is lost, because a workspace is only a representation of data.)

It is not possible to delete the default workspace.

3.6 List of shortcuts

The keyboard shortcuts in CLC Free Workbench 3.0 are listed below.

Action	Windows/Linux	Mac OS X
Adjust selection	Shift + arrow keys	Shift + arrow keys
Change between tabs	Ctrl + tab	₩ +tab
Close	Ctrl + W	₩ +W
Close all views	Ctrl + Shift + W	₩ + Shift + W
Сору	Ctrl + C	₩ + C
Cut	Ctrl + X	₩ +X
Delete	Delete	Delete
Exit	Alt + F4	₩ +Q
Export	Ctrl + E	₩ +E
Export graphics	Ctrl + G	ቾ + G
Find Inconsistency	Space	Space
Find Previous Inconsistency	,	,
Help	F1	F1
Import	Ctrl + I	¥ +I
Maximize/restore size of View	Ctrl + M	₩ + M
Move gaps in alignment	Ctrl + arrow keys	ℋ + arrow keys
Navigate sequence views	left/right arrow keys	left/right arrow keys
New Folder	Ctrl + Shift + N	₩ + Shift + N
New Project	Ctrl + R	₩ + R
New Sequence	Ctrl + N	₩ + N
View	Ctrl + O	₩ +0
Paste	Ctrl + V	₩ + V
Print	Ctrl + P	₩ +P
Redo	Ctrl + Y	₩ + Y
Rename	F2	F2
Save	Ctrl + S	₩ +S
Search in an open sequence	Ctrl + F	₩ + F
Search NCBI	Ctrl + B	₩ + B
Search UniProt	Ctrl + Shift + U	₩ + Shift + U
Select All	Ctrl + A	₩ + A
Selection Mode	Ctrl + 2	₩ +2
User Preferences	Ctrl + K	₩ +;
Split Horizontally	Ctrl + T	₩ + T
Split Vertically	Ctrl + J	₩ + J
Show/hide Preferences	Ctrl + U	₩ + U
Undo	Ctrl + Z	₩ + Z
Zoom In Mode	Ctrl + + (plus)	₩ + + (plus)
Zoom In (without clicking)	+ (plus)	+ (plus)
Zoom Out Mode	Ctrl + - (minus)	光 + - (minus)
Zoom Out (without clicking)	- (minus)	- (minus)

Combinations of keys and mouse movements are listed below.

Action	Windows/Linux	Mac OS X	Mouse movement
Maximize View			Double-click the tab of the View
Restore View			Double-click the View title
Reverse zoom function	Shift	Shift	Click in view
Select multiple elements	Ctrl	H	Click elements
Select multiple elements	Shift	Shift	Click elements

Chapter 4

User preferences

Contents

4.1	General preferences	61
4.2	Default View preferences	61
4.3	Advanced preferences	62
4.4	Export/import of preferences	62
4.5	View preference style sheet	62
	4.5.1 Floating Side Panel	63

The **Preferences** dialog offers opportunities for changing the default settings for different features of the program. For example, if you adjust **Number of hits** under **General Preferences** to 40 (instead of 50), you see the first 40 hits each time you conduct a search (e.g. NCBI search).

The **Preferences** dialog is opened in one of the following ways and can be seen in figure 4.1:

- Edit | Preferences (3)
- or Ctrl + K (光 + ; on Mac)

Figure 4.1: Preferences include General preferences, View preferences, Colors preferences, and Advanced settings.

4.1 General preferences

The General preferences include:

- **Undo Limit.** As default the undo limit is set to 500. By writing a higher number in this field, more actions can be undone. Undo applies to all changes made on sequences, alignments or trees. See section 3.2.4 for more on this topic.
- **Number of hits.** The number of hits shown in *CLC Free Workbench 3.0*, when e.g. searching NCBI. (The sequences shown in the program are not downloaded, until dragged/saved into the Navigation Area.
- Locale Setting. i.e. in which country you are located. This determines the punctuation to be used.

4.2 Default View preferences

There are five groups of default **View** settings:

- 1. Toolbar
- 2. Side Panel Location
- 3. New View
- 4. View Format
- 5. Default view settings sheet.

In general, these are default settings for the user interface.

The fToolbar preferences let you choose the size of the toolbar icons, and you can choose whether to display names below the icons.

The **Side Panel Location** setting lets you choose between **Dock in views** and **Float in window**. When docked in view, view preferences will be located in the right side of the view of e.g. an alignment. When floating in window, the side panel can be placed everywhere in your screen, also outside the workspace, e.g. on a different screen. See section 4.5 for more about floating side panels.

The **New view** setting allows you to choose whether the **View preferences** are to be shown automatically when opening a new view. If this option is not chosen, you can press (Ctrl + U (# + U on Mac)) to see the preferences panels of an open view.

The **View Format** allows you to change the way the elements appear in the **Navigation Area**. The following text can be used to describe the element:

- Name (this is the default information to be shown).
- Accession (sequences downloaded from databases like GenBank have an accession number).
- Species.

- Species (accession).
- Common Species.
- Common Species (accession).

The **User Defined View Settings** gives you an overview of different style sheets for your **View preferences**. See section 4.5 for more about how to create and save style sheets.

The first time you use the program, only the **CLC Standard Settings** is available. However, the tab allowing you to choose the style sheet for a viewer (e.g. a sequence viewer) only appears after you have launched the viewer for the first time.

4.3 Advanced preferences

The **Advanced** settings include the possibility to set up a proxy server. This is described in section 1.6.

4.4 Export/import of preferences

The user preferences of the *CLC Free Workbench 3.0* can be exported to other users of the program, allowing other users to display data with the same preferences as yours. You can also use the export/import preferences function to backup your preferences.

To export preferences, open the **Preferences** dialog (Ctrl + K (\Re + ; on Mac)) and do the following:

Export | Select the relevant preferences | Export | Choose location for the exported file | Enter name of file | Save

Notice! The format of exported preferences is .cpf. This notation must be submitted to the name of the exported file in order for the exported file to work.

Notice! Before exporting, you are asked about which of the different settings you want to include in the exported file. "Default View Settings Sheet", which is one of the preferences which can be selected for export, does not include the Style sheets themselves, but only information about which of the Style sheets is default style sheets.

The process of importing preferences is similar to exporting:

Press Ctrl + K (\Re + ; on Mac) to open Preferences | Import | Browse to and select the .cpf file | Import and apply preferences

4.5 View preference style sheet

Depending on which view you have opened in the Workbench, you have different options of adjusting the **View preferences**.

Figure 4.2 shows the preference groups which are available for a sequence.

By clicking the black triangles, the different preference groups can be opened. An example is shown in figure 4.3.

Figure 4.2: View preferences for a view of a sequence include several preference groups. In this case the groups are: Sequence layout, Annotation types, Annotation layout, etc. Several of these preference groups are present in more views. E.g. Sequence layout is also present when an alignment is viewed.

The content of the different preference groups, are described in connection to those chapters where the functionality is explained. E.g. **Sequence Layout** View preferences are described in chapter 10.1.1 which is about editing options of a sequence view.

When you have adjusted a view of e.g. a sequence, your settings can be saved in a so called style sheet. When you open other sequences, which you want to display in a similar way, the saved style sheet can be applied. These options are available in the top of the View preferences. (See figure 4.4).

To manage style sheets click (\blacksquare) seen in figure 4.4. This opens a menu, where the following options are available:

- Save Settings
- Delete Settings
- Apply Saved Settings

Style sheets for the View preference differ between views. Hence, you can have e.g. three style sheets for sequences, two for alignments, and four for graphs. To adjust which of the style sheets is default for e.g. an alignment, go to the general **Preferences** (Ctrl + K (\Re + ; on Mac).

CLC Standard Settings represents the way the program was set up, when you first launched the program.

The remaining icons of figure 4.4 are used to; **Expand all preferences**, **Collapse all preferences**, and **Dock/Undock Preferences**. **Dock/Undock Preferences** is used when making the View preferences "floating". See next section

4.5.1 Floating Side Panel

The Side Panel of the views can be placed in the right side of a view, or they can be floating. (See figure 4.5).

By clicking the Dock icon (1) the floating Side Panel reappear in the right side of the view. The size of the floating Side Panel can be adjusted by dragging the hatched area in the bottom right.

Sequence Settings	×
》 ~ 值 ?	Ę
 Sequence layout 	
Spaces every 10 residues	
🚫 No wrap	
💿 Auto wrap	
🚫 Fixed wrap:	
every 10000 residues	
Double stranded	
Vumbers on sequences	
Relative to 1	L
✓ Numbers on plus strand	
Follow selection	
Lock numbers	
🔽 Lock labels	
Sequence label	
Name	1
Annotation layout	
Annotation types	
Restriction sites	
Residue coloring	
▶ Search	
Text format	
	1.

Figure 4.3: The many preferences for each view are stored in preference groups which can be opened and closed.

Figure 4.4: The top of the View preferences contain Expand all preferences, Collapse all preferences, Dock/Undock preferences, Help, and Save/Restore preferences.

📰 sequenc	e list 😧				
Sequenc	e list: sequence li:	st		Numbe	r of rows: 5
Name 🔬	Accession		Definition	Modificati	Length
PERH1BA	M15292		P.maniculat	27-APR-1993	110
PERH1BB	M15289		P.maniculat	27-APR-1993	110
PERH2BA	M15293		P.maniculat	27-APR-1993	110
PERH2BB	M15290		P.maniculat	27-APR-1993	110
PERH3BA	M15291		P.maniculat	27-APR-1993	110
		Table Set	?		

Figure 4.5: The floating Side Panel can be moved out of the way, e.g. to allow for a wider view of a table.

Chapter 5

Printing

Contents

5.1	Selecting which part of the view to print	65
5.2	Page setup	66
5.3	Print preview	66

CLC Free Workbench 3.0 offers different choices of printing the result of your work.

This chapter deals with printing directly from the workbench. Another option for using the graphical output of your work, is to export graphics (see chapter 6.3) in a graphic format, and then import it into a document or into a presentation.

All the kinds of data that you can view in the **View Area** can be printed. For some of the views, the layout will be slightly changed in order to be printer-friendly.

It is not possible to print elements directly from the **Navigation Area**. They must first be opened in a view in order to be printed:

select relevant view | Print () in the toolbar

If you are printing e.g. alignments, sequences and graphs, you will be faced with three different dialogs, allowing you to adjust the way your view is printed.

- A dialog to let you select which part of the view you want to print.
- A dialog to adjust page setup.
- A **Print preview** window.

These three kinds of dialogs are described in the two following sections.

5.1 Selecting which part of the view to print

Views that are printed exactly like they look on the screen, have an option for selecting which part of the view to print (see figure 5.1).

Page Setup Parameters	
Orientation: Portrait	
Paper Size: A4	
Horizontal Pagecount: +	
Vertical Pagecount: 1	
Header Text: Footer Text:	
Show Pagenumber: Yes	
June Payerun ber. Tes	
Output Options	
	O Print visible area
	Print whole view

Figure 5.1: When printing graphics you get the options of printing the visible area or printing the whole view.

Printing the whole view is useful if you have zoomed in on an area of the view, and you want to print the whole view (also the part of e.g. a sequence, which is not visible). On the other hand, if you want to print some details of an area of the view, you can use the zoom and navigate functions first, and then print the visible area. This will result in a print of only some part of the sequence.

5.2 Page setup

No matter whether you have chosen to print the visible area or the whole view, you can adjust page setup of the print. An example of this can be seen in figure 5.2

Page Setup	×
Orientation Orientation Landscape	
Paper Size A4	~
Horizontal pages: Vertical pages:	10
vertical pages:	
✓ OK Cancel	🕜 Help

Figure 5.2: In this dialog the default settings Portrait and A4 apply to print of an alignment. By checking Fit to pages it is possible to adjust Horizontal pages to 2. This is done allow a long sequence to stretch the width of two A4 pages. This is illustrated in the Page Layout field.

Click the **Header/Footer** tab to edit the header and footer text. By clicking in the text field for either **Custom header text** or **Custom footer text** you can access the auto formats for header/footer text in **Insert a caret position**. Click either **Date**, **View name**, or **User name** to include the auto format in the header/footer text.

Click **OK** to see the print preview with the settings you have made.

5.3 Print preview

The preview is shown in figure 5.3).

The **Print preview** window lets you see the layout of the pages that are printed. Use the arrows in the toolbar to navigate between the pages. Click Print (*A*) to show the print dialog, which lets you choose e.g. which pages to print.

Notice that if you wish to change e.g. the colors of the residues in the alignment, this must be changed in the **View preferences** of the specific dot plot.



Figure 5.3: Print preview.

Chapter 6

Import/export of data and graphics

Contents

6.1	Bioinformatic data formats	68
	6.1.1 Import of bioinformatic data	69
	6.1.2 Export of bioinformatic data	71
6.2	External files	73
	6.2.1 Import external files	73
	6.2.2 Export external files	73
	6.2.3 Technical details	74
6.3	Export graphics to files	74
	6.3.1 Exporting protein reports	76
6.4	Copy/paste view output	76

CLC Free Workbench 3.0 handels a large number of different data formats. All data stored in the Workbench is available in the **Navigation Area** of the program. The data of the **Navigation Area** can be divided into two groups. The data is either one of the different bioinformatic data formats, or it can be an 'external file'. Bioinformatic data formats are those formats which the program can work with, e.g. sequences, alignments and phylogenetic trees. External files are files or links which are stored in *CLC Free Workbench* 3.0, but are opened by other applications, e.g. pdf-files, Microsoft Word files, Open Office spreadsheet files, or it could be links to programs and webpages etc.

Furthermore, this chapter deals with the export of graphics.

6.1 Bioinformatic data formats

The different bioinformatic data formats are imported in the same way, therefore, the following description of data import is an example which illustrates the general steps to be followed, regardless of which format you are handling.

6.1.1 Import of bioinformatic data

Here follows a short list of the formats which *CLC Free Workbench 3.0* handles, and a description of which type of data the different formats support.

File type	Suffix	File format used for
Phylip Alignment	.phy	alignments
GCG Alignment	.msf	alignments
Clustal Alignment	.aln	alignments
Newick	.nwk	trees
FASTA	.fsa/.fasta	sequences
GenBank	.gbk/.gb/.gp	sequences
GCG sequence	.gcg	sequences (only import)
PIR (NBRF)	.pir	sequences (only import)
Staden	.sdn	sequences (only import)
VectorNTI		sequences (only import)
DNAstrider	.str/.strider	sequences
Swiss-Prot	.swp	protein sequences
Lasergene sequence	.pro	protein sequence (only import)
Lasergene sequence	.seq	nucleotide sequence (only import)
Embl	.embl	nucleotide sequences
Nexus	.nxs/.nexus	sequences, trees, alignments, and sequence lists
CLC	.clc	sequences, trees, alignments, reports, etc.
Text	.txt	all data in a textual format
ABI		Trace files (only import)
AB1		Trace files (only import)
SCF2		Trace files (only import)
SCF3		Trace files (only import)
Phred		Trace files (only import)
mmCIF	.cif	structure (only import)
PDB	.pdb	structure (only import)
Preferences	.cpf	CLC workbench preferences

Notice that *CLC Free Workbench* can import 'external' files, too. This means that *CLC Free Workbench* can import all files and display them in the **Navigation Area**, while the above mentioned formats are the types which can be read by *CLC Free Workbench*.

The *CLC Free Workbench* 3.0 offers a lot of possibilities to handle bioinformatic data. Read the next sections to get information on how to import different file formats or to import data from a Vector NTI database.

Import of common bioinformatic data

Before importing a file, you must decide where you want to import it, i.e. which project or folder. The imported file ends up in the project or folder you selected in the **Navigation Area**.

select project or folder \mid click Import (\cong) in the Toolbar \mid browse to the relevant file \mid Select

The imported file is placed at the location which was selected when the import was initiated. E.g. if you right-click on a file in the **Navigation Area** and choose import, the imported file is placed

immediately below the selected file. If you right-click a folder, the imported file is placed as the last file in that folder. If you right-click a project, the imported file is placed as the last file in that project (and after existing folders).

It is also possible to drag a file from e.g. the desktop into the **Navigation Area** of *CLC Free Workbench*. If *CLC Free Workbench* recognizes the file format, the file is automatically parsed (changed) into CLC format and stored in the **Navigation Area**. If the format is not recognized, the following dialog is displayed (see figure 6.1):

🚺 Import File	×
Some of the formats for the chosen files could not be recognized. How do you wish to import unrecognized files? Import as external files Import with Alignment Importer	
Import X Cancel	

Figure 6.1: If the dragged file is not recognized by **CLC Free Workbench** the dialog allows you to "force" the import in a certain format.

Notice! When browsing for files to import, the dialog only displays files of the format chosen in the **File of type** drop down menu at the bottom of the import dialog. If the format .clc is chosen, only .clc-files are shown in the **Import** dialog. Choose **All Files** to ensure the file you are looking for is displayed.

When you import a file containing several sequences, you will be asked whether you want to save the sequences as individual elements or as a sequence list (see section 10.5 for more about sequence lists).

Import of data in clc-format from older versions

If you want to import data in clc-format generated in an older version of either of the workbenches, it has to bee converted first. If you try to import it without conversion, you will see a warning dialog.

Import of Vector NTI data

CLC Free Workbench 3.0 can import DNA, RNA, and protein sequences from a Vector NTI Database. The import can be done for Vector NTI AdvanceTM10 for Windows machines and Vector NTI Suite 7.1 for Mac OS X for Panther and former versions. A new Project will be placed in the **Navigation Area** and you can find all sequences in different folders ready to work with. In order to import all DNA/RNA and protein sequences:

select File in the Menu Bar | Import VectorNTI Data.. | select a database directory | Import | confirm the information

Notice! The default installation of the VectorNTI program for the database home is

• C:/VNTI Database/ for Windows machines and • /Library/Application Support/VNTI Database/ for Mac OS X for Panther.

Therefore the *CLC Free Workbench* 3.0 will check if there is a default installation and will ask whether you want to use the default database directory or another directory.

Notice! Make sure that the Vector NTI database directory (default or backup) contains folders like ProData and MolData. These folders are necessary when we import the data into *CLC Free Workbench* 3.0.

In order to import all DNA/RNA and protein sequences if a default database directory is installed:

select File in the Menu Bar | Import VectorNTI Data | select Yes if you want to import the default database | confirm the information

or select File in the Menu Bar | Import VectorNTI Data | select No to choose a database | select a database directory | Import | confirm the information

After the import there is a new Project called **Vector NTI Data** in the **Navigation Area**. In **Vector NTI Data** you can see two folders: **DNA/RNA** containing the DNA and RNA sequences, and **Protein** containing all protein sequences. (See figure 6.2).

The project, folders and all sequences are automatically saved.

Vector NTI Data
 Proteins
 Vucleotide
 ADCY7
 Adeno2
 Xoc Adeno2
 Soc Ade

Figure 6.2: Project Vector NTI Data containing all imported sequences of the Vector NTI Database.

6.1.2 Export of bioinformatic data

CLC Free Workbench 3.0 can export bioinformatic data in most of the formats that can be imported. There are a few exceptions. See section 6.1.1.

To export a file:

select the element to export | Export (\cong) | choose where to export to | select 'File of type' | enter name of file | Save

Notice! The **Export** dialog decides which types of files you are allowed to export into, depending on what type of data you want to export. E.g. protein sequences can be exported into GenBank, Fasta, Swiss-Prot and CLC-formats.

Export of projects, folders and multiple files

The .clc file type can be used to export all kinds of files and is therefore especially useful in these situations:

- Export of one or more file folders including all underlying files and folders.
- Export of one or more project folders including all underlying files and folders.
- If you want to export two or more files into one .clc-file, you have to copy them into a folder or project, which can be exported as described below:

Export of projects and folders is similar to export of single files. Exporting multiple files (of different formats) is done in .clc-format. This is how you export a project:

select the project to export | Export (2) | choose where to export to | enter name of project | Save

You can export multiple files of the same type into formats other than CLC (.clc). E.g. two DNA sequences can be exported in GenBank format:

select the elements to export by <Ctrl>-click or <Shift>-click | Export () | choose where to export to | choose GenBank (.gbk) format | enter name of project | Save

Export of dependent objects

When exporting e.g. an alignment, *CLC Free Workbench* 3.0 can export all dependent objects. I.e. the sequences which the alignment is calculated from. This way, when sending your alignment (with the dependent objects), your colleagues can reproduce your findings with adjusted parameters, if desired.

To export with dependent files:

select the element in Navigation Area | File in Menu Bar | Export with dependent objects | enter name of project | choose where to export to | Save

The result is a folder containing the exported file with dependent objects, stored automatically in a folder on the desired location of your desk.

Export history

To export an element's history:

select the element in Navigation Area Export(\cong) | select History PDF(.pdf) | choose where to export to | Save

The entire history of the element is then exported in pdf format.

The CLC format

CLC Free Workbench keeps all bioinformatic data in the CLC format. Compared to other formats, the CLC format contains more information about the object, like its history and comments. The CLC format is also able to hold several objects of different types (e.g. an alignment, a graph and a phylogenetic tree). This means that if you are exporting your data to another CLC Workbench, you can use the CLC format to export several objects in one file, and all the objects' information is preserved.

Notice! CLC files can be exported from and imported into all the different CLC Workbenches.

Back up

The CLC format is practical for making manual back up of your files. All files are stored in Projects and these can easily be exported out of *CLC Free Workbench*, :

select the project to export | Export (2) | choose where to export to | enter name of project | Save

Other than that, the files of the **Navigation Area** are stored in a persistence folder on your computer. Hence, your regular back up system should be set up to include this folder.

On Mac the folder can be found: Library/Application Support/CLC bio/Workbench/<version number>/persistence

On Windows: Documents and Settings/<username>/CLC bio/Workbench/<version number>/persistence

On Linux: home/<username>/.clcbio/workbench/<version number>/persistence

6.2 External files

In order to help you organize your projects, *CLC Free Workbench 3.0* lets you import all kinds of files. E.g. if you have Word, Excel or pdf-files related to your project, you can import them into a project in *CLC Free Workbench 3.0*. Importing an external file creates a copy of the file which is saved in a project in *CLC Free Workbench 3.0*. The file can now be opened by double-clicking the file name in the **Navigation Area**. The file is opened using the default application for this file type (e.g. Microsoft Word for .doc-files and Adobe Reader for .pdf).

CLC Free Workbench can also show web links (URLs) in the **Navigation Area**. This can be done by using the **Import** function of the program or by dragging the file e.g. from the desktop to the **Navigation Area**.

6.2.1 Import external files

To import an external file:

click a project or folder to import into | Import () in the toolbar | Choose All files in Files of type | browse to the relevant file | Select

or drag the file from the file system into a project in the Navigation Area (only possible under Windows)

Notice! When you import an external file, a copy of the original file is created. This means that you should always make sure that you open the file from within *CLC Free Workbench 3.0*.

6.2.2 Export external files

If you export an entire project or folder from *CLC Free Workbench 3.0*, the exported CLC file will include all external files stored in it. This means that you can export the project as a CLC file, and send it to a colleague who can import it and access all the files in the project.

You can also export individual files in their original format. To export a file from *CLC Free Workbench* 3.0:

click a file in the Navigation Area | Export (\cong) in the toolbar | browse to the desired folder | Save

If the file already exists, you are asked if you want to replace it.

6.2.3 Technical details

This section explains the more technical aspects of how *CLC Free Workbench 3.0* stores the external files. When you import the file, a copy of the file is created in a database. When you open the file from the **Navigation Area**, it's checked out to a repository (a folder called "CLCWorkbenchRepository" located in your operating system's user folder) where it stays until you close the application that has the file open. When you exit *CLC Free Workbench 3.0*, it checks all the files in the repository into the database, unless they are still open in another application. If the latter is the case, the file stays in the repository even after the file is closed, and it will not be checked in until the next time *CLC Free Workbench 3.0* is closed.

If you have made changes to a file after the *CLC Free Workbench 3.0* was closed, a dialog is shown asking which version to use. The date and time of the latest change of the file is displayed in the dialog helping you to decide which one to keep (see figure 6.3).

Figure 6.3: A dialog asking which version of the file you want to keep.

6.3 Export graphics to files

CLC Free Workbench 3.0 supports export of graphics into a number of formats. This way, the visible output of your work can easily be saved and used in presentations reports etc. The **Export Graphics** function (
) is found in the **Toolbar**.

CLC Free Workbench 3.0 exports graphics exactly the way it is shown in the **View Area**. Thus, all settings made in the **Side Panel** will be reflected in the exported file.

To show you how to export graphics, we choose to export the phylogenetic tree of the example data set in .png-format. See 6.4.

When the relevant file is opened and shown in the View Area do the following:

select tab of View | Graphics ($\boxed{100}$) on Toolbar | select location on disc | name file and select type | Save

After clicking **Save**, you are prompted for whether to **Export visible area** or **Export whole view**. The first parameter exports 'what you see' and the latter parameter also exports the part of the view that is not visible. Hence, choosing **Export whole view** will generate a larger file.

Furthermore, when saving in .png, .jpg, and .tif-formats you are prompted for which quality to save the graphics in.

Export Graph	nics						×
Save in:	🞯 Desktop				*	\$ 👂	
My Recent Documents Desktop My Documents My Computer	Hy Docume My Comput My Network	er					
My Network Places	File <u>n</u> ame: Files of <u>t</u> ype:	PERH3BC.png	ork Graphics (.c	נחמ		~	<u>S</u> ave Cancel
Places	Files of <u>type</u> :	Portable Netwo	ork Graphics (.p	ong)		*	Cancel

Figure 6.4: Exporting a phylogenetic tree from CLC Free Workbench 3.0.

To see the exported file browse to the file on your computer and open it. In our case the .png-file is opened in a browser, the result can be seen in figure 6.5.

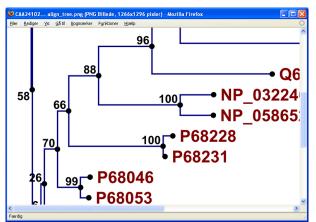


Figure 6.5: The exported .png-file opened in a browser. (Due to high resolution of the exported graphics, it is not possible to see the entire file in the browser window.)

The following file types are available for exporting graphics in CLC Free Workbench 3.0:

Bitmap images

In a bitmap image, each dot in the image has a specified color. This implies, that if you zoom in on the image there will not be enough dots, and if you zoom out there will be too many. In these cases the image viewer has to interpolate the colors to fit what is actually looked at. This format is a good choice for storing images without large shapes (e.g. dot plots).

Vector graphics

Vector graphics is a collection of shapes. Thus what is stored is e.g. information about where a line starts and ends, and the color of the line and its width. This enables a given viewer to decide how to draw the line, no matter what the zoomfactor is, thereby always giving a correct

Format	Suffix	Туре
Portable Network Graphics	.png	bitmap
JPEG	jpg	bitmap
Tagged Image File	.tif	bitmap
PostScript	.ps	vector graphics
Encapsulated PostScript	.eps	vector graphics
Portable Document Format	.pdf	vector graphics
Scalable Vector Graphics	.svg	vector graphics

image. This format is good for e.g. graphs and reports, but less usable for e.g. dotplots.

Graphics files can also be imported into the **Navigation Area**. However, no kinds of graphics files can be displayed in *CLC Free Workbench 3.0*. See section 6.2.1 for more about importing external files into *CLC Free Workbench 3.0*.

6.3.1 Exporting protein reports

Protein reports cannot be exported in the same way as other data. Instead, they can be exported from the **Navigation Area**:

Click the report in the Navigation Area | Export (2) in the Toolbar | select pdf

When the report is exported, the file can be opened with Adobe Reader. Opening and printing in Adobe Reader is also the only way to print the report.

6.4 Copy/paste view output

The content of tables, e.g. in reports, folder lists, and sequence lists can be copy/pasted into different programs, where it can be edited. *CLC Free Workbench 3.0* pastes the data in tabulator separated format which is useful if you use programs like Microsoft Word and Excel. There is a huge number of programs in which the copy/paste can be applied. For simplicity, we include one example of the copy/paste function from a **Folder Content** view to Microsoft Excel.

First step is to select the desired elements in the view:

click a line in the Folder Content view | hold Shift-button | Push arrow down (or up)

See figure 6.6.

a Sedi	uences 🕄		
Туре	Name	Description	Database
200	NM_000044	Homo sapiens androgen receptor (dihydro	Local
200	AY738615	Homo sapiens hemoglobin delta-beta fusio	Local
200	HUMDINUC	Human dinucleotide repeat polymorphism	Local
200	PERH2BD	P.maniculatus (deer mouse) beta-2-globin	Local
200	PERH3BC	P.maniculatus (deer mouse) beta-3-globin	Local
i.F	sequence list		Local

Figure 6.6: Selected elements in a Folder Content view.

When the elements are selected, do the following to copy the selected elements:

right-click one of the selected elements | Edit | Copy (

Then:

right-click in the cell A1 \mid Paste (\square)

The outcome might appear unorganized, but with a few operations the structure of the view in *CLC Free Workbench 3.0* can be produced. (Except the icons which are replaced by file references in Excel.)

Chapter 7

History

Contents

7.1	Eleme	nt history	78
	7.1.1	Sharing data with history	79

CLC Free Workbench 3.0 keeps a log of all operations you make in the program. If e.g. you rename a sequence, align sequences, create a phylogenetic tree or translate a sequence, you can always go back and check what you have done. In this way, you are able to document and reproduce previous operations.

This can be useful in several situations: It can be used for documentation purposes, where you can specify exactly how your data has been created and modified. It can also be useful if you return to a project after some time and want to refresh your memory on how the data was created. Also, if you have performed an analysis and you want to reproduce the analysis on another element, you can check the history of the analysis which will give you all parameters you set.

This chapter will describe how to use the **History** functionality of CLC Free Workbench 3.0.

7.1 Element history

You can view the history of all elements in the **Navigation Area** except files that are opened in other programs (e.g. Word and pdf-files). The history starts when the element appears for the first time in *CLC Free Workbench 3.0*. To view the history of an element:

Right-click the element in the Navigation Area | Show | History (

or Select the element in the Navigation Area | Show (22) in the Toolbar | History (21)

This opens a view that looks like the one in figure 7.1.

When opening an element's history is opened, the newest change is submitted in the top of the view. The following information is available:

• Title. The action that the user performed.

```
🛄 nucleotide al... 🕄
Moved selection 2 positions left (Fri Jun 30 22:24:40 CEST 2006)
User: CLC user
Parameters:
           Sequences = PERH2BD
           Region = 138..144
Comments: No Comment (Edit)
Create Alignment (Wed Jun 21 15:38:55 CEST 2006)
User: CLC user
Parameters:
           Gap open cost = 10.0
           Gap extension cost = 1.0
           End gap cost = As any other
           Fast alignment = true
Comments: No Comment (Edit)
Origins from:
         X PERH2BD (history)
         🗙 PERH3BC (history)
```

Figure 7.1: An element's history.

- **Date and time**. Date and time for the operation. The date and time are displayed according to your locale settings (see section 4.1).
- **User**. The user who performed the operation. If you import some data created by another person in a CLC Workbench, that persons name will be shown.
- **Parameters**. Details about the action performed. This could be the parameters that was chosen for an analysis.
- **Origins from**. This information is usually shown at the bottom of an element's history. Here, you can see which elements the current element origins from. If you have e.g. created an alignment of three sequences, the three sequences are shown here. Clicking the element selects it in the **Navigation Area**, and clicking the 'history' link opens the element's own history.

7.1.1 Sharing data with history

The history of an element is attached to that element, which means that exporting an element in CLC format (*.clc) will export the history too. In this way, you can share projects and files with others while preserving the history. If an element's history includes source elements (i.e. if there are elements listed in 'Origins from'), they must also be exported in order to see the full history. Otherwise, the history will have entries named "Element deleted". An easy way to export an element with all its source elements is to use the **Export Dependent Objects** function described in section 6.1.2.

The of a history view can be printed. To do so, click the **Print** icon (\triangle).

Chapter 8

Handling of results

Contents

8.1	How to	o handle results of analyses	80
	8.1.1	When the analysis does not create new elements	80
	8.1.2	Batch log	81

Most of the analyses in the **Toolbox** are able to perform the same analysis on several elements in one batch. This means that analyzing large amounts of data is very easily accomplished. If you e.g. wish to translate a large number of DNA sequence to protein, you can just select the DNA sequences and set the parameters for the translation once. Each DNA sequence will then be treated individually as if you performed the translation on each of them. The process will run in the background and you will be able to work on other projects at the same time.

8.1 How to handle results of analyses

All the analyses in the **Toolbox** are performed in a step-by-step procedure. First, you select elements for analyses, and then there are a number of steps where you can specify parameters (some of the analyses have no parameters, e.g. when translating DNA to RNA). The final step concerns the handling of the results of the analysis, and it is almost identical for all the analyses so we explain it in this section in general.

In this step, shown in figure 8.1, you have two options:

- Open. This will open the result of the analysis in a view. This is the default setting.
- Save. This means that the result will not be opened but saved to a folder in the **Navigation Area**. If you select this option, click **Next** and you will see one more step where you can specify where to save the results (see figure 8.2). In this step, you *have to select a folder*. You also have the option of creating a new folder in this step.

8.1.1 When the analysis does not create new elements

When an analysis does not create new elements, as e.g. **Find Open Reading Frames** which adds annotations to the sequences, the options for saving are different (see figure 8.3):

Convert DNA to RN	A D
1. Select DNA sequences	Result handling
2. Result handling	
	Output options
	 Open
0	Save
T.RC BI U RCCT BB-1	
0 A T O A 1 8 1 1 9 8 1	
F BBBC	
1100	
	← Previous → Next ✓ Finish X Cancel

Figure 8.1: The last step of the analyses exemplified by Translate DNA to RNA.

Convert DNA to RN	A
1. Select DNA sequences	Save in folder
2. Result handling	Example data
3. Save in folder	🖶 🔐 Nucleotide
	E Sequences
	PERH3BC
	sequence list
	Assembly
	Cloning project
	Primer design Restriction analysis
	Extra
	😠 🚰 Performed analyses
я я т сс яз с	README
	CLC bio Home
	🗄 < Alignments
TROBTODIO	
001	
	Create new folder New Folder
	Previous Next Finish Cancel

Figure 8.2: Specify a folder for the results of the analysis.

- Open. This will open each of the selected sequences in a view.
- Save. This will not open the sequences but just add the annotations.
- **Copy and save in new folder.** This option does not add annotations to the existing sequences but saves a copy of the selected sequences. Choosing this option means that there will be an extra step for selecting a folder where the copies of the sequences can be saved.

8.1.2 Batch log

For some analyses, there is an extra option in the final step to create a log of the batch process. This log will be created in the beginning of the process and continually updated with information about the results. See an example of a log in figure 8.4. In this example, the log displays information about how many open reading frames were found.

The log will either be saved with the results of the analysis or opened in a view with the results, depending on how you chose to handle the results.

🚺 Find Open Re	ading Frames 🛛 🔀
 Select nucleotide sequences Set parameters Result handling 	Result handling
	Output options Open Save Copy and save in new folder
A A T C A C A C A C A C A C A C A C A C	Log handling
	← Previous → Next ✓ Finish X Cancel

Figure 8.3: The final step when the analysis does not create new elements but add annotations to existing elements.

Log 😳			
Log			
Name 🔬	Description	Time	
HUMDINUC	Found 5 reading frames	Sun Jun 11 13:06:17 CEST 2006	
PERH1BA	Found 5 reading frames	Sun Jun 11 13:06:17 CEST 2006	
PERH1BB	Found 5 reading frames	Sun Jun 11 13:06:17 CEST 2006	
PERH2BA	Found 4 reading frames	Sun Jun 11 13:06:17 CEST 2006	
PERH2BB	Found 4 reading frames	Sun Jun 11 13:06:17 CEST 2006	
PERH2BD	Found 7 reading frames	Sun Jun 11 13:06:17 CEST 2006	
PERH3BA	Found 3 reading frames	Sun Jun 11 13:06:17 CEST 2006	
PERH3BC	Found 7 reading frames	Sun Jun 11 13:06:17 CEST 2006	

Figure 8.4: An example of a batch log when finding open reading frames.

Part III

Bioinformatics

Chapter 9

Database search

Contents

9.1	GenBa	nk search	84
	9.1.1	GenBank search options	84
	9.1.2	Handling of GenBank search results	86

CLC Free Workbench 3.0 alows you to search the for sequences on the Internet. You must be online when initiating and performing searches in NCBI.

9.1 GenBank search

This section describes searches in GenBank - the **NCBI Entrez** database - and the import of search results. The NCBI search view is opened in this way (figure 9.1):

```
Search | Search NCBI Entrez (A)
```

```
or Ctrl + B (# + B on Mac)
```

This opens the following view:

9.1.1 GenBank search options

Conducting a search in the **NCBI Database** from *CLC Free Workbench 3.0* corresponds to conducting the search on NCBI's website. When conducting the search from *CLC Free Workbench 3.0*, the results are available and ready to work with straight away.

You can choose whether you want to search for nucleotide sequences or protein sequences.

As default, *CLC Free Workbenchoffers* one text field where the search parameters can be entered. Click **Add search parameters** to add more parameters to your search.

Notice! The search is a "and" search, meaning that when adding search parameters to your search, you search for both (or all) text strings rather than "any" of the text strings.

You can append a wildcard character by checking the checkbox at the bottom. This means that you only have to enter the first part of the search text, e.g. searching for "genom" will find both "genomic" and "genome".

Choose dat	abase: (🖲 Nucleotide 💫 Protein			
All Fields	~	human			
All Fields	~	hemoglobin		×	
All Fields	~	complete		×	
		Add search parameters	🛛 🗿 Start searc	h]	
		Append wildcard (*) to search words			
Accession 🔬	Definition		Modification D		1
C010230	Homo sapi	ens chromosome 10 open reading frame 83, mRNA (cDNA clo	2004/03/25	~	
C015537	Homo sapi	ens hemoglobin, epsilon 1, mRNA (cDNA clone MGC:9582 IM	2004/06/29		
C032122	Homo sapi	ens hemoglobin, alpha 2, mRNA (cDNA clone MGC:29691 IMA	. 2003/12/19		
C032264	Mus muscu	us hemoglobin, beta adult minor chain, mRNA (cDNA clone M	. 2006/04/13		
C043020	Mus muscu	us hemoglobin alpha, adult chain 1, mRNA (cDNA clone MGC	. 2004/06/30	1	
C050661	Homo sapi	ens hemoglobin, alpha 2, mRNA (cDNA clone MGC:60177 IMA	. 2003/10/07	-	
C051988	Mus muscu	us hemoglobin X, alpha-like embryonic chain in Hba complex,	. 2004/06/30	-	
3C052008	Mus muscu	us hemoglobin Z, beta-like embryonic chain, mRNA (cDNA cl	2006/04/27		
3C056686	Homo sapi	ens hemoglobin, theta 1, mRNA (cDNA clone MGC:61857 IMA	. 2004/06/30		
3C057014	Mus muscu	us hemoglobin Y, beta-like embryonic chain, transcript varia	2005/12/09		
3C069307	Homo sani	ens hemoglobin, delta, mRNA (cDNA clone MGC:96894 IMAG	2004/06/30	~	-

Figure 9.1: The GenBank search dialog.

The following parameters can be added to the search:

- All fields. Text, searches in all parameters in the NCBI database at the same time.
- Organism. Text.
- Description. Text.
- Modified Since. Between 30 days and 10 years.
- Gene Location. Genomic DNA/RNA, Mitochondrion, or Chloroplast.
- Molecule. Genomic DNA/RNA, mRNA or rRNA.
- Sequence Length. Number for maximum or minimum length of the sequence.
- Gene Name. Text.

The search parameters are the most recently used. The **All fields** allows searches in all parameters in the NCBI database at the same time. **All fields** also provide an opportunity to restrict a search to parameters which are not listed in the dialog. E.g. writing 'gene[Feature key] AND mouse' in **All fields** generates hits in the GenBank database which contains one or more genes and where 'mouse' appears somewhere in GenBank file. NB: the 'Feature Key' option is only available in GenBank when searching for nucleotide sequences. For more information about how to use this syntax, see http://www.ncbi.nlm.nih.gov/entrez/query/static/help/Summary_Matrices.html#Search_Fields_and_Qualifiers

When you are satisfied with the parameters you have entered, you can either **Save search** parameters or **Start search**.

When applying he Save search parameters option, only the parameters are saved - not the results

of the search. The search parameters can also be saved by dragging the tab of the Search view into the **Navigation Area**.

If you don't save the search, the search parameters are saved in **Search NCBI** view until the next time you conduct an NCBI search.

Notice! When conducting a search, no files are downloaded. Instead, the program produces a list of links to the files in the NCBI database. This ensures a much faster search.

The search process runs in the **Toolbox** under the **Processes** tab. It is possible to stop the search process by clicking stop (\square).

Because the process runs in the **Processes** tab it is possible to perform other tasks while the search is running.

9.1.2 Handling of GenBank search results

The search result is presented as a list of links to the files in the NCBI database. The **View** displays 50 hits at a time (can be changed in the **Preferences** (see chapter 4). More hits can be displayed by clicking the **More...** button at the bottom right of the **View**.

Each sequence hit is represented by text in three columns:

- Accession.
- Definition.
- Modification date.

It is possible to exclude one or more of these columns by adjust the View preferences for the database search view. Furthermore, your changes in the View preferences can be saved. See section 4.5.

Several sequences can be selected, and by clicking the buttons in the bottom of the search view, you can do the following:

- Download and open, doesn't save the sequence.
- Download and save, lets you choose location for saving sequence.
- Open at NCBI, searches the sequence at NCBI's web page.

Double-clicking a hit will download and open the sequence. The hits can also be copied into the **View Area** or the **Navigation Area** from the search results by drag and drop, copy/paste or by using the right-click menu. Finally, you can also

Drag and drop from GenBank search results

The sequences from the search results can be opened by dragging them into a position in the **View Area**.

Notice! A sequence is not saved until the **View** displaying the sequence is closed. When that happens, a dialog opens: Save changes of sequence x? (Yes or No).

The sequence can also be saved by dragging it into the **Navigation Area**. It is possible to select more sequences and drag all of them into the **Navigation Area** at the same time.

Download GenBank search results using right-click menu

You may also select one or more sequences from the list and download using the right-click menu (see figure 9.2). Choosing **Save sequence** lets you select a folder or project where the sequences are saved when they are downloaded. Choosing **Open sequence** opens a new view for each of the selected sequences.

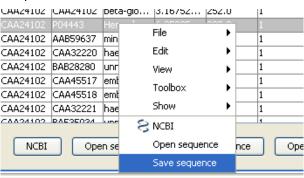


Figure 9.2: By right-clicking a search result, it is possible to choose how to handle the relevant sequence.

Copy/paste from GenBank search results

When using copy/paste to bring the search results into the **Navigation Area**, the actual files are downloaded from GenBank.

To copy/paste files into the Navigation Area:

Notice! Search results are downloaded before they are saved. Downloading and saving several files may take some time. However, since the process runs in the background (displayed in the **Status bar**) it is possible to continue other tasks in the program. Like the search process, the download process can be stopped. This is done in the **Toolbox** in the **Processes** tab.

Chapter 10

Viewing and editing sequences

Contents

10.1 View sequence		88
10.1.1 Sequence Layo	but in Side Panel	89
10.1.2 Selecting parts	of the sequence	93
10.1.3 Editing the seq	Juence	94
10.1.4 Removing anno	otations	94
10.1.5 Sequence regional technology 10.1.5 Sequence regional techn	on types	94
10.2 Sequence information		94
10.2.1 Annotation map	p	95
10.3 View as text		96
10.4 Creating a new seque	nce	96
10.5 Sequence Lists		98
10.5.1 Graphical view	of sequence lists	99
10.5.2 Sequence list t	table	99
10.5.3 Extract sequen	ces	100
10.6 Circular DNA		100
10.6.1 Using split view	vs to see details of the circular molecule	101
10.6.2 Mark molecule	as circular and specify starting point	101

CLC Free Workbench 3.0 offers three different ways of viewing and editing sequences as described in this chapter. Furthermore, this chapter also explains how to create a new sequence and how to assemble several sequences in a sequence list.

10.1 View sequence

When you double-click a sequence in the **Navigation Area**, the sequence will open automatically, and you will see the nucleotides or amino acids. The zoom options described in section 3.3 allow you to e.g. zoom out in order to see more of the sequence in one view. There are a number of options for viewing and editing the sequence which are all described in this section. All the options described in this section also apply to alignments (further described in section 14.2).

10.1.1 Sequence Layout in Side Panel

Each view of a sequence has a **Side Panel** located at the right side of the view. When you make changes in the **Side Panel** the view of the sequence is instantly updated. To show or hide the **Side Panel**:

select the View | Ctrl + U

or Click the (S) at the top right corner of the Side Panel to hide | Click the gray Side Panel button to the right to show

When you open a view, the **Side Panel** has default settings which can be changed in the **User Preferences** (see chapter 4).

Below, each group of preferences will be explained. Some of the preferences are not the same for nucleotide and protein sequences, but the differences will be explained for each group of preferences.

Notice! When you make changes to the settings in the **Side Panel**, they are not automatically saved when you save the sequence. Click **Save/restore Settings** (i = 1) to save the settings (see section 4.5 for more information).

Sequence Layout

These preferences determine the overall layout of the sequence:

- **Space every 10 residues.** Inserts a space every 10 residues only visible when you zoom in to see the residues.
- Wrap sequences. Shows the sequence on more than one line.
 - No wrap. The sequence is displayed on one line.
 - **Auto wrap.** Wraps the sequence to fit the width of the view, not matter if it is zoomed in our out (displays minimum 10 nucleotides on each line).
 - **Fixed wrap.** Makes it possible to specify when the sequence should be wrapped. In the text field below, you can choose the number of residues to display on each line.
- **Double stranded.** Shows both strands of a sequence (only applies to DNA sequences).
- **Numbers on plus strand.** Whether to set the numbers relative to the positive or the negative strand in a nucleotide sequence (only applies to DNA sequences).
- **Numbers on sequences.** Shows residue positions along the sequence. The starting point can be changed by setting the number in the field below. If you set it to e.g. 101, the first residue will have the position of -100. This can also be done by right-clicking an annotation and choosing **Set Numbers Relative to This Annotation**.
- Follow selection. When viewing the same sequence in two separate views, "Follow selection" will automatically scroll the view in order to follow a selection made in the other view.
- Lock numbers. When you scroll vertically, the position numbers remain visible. (Only possible when the sequence is not wrapped.)

- Lock labels. When you scroll horizontally, the label of the sequence remains visible.
- Sequence label. Defines the label to the left of the sequence.
 - Name (this is the default information to be shown).
 - Accession (sequences downloaded from databases like GenBank have an accession number).
 - Species.
 - Species (accession).
 - Common Species.
 - Common Species (accession).

Annotation Layout

Annotations are data attached to a specific part of a sequence. If the sequence is downloaded from a database it has annotations attached to it, e.g. the location of genes on a DNA sequence. If you have performed **Restriction Site** analysis, the cut sites can be displayed as annotations on the sequence. Other analyses also attach annotations on the sequence. See section 10.1.5 for more information about how to interpret the annotations. The annotations are shown as colored boxes along the sequence, and their appearance is determined in the **Annotation layout** preferences group:

- Show annotations. Determines whether the annotations are shown.
- Position.
 - On sequence. The annotations are placed on the sequence. The residues are visible through the annotations (if you have zoomed in to 100%).
 - **Next to sequence.** The annotations are placed above the sequence.
- Offset. If several annotations cover the same part of a sequence, they can be spread out.
 - Piled. The annotations are piled on top of each other. Only the one at front is visible.
 - Little offset. The annotations are piled on top of each other, but they have been offset a little.
 - More offset. Same as above, but with more spreading.
 - **Most offset.** The annotations are placed above each other with a little space between. This can take up a lot of space on the screen.
- **Label.** Each annotation can be labelled with a name. Additional information about the sequence is shown if you place the mouse cursor on the annotation and keep it still.
 - No labels. No labels are displayed.
 - **On annotation.** The labels are displayed in the annotation's box.
 - Over annotation. The labels are diplayed above the annotations.
 - Before annotation. The labels are placed just to the left of the annotation.
 - Flag. The labels are displayed as flags at the beginning of the annotation.
- Show arrows. Toggles the display of arrow heads on the annotations.
- **Use gradients.** Fills the boxes with gradient color.

Annotation types

• **Annotation types.** This group lists all the types of annotations that are attached to the sequence that is viewed. For sequences with many annotations it can be easier to get an overview, if you deselect the annotation types that are not relevant.

It is possible to color the different annotations for better overview.

Color settings for an annotation can be done by clicking the colored square next to the relevant annotation type.

Many different settings can be set in the three layers: Swatches, HSB, and RGB. Apply your settings and click **OK**. When you click **OK**, the color settings cannot be reset. The **Reset** function only works for changes made before pressing **OK**.

Restriction sites

These preferences allow you to display restriction sites on the sequence. There is a list of enzymes which are represented by different colors. By selecting or deselecting the enzymes in the list, you can specify which enzymes' restriction sites should be displayed (see figure 10.1).

Figure 10.1: Showing restriction sites of two restriction enzymes.

The color of the flag of the restriction site can be changed by clicking the colored box next to the enzyme's name.

The list of restriction enzymes contains per default ten of the most popular enzymes, but you can easily modify this list and add more enzymes.

You have two ways of modifying the list:

- Edit enzymes button. This displays a dialog with the enzymes currently in the list shown at the bottom and a list of available enzymes at the top. To add more enzymes, select them in the upper list and press the Add enzymes button (♣). To remove enzymes, select them in the list below and click the Remove enzymes button (♠).
- Load enzymes button. If you have previously created an enzyme list, you can select this list by clicking the Load enzymes button. You can filter the enzymes in the same way as illustrated in figure 13.2.

Finally, if you have selected a set of enzymes that you wish to keep for later use, you can click **Save enzymes** and the selected enzymes will be saved to en enzyme list. This list can then be used both when finding restriction sites from the **Toolbox** or when viewing another sequence.

Residue coloring

These preferences make it possible to color both the residue letter and set a background color for the residue.

- Non-standard residues. For nucleotide sequences this will color the residues that are not C, G, A, T or U. For amino acids only B, Z, and X are colored as non-standard residues.
 - Foreground color. Sets the color of the letter. Click the color box to change the color.
 - **Background color.** Sets the background color of the residues. Click the color box to change the color.
- **Rasmol colors.** Colors the residues according to the Rasmol color scheme. See http://www.openrasmol.org/doc/rasmol.html
 - Foreground color. Sets the color of the letter. Click the color box to change the color.
 - **Background color.** Sets the background color of the residues. Click the color box to change the color.
- Polarity colors (only protein). Colors the residues according to the polarity of amino acids.
 - Foreground color. Sets the color of the letter. Click the color box to change the color.
 - **Background color.** Sets the background color of the residues. Click the color box to change the color.

Search

The Search group is not a preferences group, but can be used for searching the sequence. Clicking the search button will search for the first occurrence of the search string. Clicking the search button again will find the next occurrence and so on. If the search string is found, the corresponding part of the sequence will be selected.

- **Search term.** Enter the text to search for. The search function does not discriminate between lower and upper case characters.
- Sequence search. Search the nucleotides or amino acids. For nucleotides, all the standard IUPAC codes can be used, e.g. RT will find both GT and AT. RT will also find e.g. AN. The IUPAC codes are available from the **Help** menu under Background Information. For amino acids, the single letter abbreviations should be used for searching. Accordingly, N (for nucleotides) and X (for proteins) can be used as a wildcard character.
- **Annotation search.** Searches the annotations on the sequence. The search is performed both on the labels of the annotations, but also on the text appearing in the tooltip that you see when you keep the mouse cursor fixed. If the search term is found, the part of the sequence corresponding to the matching annotation is selected.
- **Position search.** Finds a specific position on the sequence. In order to find an interval, e.g. from position 500 to 570, enter "500..570" in the search field. This will make a selection from position 500 to 570 (both included). Notice the two periods (...) between the start an end number.
- **Include negative strand.** When searching the sequence for nucleotides or amino acids, you can search on both strands.

This concludes the description of the **View Preferences**. Next, the options for selecting and editing sequences are described.

Text format

These preferences allow you to adjust the format of all the text in the view (both residue letters, sequence label and translations if relevant).

- Text size. Five different sizes.
- Font. Shows a list of Fonts available on your computer.
- Bold residues. Makes the residues bold.

10.1.2 Selecting parts of the sequence

You can select parts of a sequence:

Click Selection ($\)$) in Toolbar | Press and hold down the mouse button on the sequence where you want the selection to start | move the mouse to the end of the selection while holding the button | release the mouse button

Alternatively, you can search for a specific interval using the search function described above.

You can select several parts of sequence by holding down the **Ctrl** button while making selections. Holding down the **Shift** button lets you extend or reduce an existing selection to the position you clicked.

If you have made a selection, you can expand it by using **Shift** and **Ctrl** keys or by using the right-click menu:

right-click the selection \mid Expand Selection \mid Select the number of residues to expand the selection to both sides

To select the entire sequence:

right-click the sequence label to the left

To select a part of a sequence covered by an annotation:

right-click the annotation | Select annotation

A selection can be opened in a new view and saved as a new sequence:

right-click the selection | Open selection in new view

This opens the annotated part of the sequence in a new view. The new sequence can be saved by dragging the tab of the sequence view into the **Navigation Area**.

The process described above is also the way to manually translate coding parts of sequences (CDS) into protein. You simply translate the new sequence into protein. This is done by:

right-click the tab of the new sequence | Toolbox | Nucleotide Analyses (|, | Translate to Protein (|)

A selection can also be copied to the clipboard and pasted into another program:

make a selection | Ctrl + C (\Re + C on Mac)

Notice! The annotations covering the selection will not be copied.

A selection of a sequence can be edited as described in the following section.

10.1.3 Editing the sequence

When you make a selection, it can be edited by:

right-click the selection | Edit selection

A dialog appears displaying the sequence. You can add, remove or change the text and click **OK**. The original selected part of the sequence is now replaced by the sequence entered in the dialog. This dialog also allows you to paste text into the sequence using Ctrl + V (# + V on Mac). If you delete the text in the dialog and press **OK**, the selected text on the sequence will also be deleted. Another way to delete a part of the sequence is to:

right-click the selection | Delete selection

10.1.4 Removing annotations

Annotations can be hidden using the **Annotation Types** preferences in the **Side Panel** to the right of the view (see section 10.1.1). In order to completely remove the annotation:

right-click the annotation | Delete Annotation

If you want to remove all annotations of one type:

right-click an annotation of the type you want to remove \mid Delete Annotations of This Type

If you want to remove all annotations from a sequence:

right-click an annotation | Delete All Annotations

The removal of annotations can be undone using Ctrl + Z or Undo () in the Toolbar.

10.1.5 Sequence region types

The various annotations on sequences cover parts of the sequence. Some cover an interval, some cover intervals with unknown endpoints, some cover more than one interval etc. In the following, all of these will be referred to as *regions*. Regions are generally illustrated by markings (often arrows) on the sequences. An arrow pointing to the right indicates that the corresponding region is located on the positive strand of the sequence. Figure 10.2 is an example of three regions with separate colors.

Figure 10.2: Three regions on a human beta globin DNA sequence (HUMHBB).

Figure 10.3 shows an artificial sequence with all the different kinds of regions.

10.2 Sequence information

The normal view of a sequence (by double-clicking) shows the annotations as boxes along the sequence, but often there is more information available about sequences. This information

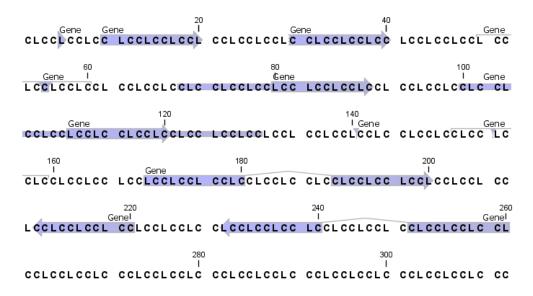


Figure 10.3: Region #1: A single residue, Region #2: A range of residues including both endpoints, Region #3: A range of residues starting somewhere before 30 and continuing up to and including 40, Region #4: A single residue somewhere between 50 and 60 inclusive, Region #5: A range of residues beginning somewhere between 70 and 80 inclusive and ending at 90 inclusive, Region #6: A range of residues beginning somewhere between 100 and 110 inclusive and ending somewhere between 120 and 130 inclusive, Region #7: A site between residues 140 and 141, Region #8: A site between two residues somewhere between 150 and 160 inclusive, Region #9: A region that covers ranges from 170 to 180 inclusive and 190 to 200 inclusive, Region #10: A region on negative strand that covers ranges from 210 to 220 inclusive, Region #11: A region on negative strand that covers ranges from 230 to 240 inclusive and 250 to 260 inclusive.

is available through the **Sequence info** function which also displays a textual overview of the annotations.

To view the sequence information:

select a sequence in the Navigation Area | Show ($\[a]$) in the Toolbar | Sequence info ($\[b]$)

This will display a view similar to fig 10.4.

All the lines in the view are headings, and the corresponding text can be shown by clicking the text. The information available depends on the origin of the sequence. If the sequence is annotated, the annotations can be found under the heading **Annotation map**.

10.2.1 Annotation map

The **Annotation map** displays the various types of annotations that are attached to the sequence. Clicking on the name of a type of annotation will list the annotations of this type. If there are more annotations of the same kind, the blue arrows can be used to move up and down in the annotations of that type. In order to use the links, you have to open a second view of the sequence (double-click the sequence in the **Navigation Area**). If you have this view open, clicking one of the annotations in the **Annotation map** will make a selection in the other view corresponding to the annotation (see fig 10.5).

🗙 НИМНВВ	
Description	
▶ Comments	
▶ KeyWords	
► Gb Division	
▶ Length	
Modification Date	
▶ Organism	
▶ Annotation Map	

Figure 10.4: The initial display of sequence info for the HUMHBB DNA sequence from the Example data.

10.3 View as text

A sequence can be viewed as text without any layout and text formatting. This displays all the information about the sequence in the GenBank file format. To view a sequence as text:

select a sequence in the Navigation Area \mid Show in the Toolbar \mid As text

This way it is possible to see background information about e.g. the authors and the origin of DNA and protein sequences. Selections or the entire text of the **Sequence Text Viewer** can be copied and pasted into other programs:

Much of the information is also displayed in the **Sequence info**, where it is easier to get an overview (see section 10.2.)

10.4 Creating a new sequence

A sequence can either be imported, downloaded from an online database or created in the *CLC Free Workbench* 3.0. This section explains how to create a new sequence:

New(**) in the toolbar

The **Create Sequence** dialog (figure 10.6) reflects the information needed in the GenBank format, but you are free to enter anything into the fields. The following description is a guideline for entering information about a sequence:

- Name. The name of the sequence. This is used for saving the sequence.
- Common name. A common name for the species.
- **Species.** The Latin name.

• CDS CDS HBB thalassemia join(6218762 62186 62408 • Conflict • Conflict • Conflict CDS HBG1 join(1954119 19490 20961 • Conflict CDS HBG1 join(3453134 34530 39982 • O Exon CDS HBG1 join(3473.39 34530 39982 • O Exon CDS HBG1 join(3473.9054 54789 56259 563610 • O Gene Conflict Conflict Conflict 37486 37486 37486 • O Precursor RNA Exon E		Annotatio	Name	Position	Start	End		
CDS HBE1 join(1954119 19540 20961 CDS HBG2 join(3946739 39582 35982 CDS HBG2 join(3946739 39466 40898 CDS HBG1 join(3946739 39466 40898 CDS HBG1 join(5217045 45709 47124 CDS HBD join(5218762 62186 63610 CDS HBB join(6218762 62186 63610 CDS HBB join(6218762 62186 62278 Exon Exon 1 <4571045800		CDS	HBB thalassemia	ioin(6218762	62186	62408		
O Conflict CDS HBG2 ipin(3453134 34530 35982 O O Exon CDS HBG1 jpin(3457134 40898 40898 O O Exon CDS HBG1 jpin(547039 49466 40898 O O Exon CDS HBD jpin(547054 54789 56259 CDS HBD jpin(518762 62186 63610 Conflict 37486 CDS HBB jpin(6218762 62186 62278 Exon Exon Exon Exon 20800 45009 45009 45000 Exon Exon Exon Exon 62186 62278 Exon Exon <td></td> <td></td> <td>HBE1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			HBE1					
Conflict CDS HBG1 join(39467.39, 39466 40898 CDS CDS CDS join(39467.39, 45709) 47124 CDS CDS CDS join(39467.39, 54789) 56259 CDS HBB join(61870.62, 62186 63610 CDS HBB join(54790.5470,.45, 54789) 56259 CDS HBB join(62187.62, 62186 63610 Conflict Conflict 37485 37486 Conflict Conflict 37485 37486 Con Exon Exon 1 <45710.4500	0.0.0	CDS	HBG2	join(3453134	34530	35982		
O Exon CDS join(4571045 45709 47124 CDS HBD join(4571045 54789 556259 CDS HBB join(5218762 62186 63610 CDS HBB join(5218762 62186 63610 Conflict Conflict 37486 37485 37486 Conflict Conflict 37486 37486 62278 Exon Exon 1 <6218762278	Conflict	CDS	HBG1			40898		
O Gene 000 HBB join(62187.62 62186 63610 O Old sequence Conflict Conflict 37486 37486 O Old sequence Exon Exon 1 <4571045800		CDS	CDS	join(4571045	45709	47124		
Gene Conflict Conflict 37486 37485 37486 Conflict Conflict 37486 37485 37486 Exon Exon 1 <45710.45800	🕒 🕤 Exon	CDS	HBD	join(5479054	54789	56259		
Image: Solution of the second seco		CDS	HBB	join(6218762	62186	63610		
Image: Solution of the second seco	🕒 🌔 Gene	Conflict	Conflict	37486	37485	37486		
Construction Exon Exon 2 62390 62408 62389 62408 Construction Exon Exon 1 3447834622 34477 34622 Exon Exon Exon 1 3941439558 39413 39558 Exon Exon Exon 1 597747124 46996 47124 Exon Exon 1 5474054881 54739 54881 Exon Exon 1 5474054881 54739 54881 Exon Exon 1 6213762278 62136 62278 UMHBB Construction 1 20000 20500 1 1		Exon	Exon 1	<4571045800	45709	45800		
Image: Second	C) S Old sequence	Exon	Exon 1	<6218762278	62186	62278		
Image: Second		Exon	Exon 2	62390<62408	62389	62408		
Exon Exon 1 394143958 39453 Con Exon 3 46996 47124 Exon Exon 1 5474054881 54739 Exon Exon 1 6213762278 62136 JMHBB ● 1 20000 20500 IBE1 HBE 1 1	0.0.	Exon	Exon 1	3447834622	34477	34622		
Image: Seperat region Exon Exon 1 5474054881 54739 54881 Image: Seperat region Exon Exon 1 6213762278 62136 62278	C Precursor RNA	Exon	Exon 1	3941439558	39413	39558		
UMHEB C		Exon	Exon 3	46997<47124	46996	47124		
UMHBB € 19500 20000 20500 1 HBE UBE 1 HBE	🕒 🕥 Repeat region	Exon	Exon 1	5474054881	54739	54881		
MHBB © 20000 20500		Exon	Exon 1	6213762278	62136	62278		
	19500 I		20000 I		20500 I			21000 I
							1	1
		. – 1						× .
MHBB								
	IBE 1 HE							

Figure 10.5: Clicking a sequence map annotation in the sequence information view, selects the annotation on the (normal) sequence view.

🚺 Create Sequence			×
1. Enter Sequence Data	Enter Seque	ence Data	
	Name:	Globin	
	Common name:	Human	
	Species:	Homo sapiens	
	Туре:	SUE 💿 DNA	
		했 🔿 RNA	
		🚑 🔿 Protein	
		Circular	
	Description:	Globin sequence	
	Keywords:		
	Comments:		
т ссански	Sequence (requ	ired):	45
ACCT BRIL	1 TCTAATCT		
0 A T 0 A 0 1 1 0	8 CCCTCTCAA	CCCTACAGTACCCATTTGGTATATTAAA	
T R O R T B B 1 B G R T G R 1 B 1 1			
		Frevious Next / Finish	ncel

Figure 10.6: Creating a sequence.

- Type. Select between DNA, RNA and protein.
- **Circular.** Specifies whether the sequence is circular. This will open the sequence in a circular view as default. (applies only to nucleotide sequences).
- **Description.** A description of the sequence.
- Keywords. A set of keywords separated by semicolons (;).
- **Comments.** Your own comments to the sequence.

• **Sequence.** Depending on the type chosen, this field accepts nucleotides or amino acids. Spaces and numbers can be entered, but they are ignored when the sequence is created. This allows you to paste in a sequence directly from a different source, even if the residue numbers are included. Characters that are not part of the IUPAC codes cannot be entered. At the top right corner of the field, the number of residues are counted. The counter does not count spaces or numbers.

Clicking Next will allow you to save the sequence to a project in the Navigation Area.

10.5 Sequence Lists

The **Sequence List** shows a number of sequences in a tabular format or it can show the sequences together in a normal sequence view.

Having sequences in a sequence list can help organizing sequence data. The sequence list may originate from an NCBI search (chapter 9.1). Moreover, if a multiple sequence fasta file is imported, it is possible to store the data in a sequences list. A **Sequence List** can also be generated using a dialog, which is described here:

select two or more sequences | right-click the elements | New | Sequence List (#)

This action opens a Sequence List dialog:

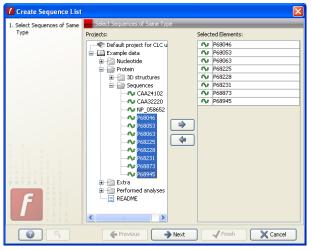


Figure 10.7: A Sequence List dialog.

The dialog allows you to select more sequences to include in the list, or to remove already chosen sequences from the list.

After clicking "Next", you can choose where to save the list. Then click Finish.

Opening a Sequence list is done by:

right-click the sequence list in the Navigation Area \mid Show \mid click Graphical sequence list OR click Table

The two different views of the same sequence list are shown in split screen in figure 10.8.

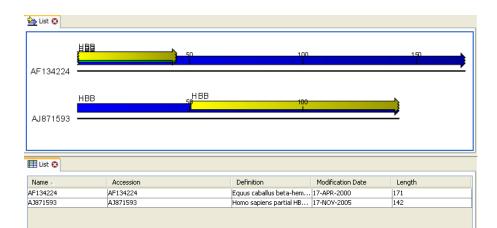


Figure 10.8: A sequence list of two sequences can be viewed in either a table or in a graphical sequence list.

10.5.1 Graphical view of sequence lists

The graphical view of sequence lists is almost identical to the view of single sequences (see section 10.1). The main difference is that you now can see more than one sequence in the same view.

However, you also have a few extra options for sorting, deleting and adding sequences:

- To add extra sequences to the list, right-click an empty (white) space in the view, and select **Add Sequences**.
- To delete a sequence from the list, right-click the sequence's label and select **Delete Sequence**.
- To sort the sequences in the list, right-click the label of one of the sequences and select **Sort Sequence List by Name** or **Sort Sequence List by Length**.
- To rename a sequence, right-click the label of the sequence and select Rename Sequence.

10.5.2 Sequence list table

Each sequence in the table sequence list is displayed with:

- Name.
- Accession.
- Definition.
- Modification date.
- Length.

In the View preferences for the table view of the sequence list, columns can be excluded, and the view preferences can be saved in a style sheet. See section 4.5.

The sequences can be sorted by clicking the column headings. You can further refine the sorting by pressing Ctrl while clicking the heading of another column.

10.5.3 Extract sequences

It is possible to extract individual sequences from a sequence list in two ways. If the sequence list is opened in the tabular view, it is possible to drag (with the mouse) one or more sequences into the **Navigation Area**. This allows you to extract specific sequences from the entire list. Another option is to extract all sequences found in the list to a preferred location in the **Navigation Area**:

right-click a sequence list in the Navigation Area | Extract Sequences

Select a location for the sequences and click OK. Copies of all the sequences in the list are now placed in the location you selected.

10.6 Circular DNA

A sequence can be shown as a circular molecule:

select a sequence in the Navigation Area | Show in the Toolbar | Circular(O)

This will open a view of the molecule similar to the one in figure 10.9.

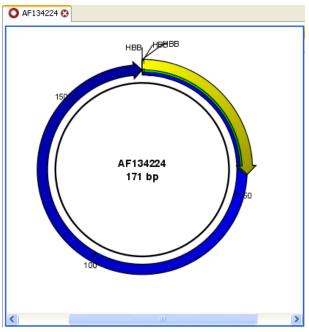


Figure 10.9: A molecule shown in a circular view.

This view of the sequence shares some of the properties of the linear view of sequences as described in section 10.1, but there are some differences. The similarities and differences are listed below:

• Similarities:

- Annotation Layout, Annotation Types and Text Format preferences groups.

• Differences:

- In the **Sequence Layout** preferences, only the following options are available in the circular view: **Ticks on plus strand**, **Numbers on sequence** and **Sequence label**.

 You cannot zoom in to see the residues in the circular molecule. If you wish to see these details, split the view with a linear view of the sequence (see below).

10.6.1 Using split views to see details of the circular molecule

In order to see the nucleotides of a circular molecule you can open a new view displaying a circular view of the molecule:

right-click the tab of the circular view of the sequence | Show | Sequence(

This will open a linear view of the sequence below the circular view. When you zoom in on the linear view you can see the residues as shown in figure 10.10.

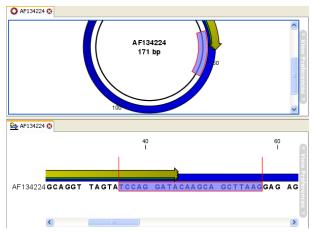


Figure 10.10: Two views showing the same sequence. The bottom view is zoomed in.

Notice! If you make a selection in one of the views, the other view will also make the corresponding selection, providing an easy way for you to focus on the same region in both views.

10.6.2 Mark molecule as circular and specify starting point

You can mark a DNA molecule as circular by right-clicking its label in either the sequence view or the circular view. In the right-click menu you can also make a circular molecule linear. A circular molecule displayed in the normal sequence view, will have the sequence ends marked with a ».

The starting point of a circular sequence can be changed by:

make a selection starting at the position that you want to be the new starting point | right-click the selection | Move Starting Point to Selection Start

Notice! This can only be done for sequence that have been marked as circular.

Chapter 11

General sequence analyses

Contents

11.1 Sequence statistics	102
11.1.1 Sequence statistics output	105
11.2 Shuffle sequence	105
11.3 Join sequences	105

CLC Free Workbench 3.0 offers different kinds of sequence analyses, which apply to both protein and DNA.

11.1 Sequence statistics

CLC Free Workbench 3.0 can produce an output with many relevant statistics for protein sequences. Some of the statistics are also relevant to produce for DNA sequences. Therefore, this section deals with both types of statistics. The required steps for producing the statistics are the same.

To create a statistic for the sequence, do the following:

select sequence(s) | Toolbox in the Menu Bar | General Sequence Analyses () | Create Sequence Statistics ()

This opens a dialog where you can alter your choice of sequences which you want to create statistics for. You can also add sequence lists.

Notice! You cannot create statistics for DNA and protein sequences at the same time.

When the sequences are selected, click Next.

This opens the dialog displayed in figure **11.1**.

The dialog offers to adjust the following parameters:

• Individual statistics layout. If more sequences were selected in **Step 1**, this function generates separate statistics for each sequence.

🚺 Create Sequence Stat	istics 🔀
 Select Sequences of Same Type Set parameters 	Set parameters
2. Set parameters	Choose Layout O Individual Statistics Layout O Comparative Statistics Layout Background Distribution Include Background Distribution of Amino Acids Background Distribution Calculated from: Homo Sapiens (human)
	Finish X Cancel

Figure 11.1: Setting parameters for the sequence statistics.

• **Comparative statistics layout.** If more sequences were selected in **Step 1**, this function generates statistics with comparisons between the sequences.

You can also choose to include Background distribution of amino acids. If this box is ticked, an extra column with amino acid distribution of the chosen species, is included in the table output. (The distributions are calculated from UniProt www.uniprot.org version 6.0, dated September 13 2005.)

Click **Next** if you wish to adjust how to handle the results (see section 8.1). If not, click **Finish**. An example of protein sequence statistics is shown in figure 11.2.

Nucleotide sequence statistics are generated using the same dialog as used for protein sequence statistics. However, the output of Nucleotide sequence statistics is less extensive than that of the protein sequence statistics.

Notice! The headings of the tables change depending on whether you calculate 'individual' or 'comparative' sequence statistics.

The output of comparative protein sequence statistics include:

- Sequence Information:
 - Sequence type
 - Length
 - Organism
 - Locus
 - Description
 - Modification Date
 - Weight
 - Isoelectric point
 - Aliphatic index
- Amino acid distribution

	4 5				~
Table Of Co	ontents				=
1. Protein s	tatistics				
I. FIOLEIIIS	เสเธแรร				
1.1. Sequ	ience inform	nation			
1 2 Com	nts of armino	aaida			
1.2. Cour	its of arrino	acius			=
1.3. Freq	uencies of a	mino acio	s		
1. Protein s 1.1. Sequence	ce informatio		CAA2410	2	
Information	CAA26	204	CAA2410		
Converse iven	Destate			2	
	Protein 125 aa		Protein		
Length	125 aa		Protein 47 aa		
Length	125 aa Pan troglodytes (Protein		
Length Organism Locus	125 aa Pan troglodytes (CAA26204	(chimpanzee)	Protein 47 aa Mus musculus (hous	e mouse)	
Length Organism Locus Description	125 aa Pan troglodytes (CAA26204 beta-globin [Pan	(chimpanzee)	Protein 47 aa Mus musculus (hous CAA24102	e mouse)	
Organism Locus	125 aa Pan troglodytes (CAA26204 beta-globin [Pan	(chimpanzee)	Protein 47 aa Mus musculus (hous CAA24102 beta-globin HO [Mus	e mouse)	
Length Organism Locus Description Modification Date Weight	125 aa Pan troglodytes (CAA26204 beta-globin (Pan 18-APR-2005	(chimpanzee)	Protein 47 aa Mus musculus (hous CAA24102 beta-globin HO [Mus 18-APR-2005 5,326.084 Da	e mouse)	
Length Organism Locus Description Modification Date	125 aa Pan troglodytes (CAA26204 beta-globin (Pan 18-APR-2005	(chimpanzee) troglodytes].	Protein 47 aa Mus musculus (hous CAA24102 beta-globin HO [Mus 18-APR-2005 5,326.084 Da	e mouse) musculus].	
Length Organism Locus Description Modification Date Weight Isoelectric point	125 aa Pan troglodytes (CAA26204 beta-globin [Pan 18-APR-2005 13.662 kDa	(chimpanzee) troglodytes]. 6.99 98.16	Protein 47 aa Mus musculus (hous CAA24102 beta-globin HO [Mus 18-APR-2005 5,326.084 Da	e mouse) : musculus]. 9.99	
Length Organism Locus Description Modification Date Weight Isoelectric point Aliphatic index 1.2. Counts	125 aa Pan troglodytes (CAA26204 beta-globin [Pan 18-APR-2005 13.662 kDa	(chimpanzee) troglodytes). 6.99 98.16	Protein 47 aa Mus musculus (hous CAA24102 beta-globin HO [Mus 18-APR-2005 5,326.084 Da 2004 CAA	e mouse) : musculus]. 9.99	
Length Organism Locus Description Modification Date Weight Isoelectric point Aliphatic index	125 aa Pan troglodytes (CAA26204 beta-globin (Pan 18-APR-2005 13.662 kDa 0 f amino aci	(chimpanzee) troglodytes]. 6.99 98.16	Protein 47 aa Mus musculus (hous CAA24102 beta-globin HO [Mus 18-APR-2005 5,326.084 Da	e mause) musculus]. 9.99 76.809	

Figure 11.2: Comparative sequence statistics.

• Annotation table

The output of nucleotide sequence statistics include:

- General statistics:
 - Sequence type
 - Length
 - Organism
 - Locus
 - Description
 - Modification Date
 - Weight
- Nucleotide distribution table
- Annotation table

Notice! This section also describes statistics not available in CLC Free Workbench.

11.1.1 Sequence statistics output

The entire statistical output can be printed. To do so, click the **Print** icon ((\bigtriangleup)).

11.2 Shuffle sequence

In some cases, it is beneficial to shuffle a sequence. This is an option in the **Toolbox** menu under **General Sequence Analyses**. It is normally used for statistical analyses, e.g. when comparing an alignment score with the distribution of scores of shuffled sequences. The shuffling is done without replacement, resulting in exactly the same number of the different residues as before the shuffling.

Shuffling a sequence removes all annotations that relate to the residues.

```
select sequence | Toolbox in the Menu Bar | General Sequence Analyses (\Box) | Shuffle Sequence (\Box)
```

or right-click a sequence | Toolbox | General Sequence Analyses () | Shuffle Sequence ()

This opens the dialog displayed in figure 11.3:

Figure 11.3: Choosing sequence for shuffling.

If a sequence was selected before choosing the Toolbox action, this sequence is now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences or sequence lists from the **Project Tree**.

Click Next if you wish to adjust how to handle the results (see section 8.1). If not, click Finish.

This will open a new view in the **View Area** displaying the shuffled sequence. The new sequence is not saved automatically. To save the protein sequence, drag it into the **Navigation Area** or press ctrl + S (\Re + S on Mac) to activate a save dialog.

11.3 Join sequences

CLC Free Workbench can join several nucleotide or protein sequences into one sequence. This feature can for example be used to construct "supergenes" for phylogenetic inference by joining

several disjoint genes into one. Note, that when sequences are joined, all their annotations are carried over to the new spliced sequence.

Two (or more) sequences can be joined by:

select sequences to join | Toolbox in the Menu Bar | General Sequence Analyses | Join sequences ()

or select sequences to join | right-click either selected sequence | Toolbox | General Sequence Analyses | Join sequences (

This opens the dialog shown in figure **11.4**.

Type Projects: Selected Elements: Selected El	Join Sequences Select Sequences of Same	Select Sequences of Same Type	<u> </u>
Image: Sequences Sequences Image: Sequences Sequences <t< td=""><td>Туре</td><td>Projects:</td><td>Selected Elements:</td></t<>	Туре	Projects:	Selected Elements:
Image: Sequences		Example data	XX PERH3BC
Image: Second State Sta			XX PERH2BD
		Construction C	

Figure 11.4: Selecting two alignments to be joined.

If you have selected some sequences before choosing the Toolbox action, they are now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences from the **Project Tree**. Click **Next** opens the dialog shown in figure 11.5.

📶 Join Sequences	
 Select Sequences of Same Type Set parameters 	Set parameters
0	Set order of concatenation - top first
	Finish X Cancel

Figure 11.5: Setting the order in which sequences are joined.

In step 2 you can change the order in which the sequences will be joined. Select a sequence and use the arrows to move the selected sequence up or down.

Click **Next** if you wish to adjust how to handle the results (see section 8.1). If not, click **Finish**.

The result is shown in figure **11.6**.

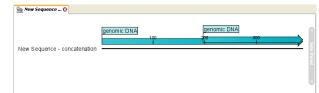


Figure 11.6: The result of joining sequences is a new sequence containing all the annotations of the joined sequences.

Chapter 12

Nucleotide analyses

Contents

12.1 Convert DNA to RNA	8
12.2 Convert RNA to DNA 10	9
12.3 Reverse complements of sequences	.0
12.4 Translation of DNA or RNA to protein	.1
12.5 Find open reading frames	.1
12.5.1 Open reading frame parameters	.3

CLC Free Workbench 3.0 offers different kinds of sequence analyses, which only apply to DNA and RNA.

12.1 Convert DNA to RNA

CLC Free Workbench 3.0 lets you convert a DNA sequence into RNA, substituting the T residues (Thymine) for U residues (Urasil):

```
select a DNA sequence in the Navigation Area | Toolbox in the Menu Bar | Nucleotide Analyses (() | Convert DNA to RNA ()
```

or right-click a sequence in Navigation Area | Toolbox | Nucleotide Analyses () | Convert DNA to RNA ()

This opens the dialog displayed in figure 12.1:

If a sequence was selected before choosing the Toolbox action, this sequence is now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences or sequence lists from the **Project Tree**.

Click **Next** if you wish to adjust how to handle the results (see section 8.1). If not, click **Finish**.

Notice! You can select multiple DNA sequences and sequence lists at a time. If the sequence list contains RNA sequences as well, they will not be converted.

Convert DNA to RM	IA			X
1. Select DNA sequences	Select DNA sequences	_		
	Projects:		Selected Elements:	
	Projects: Example data Nucleotide Sequences Sequences Sequences Sequences Sequence lat Sequence lat Seque		Selected Elements: 200 PERH3BC	
	<			
	Frevious	r Next	✓ Finish	Cancel

Figure 12.1: Translating DNA to RNA.

12.2 Convert RNA to DNA

CLC Free Workbench 3.0 lets you convert an RNA sequence into DNA, substituting the U residues (Urasil) for T residues (Thymine):

select an RNA sequence in the Navigation Area | Toolbox in the Menu Bar | Nucleotide Analyses (\Box) | Convert RNA to DNA (\triangleleft)

or right-click a sequence in Navigation Area | Toolbox | Nucleotide Analyses () | Convert RNA to DNA ()

This opens the dialog displayed in figure 12.2:

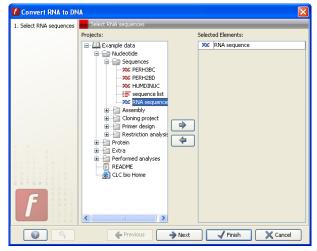


Figure 12.2: Translating RNA to DNA.

If a sequence was selected before choosing the Toolbox action, this sequence is now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences or sequence lists from the **Project Tree**.

Click **Next** if you wish to adjust how to handle the results (see section 8.1). If not, click **Finish**.

This will open a new view in the **View Area** displaying the new DNA sequence. The new sequence is not saved automatically. To save the protein sequence, drag it into the **Navigation Area** or

press Ctrl + S (\Re + S on Mac) to activate a save dialog.

Notice! You can select multiple RNA sequences and sequence lists at a time. If the sequence list contains DNA sequences as well, they will not be converted.

12.3 Reverse complements of sequences

CLC Free Workbench 3.0 is able to create the reverse complement of a nucletide sequence. By doing that, a new sequence is created which also has all the annotations reversed since they now occupy the opposite strand of their previous location.

To quickly obtain the reverse complement of a sequence or part of a sequence, you may select a region on the negative strand and open it in a new view:

right-click a selection on the negative strand | Open selection in a new view

By doing that, the sequence will be reversed. This is only possible when the double stranded view option is enabled. It is possible to copy the selection and paste it in a word processing program or an e-mail. To obtain a reverse complement of an entire sequence:

select a sequence in the Navigation Area | Toolbox in the Menu Bar | Nucleotide Analyses (\Box) | Create Reverse Complement (χ)

or right-click a sequence in Navigation Area | Toolbox | Nucleotide Analyses () | Create Reverse Complement ()

This opens the dialog displayed in figure 12.3:

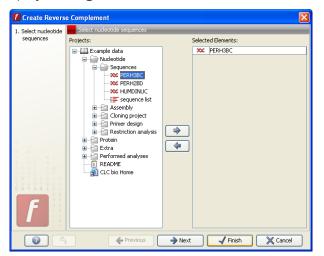


Figure 12.3: Creating a reverse complement sequence.

If a sequence was selected before choosing the Toolbox action, the sequence is now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences or sequence lists from the **Project Tree**.

Click Next if you wish to adjust how to handle the results (see section 8.1). If not, click Finish.

This will open a new view in the **View Area** displaying the reverse complement of the selected sequence. The new sequence is not saved automatically. To save the protein sequence, drag it into the **Navigation Area** or press Ctrl + S (\Re + S on Mac) to activate a save dialog.

12.4 Translation of DNA or RNA to protein

In *CLC Free Workbench* 3.0 you can translate a nucleotide sequence into a protein sequence using the **Toolbox** tools. Usually, you use the +1 reading frame which means that the translation starts from the first nucleotide. Stop codons result in an asterisk being inserted in the protein sequence at the corresponding position. It is possible to translate in any combination of the six reading frames in one analysis. To translate:

```
select a nucleotide sequence | Toolbox in the Menu Bar | Nucleotide Analyses (\Box) | Translate to Protein (\thickapprox)
```

or right-click a nucleotide sequence | Toolbox | Nucleotide Analyses () | Translate to Protein ()

This opens the dialog displayed in figure 12.4:

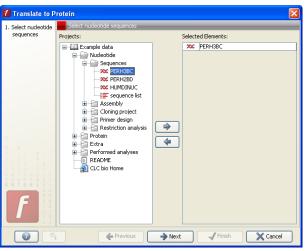


Figure 12.4: Choosing sequences for translation.

If a sequence was selected before choosing the Toolbox action, the sequence is now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences or sequence lists from the **Project Tree**.

Click **Next** to set reading frames, select if you want to translate all coding regions of the sequence and choose translation tables. Clicking **Next** generates the dialog seen in figure 12.5:

The translation tables in *CLC Free Workbench* are updated regularly from NCBI. Therefore the tables are not available in this printable version of the user manual. Instead the tables are included in the **Help**-menu in the **Menu Bar** under **Background Information**.

Click **Next** if you wish to adjust how to handle the results (see section 8.1). If not, click **Finish**. The newly created protein is shown, but is not saved automatically.

To save a protein sequence, drag it into the **Navigation Area** or press Ctrl + S (\Re + S on Mac) to activate a save dialog.

12.5 Find open reading frames

CLC Free Workbench 3.0 has a basic functionality for gene finding in the form of open reading frame (ORF) determination. The ORFs will be shown as annotations on the sequence. You have

f Translate to P	Protein	×
 Select nucleotide sequences Set parameters 	Set parameters Translation of whole sequence V Reading frame +1 Reading frame +2 Reading frame +3	
5	Reading frame -1 Reading frame -2 Reading frame -3	
	Translation of coding regions only Translate CDS and ORF	
ſ	Genetic code translation table:	~
	Previous Next / Finish X Car	ncel

Figure 12.5: Choosing +1 and +3 reading frames, and the standard translation table.

the option of choosing translation table, start codons, minimum length and other parameters for finding the ORFs. These parameters will be explained in this section.

To find open reading frames:

select a nucleotide sequence | Toolbox in the Menu Bar | Nucleotide Analyses () | Find Open Reading Frames (XX)

or right-click a nucleotide sequence | Toolbox | Nucleotide Analyses () | Find Open Reading Frames (XX)

This opens the dialog displayed in figure 12.6:

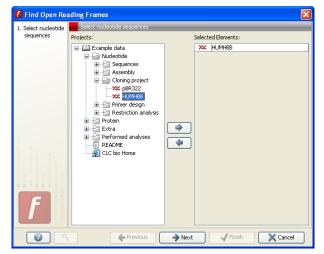


Figure 12.6: Create Reading Frame dialog.

If a sequence was selected before choosing the Toolbox action, the sequence is now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences or sequence lists from the **Project Tree**.

If you want to adjust the parameters for finding open reading frames click Next.

12.5.1 Open reading frame parameters

This opens the dialog displayed in figure 12.7:

🚺 Find Open Rea	ading Frames
1. Select nucleotide sequences	Set parameters
2. Set parameters	
3	Start Codon AUG AUG AIG Ary All start codons in genetic code Other: AUG,CUG,UUG
	Stop codon included in translatation
	Open Ended Sequence
	Genetic code translation table: 1 Standard
GATGA181	Minimum Length: 100
ſ	
	Previous Next Finish X Cancel

Figure 12.7: Create Reading Frame dialog.

The adjustable parameters for the search are:

- Start Codon:
 - AUG. Most commonly used start codon.
 - Any.
 - All start codons in genetic code.
 - Other. Here you can specify a number of start codons separated by commas.
- Both Strands. Finds reading frames on both strands.
- **Stop Codon included in Annotation** The ORFs will be shown as annotations which can include the stop codon if this option is checked.
- **Open Ended Sequence**. Allows the ORF to start or end outside the sequence. If the sequence studied is a part of a larger sequence, it may be advantageous to allow the ORF to start or end outside the sequence.
- Genetic code translation table. The translation tables are occasionally updated from NCBI. The tables are not available in this printable version of the user manual. Instead, the tables are included in the Help-menu in the Menu Bar under Background Information.
- Minimum Length. Specifies the minimum length for the ORFs to be found.

Using open reading frames for gene finding is a fairly simple approach which is likely to predict genes which are not real. Setting a relatively high minimum length of the ORFs will reduce the number of false positive predictions, but at the same time short genes may be missed (see figure 12.8).

Finding open reading frames is often a good first step in annotating sequences such as cloning vectors or bacterial genomes. For eukaryotic genes, ORF determination may not always be very helpful since the intron/exon structure is not part of the algorithm.

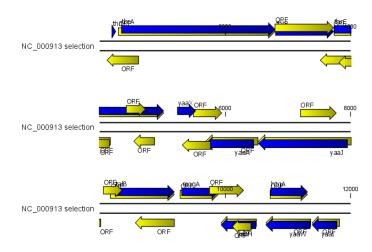


Figure 12.8: The first 12,000 positions of the E. coli sequence NC_000913 downloaded from GenBank. The blue (dark) annotations are the genes while the yellow (brighter) annotations are the ORFs with a length of at least 100 amino acids. On the positive strand around position 11,000, a gene starts before the ORF. This is due to the use of the standard genetic code rather than the bacterial code. This particular gene starts with CTG, which is a start codon in bacteria. Two short genes are entirely missing, while a handful of open reading frames do not correspond to any of the annotated genes.

Chapter 13

Restriction site analyses

Contents

13.1 Restriction sites and enzyme lists	
13.2 Restriction site analysis	115
13.2.1 Restriction site parameters	
13.3 Restriction enzyme lists	118
13.3.1 Create enzyme list	
13.3.2 Modify enzyme list	

13.1 Restriction sites and enzyme lists

CLC Free Workbench 3.0 offers the opportunity to detect restriction sites. First the restriction site analysis is described and next, the functionalities regarding enzyme lists are explained.

13.2 Restriction site analysis

This section explains how to adjust the detection parameters and offers basic information with respect to restriction site algorithms.

13.2.1 Restriction site parameters

Given a DNA sequence, *CLC Free Workbench 3.0* detects restriction sites in accordance with detection parameters and shows the detected sites as annotations on the sequence or in textual format in a table.

To detect restriction sites:

```
select sequence | Toolbox in the Menu Bar | Restriction Site Analyses (\mathbb{A}) | Restriction sites (\mathbb{A})
```

or right-click sequence | Toolbox | Restriction Site Analyses ((2) | Restriction sites ()

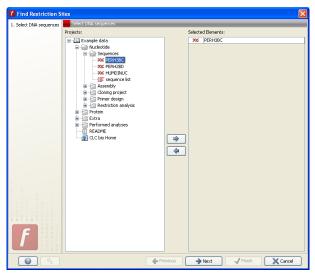


Figure 13.1: Choosing sequence PERH3BC.

The result of these steps can be seen in figure 13.1.

If a sequence was selected before choosing the Toolbox action, this sequence is now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences or sequence lists from the **Project Tree**.

Clicking **Next** generates the dialog shown in figure 13.2.

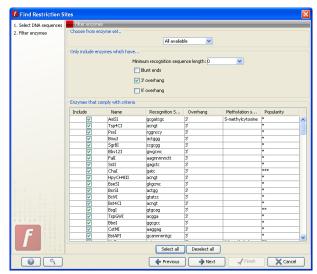


Figure 13.2: Selecting enzymes.

In **Step 2** you can adjust which enzymes to use. **Choose from enzyme set...**, allows you to select an enzyme list which is stored in the **Navigation Area**. See section **13.3** for more about creating and modifying enzyme lists.

Only include enzymes which have... In this part of the dialog, you can limit the number of enzymes included in the list below. You can choose a minimum length of the recognition sequence, and you can choose whether to include enzymes with Blunt ends, 3' overhang, and/or 5' overhang.

Having adjusted the parameters in Choose from enzyme set... and Only include enzymes which

have... the total list of enzymes is shown in the table. The enzymes can be sorted by clicking the column headings, and you can select which enzymes to include in the search be inserting / removing check marks next to the enzymes.

Clicking **Next** confirms the list of enzymes which will be included in the analysis, and takes you to **Step 3**.

In **Step 3** you can limit which enzymes' cut sites should be included in the output. See figure 13.3.

Find Restriction S	ites 🛛 🔀
1. Select DNA sequences	Set exclusion criteria and output options
2. Filter enzymes	
 Set exclusion criteria and output options 	
	Exclude enzymes based on number of matches
	Exclude enzymes with less matches than:
	Exclude enzymes with more matches than:
	Output options
	Create output as annotations on sequence
	Create tabular output
	Create new enzyme list from selected enzymes which fulfill match number criteria
	Separate restriction fragments on get
1. 1	
Total States	
0 A T 0 A 0 1 1 8	
0 A T 0 A 1 0 1 1 1	
F	
	Frevious Next Vinish X Cancel

Figure 13.3: Exclusion criteria and output options.

The default setting **Exclude enzymes with less than 1** (matches), means that enzymes which do not match at all, are not included in the output. If e.g. you only want to see enzymes, which match exactly once, you can check the **Exclude enzymes with more than 1**.

The remaining options relate to the output of the analysis:

- Create output as annotations on sequence
- Create text output
- Create new enzyme list from selected enzymes which fulfill match number criteria

In order to complete the analysis click **Finish**. The result is shown in figure 13.4.

Choosing the textual output option will open a new view containing a table with an overview of restriction sites. Choosing the graphical output option will add restriction site annotations to the selected sequence.

If too many restriction sites are found, a dialog will ask if you want to proceed or show the restriction sites only in a table format. Showing too many restriction sites as annotations on the sequence will take up a lot of your computer's processing power.

Notice! The text is not automatically saved.

To save the result:

Right-click the tab | File | Save()

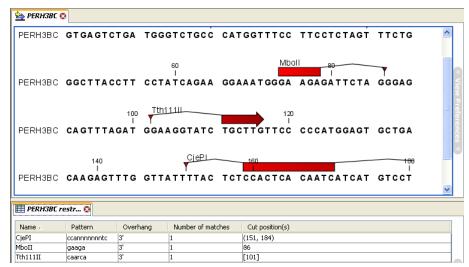


Figure 13.4: The result of the restriction site detection is displayed as text, and in this example the View Shares the View Area with a View of the PERH3BC sequence displaying the restriction sites (split-screen-view).

The textual output mentioned above will list all the cut positions where the sequence is restricted. This list may be very long, and hence it might not be possible for *CLC Free Workbench* to display all cut positions in one cell. If you want to see the entire list of cut positions:

select the table line with the relevant enzyme | Ctrl + C (\Re + C on Mac) | open a word processing program | Ctrl + V (\Re + V on Mac)

13.3 Restriction enzyme lists

CLC Free Workbench includes all the restriction enzymes available in the **REBASE** database. However, when performing restriction site analyses, it is often an advantage to use a customized list of enzymes. In this the user can create special lists containing e.g. all enzymes available in the laboratory freezer, all enzymes used to create a given restriction map or all enzymes that are available form the preferred vendor.

This section describes how you can create an enzyme list, and how you can modify it.

13.3.1 Create enzyme list

CLC Free Workbench 3.0 uses enzymes from the **REBASE** restriction enzyme database at http://rebase.neb.com.

To start creating a sequence list:

right-click in the Navigation Area | New | Enzyme list(

This opens the dialog shown in figure 13.5

Step 1 includes two tables. The top table is a list of all the enzymes available in the **REBASE** database. Different information is available for the enzymes, and by clicking the column headings the list can be sorted.

The sequence list is created by adding enzymes to the bottom table. To create sequence list:

Select sequences from top table (hold ctrl (lpha on Mac)) | click down-arrow

/ enzyme list	Al available engin	zyme list Tres						
	Name	Recognition Sequence	Overhang	Suppliers	Nethylation sensitivity	Recognizes palindro	Popularity -	
	Sat	gtcgac	5	GE Healthcare; Invitr	N6-methyladenosine	Yes	*****	
	EcoRV			GE Healthcare; Invitr				
	theI			GE Healthcare; Invitr				
	BgEI							
	HindIII							
	Xbal			GE Healthcare; Invitr				
	EcoRI							
	Small							
	PikI							
	BanHI			GE Healthcare; Invitr				
	Clat			GE Healthcare; Invitr				
	NotI	geggeoge	5	GE Healthcare; Invitr	N4-methylcytosine	Ves	****	
	NotI SecI		3	GE Healthcare; Invitr GE Healthcare; Ferm		Yes Yes	****	_
			3 5	GE Healthcare; Ferm GE Healthcare; Invitr	5-methylcytosine N6-methyladenosine		48×8 6858	
	SacI	gwystr catatg ccatag	3	GE Healthcare; Ferm	5-methylcytosine N6-methyladenosine	Yes	****	
	SacI Ndet Ncol	gwystr catatg ccatag	3 5	GE Healthcare; Ferm GE Healthcare; Invitr GE Healthcare; Invitr	5-methylcytosine N6-methyladenosine	Yes Yes	e Popularity -	
	Sect Ndet Ncol	gagete catatg ccatag	2 2 2	GE Healthcare; Perm GE Healthcare; Invitr GE Healthcare; Invitr GE Healthcare; Invitr	S-methykytosine N6-methykadenosine N4-methykytosine Methykation sensitivity	Yes Yes	**** **** ****	
	Sect Ndet Ncol Selected enzymes Name	gagete catatg ccatag Recognition Sequence	3 5 5 0verhang	GE Healthcare; Perm GE Healthcare; Invitr GE Healthcare; Invitr GE Healthcare; Invitr Suppliers	S-methyks/cosine N6-methyks/cosine N4-methyks/cosine Methykation sensitivity N6-methykadencosine	Yes Yes Yes Recognizes palindron	e Popularity -	
	Sect Nidet Nicol Selected enzymes Name Selt	pagetc catatg kcatag Recognition Sequence gtogec	3' 5' 5' Overhang	GE Healthcare; Ferm GE Healthcare; Invitr GE Healthcare; Invitr GE Healthcare; Invitr Suppliers GE Healthcare; Invitr	S-methylsytosine N6-methylsytosine N4-methylsytosine Methylation sensitivity N6-methyladenosine N6-methyladenosine	Ves Ves Ves Recognizes palindron (Yes	e Popularity -	
	SecI Ndet Ncol Selected enzymes Name Salt EcoRV	gagetic cotatig costig costiga Recognition Sequence gbogec gatetic	3' 5' Overhang 8' Blunt	GE Healthcare; Fern GE Healthcare; Invitr GE Healthcare; Invitr GE Healthcare; Invitr GE Healthcare; Invitr GE Healthcare; Invitr	S-methykytosine Nő-methykytosine Né-methykytosine Methykation sensitivitty Nő-methykatenosine Nő-methykatenosine	Ves Ves Ves Recognizes palindron Yes Yes	e Popularity -	
	SecI Ndet Nicol Selected enzymes Name Selt EcoRV Xhol	pagetc costog costog Recognition Sequence ptropec patible ctogag	3' 5' 5' Blunt 5' 5' 5' 5'	GE Healthcare; Ferm GE Healthcare; Invtr GE Healthcare; Invtr GE Healthcare; Invtr GE Healthcare; Invtr GE Healthcare; Invtr GE Healthcare; Invtr GE Healthcare; Invtr	S-methykstosine N6-methykstosine N6-methykstosine Methykation sensitivity (N6-methykatenosine N6-methykatenosine N6-methykatenosine	Yes Yes Yes Pecognizes palindron Yes Yes	Popularity *****	
	SecI Ndet Nicol Selected enzymes Name Self EcoRV Xhol BgIII	pagetc catatig costop Recognition Sequence gtrapic gatatic ctopag apatic	3' 5' 5' 5' 5' 5' 5' 5'	CE Healthcare; Frem CE Healthcare; Invitr CE Healthcare; Invitr CE Healthcare; Invitr Supplers GE Healthcare; Invitr	S-methykstosine Nii-methykstosine Methykston sensitivity (Nii-methykston sensitivity (Nii-methykstenosine Nii-methykstenosine (Nii-methykstenosine (Nii-methykstenosine	Yes Yes Recognizes paindron Yes Yes Yes Yes	Popularity - e Popularity - e exect exect	
	SecI Ndet Nicol Selected enzymes Name Selt EcoRV Xhol BgII HindIII	pagete catatig catatig catatig catatig catatig decogen getetete decogen getete decogen getete decogen getete decogen getetete decogen getetetete decogen getetetete decogen getetetetetetetetetetetetetetetetetetet	3' 5' 5' Blunt 5' 5' 5' 5'	GE Healthcare; Ferm GE Healthcare; Firm GE Healthcare; Invtr	S-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine	Yes Yes Recognizes paindron Yes Yes Yes Yes Yes	Popularity *****	
	Sec1 Ndet Nicol Selected enzymes Name Selt EcoRV XhRU BglII HindIII Xbal	pagité celeta contra Recognition Sequence décase décase de	3' 5' 5' 5' 5' 5' 5' 5'	C Healthcare; Fren. C Healthcare; Instr C	S-methykstosine N6-methykstosine N6-methykstosine N6-methykstösine N6-methykstösine N6-methykstösise N6-methykstösise N6-methykstösise N6-methykstösise N6-methykstösise N6-methykstösise	Yes Yes Recognizes palindron Yes Yes Yes Yes Yes	e Popularity - e Popularity - e e e e e e e e e e e e e e e e e e e	
	Sacl Note: Selected enzymes Name Sall EcoRV Xhol Bajti Hindtii Xbal EcoRI	segific contra contra contra contra drops optical drops drop	9 5 5 5 5 5 5 5 5 5 5 5 5 5	C Healthcare; Fern. C Healthcare; John. C Healthcare; John. C Healthcare; John. C Healthcare; Jindr. C Healthcare; Jindr.	S-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine Né-methyladenosine	Yes Yes Recognizes palindron Yes Yes Yes Yes Yes Yes Yes	Popularity = Popularity = e Popularity = e	
	Sec1 Note1 Selected enzymes Name Self EcoRV Sho1 Byl1 Hill Xbo1 EcoRV Sho1 Self Sec1 Sec1 Sec1 Sec1 Sec1 Sec1 Sec1 Sec1	segrific costrag costrag Recognition Sequence propor gatatic drogag egatatic drogag gatatic drogag gatatic drogag gatatic drogag gatatic	9 5 5 5 5 5 5 5 5 5 5 5 5 5	C Healhors, Perru, C Healhors, Perru, C Healhors, Perru, C Healhors, Perru, C Healhors, Imfr., C Healhors, I	Smith (Astonie Nemethyladerostie Wenethyladerostie Wenethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie Menethyladerostie	Yes Yes Ves Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Popularity - Popularity - ***** ***** ***** ***** ***** ***** ***** *****	

Figure 13.5: Choosing enzymes for the new enzyme list.

When the desired enzymes have been chosen, click Next.

Choose where to save your enzyme list and name the sequence list. Click **Finish**, to see the enzyme list. In the View preferences it is possible to choose which column to display.

13.3.2 Modify enzyme list

If you want to make changes to an existing enzyme list:

select an enzyme list | Toolbox in the Menu Bar | Restriction Site Analyses (a) | Modify Enzyme List()

Select the Enzyme list and click **Next**. This opens the dialog shown in figure 13.6.

t enzyme list to	Edit enzyme l	st -						
fy Al	l available enz	ymes						
enzyme list N	lame »	Recognition S	Overhang	Suppliers	Methylation s	Recognizes pa	Popularity	
Aa	er I	cacctgc	5	Fermentas Inter		No	*	
Aa	ISI	gacronnongto	3	Fermentas Inter		Yes	*	
Aa	sti	aggoot	Blunt	Toyobo Biochem		Yes	*	
Aa	en i	gacgtc	3	GE Healthcare;		Yes		
Ap	c16I	tgcgca	Blunt	SibEnzyme Ltd.;		Yes	*	
Ao	c36I	acctgc	5'	SibEnzyme Ltd.		No	•	
Ao	c65I	ggtacc	5'	Fermentas Inter		Yes	*	
Ao	cB1I	ggyrcc	5	SibEnzyme Ltd.;		Yes	*	
Ao	cB7I	ccannnntgg	3	SibEnzyme Ltd.;		Yes	*	
Ap	cBSI	ccgctc	Blunt	SibEnzyme Ltd.;		No	*	
Ao	ci	otmkac	5'	GE Healthcare:	N6-methyladeno	Yes	***	
Ao	cII	cgcg	Blunt	GE Healthcare:		Yes	*	
Ao	cIII	tocopa	5	Obiogene: Npp		Yes	4	
AD	eIII	cagete	5			No	*	
Ad		ccar	5	New England Bio	5-methvkytosine		*	
Ad	il nzymes curren	erg: Idy in list	5	J (†	5-methylcytosine	No	4	
Ad	il nzymes curren lame x	loca: tly in list Recognition S	5" Overhang	Suppliers	5-methylcytosine	No Recognizes pa	* Popularity	
Ad En N Ao	il nzymes curren łame » xI	eca: tly in list Recognition S gtmkac	S' Overhang S'	Suppliers GE Healthcare;	S-methykytosine Methylation s N6-methyladeno	No Recognizes pa Yes	Popularity	
Ad En N Ao Al	il hzymes curren lame x xI JI	kly in list Recognition S gtmkac agot	S' Overhang S' Blunt	Suppliers GE Healthcare; GE Healthcare;	S-methykytosine Methylation s N6-methyladeno S-methykytosine	No Recognizes pa Yes Yes	* Popularity ***	
Ad En N Ao AL Ap	il nzymes curren lame × xcl ul nal	kly in list Recognition S gtmkac aget gggccc	S' Overhang S' Blunk 3'	Supplers GE Healthcare; GE Healthcare; GE Healthcare;	S-methylotosine Methylotion s Né-methylotosine S-methylotosine	Recognizes pa Yes Yes Yes	Popularity	
Ad Bri Ac Ab Ba Ba	il hzymes curren lame > xil ul val mH1	kly in list Recognition 5 gtmlac agot gggscc gggscc gggscc	S' Overhang S' Blunk 3' S'	Suppliers GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare;	S-methylotosine Methylation s Né-methylateno S-methylotosine N4-methylotosine	Recognizes pa Yes Yes Yes Yes	Popularity *** *** ***	
Act En N Aco Alu Ap Bao Bol	il nzymes curren lame > ici J mHI II	cca: Recognition 5 gtmlas: agct gggccc gggccc gggccc tggtca	S' Overhang S' Blunk S' S' S'	Suppliers GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; Healthcare;	S-methylotosine Methylation s N6-methyladeno S-methylotosine N4-methylotosine N4-methylotosine N6-methylotosine	No Recognizes pa Yes Yes Yes Yes Yes	* Popularky *** ***	
Ad En N Ac A A B B B B B B B B B B B B B B B B	il nzymes curren lame > xcl ut real mHI II //	cca: Recognition 5 gtmlac agit gggccc gggccc ggacc tggtca gccnnnnggc	5' Overhang 5' Blunk 3' 5' 5' 3'	Supplers GE Healthcare; GE Healthcare; GE Healthcare; Minotech Biotec GE Healthcare;	5-methylotion s N6-methyladeno S-methylotosine S-methylotosine N4-methylotosine N6-methylotosine N4-methylotosine	Recognizes pa Yes Yes Yes Yes Yes Yes Yes	Popularity *** *** *** *** *** ***	
Ad En N Ac Ba Ba Ba Ba Ba Ba Ba Ba Ba	il hzymes curren kame > xcl ut mH1 ll fl /fl	ecor Hy in list Recognition 5 gtmkac agtt aggrcc ogatcc tgabca gernminggo agatt	S Overhang S Blunk S S S S S S S	Supplers GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; Minotech Biotec GE Healthcare; GE Healthcare; GE Healthcare;	S-methylotosine Né-methyladeno S-methylotosine S-methylotosine Né-methylotosine Né-methylotosine Né-methylotosine Né-methylotosine	No Recognizes pa Yes Yes Yes Yes Yes Yes Yes	Popularity *** **** **** **** **** **** **** **	
Act En N Acc Bc Bg Bg Bg Bg Bg Bg Bg Bg Bg Bg Bg Bg Bg	il hzymes curren kame > kal mHI II MI fII EEII	ecce: Recognition 5 dtmikac egytc oggtcc oggtcc ogstcc tgatca occmmmogc agatct ogtnacc	5 Overhang 5 Blunt 3 5 5 5 3 5 5 5 5	Supplers GE Healthcare; GE Healthcare; GE Healthcare; Minotech Biotec GE Healthcare;	S-methylyddion s Né-methylyddion s S-methylyddion s S-methylyddion S-methylyddion M-methylyddion Né-methylyddion Né-methylydycsine Né-methylydycsine	No Recognizes pa Yes Yes Yes Yes Yes Yes Yes Yes	Popularity *** *** *** *** *** *** *** *** *** *	
Ard En Ard Ard Ard Brow Brow Brow Brow Brow Brow Brow Brow	il nzymes currer kame > .cl .fl .raI mHI II II II II II EEII BaI	erge Recognition 5 gtmlac agut gggscc ggscc gggscc ggscc	5 Overhang 5 Blunk 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Supplers GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare;	S-methylation s Né-methylation s S-methylateno S-methylcytosine Né-methylcytosine Né-methylcytosine Né-methylcytosine Né-methylcytosine	Recognizes pa Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Popularity *** *** *** *** *** *** *** *** *** *	
Ad En N Ao Bd Bd Bd Bd Bd Bd Bd Bd Bd Bd Bd Bd Bd	iI tzymes curren tame > ccl ui taal mHI ti ti ti ti ti ti ti ti ti ti	ccqc thy in lst Recognition S glmlac aqut pageoc pogatoc tgatoc geometring geo	5 Overhang 5 Blunk 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Supplers Steathcare; Ge Healthcare; Ge Healthcare; Healthcare; Ge Healthcare; Ge Healthcare; Qe Jealthcare; Qe Jealthcare; Qe Jealthcare; Ge Healthcare;	S-methyladion s Mé-methyladion s Né-methyladion S-methylcytosine S-methylcytosine M4-methylcytosine N4-methylcytosine N4-methylcytosine	No Recognizes pa Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Popularity *** *** *** *** *** *** *** *** *** *	
Ad En N Ad Ad Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba	il nzymes currer same » cl J sal M H E E I Sal Sal Sal Sal Sal Sal	ecqe ecqe ecqe expendition S gtmkac gaptac gagacc gagacc gagacc gagacc gaptac gaptac geomnengac gaptac	5 Overhang 5 Blunt 3 5 5 5 5 5 5 5 5 5 5	Supplers GE Heakhcare; GE Heakhcare; GE Heakhcare; GE Heakhcare; GE Heakhcare; QE Heakhcare; QE Heakhcare; QE Heakhcare; QE Heakhcare; Dirategen; Ame GE Heakhcare; GE Heakhcare; GE Heakhcare;	S-methyladion s Mé-methyladion s S-methyladiono S-methylcytosine M4-methylcytosine M4-methylcytosine M4-methylcytosine M4-methylcytosine M6-methylcytosine	Recognizes pa Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Popularity *** *** *** *** *** *** *** *** *** *	
Ad Br Ad Br Br Br Br Br Ch Dr Dr	il htymes curren kame / if if if if if if if if if if if if if	ccq: Recognition S gtmlac agt.t agg.c gg.c totta tca tca tca tca tca tca tca	5 Overhang 5 Blunk 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Supplers GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; GE Healthcare; Trivitrogen Cop GE Healthcare; GE Healthcare; GE Healthcare; Finderbare; GE Healthcare; GE Healthcare;	S-methyladion s Ns-methyladion s S-methyladion s S-methyladion. S-methyladion N4-methyladion N4-methyladion N4-methyladion S-methyladion S-methyladion S-methyladion	No Recognizes pa Yes	Popularity *** *** *** *** *** *** *** *** *** *	
Ad En N Ao A A B B B B B B B B B B B B B B B B	il hzymes currer dame > cl .i. wal mHI ti MI ti ti ti ti ti ti ti ti ti ti ti ti ti	ecqe Recognition S gtm\ac gtm\ac gtm\ac ggtcc gggcc gggcc gggcc gggcc gggcc ggtca deget ggtrac	5 Overhang 5 5 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5	Supplers GE Heakhcare; GE Heakhcare;	S-methyladian s Methyladian s S-methyladeno S-methyladeno S-methyladeno M-methyladeno M-methyladeno S-methyladeno S-methyladeno S-methyladeno	No Recognizes pa Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Popularity *** *** *** *** *** *** ***	
Ad Phi N AA AA Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba	il Azymes currer Jame - Jal Jal Jal H H H H H H H H H H H H H	ccq: Recognition S gtmlac agt.t agg.c gg.c totta tca tca tca tca tca tca tca	5 Overhang 5 Blunk 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Supler: Ge Heathcare; Ge Heathcare; Ge Heathcare; Ge Heathcare; Ge Heathcare; Ge Heathcare; Citediticare; Citediticare; Trivitrogen Corp Ge Heathcare; Citediticare; Ci	S-methyladion s Ns-methyladion s S-methyladion s S-methyladion. S-methyladion N4-methyladion N4-methyladion N4-methyladion S-methyladion S-methyladion S-methyladion	No Recognizes pa Ves Yes Yes	Popularity *** *** *** *** *** *** *** *** *** *	

Figure 13.6: Adding and removing enzymes in the existing enzyme list.

Select sequences in either top or bottom table (see 13.3.1). Use the arrows to add and remove sequences. Click **Finish** to see the modified list.

Chapter 14

Sequence alignment

Contents

14.1	Create an alignment
	14.1.1 Gap costs
	14.1.2 Fast or accurate alignment algorithm
14.2	View alignments
	14.2.1 Conservation
14.3	Edit alignments
	14.3.1 Move residues and gaps
	14.3.2 Insert gap columns
	14.3.3 Delete residues and gaps
	14.3.4 Move sequences up and down 12
	14.3.5 Delete sequences
14.4	Bioinformatics explained: Multiple alignments 12
	14.4.1 Use of multiple alignments
	14.4.2 Constructing multiple alignments

CLC Free Workbench 3.0 can align nucleotides and proteins using a *progressive alignment* algorithm (see section 14.4 or read the White paper on alignments in the **Science** section of http://www.clcbio.com).

This chapter describes how to use the program to align sequences. The chapter also describes alignment algorithms in more general terms.

14.1 Create an alignment

To create an alignment in CLC Free Workbench 3.0:

select elements to align | Toolbox in the Menu Bar | Alignments and Trees(,) | Create Alignment ()

or select elements to align | right-click either selected sequence | Toolbox | Alignments and Trees(;;;) | Create Alignment (;;;)

This opens the dialog shown in figure 14.1.

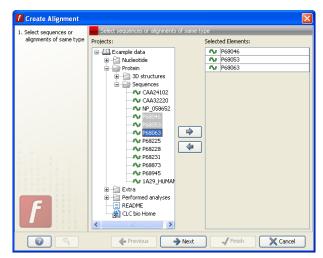


Figure 14.1: Creating an alignment.

If you have selected some elements before choosing the Toolbox action, they are now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove sequences, sequence lists or alignments from the **Project Tree**. Click **Next** to adjust alignment algorithm parameters. Clicking **Next** opens the dialog shown in figure 14.2.

Create Alignment	
 Select sequences or alignments of same type Set parameters 	Set parameters
	Gap settings Gap open cost: 10,0 Gap extension cost: 1,0 End gap cost: As any other
	Fast alignment Redo alignments Use furpoints
6	◆ Previous ◆ Next ✓ Finish X Cancel

Figure 14.2: Adjusting alignment algorithm parameters.

14.1.1 Gap costs

The alignment algorithm has three parameters concerning gap costs: Gap open cost, Gap extension cost and End gap cost. The precision of these parameters is to one place of decimal.

- Gap open cost. The price for introducing gaps in an alignment.
- Gap extension cost. The price for every extension past the initial gap.

If you expect a lot of small gaps in your alignment, the Gap open cost should equal the Gap extension cost. On the other hand, if you expect few but large gaps, the Gap open cost should be set significantly higher than the Gap extension cost.

However, for most alignments it is a good idea to make the Gap open cost quite a bit higher than the Gap extension cost. The default values are 10.0 and 1.0 for the two parameters, respectively.

- **End gap cost**. The price of gaps at the beginning or the end of the alignment. One of the advantages of the *CLC Free Workbench 3.0* alignment method is that it provides flexibility in the treatment of gaps at the ends of the sequences. There are three possibilities:
 - **Free end gaps**. Any number of gaps can be inserted in the ends of the sequences without any cost.
 - **Cheap end gaps**. All end gaps are treated as gap extensions and any gaps past 10 are free.
 - End gaps as any other. Gaps at the ends of sequences are treated like gaps in any other place in the sequences.

When aligning a long sequence with a short partial sequence, it is ideal to use free end gaps, since this will be the best approximation to the situation. The many gaps inserted at the ends are not due to evolutionary events, but rather to partial data.

Many homologous proteins have quite different ends, often with large insertions or deletions. This confuses alignment algorithms, but using the ''cheap end gaps'' option, large gaps will generally be tolerated at the sequence ends, improving the overall alignment. This is the default setting of the algorithm.

Finally, treating end gaps like any other gaps is the best option when you know that there are no biologically distinct effects at the ends of the sequences.

Figures 14.3 and 14.4 illustrate the differences between the different gap scores at the sequence ends.

		20		40	
P49342	1 MNPTETKA P	VSQQMEGPHL	PNKKKHKKQ A		STKLSVVHEK
P20810	1 MNPTETKA P	V S Q Q M E G P H L	PNKKKHKKQ A	VKTEPEKKSQ	STKLSVVHEK
P27321	1		MSTTGAKA	VKIESEK-SQ	SSEPPVIHEK
P08855	1 MNPAEAKAVP	ISKEME GPHP	HSKKRHRRQD		STK PPVDHEK
P12675	1 MNPTETKA P	VSKQLEGPHS	PNKKRHKKQA	VKTEPEKKSQ	STKPSVVHEK
P20811	1		MNPTEAKA	VKTEPEKKPQ	S S K P S V V H E K
Q95208	1 MNPTEAKAIP	G <mark>S K Q L E</mark> G P H S	PNKKRHKKQ A	VKTEPEKKSQ	STK PSVVH E K
		20		40	
P49342	1 MNPTETKA P	20 I SQQMEGPHL	PNKKKHKKQA	40 I VKTEPEKKSQ	STKLSVVHEK
P49342 P20810	¹ MNPTETKALP 1 MNPTETKALP		PNKKKHKKQA PNKKKHKKQA		STKLSVVHEK STKLSVVHEK
		<mark>VSQQ</mark> M <mark>≣</mark> GPH <mark>L</mark>		VKTEPEKKSQ	
P20810	1 MNPTETKAIP	<mark>VSQQ</mark> M <mark>≣</mark> GPH <mark>L</mark>		VKTEPEKKSQ VKTEPEKKSQ	STKLSVVH <mark>E</mark> K
P20810 P27321	1 <mark>MN</mark> P T E T K A I P 1 M S T T G A K A V -	VSQQMEGPHL VSQQMEGPHL	PNKKKHKKQA	VKTEPEKKSQ VKTEPEKKSQ - KIESEK-SQ	S T K L S V V H E K S S E P P V I H E K
P20810 P27321 P08855	1 MN PTETKA IP 1 MSTTGAKAV – 1 MN PAEAKAV P	VSQQMEGPHL VSQQMEGPHL ISKEMEGPHP	PNKKKHKKQA HSKKRHRRQ	KTEPEKKSQ KTEPEKKSQ - KTESEK-SQ AKTEPEK-SQ	STKLSVVHEK SSEPPVIHEK STKPPVDHEK

Figure 14.3: The first 50 positions of two different alignments of seven calpastatin sequences. The top alignment is made with cheap end gaps, while the bottom alignment is made with end gaps having the same price as any other gaps. In this case it seems that the latter scoring scheme gives the best result.

14.1.2 Fast or accurate alignment algorithm

CLC Free Workbench has two algorithms for calculating alignments:

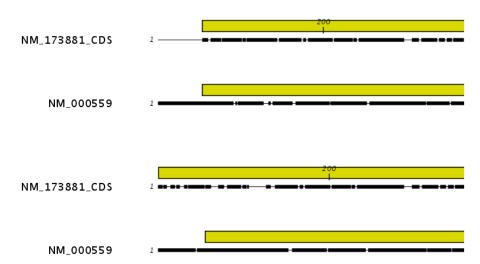


Figure 14.4: The alignment of the coding sequence of bovine myoglobin with the full mRNA of human gamma globin. The top alignment is made with free end gaps, while the bottom alignment is made with end gaps treated as any other. The yellow annotation is the coding sequence in both sequences. It is evident that free end gaps are ideal in this situation as the start codons are aligned correctly in the top alignment. Treating end gaps as any other gaps in the case of aligning distant homologs where one sequence is partial leads to a spreading out of the short sequence as in the bottom alignment.

- Accurate alignment. This is the recommended choice unless you find the processing time too long.
- **Fast alignment.** This allows for use of an optimized alignment algorithm which is very fast. The fast option is particularly useful for datasets with very long sequences.

For a comprehensive explanation of the alignment algorithms see section 14.4.

14.2 View alignments

Since an alignment is a display of several sequences arranged in rows, the basic options for viewing alignments are the same as for viewing sequences. Therefore we refer to section 10.1 for an explanation of these basic options.

However, there are a number of alignment-specific view options in the **Alignment info** preference group in the **Side Panel** to the right of the view. These preferences relate to each column in the alignment. Below is more information on these view options.

• **Consensus.** Shows a consensus sequence at the bottom of the alignment. The consensus sequence is based on every single position in the alignment and reflects an artificial sequence which resembles the sequence information of the alignment, but only as one single sequence. If all sequences of the alignment is 100% identical the consensus sequence will be identical to all sequences found in the alignment. If the sequences of the alignment differ the consensus sequence will reflect the most common sequences in the alignment. Parameters for adjusting the consensus sequences are described above.

The **Consensus Sequence** can be opened in a new view, simply by right-clicking the **Consensus Sequence** and click **Open Consensus in New View**.

- Limit. This option determines how conserved the sequences must be in order to agree on a consensus.
- No gaps. Checking this option will not show gaps in the consensus.
- **Ambiguous symbol.** Select how ambiguities should be displayed in the consensus line.
- Conservation. Displays the level of conservation at each position in the alignment.
 - Foreground color. Colors the letters using a gradient, where the right side color is used for highly conserved positions and the left side color is used for positions that are less conserved.
 - **Background color.** Sets a background color of the residues using a gradient in the same way as described above.
 - Graph. Displays the conservation level as a graph at the bottom of the alignment. The bar (default view) show the conservation of all sequence positions. The height of the graph reflects how conserved that particular position is in the alignment. If one position is 100% conserved the graph will be shown in full height.
 - * **Height.** Specifies the height of the graph.
 - * **Type.** The type of the graph.
 - Line plot. Displays the graph as a line plot.
 - **Bar plot.** Displays the graph as a bar plot.
 - **Colors.** Displays the graph as a color bar using a gradient like the foreground and background colors.
 - * **Color box.** Specifies the color of the graph for line and bar plots, and specifies a gradient for colors.

14.2.1 Conservation

The conservation view is very simplified view compared to the sequence logo view as described above. The bar (default view) show the conservation of all sequence positions. The height of the bars in the view reflects how conserved that particular position is in the alignment. If one position is 100% conserved the bar will be shown in full height.

14.3 Edit alignments

14.3.1 Move residues and gaps

The placement of gaps in the alignment can be changed by modifying the parameters when creating the alignment (see section 14.1). However, gaps and residues can also be moved after the alignment is created:

select one or more gaps or residues in the alignment | drag the selection to move

This can be done both for single sequences, but also for multiple sequences by making a selection covering more than one sequence. When you have made the selection, the mouse pointer turns into a horizontal arrow indicating that the selection can be moved (see figure 14.5).

Notice! Residues can only be moved when they are next to a gap.

AGG GAGTCAT	AGG GAGTCAT
AGG GAGTCAT	AGG GAGTCAT
AGG GAGCAGT	AGG GAGCAGT
AGG GTACAGT	A <u>gg g</u> tacagt
GAGTAGC	- GA G TAGC
CHANGC	- <mark>GA→G</mark> TAGC
GAGTAGG	- <mark>GA G</mark> TAGG
ATG GTGCACC	ATG GTGCACC
ATG GTGCAT <mark>C</mark>	ATG GTGCATC

Figure 14.5: Moving a part of an alignment. Notice the change of mouse pointer to a horizontal arrow.

14.3.2 Insert gap columns

The placement of gaps in the alignment can be changed by modifying the parameters when creating the alignment. However, gaps can also be added manually after the alignment is created.

To insert extra gap columns (i.e. gaps in all the sequences):

select a part of the alignment \mid right-click the selection \mid Add gap columns before/after

If you have made a selection covering e.g. five residues, a gap of five will be inserted. In this way you can easily control the number of gaps to insert.

14.3.3 Delete residues and gaps

Residues or gaps can be deleted for individual sequences or for the whole alignment. For individual sequences:

select the part of the sequence you want to delete | right-click the selection | Edit selection | Delete the text in the dialog | Replace

The selection shown in the dialog will be replaced by the text you enter. If you delete the text, the selection will be replaced by an empty text, i.e. deleted.

To delete entire columns:

select the part of the alignment you want to delete \mid right-click the selection \mid Delete columns

The selection may cover one or more sequences, but the **Delete columns** function will always apply to the entire alignment.

14.3.4 Move sequences up and down

Sequences can be moved up and down in the alignment:

drag the label of the sequence up or down

When you move the mouse pointer over the label, the pointer will turn into a vertical arrow indicating that the sequence can be moved.

The sequences can also be sorted automatically to let you save time moving the sequences

around. To sort the sequences alphabetically:

Right-click the label of a sequence | Sort Sequences Alphabetically

If you change the Sequence label (in the **Sequence Layout** view preferences), you will have to ask the program to sort the sequences again.

14.3.5 Delete sequences

Sequences can be removed from the alignment by right-clicking the label of a sequence:

right-click label | Delete Sequence

This can be undone by clicking **Undo** (\leq) in the Toolbar.

14.4 Bioinformatics explained: Multiple alignments

Multiple alignments are at the core of bioinformatical analysis. Often the first step in a chain of bioinformatical analyses is to construct a multiple alignment of a number of homologs DNA or protein sequences. However, despite their frequent use, the development of multiple alignment algorithms remains one of the algorithmically most challenging areas in bioinformatical research.

Constructing a multiple alignment corresponds to developing a hypothesis of how a number of sequences have evolved through the processes of character substitution, insertion and deletion. The input to multiple alignment algorithms is a number of homologous sequences i.e. sequences that share a common ancestor and most often also share molecular function. The generated alignment is a table (see figure 14.6) where each row corresponds to an input sequence and each column corresponds to a position in the alignment. An individual column in this table represents residues that have all diverged from a common ancestral residue. Gaps in the table (commonly represented by a '-') represent positions where residues have been inserted or deleted and thus do not have ancestral counterparts in all sequences.

14.4.1 Use of multiple alignments

Once a multiple alignment is constructed it can form the basis for a number of analyses:

- The phylogenetic relationship of the sequences can be investigated by tree-building methods based on the alignment.
- Annotation of functional domains, which may only be known for a subset of the sequences, can be transferred to aligned positions in other un-annotated sequences.
- Conserved regions in the alignment can be found which are prime candidates for holding functionally important sites.
- Comparative bioinformatical analysis can be performed to identify functionally important regions.

14.4.2 Constructing multiple alignments

Whereas the optimal solution to the pairwise alignment problem can be found in reasonable time, the problem of constructing a multiple alignment is much harder.

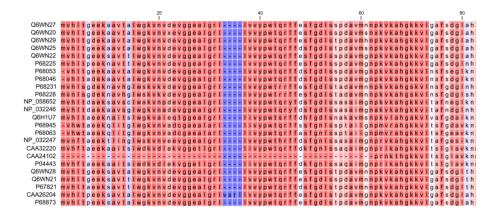


Figure 14.6: The tabular format of a multiple alignment of 24 Hemoglobin protein sequences. Sequence names appear at the beginning of each row and the residue position is indicated by the numbers at the top of the alignment columns. The level of sequence conservation is shown on a color scale with blue residues being the least conserved and red residues being the most conserved.

The first major challenge in the multiple alignment procedure is how to rank different alignments i.e. which *scoring function* to use. Since the sequences have a shared history they are correlated through their *phylogeny* and the scoring function should ideally take this into account. Doing so is, however, not straightforward as it increases the number of model parameters considerably. It is therefore commonplace to either ignore this complication and assume sequences to be unrelated, or to use heuristic corrections for shared ancestry.

The second challenge is to find the optimal alignment given a scoring function. For pairs of sequences this can be done by *dynamic programming* algorithms, but for more than three sequences this approach demands too much computer time and memory to be feasible.

A commonly used approach is therefore to do *progressive alignment* [Feng and Doolittle, 1987] where multiple alignments are built through the successive construction of pairwise alignments. These algorithms provide a good compromise between time spent and the quality of the resulting alignment

Presently, the most exciting development in multiple alignment methodology is the construction of *statistical alignment* algorithms [Hein, 2001], [Hein et al., 2000]. These algorithms employ a scoring function which incorporates the underlying phylogeny and use an explicit stochastic model of molecular evolution which makes it possible to compare different solutions in a statistically rigorous way. The optimization step, however, still relies on dynamic programming and practical use of these algorithms thus awaits further developments.

Creative Commons License

All CLC bio's scientific articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. You are free to to copy, distribute, display, and use the work for educational purposes, under the following conditions: You must attribute the work in it's original form and "CLC bio" has to be clearly labelled as author and provider of the work. You may not use this work for commercial purposes. You may not alter, transform, or build upon this work.

See http://creativecommons.org/licenses/by-nc-nd/2.5/ for more about how you may use the contents.

Chapter 15

Phylogenetic trees

Contents

15.1 Inferring phylogenetic trees	
15.1.1 Phylogenetic tree parameters	
15.1.2 Tree View Preferences	
15.2 Bioinformatics explained: phylogenetics	
15.2.1 The phylogenetic tree	
15.2.2 Modern usage of phylogenies	
15.2.3 Reconstructing phylogenies from molecular data	
15.2.4 Interpreting phylogenies	

CLC Free Workbench 3.0 offers different ways of inferring phylogenetic trees. The first part of this chapter will briefly explain the different ways of inferring trees in *CLC Free Workbench* 3.0. The second part, "Bioinformatics explained", will give a more general introduction to the concept of phylogeny and the associated bioinformatics methods.

15.1 Inferring phylogenetic trees

For a given set of aligned sequences (see chapter 14) it is possible to infer their evolutionary relationships. In *CLC Free Workbench 3.0* this is done by creating af phylogenetic tree:

Toolbox in the Menu Bar | Alignments and Trees(] | Create Tree (-

or right-click alignment in Navigation Area | Toolbox | Alignments and Trees(;;) | Create Tree (-;)

This opens the dialog displayed in figure 15.1:

If an alignment was selected before choosing the Toolbox action, this alignment is now listed in the **Selected Elements** window of the dialog. Use the arrows to add or remove elements from the **Navigation Area**. Click **Next** to adjust parameters.

15.1.1 Phylogenetic tree parameters

Figure 15.2 shows the parameters that can be set:

Create Tree	
1. Select an alignment	Select an alignment
1. Select an alignment	Projects: Selected Elements: Image: Selected Elements: Image: Selected Elements: Image: Performed analyses Image: Selected Elements: Image: Provide analyses Image: Selected Elements: Image: Provide analyses: Selected Elements: Image: Selected Elements: Image: Provide analyses: Selected Elements: Image: Selected Elements: Image: Performed analyses: Selected Elements: Selecte
	Figure 15.1: Creating a Tree.
Create Tree Select an alignment Set parameters	Set parameters
	Algorithm: Neighbor Joining Bootstrapping Perform boots Replicates: 100
F	
	← Previous → Next ✓ Finish X Cancel

Figure 15.2: Adjusting parameters.

- Algorithms
 - The **UPGMA** method assumes that evolution has occured at a constant rate in the different lineages. This means that a root of the tree is also estimated.
 - The neighbor joining method builds a tree where the evolutionary rates are free to differ in different lineages. CLC Free Workbench 3.0 always draws trees with roots for practical reasons, but with the neighbor joining method, no particular biological hypothesis is postulated by the placement of the root. Figure 15.3 shows the difference between the two methods.
- To evaluate the reliability of the inferred trees, *CLC Free Workbench 3.0* allows the option of doing a **bootstrap** analysis. A bootstrap value will be attached to each branch, and this value is a measure of the confidence in this branch. The number of replicates in the bootstrap analysis can be adjusted in the wizard. The default value is 100.

For a more detailed explanation, see "Bioinformatics explained" in section 15.2.



Figure 15.3: Method choices for phylogenetic inference. The top shows a tree found by neighbor joining, while the bottom shows a tree found by UPGMA. The latter method assumes that the evolution occurs at a constant rate in different lineages.

15.1.2 Tree View Preferences

The Tree View preferences are these:

- Text format. Changes the text format for all of the nodes the tree contains.
 - Text size. The size of the text representing the nodes can be modified in tiny, small, medium, large or huge.
 - Font. Sets the font of the text of all nodes
 - Bold. Sets the text bold if enabled.
- Tree Layout. Different layouts for the tree.
 - Node symbol. Changes the symbol of nodes into box, dot, circle or none if you don't want a node symbol.
 - Layout. Displays the tree layout as standard or topology.
 - **Show internal node labels**. This allows you to see labels for the internal nodes. Initially, there are no labels, but right-clicking a node allows you to type a label.
 - Label color. Changes the color of the labels on the tree nodes.
 - Branch label color. Modifies the color of the labels on the branches.
 - Node color. Sets the color of all nodes.
 - Line color. Alters the color of all lines in the tree.
- Annotation Layout. Specifies the annotation in the tree.

- Nodes. Sets the annotation of all nodes either to name or to species.
- **Branches.** Changes the annotation of the branches to bootstrap, length or none if you don't want annotation on branches.

Notice! Dragging in a tree will change it. You are therefore asked if you want to save this tree when the **Tree Viewer** is closed.

You may select part of a **Tree** by clicking on the nodes that you want to select.

Right-click a selected node opens a menu with the following options:

- Set root above node (defines the root of the tree to be just above the selected node).
- Set root at this node (defines the root of the tree to be at the selected node).
- Toggle collapse (collapses or expands the branches below the node).
- Change label (allows you to label or to change the existing label of a node).
- Change branch label (allows you to change the existing label of a branch).

You can also relocate leaves and branches in a tree or change the length.

Notice! To drag branches of a tree, you must first click the node one time, and then click the node again, and this time hold the mouse button.

In order to change the representation:

- Rearrange leaves and branches by
 Select a leaf or branch | Move it up and down (Hint: The mouse turns into an arrow pointing up and down)
- Change the length of a branch by Select a leaf or branch | Press Ctrl | Move left and right (Hint: The mouse turns into an arrow pointing left and right)

Alter the preferences in **Side Panel** for changing the presentation of the tree.

Notice! The preferences will not be saved. Viewing a tree in different viewers gives you the opportunity to change into different preferences in all of the viewers. For example if you select the **Annotation Layout** species for a node then you will only see the change in the specified view. If you now move leaves, the leaves in all views are moved. The options of the right-click pop up menu are changing the tree and therefore they change all views.

Notice! The **Set Root Above** and the **Set Root Here** functions change the tree, and therefore you may save it in order to be able to see it in this format later on.

15.2 Bioinformatics explained: phylogenetics

Phylogenetics describes the taxonomical classification of organisms based on their evolutionary history i.e. their *phylogeny*. Phylogenetics is therefore an integral part of the science of *systematics* that aims to establish the phylogeny of organisms based on their characteristics. Furthermore, phylogenetics is central to evolutionary biology as a whole as it is the condensation of the overall paradigm of how life arose and developed on earth.

15.2.1 The phylogenetic tree

The evolutionary hypothesis of a phylogeny can be graphically represented by a phylogenetic tree.

Figure 15.4 shows a proposed phylogeny for the great apes, *Hominidae*, taken in part from Purvis [Purvis, 1995]. The tree consists of a number of nodes (also termed vertices) and branches (also termed edges). These nodes can represent either an individual, a species, or a higher grouping and are thus broadly termed taxonomical units. In this case, the terminal nodes (also called leaves or tips of the tree) represent extant species of *Hominidae* and are the *operational taxonomical units* (OTUs). The internal nodes, which here represent extinct common ancestors of the great apes, are termed *hypothetical taxonomical units* since they are not directly observable.

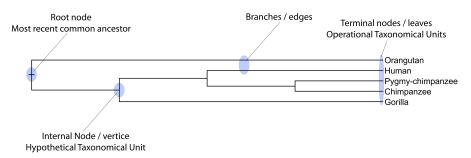


Figure 15.4: A proposed phylogeny of the great apes (Hominidae). Different components of the tree are marked, see text for description.

The ordering of the nodes determine the tree *topology* and describes how lineages have diverged over the course of evolution. The branches of the tree represent the amount of evolutionary divergence between two nodes in the tree and can be based on different measurements. A tree is completely specified by its topology and the set of all edge lengths.

The phylogenetic tree in figure 15.4 is rooted at the most recent common ancestor of all *Hominidae* species, and therefore represents a hypothesis of the direction of evolution e.g. that the common ancestor of gorilla, chimpanzee and man existed before the common ancestor of chimpanzee and man. If this information is absent trees can be drawn as unrooted.

15.2.2 Modern usage of phylogenies

Besides evolutionary biology and systematics the inference of phylogenies is central to other areas of research.

As more and more genetic diversity is being revealed through the completion of multiple genomes, an active area of research within bioinformatics is the development of comparative machine learning algorithms that can simultaneously process data from multiple species [Siepel and Haussler, 2004]. Through the comparative approach, valuable evolutionary information can be obtained about which amino acid substitutions are functionally tolerant to the organism and which are not. This information can be used to identify substitutions that affect protein function and stability, and is of major importance to the study of proteins [Knudsen and Miyamoto, 2001]. Knowledge of the underlying phylogeny is, however, paramount to comparative methods of inference as the phylogeny describes the underlying correlation from shared history that exists between data from different species.

In molecular epidemiology of infectious diseases, phylogenetic inference is also an important tool. The very fast substitution rate of microorganisms, especially the RNA viruses, means that these show substantial genetic divergence over the time-scale of months and years. Therefore, the phylogenetic relationship between the pathogens from individuals in an epidemic can be resolved and contribute valuable epidemiological information about transmission chains and epidemiologically significant events [Leitner and Albert, 1999], [Forsberg et al., 2001].

15.2.3 Reconstructing phylogenies from molecular data

Traditionally, phylogenies have been constructed from morphological data, but following the growth of genetic information it has become common practice to construct phylogenies based on molecular data, known as *molecular phylogeny*. The data is most commonly represented in the form of DNA or protein sequences, but can also be in the form of e.g. restriction fragment length polymorphism (RFLP).

Methods for constructing molecular phylogenies can be distance based or character based.

Distance based methods

Two common algorithms, both based on pairwise distances, are the UPGMA and the Neighbor Joining algorithms. Thus, the first step in these analyses is to compute a matrix of pairwise distances between OTUs from their sequence differences. To correct for multiple substitutions it is common to use distances corrected by a model of molecular evolution such as the Jukes-Cantor model [Jukes and Cantor, 1969].

UPGMA. A simple but popular clustering algorithm for distance data is Unweighted Pair Group Method using Arithmetic averages (UPGMA). [Michener and Sokal, 1957], [Sneath and Sokal, 1973]. This method works by initially having all sequences in separate clusters and continuously joining these. The tree is constructed by considering all initial clusters as leaf nodes in the tree, and each time two clusters are joined, a node is added to the tree as the parent of the two chosen nodes. The clusters to be joined are chosen as those with minimal pairwise distance. The branch lengths are set corresponding to the distance between clusters, which is calculated as the average distance between pairs of sequences in each cluster.

The algorithm assumes that the distance data has the so-called *molecular clock* property i.e. the divergence of sequences occur at the same constant rate at all parts of the tree. This means that the leaves of UPGMA trees all line up at the extant sequences and that a root is estimated as part of the procedure.

Neighbor Joining. The neighbor joining algorithm, [Saitou and Nei, 1987], on the other hand, builds a tree where the evolutionary rates are free to differ in different lineages, i.e., the tree does not have a particular root. Some programs always draw trees with roots for practical reasons, but for neighbor joining trees, no particular biological hypothesis is postulated by the placement of the root. The method works very much like UPGMA. The main difference is that instead of using pairwise distance, this method subtracts the distance to all other nodes from the pairwise distance. This is done to take care of situations where the two closest nodes are not neighbors in the ''real'' tree. The neighbor join algorithm is generally considered to be fairly good and is widely used. Algorithms that improves its cubic time performance exist. The improvement is only significant for quite large datasets.

Character based methods

Whereas the distance based methods compress all sequence information into a single number,

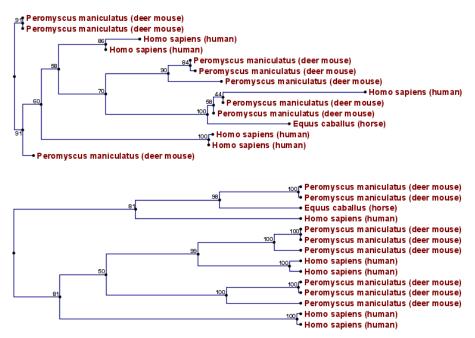


Figure 15.5: Algorithm choices for phylogenetic inference. The top shows a tree found by the neighbor joining algorithm, while the bottom shows a tree found by the UPGMA algorithm. The latter algorithm assumes that the evolution occurs at a constant rate in different lineages.

the character based methods attempt to infer the phylogeny based on all the individual characters (nucleotides or amino acids).

Parsimony. In parsimony based methods a number of sites are defined which are informative about the topology of the tree. Based on these, the best topology is found by minimizing the number of substitutions needed to explain the informative sites. Parsimony methods are not based on explicit evolutionary models.

Maximum Likelihood. Maximum likelihood and Bayesian methods (see below) are probabilistic methods of inference. Both have the pleasing properties of using explicit models of molecular evolution and allowing for rigorous statistical inference. However, both approaches are very computer intensive.

A stochastic model of molecular evolution is used to assign a probability (likelihood) to each phylogeny, given the sequence data of the OTUs. Maximum likelihood inference [Felsenstein, 1981] then consists of finding the tree which assign the highest probability to the data.

Bayesian inference. The objective of Bayesian phylogenetic inference is not to infer a single "correct" phylogeny, but rather to obtain the full posterior probability distribution of all possible phylogenies. This is obtained by combining the likelihood and the prior probability distribution of evolutionary parameters. The vast number of possible trees means that bayesian phylogenetics must be performed by approximative Monte Carlo based methods. [Larget and Simon, 1999], [Yang and Rannala, 1997].

15.2.4 Interpreting phylogenies

Bootstrap values

A popular way of evaluating the reliability of an inferred phylogenetic tree is bootstrap analysis.

The first step in a bootstrap analysis is to re-sample the alignment columns with replacement. I.e., in the re-sampled alignment, a given column in the original alignment may occur two or more times, while some columns may not be represented in the new alignment at all. The re-sampled alignment represents an estimate of how a different set of sequences from the same genes and the same species may have evolved on the same tree.

If a new tree reconstruction on the re-sampled alignment results in a tree similar to the original one, this increases the confidence in the original tree. If, on the other hand, the new tree looks very different, it means that the inferred tree is unreliable. By re-sampling a number of times it is possibly to put reliability weights on each internal branch of the inferred tree. If the data was bootstrapped a 100 times, a bootstrap score of 100 means that the corresponding branch occurs in all 100 trees made from re-sampled alignments. Thus, a high bootstrap score is a sign of greater reliability.

Other useful resources

The Tree of Life web-project http://tolweb.org

Joseph Felsensteins list of phylogeny software
http://evolution.genetics.washington.edu/phylip/software.html

Creative Commons License

All CLC bio's scientific articles are licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. You are free to to copy, distribute, display, and use the work for educational purposes, under the following conditions: You must attribute the work in it's original form and "CLC bio" has to be clearly labelled as author and provider of the work. You may not use this work for commercial purposes. You may not alter, transform, or build upon this work.

See http://creativecommons.org/licenses/by-nc-nd/2.5/ for more about how you may use the contents.

Part IV

Appendix

Appendix A

Comparison of workbenches

Below we list a number of functionalities that differ between CLC Workbenches:

- CLC Free Workbench (=)
- CLC Protein Workbench (=)
- CLC Gene Workbench (=)
- CLC Combined Workbench (=)

Batch processing	Free	Protein	Gene	Combined
Processing of multiple analyses in one single work-step		-	•	

Database searches	Free	Protein	Gene	Combined
GenBank Entrez searches	-			
UniProt searches (Swiss-Prot/TrEMBL)				-
Web-based sequence search using BLAST				
PubMed searches				
Web-based lookup of sequence data				

General sequence analyses	Free	Protein	Gene	Combined
Linear sequence view				
Circular sequence view				
Text based sequence view				
Editing sequences				
Adding and editing sequence annotations				
Sequence statistics				
Shuffle sequence				
Local complexity region analyses				
Advanced protein statistics				
Comprehensive protein characteristics report				

For a more detailed comparison, we refer to http://www.clcbio.com.

Nucleotide analyses	Free	Protein	Gene	Combined
Basic gene finding				
Reverse complement without loss of annota-				-
tion				
Restriction site analysis				-
Advanced interactive restriction site analysis				-
Translation of sequences from DNA to pro-				-
teins				
Interactive translations of sequences and				-
alignments				
G/C content analyses and graphs				-
Annotate with known SNP's in dbSNP data-				-
base				

Protein analyses	Free	Protein	Gene	Combined
3D molecule view				
Hydrophobicity analyses				-
Antigenicity analysis				-
Protein charge analysis				-
Reverse translation from protein to DNA				-
Proteolytic cleavage detection				-
Prediction of signal peptides (SignalP)				-
Transmembrane helix prediction (TMHMM)				-
Secondary protein structure prediction				-
PFAM domain search				-

Sequence alignment	Free	Protein	Gene	Combined
Multiple sequence alignments (Two algo- rithms)	•	-	•	-
Advanced re-alignment and fix-point align- ment options				
Advanced alignment editing options				-
Consensus sequence determination and management	•		•	•
Conservation score along sequences				-
Sequence logo graphs along alignments				-
Gap fraction graphs				

Dot plots	Free	Protein	Gene	Combined
Dot plot based analyses				
Phylogenetic trees	Free	Protein	Gene	Combined
Neighbor-joining and UPGMA phylogenies	•		•	
Pattern discovery	Free	Protein	Gene	Combined
Search for sequence match				-

Motif search

Pattern discovery

139

Primer design	Free	Protein	Gene	Combined
Advanced primer design tools				-
Detailed primer and probe parameters				-
Graphical display of primers				-
Generation of primer design output				-
Support for Standard PCR				-
Support for Nested PCR				-
Support for TagMan PCR				=
Support for Sequencing primers				=
Match primer with sequence				-
Ordering of primers				-

Assembly of sequencing data	Free	Protein	Gene	Combined
Advanced contig assembly				-
Importing and viewing trace data				
Trim sequences				-
Assemble without use of reference sequence				-
Assemble to reference sequence				-
Viewing and edit contigs				-

Molecular cloning	Free	Protein	Gene	Combined
Advanced molecular cloning				
Graphical display of in silico cloning				•
Advanced sequence manipulation				-

Appendix B

Formats for import and export

B.1 List of bioinformatic data formats

Below is a list of bioinformatic data formats, i.e. formats for importing and exporting sequences, alignments and trees.

File type	Suffix	File format used for
Phylip Alignment	.phy	alignments
GCG Alignment	.msf	alignments
Clustal Alignment	.aln	alignments
Newick	.nwk	trees
FASTA	.fsa/.fasta	sequences
GenBank	.gbk/.gb/.gp	sequences
GCG sequence	.gcg	sequences (only import)
PIR (NBRF)	.pir	sequences (only import)
Staden	.sdn	sequences (only import)
VectorNTI		sequences (only import)
DNAstrider	.str/.strider	sequences
Swiss-Prot	.swp	protein sequences
Lasergene sequence	.pro	protein sequence (only import)
Lasergene sequence	.seq	nucleotide sequence (only import)
Embl	.embl	nucleotide sequences
Nexus	.nxs/.nexus	sequences, trees, alignments, and sequence lists
CLC	.clc	sequences, trees, alignments, reports, etc.
Text	.txt	all data in a textual format
ABI		Trace files (only import)
AB1		Trace files (only import)
SCF2		Trace files (only import)
SCF3		Trace files (only import)
Phred		Trace files (only import)
mmCIF	.cif	structure (only import)
PDB	.pdb	structure (only import)
Preferences	.cpf	CLC workbench preferences

Notice that CLC Free Workbench can import 'external' files, too. This means that CLC Free Workbench can import all files and display them in the Navigation Area, while the above

mentioned formats are the types which can be read by CLC Free Workbench.

B.2 List of graphics data formats

Below is a list of formats for exporting graphics. All data displayed in a graphical format can be exported using these formats. Data represented in lists and tables can only be exported in .pdf format (see section 6.3 for further details).

Format	Suffix	Туре
Portable Network Graphics	.png	bitmap
JPEG	jpg	bitmap
Tagged Image File	.tif	bitmap
PostScript	.ps	vector graphics
Encapsulated PostScript	.eps	vector graphics
Portable Document Format	.pdf	vector graphics
Scalable Vector Graphics	.svg	vector graphics

Bibliography

- [Felsenstein, 1981] Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. *J Mol Evol*, 17(6):368–376.
- [Feng and Doolittle, 1987] Feng, D. F. and Doolittle, R. F. (1987). Progressive sequence alignment as a prerequisite to correct phylogenetic trees. *J Mol Evol*, 25(4):351–360.
- [Forsberg et al., 2001] Forsberg, R., Oleksiewicz, M. B., Petersen, A. M., Hein, J., Bøtner, A., and Storgaard, T. (2001). A molecular clock dates the common ancestor of European-type porcine reproductive and respiratory syndrome virus at more than 10 years before the emergence of disease. *Virology*, 289(2):174–179.
- [Hein, 2001] Hein, J. (2001). An algorithm for statistical alignment of sequences related by a binary tree. *Pacific symposium on biocomputing*, page 179.
- [Hein et al., 2000] Hein, J., Wiuf, C., Knudsen, B., Møller, M. B., and Wibling, G. (2000). Statistical alignment: computational properties, homology testing and goodness-of-fit. *J Mol Biol*, 302(1):265–279.
- [Jukes and Cantor, 1969] Jukes, T. and Cantor, C. (1969). *Mammalian Protein Metabolism (ed. HN Munro)*, chapter Evolution of protein molecules, pages 21–32. New York: Academic Press.
- [Knudsen and Miyamoto, 2001] Knudsen, B. and Miyamoto, M. M. (2001). A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins. *Proc Natl Acad Sci* U S A, 98(25):14512–14517.
- [Larget and Simon, 1999] Larget, B. and Simon, D. (1999). Markov chain monte carlo algorithms for the bayesian analysis of phylogenetic trees. *Mol Biol Evol*, 16:750–759.
- [Leitner and Albert, 1999] Leitner, T. and Albert, J. (1999). The molecular clock of HIV-1 unveiled through analysis of a known transmission history. *Proc Natl Acad Sci U S A*, 96(19):10752–10757.
- [Michener and Sokal, 1957] Michener, C. and Sokal, R. (1957). A quantitative approach to a problem in classification. *Evolution*, 11:130–162.
- [Purvis, 1995] Purvis, A. (1995). A composite estimate of primate phylogeny. *Philos Trans R Soc Lond B Biol Sci*, 348(1326):405–421.
- [Saitou and Nei, 1987] Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol*, 4(4):406–425.
- [Siepel and Haussler, 2004] Siepel, A. and Haussler, D. (2004). Combining phylogenetic and hidden Markov models in biosequence analysis. *J Comput Biol*, 11(2-3):413–428.

- [Sneath and Sokal, 1973] Sneath, P. and Sokal, R. (1973). *Numerical Taxonomy*. Freeman, San Francisco.
- [Yang and Rannala, 1997] Yang, Z. and Rannala, B. (1997). Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. *Mol Biol Evol*, 14(7):717–724.

Part V

Index

Index

AB1, file format, 23, 69, 141 ABI, file format, 23, 69, 141 About CLC Workbenches, 13 Accession number, display, 45 Add annotations, 138 Advanced preferences, 62 Algorithm alignment, 120 neighbor joining, 134 **UPGMA**, 134 Align protein sequences, tutorial, 27 sequences, 138 Alignments, 120, 138 create, 120 edit, 124 fast algorithm, 122 multiple, Bioinformatics explained, 126 view, 123 .aln, file format, 69 Annotate with SNP's, 138 Annotation layout, 90 map, 95 overview, 95 types, 91 Antigenicity, 138 Append wildcard, search, 84 Arrange layout of sequence, 24 views in View Area, 51 Assembly, 138 Automatic parsing, 70 Back up, 73 Basic concepts of use, 14 Batch processing, 80, 138 log of, 81 **Bioinformatic data** export, 71

formats, 68, 141 BLAST, 138 Bootstrap values, 135 Bug reporting, 13 CDS, translate to protein, 93 Cheap end gaps, 122 .cif, file format, 69 Circular view of sequence, 100, 138 .clc, file format, 69, 72 CLC Standard Settings, 62, 63 CLC Workbenches, 13 CLC, file format, 23, 69, 141 Cloning, 138 Close View, 49 Clustal, file format, 23, 69, 141 Coding sequence, translate to protein, 93 Compare workbenches, 138 Configure network, 16 Consensus sequence, 123, 138 open, 123 Conservation, 124 graphs, 138 Contact information, 9 Contig, 138 Convert old data, 70 Copy, 76 elements in Navigation Area, 44 into sequence, 94 search results, GenBank, 87 sequence, 96, 98 sequence selection, 110 text selection. 96 .cpf, file format, 62 Create a project, tutorial, 21 alignment, 120 enzyme list, 118 new folder, 43 new project, 43 workspace, 57

Data formats bioinformatic, 141 graphics, 142 Data structure, 42 Database GenBank, 84 local, 42 Delete element, 46 residues and gaps in alignment, 125 workspace, 57 DNA translation, 111 DNAstrider, file format, 23, 69, 141 Dot plots, 138 Double stranded DNA, 89 Download and open search results, GenBank, 87 Download and save search results, GenBank, 87 Download of CLC Free Workbench, 9 Drag and drop, 34 Navigation Area, 44 search results, GenBank, 86

Edit

alignments, 124, 138 annotations, 138 enzymes, 91 sequence, 94 sequences, 138 Element, 42 delete, 46 rename. 46 .embl, file format, 69 Embl, file format, 23, 69, 141 Encapsulated PostScript, export, 75 End gap cost, 122 End gap costs cheap end caps, 122 free end gaps, 122 Enzyme list create, 118 modify, 119 .eps-format, export, 75 Error reports, 13 Evolutionary relationship, 129 Example data, import, 16 Export bioinformatic data, 71

dependent objects, 72 folder, 71 graphics, 74 history, 72 list of formats, 141 multiple files, 71 preferences, 62 project, 71 External files, import and export, 73 Extract sequences, 100 FASTA, file format, 23, 69, 141 Feature request, 13 Find open reading frames, 111 Fit Width, 55 Floating Side Panel, 63 Format, of the manual, 19 Free end gaps, 122 .fsa, file format, 69 G/C content, 138 Gap delete, 125 extension cost, 121 fraction, 138 insert, 125 open cost, 121 .gbk, file format, 69 GCG Alignment, file format, 23, 69, 141 GCG Sequence, file format, 23, 69, 141 GenBank file format, 23, 69, 141 search, 84, 138 tutorial, 25 Gene finding, 111 General preferences, 61 General Sequence Analyses, 102 Getting started, 14 Graphics data formats, 142 export, 74 Handling of results, 80 Help, **14** Hide/show Toolbox, 56 History, 78

export, 72 preserve when exporting, 79 source elements, 79 Hydrophobicity, 138 Import bioinformatic data, 69 data from older versions, 70 existing data, 22 external files, 73 FASTA-data, 22 list of formats, 141 preferences, 62 Vector NTI data, 70 Infer Phylogenetic Tree, 129 Insert gaps, 125 Installation, 9 Join sequences, 105 .jpg-format, export, 75 Lasergene sequence protein file format, 23, 69, 141 sequence file format, 23, 69, 141 Linux installation, 11 installation with RPM-package, 12 List of sequences, 98 Load enzymes, 91 Local complexity plot, 138 Locale setting, 61 Location of selection on sequence, 55 Side Panel, 61 Log of batch processing, 81 Logo, sequence, 138 Mac OS X installation, 11 Manipulate sequences, 138 Manual format, 18 Maximize size of view, 51 Maximum memory, adjusting, 17 Memory, adjust maximum amount, 17 Menu Bar, illustration, 42 mmCIF, file format, 23, 69, 141 Mode toolbar, 53 Modify enzyme list, 119 Motif search, 138 Mouse modes, 53 Move

content of a view, 55

elements in Navigation Area, 44 sequences in alignment, 125 .msf, file format, 69 Multiple alignments, 126, 138 Multiselecting, 44 Navigation Area, 42 illustration, 42 NCBI, 84 search, tutorial, 25 Neighbor Joining algorithm, 134 Neighbor-joining, 138 Nested PCR primers, 138 Network configuration, 16 New feature request, 13 folder, 22, 43 project, 22, 43 sequence, 96 Newick, file format, 23, 69, 141 .nexus, file format, 69 Nexus, file format, 23, 69, 141 Non-standard residues, 92 Numbers on sequence, 89 .nwk, file format, 69 .nxs, file format, 69 Old data, import, 70 Open

consensus sequence, 123 files, 14 Open reading frame determination, 111 Open-ended sequence, 113 Order primers, 138 ORF, 111 Origins from, 79

Page setup, 66 Parameters search, 84 Parsing, automatic, 70 Paste/copy, 76 Pattern discovery, 138 PCR primers, 138 .pdb, file format, 69 .seq, file format, 69 PDB, file format, 23, 69, 141 .pdf-format, export, 75 Personal information, 13 Pfam domain search, 138 Phred, file format, 23, 69, 141 .phy, file format, 69 Phylip, file format, 23, 69, 141 Phylogenetic tree, 129, 138 tutorial, 28 Phylogenetics, Bioinformatics explained, 132 .pir, file format, 69 PIR (NBRF), file format, 23, 69, 141 .png-format, export, 75 Polarity colors, 92 PostScript, export, 75 Preferences, 60 advanced, 62 export, 62 General, 61 import, 62 style sheet, 62 toolbar, 61 View, 61 view, 52 Primer design, 138 Print, 65 preview, 66 visible area, 65 whole view, 65 .pro, file format, 69 Problems when starting up, 14 Processes, 56 Project, create new, 22 Protein charge, 138 report, 138 Proteolytic cleavage, 138 Proxy server, 16 .ps-format, export, 75 PubMed references, search, 138 Quick start, 15 Rasmol colors, 92 Reading frame, 111 Realign alignment, 138

Rebase, restriction enzyme database, 118

Recycle Bin, 46

Redo/Undo, 50

Region

Reference sequence, 138

Remove annotations, 94 terminated processes, 56 Rename element, 46 Replace file, 74 Report program errors, 13 Report, protein, 138 Request new feature, 13 Residue coloring, 91 Restore deleted elements, 46 size of view, 52 Restriction enzymes, 115 Restriction sites, 115, 138 enzyme database Rebase, 118 on sequence, 91 parameters, 115 tutorial, 30 Results handling, 80 Reverse complement, 110, 138 Reverse translation, 138 RNA translation, 111 Safe mode, 14 Save changes in a view, 50 search. 26 sequence, 27 style sheet, 62 view preferences, 62 workspace, 57 SCF2, file format, 23, 69, 141 SCF3, file format, 23, 69, 141 Search GenBank, 84 handle results from GenBank, 86 hits, number of, 61 in a sequence, 92 in annotations, 92 options, GenBank, 84 parameters, 84 Secondary structure prediction, 138 Select exact positions, 92 in sequence, 93 parts of a sequence, 93 workspace, 57 Selection mode in the toolbar, 55

types. 94

Selection, location on sequence, 55 Sequence alignment, 120 analysis, 102 display different information, 45 extract from sequence list, 100 information, 94 information, tutorial, 31 join, 105 layout, 89 lists, 98 logo, 138 new, 96 region types, 94 search, 92 select, 93 shuffle, 105 statistics, 102 view, 88 view as text, 96 view circular, 100 view format, 45 Sequencing data, 138 Sequencing primers, 138 Shortcuts, 58 Show/hide Toolbox, 56 Shuffle sequence, 105, 138 Side Panel, location of, 61 Signal peptide, 138 SNP annotation, 138 Sort sequences, 99 sequences alphabetically, 126 Source element, 79 Species, display sequence species, 45 Staden, file format, 23, 69, 141 Standard layout, trees, 132 Standard Settings, CLC, 63 Start Codon, 113 Start-up problems, 14 Statistics about sequence, 138 sequence, 102 Status Bar, 56, 57 illustration, 42 .str. file format. 69 Style sheet, preferences, 62

Support mail, 9 .svg-format, export, 75 Swiss-Prot, file format, 23, 69, 141 Swiss-Prot/TrEMBL, 138 .swp, file format, 69 System requirements, 12 Tabs, use of, 48 TaqMan primers, 138 Terminated processes, 56 Text format, 93 user manual, 19 view sequence, 96 Text, file format, 23, 69, 141 .tif-format, export, 75 Tips and tricks, tutorial, 33 Toolbar illustration, 42 preferences, 61 Toolbox, 56 illustration, 42 show/hide, 56 Topology layout, trees, 132 Trace data, 138 Translate annotation to protein, 93 DNA to RNA, 108 nucleotide sequence, 111 RNA to DNA, 109 to DNA, 138 to protein, 111, 138 Translation tables. 111 Transmembrane helix prediction, 138 Trim, 138 .txt, file format, 69 Undo limit, 61 Undo/Redo, 50 UniProt search, 138 UPGMA algorithm, 134, 138 Urls, Navigation Area, 73 User defined view settings, 62 User interface, 42 Vector graphics, export, 75 VectorNTI file format, 23, 69, 141

import data from, 70 View, **48** alignment, 123 preferences, 52 save changes, 50 sequence, 88 sequence as text, 96 View Area, 48 illustration, 42 View preferences, 61 show automatically, 61 style sheet, 62 View settings user defined, 62 Wildcard, append to search, 84 Windows installation, 10 Workspace, 57 create, 57 delete, 57 save, 57 select, 57 Wrap sequences, 89 Zoom, 53 tutorial, 24 Zoom In, 53 Zoom Out, 55 Zoom to 100% , 55