
Accessing QueueMetrics
through its JSON interface

Loway

Accessing QueueMetrics through its JSON interface
Loway

iii

Table of Contents
1. Document contents . 1

1.1. Revision history . 1
2. What is JSON? . 2

2.1. Which functions does QueueMetrics export as JSON? . 2
2.2. Should I use JSON or XML-RPC? . 2
2.3. Example: accessing QueueMetrics from the command-line . 2
2.4. Example: accessing QueueMetrics from Ruby . 3

3. The JSON Configuration API . 4
3.1. General usage . 4
3.2. Available editors . 6

4. The JSON Reports API . 8
4.1. Reports . 8
4.2. Authentication and agent information . 12
4.3. Quality Assessment (QA) . 15
4.4. Tasks . 20
4.5. System administration . 22

A. A short list of REST/JSON libraries . 23
5. Appendix II: QueueMetrics data blocks . 24

5.1. Available blocks for QmStats . 24
5.2. Available blocks for QmRealtime . 26

1

Chapter 1. Document contents
This document details how to access and use the JSON access functionality in Loway QueueMetrics. This makes it possible for your
programs to leverage the power of QueueMetrics by calling a very simple API, with bindings available in nearly every programming
language.

1.1. Revision history
• Jan 27, 2015: Added auto-generated list of methods

• Oct 15, 2014: New configuration methods

• May 19, 2014: First draft

2

Chapter 2. What is JSON?
Wikipedia defines JSON as:

JSON, or JavaScript Object Notation, is an open standard format that uses human-readable text to transmit data objects consisting
of attribute-value pairs. It is used primarily to transmit data between a server and web application, as an alternative to XML. Although
originally derived from the JavaScript scripting language, JSON is a language-independent data format, and code for parsing and
generating JSON data is readily available in a large variety of programming languages.

This means that, whatever your programming language of choice, you can surely find a JSON library for it; and once you have the library,
connection to QueueMetrics is straightforward.

2.1. Which functions does QueueMetrics export as JSON?
QueueMetrics uses the JSON API in order to:

• read and update the system configuration - e.g. reading, creating and updating agents, queues, DNIS etc.

• export the results of most analyses in a format that is immediately usable by other software.

• perform actions programmatically, like e.g. filling in QA forms.

Information is divided into blocks, i.e. sets of data that roughly correspond to the tables QM uses for its own output.

This means that you can build software that sits on top of QueueMetrics and uses its results as a starting point for further elaboration, e.g.:

• Visualizing results with complex graphs currently not supported by QueueMetrics.

• Computing period comparison analyses (one period versus another period).

• Accessing agent presence data for payroll computation.

• Creating QueueMetrics users based on an external reference system.

Of course there are many possible scenarios where you might want to use such information.

2.2. Should I use JSON or XML-RPC?
QueueMetrics ships with both an (older) XML-RPC API and a JSON API. The JSON API includes more fuctionality (system configuration)
and wraps the existing XML-RPC calls. We plan to primarily support the JSON API and keep the XML-RPC one only for compatibility with
legacy software. So if you are creating a new piece of software, go for the JSON API.

2.3. Example: accessing QueueMetrics from the command-line
The easiest way to interact with the JSON interface is to do it from the command line using a tool like wget or curl. All QueueMetrics JSON
calls require a valid login and password, that must be passed as an HTTP basic auth.

So in order to access the list of configured agents from the command line you would simply type (all in one line):

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET http://qmserver:8080/queuemetrics/agent/jsonEditorApi.do

The result is a human-readable data structure that describes configured agents. For example:

[{
 "group_name" : "Default",
 "PK_ID" : "71",
 "location" : "1",
 "group_by" : "1",
 "descr_agente" : "John Doe (101)",
 "chiave_agente" : "",
 "loc_name" : "Main",
 "vnc_url" : "",
 "group_icon" : "default.png",
 "real_name" : "Super Visor",
 "supervised_by" : "41",
 "current_terminal" : "",
 "nome_agente" : "agent/101",

What is JSON?

3

 "xmpp_address" : "agent101@chatserver"
},
 ...more records follow....
]

As this format is very easy to see and understand, all JSON APIs in this guide are documented by showing an example of a command-line
call using curl.

Make sure you remember to enable the user robot in QueueMetrics, or have an equivalent user you can login as.

2.4. Example: accessing QueueMetrics from Ruby
In this example we’ll see how easy it is to access QueueMetrics from a scripted language like Ruby.

#! /usr/bin/env ruby

require 'json'
require 'open-uri'

Settings - edit as needed
url = 'http://127.0.0.1:8084/queuemetrics'
apicall = "agent/jsonEditorApi.do"
login = 'robot'
pass = 'robot'

call the JSON method
replyHttp = open("#{url}/#{apicall}", :http_basic_authentication=>[login, pass])
jsonText = replyHttp.read

decode the JSON response and print it out as a Ruby structure
reply = JSON.parse(jsonText)
puts reply

This very simple script gets the list of agents in QueueMetrics and prints it out as a native Ruby data structure.

4

Chapter 3. The JSON Configuration API
This API lets you configure QueueMetrics in a way that is similar to the one used interactively to create and edit records.

3.1. General usage

3.1.1. Reading a record
Each editor has a unique name, as decribed below. Let’s say we want to configure an agent. The first thing we do is to list available agents
by issuing a list for editor agent.

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET http://127.0.0.1:8084/queuemetrics/agent/jsonEditorApi.do

The result is a set of records, each of which describes one agent configured. For example:

[{
 "group_name" : "Default",
 "PK_ID" : "71",
 "location" : "1",
 "group_by" : "1",
 "descr_agente" : "John Doe (101)",
 "chiave_agente" : "",
 "loc_name" : "Main",
 "vnc_url" : "",
 "group_icon" : "default.png",
 "real_name" : "Super Visor",
 "supervised_by" : "41",
 "current_terminal" : "",
 "nome_agente" : "agent/101",
 "xmpp_address" : "agent101@chatserver"
},
 ...more records follow....
]

You can see that each record has an ID with a fixed name of PK_ID. This is the identifier for one specific record. The other information
is provided to help you locate the record(s) you are looking for. It is also possible to pass along the parameter "q=Agent/101" to filter for
"Agent/101".

When you know which record you want to get details about, you issue a:

 curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET http://127.0.0.1:8084/queuemetrics/agent/71/jsonEditorApi.do

The result is a full description of a record, as in:

{
 "aliases" : "",
 "chiave_agente" : "",
 "current_terminal" : "-",
 "default_server" : "0",
 "descr_agente" : "John Doe (101)",
 "group_by" : "1",
 "group_by__DECODED" : "Default",
 "id_agente" : "71",
 "location" : "1",
 "location__DECODED" : "Main",
 "ltCodeAssociate" : [["inbound", "All", "Main"], ["inbound", "Q DPS", "Main"]],
 "nome_agente" : "agent/101",
 "nomedata_insert" : "demoadmin, 18/06/2007, 22:28",
 "nomedata_update" : "demoadmin, 05/05/2014, 12:56",
 "payroll_code" : "",

The JSON Configuration API

5

 "sip_login" : "",
 "sip_pwd" : "",
 "sip_realm" : "",
 "sip_uri" : "",
 "supervised_by" : "41",
 "supervised_by__DECODED" : "demosupervisor",
 "sys_dt_creazione" : "2007-06-18 22:28:20",
 "sys_dt_modifica" : "2014-05-05 12:56:33",
 "sys_optilock" : "63943",
 "sys_user_creazione" : "32",
 "sys_user_modifica" : "32",
 "vnc_url" : "",
 "xmpp_address" : "agent101@chatserver"
}

You can notice a few patterns in the data above:

• the ID is passed along in the URL.

• some fields may end in DECODED and they contain a string version of a numeric ID. When committing, you can leave the main field
blank and pass along the textual DECODED version only. If both the DECODED version and the relevant ID are present, the DECODED
version takes precedence.

• the record may contain structures (lists, hashes or tables); those are read-only and are ignored on commit.

• any field starting with opt_ or _ is a decorator, and is read-only. It is typically used to convey additional information.

• the fields named nomedata_insert and nomedata_update are textual representation of the current record creator and last updater.

• the field called sys_optilock is the current optimistic lock and is needed for updating the record.

• any other fields staring with sys_ are read-only and can be ignored on commit.

• boolean values (yes/no) are usually encoded as "1" and "0" respectively.

• when an updatable field is made up of multiple entries, they are usually separated by the pipe "|" character.

3.1.2. Updating a record - Optimistic locking
In order to perform an update on an existing record, you need to:

• load the current record,

• edit it,

• commit it.

It is of paramount importance that you reload the record before editing and committing it - as QueueMetrics is a multi-user application, it is
possible that a record is changed before you save it. In order to detect and abort such changes, QueueMetrics uses the original value from
sys_optilock to make sure the record was not modified when you save it. In case the record was modified, subsequent modifications will fail
with an OptiLock exception; in this case you need to reload the record and repeat the sequence.

So, for example, you could read record #71 into a file….

 curl --user robot:robot -H "Content-Type: application/json"
 -X GET http://127.0.0.1:8084/queuemetrics/agent/71/jsonEditorApi.do
 > agent71.json

You would then edit it and save it again, as in:

 curl --user robot:robot -i -H "Content-Type: application/json"
 -X POST -d @agent71.json
 http://127.0.0.1:8084/queuemetrics/agent/71/jsonEditorApi.do

After saving, QueueMetrics returns the new record you just saved, so you can check that your changes were saved successfully.

Some QueueMetrics editors might perform additional contextual sanity checks before saving the record and might abort
if they find a logical inconsistency. For example, you cannot enter two agents with the same agent code. In this case a
meaningful error message will be returned.

The JSON Configuration API

6

3.1.3. Creating a new record
In order to create a new record, you POST to a fake record id "-" or "0", as in:

 curl --user robot:robot -i -H "Content-Type: application/json"
 -X POST -d @new_agent.json
 http://127.0.0.1:8084/queuemetrics/agent/-/jsonEditorApi.do

After saving, QueueMetrics returns the new record you just saved, so you can obtain its current PK_ID.

3.1.4. Deleting a record
In order to delete an existing record you perform a DELETE, as in:

 curl --user robot:robot -i -H "Content-Type: application/json"
 -X DELETE http://127.0.0.1:8084/queuemetrics/agent/71/jsonEditorApi.do

There is no safety-check on delete, so a deleted record is gone forever. QueueMetrics will return the record you just deleted as it was
before being deleted, so you stilll have a chance to save it and restore it.

3.1.5. Hyerarchical records
Some editors are hyerarchical, because they depend on other editors. For example, in order to get the screens in a report, you need to
pass the screen editor the report id when listing.

You do this by adding:

 curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET
 http://127.0.0.1:8084/queuemetrics/reportScreen/8/jsonEditorApi.do?parent=7

The id’s you get out of listing are then permanent, so you do not need to pass this along when updating or inserting. When inserting, you
will generally need to fill in a "__DECODED" field with the name of the parent so that QM knows where to attach the new record.

3.2. Available editors

3.2.1. dnis
Edits the DNIS tables.

3.2.2. ivr
Edits the IVR tables.

3.2.3. class
Edits the user class tables.

3.2.4. user
Edits the user list. Any user must belong to a valid class.

3.2.5. queue
Edits the list of queues and the set of agents linked to a sepcific queue.

3.2.6. agent
Edits the agent properties.

3.2.7. agentGroup
Edits agent groups.

3.2.8. location
Edits the list of locations.

The JSON Configuration API

7

3.2.9. outcome
Edits the list of allowed outcomes.

3.2.10. pause
Edits the list of available pause codes.

3.2.11. exportJob
Created and edits export jobs.

3.2.12. exportCall
Lists the set of calls in an export job. Requires the export-job ID as a parent.

This transaction is read-only; commits will not work.

3.2.13. report
Edits availble reports.

3.2.14. reportScreen
Edits the screens for a report. Requires the screen-id as a parent.

3.2.15. reportItem
Edits the items in a screen. Requires the screen-id as a parent.

3.2.16. qaForm
Edits QA forms. It is of paramount importance to make sure that all items exist and that the lengths of each section are correct.

3.2.17. qaItem
Edits QA items.

3.2.18. perftrackRule
Display Performance Tracker rules.

This transaction is read-only; commits will not work.

3.2.19. exportReport
Edits the available export reports.

3.2.20. cfgProps
Reads and edits the configuration.properties file. In order to make changes to the file, the key EDIT_CFG is required. Any changes are
appended by the end of the file and the previous entry is commented out.

8

Chapter 4. The JSON Reports API
All of QueueMetrics JSON Reports API share a common set of guidelines:

• All requests must contain a valid QueueMetrics username and password, supplied as HTTP "Basic auth". They will usually require a user
holding the key ROBOT and may require additional security keys where appropriate.

• Both GET and POST requests are allowed - note that GET requests may have a size limit, while there is basically none for POST.

• Whenever multiple parameters are allowed, for example when querying for multiple data blocks, the same parameter is repeated multiple
times.

• In case you need to pass the API an associative array (hash), all keys within the hash have a common prefix. E.g. an array like { A:1,
B:2 } which common prefix is defined as k_ should be passed as k_A=1&k_B=2.

• All dates are to be written exactly in the format "2000-01-01.00:00:00". Make sure you do not forget the dot between the day and the
hour.

• The result of all API Reports is a hash made up of blocks, that is an array of rows, each of which is an array of strings. Usually the first
row of each block contains the titles for subsequent rows. It is mandatory when reading data to check which column contains the title you
are looking for, as different versions of QueueMetrics might report columns in a different order.

• There is always a block called "result" that specifies whether the operation completed successfully or failed, the time it took to complete
and a stack trace of the error (if any).

• Any missing parameters are read as if they were blank (and vice versa).

• The names of the data blocks you need will usually be similar to OkDO.A gentsOnQueues. You can get those easily from
QueueMetrics - where you see the Excel/CSV export icon, copy the link in your browser and inspect it - it will contain a parameter like
"S.OkDO.AgentsOnQueues.123456789". Just remove the first and last parameters.

• For QA methods, allowed grader types are: "unknown", "agent", "grader" and "caller".

For readability’s sake, all examples given below that use the curl command are written on multiple lines. When testing them
on a real system, they must be entered on one single long line instead.

4.1. Reports

4.1.1. Obtaining statistics: QmStats
This API call will start up a session in QueueMetrics, check if the user exists and has the privilege to run the report, run the analysis,
prepare the required results and return them. At the end of the call, the QueueMetrics session is destroyed so no data is kept for further
elaboration.

This means that it’s usually the most efficient thing to do to request all needed response information at once, but it’s wise to limit yourself
to the minimum data set you will actually need, as each block takes up CPU and memory space to be marshaled between the native Java
format, the intermediate JSON format and the resulting client format.

QueueMetrics poses no limits on the size of analyses you may want to run. It is advisable to run large data set analysis at
night time or when nobody is accessing the system, as they may take quite a lot of RAM and CPU and this may slow down
QueueMetrics for interactive users.

Method QmStats

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.stats

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmStats/jsonStatsApi.do?
 queues=q1
 &from=2000-01-01.00:00:00
 &to=2015-01-01.00:00:00
 &block=OkDO.RiassAllCalls
 &block=OkDO.AgentsOnQueues"

The JSON Reports API

9

Parameters

• queues: the set of queues that must be included in the analysis. They must be separated by a "|" symbol if more than one queue is
passed. The queue name is the internal Asterisk queue name. (*)

• from: the begin of the reporting period, as a date. (*)

• to: the end of the reporting period. (*)

• filter: the agent filter - an agent’s name, like "Agent/101" that must be the filter for all the relevant activity.

• block the output blocks that have to be exported. To specify multiple blocks, add multiple times. It is advisable to request all blocks you
need in a single call, as it is way cheaper for QueueMetrics to compute different blocks on a data set in memory than to recompute it
from scratch on a different API call.

Parameters marked with an asterisk are mandatory.

Where do I find data blocks?

A complete list of possible QueueMetrics blocks is maintained in the QueueMetrics User Manual, chapter 6 "Report Details", where each
block is described in detail. The QueueMetrics User Manual can be obtained from the QueueMetrics website.

For every possible block there is a name, a description, a "shortcut code" for ease of identification and an API code (usually referred to as
an "XML-RPC code" for historical reasons). That is the name of the block that has to be retrieved over JSON.

For example, if we want to access the "Disconnection Causes" block, we will look it up in the manual until we encounter
"UN03 - Disconnection Causes".

We see that its XML-RPC code is "KoDO.DiscCauses", so that is the name of the block we’ll be asking for. Block names are
case-sensitive, so make sure you are writing it exactly as it appears on the User Manual.

For a quick reference, data blocks are aso listed in Appendix II of this manual at Section 5.1, “Available blocks for QmStats” .

4.1.2. Live data: QmRealtime
Obtains the real-time status of a system.

This method is very similar to QmStats but it is used to retrieve the real time stats. The same suggestions that are given for QmStats apply.

Please note that there is a difference between results produced by the API realtime calls and the realtime statistics
produced through the QueueMetrics GUI when the key realtime.members_only is equal to true. The difference is related
to the agents list shown. As the list of queues passed through the API does not point to a specific QueueMetrics queue
instance, it’s not possible to correctly tell elementary queues from aggregate queues having the same name. In this situation
the agent list will always be computed as the union of all agents associated to all elementary queues composing the macro
queue, even if an existing aggregate queue has a different set of agents assigned to it.

Method QmRealtime

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.realtime

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmRealtime/jsonStatsApi.do?
 queues=q1
 &block=RealtimeDO.RtAgentsRaw
 &block=RealtimeDO.RtCallsRaw"

Parameters

• queues: one or more queues, separated by the pipe "|" symbol. (*)

• filter: the agent filter - an agent’s name, like "Agent/101" that must be the filter for all the relevant activity.

• block the output blocks that have to be exported. To specify multiple blocks, add multiple times.

Parameters marked with an asterisk are mandatory.

Data blocks: RealtimeDO

Real-time information, as displayed in the main QM real-time page, using system defaults.

The JSON Reports API

10

Method Description

RTRiassunto An overview table of the queues in use

RTCallsBeingProc Calls being processed in real-time

RTAgentsLoggedIn Agents logged in and paused

WallRiassunto The wallboard top panel

WallCallsBeingProc The wallboard call list

VisitorCallsProc Calls processed

VisitorTodaysOk Calls taken

VisitorTodaysKo Call lost

RtAgentsRaw Raw agent panel

RtCallsRaw Raw calls panel

When exporting blocks, it is strongly advisable to use the raw data blocks, RtAgentsRaw and RtCallsRaw, as they are
easier to parse.

For a quick reference, data blocks are aso listed in Appendix II of this manual at Section 5.2, “Available blocks for QmRealtime” .

4.1.3. Accessing audio files: QmFindAudio
This method lets you download audio files and other meta files associated with a call. In order to retrieve the file name QM will invoke the
currently configured Pluggable Modules to search within the current recording set. This can be used by third-party software that needs to
retrieve audio recordings via HTTP.

Method QmFindAudio

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.findAudio

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmFindAudio/jsonStatsApi.do?
 id=664745.1"

Parameters

• id: the call’s UniqueID. (*)

• server: mandatory on clustered systems, the server-id.

• timestamp: the time-stamp of the call, as number of seconds since the epoch.

• agent: the agent code.

• queue: the queue.

Parameters marked with an asterisk are mandatory.

If QM is on a clustered setup, the Server parameter must be passed to qualify the Asterisk call-id.

Some PM may optionally require the Call start, Agent and Queue parameters; those are used for fuzzy matching of calls, e.g on an external
storage. Most PMs that do an exact match do not need those parameters.

Response

There is only one response block returned, named "AudioFiles", where the caller will retrieve the filename of each recorded file and a URL
to actually download the file.

The response may include zero or more files; it is possible that multiple recordings are present for the same call, e.g. because they are of
different media type or because recordings were started and ended multiple times.

4.1.4. Inserting and retrieving call tags: QmInsertTag
This method is used to associate a new tag for a specific recording call file. This method is used to retrieve the list of tags related to a
specific call.

The JSON Reports API

11

By leaving the "message" empty, no new tag will be added but a list of existing tags for a specific calls can be retrieved.

Method QmInsertTag

Auth required? Yes - user must hold the key ROBOT
and CALLMONITOR_ADDTAGS

XML-RPC method QM.insertRecordTag

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmInsertTag/jsonStatsApi.do?
 id=664745.1
 &filename=abcd.wav
 &time=5
 &duration=7
 &message=This+is+a+tag
 &color=FF0000"

Parameters

• server: the server name in a cluster setup or empty for a not cluster setup.

• id: the Asterisk call-id. (*)

• filename: the recording filename associated to the tag to be inserted.

• time: the time (in seconds) where the tag will be placed. If empty, the tag will be placed at the beginning of the file.

• duration: the tag duration (in seconds). It can be empty.

• message: a text message. If empty, no tags will be added. This is useful for retrieve the list of tags associated to a specific call.

• color: a color in RGB format (from 000000 to FFFFFF).

Parameters marked with an asterisk are mandatory.

Response

There is only one response block returned, named "TagRecords", where the caller will retrieve the list of tags associated to the specific
server and UniqueId parameters.

4.1.5. Add broadcast messages: QmBroadcastMsg
This method is used to insert broadcast messages that will be shown in the realtime broadcast message page.

Method QmBroadcastMsg

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.broadcastMessage

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmBroadcastMsg/jsonStatsApi.do?
 text=Hello+world
 &everyone=1"

Parameters

• text: the message to be broadcast. (*)

• queue: the optional queue name to act as a filter (may be empty).

The JSON Reports API

12

• location: the optional location name to act as a filter (may be empty).

• supervisor: a supervisor login to act as a filter (may be empty). The message will be broadcast to people reporting to that supervisor.

• agent: a specific destination agent (may be empty). The message will be addressed to the specified agent.

• everyone: set to "1" to have the message delivered to everyone.

Parameters marked with an asterisk are mandatory.

4.2. Authentication and agent information

4.2.1. Checking logins: QmAuth
This method is used to authenticate a username / password set against the QueueMetrics server. This can be used by third-party software
that does not want to keep its own separate user database but wants to use QueueMetrics' instead.

Method QmAuth

Auth required? Yes

XML-RPC method QM.auth

Available since 14.06

See also Superceded by QmAuthenticate

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmAuth/jsonStatsApi.do"

Parameters

None. You only pass the authentication.

Response

The call will return one single block named "auth".

This block contains the following information:

• UserName: the login name.

• Status: OK if authentication was accepted or ERR if it was refused.

• FullName: The user’s full name.

• Email: The user’s email address.

• Class: The name of the class the user belongs to.

• Keys: The active key set of the user, that is, all keys given to the class plus or minus the keys that have been granted or revoked to this
specific user.

• Masterkey: If set to 1, this user has a Masterkey, so this user will pass each key ckeck.

• NLogons: The number of logons the user has made. Each successful QmAuth call counts as a logon.

4.2.2. Authentication and password changing: QmAuthenticate
This method is used to obtain the profile of a user given its login and password. The profile is made up of both login and - where applicable
- agent information. It is possible to obtain the profile either of the very user you are calling (by knowing its login and password) or of a
"deferred" separate user, if you have a user that would have the admin keys to view that information in the main GUI.

The deferred username works so that:

• If a deferred username is passed, and…

• If the username/login pair are valid and the user has key USRADMIN and ROBOT

• Then the User.* output for the deferred user is returned

• If the user also holds the key USR_AGENT, the Agent.* output is returned as well

• The password-change function applies only to the user who logs in, not to the deferred user.

Method QmAuthenticate

The JSON Reports API

13

Auth required? Yes

XML-RPC method QM.authenticate

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmAuthenticate/jsonStatsApi.do?
 deferred=agent/101"

Logs on as "robot" and obtains information about "agent/101".

Parameters

• deferred: the other user you are accessing data for. If left out, the authenticating user is used.

• newpass: the new password to be changed for the user. If left blank, the password is not set.

Parameters marked with an asterisk are mandatory.

Response

There is only one response block returned, named "output", where the caller will retrieve all user data, including the live key set for that
user.

The output block has the format:

Column 0 Column 1 Explanation

user.user_id 173 Internal user-id

user.login Agent/101

user.real_name John Doe

user.class_name AGENTS

user.keys USER AGENT XX YY All computed keys, space-
separated

user.n_logons 37

user.last_logon 2011-10-08 12:34:56

user.comment Optional

user.token 876543 Optional

user.email me@home.it [mailto:me@home.it] Optional

user.enabled true "true" or "false"

agent.id 86 Internal agent-id

agent.description Agent J.D. (101) The name displayed in reports

agent.aliases A set of aliases (if present)

agent.location Main Blank if none

agent.group_name Experienced agents Blank if none

agent.current_terminal Sip/1234 Blank or "-" if none

agent.vnc_url http://1.2.3.4/vnc Optional

agent.supervised_by Demoadmin Blank if none, or login of the
supervisor

agent.xmpp_address xmpp:101@myserver XMPP chat address

agent.visibility_key Optional

agent.payroll_code Optional

password.changed OK OK if password was changed,
blank otherwise

The following rules apply:

• Column zero contains the attribute.

• Column one contains the value of the attribute (we supply a sample in the table above).

mailto:me@home.it
mailto:me@home.it
http://1.2.3.4/vnc

The JSON Reports API

14

• Attribute names are not case sensitive.

• If the user is also an agent, that is, there is an agent under the same name as the login, Agent attributes are passed.

• Blank attributes may or may not be present in the list of attributes.

The same information can also be accessed and edited through the Configuration API.

4.2.3. The set of known queues for an agent: QmAgentQueues
Given an agent (like Agent/101) let the caller know on which queue(s) he’s supposed to work, as per the configuration on the QM interface.
For each queue, we get also back a "level", that is a penalty level, like 0, 1 or 2.

It will also return the composite queues the agent is known on and the level he’s scheduled on them.

Method QmAgentQueues

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.getQueuesForAgent

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmAgentQueues/jsonStatsApi.do?
 agent=Agent/101"

Parameters

• agent: the agent code we want to retrieve. (*)

Parameters marked with an asterisk are mandatory.

Response

If the agent code is unknown, an exception is raised.

There is only one response block returned, named "output", where the caller will retrieve all user data, including the live key set for that
user.

The output block has the format:

Column 0 Column 1 Column 2 Column 3

Agent/101 Q1 Queue 1 0

Agent/101 Q2 My Queue 2 2

Agent/101 Q3 Q4 Monitor 3 & 4 1

Explanation as follows:

• Column zero contains the agent code.

• Column one contains the queue or composite queue it is known for. These are a set of the queues as they are known in Asterisk. They
are separated by either a space or a vertical pipe (|) symbol.

• Column two contains the name that such queue(s) appear in the QM interface

• Column three contains the agent level, as per:

• 0: Main (no penalty).

• 1: Wrap (some penalty).

• 2: Spill (highest penalty).

4.2.4. The available pause codes for an agent: QmAgentPCodes
Get the current association of agents to queues.

The JSON Reports API

15

Given an agent (e.g. "Agent/101"), the caller gets back a set of pause codes and their description as it would be visible to this agent. As
QM allows protecting pause codes with security keys (so that e.g. you can have some pauses visible by some users only) QM computes
the set of allowed pause from the point of view of the agent.

Method QmAgentPCodes

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.getPauseCodesForAgent

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmAgentPCodes/jsonStatsApi.do?
 agent=Agent/101"

Parameters

• agent: the agent code we want to retrieve. (*)

Parameters marked with an asterisk are mandatory.

Response

If the agent code is unknown, an exception is raised.

There is only one response block returned, named "output", where the caller will retrieve all user data.

The output block has the format:

Column 0 Column 1 Column 2 Column 3

Agent/101 03 Lunch break PNB

Agent/101 17 E-mail PB

Agent/101 26 Coffee break NPNB

Explanation as follows:

• Column 0 contains the agent code.

• Column 1 contains the pause code, as should be reported in Asterisk.

• Column 2 is the description.

• Column 3 is the pause type:

• PB - pause is payable and billable.

• PNB - pause is payable but not billable.

• NPB - pause is not payable but billable (unlikely!).

• NPNB - pause is neither payable nor billable.

4.3. Quality Assessment (QA)

4.3.1. Retrieving QA statistics: QmQaReport
This method is very similar to QM.stats but it’s used to retrieve Quality Assessment statistics.

Method QmQaReport

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.qareport

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"

The JSON Reports API

16

 -X GET "http://localhost:8084/queuemetrics/QmQaReport/jsonStatsApi.do
 ?from=2000-01-01.00:00:00
 &to=2015-01-01.00:00:00
 &queues=q1|q2
 &form=MyForm
 &block=QualAssDO.TrkCalls
 &block=QualAssDO.Res1"

Parameters

• queues: one or more queues, separated by the pipe "|" symbol. (*)

• from: the beginning of the reporting period, in date-time format. (*)

• to: the end period. (*)

• agent: the agent code to be used as a filter.

• form: the form you want to report on. (*)

• grader: the grader type.

• block: One or more data blocks that you need to access.

Parameters marked with an asterisk are mandatory.

Allowed data blocks: QualAssDO

Method Description

TrkCalls Tracked calls per agent report

TrkCallsQ Tracked calls per queue report

CallSupervs Supervisors tracking calls report

Res1 Section 1 (as defined in the form) calls by agent report

Res1Q Section 1 (as defined in the form) calls by queue report

Res2 Section 2 (as defined in the form) calls by agent report

Res2Q Section 2 (as defined in the form) calls by queue report

Res3 Section 3 (as defined in the form) calls by agent report

Res3Q Section 3 (as defined in the form) calls by queue report

Res4 Section 4 (as defined in the form) calls by agent report

Res4Q Section 4 (as defined in the form) calls by queue report

Res5 Section 5 (as defined in the form) calls by agent report

Res5Q Section 5 (as defined in the form) calls by queue report

Res6 Section 6 (as defined in the form) calls by agent report

Res6Q Section 6 (as defined in the form) calls by queue report

Res7 Section 7 (as defined in the form) calls by agent report

Res7Q Section 7 (as defined in the form) calls by queue report

Res8 Section 8 (as defined in the form) calls by agent report

Res8Q Section 8 (as defined in the form) calls by queue report

Res9 Section 9 (as defined in the form) calls by agent report

Res9Q Section 9 (as defined in the form) calls by queue report

Res10 Section 10 (as defined in the form) calls by agent report

Res10Q Section 10 (as defined in the form) calls by queue report

AgentDetail Tracked calls details for each defined agent

Data blocks from QualAssFormDO can be queried as well (see below).

4.3.2. Raw form data: QmQaFormReport
Reads a list of filled in QA forms within the requested period.

Method QmQaFormReport

The JSON Reports API

17

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.qaformreport

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmQaFormReport/jsonStatsApi.do
 ?from=2000-01-01.00:00:00
 &to=2015-01-01.00:00:00
 &agent=agent/101
 &queues=q1|q2
 &form=MyForm
 &block=QualAssFormDO.FormStructure
 &block=QualAssFormDO.SectionValues
 &block=QualAssFormDO.Comments"

Parameters

• queues: one or more queues, separated by the pipe "|" symbol. (*)

• from: the beginning of the reporting period, in date-time format. (*)

• to: the end period. (*)

• agent: the agent code to be used as a filter.

• form: the form you want to report on. (*)

• grader: the grader type.

• block: One or more data blocks that you need to access.

Parameters marked with an asterisk are mandatory.

Allowed data blocks: QualAssFormDO

Quality Assessment information related to QA Forms.

Method Description

FormStructure The data structure of specified form

SectionValues Raw QA values for each section in forms matching the query

Comments Comments associated to forms matching the query

4.3.3. QA form summaries: QmQaFormSummary
This method is very similar to QmStats but it’s used to retrieve aggregated information about a specific Quality Assessment Form.

The report counts the aggregated QA statistics on calls with timestamp included in the date range specified.

Method QmQaFormSummary

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.qaformsummary

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmQaFormSummary/jsonStatsApi.do
 ?from=2000-01-01.00:00:00
 &to=2015-01-01.00:00:00
 &queues=q1|q2
 &form=MyForm

The JSON Reports API

18

 &block=QualAssDO.OverallAverageFormReport
 &block=QualAssDO.ScoringItemsFormSummary"

Parameters

• queues: one or more queues, separated by the pipe "|" symbol. (*)

• from: the beginning of the reporting period, in date-time format. (*)

• to: the end period. (*)

• agent: the agent code to be used as a filter.

• form: the name of the form you want to report on. (*)

• grader: the grader type.

• block: One or more data blocks that you need to access.

Parameters marked with an asterisk are mandatory.

Allowed data blocks: QualAssDO

Quality Assessment information related to QA Forms.

Method Description

OverallAverageFormReportAggregated information for the overall specified form (scoring and not scoring questions included)

FormSummary Aggregated information for the specified form (only scoring questions)

ScoringItemsFormSummaryAggregated information for the specified form (only scoring questions, same as FormSummary)

NonScoringItemsFormSummaryAggregated information for the specified form (only non scoring questions)

4.3.4. Entering a QA form: QmQaGrading
This method lets you fill a QA form through an API call. It replies with the same raw information reported by the QmQaFormReport method
and can replace it if QA parameters are empty when calling.

The report counts the aggregated QA statistics on calls with timestamp included in the date range specified.

Method QmQaGrading

Auth required? Yes - user must hold the key ROBOT
and the key QA_TRACK

XML-RPC method QM.qaformgrading

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmQaGrading/jsonStatsApi.do
 ?calldate=2014-03-30.15:19:00
 &margin=3600
 &id=475263.1
 &form=MyForm
 &queues=q1
 &item_CLE=73
 &item_HEL=56
 &comment=Comment1
 &comment=Comment2
 &block=QualAssFormDO.FormStructure
 &block=QualAssFormDO.SectionValues
 &block=QualAssFormDO.Comments"

Parameters

• queues: the set of queues that must be included in the analysis. They must be separated by a "|" symbol if more than one queue is
passed. The queue name is the internal Asterisk queue name. (*)

• calldate: the beginning of the search period for the call. This should be usually a few seconds or minutes before the call was started. (*)

The JSON Reports API

19

• margin: This is at least the number of seconds the call was in the waiting status (or the complete call time or a suitable number that
comfortably contains the call like, for example, 3600). (*)

• form: The form name that you need to fill-in. (*)

• id: The unique identifier for the call to be graded. (*)

• grader: The grader type used to filter out graded forms.

• item_: The list of QA items score supplied as an hash of "item_" prefix (see above). The list should contain all specific form items codes
and their relative score. In order to specify N/A values for not mandatory items, an empty string should be specified. If the list is left
empty, no QA score will be filled into the form (*)

• comment: A list of the notes to be filled in the form. Each note must be supplied as a String. If the list is empty, no new comments will be
added to the form.

• block: a set of blocks to be returned. Possible values are the ones defined in QmQaFormReport.

Parameters marked with an asterisk are mandatory.

4.3.5. Finding calls to grade: QmQaCallsToGrade
Runs a Grading transaction.

Method QmQaCallsToGrade

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.qacallstograde

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmQaCallsToGrade/jsonStatsApi.do
 ?from=2010-01-01.00:00:00
 &to=2014-06-30.00:00:00
 &form=MyForm
 &queues=q1|q2
 &block=QAGradingDO.qagExtendedProposals
 &k_outcome_KN_min=100
 &k_outcome_KN_num=
 &k_agroup_Default_min=1"

Parameters

• queues: the set of queues that must be included in the analysis. They must be separated by a "|" symbol if more than one queue is
passed. The queue name is the internal Asterisk queue name. (*)

• from: a start date. (*)

• to: an end date. (*)

• form: the name of the form. (*)

• agent: an optional agent code to be used as a filter.

• k_: a hash of constrainsts used to find calls (see below).

• block: one or more response blocks.

Parameters marked with an asterisk are mandatory.

Understanding constraints

Constraints are a set of key, value pairs used by the engine to filter out the calls to be graded. The constraint list should be defined with the
proper syntax in order to be correctly interpreted by QueueMetrics.

There are two types of constraints: the percentage values and the absolute values. They should be respectively specified through the
suffixes "min" or "num".

The constraints are related to different categories:

• Individual agents: specified through the key AXG (like, for example: AGX_min or AGX_num)

The JSON Reports API

20

• All calls: specified through the key AC (like, for example: AC_min or AC_num)

• Outcome code: specified through the key outcome followed by the outcome code and separated by an underscore character (like, for
example: outcome_KN_num or outcome_KN_min)

• Agent group: specified through the key agroup followed by the agent group name and separated by an underscore character (like, for
example: agroup_Default_min or agroup_Default_num)

Data Blocks: QAGradingDO

Quality Assessment information related to calls to be graded.

Method Description

qagExtendedProposals The set of calls to be graded and related information

4.4. Tasks
Tasks have two concepts that you have to keep in mind when accessing them through the API:

• Validity: a task can have a validity period, that might be current or future. A task with a futiure validity will "mature" when it enters the
validity period.

• The Task Process Field: This is an optional identifier defined as ProcessFamily/ProcessId to be associated to the task. Either
ProcessFamily and/or ProcessId might be empty. It is used generally to link tasks to external processes, e.g. the process and ID of an
external system that loads tasks for users.

4.4.1. Live data: QmAddNoteTask
Adds a note task for a specific user.

Method QmAddNoteTask

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.tskAddNote

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmAddNoteTask/jsonStatsApi.do?
 recipient=Agent/101
 &valid_from=2010-01-01.00:00:00
 &message=Hello+World
 ¬es=notes+here"

Parameters

• recipient: the login of the user receiving the task. (*)

• valid_from: begin of validity (in long date format). See above.

• valid_to: end of validity.

• process: usually in the form "ProcessFamily/ProcessID". See above.

• message: the message associated with the task. (*)

• notes: an optional textual note.

Parameters marked with an asterisk are mandatory.

4.4.2. Live data: QmAddTrainingTask
Adds a training task for a specific user.

Method QmAddTrainingTask

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.tskAddTraining

The JSON Reports API

21

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmAddTrainingTask/jsonStatsApi.do?
 recipient=Agent/101
 &valid_from=2010-01-01.00:00:00
 &message=Hello+World
 ¬es=notes+here
 &training_title=QM+Website
 &training_url=http://queuemetrics.com"

Parameters

• recipient: the login of the user receiving the task. (*)

• valid_from: begin of validity (in long date format). See above.

• valid_to: end of validity.

• process: usually in the form "ProcessFamily/ProcessID". See above.

• message: the message associated with the task. (*)

• notes: an optional note.

• training_title: a title for this trainig task. (*)

• training_url: an URL for this training task. (*)

• training_id: an optional ID for this training task.

Parameters marked with an asterisk are mandatory.

4.4.3. Live data: QmAddMeetingTask
Adds a meeting task for a specific user.

Method QmAddMeetingTask

Auth required? Yes - user must hold the key ROBOT

XML-RPC method QM.tskAddMeeting

Available since 14.06

See also

Example

curl --user robot:robot -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmAddMeetingTask/jsonStatsApi.do?
 recipient=Agent/101
 &valid_from=2010-01-01.00:00:00
 &title=Hello
 &message=Hello+World
 ¬es=notes+here
 &date=2014-05-09.10:30:00
 &duration=300"

Parameters

• recipient: the login of the user receiving the task. (*)

• valid_from: begin of validity (in long date format). See above.

• valid_to: end of validity.

• process: usually in the form "ProcessFamily/ProcessID". See above.

• message: the message associated with the task. (*)

The JSON Reports API

22

• notes: an optional note.

• date: a date and time for the meeting. (*)

• duration: the duration of the meeting, in seconds. (*)

Parameters marked with an asterisk are mandatory.

4.5. System administration

4.5.1. Updating the activation key: QmSetActivationKey
This method is used to remotely change the license key of the QueueMetrics instance or to query the current license key.

As this operation is potentially critical, the user sending this request must hold the keys ROBOT and KEYUPDATE. We ship such a user
named keyupdater in the default QM configuration but it has to be manually enabled. Make sure you change the password as well.

As the system must be restarted after setting the new key so that it is picked up (this is done automatically), the QM server may be
unavailable for a few seconds during the restart phase and all current user sessions may be forcibly terminated. It is therefore not advisable
to run this command on a busy system with many users logged in.

Method Qm

Auth required? Yes - user must hold the key ROBOT
and KEYUPDATE

XML-RPC method QM.

Available since 14.06

See also

Example

curl --user keyupdater:enableme -i -H "Content-Type: application/json"
 -X GET "http://localhost:8084/queuemetrics/QmSetActivationKey/jsonStatsApi.do
 ?key=1234"

Parameters

• key: the new activation key. (*)

Parameters marked with an asterisk are mandatory.

Response

The custom block "KeyResults" is filled with the following parameters:

• KEY_status : NOKEY if no new key is given, otherwise OK or ERROR depending on the success of the operation.

• KEY_plexId : The server identifier.

• KEY_message : A message explaining what went wrong.

• KEY_current_appl : The name of the application.

• KEY_current_user : The name of the user that the application is licensed to.

• KEY_current_exp : The expiration date for the current key.

Please note that when a new key is installed, the current user and expiration date are those of the system on which the key is being
installed; you should get the new ones as soon as the system restarts (will usually take between 5 and 20 seconds).

23

Appendix A. A short list of REST/JSON
libraries

The following list is by no means exhaustive of all available implementations. In most cases REST/JSON implementation are embedded
in the language itself and are logically split between a network library that will take care of the HTTP request and a JSON library that will
unmarshal the response.

Java
The excellent Jackson library will help you parse and create JSON - see https://github.com/FasterXML/jackson - while the embedded
class java.net.URLConnection will take care of the connection.

Perl
You can use the JSON module and LWP::UserAgent for accessing the remote QM instance.

Python
The json and urllib2 libraries should be immediately available.

JavaScript / NodeJS
The http module will take care of the connection while JSON.parse will decode the output.

C# / .Net
Can be done natively - see example at http://msdn.microsoft.com/en-us/library/hh674188.aspx

PHP
You can usually read a remote URL with php_curl and retry the JSON structure with json_decode . Here’s an example of a GET query
with php:

$url = "http://queuemetrics-server:8080/queuemetrics/agent/73/jsonEditorApi.do

$ch = curl_init();
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "GET");
curl_setopt($ch, CURLOPT_USERPWD, "username:password");
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$output = curl_exec($ch);
curl_close($ch);

print_r(json_decode($output, true));

Ruby
The modules json and open-uri are available in the standard library.

Go
Can be done natively leveraging the encoding/json and net/http packages.

https://github.com/FasterXML/jackson
http://msdn.microsoft.com/en-us/library/hh674188.aspx

24

Chapter 5. Appendix II: QueueMetrics data
blocks
5.1. Available blocks for QmStats

• AgentsDO.ReportAgents

• AgentsDO.SessionPauseDur

• AgentsDO.AgentAvail

• AgentsDO.AnsCallsQueues

• AgentsDO.AnsCallsCG

• AgentsDO.AnsCallsLocation

• AgentsDO.AnsCallsSG

• AgentsDO.PerformanceAcdGroups

• AgentsDO.AgentOccupancy

• AgentsDO.AgentSessionTimeByHour

• AgentsDO.AgentPayableTimeByHour

• AgentsDO.AgentBillableTimeByHour

• AgentsDO.AgentSessionByQueueTagFeatureReport

• AgentsDO.SessionByQueueTagFeatureReport

• AreaAnDO.Setup

• AreaAnDO.CallsOK

• AreaAnDO.CallsKO

• CallDistrDO.AnsDistrPerDay

• CallDistrDO.AnsWaitPerDay

• CallDistrDO.UnansWaitPerDay

• CallDistrDO.SalesPerDay

• CallDistrDO.StaffPerDay

• CallDistrDO.QPosPerDay

• CallDistrDO.InclSlaPerDay

• CallDistrDO.TrafficAnPerDay

• CallDistrDO.AnsDistrPerHr

• CallDistrDO.AnsWaitPerHr

• CallDistrDO.UnansWaitPerHr

• CallDistrDO.SalesPerHr

• CallDistrDO.StaffPerHr

• CallDistrDO.QPosPerHr

• CallDistrDO.InclSlaPerHr

• CallDistrDO.TrafficAnPerHr

• CallDistrDO.AnsDistrPerDOW

• CallDistrDO.AnsWaitPerDOW

• CallDistrDO.UnansWaitPerDOW

Appendix II: QueueMetrics data blocks

25

• CallDistrDO.SalesPerDOW

• CallDistrDO.StaffPerDOW

• CallDistrDO.QPosPerDOW

• CallDistrDO.InclSlaPerDOW

• CallDistrDO.TrafficAnPerDOW

• DetailsDO.AgentSessions

• DetailsDO.AgentPauses

• DetailsDO.AgentSessionsRaw

• DetailsDO.CallsKO

• DetailsDO.AfpCallsKO

• DetailsDO.CallsKoRaw

• DetailsDO.CallsOK

• DetailsDO.AfpCallsOK

• DetailsDO.AfpCallsIVR

• DetailsDO.CallsIVR

• DetailsDO.CallsOkRaw

• DetailsDO.ButtonExportCalls

• DistrDO.ReportAcd

• DistrDO.AcdByQueue

• DistrDO.AcdByTerminals

• KoDO.ReportKoAll

• KoDO.ReportKoFully

• KoDO.DiscCauses

• KoDO.UnansByQueue

• KoDO.OutboundKo

• KoDO.UnansByLen

• KoDO.InclusiveSLA

• KoDO.ReportKoKeyPress

• KoDO.StintsKo

• KoDO.StintsOkKo

• KoDO.QPosKo

• KoDO.QPosOkKo

• KoDO.IvrKo

• KoDO.IvrOkKo

• KoDO.DnisKo

• KoDO.DnisOkKo

• KoDO.OverviewOkKo

• KoDO.InclusiveAnswSLA

• OkDO.RiassAllCalls

• OkDO.RiassFullyWithin

• OkDO.AgentsOnQueue

Appendix II: QueueMetrics data blocks

26

• OkDO.ServiceLevelAgreement

• OkDO.DisconnectionCauses

• OkDO.Transfers

• OkDO.AnsweredcallsByQueue

• OkDO.AnsweredcallsByDirection

• OkDO.StintsOk

• OkDO.QPosOk

• OkDO.IvrOk

• OkDO.DnisOk

• OkDO.MOHOk

• OkDO.HDRRpt

• OutcomesDO.GeneralRep

• OutcomesDO.CallResByOutcome

• OutcomesDO.ActivBillable

• OutcomesDO.ActivNotBillable

• OutcomesDO.AgentReportDetailed

• OutcomesDO.AgentOutcomes

• CallTagDO.CallResByTag

• OutcomesDO.CallResByFeature

• IvrDO.IvrReport

• IvrDO.IvrTiming

• IvrDO.IvrGoals

5.2. Available blocks for QmRealtime
• RealTimeDO.RTRiassunto

• RealTimeDO.RTCallsBeingProc

• RealTimeDO.RTAgentsLoggedIn

• RealTimeDO.WallRiassunto

• RealTimeDO.WallCallsBeingProc

• RealTimeDO.VisitorCallsProc

• RealTimeDO.VisitorTodaysOk

• RealTimeDO.VisitorTodaysKo

• RealTimeDO.RtLiveQueues

• RealTimeDO.RtLiveCalls

• RealTimeDO.RtLiveAgents

• RealTimeDO.RtLIveStatus

• RealTimeDO.RtAgentsRaw

• RealTimeDO.RtCallsRaw

• RealTimeDO.QueuesAndTagsView

• RealTimeDO.QueuesAndTimesView

• RealTimeDO.AgentAndOutcomeView

	Accessing QueueMetrics through its JSON interface
	Table of Contents
	Chapter 1. Document contents
	1.1. Revision history

	Chapter 2. What is JSON?
	2.1. Which functions does QueueMetrics export as JSON?
	2.2. Should I use JSON or XML-RPC?
	2.3. Example: accessing QueueMetrics from the command-line
	2.4. Example: accessing QueueMetrics from Ruby

	Chapter 3. The JSON Configuration API
	3.1. General usage
	3.1.1. Reading a record
	3.1.2. Updating a record - Optimistic locking
	3.1.3. Creating a new record
	3.1.4. Deleting a record
	3.1.5. Hyerarchical records

	3.2. Available editors
	3.2.1. dnis
	3.2.2. ivr
	3.2.3. class
	3.2.4. user
	3.2.5. queue
	3.2.6. agent
	3.2.7. agentGroup
	3.2.8. location
	3.2.9. outcome
	3.2.10. pause
	3.2.11. exportJob
	3.2.12. exportCall
	3.2.13. report
	3.2.14. reportScreen
	3.2.15. reportItem
	3.2.16. qaForm
	3.2.17. qaItem
	3.2.18. perftrackRule
	3.2.19. exportReport
	3.2.20. cfgProps

	Chapter 4. The JSON Reports API
	4.1. Reports
	4.1.1. Obtaining statistics: QmStats
	4.1.2. Live data: QmRealtime
	4.1.3. Accessing audio files: QmFindAudio
	4.1.4. Inserting and retrieving call tags: QmInsertTag
	4.1.5. Add broadcast messages: QmBroadcastMsg

	4.2. Authentication and agent information
	4.2.1. Checking logins: QmAuth
	4.2.2. Authentication and password changing: QmAuthenticate
	4.2.3. The set of known queues for an agent: QmAgentQueues
	4.2.4. The available pause codes for an agent: QmAgentPCodes

	4.3. Quality Assessment (QA)
	4.3.1. Retrieving QA statistics: QmQaReport
	4.3.2. Raw form data: QmQaFormReport
	4.3.3. QA form summaries: QmQaFormSummary
	4.3.4. Entering a QA form: QmQaGrading
	4.3.5. Finding calls to grade: QmQaCallsToGrade

	4.4. Tasks
	4.4.1. Live data: QmAddNoteTask
	4.4.2. Live data: QmAddTrainingTask
	4.4.3. Live data: QmAddMeetingTask

	4.5. System administration
	4.5.1. Updating the activation key: QmSetActivationKey

	Appendix A. A short list of REST/JSON libraries
	Chapter 5. Appendix II: QueueMetrics data blocks
	5.1. Available blocks for QmStats
	5.2. Available blocks for QmRealtime

