

LCD Module User Manual YM320240-09

Tel.: 86-411-84619565

Fax: 86-411-84619585

E-mail: goodlcd@gmail.com

Website: http://www.good-lcd.com

REVISION RECORD						
REV. NO. DATA REVISION ITEMS						
1.0	JAN 20, 2006	First Release Version				

Contents

1.Scope	4
2.Warranty	4
3.Features	4
4.MechanicalDiagram	6
5.I/OTerminal	7
6.QualityLevel	12
7.Reliability	15
8.HandlingPrecautions	15
9.PrecautionforUse	16

1.Scope

This manual defines general provisions as well as inspection standards for standard LCD module. If the event of unforeseen problem or unspecified items may occur, please contact the nearest supplier or our company.

2.Warranty

If module is not stored or used as specified in this manual, it will be void the 12- month warranty.

3.Features

3-1. Features

(1) Display mode: Transmissive/negative (optional) STN LCD

(2) Display color: _ Display dots: Yellow-green (optional)

Background : Black (optional)

(3) Display Format: 320(w)×240(h) full dots

(4)Input data: 8-bit parallel data interfaced from a MPU

or Serial interface (optional)

(5) Multiplex ratio: 1/240 Duty, 1/16Bias

(6) Viewing direction: 6 O'clock

(7) Back light: LED Yellow-Green (optional)

(8) Controller: RA8835

3-2. Mechanical features

Zi Wicchamear reacares		
Item	Specifications	Unit
Outline dimensions	148.1(W)×103.3H) ×13.0Max.(T)	mm
Viewing Area	123.0(W)×93.0(H)	mm
Image Area	108.77(W)×81.57(H)	mm
Number of Dots	320 (W)×240(H)	
Dot Size	0.31(W)×0.31(H)	mm
Dot Pitch	0.34(W)×0.34(H)	mm
Weight		g

3-3. Absolute maximum ratings

Item	Symbol	Condition	Min	Max	Units
Power supply for logic	Vdd-Vss	2 5℃	-0.3	7.0	V
Operating voltage for LCD	Vdd-V0	2 5℃	-0.3	28.0	V
Input voltage	Vin	2 5℃	-0.3	Vdd+0.3	V
Operating temperature	Тор		- 20	70	${\mathbb C}$
Storage temperature	Tstg		- 25	80	${\mathbb C}$

Note:

- The modules may be destroyed if they are used beyond absolute maximum ratings. In ordinary operation, it is desirable to use them within recommended operation conditions. Using the modules beyond these conditions may cause malfunction and poor reliability.
- 2) All voltage values are referenced to GND=0V.

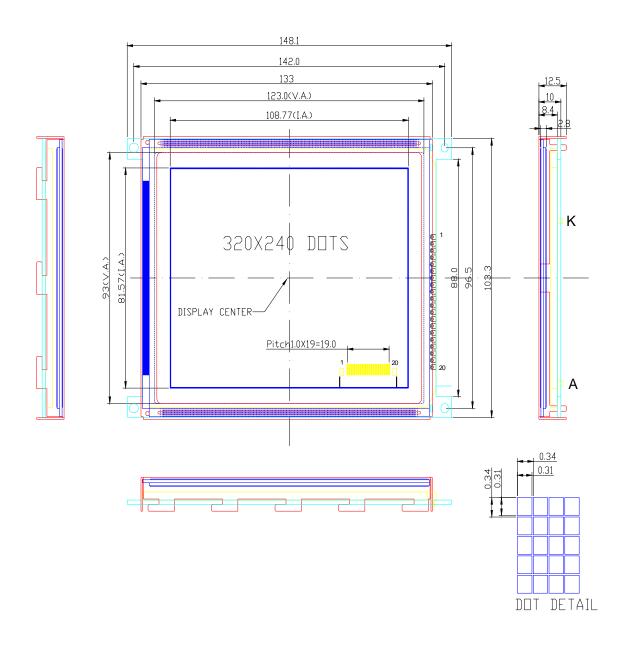
3-4Electrical Characteristics

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage		Vdd	_	4.5	5.0	5.5	V
Register data retention voltage		Voh	_	2.0		6.0	V
Input leakage cur	rent	ILI	VI=Vdd		0.05	2.0	
Output leakage co	urrent	ILo	VI=Vdd		0.10	5.0	uA
Quiescent supply	current	IQ	Sleep mode Vosc1=V/cs=V/rd=Vdd		0.05	20.0	uA
Oscillator frequen	ісу	Fosc	Management of amountal	1.0	-	10.0	MHz
External clock fre	quency	Fcl	Measured at crystal	1.0		10.0	MHz
Oscillator feedbac	Oscillator feedback resistance		47.5% duty cycle	0.5	1.0	3.0	$M \Omega$
TTL							
loon at Malta are	"H" Level	Vih	Note 1	0.5Vdd		Vdd	
Input Voltage	"L" Level	Vil	Note 1	Vss		0.2Vdd	V
Outrout Valtage	"H" Level	Vih	IOH=-5.0mA, Note 1	2.4		_	V
Output Voltage	"L" Level	Vil	IOL=5.0mA, Note 1	_		Vss+0.4	
COMS							
Innut Valtage	"H" Level	Vih	Note 2	0.8Vdd		Vdd	_
Input Voltage	"L" Level	Vil	Note 2	Vss		0.2Vdd	\ /
Output Valtage	"H" Level	Vih	IOH=-2.0mA, Note 2	Vdd-0.4			V
Output Voltage	"L" Level	Vil	IOL=1.6mA ,Note 2	_		Vss+0.4	

Note: <1>D0 to D7,A0,/CS,/RD,/WR,VD0 to VD7,VA0 toVA15,/VRD,/VWRand/vce are ttl-level inputs

<2>SEL1 and NT/PL are CMOS-level inputs.YD,XD0toXD3,XSCL,XECL,LP,WF, YSCL,YDIS and CLO are CMOS-level outputs.

3-5 Electro-optical Characteristics


Item	Symbol	Conditions	Min.	Тур.	Max.	Unit	
LOD Driving Valte as		-2 0℃					
LCD Driving Voltage (Recommended voltage)	Vop	25℃	-	28.0		V	
(Recommended voltage)		70 ℃					
Current consumption (No B/L)	ldd			20		mA	
Power supply for logic	Vdd-Vss	25 ℃	2.7		5.5	>	

3-6 LED back light specifications

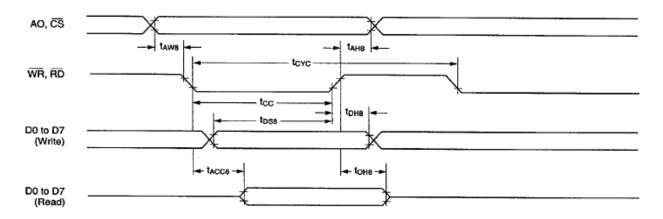
ltom		Sta			
Item	Unit	Min.	Тур.	Max.	Condition
Supply Voltage	V	1	4.2		_
Current	mA		650		
Luminous Color	_	Yellow-Green			
Operating Temp.	$^{\circ}$	-20 ~ +70			_
Storage Temp.	$^{\circ}$	-30 ~ +80			_

4. Mechanical Diagram

5.I/O Terminal

5-1 CN1 I/O Connection

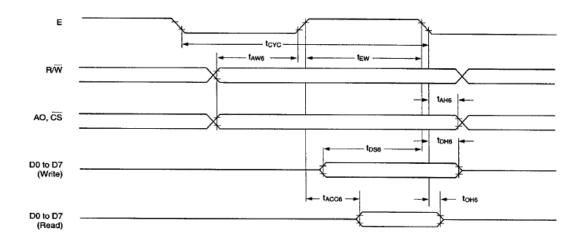
Pin No.	Symbol	Function
1	Vss	GND
2	Vdd	Power supply (+5.0V)
3	V0	Contrast adjust
4	AO	Register select signal
	7.0	A0=1, Instruction register ,A0=0, Data register
5	/WR	8080: Write signal; 6800: W/R signal
6	/RD	8080: Read signal; 6800: Enable signal
7-14	DB0-DB7	Data bus line
15	/CS	Chip select
16	/RES	Controller reset signal
17	VEE	Negative voltage output
18	SEL1	H:6800; L:8080
19	FG	Frame ground
20	LEDA	BL(+) (+5.0V)


CN2 I/O Connection (Optional)

Pin No.	Symbol	Function
1	Vss	GND
2	Vss	GND
3	Vss	GND
4	Vdd	Power supply (+5.0V)
5	Vss	GND
6	RXD	Receive Data
7	Vss	GND
8	TXD	Transmit Data
9	Vss	GND
10	VEE	Power supply voltage (Negative)
10	VCC	Please ignore it if DC/DC converter built-in

5-2 Signal timing diagram

5-2-1 8080 family interface Timing



 $Ta = -20 \text{ to } 75^{\circ}\text{C}$

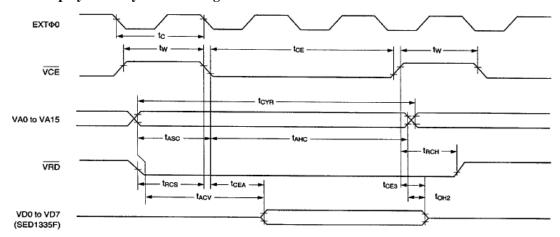
Signal	Symbol	Symbol Parameter		VDD = 4.5 to 5.5V		VDD = 2.7 to 4.5V		Condition
	Symbol	raiametei	min	max	min	max	Unit	Condition
A0, CS	tAH8	Address hold time	10	_	10	_	ns	
A0, 03	tAW8	Address setup time	0		0	-	ns	1
WR, RD	tcyc	System cycle time	See note	_	See note	_	ns	1
wn, no	tcc	Strobe pulsewidth	120	_	150	_	ns	CL = 100
	tDS8	Data setup time	120	_	120	-	ns	pF
D0 to D7	tDH8	Data hold time	5		5	_	ns	1
לם וט טל	tACC8	RD access time	_	50	, –	80	ns	
	tOH8	Output disable time	10	50	10	55	ns	

5-2-2 6800 family interface Timing

Note: toyos indicates the interval during which CS is LOW and E is HIGH.

 $Ta = -20 \text{ to } 75^{\circ}\text{C}$

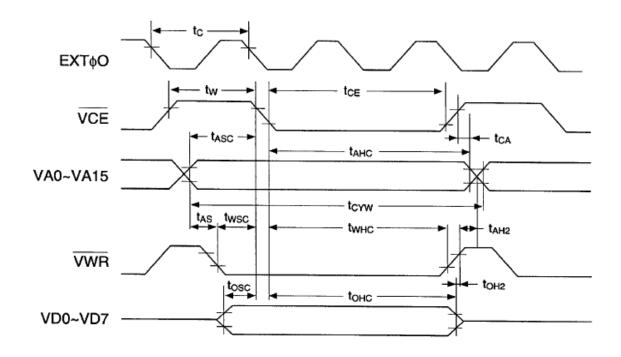
Signal	Symbol	ymbol Parameter		VDD = 4.5 to 5.5V		VDD = 2.7 to 4.5V		Condition
Oigila	Cymbol	raidilletei	min	max	min	max	Unit	Condition
A0,	tCYC6	System cycle time	See note		See note		ns	
CS,	tAW6	Address setup time	0	_	10		ns	1
R/W	tAH6	Address hold time	0	_	0	_	ns	1
	tDS6	Data setup time	100	_	120	_	ns	CL=
D0 to D7	tDH6	Data hold time	0	_	0	_	ns	100 pF
D0 10 D7	tOH6	Output disable time	10	50	10	75	ns	
	tACC6	Access time		85	_	130	ns	1
E	tEW	Enable pulsewidth	120		150		ns	1


Note: For memory control and system control commands:

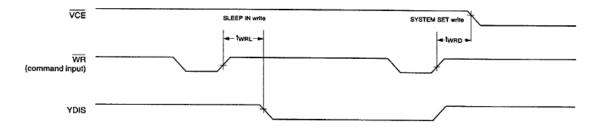
 $t_{CYC6} = 2t_{C} + t_{EW} + t_{CEA} + 75 > t_{ACV} + 245$

For all other commands:

tcyc6 = 4tc + tew + 30

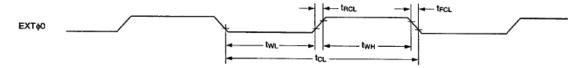

5-2-3 Display Memory Read Timing

Signal	Symbol	Parameter	VDD = 4.	5 to 5.5V	VDD = 2.	7 to 4.5V	l loi4	0
Signal Symbol	Farameter	min	max	min	max	Unit	Condition	
EXT φ0	tc	Clock period	100	_	125	_	ns	
VCE	tw	VCE HIGH-level pulse- width	tc - 50	_	tc - 50	_	ns	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	tCE	VCE LOW-level pulse- width	2tc - 30	_	2tc - 30		ns	
	tcyr	Read cycle time	3tc	_	3tc	_	ns	1
VA0 to VA15	tasc	Address setup time to falling edge of VCE	tc - 70		tc - 100	_	ns	1
	tanc	Address hold time from falling edge of VCE	2tc - 30	_	2tc - 40	_	ns	CL = 100 pF
VRD	trcs	Read cycle setup time to falling edge of VCE	tc - 45	_	tc - 60	_	ns	
VAD	tRCH	Read cycle hold time from rising edge of VCE	0.5tc	_	0.5tc	_	ns	1
	tACV	Address access time	-	3tc - 100	_	3tc - 115	ns	
VD0 to	tCEA	VCE access time	_	2tc - 80		2tc - 90	ns	1
VD7	tOH2	Output data hold time	0	_	0	_	ns	1
	tCE3	VCE to data off time	0	_	0	_	ns	1


5-2-4 Display Memory Write Timing

Signal	Symbol	Parameter	VDD = 4.5	5 to 5.5V	VDD = 2.7	7 to 4.5V	1111	0
Signal	Syllibol	Parameter	min	max	min	max	Unit	Condition
EXT $\phi 0$	tc	Clock period	100	_	125	_	ns	
VCE	tw	VCE HIGH-level pulse- width	tc - 50	_	tc - 50	_	ns	
	tCE	VCE LOW-level pulse- width	2tc - 30	_	2tc - 30	_	ns	
	tcyw	Write cycle time	3tc		3tc		ns	1
	tanc	Address hold time from falling edge of VCE	2tc - 30	_	2tc – 40	_	ns	
	tASC	Address setup time to falling edge of VCE	tc - 70	_	tc - 110		ns	
VA0 to VA15	tCA	Address hold time from rising edge of VCE	0	_	0	_	ns	CL = 100
	tas	Address setup time to falling edge of VWR	0	_	0	_	ns	pF
	tAH2	Address hold time from rising edge of VWR	10	_	10	_	ns	
VWR	twsc	Write setup time to falling edge of $\overline{\text{VCE}}$	tc - 80	_	tc - 115	_	ns	
VWA	twnc	Write hold time from falling edge of VCE	2tc - 20	_	2tc - 20	_	ns	
	tosc	Data input setup time to falling edge of VCE	tc - 85	_	tc - 125	_	ns	
VD0 to VD7	tDHC	Data input hold time from falling edge of VCE	2tc - 30	_	2tc - 30	_	ns	
	tDH2	Data hold time from rising edge of VWR	5	50	5	50	ns	

Sleep In Command Timing


Signal	Symbol	Parameter	VDD = 4.	5 to 5.5V				
Signal	Symbol	Farameter	min	max	min	max	Unit	Condition
WR	twrd	VCE falling-edge delay time	See note 1	_	See note 1	_	ns	CL = 100
***	twrL	YDIS falling-edge delay time		See note 2	_	See note 2	ns	pF

Notes:

- 1. $t_{WRD} = 18t_C + t_{OSS} + 40$ (t_{OSS} is the time delay from the sleep state until stable operation) 2. $t_{WRL} = 36t_C \times [TC/R] \times [L/F] + 70$

5-2-6 External Oscillator Signal Timing

Signal	Symbol	Parameter	VDD = 4.	5 to 5.5V	VDD = 2.	7 to 4.5V	11-14	Condition
Jigilai	ai Symbol Parameter		min	max	min	max	Unit	Condition
	tRCL	External clock rise time	_	15	_	15	ns	
	tFCL	External clock fall time	T —	15	_	15	ns	1 !
EXT ¢0	twH	External clock HIGH-level pulsewidth	See note 1	See note 2	See note 1	See note 2	ns	
	tWL	External clock LOW-level pulsewidth	See note 1	See note 2	See note 1	See note 2	ns	
	tc	External clock period	100		125		ns	

1. $(tc - trcl - trcl) \times \frac{475}{1000} < twn, twn$

2. $(tc - trcl - trcl) \times \frac{525}{1000} > twH, twL$

5-3 display command

Class	Class Command					(Code	•					Hex	Command Description
		RD	WR	A0	D7	D6	D5	D4	DЗ	D2	D1	D0		·
System	SYSTEM SET	1	0	1	0	1	0	0	0	0	0	0	40	Initialize device and dis- play
COILLO	SLEEP IN	1	0	1	0	1	0	1	0	0	1	1	53	Enter standby mode
	DISP ON/OFF	1	0	1	0	1	0	1	1	0	0	D	58, 59	Enable and disable dis- play and display flashing
	SCROLL	1	0	1	0	1	0	0	0	1	0	0	44	Set display start address and display regions
	CSRFORM	1	0	1	0	1	0	-	1	1	0	1	5D	Set cursor type
Display control	CGRAM ADR	1	0	1	0	1	0	1	1	1	0	0	5C	Set start address of char acter generator RAM
Control	CSRDIR	1	0	1	0	1	0	0	1	1	CD 1	CD 0	4C to 4F	Set direction of cursor movement
	HDOT SCR	1	0	1	0	1	0	1	1	0	1	0	5A	Set horizontal scroll pos- ition
	OVLAY	1	0	1	0	1	0	1	1	0	1	1	5B	Set display overlay for- mat
Drawing	CSRW	1	0	1	0	1	0	0	0	1	1	0	46	Set cursor address
control	CSRR	1	0	1	0	1	0	0	0	1	1	1	47	Read cursor address
Memory	MWRITE	1	0	1	0	1	0	0	0	0	1	0	42	Write to display memory
control	MREAD	1	0	1	0	1	0	0	0	0	1	1	43	Read from display mem- ory

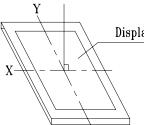
Notes:

- In general, the internal registers of the SED1330F/1335F/1336F are modified as each command parameter is input. However,
 the microprocessor does not have to set all the parameters of a command and may send a new command before all parameters
 have been input. The internal registers for the parameters that have been input will have been changed but the remaining
 parameter registers are unchanged.
 - 2-byte parameters (where two bytes are treated as one data item) are handled as follows:
 - a. CSRW, CSRR: Each byte is processed individually. The microprocessor may read or write just the low byte of the cursor address.
 - SYSTEM SET, SCROLL, CGRAM ADR: Both parameter bytes are processed together. If the command is changed after half of the parameter has been input, the single byte is ignored.
- 2. APL and APH are 2-byte parameters, but are treated as two 1-byte parameters.

6. Quality Level

6-1 Inspection conditions

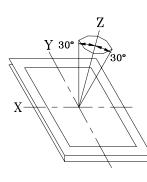
6-1-1The environmental conditions for inspection shall be as follows:


Room temperature: $20\pm3^{\circ}$ C

Humidity: $65\pm20\%$ RH

6-1-2 The external visual inspection:

The inspection shall be performed by using a 20W fluorescent lamp for illumination and the distance between LCD and the eyes of the inspector should be at least 30cm.


(1) Light method

Display Surface

Fluorescent lamp set the perpendicular to the display surface

(2) Inspection distance and angle

Inspection should be performed within \emptyset (\emptyset =30°) from Z axis to each X and Y axis.

Inspection distance of any direction within \emptyset must be kept 30±50cm to the display surface.

6-2 Sampling procedures for each item's acceptance level table

Defect type	Sampling procedure	AQL
	MIL-STD-105D Inspection Level I	
Major defect	Normal inspection	Q/GD-07-2006(1)
	Single sample inspection	
	MIL-STD-105D Inspection Level I	
Minor defect	Normal inspection	Q/GD-07-2006(1)
	Single sample inspection	

6-3 Classification of defects

6-3-1 Major defect

A major defect refers to a defect that may substantially degrade usability for product applications.

6-3-2 Minor defect

A minor defect refers to a defect that deviates from existing standards almost unrelated to the effective use of the product or its operation.

6-4 Inspection standar

ltem		Criterion for defects						
1) Display on inspection								
2) Black / White spot	Size Φ Φ ≤ 0.3 0.3<Φ ≤ 0.45<Φ 0.3<Φ	Acceptable number Ignore (note) 3 1 0 four more spots crowd together				Minor		
3) Black / White line	Length (mm) Width (mm) L≤10 W≤0. 5.0≤L≤10 0.03 <w≤< td=""> 5.0≤L≤10 0.04<w≤< td=""> 1.0≤L≤10 0.05<w≤< td=""> 1.0≤L≤10 0.06<w≤< td=""> L≤10 0.08<w< td=""></w<></w≤<></w≤<></w≤<></w≤<>		0.03 ≤0.04 ≤0.05 ≤0.06 ≤0.08	Acceptable nu Ignore 3 2 2 1 follows 2) p	oint defect	n.	Minor	
4) Display pattern	Defects separate with each other at an interval of more than 20mm. [Unit: mm]						Minor	

	<u>A+B</u> ≤	0.45 0) <c th="" <=""><th><u>D+E</u>≤</th><th>€0.35</th><th><u>F+G</u>≤0.35</th><th>_</th><th></th></c>	<u>D+E</u> ≤	€0.35	<u>F+G</u> ≤0.35	_	
	Note: 1) U	Note: 1) Up to 3 damages acceptable 2) Not allowed if there are two or more pinholes every 3 of fourths inch.						
		Size Φ	(mm)		Accep	table Number	1	
		Ф	o≤0.7	7	Igno	re (note)		
E) Coat like contract		0.7<	Φ≤1.	.0	;	3		
5) Spot-like contrast		1.0<	Φ≤1.	.5		1		Minor
irregularity		1.5<	Ф		(0		
	Note: 1) Conformed to limit samples.							
	2)Intervals of defects are more than 30mm.							

Item		Crite	erion for defects		Defect type	
6) Bubbles in polarizer		Size Φ (mm) Acceptable Number Φ ≤ 0.4 Ignore (note) 0.4< Φ ≤ 0.65				
7) Scratches and dent on the polarizer			polarizer shall be in the nd "3) Black/White line".	e accordance	Minor	
8) Stains on the surface of LCD panel		s which cannot be rem a soft cloth or similar cl	oved even when wiped lige eaning.	ghtly	Minor	
9) Rainbow color		inbow color is allowed ctive area.	in the optimum contrast of	on state within	Minor	
10) Viewing area encroachment	Polarizer edge or line is visible in the opening viewing area due to polarizer shortness or sealing line.					
11) Bezel appearance	Rust and deep damages that are visible in the bezel are rejected.					
12) Defect of land surface contact	Evide	ent crevices that are vis	sible are rejected.		Minor	
13) Parts mounting	(2)	Failure to mount parts Parts not in the specific For example: Polarity i	cations are mounted s reversed, HSC or TCP	falls off.	Major	
14) Part alignment	` '		ore than 50% beyond pad ou		Minor	
15) Conductive foreign	(2)	0.45<Φ, N≥1 0.3<Φ≤0.45, N≥1 Φ: Average diameter of	of colder hall (unit: mm)		Major Minor	
matter (solder ball, solder hips)	 Φ: Average diameter of solder ball (unit: mm) (3) 0.5<l, li="" n≥1<=""> L: Average length of solder chip (unit: mm) </l,>					
16) PCB pattern damage	Deep damage is found on copper foil and the pattern is nearly broken.					
	(2) I	Damage on copper foil	other than 1) above		Minor	

17) Faulty PCB correction	(1) Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair;2 or more places are corrected per PCB.(2) Short-circuited part is cut, and no resist coating has been performed.	Minor
18) Bezel flaw	Bezel claw missing or not bent	Minor
19) Indication on name plate (sampling indication label)	(1) Failure to stamp or label error, or not legible.(all acceptable if legible)(2) The separation is more than 1/3 for indication discoloration, in which the characters can be checked.	Minor

7. Reliability

7-1 Lifetime

50,000 hours (25°C in the room without ray of sun)

7-2 Items of reliability

	Item	Condition	Criterion				
'	High Temperature Operating	60°C 96hrs	No cosmetic failure is allowable. Contrast ratio should be between initial value \pm				
2)	Low Temperature Operation	-20℃ 96hrs	10%. Total current consumption should be belo double of initial value.				
3)	Humidity	40℃, 90%RH, 96hrs					
4)	High Temperature	70℃ 96hrs	No cosmetic failure is allowable.				
5)	Low Temperature	-30℃ 96hrs	Contrast ratio should be between initial value ± 20%.				
6)	Thermal shock	25°C→30°C→25°C→70°C 5(min) 30(min) 5(min) 30(min) 5 cycle, 55~60%RH	Total current consumption should be below double of initial value.				
7)	Vibration	10~55~10hz amplitude: 1.5mm 2hrs for each direction (X,Y,Z)	No defects in cosmetic and operational function are allowable. Total current consumption should be below double of initial value.				

8. Handling Precautions

8-1 Mounting method

A panel of LCD module consists of two thin glass plates with polarizers that easily get damaged.

And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board (PCB).

Extreme care should be used when handling the LCD modules.

8-2 Cautions of LCD handling and cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below)

Ŀ

LCD Module User Manual

and wipe lightly.

- ☐ Isopropyl alcohol
- □ Ethyl alcohol
- □ Trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- □ Water
- □ Ketone
- □ Aromatics

8-3 Caution against static charge

The LCD module use C-MOS LSI drivers. So we recommend you:

Connect any unused input terminal to V_{dd} or V_{ss} . Do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

8-4 Packaging

- Module employs LCD elements, and must be treated as such.
 - Avoid intense shock and falls from a height.

To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity.

8-5 Caution for operation

- It is an indispensable condition to drive LCD module within the limits of the specified voltage since the higher voltage over the limits may cause the shorter life of LCD module.
 - An electrochemical reaction due to DC (direct current) causes LCD undesirable deterioration so that the uses of DC (direct current) drive should be avoided.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD module may show dark color in them. However those phenomena do not mean malfunction or out of order of LCD module, which will come back in the specified operating temperature.

8-6 Storage

In the case of storing for a long period of time, the following ways are recommended:

- Storage in polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with not desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping the storage temperature range.
- Storing with no touch on polarizer surface by any thing else.

8-7 Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and to wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well at once with soap and water.

9. Precautions for Use

- **9-1** Both parties should provide a limit sample on an occasion when both parties agree its necessity.
 - The judgement by a limit sample shall take effect after the limit sample has been established and confirmed by both parties
- **9-2** On the following occasions, the handling of problem should be decided through discussion and agreement between responsible of the both parties.
 - -When a question is arisen in this manual.
 - -When a new problem is arisen which is not specified in this manual.
 - -Some problem is arisen due to the change of inspection and operating conditions in users.
 - -When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.