
Appendix B:
Material Systems
Overview
ATLAS understands a library of materials for reference to material properties and models of various
regions in the semiconductor device. These materials are chosen to represent those most commonly
used by semiconductor physicists today. Users of BLAZE or BLAZE3D  will have access to all of these
materials.  S-PISCES or DEVICE3D users will have only access to Silicon and Polysilicon. 

S-PISCES is designed to maintain backward compatibility with the standalone program SPISCES2
version 5.2. In the SPISCES2 syntax, certain materials could be used in the REGION statement just by
using their name as logical parameters. This syntax is still supported.

Semiconductors, Insulators and Conductors
All materials in ATLAS are strictly defined into three classes as either semiconductor materials,
insulator materials or conductors. Each class of material has particular properties to which all users
should be aware.

Semiconductors

All equations specified by the user’s choice of models are solved in semiconductor regions. All
semiconductor regions must have a band structure defined in terms of bandgap, density of states,
affinity etc. The parameters used for any simulation can be echoed to the run-time output using
MODELS PRINT. For complex cases with mole fraction dependent models these quantities can be seen
in Tonyplot by specifying OUTPUT BAND.PARAM and saving a solution file. 

Any semiconductor region that is defined as an electrode is then considered to be a conductor region.
This is typical for polysilicon gate electrodes.

Insulators

In insulator materials only the Poisson and lattice heat  equations are solved. Therefore for isothermal
simulations, the only parameter required for an insulator is  dielectric permittivity defined using
MATERIAL PERM=<n>. 

Materials usually considered as insulators (eg. SiO2)  can be treated as semiconductors using BLAZE,
however all semiconductor parameters are then required.

Conductors

All conductor materials must be defined as electrodes. Conversely all electrode regions are defined as
conductor material regions. If a file containing regions of a material known to be a conductor are read
in, these regions will automatically become un-named electrodes. As noted bellow if the file contains
materials that are unknown, these region will become insulators. 

During electrical simulation only the electrode boundary nodes are used. Nodes that are entirely
within an electrode region are not solved. Any quantities seen inside a conductor region in TONYPLOT
are spurious. Only  optical ray tracing and absorption for LUMINOUS and lattice heating are solved
inside of conductor/electrode regions.
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Unknown Materials

If a mesh file is read containing materials not in Table B-1 these will automatically become insulator
regions  with a relative permittivity of 3.9. All user-defined materials from ATHENA, irrespective of
the material name chosen by the user, will also become such insulator materials.
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ATLAS Materials

ATLAS materials are listed in Table B-1 below.

Table B-1.  The  ATLAS  Materials

Single Element Semiconductors

Silicon1 Poly2 Germanium Diamond

Binary Compound Semiconductors

GaAs 3 GaP CdSe SnTe

SiGe InP CdTe ScN

a-SiC InSb HgS GaN

b-SiC InAs HgSe AlN

AlP ZnS HgTe InN

AlAs ZnSe PbS BeTe

AlSb ZnTe PbSe

GaSb CdS PbTe

Ternary Compound Semiconductors

AlGaAs GaSbP InAlAs GaAsP

InGaAs GaSbAs InAsP HgCdTe

InGaP InGaN AlGaN

Quaternary Compound Semiconductors

InGaAsP AlGaAsP AlGaAsSb InAlGaN

InGaNAs InGaNP AlGaNAs AlGaNP

AlInNAs AlInNP InAlGaAs InAlGaP

InAlAsP
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Notes

1. The material models and parameters of  Silicon are identical to those of S-PISCES version 5.2.  Users should  be
aware that although these band parameters may be physically inaccurate compared to bulk silicon measurements,
most other material parameters and models are empirically tuned using these band parameters.

2. Polysilicon is treated differently depending on how it is used. In cases where it is defined as an electrode,  it is treated
as a conductor. It can also be used as a semiconductor such as in a polysilicon emitter bipolars. 

3. The composition of SiGe is the only binary compound that can be varied to simulate the effects of band gap varia-
tions.

4.  Conductor names are only associated with electrodes. They are used for the specification of thermal conductivities
and complex index of refraction and for display in TonyPlot.

Rules for Specifying Compound Semiconductors

The rules for specifying the order of elements for compound semiconductors are derived from the rules
used  by the International Union of Pure and Applied Chemistry:

          1.   Cations appear before anions.

          2.   When more than one cation is present the order progresses from the element with the largest 
atomic number to the element with the smallest atomic number.

          3.   The order of anions should be the in order of the following list: B, Si, C, Sb, As, P, N, H, Te, Se, 
S, At, I, Br, Cl, O, and F.

          4.   The composition fraction x is applied to the  cation listed first. 

          5.   The composition y is applied to the anion listed first.

To accomodate popular conventions,  there are  several exceptions to these rules. 

Insulators

Vacuum Oxide Nitride Si3N4

Air SiO2 SiN Sapphire

Ambient

Conductors4

Polysilico
2

Palladium TiW TaSi

Aluminum Cobalt Copper PaSi

Gold Molybdenum Tin PtSi

Silver Lead Nickel MoSi

AlSi Iron WSi ZrSi

Tungsten Tantalum TiSi AlSi

Titanium AlSiTi NiSi Conductor

Platinum AlSiCu CoSi Contact
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•SiGe:  The composition fraction x applies to the Ge component. SiGe is then specified as Si(1-x)Ge(x),
an exception to rule #4.

•AlGaAs : This is specified as Al(x)Ga(1-x)As. This is an exception to rule #2.

•InGaAsP: The convention In(1-x)Ga(x)As(y)P(1-y) as set forth by Adachi is used. This is an exception to
rule #4.
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Silicon and Polysilicon
The material parameters defaults for Polysilicon  are identical to those for Silicon. The following
paragraphs describe some of the material parameter defaults for Silicon and Polysilicon.

Note:  Within the Physics section of this manual, a complete description is given of each model. The
parameter defaults listed in Chapter Three  are all Silicon material defaults. 

Silicon and Polysilicon Band Parameters

Silicon and Polysilicon Dielectric Properties

Silicon and Polysilicon Default Mobility Parameters

The default mobility parameters for Silicon and Poly are identical in all cases. The defaults used
depend on the particular  mobility models in question. A full description of each mobility model and
their coefficients are given in Chapter 3. 

Table B-4 contains the silicon and polysilicon default values for the low field constant mobility model.

Table B-2.  Band parameters for Silicon and Poly

Material
Eg300 

eV
α β Nc300

per cc
Nv300
per cc

χ
eV

Silicon 1.08 4.73x10-4 636.0 2.8x1019 1.04x1019 4.17

Poly 1.08 4.73x10-4 636.0 2.8x1019 1.04x1019 4.17

Table B-3.  Static dielectric constants for Silicon and Poly

Material Dielectric Constant

Silicon 11.8

Poly 11.8

Table B-4.  Lattice Mobility Model Defaults for Silicon and Poly

Material MUN
cm2/Vs

MUP
cm2/Vs

TMUN TMUP

Silicon 1000.0 500.0 1.5 1.5

Poly 1000.0 500.0 1.5 1.5
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Table B-5 contains the silicon and polysilicon default values for the field dependent mobility model.

 

Silicon and Polysilicon Bandgap Narrowing Parameters

The default values used in the bandgap narrowing model for SIlicon and Polysilicon are defined in
Table B-6.

Silicon and Polysilicon Recombination Parameters

The default parameters for Schockley-Read-Hall recombination are given in Table B-7.

The default parameters for Auger recombination are given in Table B-8;

Table B-5.  Parallel Field Dependent Mobility Model Parameters for Silicon and Poly

Material BETAN BETAP

Silicon 2 1

Poly 2 1

Table B-6.  Bandgap Narrowing Parameters for Silicon and Poly

Statement Parameter Defaults Units

MATERIAL BGN.E 6.92x10-3 V

MATERIAL BGN.N 1.3x1017 cm-3

MATERIAL BGN.C 0.5 —

Table B-7.  SRH Lifetime Parameter Defaults for Silicon and Poly

Material TAUN0 (s) TAUP0 (s) NSRHN (cm-3) NSRHP (cm-3)

Silicon 1.0x10 -7 1.0x10 -7 5.0x10 16 5.0x10 16

Poly 1.0x10 -7 1.0x10 -7 5.0x10 16 5.0x10 16

Table B-8.  Auger Coefficient Defaults for Silicon and Poly

Material AUGN AUGP

Silicon 8.3x10 -32 1.8x10 -31

Poly 8.3x10 -32 1.8x10 -31
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Silicon and Polysilicon Impact Ionization Coefficients

The default values for the SELB impact ionization coefficients are given in Table B-9.

Silicon and Polysilicon Thermal Parameters

The default values used for thermal conductivity and capacity are given in Table B-10.

Silicon And Polysilicon Effective Richardson Coefficients

Table B-9.  Impact Ionization Coefficients for Silicon and Poly

Parameter Value

EGRAN 4.0x105

BETAN 1.0

BETAP 1.0

AN1 7.03x105

AN2 7.03x105

BN1 1.231x106

BN2 1.231x106

AP1 6.71x105

AP2 1.582x106

BP1 1.693x106

BP2 2.036x106

Table B-10.  Effective Richardson Coefficients for Silicon and Poly

Material TCA TCB TCC HCA HCB HCC HCD

Silicon 0.03 1.56x10-3 1.65x10-6 1.97 3.6x10-4 0.0 -3.7x104

Poly 0.03 1.56x10-3 1.65x10-6 1.97 3.6x10-4 0.0 -3.7x104
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Table B-11.  Effective Richardson Coefficients for Silicon and Poly

Material ARICHN (A/cm2/K2) ARICHP (A/cm2/K2)

Silicon 110.0 30.0

Poly 110.0 30.0
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The Al(x)Ga(1-x)As Material System

AlGaAs Recombination Parameters.

The default recombination parameters for AlGaAs are given in Table B-12.

GaAs and AlGaAs Impact Ionization Coefficients.

The default values for the SELB impact ionization coefficients used for GaAs are given in Table B-13.
AlGaAs uses the same values as GaAs.

Table B-12.  Default Recombination Parameters for AIGaAs

Parameter Value Equation

TAUN0 1.0x10-9 3-213

TAUP0 1.0x10-8 3-213

COPT 1.5x10-10 3-226

AUGN 5.0x10-30 3-227

AUGP 1.0x10-31 3-227

Table B-13.  Impact Ionization Coefficients for GaAs

Parameter Value

EGRAN 0.0

BETAN 1.82

BETAP 1.75

EGRAN 0.0

AN1 1.889x105

AN2 1.889x105

BN1 5.75x105

BN2 5.75x105

AP1 2.215x105

AP2 2.215x105

BP1 6.57x105

BP2 6.57x105
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AlGaAs Thermal Parameters.

The default thermal parameters used for AlGaAs are given in Table B-14.

GaAs Effective Richardson Coefficients.

The default values for the effective Richardson coefficients for GaAs are 6.2875 A/cm2/K2 for electrons
and 105.2 A/cm2/K2 for holes.

Table B-14.  Default Thermal Parameters for GaAs

Parameter Value

TCA 2.27

HCA 1.738
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The In(1-x)Ga(x)As(y)P(1-y) System

InGaAsP Thermal Parameters.

The default material thermal models for InGaAsP assumes lattice-matching to InP. The material
density is then given by;

The specific heat for InGaAsP is given by;

The thermal resistivities of InGaAsP are linearly interpolated from Table B-15.

The default thermal properties of the binary compounds in the InGaAsP system are given in Table B-
16.

Table B-15.  Thermal Resistivities for InGaAsP Lattice-Matched to InP

Composition Fraction y  Thermal Resistivity (deg(cm/w)

0.0  1.47

0.1  7.05

0.2  11.84

0.3  15.83

0.4  19.02

0.5  21.40

0.6  22.96

0.7  23.71

0.8  23.63

0.9  22.71

1.0  20.95

Table B-16.  Default Thermal Properties of InP InAs GaP and GaAs

Material  Thermal Capacity (J/cm3)  Thermal Resistivity (deg(cm/W)

InP  1.543  1.47

InAs  1.994  3.70

GaP  1.292  1.30

GaAs  1.738  2.27

ρ 4.791 0.575y.composition 0.138y.composition+ +=

Cp 0.322 0.026y.composition 0.008y.composition–+=
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The default thermal properties for  the terniary compounds in the InGaAsP system: In(1-x)Ga(x)As,
In(1-x)Ga(x)P, InAs(y)P(1-y), and GaAs(y)P(1-y)  are given, as a function of composition fraction, by linear
interpolations from these binary compounds.
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Silicon Carbide (SiC)

SiC Impact Ionisation Parameters

The default values for the SELB impact ionization coefficients used for SiC are given in Table B-17.

 

SiC Thermal Parameters.

The default thermal parameters used for both 6H and 4H-SiC are shown in Table B-18.

Table B-17.  Impact Ionization Coefficients for SiC

Parameter Value

EGRAN 0.0

BETAN 1.0

BETAP 1.0

AN1 1.66x106

AN2 1.66x106

BN1 1.273x107

BN2 1.273x107

AP1 5.18x106

AP2 5.18x106

BP1 1.4x107

BP2 1.4x107

Table B-18.  Default Thermal Parameters for SiC

Parameter                                      Value

4H-SiC 6H-SiC

TCA 0.204 0.385

HCA 0 0
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Miscellaneous Semiconductors
The remainder of the semiconductors available have defined default parameter values to various
degrees of completeness. The following sections describe those parameter defaults as they exist. Since
many of the material parameters are not available at this time, it is recommended that care be taken
in using these materials. It is important to make sure that the proper values are used

Note:  The syntax MODEL PRINT can be used to echo the parameters used to the run-time output.

Miscellaneous Semiconductor Band Parameters

Table B-19.  Band Parameters for Miscellaneous Semiconductors

Material Eg(0)eV Eg(300)eV α β mc mv χeV

Silicon

Poly-
silicon

Ge 0.7437 4.77x10-4 235.0 0.2225 0.2915 4.0

Diamond 5.45 4.77x10-4 0.0 (a) (b) 7.2

6H-SiC 2.9 2.9 0.0 0.0 0.454 0.33

4H-SiC 2.2 2.2 0.0 0.0 0.41 0.165

A1P 2.43 2.43 0.0 0.0

A1As 2.16 2.16 0.0 0.0

A1Sb 1.6 2.69x10-4 2.788 (c) 0.4

GaSb 0.81 3.329x10-4 -27.6622 (c) 0.24 3.65

InSb 0.235 2.817x10-4 90.0003 0.014 0.4 4.06

ZnS 3.8 3.8 0.0 0.0 0.4 4.59

ZnSe 2.58 2.58 0.0 0.0 0.1 0.6

ZnTe 2.28 0.0 0.0 0.1 0.6 4.09

Cds 2.53 2.53 0.0 0.0 0.21 0.8 3.5

CdSe 1.74 1.74 0.0 0.0 0.13 0.45 4.5

CdTe 1.5 1.5 0.0 0.0 0.14 0.37

HgS 2.5 2.5 0.0 0.0 4.28

HgSe

HgTe
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Notes

     (a).  Nc300 = 5.0x1018

     (b).  Nv300 = 1.8x1019

     (c).  mc(X) = 0.39

                mc(G) = 0.09

               Nc = Nc(X) + Nc(G)

    (d).  mc(G) = 0.047

               mc(L) = 0.36

               Nc = Nc(G) + Nc(L)

Miscellaneous Semiconductor Dielectric Properties

PbS 0.37 0.37 0.0 0.0 0.25 0.25

PbSe 0.26 0.26 0.0 0.0 0.33 0.34

PbTe 0.29 0.29 0.0 0.0 0.17 0.20 4.6

SnTe 0.18 0.18 0.0 0.0

ScN 2.15 2.15 0.0 0.0

GaN 3.45 3.45 0.0 0.0 0.172 0.259

A1N 6.28 6.28 0.0 0.0 0.314 0.417

InN 1.89 1.89 0.0 0.0 0.11 0.17

BeTe 2.57 2.57 0.0 0.0

Table B-20.  Static Dielectric Constants for Miscellaneous Semiconductors

Material             Dielectric Constant

Ge  16.0

Diamond  5.5

6H-SiC(a)  9.66

4H-SiC(b)  9.72

AlP  9.8

AlAs  12.0

AlSb  11.0

Table B-19.  Band Parameters for Miscellaneous Semiconductors

Material Eg(0)eV Eg(300)eV α β mc mv χeV
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Miscellaneous Semiconductor Mobility Properties

GaSb  15.7

InSb  18.0

ZnS  8.3

ZnSe  8.1

CdS  8.9

CdSe  10.6

CdTe  10.9

HgS  

HgSe  25.0

HgTe  20.

PbS  170.0

PbSe  250.0

PbTe  412.0

SnTe

ScN

GaN  9.5

AlN  9.14

InN  19.6

BeTe

Table B-21.  Mobility Parameters for Miscellaneous Semiconductors

Material MUNO (cm2/Vs) MUPO (cm2/Vs) VSATN(cm/s) VSAT(cmcm/s)

Ge 3900.0(a) 1900.0(b)

Diamond 500.0 300.0 2.0x107

SiC(a) 330.0 300.0 2.0x107

SiC(b) 1000.0 50.0 2.0x107

AlP 80.0

Table B-20.  Static Dielectric Constants for Miscellaneous Semiconductors

Material             Dielectric Constant
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Notes

(a) Uses Equation B-4 with TMUN=1.66.

(b) Uses Equation B-4 with TMUP = 2.33.

AlAs 1000.0 100.0

AlSb 200.0 550.0

GaSb 4000.0 1400.0

InSb 7800.0 750.0

ZnS 165.0 5.0

ZnSe 100.0 16

CdS 340.0 50.0

CdSe 800.0

CdTe 1050.0 100.0

HgS

HgSe 5500.0

HgTe 22000.0 100.0

PbS 600.0 700.0

PbSe 1020.0 930.0

PbTe 6000.0 4000.0

SnTe

ScN

GaN 400.0 8.0 2.0x107

AlN 14.0

InN 3000.0

BeTe

Table B-21.  Mobility Parameters for Miscellaneous Semiconductors

Material MUNO (cm2/Vs) MUPO (cm2/Vs) VSATN(cm/s) VSAT(cmcm/s)
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Insulators
The default material parameters for insulator materials are given in the following sections. As noted
in the “Semiconductors, Insulators and Conductors”  section the only  parameter required for electrical
simulation in insulator materials is  the  the dielectric constant .Thermal and optical properties are
required in GIGA and LUMINOUS respectively.

Insulator Dielectric Constants

Insulator Thermal Properties

Table B-22.  Default Static Dielectric Constants of Insulators

Material  Dielectric Constant

Vacuum  1.0

Air  1.0

Ambient  1.0

Oxide  3.9

Si02  3.9

Nitride  7.5

SiN  7.5

Si3N4  7.55

Sapphire  12.0

Table B-23.  Default Thermal Parameters for Insulators

Material Thermal Capacity (J/cm3) Thermal Conductivity(deg(cm/W) Reference

Vacuum 0.0 0.0

Air 1.0 0.026 7

Ambient 1.0 0.026 7

Oxide 3.066 0.014 4

Si02 3.066 0.014 4

Nitride 0.585 0.185 4
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SiN 0.585 0.185 4

Si3N4 0.585 0.185 4

Sap-
phire

Table B-23.  Default Thermal Parameters for Insulators

Material Thermal Capacity (J/cm3) Thermal Conductivity(deg(cm/W) Reference
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Optical Properties
The default values for complex index of refraction in LUMINOUS are interpolated from tables from the
“Handbook of Optical Constants,” first and second editions. Rather than print the tables here, the
ranges of optical wavelengths for each material are listed in Table B-24.

Note:  The parameter INDEX.CHECK can be added to  the SOLVE statement to list the values of real
and imaginary index being used in each solution.

Table B-24.  Wavelength Ranges for Default Complex Index of Refraction

Material 
Temperature(
K)

Composition Fraction Wavelengths (microns)

Silicon 300 NA 0.0103-2.0

AlAs 300 NA 0.2213 - 50.0

GaAs 300 NA 0.0 - 0.9814

InSb 300 NA 0.2296 - 6.5

InP 300 NA 0.1689 - 0.975

Poly 300 NA 0.1181 - 18.33

SiO2 300 NA 0.1145 - 1.7614
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User Defined Materials
The current version of ATLAS does not directly support user defined materials.  A simple workaround
can be done using the already existing user specifications. This workaround is based on the use of an
already existing material name and modifying the material parameters as appropriate.

In ATLAS material names are defined to give the user a reasonable set of default material parameters.
Any of these defaults can be overriden using the MATERIAL, IMPACT, MODEL, and MOBILITY
statements.  The key to defining new materials is choosing a material name that is defined in ATLAS,
then modifying the material parameters of that material to match the user material. Here it is best to
choose a material that has default parameter values that might best match the user material, while
being sure to choose a material that is not already in the user device. Next the user must associate this
material name with the device regions where the new material is present.  This is done by either
specifying the chosen material name on the appropriate REGION statements (when the device is
defined in the ATLAS syntax) or choosing the material name from the materials menu when defining
the region in DEVEDIT.

Next, the user should modify the material statements using MATERIAL, IMPACT, MOBILITY, and
MODEL statements. When doing this the MATERIAL parameter of the given statement should be
assigned to the chosen material name.

For materials with variations in composition fraction, the user should choose a defined material with
X and/or Y composition fractions (i.e., a terniary or quaterniary material).  The user may also find it
convenient to use C interpreter functions to define the material parameters as a function of
composition.  The C interpreter functions that are useful for this approach are:  F.MUNSAT,
F.MUPSAT, F.BANDCOMP, F.VSATN, F.VSATP, F.RECOMB, F.INDEX, F.BGN, F.CONMUN,
F.CONMUP, F.COPT, F.TAUN, F.TAUP, F.GAUN, and F.GAUP.

In defining new materials there exists a minimum set of parameters that should be defined.  This set
includes bandgap (EG300), electron and hole density of states (NC300 and NV300), dielectric
permitivity (PERMITIVITY), and electron and hole mobilities (MUN and MUP). For bipolar devices
certain recombination parameters should also be defined such as: lifetimes (TAUN and TAUP), radiative
recombination rates (COPT), and Auger coefficients (AUGN and AUGP).  For devices with variations
in material composition certain band-edge alignment parameters should  also be defined: either
electron affinity (AFFINITY) or edge alignment (ALIGN). If impact ionization is considered the impact
ionization coefficients should also be defined.

As an example, consider the case where the user is simulating a device with an AlInGaP region.
Consulting table B-1, we see that this material system is not defined in ATLAS. We then choose a
materal that is defined in ATLAS which has default material parameters  that best approximate the
material parameters of the new material.  In this case, we choose InGaAsP since, at least for example
purposes, we feel that this material is closest to the AlInGaP.  Next, we must specify InGaAsP as the
material of the region(s) that is/are composed of AlInGaP.  This can be done either on the REGION
statement if the structure is defined in ATLAS syntax or from the material menu when the region is
defined in DEVEDIT.

Supposing that we are satisfied with the default values of the parameters from the "minimum set"
discussed above, and that we are principally concerned with the recombination and heat flow
parameters defaults, the following section of the input deck illustrates how these parameter defaults
may be  modified:

# new material AlInGaP
MATERIAL MATERIAL=InGaAsP
# SRH
MATERIAL  MATERIAL=InGaAsP TAUN0=1.1e-9 TAUP0=2.3e-8  
# Auger
MATERIAL MATERIAL=InGaAsP AUGN=5.8e-30 AUGP=1.1e-31
# Optical
material material=InGaAsP COPT=1.7e-30
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# Thermoconductivity
MATERIAL MATERIAL=InGaAsP TC.A=2.49
# Heat capacity
MATERIAL  MATERIAL=InGaAsP HC.A=1.9 
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