
Faculty of
Information
Technology

1

Háskólinn á Akureyri
Upplýsingatæknideild

Final Year Dissertation
2006

Max E.Y. Ólafsson

Faculty of
Information
Technology

2

Declaration

I declare that the material submitted for assessment is my own work except where
credit is explicitly given to others by citation or acknowledgement. This work was
performed during the current academic year except where otherwise stated.

Max E.Y. Ólafsson

Faculty of
Information
Technology

3

Abstract

A design for a simulator to test autonomous mobile robots is discussed in this work.
Only a partial implementation of this simulator was realized. Most of the work for the
simulation world has been completed but the area concerning the running of robot
programs for use in this world has not. The simulator’s intent was to model a world of
obstacle, one target location and one mobile robot. The target location is supposed to
represent the location of an incapacitated person at risk. A successful run of the
simulation is one where a mobile robot finds its way to this target location within, at
least, a reasonable amount of time and the robot using some search algorithm to reach
it. A way of creating a map of this world where a user can add obstacles and one
target location by using a graphical user interface has been implemented. Currently, it
is possible to store these maps of differing worlds as files and later to load them from
files.

Faculty of
Information
Technology

4

Table of Contents
Table of Contents..4

Motivation...6

Description of the work ..7

2 Related work ..9

3 Design ..16

4 Implementation-unchanged……still to do ..21

5 Evaluation ..22

Conclusion ..37

References...38

Appendix A – Code listing ...42

Appendix B – User manual...88

Appendix C – Configuration pictures ...89

.

Faculty of
Information
Technology

5

Faculty of
Information
Technology

6

Motivation

This work has been undertaken to help develop an effective search strategy for a
autonomous mobile robot with limited processing capabilities and sensors. The intent
of this work was to allow a more rapid development of search algorithms for robots
involved in similar types of harsh environments.

Specifically, the intent was for the simulator to enable the development of effective
robot controllers that could be used in rescue operations, where a robot is deployed
and has to find a target or victim in an unknown environment. It has no knowledge of
its victim’s location except that he/she has some beacon device emitting a source of
light or signal of some kind. The robot will have to use sensors to read the light
intensity in order to pin point its target –or at least make the robot able to predict a
location where the reading is stronger enabling it to navigate to that location or a
nearby point.

This is intended to simulate conditions whereby a person in a critical situation has
nothing more but some type of beacon device. The type of robot for which this
simulator was intended has little processing power or storage capacity so the mapping
of its environment through its tactile sensors is rather coarse and limited. The
simulated world is equally ‘coarse’ and simple. This is reflected in the design of the
simulator that is based on modeling the world as a grid based system consisting of a
collection of rectangular cells. Another simplification used is the fact that the
environment remains fixed- it does not change after the robot is introduced into it.

Faculty of
Information
Technology

7

Description of the work

Intent of the simulator

The simulator once completed was to help to develop effective search algorithms or
strategies for robots that have a limited memory capacity and sensors. The robot is to
find some target location or goal by using light sensor readings and following
approximately a path to where the light intensity is strongest. This has been termed
the localization problem, i.e. finding the goal location relative to the current position.

There are a few problems for a robot navigating in a physical environment such as
tracking. In tracking the goal the robot has to factor in its uncertainties in its current
position which can for instance be caused by the effectors used to move about, sliding
on the contact surface or the whole robot being pushed by some object. The
simulation environment developed thus far does not take this into account. This is
also because modeling external environment effects on tracking is highly dependent
on the type of tracking used.

As the robot navigates through its simulator world it should be building a small
internal representation of the world, i.e. a model. This will ensure it does not
constantly, needlessly bump into obstacles. Wherever the intensity is strongest, the
robot will go in that direction. Some problems with this strategy in the real world are:

• Obstacles between robot and correct light source
• Strong light emanating from another direction
• Environmental changes have implications on mapping
• Other mobile robots

The simulator environment only takes the first of these; obstacles between the robot
and target or goal into account- this means there is no light reading for the robot to
read where a wall is present. It only does take the first factor partially into account- it
should in fact consider the effects of obstacles on light readings. As an example any
wall present between the goal and robot should weaken the light intensity on the
robot’s side. This problem has not been addressed.

The mapping function of the robot will help it navigate around obstacles to the light
source. It is assumed for the purposes of this scenario, that places in the internal map
that are mapped as obstacles do not ‘disappear’. Once a robot manages to find the
target location its mission will be complete and no further action has been assumed

Faculty of
Information
Technology

8

for the robot at this stage. The robot controller developed could then be tested in the
real world and level of success or failure measured.

In retrospect, to track its way to the goal the robot should thus keep trying to measure
in what direction light is strongest. The simulator environment would allow the robot
ease the process of navigating to the correct location by mapping its environment in
memory. This can be done using the same data structure the simulator world uses to
model the environment.

Implementing the mapping aspect in a robot can be proven easy but its implement-
ation hinges on the fact that there must be enough memory in the robot to store the
map. The memory necessary in mapping is in direct proportion to size and the
resolution of the environment the robot is situated in.

The way the simulator environment deals with this is by using rather coarse
resolution of the real world since it is mapped as grids of cells but it is questionable
whether the adopted strategy should not instead have been to implement two types of
resolutions, one for the environment modeled by the simulator and another for the
robot which would have been coarser to mimics its limited storage capacity.

Currently, the software developed assumes the robot has only one sensor giving a
perfect reading of intensity at any cell location. It is thus possible with some minor
coding for a robot to use this sensor to find the cell location with the strongest
intensity and use it to direct the robot towards it.

Faculty of
Information
Technology

9

Related work

Deploying a mobile robot into an unknown environment is a multi-facetted problem.
Among these problems are navigation, searching, exploration and localization.
Navigation for a mobile robot means that given a specified location the robot must
reach some other location. Simultaneously, the robot can be exploring its
surroundings and create a map of it. The robot must also be able to deduce its position
on this map. There is also the physical aspect, e.g. deciding what type of locomotion
to use, sensors and actuators to use there is the software part. The software will be
used to design a type of robot architecture that will then be used to develop a type of
control for the robot. There are several of these to choose from.

Types of architectures used for robots

One characteristic of the more successful architectures that are in use now are those
that seek to combine reactive with deliberative control. These are called hybrid
architectures. Reactive control is useful in circumstances that require immediate
action, e.g. a mobile robot sensing it is about to drive off a platform must act quickly
and make a decision to prevent it from damage. A robot capable of doing only this is
rather useless hence we have the other type of control paired with the reactive called
deliberative. This is to ensure that the robot is also working towards some global goal,
such as navigating to some goal location. Two very common types of architectures
are the Subsumption architecture [5] and the three-layer architecture [1].

The three-layer architecture is a type of hybrid architecture. It consists of a reactive,
executive and deliberate layer. The deliberate layer takes care of planning actions to
achieve some global goal. It does this relatively slowly. It communicates with the
reactive layer through the executive layer. The reactive layer is responsible for low-
level control of the robot. It must act quickly. The separation between these layers
need not be clear-cut. Most modern-day robot software systems have a variant of this
architecture.

The Subsumption architecture was conceived by Rodney A. Brooks of MIT Artificial
Intelligence Lab in the mid to late 1980s [9]. Brookes achieved his goal of connecting
sensors to actuators directly in a parallel and distributed architecture. Brooks initially
set out to develop an architecture where no central brain or representation would be
used and traditional notions of planning would be discarded. This architecture is built
in layers or behaviours.

Faculty of
Information
Technology

10

Each behaviour can use (subsume) the underlying behaviours. The behaviours of the
system as a whole is the result of many interacting simple behaviours. Each behaviour
tries to learn when it should become active by measuring when it maximizes positive
feedback, minimizes negative feedback and also by measuring its effect on the global
task. The higher levels build upon the lower levels to create more complex
behaviours.

By using this method it would be possible to program the behaviour of a robot by
choosing a set of behaviours from a library of behaviours, defining when behaviours
give positive or negative feedback and make each of the behaviours learn from
experience when it should become active.

The Subsumption architecture has also demonstrated robust navigation for mobile
robots in dynamically changing environments. Its layered structure is easily adaptable
for hardware implementation.

Simulators

Once a type of architecture has been selected the designers can then proceed to
implementation of the type of control chosen. At any stage of actual robot
development the program could be tested in some simulator. The testing is done in
such a manner that many ‘runs’ are performed with the virtual robot situated in
different simulated worlds. Often the reason for doing this is that sometimes it is too
expensive or impractical to execute hundreds of testing operations with a real robot. If
the simulator is good enough it will reveal the effectiveness of the program as well as
show its performance under special circumstances or unexpected situations. Still,
even if testing might reveal some flaws in the program there could still be other faults
in the program present and to this there is no solution.

Robot mapping

Robots situated in any unknown environment must deal with exploration and
localization. The task of exploration is to create a complete map of an unknown
environment. The problem of robotic mapping is for an autonomous robot to be able
to construct a map and to localize itself in it. The popular term used for mobile robots
involved in performing localization and mapping, has been SLAM problem-
simultaneous localization and mapping problem [1]. This is in fact one of the
fundamental problems in mobile robotics. Since the 1980s and early 1990s this field
has been divided into metric and topological approaches [4].

There are essentially two kinds of maps used, metric maps and topological maps.
Metric maps capture the geometric properties of an environment while topological

Faculty of
Information
Technology

11

maps describe the connectivity of different places. An early example of the former
approach was Elfes’ and Moravec’s important occupancy grid mapping algorithm
[6,7,8], which represents maps by fine-grained grids that model the occupied and free
space of the environment.

This approach has been used in a great number of robotic systems, such as [8, 9, 10,
42, 83, 98, 106,107]. An alternative metric mapping algorithm can also be used by
using sets of polyhedra to describe the geometry of environments.

Many techniques have been developed aimed at mapping an environment that is static,
structured and of limited size. Mapping an unstructured, dynamic environment
complicates the mapping procedure even further. In fact, this is an area where there
has relatively been little research made.

Example of rover navigation in practice

Navigation for a mobile robot means that given a specified location the robot must
reach some other location. On the surface of the planet Mars there are currently 2
robotic rovers which are part of NASA’s (National Aeronautics and Space
Administration) Mars Exploration Rover (MER) Mission [2]. A glimpse at their
system of navigation can prove useful. Their system of navigation allows them to
navigate safely through unknown and potentially hazardous terrain.

They are equipped with a set of instruments to collect data. Sequences of commands
are sent once per Martian solar day specifying what data to collect and destinations.
At the end of each Martian solar day the rovers send back collected data to help
human operators on earth plan the next sequence for the following solar day.

The rovers are equipped with two cameras mounted at the front of the rovers, i.e. the
rovers have stereo vision. Two images, one from the left camera and another from the
right camera are processed by an algorithm to derive a three dimensional map of the
area. The images are manipulated in various ways, e.g. resolution is reduced and
filters applied. These operations in turn helps to reduce the computation required by
the rover to map the world and thus allowing it to drive safely at faster speeds.

When the operators- which are located on earth- want to send a rover to a particular
location or waypoint it must first be processed by set of software routines onboard the
rover called Grid-based Estimation of Surface Traversability Applied to Local
Terrain, or for short GESTALT. Given a goal location, rover’s current position and
state of the world, this system determines in what direction is best for the rover to
move next. It achieves this with the help of a stored local map of the area surrounding
the rover.

Faculty of
Information
Technology

12

This map is necessary to navigate effectively since the rover’s cameras have a
restricted field of view and unexpected events such as stumbling upon an obstacle
might force it into an unseen area and potentially dangerous situation. This map that
is part of the GESTALT system models the world as a grid of regularly spaced cells,
each being equal to the size of a rover’s wheel. Each cell has related properties, e.g.
whether it is part of an obstacle or unknown that the GESTALT system uses when
plotting a course.

Once the rover has chosen a direction it will drive blindly forwards for distance of
about 35 cm. It is interesting to note that during this distance a rover will not be
scanning with its cameras for obstacles ahead. If however, any obstacle is present
other instruments of the rover such as the tilt sensor will pick this up. At this point the
stereo vision system can be applied autonomously to discover an obstacle(s).
Accordingly then this obstacle will be marked in its internal map and another
direction will be chosen to circumvent this obstacle. Even in the absence of any
obstacle, the rover is not required to move exactly according to initial intent. The
rover’s new position and orientation is inferred from its instruments, wheel odometry
and its prior position, thus using a form of deduced reckoning.

Status of project

In what has been created thus far nothing has been borrowed from other types of
simulators. What is different with the intended simulators from others is the fact that
this one was intended for robots with limited power, especially in terms of memory.
The design decisions were taken with this in mind, hence a grid based world. This
means the simulator environment consists of grids. This also had the added effect of
simplifying the simulator’s implementation.

Each grid in this world can correspond to three states. An empty grid means the area
is free of any obstacles so the robot can travel through it. A grid filled with a
particular colour corresponds to an obstacle so the robot can only collide with it but
not move through it. One grid cell, and always only one, in any simulated world has a
special value attached to it denoting it as a target-actually a value of zero. If the
simulated robot reaches it, then the simulation should end.

The simulator environment will allow the user to create grid-based worlds of varying
size, from a 10x10 grid of cells to about 100x100 grid of cells. These can then be
saved to a file and loaded later. If the user loads a grid from a file of different size
than that currently selected in the simulator, it will re-adjust automatically; this is to
keep the user from any guesswork. The grids are stored as files of integers.

Currently the simulator can be used to simulate robots using an approach based on
Brook’s subsumption architecture or in the least, with that intent. After a map of the
world has been created and loaded into the simulator we can run the simulator to see

Faculty of
Information
Technology

13

the effectiveness of using this behaviour based strategy. To judge performance we
used the time factor, as this is the single most important factor in search and rescue.
To measure this, the simulator also has a timer and stops once the robot reaches its
target destination.

In order to achieve this a set of three behaviour classes were created. These are named
‘drive behaviour’, ‘light seeking behaviour’ and ‘collision behaviour’. These
behaviours are part of the robot. A simulated robot has these three behaviours and
during each instant of time in a simulation run only one of them is active. There is an
arbitrating object that is part of the simulator that determines what behaviour should
be activated. Once this has been done the relevant behaviours’ actions are run and
shown in the animation part of the simulator.

In order to simulate this, an arbitrating object was designed that cycles and checks
what behaviour should become active. The behaviours are arranged in a priority order.
Behaviours also have some set of conditions that need to be satisfied in order for
them to become active. The ‘drive behaviour’ is the topmost behaviour and this the
arbitrating object will always try to run before the other two behaviours. The light-
seeking behaviour in a similar manner has precedence over the collision behaviour
and this, the arbitrating object will try to run before it.

Both the ‘drive behaviour’ and the ‘collision behaviour’ have a timer variable telling
them for how many simulator time steps to drive forwards when they have been
activated. This variable is simply an integer that is set to some multiple of simulator
steps and hard coded in each behaviour. The arbitration process will wait for this
amount of time to expire before considering another behaviour, unless the
preconditions for the same behaviour should be satisfied again. In that case the
behaviour’s actions should be re-executed from the beginning. This is not what
happens though in case of the collision behaviour. Currently it executes its actions
entirely before re-execution. This is a flaw discovered later, it will be discussed in the
design section.

The software framework strives to allow easy extensibility for creating further
behaviours. The timer variable can be tuned in the behaviours without too much
difficulty. These determine for instance for how long a robot should drive in a
particular direction after a collision has occurred in the collision behaviour, or for
how long to drive blindly forwards in the drive behaviour. Further variables could be
created in each behaviour to remember the state of the robot’s speed or heading prior
to the behaviour’s execution. This could be used should the user wish to reset the
robot to these values once the robot finishes executing this behaviour’s actions.

Another incomplete feature added to this simulator is some sort of noise generator.
This was supposed to mimic the weakening of the signal due to obstacles in its path.
A simplistic attempt at recreating this effect was made. The way this was done is that

Faculty of
Information
Technology

14

when a cell was selected to contain an obstacle instead of a light reading, any
surrounding cells with a weaker light reading were weakened even more to simulate
the obstacles’ weakening effect of the signal. This does not give a correct
approximation when obstacles have other obstacles between them and the light source.
A way to improve upon this feature this would be to imagine a ray drawn from the
obstacle to the target and determine if any other obstacle cells are in its path. This and
probably some other heuristic or techniques could be used to improve this feature.

Another addition that was not completed in time is the implementation of a feature
that changes the simulator world as time goes by, i.e. some obstacles could disappear
or appear elsewhere with time. This feature was implemented by simply creating a
thread that selects any cell at random, then gives it a 10 % chance of being changed
either into an obstacle or free space. Currently the thread runs every 500 ms and the
chance of selection is 10% but these can be changed easily. This was done with the
intention of simulating search and rescue operations more closely as the state of the
world is often dynamic in those cases. In the case of simulating fires in buildings this
thread could probably be programmed to run more often and with a higher chance
with the passage of time.

At the end or during a simulation run we can ask to the program to plot the path taken
by the robot. This can sometimes help interpret the behaviour of the search strategies
employed.

During a simulation run the robot typically either bumping or sliding on obstacles,
sensing and turning towards a light source, or simply driving straight. Some things
were done to add some level of realism to this simulator and others ignored. For
instance modelling the turning of a robot. As a real world robot cannot turn
instantaneously a function was devised to give the amount of turn the robot can
achieve during the smallest unit of simulator time.

This modelling of the turn bear some resemblance to how the movement forward of
the robot is modelled, given its velocity it is multiplied with the simulator’s smallest
measured unit of time-time step, and this gives the maximum possible magnitude of
displacement during one simulation step.

Some improvements were discovered as implementation went on, e.g. that there is
probably a way of adding more realism to the sensor readings. In the current case the
robot supposed sensor is omni-directional and pretty much senses the reading at each
point as if it were actually located there.

After completing this simulator a series of tests were conducted to judge the
effectiveness of three search algorithms. An assumption made during the tests was
that the robot’s sensor used in the ‘light-seeking behaviour’ is only able to sense
strength of the target’s signal in the 8 cells centered around the robot. A side effect of

Faculty of
Information
Technology

15

this strategy is that the robot can become stuck on plateaus where there is a local
maximum of signal strength. Later, other defects were discovered and are discussed
under the following design section.

Faculty of
Information
Technology

16

3 Design

This design of this software reflects how the object-oriented approach is used. Since
the simulator in brief really consists of the simulator world, simulator, a robot and
animation part. All these are separate classes that communicate in programming code.
The following is a description of these classes.

3.1 Mapping

The world is modeled as a rectangular area of grid cells that have only one attribute.
This attribute indicates whether occupied space is empty or contains an obstacle. This
bears some similarities to Elfes’ and Moravec’s occupancy grid mapping algorithm
[6,7,8], which represents maps by fine-grained grids that model the occupied and free
space of the environment.

The size of these grid cells was chosen so that the robot covers four grid cells at any
time. This decision was made to mimic the real world more closely, as it could
imitate it more closely by increasing the number of cells. Each of these cells has a
corresponding sensor reading. This does seem a reasonable thing to do in view of the
GESTALT system which models the world as a grid of cells, being equal to the size
of a rover’s wheel.

The strongest value of the sensor reading is at the target and is denoted with a value
of zero. Other sensor readings for cells are calculated by using the radial distance to
the target’s position and decaying the sensor readings for each grid cell in a radial
manner using the inverse square law. This technique imitates a source quite well.
Cells that contain obstacles are a special case and contain no light sensor reading and
this is denoted by using a special marker value, i.e. ‘-2’ for its reading. The
architecture could easily allow robots with different sensor ranges by reading the
values of all surrounding cells within reach of the sensor.

The user can create maps of this nature to test the effectiveness of search algorithm.
This is done with a graphical interface where the user must select, the target’s
position and select cells where obstacles should be present. After this has been done it
is then possible to store this map of a world by storing it digitally or loading it
directly into the simulator. The user has several options when editing, he/she can
erase many cells or reposition the target at any time. The size of a map can be
adjusted from a size 10x10 to 100x100.

Faculty of
Information
Technology

17

To model the real world more precisely it would have been better to factor in the
effects of obstacles on the sensor readings. One way of doing this is to add noise
around those cells that surround obstacles. This feature was not completed though.

Another factor not considered in the design is to allow for a dynamic state of the
world. The state of a burning building is fairly dynamic. A function to alter state of
cells, both containing obstacles or free space was designed and run as a thread and it
showed that it worked but this feature was not completed either and therefore was not
tested either.

This feature was worked on as in such a dynamic scenario, some things in the
simulated world would have to become obstacles and vice versa. Burning furniture
could either fall on the platform in places, which the robot had crossed previously,
and form insurmountable obstacles for the robot or burn out of its way thus forming a
new path for it. Judging the effectiveness of search algorithms would though have
been more difficult if many different types of dynamic conditions were simulated in
different world simulations.

3.2 Simulator

This part allows maps created from the mapping part of the software to be loaded in
and subsequently a robot to be loaded and tested on the respective map. Currently the
only way to configure the robot is through direct coding. The simulator has a timer to
give some sort of measure on the performance of robots.

The intent of the simulator was to model the performance of robots using a behaviour
based approach in a simple world of obstacles and a target for the robot to reach. To
simulate such a thing did not prove easy. The simulator is passed a robot object
through software. This robot has a set of behaviours coupled to it. The simulator also
contains an arbitrating object that checks which behaviour of the robot it should
activate. This is the most complicated and difficult part of the software to design.

From the literature studied it seems the arbitrator should select a behaviour by
checking a Boolean function every behaviour contains. This function returns a value
of true when it is appropriate to apply the behaviour but false otherwise. The function
contains a set a preconditions that must be satisfied in order for the behaviour to
become relevant. The preconditions vary for behaviours.

The behaviours are arranged in priority so if many behaviours apply at one time only
the one with highest priority is executed. This mean that during simulation the
arbitrating object continually checks this function for each behaviour starting from
the behaviour with highest priority. A common approach is to put the behaviours into
an array and implement a loop to do this type of checking in code.

Faculty of
Information
Technology

18

Below is a flowchart that describes this sequence of events.

When the arbitration process finds the first behaviour it can apply, it executes the
behaviour’s action. The main problem in implementing this idea in code was the
action part. A behaviour can last for several simulation time steps but the arbitration
process runs every simulation time step -but only one behaviour is applied at any one
time. Since a behaviour’s actions are not atomic in this case and must be divided
between time steps this complicates things quite. The robot must somehow have a
memory of what point it is in applying the behaviour.

Consider the collision routine. If we say the robot must back up after a collision and
turn 90°. This means it has to back up for several time steps, and then turn also for
some amount of time steps. To try to resolve this issue a few variables were set in
each behaviour and robot class to keep some sort of a memory of the behaviour’s
state. There are timer variables associtated with each behaviour which are integers

Arbitrate
Check IF status == busy

Does topmost
behaviour apply?

Continue applying
current behaviour’s actions
then set arbitrator status
‘busy’ or ‘not busy’. Do
nothing if finished

Yes No

No

Set lower behaviour
= topmost behaviour

Set this as current
behaviour

Yes

Execute this behaviour’s first
action, i.e. subtask

Faculty of
Information
Technology

19

that signify a certain number of simulation time steps. Another variable is part of the
robot’s class and denotes the heading the robot is trying to reach, i.e. target heading
which is measured in radians.

When a behaviour required backing up, or advancing, a timer was set that expired
when the robot had driven the amount required forwards or backwards. Should the
behaviour then also request that the robot turn some set amount a target heading was
set for the robot and its current heading updated to bring it closer to the target heading
during each simulation step. Using this combination of timer and setting a variable for
the heading seemed to be the obvious approach.

Another problem with implementing this idea is that the arbitration process should
allow the behaviour to execute its actions before applying another behaviour. To
remedy this the behaviours were allowed to tell the arbitration process to stop while
they were busy executing. When the behaviour’s action had been fully applied they
told the arbitration process to resume. In this way some control is handed over to the
behaviours, which maybe goes against the idea of the arbitrator having total control
from the literature in behaviour based robotics.

This problem stems from the fact that whenever a behaviour becomes eligible for
execution during the next cycle or time step the arbitration process could find it valid
for execution and restart this behaviour’s actions from the beginning. Either that or
select some other behaviour. Allowing this to happen would mean the simulator
would never run a behaviour’s actions fully but only a combination of starting actions
from a set of behaviours. How to circumvent this issue differently was not
discovered.

This way of tackling the problem was used but has a flaw. What if the robot collides
with an obstacle and then again shortly afterwards? In the better scenario it would
start its collision behaviour from the beginning after the second collision but this is
not the way it works currently. As it goes now it completes the collision behaviour
resulting from the first collision and then restarts after the second collision. Still, this
is in order, in case of the light seeking behaviour, which is simple behaviour and does
not have different states it can be in. In this case it is okay to re-start this behaviour
because each activation seeks to bring the robots heading into the same direction.

The simulator provides collision detection with the following technique. Whenever
the robot wishes to move in some direction the simulator first checks ahead the
immediate cells surrounding the robot- if the area of the robot would intersect with
the area of an obstacle. The only difference here with other techniques of collision
detection is that usually colliding objects are approximated by imaginary rectangles.
Should these areas intersect a collision has occurred and the simulator will not allow
the robot to go ahead.

Faculty of
Information
Technology

20

3.3 Robot

The robot class contains all the properties that are associated with a robot object in
the simulator. These are size of the robot, speed, position and heading. During each
simulation step the robot object asks for its position to be updated based on the
location it would have after another simulation step. The simulator then updates the
robot’s new position based on these factors. If this next location coincides with an
obstacle the simulator will bring it as close to it as it can get and also allowing the
robot to slide along the surface.

To run the robot with the behaviour based approach a set a of behaviour are attached
to a robot created from the robot class. These behaviours can then access any robot’s
variable and change them if need arises. In case of a collision the collision behaviour
sets a robot speed to zero and then changes its heading over the course of some
simulation steps. These behaviours must all implement a few function specified in the
behaviours interface. Among these are an action function which specifies the action
taken by the behaviour and the function specifying the preconditions that must be
satisfied in order for the behaviour to be activated.

3.4 Animation

At the same time as updating the robot’s position the simulator calls the animation
class to reflect the robot’s current position onscreen. Aside from showing the map of
the world and location of the robot, the heading, simulation time and whether robot
has collided is also shown. The animation part is a separate class that can be
decoupled from the simulator run without any effect to it.

Faculty of
Information
Technology

21

Implementation

To model this simulator the Java programming language was chosen. Because of the
object-oriented nature the software was the Java programming language was used.
The software was tested and implemented on a computer using Windows XP Pro.

A lot of time was devoted to reading about and getting to know the details of
animation techniques in Java. Concepts such as image buffering were studied on the
Java site; http://www.sun.com/java and examples thereof looked at. The simulator
part of the software contains a timed task that updates and queries the robot object for
its status and draws a visual representation of the robot according to this and the
simulator world’s constraints. Quite a lot of good functionality is provided by the
Swing framework in Java.

One concern was that the processing speed might be too slow because of time taken
by the animation part. There were no symptoms of overload on the system though,
except for when using the trail option of the software. This is understandable since
the trail function stores the number of points visited by the robot in list type of
structure and typically when the simulation runs for a long time the number of points
becomes too big and the list too. This could be avoided by storing only points that
differ substantially in position.

Problems encountered were mostly relating to keeping track of objects using the co-
ordinate system and trigonometry functions. Another point worth noting is that some
thing in relation to this project such a collision detection could have been easier to
implement if some reading on computer gaming concepts and web sites had been
done.

Regarding the collision detection scheme, Java actually provides Boolean operators to
tell if simple two-dimensional geometric shapes intersect such as ovals and rectangles
and this was made use of in the partial simulation software. There seems however to
be a problem with the precision of these when movement of the robots is less than
about 2 pixels during each simulation step.

The arbitration aspect of the software was implemented by using a special arbitrating
class the check cycles thorugh an array of behaviours in a loop. Every behaviour has
Boolean function the arbitrator checks and when this returns a value of ‘true’ the
actions associated with the behaviour are run. This is not implemented in a seperate
thread, there is no need for that.

Faculty of
Information
Technology

22

5 Evaluation

Following implementation a series of tests were conducted. These were to find out the
effectiveness of three different simple search algorithms. During the tests the
variables in each behaviour were kept constant except for the collision behaviour’s
turn angle telling the robot how much to turn after a collision had occurred with an
obstacle.

The tests consisted of ten different configurations of simulated worlds. The three
algorithms were run at least once on every world and the results recorded. The ten
different configurations were created with the intent of testing the algorithms in
worlds of varying symmetry and chaos. What they all have in common is the robot’s
start position. During each simulation the robot start’s from the upper left corner of
the simulated world situated in the lower right corner, or as in the last case, center of
the world.

The performance of each algorithm is judged by the time needed for the robot to
reach its target. Another parameter that might be useful in judging performance is the
area covered by the robot in its search but this is less important than the time taken or
whether the target is reached. Quite possibly this would matter in a multi robot
environment where agent collaborate and communicate the areas that have been
searched, to home in on the signal.

Specifically, the algorithms are:

1. Turn 90° left in case of collision and then advance.
2. Turn 90° right in case of collision and then advance.
3. Turn random amount of degrees in case of a collision and then advance.

The first algorithm tells that upon encountering a collision with an obstacle the robot
should turn right 90 degrees and then advance for a fixed amount of time. If an
obstacle is encountered again before this fixed amount of time, which is embedded in
the collision behaviour has passed, the arbitrating object will re-initalize the collision
behaviour from its beginning.

The second algorithm does the same except it makes a turn to the left. The third
algorithm uses random amount of turn before advancing each time the robot
encounters an obstacle.

Faculty of
Information
Technology

23

Other kinds of tests were conducted such as collision detection tests, and some cases
of failure had been detected. What this mean is that the simulated robot has succeeded
in travelling through grid cells in the environment marked as obstacles but this is
thought to be either part of the nature of the programming language or bug in the
program, this is discussed further under the design section.

As mentioned before the robot´s modeled sensor was only ably to sense the strength
of signal readings in the cells surrounding it. This appoach can lead the robot to a
plateau if there is some noise interfering the signal such as a wall. In fact, it was
discovered that especially if any obstacles were in the shape of walls with sides
leading away from the target, like some concave shape, the robot could become stuck
for a very long time if not ad infinitum.

If the sensor were modified to sense the signal strength at greater distance we would
still face this problem. The testing was not done with any noise so this was not a
factor that had an effect on the tests.

Below the results from the test are discussed. Next to the discussion of each algorithm
is a picture of the simulation end state-when applicable- showing the robot at its
target location along with a trail showing the path taken by the robot as simulation
progressed. Following the description of these 30 tests is a conclusion section with a
summary of the results. More accurate pictures of the relevant configurations are
located in appendix C.

5.1 Results

Configuration 1- Results

Algorithm 1 - Simulation end time: 104.130

As can be discerned from the picture the simulated robot manages to find its way in
the end to its target. In the beginning, it sets out toward the source but the reaches the
wall when a series of collision-drive-seeking behaviours each take their turn being
activated. It was presumed the robot should
reach its target from the left side instead of
the right side of the world. This is however
not the case because the collision behaviour
adds an amount of displacement to the robot
that is not small when compared to the
displacement added by the drive behaviour.
It seems the collision behaviour and it
preference for turning right determines what
way around this obstacle the robot will go.

Faculty of
Information
Technology

24

Algorithm 2 - Simulation end time: 10.590

Although this case might seem similar to the above, there are some differences.
Firstly, the number of collisions with this wall-like obstacle is reduced and the time
taken is much smaller. Since the collision behaviour tends for the robot to turn right
and its target is also to the right the seeking and collision behaviours work together
instead of against each other as in the
previous case. The robot stops just a little
distance from the wall enough to avoid a
collision to initiate its signal seeking
behaviour. A direction almost parallel to the
wall is given but then it collides with the
wall and the collision behaviour drives the
robot to the right around the obstacle and
finally shortly thereafter the robot reaches
its destination.

Picture of algorithm 2 run

Algorithm 3 - Simulation end time: 55.035

In this case the robot proceeds to the wall
like obstacle as before. It collides several
times with it as before, each time choosing a
random direction to turn to after a collision.
The small random turns do contribute little
change to the state with time. The robot’s
progression to the right and not to the left
can be attributed to its light-seeking be-
haviour. The simulation time is better than
for algorithm1 but worse than for algorithm
2.

Picture of algorithm 3 run

Configuration 2- Results

Algorithm 1- Simulation end time: 11.940

This time the first algorithm enables the robot to find its target quicker than in the
first configuration. Again it seems the collision routine’s preference for the right turn

Faculty of
Information
Technology

25

and layout of the world are the decisive
factors. This is easy to see by how this
goes. The robot sets off then collides with
the wall. A series of collision take place
and robot reacts accordingly but as the
robot progresses along the wall it travels
gradually to cells with a weaker signal
reading until finally the robot reaches a
point beyond the wall. Thus the collision
behaviour dictates its direction along the
wall but then the seeking and drive
behaviours take over once the robot is Picture of algorithm 1 run
positioned beyond the obstacle.

Algorithm 2 - Simulation end time: 8.370

This case is very similar and symmetrical
to the previous case and similar arguments
apply.

Picture of algorithm 2 run

Algorithm 3 - Simulation end time: 43.755

Still performing worse than the other two
algorithms here. Seems the algorithm is
performing poorly with a symmetrical
shape.

Picture of algorithm 3 run

Faculty of
Information
Technology

26

Configuration 3- Results

Algorithm 1 - Simulation end time: 28.995

In this configuration the robots sets off,
then collides with the obstacle in the
middle, and gets ‘trapped’ for a while in
between the lower obstacles. Bouncing
back and forth, sliding along the obstacles
but in the end the robot manages to trigger
its signal-seeking behaviour when it is
almost in the middle of the two obstacles
and then a clear path is taken up to the
target.

Picture of algorithm 1 run

Algorithm 2 - Simulation end time: 6.390

Unlike the previous test case the robot,
this time goes to the right between the
obstacles and since there is some more
distance between these structures avoids
wasting too much time in a bounce back
and forth between structures.

Picture of algorithm 2 run

Algorithm 3 - Simulation end time: 14.910

During this run the algorithm did not perform badly but this is probably due to
relatively few collisions before reaching a rather empty path to the target where the
seeking behaviour takes charge.

Faculty of
Information
Technology

27

Picture of algorithm 3 run

Configuration 4- Results

Algorithm 1 - Simulation end time: 9.645

The behaviour here is very similar to
that of configuration 2, even the time is
similar. Once again -as was the case in
that scenario- the collision behaviour is a
dominating behaviour once the robot
reaches the obstacle to the left. Once it is
no longer in the way the robot proceeds
via its light signal seeking and driving
behaviour.

Picture of algorithm 1 run

Algorithm 2 - Simulation end time: 12.210

This performs as expected from the collision behaviour’s preference for the left turn.
Similar arguments apply as to algorithm 1.

Faculty of
Information
Technology

28

Picture of algorithm 2 run

Algorithm 3 - Simulation end time: 18.600

The robot traces a path that resembles the
path of the algorithm 2 but collides more
often because the angle of deflection is
small in many cases this in part explains
why it takes longer.

Picture of algorithm 3 run

Configuration 5- Results

Algorithm 1 - Simulation end time: 38.310

This is similar to scenario of configurations 2 and 4 -although time is worse here.
Robots sets off to the cell of strongest signal on one side of the wall. But to reach its
destination it must go through cells of a weaker signal. The collision behaviour
manages to ‘drag’ the robot around to the left to a point where it can head to its
destination.

Faculty of
Information
Technology

29

Picture of algorithm 1 run

Algorithm 2 - Simulation end time: Probably never!

The robot correctly goes to a point
where strength is strongest, then collides
with an obstacle. After this it is then
drag around to the right where finally it
gets stuck in a never ending sequence of
following a rectangle like path, i.e.
colliding with an obstacle turning,
colliding, turning colliding and so on
continuously.

Picture of algorithm 2 run

Algorithm 3 - Simulation end time: Probably never!

Here the random strategy plays a small part. The light seeking behaviour seem to be a
dominating factor since whenever the randomness drags the robot to a path that
would bring it to the target the light seeking behaviour drags it back to a location of
strongest signal on the other side of the obstacle, where the target is not located. If the
range of the sensor were greater the light seeking behaviour could sense more
precisely where the target is located and these behaviours could act in a more co-
operative manner.

Faculty of
Information
Technology

30

Picture of algorithm 3 run

Configuration 6- Results
Algorithm 1 - Simulation end time: 14.985

Robot starts moving forwards then just about midway collides with two obstacles on
either left or right side, eventually moving –sliding, to a point closer to the target
where it finds a course straight to its target.

Picture of algorithm 1 run

Algorithm 2 - Simulation end time: Probably never!

Here the robot sets a course, collides with an
obstacle, which results in the collision
behaviour moving the robot further to the right
where another obstacle is present. The robot is
then trapped in a dynamic equilibrium, doomed
to repeat the same sequence of movements
repeatedly. Had this first obstacle not been
present the robot would probably have
succeeded in reaching its target but this
demonstrates once again the negative effect a
collision routine can have on the global goal.

Faculty of
Information
Technology

31

Algorithm 3 - Simulation end time: 16.215

Here, unlike the case of algorithm 2 the robot does not get stuck as its light-seeking
behaviour takes charge nearby an ‘opening’ after a few collisions with an obstacle
bring it nearby.

Picture of algorithm 3 run

Configuration 7- Results

Algorithm 1 - Simulation end time: 17.685

Robot sets off shortly thereafter colliding with the obstacle, then turns to its left side
where it keeps colliding and reacting but always moving a little more to the left and
finally it reaches a free region where no obstacles block its path to the target.

Picture of algorithm 1 run

Faculty of
Information
Technology

32

Algorithm 2-Simulation end time: 8.250

By symmetry, similar arguments and de-
scription apply as to algorithm 1’s result
in this case although time is shorter.

Picture of algorithm 2 run

Algorithm 3 - Simulation end time: 16.515

After we see what path the robot follows,
e.g. upper part of this obstacle which is
the same path taken by algorithm 2, it is
not surprising to see it perform slightly
worse than algorithm 2. Any strategy here
that employs a preference for either right
or left would perform better here to get
around the obstacle after getting trapped
in its corner by the light seeking
behaviour.

Picture of algorithm 3 run

Configuration 8- Results
Algorithm 1 - Simulation end time: Probably never!

In this case, the robot fails to take the shortest path to the target by moving in between
obstacles. Because of its preference for the left direction and domination of collision
behaviour the robot finds its way between narrow obstacles where it gets stuck in a
never ending cycle of colliding with an obstacle, turning 90° slide and collide again,
turn 90°, slide, and repeat this over and over again. As the picture shows the robot
keeps tracing a path indefinitively in the shape of a rectangle.

Faculty of
Information
Technology

33

Picture of algorithm 1 run

Algorithm 2 - Simulation end time: 29.130

Although this configuration does
appear symmetrical around a diagonal
axis it actually isn’t. Similar to
algorithm 1 this algorithm moves the
robot in between a tunnel but this time
the collision behaviour’s actions finish
just before the robot touches the other
obstacle. This permit the robot to come
a little closer to the obstacle each time
and finally it reaches its destination.

Picture of algorithm 2 run

Algorithm 3-Simulation end time: 41.835

This algorithm takes a different path than either other two algorithms in this configur-
ation. In fact a path along the shortest path is taken. The time to complete is still
larger than that of algorithm one, and this seems normal as the distance travelled is
also larger since the robot does spend some time colliding and turning.

Faculty of
Information
Technology

34

Picture of algorithm 3 run

Configuration 9- Results
Algorithm 1 - Simulation end time: Probably never!

Here the robot collides with an obstacle
turns and collides with another obstacle a
few times and then settles into state
where it keeps repeating the same
sequence of movements, although the
shape traced is not that of a rectangle.
The end result is similar to the
algorithm’s result in the 8th configuration.

Picture of algorithm 1 run

Algorithm 2-Simulation end time: 14.115

Unlike the previous case the robot does
not get stuck in an unproductive endless
loop of regularities.

Picture of algorithm 2 run

Faculty of
Information
Technology

35

Algorithm 3-Simulation end time: 33.900

Again the random factor means more
time is spent colliding with obstacles,
one positioned about midway to the goal,
the other closer to the target but unlike
algorithm 1 it at least finishes.

Picture of algorithm 3 run

Configuration 10- Results
Algorithm 1-Simulation end time: 4.950

This configuration is different from
others where the goal is located farther
away. Here it is located around the
center of the world. This partly explains
the short time taken to complete this run.
The robot only experiences around 4
collisions with an obstacle and shortly
afterwards it reaches a region free of
obstacle and then it goes straight to the
source of the signal.

Picture of algorithm 1 run

Algorithm 2-Simulation end time: 5.820

This case is has similar results to
algorithm 1 by symmetry.

Picture of algorithm 2 run

Faculty of
Information
Technology

36

Algorithm 3-Simulation end time: 6.420

Here it performs similarly as the other
two algorithms in this configuration.
Maybe this is due to a smaller sized
obstacle than usual and concaveness of
the obstacle.

Picture of algorithm 3 run

Faculty of
Information
Technology

37

5.2 Conclusion

The results from the tests show that the random strategy never performed best in any
test case. When the obstacles are regular the first two algorithms seem to perform
well. The random algorithm seems to perform better when the robot encounters an
irregular obstacle than when it collides with a regular shaped obstacle. The tests also
showed that the collision routine could prove detrimental in cases where the period
for the robot to advance after a collision brings it into contact with another obstacle.
This result is especially apparent and happens when the robot is located in a narrow
‘corridor’ of obstacles.

The collision behaviour time to go forward could be reduced to handle this case but
this could have an adverse effect on other cases where the robot collides more often
with an obstacle. These latter are cases where the light seeking behaviour is trapping
the robot into region of signal maxima on one side of an obstacle but the collision
routine would then be unable to ‘overshoot’ it because of reduced distance to travel
after a collision.

These test made it apparent that whatever strategy used in search and rescue, it would
be very difficult if not impossible to devise one good strategy or controller for robots
in different environments and differing types of robots. One problem is adaptability.
The robot’s controller may not be adapted too much to one type of environment
because it might fail in another type of environment even if very similar.

The problem with the first two algorithms is that they are fixed, i.e. their collision
behaviours are. The random strategy’s weakness and strength is its variability,
sometimes yielding good results, sometimes bad. In a successful approach, it is
presumed there is a need for a balance between memory, adaptability and randomness.
The robot will use its memory to apply a productive action due to similar conditions
encountered, then when that fails, either change it reaction or apply a little
randomness at that time.

Faculty of
Information
Technology

38

Summary of results:

Algorithm 1 Algorithm 2 Algorithm 3 Best performer Worst performer
time time time

Configuration 1 104.130 8.355 55.035 2 1
Configuration 2 11.940 8.370 43.755 2 3
Configuration 3 28.995 6.390 14.910 2 1
Configuration 4 9.645 12.210 18.600 1 3
Configuration 5 38.310 Never Never 1 2,3
Configuration 6 14.985 Never 16.215 1 2
Configuration 7 17.685 8.250 16.515 2 1
Configuration 8 Never 29.130 41.835 2 1
Configuration 9 Never 14.115 33.900 2 1
Configuration 10 4.950 5.820 6.420 1 3

Algorithm 1=turn 90° left in case of collision and then advance
 Algorithm 2=turn 90° right in case of collision and then advance

Algorithm 3=turn random amount of degrees in case of collision
and then advance

time=simulator ticks

Faculty of
Information
Technology

39

6. Further work

The developed software so far needs improvement. On one side is the level of realism.
The simulator fails to model the effects of forces. What this means is that the effects
of acceleration and friction on the robot are not simulated. When the robot stops or
sets off, it does so instantaneously. A robot in reality is typically affected by friction
along it contact surfaces. In this case friction between it and the walls and floor.

The behaviour and arbitration system also needs a better solution. As is mentioned
one flaw of the system is that when the collision behaviour becomes active it executes
until it is finished even if the robot does collide a second time before it has finished
acting on the first collision. There is a need to devise some sort of mechanism that
will both keep track of this behaviour’s status during simulation steps and allow it to
be interrupted before it has finished.

Sensor modelling could also be made more realistic. The addition of noise on
readings and what the sensor would read were it not omni-directional could be added.
Although not quite clear how this could be implemented, a way of configuring and
creating more behaviours could also be added. If the set of inputs were allowed to
grow, there would be more room to create different and creative behaviours. Since
there are only two inputs now, for touch and light, this limits things quite.

The problem with this behaviour is that it has a similar set of actions as the drive
behaviour. Behaviours that are incremental, i.e. can be divided into smaller sets of
identical action, such as a turning behaviour are easier to process than for instance the
collision behaviour which requires movement in the x,y plane as well as
turning.Maybe the solution would be to tell a behaviour to restart from the beginning
if it senses that its set of preconditions has been satisfied again whilst it is executing?
Again this seem to go against Brook’s intention where control is left to an arbitrating
object.

Faculty of
Information
Technology

40

7. Conclusion of entire work

From this project is seems clear that whatever environment a robot deployed for
search and rescue will be located in, it must be able to learn quickly, since time is
often a critical factor. Work on the project seemed to indicate that whatever strategy
used, it must have some type of ‘memory’ of its actions. Strategies that use behaviour
and memory exist such as the Q-learning algorithm. This is a type of reinforcement
learning that can for instance be used to teach a robot to walk or follow an object.

This project was very revealing in what capabilities a real simulator must have.
Designing and coding one is hard work demanding knowledge of physics,
mathematics, and programming skills. The animation aspect was presumed to be a
difficult aspect from the beginning but this seems to be a fairly minimal factor when
compared to the modeling of the physical laws that must apply on object.
It would have been interesting to see what would have happened with the tests and
algorithms in a more realistic simulator and compare the results.

Overall, this project showed me that coding can with time become easier and more
like using pattern matching. Several times while coding, the same routines were used
from one class into another to perform similar things but slightly different still. Often
this involved arrays. When on get used to the Java programming language, some
routine things with it reminds one of assembling Lego bricks, they can become
second nature with time. Indeed, almost fun!

There is still a lot to learn about but this project was of good value in honing
programming skills. No longer am I afraid of doing more research into games and
animation stuff in Java. That will be the next step, and hopefully something more will
come out of it-who knows? -maybe a realistic, multi-sensor, behaviour based
simulator. Another idea that came to mind was to develop something, maybe create a
behaviour based character for a computer game that could evade falling objects for
instance. I think this a real possibility and maybe this could demonstrate something
unique. This involves AI and there is a lot of potential for anything that seems or acts
intelligently in the computer gaming field. The only problem in this field is the lack
of relationship between researchers of AI in universities and computer game
programmers.

Faculty of
Information
Technology

41

References

1. Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern
Approach. New Jersey: Upper Saddle River. Pearson Education,
2003

2. S. Goldberg， M. Maimone, L. Matthies. “Stereo Vision and

Rover Navigation Software for Planetary Exploration”.
Proceedings of the 2002 IEEE Aerospace Conference. Big Sky,
MT, March 2002.

3. S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping of

terrain. In Proceedings of the International Conference on
Robotics and Automation, pages 3594--3599. IEEE, 2001.

4. S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and

B. Nebel, editors, Exploring Artificial Intelligence in the New
Millenium. Morgan Kaufmann, 2002.

5. R. A. Brooks. "A Robust Layered Control System for a Mobile

Robot", IEEE Journal of Robotics and Automation, Vol. 2, No. 1,
March 1986, pp. 14–23; also MIT AI Memo 864, September 1985.

6. A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot

Perception and Navigation. PhD thesis, Department of Electrical
and Computer Engineering, Carnegie Mellon University, 1989.

7. A. Elfes. Sonar-based real-world mapping and navigation. IEEE
Journal of Robotics and Automation, RA-3(3):249–265, June 1987.

8. H. P. Moravec. Sensor fusion in certainty grids for mobile robots.
AI Magazine, 9(2):61–74, 1988.

9. R. A. Brooks, P. Maes. Learning to Coordinate Behaviors. A1-
laboratory. MIT

Faculty of
Information
Technology

42

Appendix A – Code listing

The simulator part of the architecture.

import javax.swing.Timer;
import java.awt.Toolkit;
import javax.swing.JComponent;
import java.awt.Graphics2D;
import java.awt.geom.Rectangle2D;
import java.awt.event.*;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.RenderingHints;
import java.awt.Shape;
import java.awt.geom.Ellipse2D;
import java.awt.Dimension;
import java.awt.image.*;
import javax.swing.ImageIcon;
/**
 * The server class. This is in charge of the simulator world
 *
 *
 * Created: Fri Mar 18 16:00:09 2005-2006
 *
 * @author
 * @version 1.0
 */
//public class simGuiExp extends JComponent implements
ActionListener {
public class simGuiExp implements ActionListener {
 private Graphics2D g2;
 public robot[] robot;
 protected static int cells=30, length=10,timeSize=15,
diamRobot=14;
 private static int
scanRange=(int)((double)(diamRobot)/(double)length+0.5);

protected int[][] cellVal;
 protected static int[][] tmpCellVal;
 // private int[][] lightVal;
 private Timer timer; int delay=20;
 private static int collides=0;
 private static int maxTravel=cells*length-diamRobot/2;
 protected static int selectedSource;
 protected static Animator animate;
 public static double timerf=0;
 protected static double simTime=0;

Faculty of
Information
Technology

43

private Behavior colide, seek, drive;
 private Arbitrator arbi=new Arbitrator();
 protected boolean running=false, randomizer=false;

int starty,startx,lasty, lastx;
 /**
 * Creates a new <code>simGui</code> instance.
 *

*/

public simGuiExp(int[][] grid) {

this.cellVal=grid;
 maxTravel=cells*length-diamRobot/2;
 timer=new Timer(delay, this);
 cells=grid.length;
 //robot=new robot[2];
 robot=new robot[1];
 // robot[0]=new robot(25,25,29,29,this, Color.orange);
 robot[0]=new robot(35f,35f,0.2f,4.5,this, Color.orange);

drive=new driveBehavior();
 colide=new collisionBehavior();
 seek=new seekingBehavior();
 colide.behavior(robot[0], arbi);
 seek.behavior(robot[0], arbi);
 drive.behavior(robot[0], arbi);
 //seek.behavior(robot[1], arbi);
 //Behavior[] behaviors={drive,seek,colide};
 Behavior[] behaviors={colide,seek,drive};
 arbi.setBehaviors(behaviors);

// colide=new collisionBehavior();
 // colide.behavior(robot[0]);

// robot=new robot[1];
 // robot[0]=new robot(20,20,21,21,this);

animate=new Animator(cellVal, robot,arbi, this);
 //test.tpane.addTab("Simulator",animate);
test.tpane.insertTab("Simulator",new
ImageIcon("simSmall.gif"),animate,null,0);

//start();

}

public void start(){animate.simstatus="running";running=true;
timer.start();}
 public void
stop(){animate.simstatus="stopped";running=false;timer.stop();}
 public void update(){}

public Arbitrator getArbitrator(){

Faculty of
Information
Technology

44

return arbi;
 }

public void worldShifter(int[][] cellVal){

int ranNum=(int)(Math.random()*10);
 System.out.print(" number... "+ranNum);
 int x=1,y=1;
 if (ranNum>=9) {
 x=(int)(Math.random()*cellVal.length);
 y=(int)(Math.random()*cellVal.length);
 int tmp=cellVal[x][y];
 cellVal[x][y]=cellVal[y][x];
 cellVal[y][x]=tmp;
 animate.refreshWorld();
System.out.println(" world shifter...............");

// if (cellVal[x][y]==-2) {

// }
 }}

public void worldShiftThread(){

new Thread() {

 public void run() {
 randomizer=true;
 while(randomizer) { //

worldShifter(cellVal);

try { Thread.sleep(500); // sleep a bit
 }

catch(InterruptedException ex){}
 }

System.out.print("End of Thread!");
 }

}.start();
 }

protected simGuiExp resetSim(){
 simTime=0;
 randomizer=false;
 return new simGuiExp(cellVal);
}

public final void actionPerformed(final ActionEvent actionEvent)
{

//timeScheduler=timeScheduler+timeSize+delay;
 simTime=simTime+timeSize;
 long start=System.currentTimeMillis();
 animate.setRobotImages();
 // System.out.println("Time between actionperformed calls:
"+(start-timerf));

Faculty of
Information
Technology

45

// //System.out.println("Elapsed time from last call:
"+timePassed);
 // System.out.println("Robots 0 current location
"+robot[0].loc_x+" "+robot[0].loc_y);
 // System.out.println("Robots 0 next location
"+robot[0].dest_x+" "+robot[0].dest_y);
 // System.out.println("Robots 1 current location
"+robot[1].loc_x+" "+robot[1].loc_y);
 // System.out.println("Robots 1 next location
"+robot[1].dest_x+" "+robot[1].dest_y);
 draw();
 //long time = System.currentTimeMillis() - start;
 //System.out.println("simu time "+simTime);
 start=System.currentTimeMillis();
 for (int i=0;i<robot.length;i++) {
 robot[i].update(timeSize);}
 arbi.arbitrate();

}

public void draw(){
 animate.draw();
 }

public void runny()
// /* Repeatedly update, render, sleep */
 {
// //running = true;
 long beforeTime, timeDiff, sleepTime, period=10;

beforeTime = System.currentTimeMillis();

timeDiff = System.currentTimeMillis() - beforeTime;
 sleepTime = period - timeDiff; // time left in this loop

if (sleepTime <= 0) // update/render took longer than
period
 sleepTime = 5; // sleep a bit anyway

try {
 Thread.sleep(sleepTime); // sleep a bit
 }

catch(InterruptedException ex){}
 beforeTime = System.currentTimeMillis();
 }

} // end of run()

protected double calcHeading(double dirx, double diry){
 double heading=0;
 int quadrant=1;

Faculty of
Information
Technology

46

// if (dirx>=0 && diry<=0) {quadrant=1;}else if (dirx<0 &&
diry<0){quadrant=2;}
// else if (dirx<0 && diry>0) {quadrant=3;}else {quadrant=4;}
 if (dirx>=0 && diry<=0) {quadrant=1;}else if (dirx<=0 &&
diry<=0){quadrant=2;}
 else if (dirx<=0 && diry>=0) {quadrant=3;}else {quadrant=4;}

if (dirx!=0) {
 heading=Math.atan(diry/dirx);
 }

else if (dirx==0 && diry>0) {
 heading=1.5*Math.PI;
 }

else if (dirx==0 && diry<=0) {
 heading=Math.PI/2;
 }

if (heading<=0 && quadrant==1) {
 heading=Math.PI+heading;
 }

else if (heading<=0 && quadrant==3) {
 heading=2*Math.PI+heading;
 }

else if (heading>=0 && quadrant==4) {
 heading=Math.PI+heading;
 }

return heading;
 }

public double[] checkCollision(robot rob){
 //public float[] checkCollision(robot rob){

double vector_X=rob.dest_x-rob.loc_x; double
vector_Y=rob.dest_y-rob.loc_y;
 double res=Math.sqrt(vector_X*vector_X+vector_Y*vector_Y);
 double directx=(1/res*vector_X);
 double directy=(1/res*vector_Y);
 double[] newLoc={rob.loc_x, rob.loc_y};
 double safe_advance_x=directx;//*0.5;
 double safe_advance_y=directy;//*0.5;

boolean collision=false;
 //current grid coordinate of robot
 int gridx=(int)(rob.loc_x/length);
 int gridy=(int)(rob.loc_y/length);

double test_x=rob.loc_x+safe_advance_x;
 double test_y=rob.loc_y+safe_advance_y;

double tempVarX=rob.loc_x;
 double tempVarY=rob.loc_y;

Faculty of
Information
Technology

47

int d=0;

while ((Math.abs(safe_advance_x)<Math.abs(vector_X) ||
Math.abs(safe_advance_y)<Math.abs(vector_Y)))//
 {

// && ((test_x-rob.dest_x)*(test_x-rob.dest_x)+(test_y-
rob.dest_y)*(test_y-rob.dest_y))>1) {
 // System.out.println("inside while"); d++;
 //Pinging ahead--testing for collisions with a circle

Shape body=pingShape(test_x, test_y);
 Shape bodyX=pingShape(test_x, tempVarY);
 Shape bodyY=pingShape(tempVarX, test_y);

gridx=(int)(test_x/length);
 gridy=(int)(test_y/length);
 int[] scanx=findScanDirx();
 int[] scany=findScanDiry();

// for (int i=0;i<scany.length &&
(scany[i]+gridy)<Grid.grids.length && (scany[i]+gridy)>=0;i++) {

// for (int j=0;j<scanx.length &&
(scanx[j]+gridx)<Grid.grids.length && (scanx[j]+gridx)>=0 ;j++) {

for (int i=0;i<scany.length && (scany[i]+gridy)<cells &&
(scany[i]+gridy)>=0;i++) {

for (int j=0;j<scanx.length && (scanx[j]+gridx)<cells &&
(scanx[j]+gridx)>=0 ;j++) {

boolean
wall=(cellVal[gridx+scanx[j]][gridy+scany[i]]==-2);

// boolean
touch=body.intersects(Grid.grids[gridx+scanx[j]][gridy+scany[i]]);
 boolean
touch=body.intersects(Grid.rectangle(gridx+scanx[j],gridy+scany[i]))
;

boolean
touchX=bodyX.intersects(Grid.rectangle(gridx+scanx[j],gridy+scany[i]
));
 boolean
touchY=bodyY.intersects(Grid.rectangle(gridx+scanx[j],gridy+scany[i]
));

if ((touch && wall) || test_x>=maxTravel ||
test_y>=maxTravel) {//if touch wall or new location out of
bounds!!!--touching wall equal going out bounds
 // System.out.println("Collision! at "+tempVarX+"
"+tempVarY);
 // System.out.println("X:
"+(int)(tempVarX/length)+"Y "+(int)(tempVarY/length));
 // Toolkit.getDefaultToolkit().beep();

Faculty of
Information
Technology

48

// System.out.println("bodyX: "+touchX+" bodyY
"+touchY);
 // if (bodyX!=null && animate!=null) {
 // animate.drawShape(bodyX);
 // }

newLoc[0]=tempVarX-directx;
 newLoc[1]=tempVarY-directy;
 // collides++;
 rob.collision=true;
 // return newLoc;
 //if robot collides then set destination
robot=curr-location?????
 if (!touchX && touchY) {
 newLoc[0]=test_x;
 rob.dest_x=newLoc[0];rob.dest_y=newLoc[1];
 // System.out.println("increasing x ");
 return newLoc;
 }

else if (!touchY && touchX) {
 newLoc[1]=test_y;
 rob.dest_x=newLoc[0];rob.dest_y=newLoc[1];
 return newLoc;
 }

else if (touchY && touchX) {
 //System.out.println("final exit");
 rob.dest_x=newLoc[0];rob.dest_y=newLoc[1];
 return newLoc;
 }

else {
 //just keep on looping!
 }

}
}

}
safe_advance_x+=directx;

 safe_advance_y+=directy;
 tempVarX=test_x;
 tempVarY=test_y;
 test_x=rob.loc_x+safe_advance_x;
 test_y=rob.loc_y+safe_advance_y;
 }//end of while
 rob.collision=false;
 newLoc[0]=tempVarX;//-directx;
 newLoc[1]=tempVarY;//-directy;
 //System.out.println("value of d "+d);
 return newLoc;
 }

public int[] findScanDirx(){
 int[] direct={-1,0,1};
 return direct;
 }

Faculty of
Information
Technology

49

public int[] findScanDiry(){
 int[] direct={1,0,-1};
 return direct;
 }

public Shape pingShape(double locx,double locy){
 return new Ellipse2D.Double(locx-diamRobot/2,locy-
diamRobot/2,diamRobot,diamRobot);
 }

public double signalDirection(robot rob){
 int distance=(rob.sensorRange-36)/length+1;
 return scanMultipleCells(rob, distance);
 // double direct;
// int gridx=(int)(rob.loc_x/length);
// int gridy=(int)(rob.loc_y/length);

// int[] scanx=findScanDirx();
// int[] scany=findScanDiry();

// double lowestVal=cellVal[gridx][gridy];
// int posx=gridx, posy=gridy;

// // for (int i=0;i<scany.length &&
(scany[i]+gridy)<Grid.grids.length && (scany[i]+gridy)>=0;i++) {
// // for (int j=0;j<scanx.length &&
(scanx[j]+gridx)<Grid.grids.length && (scanx[j]+gridx)>=0 ;j++)
// for (int i=0;i<scany.length &&
(scany[i]+gridy)<cellVal.length && (scany[i]+gridy)>=0;i++) {
// for (int j=0;j<scanx.length &&
(scanx[j]+gridx)<cellVal.length && (scanx[j]+gridx)>=0 ;j++) {
// // if
(grfxSquare[gridx+scanx[j]][gridy+scany[i]].range_class<lowestVal &&
lowestVal>=0) {
// if (0<=cellVal[gridx+scanx[j]][gridy+scany[i]] &&
cellVal[gridx+scanx[j]][gridy+scany[i]]<lowestVal) {

// lowestVal=cellVal[gridx+scanx[j]][gridy+scany[i]];
// posx=gridx+scanx[j];posy=gridy+scany[i];
// // System.out.println("Light seeking strength
loop ...Strongest cell at x,y: "+posx+" ,"+posy);
// // System.out.println("value there
is: "+cellVal[posx][posy]);
// // System.out.println("Robot's
current position, x,y, "+gridx+" "+gridy);
// // System.out.println(" value
here: "+cellVal[gridx][gridy]);
// //System.out.println("value of non-existent
"+grfxSquare[gridx+1][gridy].range_class);
// }
// }
// }

Faculty of
Information
Technology

50

// direct=calcHeading(((posx+0.5)*length-rob.loc_x),
((posy+0.5)*length-rob.loc_y));
// // System.out.println("According to signalDirection;
heading is: "+direct);
// // if (cellVal[gridx][gridy]==0) {
// // stop();//rob.speed=0;
// // }
// return direct;
 }

public double scanMultipleCells(robot rob, int scanCellDistance){
 int gridx=(int)(rob.loc_x/length);
 int gridy=(int)(rob.loc_y/length);

double lowestVal=cellVal[gridx][gridy];
 int posx=gridx, posy=gridy;
 double direct;

int m1=(((gridx-scanCellDistance)<1) ? -gridx+1 : -
scanCellDistance);
 int m2=(((gridx+scanCellDistance)<(cellVal.length-2)) ?
scanCellDistance : (cellVal.length-2-gridx));
 int n1=(((gridy-scanCellDistance)<1) ? -gridy+1 : -
scanCellDistance);
 int n2=(((gridy+scanCellDistance)<(cellVal.length-2)) ?
scanCellDistance : (cellVal.length-2-gridy));
 for (int i=n1;i<(n2+1);i++) {
 for (int j=m1;j<(m2+1);j++) {
 if (0<=cellVal[gridx+j][gridy+i] &&
cellVal[gridx+j][gridy+i]<lowestVal) {

lowestVal=cellVal[gridx+j][gridy+i];
 posx=gridx+j;posy=gridy+i;
 }

}
}

direct=calcHeading(((posx+0.5)*length-rob.loc_x),
((posy+0.5)*length-rob.loc_y));
System.out.println("According to signalDirection; heading is:
"+direct+"cell is at "+posx+" "+posy);
return direct;
 }

// Implementation of java.awt.event.ActionListener

/**
 * Describe <code></code> method here.
 *

* @param
 */

public final void advanceRobot() {
 for (int i=0;i<robot.length;i++) {

Faculty of
Information
Technology

51

double dis_x, dis_y;

dis_x=(robot[i].loc_x-robot[i].dest_x)*(robot[i].loc_x-
robot[i].dest_x);
 dis_y=(robot[i].loc_y-robot[i].dest_y)*(robot[i].loc_y-
robot[i].dest_y);

//if (dis_x+dis_y<1) {
 // robot[i].dest_x=robot[i].loc_x;
 // robot[i].dest_y=robot[i].loc_y;
 // System.out.println("Robot"+i+" has stopped");
 //}

// else if ((dis_x+dis_y)>=1){

double[] safeNoCollision_xy=new double[2];
 safeNoCollision_xy=(checkCollision(robot[i]));
 robot[i].loc_x=safeNoCollision_xy[0];
 robot[i].loc_y=safeNoCollision_xy[1];
 // }
 if (robot[i].loc_x<(diamRobot/2+length)) {
robot[i].loc_x=diamRobot/2+length; }
 if (robot[i].loc_y<(diamRobot/2+length)) {
robot[i].loc_y=diamRobot/2+length; }
 if (robot[i].loc_x>(maxTravel-length)) {
robot[i].loc_x=maxTravel-length; }
 if (robot[i].loc_y>(maxTravel-length)) {
robot[i].loc_y=maxTravel-length; }
 }

}
}

The map creating part of the architecture.

import javax.swing.JComponent;
import java.awt.Graphics2D;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.RenderingHints;
import java.awt.Dimension;
import java.awt.image.BufferedImage;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseMotionAdapter;
import java.awt.event.*;
import javax.swing.JButton;
//import javax.swing.JPanel;
/**
 * The server class. This is in charge of the simulator world
 *
 *
 * Created: Fri Mar 18 16:00:09 2005
 *
 * @author

Faculty of
Information
Technology

52

* @version 1.0
 */
public class simWorldCreator extends JComponent {
 private Graphics2D g2;
 protected static int cells, length=10;
 private int diamRobot;
 public int[][] cellVal;
 protected static int[][] tmpCellVal;
 private int[][] lightVal;
 private static int maxTravel;//=cells*length-diamRobot/2;
 protected static int selectedSource=-1;
 protected static BufferedImage bimage;
 int starty,startx,lasty, lastx;
 private double start;
 private boolean trigger=false;
 protected boolean noise=false;
 private JButton playButton;

/**
 * Creates a new <code>simGui</code> instance.
 *

*/
 public simWorldCreator() {
 start=System.currentTimeMillis();
 cells=simGuiExp.cells;
 diamRobot=simGuiExp.diamRobot;
 maxTravel=cells*length-diamRobot/2;
 cellVal=new int[cells][cells];
 lightVal=new int[cells][cells];
 cellVal=Grid.lightGridGenrtr(cells/2,cells/2);
 lightVal=Grid.lightGridGenrtr(cells/2,cells/2);
 // System.arraycopy(cellVal, 0, lightVal, 0, cellVal.length);
 // lightVal=Grid.lightGridGenrtr(cells/2,cells/2);
 tmpCellVal=cellVal;

System.out.println("Simworld cells "+cells);
 addMouseListener(new MouseAdapter(){
 public void mousePressed(MouseEvent e){
 int gridx=(int)(e.getX()/length);
 int gridy=(int)(e.getY()/length);

if (selectedSource==-3 && !trigger) {//set if erasing
mode selected and user has clicked once
 startx=(e.getX());starty=(e.getY());
 trigger=true;
 // System.out.println("mouse press");
 // System.out.println("Val of
start co-ordinates "+startx+" "+starty);
 repaint();
 //set flag..already clicked once in erasing
mode...
 }

else if (trigger) {
 clearCells();

Faculty of
Information
Technology

53

//System.out.println("Triggggre");
 // startx=(e.getX());starty=(e.getY());
 // lastx=startx;lasty=starty;
 trigger=false;
 repaint();
 }//then 'erase' cells from (int)(startx/length) to
(int)(lastx/length) using
cellVal[gridx][gridy]=lightVal[gridx][gridy];
 else markCell(gridx,gridy);
 }

});
 addMouseMotionListener(new MouseMotionAdapter(){
 public void mouseMoved(MouseEvent e){
 lastx=(e.getX());
 lasty=(e.getY());
 if (selectedSource==-3 && trigger) {
 //repaint();//
 refreshWorld(20);
 }

}});
 addMouseMotionListener(new MouseMotionAdapter(){
 public void mouseDragged(MouseEvent e){
 int gridx=(int)(e.getX()/length);
 int gridy=(int)(e.getY()/length);
 markCell(gridx,gridy);
 //tmpCellVal=cellVal;
 }});
 }

public void markCell(int gridx, int gridy){
 //boundary check for drawn grid...
 if (gridx>0 && gridy>0 && gridx<(cells-1) && gridy<(cells-1))
{

if (selectedSource==-2 && cellVal[gridx][gridy]>0) {
 //lastSelected=cellVal[gridx][gridy];

if (noise) {
 noise(gridx,gridy);
 cellVal[gridx][gridy]=-2;
 repaint();
 }

else {
 cellVal[gridx][gridy]=-2;

simWorldCreator.this.repaint(gridx*length,gridy*length,
length,length);
 }

}
else if (selectedSource==-2 && cellVal[gridx][gridy]==0)

 {;}
 else if (selectedSource==-4) {
 cellVal[gridx][gridy]=lightVal[gridx][gridy];

Faculty of
Information
Technology

54

simWorldCreator.this.repaint(gridx*length,gridy*length,
length,length);
 }

else if (selectedSource==-1)
 {

//cellVal[gridx][gridy].range_class=0;
 try {
 tmpCellVal=Grid.lightGridGenrtr(gridx,gridy);
 lightVal=Grid.lightGridGenrtr(gridx,gridy);
 repositionGoal();
 cellVal=tmpCellVal;
 //System.arraycopy(cellVal, 0, lightVal, 0,
cellVal.length);
 if (noise) {noiseMapGen();tmpCellVal=cellVal;}
 // cellVal=tmpCellVal;
 repaint();

} catch (Exception rre) {System.out.println("Error in
grid creation-Grid class: "+rre); }
 }

}//eof outer if
 else {
 ;

}
}

private void repositionGoal(){
 for (int row=1;row<(cellVal.length-1);row++) {
 for (int column=1; column<(cellVal.length-1); column++) {
 if (cellVal[column][row]==-2) {
 tmpCellVal[column][row]=-2;
 // System.out.println("repositioning goal");
 }

}
}
if (noise) {removeNoise();noiseMapGen();}

 }

private void clearCells(){
 int stx=(int)(startx/length+0.5),
sty=(int)(starty/length+0.5),
 lstx=(int)(lastx/length+0.5),lsty=(int)(lasty/length+0.5);
 int tmpx=stx;
 int tmpy=sty;
 System.out.println("Value of stx, sty"+stx+","+sty);
 System.out.println("Value of lstx, lsty"+lstx+","+lsty);
 if (lstx<stx) {
 stx=lstx;lstx=tmpx;
 }

if (lsty<sty) {
 sty=lsty;lsty=tmpy;
 }

Faculty of
Information
Technology

55

for (int row=sty;row<lsty;row++) {
 for (int column=stx; column<lstx; column++) {
 cellVal[column][row]=lightVal[column][row];
 //System.out.println("llloooooooooooopppepped)");
 //System.out.println(lightVal[column][row]);
 }

//System.out.println();
 }

//remember to cancel noise effects of obstacles cells when
erased...
 //their effects can go beyond range of erased area so we opt
to reprocess whole map
 if (noise) {removeNoise();noiseMapGen();}
 }

public void eraseRect(){
 // int width=Math.abs(lastx-startx);
 // int height=Math.abs(lasty-starty);

int width=(lastx-startx);
 int height=(lasty-starty);
 width=((width<0) ? -width : width);
 height=((height<0) ? -height : height);
 int tmpx=startx, tmpy=starty;

System.out.println("start x "+startx+" width is "+width);
 tmpx=((startx>lastx) ? (startx-width) : startx);
 tmpy=((starty>lasty) ? (starty-height) : starty);

if (g2!=null) {
 g2.setColor(new Color(100,100,100,100));
 g2.fillRect(tmpx,tmpy,width,height);
 g2.setColor(Color.white);
 g2.drawRect(tmpx,tmpy,width,height);
 }

}

public void noise(int gridx, int gridy){
 multipleCellNoise(gridx, gridy, 2);
 // for (int i=-1;i<2;i++) {
// for (int j=-1;j<2;j++) {
// if (0<cellVal[gridx+j][gridy+i]){

// if
(cellVal[gridx+j][gridy+i]>lightVal[gridx][gridy]) {
//
cellVal[gridx+j][gridy+i]=(int)(1.5*lightVal[gridx+j][gridy+i]);
// }
// else {
// if ((int)(0.9*lightVal[gridx+j][gridy+i])!=0) {
//
cellVal[gridx+j][gridy+i]=(int)(0.9*lightVal[gridx+j][gridy+i]);
// // System.out.println(
// }

Faculty of
Information
Technology

56

// }
// }
// }
// }
 }

public void multipleCellNoise(int gridx, int gridy, int
cellDistance){
 int m1=(((gridx-cellDistance)<1) ? -gridx+1 : -cellDistance);
 int m2=(((gridx+cellDistance)<(cellVal.length-2)) ? cellDistance
: (cellVal.length-2-gridx));
 int n1=(((gridy-cellDistance)<1) ? -gridy+1 : -cellDistance);
 int n2=(((gridy+cellDistance)<(cellVal.length-2)) ?
cellDistance : (cellVal.length-2-gridy));
 for (int i=n1;i<(n2+1);i++) {
 for (int j=m1;j<(m2+1);j++) {

if (0<cellVal[gridx+j][gridy+i]){

if (cellVal[gridx+j][gridy+i]>lightVal[gridx][gridy])
{

cellVal[gridx+j][gridy+i]=(int)(1.5*lightVal[gridx+j][gridy+i]);
 }

else {
 if ((int)(0.9*lightVal[gridx+j][gridy+i])!=0) {

cellVal[gridx+j][gridy+i]=(int)(0.9*lightVal[gridx+j][gridy+i]);
 // System.out.println(
 }

}
}

}
}

}

public void noiseMapGen(){

for (int row=1;row<(cellVal.length-1);row++) {
 for (int column=1; column<(cellVal.length-1); column++) {
 if (cellVal[column][row]==-2) {
 noise(column, row);
 // System.out.println("adjusting cell");
 }

}
}
repaint();

 }

public void removeNoise(){

for (int row=1;row<(cellVal.length-1);row++) {
 for (int column=1; column<(cellVal.length-1); column++) {
 if (cellVal[column][row]!=-2) {

Faculty of
Information
Technology

57

cellVal[column][row]=lightVal[column][row];
 // System.out.println("resetting cell");
 }

}
}
repaint();

 }
public void refreshWorld(long refreshtime){

 if (System.currentTimeMillis()-start>=refreshtime) {
 start=System.currentTimeMillis();
 repaint();
 }

}

public void update(){}

public void paintComponent(Graphics g){
 // System.out.println("painting component");
 g2=(Graphics2D)g;

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,RenderingHints.V
ALUE_ANTIALIAS_ON);
 //to set background colour of map
 g2.setColor(Color.black);
 // g2.fillRect(0, 0, getWidth(), getHeight());

Grid.drawGrid(g2, cellVal);
 if (selectedSource==-3 && trigger) {eraseRect();
System.out.println("ffffff");}
 // g2.dispose();
 //g2.drawImage(bimage,0,0,null);
 }

public Dimension getPreferredSize() {
 int size=(int)cellVal.length*length+1;
 return new Dimension(size, size);
 }

public Dimension getMinimumSize() {
 int size=(int)cellVal.length*length+1;
 return new Dimension(size, size);
 // return new Dimension(100, 100);
 }

public Dimension getMaximumSize() {
 int size=(int)cellVal.length*length+1;
 return new Dimension(size, size);
 }
}

/**
 * The robot class.
 *
 *

Faculty of
Information
Technology

58

* Created: Tue Mar 22 01:21:51 2005-2006
 *
 * @author
 * @version 1.0
 */
import java.awt.Color;
import java.util.LinkedList;
import java.awt.*;

/**
 * The client-the robot class.
 *
 *
 * Created: Tue Mar 22 01:21:51 2005
 *
 * @author
 * @version 1.0
 */
public class robot {
 protected double loc_x, loc_y, dest_x, dest_y, s_x,s_y,heading=0,
targetHead;
 // protected float loc_x, loc_y, dest_x, dest_y;,
 // protected float heading=0, targetHead, s_x,s_y;
 //protected double heading=0, targetHead, s_x,s_y;
 protected double speed=0.2d;
 protected boolean collision=false;
 protected simGuiExp sim;
 protected Color xcolor;
 private LinkedList trailList;
 protected static int sensorRange=36;
 protected boolean targetReached=false;
 protected double time2trgt=-1;
 /**
 * Creates a new <code>robot</code> instance.
 *

*/
 public robot() {

}

public robot(double loc_x, double loc_y, double speed, double
heading,simGuiExp sim, Color colour){

this.loc_x=loc_x; this.loc_y=loc_y; this.dest_x=loc_x;

this.dest_y=loc_y;
 this.s_x=loc_x; this.s_y=loc_y;
 this.sim=sim; this.xcolor=colour;
 trailList = new LinkedList();
 this.heading=heading;
 }

public void update(long elapsedTime){
 Point p = new Point((int)loc_x,(int)loc_y);

Faculty of
Information
Technology

59

//to draw robot trails uncomment this....
 trailList.addFirst(p);

// this.dest_x=Math.round(this.loc_x-
Math.cos(heading)*speed*elapsedTime);
 //this.dest_y=Math.round(this.loc_y-
Math.sin(heading)*speed*elapsedTime);

this.dest_x=this.loc_x-Math.cos(heading)*speed*elapsedTime;

 this.dest_y=this.loc_y-Math.sin(heading)*speed*elapsedTime;

// System.out.println("Robots next location before advance
location "+dest_x+" "+dest_y);
 sim.advanceRobot();
int gridx=(int)(loc_x/simGuiExp.length);
 int gridy=(int)(loc_y/simGuiExp.length);
 if (sim.cellVal[gridx][gridy]==0) {
 sim.stop();targetReached=true;time2trgt=sim.simTime;
 }

//System.out.println("Robots next location after advance
location "+dest_x+" "+dest_y);
 }

public LinkedList getRobotTrail(){return trailList;}

public void stop(){
 // this.dest_x=this.loc_x;
// this.dest_y=this.loc_y;
 speed=0;
 }

public void turn(){
 double change=(targetHead-heading)/10;
 // if (Math.abs(this.targetHead-this.heading)>0.1) {
 //
this.heading=(this.heading+change)%(2*Math.PI);
 if (Math.abs(targetHead-heading)>0.2) {
 change=(targetHead-heading)/3;
 if (change>0) {
 // heading=(float)((heading+0.08f)%(2*Math.PI));
 heading=(heading+0.08)%(2*Math.PI);
 } else if(change<0) {
 //heading=(float)((heading-0.08f)%(2*Math.PI));
 heading=(heading-0.08)%(2*Math.PI);
 }

// this.heading=(this.heading+change)%(2*Math.PI);
 // System.out.println("the first if head...change:
"+change);
 }

else {
 heading=targetHead;
 }

}

Faculty of
Information
Technology

60

public void turnS(){

if (Math.abs(targetHead-heading)>0.2) {

if ((targetHead-heading)<0) {
 if ((targetHead+Math.PI)>heading)
 //{heading=(float)((heading-0.08f)%(2*Math.PI));}
 {heading=(heading-0.08)%(2*Math.PI);}
 else
 // {heading=(float)((heading+0.08f)%(2*Math.PI));}
 {heading=(heading+0.08)%(2*Math.PI);}

} else if ((targetHead-heading)>0) {
 if ((heading+Math.PI)>targetHead)
 // {heading=(float)((heading+0.08f)%(2*Math.PI));}
 {heading=(heading+0.08)%(2*Math.PI);}
 else
 //{heading=(float)((2*Math.PI+heading-
0.08f)%(2*Math.PI));}
 {heading=(2*Math.PI+heading-0.08)%(2*Math.PI);}
 }

// this.heading=(this.heading+change)%(2*Math.PI);
 // System.out.println("the first if head...change:
"+change);
 }

else {heading=targetHead;}
 }

public boolean hasStopped(){
 //return this.speed==0;
 return (this.loc_x==this.dest_x && this.loc_y==this.dest_y);

}
public boolean finishedTurn(){

 return (heading==targetHead);}
}

The ‘behaviour interface’

public interface Behavior {

public void behavior(robot rob, Arbitrator arbi);

/**
 * Returns a boolean to indicate if this behavior should take
control of the robot.
 */
 public boolean takeControl();

/**

 * The code in action() represents the action the robot should
*take when this behavior becomes active.

Faculty of
Information
Technology

61

*/
 public void action();

public int getTime2Last();
 public void setTime2Last(int i);

}

The ‘collision’ behaviour class

public class collisionBehavior implements Behavior {

Arbitrator arbi;
 private robot rob;
 protected double ticks=0;
 public int time2Last=5;
 private double oldSpeed;

public void behavior(robot rob, Arbitrator arbi){
 this.rob=rob; this.arbi=arbi;
 }
/**

 * Returns a boolean to indicate if this behavior should take
control of the robot.
 */
 public boolean takeControl() {

if (rob.collision) {
 oldSpeed=rob.speed;
 rob.stop();

// rob.targetHead=(rob.heading+Math.PI/2)%(2*Math.PI);
 // rob.targetHead=(rob.heading-Math.PI/2)%(2*Math.PI);
 rob.targetHead=Math.random()*(2*Math.PI);

System.out.println("Robot collided......Robbies' heading
"+rob.heading);
 ticks=time2Last;
 return true;
 }

else {return false;}
 }

/**
 * The code in action() represents the action the robot should
take when the * this behavior becomes active.
 */
 public void action() {

if (!rob.finishedTurn()) {
 System.out.println("in Collision routine");
 rob.turnS();

Faculty of
Information
Technology

62

}
//if finished turning then go forwards

 else if (!(ticks<0)) {
 rob.speed=oldSpeed;
 ticks=ticks-1;
 System.out.println("in Collision routine driving");
 }

else {
 arbi.busy=false;
 }

}

public int getTime2Last(){
 return time2Last;
 }

public void setTime2Last(int ticks){
 time2Last=ticks;
 }

public String toString(){return "Collision Behaviour";}

}

The ‘light seeking’ behaviour class

public class seekingBehavior implements Behavior {

private robot rob;
 private Arbitrator arbi;
 private double oldSpeed;

public int time2Last=-1;

public void behavior(robot rob, Arbitrator arbi){
 this.rob=rob;
 this.arbi=arbi;
 }

/**
 * Returns a boolean to indicate if this behavior should take
control of the robot.
 */
 public boolean takeControl() {
 if (!rob.collision) {
 oldSpeed=rob.speed;
 System.out.println("LightSeeking
engaged......................");
 return true;

}
else {

 return false;
 }

Faculty of
Information
Technology

63

}

/**
 * The code in action() represents the action the robot should
take when the * this behavior becomes active.
 */

public void action(){

rob.stop();
 rob.targetHead=rob.sim.signalDirection(rob);
 if (!rob.finishedTurn()) {

//System.out.println("Light seeker turning..........Tick:
");//+ticks);
 System.out.println("heading "+rob.heading);
 System.out.println("target heading "+rob.targetHead);
 //rob.turn2Light();
 rob.turnS();
 // ticks=ticks-1;
 }

else //if (ticks>1) {
 { System.out.println("Finished turning going forwards:
");//+ticks);
 arbi.busy=false;}
 }

public int getTime2Last(){
 return time2Last;
 }

public void setTime2Last(int ticks){
 time2Last=-1;
 }

public String toString(){return "Seeking Behaviour";}

}

The ‘drive’ behaviour class.

public class driveBehavior implements Behavior {

private robot rob;
 private Arbitrator arbi;
 private double oldSpeed;
 private double ticks=0;
 public int time2Last=2;
 //private double ticks=-1;

public void behavior(robot rob, Arbitrator arbi){
 this.rob=rob;

Faculty of
Information
Technology

64

this.arbi=arbi;
 }
/**

 * Returns a boolean to indicate if this behavior should take
control of the robot.
 */
 public boolean takeControl() {
 if (!rob.collision &&
rob.targetHead==rob.sim.signalDirection(rob)) {
 //oldSpeed=rob.speed;
 ticks=time2Last;
 System.out.println("Value of drive...true");
 return true;
 }

else {
 System.out.println("Value of drive...false");
 return false;
 }

}

/**
 * The code in action() represents the action the robot should
take when the * this behavior becomes active.
 */
 public void action(){
 System.out.println("driving...");//+ ticks);
 if (!(ticks<0) && !rob.collision) {
 //rob.speed=oldSpeed;
 rob.speed=0.2;
 System.out.println("Ticks so far driving.... "+ticks);
 // rob.speed=oldSpeed;
 ticks=ticks-1;
 }

else {
 arbi.busy=false;//
 }

//rob.speed=oldspeed;
 //rob.forward();
 }

public int getTime2Last(){
 return time2Last;
 }

public void setTime2Last(int ticks){
 time2Last=ticks;
 }

public String toString(){return "Drive Behaviour";}

}

Faculty of
Information
Technology

65

The ‘driver’ class.

import javax.swing.JTabbedPane;
import java.io.IOException;
import javax.swing.JFrame;
import javax.swing.JDialog;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.border.Border;
import javax.swing.border.TitledBorder;
import javax.swing.BorderFactory;
import java.awt.BorderLayout;
import javax.swing.ImageIcon;
import java.io.File;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.Component.*;
import java.awt.Color;
import java.awt.Font;
import javax.swing.JLabel;
import javax.swing.*;
import java.awt.*;
//import java.awt.image.BufferedImage;
/**
 * Describe class test here.
 *
 *
 * Created: Wed Feb 16 15:44:43 2005
 *
 * @author
 * @version 1.0
 */
public final class test {

/**
 * Creates a new <code>test</code> instance.
 *

*/

final static JTabbedPane tpane=new JTabbedPane();
 final static JFrame window= new JFrame("Sim");
 final static JPanel panel=new JPanel();

/**
 * Describe <code>main</code> method here.
 *

* @param args a <code>String[]</code> value
 */
 public static void main(final String[] args) throws IOException {

new Grid();
 //File file = new File("jum.gex");
 simGuiExp msim=new simGuiExp(Grid.lightGridGenrtr(9,4));

Faculty of
Information
Technology

66

//simGuiExp msim=new simGuiExp(fileOps.loadFile(file));

ImageIcon im=new ImageIcon("frameIco.gif");

window.setIconImage(im.getImage());
 mainMenu item=new mainMenu(msim);
 window.setJMenuBar(item);
 panel.add(tpane, BorderLayout.EAST);
 window.getContentPane().add(panel);
 tpane.setOpaque(false);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(300,300);
 window.pack();
 window.setVisible(true);
 }
}

The class for drawing the mapped environments onscreen

import java.io.IOException;
import java.text.DecimalFormat;
import java.awt.geom.Rectangle2D;
import java.awt.Graphics2D;
import javax.swing.ImageIcon;
import java.awt.Image;
import java.awt.Color;
import java.awt.BasicStroke;
import java.awt.image.*;
import java.awt.*;

public class Grid {

private static int cellLength=simGuiExp.length, cells;
 public static Color[] colorHolder=new Color[256];
 private static BufferedImage bimage;
 private static Graphics2D ig;
 private static ImageIcon icon;
 private static Image image=(icon=new
ImageIcon("wall.gif")).getImage();
 private static Image imageGoal=(icon=new
ImageIcon("goal.gif")).getImage();
 private static int ci=0;

public Grid(){
 cells=simGuiExp.cells;
 //caching of colors for grid
 for (int row=0;row<simGuiExp.cells;row++) {
 for (int column=0; column<simGuiExp.cells; column++)
{

float
i=255*((float)(column*column+row*row)/(2*simGuiExp.cells*simGuiExp.c
ells));

Faculty of
Information
Technology

67

//float
i=((float)(column*column+row*row)/(float)(2*simGuiExp.cells*simGuiEx
p.cells));
 int j=(int)i;
 // System.out.println("VAL of 'i' "+j);
 // colorHolder[j]=new Color(j,j,240);
 //int x=(int)(i+0.5);int k=(int)(255%20);
 // colorHolder[j]=new
Color(j,j,200);

// colorHolder[j]=new Color(i,i,0.6f);

colorHolder[j]=new Color(j,j,180);
 }

}
colorHolder[255]=Color.white;

 bimage=new
BufferedImage(simGuiExp.cells*cellLength,simGuiExp.cells*cellLength,
BufferedImage.TYPE_INT_RGB);

ig=bimage.createGraphics();ig.setRenderingHint(RenderingHints.KEY_AN
TIALIASING,RenderingHints.VALUE_ANTIALIAS_ON);
 cellLength=simGuiExp.length;
 }

public static int[][] lightGridGenrtr(int x, int y) {
 DecimalFormat decform = new DecimalFormat("00");
 int[][] grid=new int[simGuiExp.cells][simGuiExp.cells];
 System.out.println("Value of simGuiExpCells
"+simGuiExp.cells);

for (int row=0;row<grid[0].length;row++) {
 for (int column=0; column<grid.length; column++) {

// int
radialDistance=(int)Math.abs(Math.round(Math.sqrt((Math.pow((column-
x),2)+Math.pow((row-y),2)))));
 int radialDistance=(column-x)*(column-x)+(row-y)*(row-
y);

if (column==0 || column==(grid[0].length-1) || row==0 ||
row==(grid[0].length-1)) {
 grid[column][row]=-2;
 } else {
 grid[column][row]=radialDistance;
 }

// System.out.print(" " + grid[column][row]);
 }

// System.out.println();
 }

return grid;
 }

public static Rectangle2D.Double rectangle(int x, int y){

Faculty of
Information
Technology

68

return new
Rectangle2D.Double(x*cellLength,y*cellLength,cellLength,cellLength);
 }

public static void drawGrid(Graphics2D g2, int[][] cellVal){
 // public static Graphics2D drawGrid(Graphics2D g2, int[][]
cellVal){
 // ImageIcon icon = new ImageIcon("wall.gif");
// Image image = icon.getImage();
long start = System.currentTimeMillis();

int goalx=1, goaly=1;
 int j=0;
 for (int row=0;row<cellVal.length;row++) {
 for (int column=0; column<cellVal.length; column++) {

if (cellVal[column][row]!=-2) {
 float
i=255*(float)cellVal[column][row]/(2*simGuiExp.cells*simGuiExp.cells
);
 j=(int)i;
 while (j<colorHolder.length && colorHolder[j]==null) {
j++;}
 if (j>(colorHolder.length-1)) {
 j=255;
 }

}

if (cellVal[column][row]<-1) {
 //g2.drawImage(image, column*cellLength,
row*cellLength,cellLength,cellLength, null);
 ig.drawImage(image, column*cellLength,
row*cellLength,cellLength,cellLength, null);
 }

else if (cellVal[column][row]!=0){

ig.setColor(colorHolder[j]);

ig.fillRect(column*cellLength,row*cellLength,cellLength,cellLength);

//ig.drawRect(column*cellLength,row*cellLength,cellLength,cellLength
);
 }else {

ig.setColor(colorHolder[j]);

ig.fillRect(column*cellLength,row*cellLength,cellLength,cellLength);
 goalx=column; goaly=row;
 }

}
}
// ig.setColor(new Color(0,0,240,60));

 //ig.fillRect(0,0,cellLength*cells,cellLength*cells);

Faculty of
Information
Technology

69

ig.setStroke(new BasicStroke(1.5f));
 ig.setColor(Color.red);

ig.drawOval((int)((goalx-1)*cellLength),(int)((goaly-
1)*cellLength),3*cellLength,3*cellLength);
 //ig.fillOval((int)((goalx-0.5)*cellLength+1),(int)((goaly-
0.5)*cellLength+1),2*cellLength,2*cellLength);
 if (ci==0) {ci=1;
 ig.setColor(Color.orange);
 }else {
 ci=0;
 ig.setColor(Color.white);
 }

ig.drawOval((int)((goalx-0.5)*cellLength),(int)((goaly-
0.5)*cellLength),2*cellLength,2*cellLength);
 ig.setColor(Color.yellow);

ig.drawOval((int)(goalx*cellLength),(int)(goaly*cellLength),cellLeng
th,cellLength);

// ig.drawOval((int)(goalx-0.5)*cellLength,(int)(goaly-
0.5)*cellLength,3*cellLength,3*cellLength);
 // ig.drawImage(imageGoal, (int)(goalx*cellLength-
imageGoal.getWidth(null)/2+0.5*cellLength),(int)(goaly*cellLength-
imageGoal.getHeight(null)/2+0.5*cellLength),Color.blue,null);

g2.drawImage(bimage,0,0,null);

// g2.dispose();

long time = System.currentTimeMillis() - start;
System.out.println("elapsed time drawgrid "+time);
//return ig;
 }

public static BufferedImage gridDrawing(int[][] cellVal){
 // ImageIcon icon = new ImageIcon("wall.gif");
// Image image = icon.getImage();
BufferedImage bufmage=new
BufferedImage(simGuiExp.cells*cellLength,simGuiExp.cells*cellLength,
BufferedImage.TYPE_INT_RGB);Graphics2D
igs=bufmage.createGraphics();igs.setRenderingHint(RenderingHints.KEY
_ANTIALIASING,RenderingHints.VALUE_ANTIALIAS_ON);
long start = System.currentTimeMillis();

int goalx=0, goaly=0;
 int j=0;
 for (int row=0;row<cellVal.length;row++) {
 for (int column=0; column<cellVal.length; column++) {
 //divide all values by maximum val of range and X 250
 // double
colsc=((double)(grfxSquare[column][row].range_class)/26)*250;
 if (cellVal[column][row]!=-2) {

Faculty of
Information
Technology

70

float
i=255*(float)cellVal[column][row]/(2*simGuiExp.cells*simGuiExp.cells
);
 j=(int)i;
 while (j<colorHolder.length && colorHolder[j]==null) {
j++;}
 if (j>(colorHolder.length-1)) {
 j=255;
 }

}
if (cellVal[column][row]<-1) {

//g2.drawImage(image, column*cellLength,

row*cellLength,cellLength,cellLength, null);
 igs.drawImage(image, column*cellLength,
row*cellLength,cellLength,cellLength, null);
 }

else if (cellVal[column][row]!=0){

//g2.setPaint(colorHolder[j]);
 //
g2.fillRect(column*cellLength,row*cellLength,cellLength,cellLength);
 igs.setColor(colorHolder[j]);

igs.fillRect(column*cellLength,row*cellLength,cellLength,cellLength)
;

}else {
 igs.setColor(colorHolder[j]);

igs.fillRect(column*cellLength,row*cellLength,cellLength,cellLength)
;

goalx=column; goaly=row;
 }

}
}
//System.out.println("time for figuring colors..."+(

System.currentTimeMillis() - start));
 // g2.setStroke(new BasicStroke(1.5f));
// g2.setColor(Color.red);
// g2.drawOval((int)(goalx-0.5)*cellLength,(int)(goaly-
0.5)*cellLength,3*cellLength,3*cellLength);
// g2.drawImage(imageGoal, (int)(goalx*cellLength-
imageGoal.getWidth(null)/2+0.5*cellLength),(int)(goaly*cellLength-
imageGoal.getHeight(null)/2+0.5*cellLength),Color.blue,null);

igs.setStroke(new BasicStroke(1.5f));
 igs.setColor(Color.red);
 //goalx+(0.5-6*length)
 igs.drawOval((int)((goalx-1)*cellLength),(int)((goaly-
1)*cellLength),3*cellLength,3*cellLength);

igs.drawOval((int)((goalx-0.5)*cellLength),(int)((goaly-
0.5)*cellLength),2*cellLength,2*cellLength);
 ig.setColor(Color.yellow);

Faculty of
Information
Technology

71

igs.fillOval((int)(goalx*cellLength),(int)(goaly*cellLength),cellLen
gth+1,cellLength+1);

// igs.drawImage(imageGoal, (int)(goalx*cellLength-
imageGoal.getWidth(null)/2+0.5*cellLength),(int)(goaly*cellLength-
imageGoal.getHeight(null)/2+0.5*cellLength),Color.blue,null);

//g2.drawImage(bimage,0,0,null);

// g2.dispose();

long time = System.currentTimeMillis() - start;
//System.out.println("elapsed time drawgrid "+time);
return bufmage;
 }
}

The class for store/load operations of simulator worlds or maps.

import java.io.File;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import java.io.InputStream;
import java.io.BufferedOutputStream;
import java.io.BufferedInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.*;
/**
 * Class for storing and retrieving map data
 *
 *
 * Created: Wed Feb 16 15:44:43 2005
 *
 * @author
 * @version 1.0
 */
public final class fileOps {

/**
 * Creates a new <code>test</code> instance.
 *

*/

private static int gridSize=simGuiExp.cells;

public static void setFileGridSize(int cells){
 gridSize=cells;
}

Faculty of
Information
Technology

72

public static boolean saveFile(int[][] grid, File file) {

try {
 OutputStream file2 = new FileOutputStream(file.getName());
 OutputStream buffer = new BufferedOutputStream(file2);
 ObjectOutputStream out=new ObjectOutputStream(buffer);
 //ObjectOutputStream out=new ObjectOutputStream(new
FileOutputStream(file.getName()));

for (int row=0;row<grid[0].length;row++) {
 for (int column=0; column<grid.length; column++) {
 out.writeInt(grid[column][row]);
 }

}
System.out.println("File Saved");

out.close();

 return true;

} catch (IOException e) {
 System.out.println(e);
 return false;
 }

}

public static boolean fileSizeSetter(File file){
 int countCheck=0;int[][] resgrid=new int[gridSize][gridSize];
 try {
 InputStream file2 = new FileInputStream(file.getName());
 InputStream buffer = new BufferedInputStream(file2);
 ObjectInputStream in=new ObjectInputStream(buffer);

//ObjectInputStream in=new ObjectInputStream(new
FileInputStream(file.getName()));

while (true) {

int i=(int)in.readInt();
 countCheck++;
 if (i<-2) {return false;}
 }

}
catch (EOFException e) {

 System.out.println("cells in file: "+countCheck);}
 catch (Exception e) {
 System.out.println(e);}
 gridSize=(int)Math.sqrt(countCheck);
 //checking size of supposed map file to load...
 if (gridSize>=10 && gridSize%2==0) {
 simGuiExp.cells=gridSize;
 new Grid();
 return true;
 }

else {

Faculty of
Information
Technology

73

return false;
 }
}

public static int[][] loadFile(File file){
 if (!fileSizeSetter(file)) {
 return null;
 }

int countCheck=0;
 int[][] resgrid=new int[gridSize][gridSize];

try {
 InputStream file2 = new FileInputStream(file.getName());
 InputStream buffer = new BufferedInputStream(file2);
 ObjectInputStream in=new ObjectInputStream(buffer);

//ObjectInputStream in=new ObjectInputStream(new
FileInputStream(file.getName()));

for (int row=0;row<resgrid.length;row++) {

for (int column=0; column<resgrid.length; column++) {
 countCheck++;
 resgrid[column][row]=(int)in.readInt();

// System.out.print(" " + resgrid[column][row]);
 }

//System.out.println("");
 }

//simGuiExp.cells=gridSize;
 in.close();
 System.out.println("File Loaded "+gridSize);

return resgrid;}

catch (Exception e) {
 System.out.println(e);return null;}

}
}

The graphical user interface

import java.io.File;
import java.awt.BorderLayout;
import java.awt.Image;
import java.awt.Cursor;
import java.awt.Toolkit;
import java.awt.Point;
import java.awt.Dimension;

Faculty of
Information
Technology

74

import java.awt.Color;
import java.awt.Font;
import java.awt.event.KeyEvent;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.event.ItemListener;
import java.awt.event.ItemEvent;
import javax.swing.JToolBar;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JMenu;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;
import javax.swing.ButtonGroup;
import javax.swing.JRadioButtonMenuItem;
import javax.swing.ImageIcon;
import javax.swing.KeyStroke;
import javax.swing.JPanel;
import javax.swing.Box;
import javax.swing.JButton;
import javax.swing.JCheckBoxMenuItem;
import javax.swing.JCheckBox;
import javax.swing.JSlider;
import javax.swing.border.TitledBorder;
import javax.swing.BorderFactory;
import javax.swing.SpinnerModel;
import javax.swing.SpinnerNumberModel;
import javax.swing.border.EtchedBorder;
import javax.swing.JSpinner;
import javax.swing.border.Border;
import javax.swing.event.ChangeListener;
import javax.swing.event.ChangeEvent;
import javax.swing.JLabel;
import javax.swing.BoxLayout;
//import javax.swing.FlowLayout
import java.awt.FlowLayout;
import javax.swing.JSeparator;
import javax.swing.*;
// import java.awt.image.BufferedImage;
// import java.awt.image.BufferStrategy;

public class mainMenu extends JMenuBar {

private final JMenuItem lgt,itemOb, saveMap, mapEditor,
clearMap,loadImMap;//
 private final JCheckBoxMenuItem timeStpChbox, trailChbox,
dynmWld;
 private JPanel timeStpPanel = new JPanel(new BorderLayout());
 private final JToolBar toolbar;
 private JButton playButton;
 private JSpinner spinner;
 private final JCheckBox filterBox, gridLock;
 private final JSlider gridSize=new JSlider(JSlider.VERTICAL,10,
100, simGuiExp.cells);

Faculty of
Information
Technology

75

private final Border loweredetched;

private final simGuiExp msim;
 private simWorldCreator msim2=new simWorldCreator();
 //private final simWorldCreator msim2=new simWorldCreator();

private ImageIcon goRoll, pause, go;
 private boolean mapping=false;
 // private JPanel mapPanel;
 //Image cursed=Animator.drawImage();

Image hell=new ImageIcon("lightSourceCursor.gif").getImage();
 Cursor source =
Toolkit.getDefaultToolkit().createCustomCursor(hell,new Point(0,0),
"something");

public mainMenu(simGuiExp msim) {
 this.msim=msim;
 //this.msim2=msim2;

JMenu robotMenu = new JMenu("Robot");
 JMenu simMenu = new JMenu("Simulation");
 simMenu.setMnemonic(KeyEvent.VK_S);
 JMenu otherMenu = new JMenu("Map");
 otherMenu.setMnemonic(KeyEvent.VK_M);
 JMenu subMenu = new JMenu("Light type");
 final SpinnerModel model = new
SpinnerNumberModel(msim.timeSize, //initial value
 15, //min
 150, //max
 1);
//step
 // JMenu subMenu2 = new JMenu("Obstacle unit erase/add");
 //mainMenu.this.spinner3;// = new JSpinner(model);
 gridSize.setMajorTickSpacing(10);
 gridSize.setMinorTickSpacing(1);
 gridSize.setPaintTicks(true);
 gridSize.setPaintLabels(true);
 Border raisedbevel = BorderFactory.createEmptyBorder(2,2,2,2);

loweredetched =
BorderFactory.createEtchedBorder(EtchedBorder.LOWERED, Color.gray,
Color.white);

TitledBorder
bord=BorderFactory.createTitledBorder(loweredetched,"World
size",TitledBorder.CENTER,TitledBorder.DEFAULT_POSITION,new
Font("SansSerif",Font.ITALIC+Font.BOLD,12),Color.blue);
 gridSize.setBorder(bord);

gridSize.addChangeListener(new ChangeListener(){
 public void stateChanged(ChangeEvent e) {

JSlider source = (JSlider)e.getSource();

Faculty of
Information
Technology

76

int size = (int)source.getValue();
 if (!source.getValueIsAdjusting()) { //done adjusting

simGuiExp.cells=size;
 new Grid();
 // int[][]
tmpCells2=mainMenu.this.msim2.cellVal;
 int tabCount=test.tpane.getTabCount();

while (tabCount>0) {
 test.tpane.removeTabAt(0);
 tabCount--;
 }

// test.tpane.removeTabAt(0);
 // test.tpane.removeTabAt(0);

mainMenu.this.msim=new
simGuiExp(Grid.lightGridGenrtr(9,4));
 startMapEditor();
 revalidate();
 repaint();
 test.window.pack();
 }//adjusting
 }

});
 ActionListener typeListener = new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 if (event.getActionCommand()=="Light source") {
 mainMenu.this.msim2.selectedSource=-1;
 //mainMenu.this.itemlight.setSelected(true);
 lgt.setSelected(true);

mainMenu.this.msim2.setCursor(Cursor.getPredefinedCursor(Cursor.DEFA
ULT_CURSOR));
 //mainMenu.this.msim2.setCursor(source);
 // mainMenu.this.msim2.setCursor(invisibleCursor);
 // System.out.println(simGuiExp.selectedSource);
 }

else if (event.getActionCommand()=="Obstacle")
 {

mainMenu.this.msim2.setCursor(Cursor.getPredefinedCursor(Cursor.CROS
SHAIR_CURSOR));
 mainMenu.this.msim2.selectedSource=-2;

System.out.println(mainMenu.this.msim2.selectedSource);
 //mainMenu.this.itemObst.setSelected(true);
 itemOb.setSelected(true);
 }

else if (event.getActionCommand()=="Frame Eraser") {
 System.out.println("-3");
 mainMenu.this.msim2.selectedSource=-3;
 }

else if (event.getActionCommand()=="Cell Eraser") {
 System.out.println("-4");

Faculty of
Information
Technology

77

mainMenu.this.msim2.selectedSource=-4;
 }

// else if (event.getActionCommand()=="Filter") {
 // System.out.println("-5");
 //
mainMenu.this.msim2.selectedSource=-5;
 // }
 else if (event.getActionCommand()=="Clear Map") {
 System.out.println("-6");
 mainMenu.this.msim2.selectedSource=-6;
 startMapEditor();
 repaint();
 }

}
};

ActionListener mapSaveListener = new ActionListener() {

 public void actionPerformed(ActionEvent event) {
 mainMenu.this.msim.stop();
 playButton.setIcon(pause);
 //if (mainMenu.this.msim2!=null) {

JFileChooser chooser = new JFileChooser();
 int returnVal =
chooser.showSaveDialog(mainMenu.this);
 if (returnVal == JFileChooser.APPROVE_OPTION) {
 File file = chooser.getSelectedFile();
 // File directory=chooser.getCurrentDirectory();
 // String
fileName=directory.getName()+File.pathSeparator+file.getName();
// File file3=new File(fileName);
// System.out.println("saving: "+file3.getName());
 System.out.println("saving: "+file.getName());
 // System.out.println("current directory:
"+directory.getName());

//fileOps.saveFile(simWorldCreator.tmpCellVal,file3);
 fileOps.saveFile(simWorldCreator.tmpCellVal,file);
 }else {
 JOptionPane.showMessageDialog(mainMenu.this,
"Warning", "Nothing saved", JOptionPane.ERROR_MESSAGE);
 }

}
};

ActionListener mapStartListener=new ActionListener(){

 public void actionPerformed(ActionEvent event) {
 mainMenu.this.mapping=!mainMenu.this.mapping;
 // saveMap.setEnabled(true);
 if (mainMenu.this.mapping) {
 mapEditor.setText("Quit Map editor");
 saveMap.setEnabled(true);
 loadImMap.setEnabled(true);

Faculty of
Information
Technology

78

startMapEditor();
 gridSize.setValue(mainMenu.this.msim2.cells);
 revalidate();
 test.window.pack();
 //when loading new board apply garbage
collection...
 System.gc();
 }else {
 saveMap.setEnabled(false);
 clearMap.setEnabled(false);
 loadImMap.setEnabled(false);
 mapEditor.setText("Map editor");
 test.tpane.removeTabAt(1);
 revalidate();
 test.window.pack();
 System.gc();
 //mainMenu.this.msim2=null;
 }

}
};

 ActionListener mapLoadListener = new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 //trailChbox.setSelected(false);
 //dynmWld.setSelected(false);
 JFileChooser chooser = new JFileChooser();
 int returnVal =
chooser.showOpenDialog(mainMenu.this);
 mainMenu.this.msim.stop();
 playButton.setIcon(goRoll);
 File file = chooser.getSelectedFile();
 int[][] grid=fileOps.loadFile(file);

if (returnVal == JFileChooser.APPROVE_OPTION &&
grid!=null){//fileOps.loadFile(file)!=null) {
 gridSize.setValue(simGuiExp.cells);
 int tabCount=test.tpane.getTabCount();

while (tabCount>0) {
 test.tpane.removeTabAt(0);
 tabCount--;
 }

//test.tpane.removeTabAt(0);
 // setFileGridSize(mainMenu.this.msim.cells)

mainMenu.this.msim=new
simGuiExp(grid);//fileOps.loadFile(file));
 mainMenu.this.msim.simTime=0;
 playButton.setEnabled(true);
 //when loading new board apply garbage
collection...
 if (mainMenu.this.mapping) {
 //System.out.println("map editor...");
 startMapEditor();
 }

Faculty of
Information
Technology

79

test.tpane.setSelectedIndex(0);
 revalidate();
 repaint();
 test.window.pack();
 System.gc();
 }else {
 JOptionPane.showMessageDialog(mainMenu.this,
"Warning!...Danger!", "Nothing loaded", JOptionPane.ERROR_MESSAGE);

}
}

};

JMenuItem item;
 robotMenu.add(item = new JMenuItem("Set robot sensor range"));
 item.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 for (int i=0;i<mainMenu.this.msim.robot.length;i++) {
 mainMenu.this.msim.robot[0].sensorRange=50;}
 mainMenu.this.msim.animate.repaint();
 }

});

robotMenu.add(item = new JMenuItem("Quit"));
 item.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){

System.exit(0);
 }

});

simMenu.add(item = new JMenuItem("(Re)-Start simulation",new
ImageIcon("sim.gif")));

item.setAccelerator(KeyStroke.getKeyStroke('T',

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), true));
 item.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 test.tpane.removeTabAt(0);
 mainMenu.this.msim.stop();
 playButton.setEnabled(true);
 mainMenu.this.msim=mainMenu.this.msim.resetSim();
 playButton.setIcon(goRoll);
 gridSize.setEnabled(true);
 revalidate();
 repaint();
 test.tpane.setSelectedIndex(0);
 test.window.pack();
 }

});
 final JMenuItem itemPlay;

Faculty of
Information
Technology

80

simMenu.add(itemPlay= new JMenuItem("Resume simulation"));

itemPlay.setAccelerator(KeyStroke.getKeyStroke('P',

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), true));
 itemPlay.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 if (mainMenu.this.msim.running) {
 playButton.setIcon(goRoll);
 gridSize.setEnabled(true);
 itemPlay.setText("Resume simulation");
 mainMenu.this.msim.stop();
 revalidate();
 }

else {
 playButton.setIcon(pause);
 itemPlay.setText("Pause simulation");
 gridSize.setEnabled(false);
 mainMenu.this.msim.start();
 revalidate();
 }

}
});

 simMenu.add(item = new JMenuItem("Configure Behaviours"));

item.setAccelerator(KeyStroke.getKeyStroke('B',

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), true));
 item.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 JPanel pan=configBehaviours();
 mainMenu.this.msim.stop();
 playButton.setEnabled(false);
 test.tpane.removeTabAt(0);
 test.tpane.insertTab("Configuring Behaviours",new
ImageIcon("simSmall.gif"),pan,null,0);
 //test.panel.add(pan);
 revalidate();
 repaint();
 test.window.pack();
 test.tpane.setSelectedIndex(0);
 }

});

simMenu.addSeparator();
 simMenu.add(timeStpChbox = new JCheckBoxMenuItem("Time step
size"));
 timeStpChbox.addItemListener(new ItemListener(){
 public void itemStateChanged(ItemEvent e) {

if (timeStpChbox.isSelected()) {

Integer tmpValue = new
Integer(mainMenu.this.msim.timeSize);

Faculty of
Information
Technology

81

JLabel label2 = new JLabel("Time step size");

if (spinner==null) {
 //spinner.addChangeListener(listener);
 timeStpPanel.add(label2, BorderLayout.NORTH);
 spinner= new JSpinner(model);
 spinner.setValue(tmpValue);
 spinner.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e) {

Integer myValue =
(Integer)spinner.getValue();

int tSize = myValue.intValue();
 System.out.println("Source: " +
tSize);
 mainMenu.this.msim.timeSize=tSize;
 System.out.println("After change
"+mainMenu.this.msim.timeSize);
 }

});
 timeStpPanel.add(spinner, BorderLayout.SOUTH);
 test.panel.add(timeStpPanel);
 revalidate();
 repaint();
 test.window.pack();}
 //
 }else {
 //timeStpPanel=null;
 spinner=null;
 test.panel.remove(timeStpPanel);
 // test.panel.remove();
 //timeStpPanel.setVisible(false);
 timeStpPanel.invalidate();
 test.panel.validate();//add(timeStpPanel);
 //revalidate();
 repaint();
 test.window.pack();
 }

}
});

simMenu.add(trailChbox = new JCheckBoxMenuItem("Draw trail"));

 trailChbox.addItemListener(new ItemListener(){
 public void itemStateChanged(ItemEvent e) {
 if (trailChbox.isSelected())
{Animator.drawTrail=true;}
 else {
 Animator.drawTrail=false;
mainMenu.this.msim.animate.clear();
 }

}
});

Faculty of
Information
Technology

82

simMenu.add(dynmWld=new JCheckBoxMenuItem("World twister"));
 dynmWld.addItemListener(new ItemListener(){
 public void itemStateChanged(ItemEvent e) {
 if (dynmWld.isSelected())
{mainMenu.this.msim.worldShiftThread();}
 else {
 mainMenu.this.msim.randomizer=false;
 }

}
});

otherMenu.add(mapEditor = new JMenuItem("Map editor",new

ImageIcon("map.gif")));
 mapEditor.addActionListener(mapStartListener);
 mapEditor.setAccelerator(KeyStroke.getKeyStroke('M',

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), true));
 otherMenu.addSeparator();

otherMenu.add(clearMap = new JMenuItem("Clear Map", new
ImageIcon("")));
 clearMap.setEnabled(false);
 clearMap.setAccelerator(KeyStroke.getKeyStroke('C',

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), true));
 clearMap.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 startMapEditor();
 // repaint();
}

});
otherMenu.add(loadImMap = new JMenuItem("Load current map", new
ImageIcon("")));
 loadImMap.setEnabled(false);
 loadImMap.setAccelerator(KeyStroke.getKeyStroke('I',

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), true));
 loadImMap.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 mainMenu.this.msim.stop();

test.tpane.removeTabAt(0);
 mainMenu.this.msim=new
simGuiExp(simWorldCreator.tmpCellVal);
 mainMenu.this.msim.simTime=0;
 playButton.setIcon(goRoll);
 playButton.setEnabled(true);

// repaint();
 }

});

loadImMap.setEnabled(false);

Faculty of
Information
Technology

83

otherMenu.addSeparator();
 otherMenu.add(item = new JMenuItem("Load map from file", new
ImageIcon("load.gif")));
 item.setAccelerator(KeyStroke.getKeyStroke('L',

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), true));
 item.addActionListener(mapLoadListener);

otherMenu.add(saveMap = new JMenuItem("Save map", new
ImageIcon("save.gif")));
 saveMap.setEnabled(false);
 saveMap.setAccelerator(KeyStroke.getKeyStroke('S',

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), true));
 saveMap.addActionListener(mapSaveListener);

toolbar=new JToolBar();
 toolbar.setOrientation(JToolBar.HORIZONTAL);

//toolbar.setBorder(loweredetched);
 //toolbar.add(Box.createRigidArea(new Dimension(200, 15)));
 //toolbar.addSeparator();
 //toolbar.setFloatable(false);
 loadImages();
 playButton=createButton("play", "Press to pause or start
simulation");
 playButton.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){

test.tpane.setSelectedIndex(0);
 if (mainMenu.this.msim.running) {
 itemPlay.setText("Resume simulation");
 playButton.setIcon(goRoll);
 gridSize.setEnabled(true);
 mainMenu.this.msim.stop();
 revalidate();
 }

else {
 itemPlay.setText("Pause simulation");
 playButton.setIcon(pause);
 gridSize.setEnabled(false);
 mainMenu.this.msim.start();
 revalidate();
 }

}
});

// Finally, add all the menus to the menu bar.

 // add(toolbar);
 add(simMenu);
 add(otherMenu);
 add(robotMenu);

Faculty of
Information
Technology

84

add(Box.createRigidArea(new Dimension(5,25)));
 add(playButton);

JPanel pan=new JPanel();
 //JPanel listPane = new JPanel();
 pan.setLayout(new BoxLayout(pan, BoxLayout.PAGE_AXIS));
 pan.add(Box.createRigidArea(new Dimension(0,15)));
 ButtonGroup buttonGroup = new ButtonGroup();
 toolbar.setLayout(new BoxLayout(toolbar, BoxLayout.X_AXIS));
 // toolbar.add(item = new JRadioButtonMenuItem("Light
source", true));
 lgt = new JRadioButtonMenuItem("Light source", new
ImageIcon(""),true);
 lgt.addActionListener(typeListener);
 buttonGroup.add(lgt);
 pan.add(lgt);
 // pan.add(Box.createRigidArea(new Dimension(0,15)));

itemOb = new JRadioButtonMenuItem("Obstacle", new
ImageIcon(""));
 itemOb.addActionListener(typeListener);
 buttonGroup.add(itemOb);
 pan.add(itemOb);
 //pan.add(Box.createRigidArea(new Dimension(0,13)));

buttonGroup.add(item = new JRadioButtonMenuItem("Frame
Eraser",new ImageIcon("")));
 item.addActionListener(typeListener);
 // buttonGroup2.add(item);
 pan.add(item);

buttonGroup.add(item = new JRadioButtonMenuItem("Cell
Eraser",new ImageIcon("")));
 item.addActionListener(typeListener);
 //buttonGroup2.add(item);
 pan.add(item);

filterBox = new JCheckBox("Noise Filter");
 filterBox.addItemListener(new ItemListener(){
 public void itemStateChanged(ItemEvent e) {
 if (filterBox.isSelected()) {
 mainMenu.this.msim2.noise=true;
 mainMenu.this.msim2.noiseMapGen();
 }

else {mainMenu.this.msim2.removeNoise();
 mainMenu.this.msim2.noise=false;
 }

}
});

 pan.add(filterBox);

// item.addActionListener(typeListener);
 // otherMenu.add(item);
 // //buttonGroup2.add(item);

Faculty of
Information
Technology

85

// pan.add(item);

gridLock = new JCheckBox("Grid Lock");
 gridLock.addItemListener(new ItemListener(){
 public void itemStateChanged(ItemEvent e) {
 if (gridLock.isSelected()) {
 gridSize.setEnabled(false);
 // Animator.drawTrail=true;
 }

else {
gridSize.setEnabled(true);//Animator.drawTrail=false;
mainMenu.this.msim.animate.clear();
 }

}
});

 pan.add(gridLock);

toolbar.add(pan);
 toolbar.setBorder(mainMenu.this.loweredetched);
 //toolbar.setPreferredSize(new Dimension(150,350));
 //toolbar.add(item2,BorderLayout.SOUTH);
 //toolbar.add(gridSize);
 // toolbar.add(Box.createHorizontalStrut(90));

toolbar.setRollover(true);//toolbar.add(Box.createHorizontalGlue()
);
 }

private void loadImages() {

goRoll = new ImageIcon("playbutton.gif");//("goRoll.gif");
 pause = new ImageIcon("pausebutton.gif");
 go = new ImageIcon("go.gif");
 }

public JPanel configBehaviours(){
 JPanel pan=new JPanel();
 Border bevebord= BorderFactory.createEmptyBorder(10,10,10,10);
 JPanel subPan1=new JPanel();
 JPanel subPan2=new JPanel();
 subPan1.setLayout(new BoxLayout(subPan1, BoxLayout.Y_AXIS));
 subPan2.setLayout(new BoxLayout(subPan2, BoxLayout.Y_AXIS));

pan.setLayout(new BoxLayout(pan, BoxLayout.Y_AXIS));

Arbitrator arbit=msim.getArbitrator();
 pan.add(Box.createVerticalGlue());
 for (int i=0;i<arbit.getSize();i++) {
 // JLabel label=new JLabel(
 SpinnerModel bmodel = new SpinnerNumberModel(msim.timeSize,
//initial value
 0, //min
 100, //max

Faculty of
Information
Technology

86

1);
 final JSpinner bSpinner= new JSpinner(bmodel);
 int time=arbit.getBehavior(i).getTime2Last();
 if (time<0) {
 bSpinner.setEnabled(false);
 }

Integer tmpValue = new Integer(time);
 bSpinner.setValue(tmpValue);
 bSpinner.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e) {

Integer myValue =
(Integer)bSpinner.getValue();

int tSize = myValue.intValue();
 System.out.println("Source: " +
tSize);
 // mainMenu.this.msim.timeSize=tSize;
 //System.out.println("After change
"+mainMenu.this.msim.timeSize);
 }

});
 JPanel subPan=new JPanel();
 // subPan.setLayout(new BoxLayout(subPan,
BoxLayout.X_AXIS));
 //
 JLabel label=new
JLabel(arbit.getBehavior(i).toString(),JLabel.TRAILING);
 subPan.add(label);
 //subPan1.add(Box.createRigidArea(new Dimension(15,0)));
 // subPan1.add(label);

subPan.add(bSpinner);
 // subPan.add(new
JSeparator(JSeparator.HORIZONTAL),BorderLayout.LINE_START);
 //
 subPan.setBorder(mainMenu.this.loweredetched);
 subPan.add(Box.createVerticalGlue());
 pan.add(subPan);
 }

//subPan1.add(Box.createVerticalGlue());
 // subPan2.add(Box.createVerticalGlue());
 // subPan1.setBorder(mainMenu.this.loweredetched);
// subPan2.setBorder(mainMenu.this.loweredetched);
// pan.add(subPan1);
// pan.add(subPan2);
 // pan.setMinimumSize(new Dimension(350, 325));
 pan.add(Box.createVerticalGlue());

bevebord=BorderFactory.createCompoundBorder(loweredetched,bevebord);
 //bevebord=BorderFactory.createCompoundBorder(bevebord,
loweredetched);

Faculty of
Information
Technology

87

pan.setBorder(bevebord);

//pan.setBorder(mainMenu.this.loweredetched);
 return pan;
 }

public JButton createButton(String name, String toolTip) {

// create the button
 JButton button = new JButton();
 button.setIgnoreRepaint(true);
 button.setFocusable(false);
 button.setToolTipText(toolTip);
 button.setBorder(null);
 button.setContentAreaFilled(false);
 // button.setCursor(cursor);
 button.setIcon(goRoll);
 //button.setRolloverIcon(goRoll);

return button;
 }

public void startMapEditor(){
 filterBox.setSelected(false);
 mainMenu.this.msim2=null;
 mainMenu.this.msim2=new simWorldCreator();
 int tabCount=test.tpane.getTabCount();

if (tabCount>1) {
 test.tpane.removeTabAt(1);
 }

JPanel mapPanel=new JPanel();//new BorderLayout());
 JSeparator sep=new JSeparator(JSeparator.VERTICAL);

mapPanel.setBorder(mainMenu.this.loweredetched);
 mapPanel.add(mainMenu.this.msim2,BorderLayout.WEST);
 sep.setBorder(mainMenu.this.loweredetched);
 mapPanel.add(sep,BorderLayout.WEST);
 mapPanel.add(mainMenu.this.toolbar,BorderLayout.WEST);
 mapPanel.add(gridSize,BorderLayout.EAST);
 mapPanel.setBorder(mainMenu.this.loweredetched);
 test.tpane.addTab("Map Editor",mapPanel);
 // test.tpane.insertTab("Map editor",null,
mainMenu.this.msim2,null,1);
 test.tpane.setSelectedIndex(1);

clearMap.setEnabled(true);
 }
}

Faculty of
Information
Technology

88

Appendix B – User manual

The part of the simulator software coded thus far can be found on the attached cd-rom
disk. Under the directory named ‘Project’ is a java ‘jar’ file named “My.jar”. This
software must be run on a computer with Java version 1.4 installed or greater in order
to function. For details on installing Java and setting paths details please check details
at http://www.sun.com/java.

If everything works correctly a graphical user interface will appear. It consists of one
tab panel displaying the simulator and a menu bar. The user can run the default
simulation or create a new environment first by creating it in the map editor or
loading it from a file. The user can access the map editor to create simulator
environments by selecting the ‘Map editor’ under the map bar. The map editor will
open up in another tab.

Various editing options are available in the map editor. The user can select to create a
simulator world with a source or target for the robot and any obstacles, which are
single grid cells the robot cannot travel through. The user can erase/add obstacle, or
change the size of the simulator environment. After creating an environment he/she
is then able to store this via the save command or by pressing ‘Ctrl-S’.

To load this into simulation immediately without saving the user can select to press
Ctrl-I or by choosing the load immediate selection under the menu bar. The user can
also select to load from a file by selecting the ‘load command’ or by pressing ‘Ctrl-
L’. When either of these two actions are performed the simulator will then
automatically display the robot in this new environment.

Currently there is only one algorithm hard-coded into the robot. This is the 3rd
algorithm mentioned in the evaluation section. To run the simulation the user can
either press the ‘play’ button to the right of the menu bar, pressing Ctrl-P
(pause/unpause), or selecting ‘Resume simulation’ under the menu bar. The
simulation can be reset by pressing Ctrl-T or selecting ‘Re-Start simulation’ from the
menu.

Faculty of
Information
Technology

89

Appendix C – Configuration pictures

Map configuration 1

Faculty of
Information
Technology

90

Map configuration 2

Map configuration 3

Faculty of
Information
Technology

91

Map configuration 4

Map configuration 5

Faculty of
Information
Technology

92

Map configuration 6

Map configuration 7

Faculty of
Information
Technology

93

Map configuration 8

Map configuration 9

Faculty of
Information
Technology

94

Map configuration 10

