OF

G5E Software, nc, 1998-2004

GSEOS V5.2 User
Manual

Copyright GSE Software, Inc. 1998 - 2005

Gseos

© 1998-2005 GSE Software, Inc.
All rights reserved.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly
by this document.

Printed: April 2005 in Marina del Rey, CA.

Contents |
Foreword

Part | Welcome to GSEOS 7
Y N 13T 7GR 1+ 11 O 7
/X Lo B =T o7 ==Y IR g e o N 8
L TS = 11 4T - N 1
2 About this dOCUMENLe e r e sm e e e e e e s s e anmn e e e e e e e s n s nnmnnnns 14
B T = ¥ = 14
1 31 o Yo [T o2 4 oY TN 15
Part Il Architecture Overview 18
I T 1 = T o 18
2 2 L= 1 414 T= 38 o o 41 (o Y 1N 19
B YL =T 1 TS U T {0 - 20
Part Ill User Interface 23
1 Desktop Management ... 24
b2 €15 =10 15T o 4 o] o - 24
7Y = 2.1 1= SO PTPR SRR 25
(=] oY1 1 ST PRPPR SRR 26
[0 oY 4 17 = T TSP 27
[7Y oo Yo L= o ST RPPR SRR 27
LT o] =T=T=] T =N 28
1 oY 11 o ST RTPPR SRR 29
LAV T=] 4V o ST PRPPR SRR 30
R T=T o 1= o =T 31
3£ =1 1 1 X 32
JLIE2 T3 G SRR 32
B I o T I T o T 34
L S 1 7= 10 SN 34
LI L= 1L 5T 0 35
LI T30 =1 o T = L 38
LI LRI E= 301 =T o 38
L LT = = T o T o 1, =T T PSSP 39
LI L= L= (=T & L 39
LI L= LT Lo (1= L 40
LI T o ==Y 0 T AT Vo o - 42
1 =Y 3 L= RS 43
[= SRR O UP PSRRIt 43
[07e] 000 F=TaTo Il 21U 1 (o] o TR O UTRRUOUPPPRRRRRRTNS 44
(D= 1= 0 1 (=1 .o SRRSO 46
1701 OSSP U PSPPSR PP 48
(o1t o] o IO OO U PSPPSR PRPOPN 48
1= P OSSP U TR PPR TR PRPOP 50

© 1998-2005 GSE Software, Inc.

Gseos

I
6

7

8

9

10

11

Part IV
1

T PO OO PSP PRTOUPTOPPPIN 50
a1t =T o Lo | 1= O OO U PR OPPOPRPIN 51
ROUNAEA RECIANGIE. ...ttt e bt e ettt e e bt e e e nb e e e snbeeeanneeeenbneeeanee 51
Scale
Text
Edit
Options
Align
Grid
Zoom
Style
Color
D= T) =1 1 PO PP U PR OPPPOPPPIN 57
P =T I o] o 1= Tu (=Y PSSP SRPIN 58
Bargraph
Binary
Bitmap
Casting
Decimal
Float
Hexadecimal
Octal
Signed Decimal
Text
Y(t)
Y(x)
T PO PRSP PR UUPPOPRPIN

(@Y 0] = o] o TSSO PSP T PSR TT PR PPRUROI

=TT = PO PP PSP PR UUPTOPPPIN

1= PO P PP OUT O PP PROPRRPRTOt

WWINAOW e e s e e s e s b e re e
Snapshot

L = T T T T o [o =N
AJUSE DISPIAY SEYIE. ..ttt ettt ettt h e e et e e bt e e a et e bt e e Ee e e a bt e aae e e Rt e e eheeeabeeteeenreebeeareean
Selecting a Drawing Region....
Selecting @ DraWING TOOL.......eeiiieiieiiie ettt ettt ettt e bt e ebeeshe e et e e sateeateeasbeenbeaabeeenbeeabeeaneeanseesnneanseenes 81
Selecting ObJECE PrOPEIIES.i ittt et b e st e et e e be e e bt e beeesbeeabeesneeanbeesnneanseanes 82

The Command Dialog

The Console Window
JLILLLEI L= 1= T = d e Yo A T 1o o 87
The GSEOS Main WINAOWccoccciiriirererrnssrerrssssnerssssssesssssssesssssssessssssmsssssssmsesssssmsesssssmsssesssnsenas 90
The MeSSage WINAOWueiiiiiiiiiiccseccrsresnsssssssssesr s s ssssssssmse s e e s sssssssssmss s e s ssssssssnmnssnssnssnsssnnnnnnns 91
The Recorder Dialog ... s e e 92

GSEOS Reference

Configuration Files

Alarm Limit Files (*.alarm).....
Block Definition Files (*.blk)
Command Batch Files (*.CPA) ..coouiiriiiiiiiiirres st s s e s n s e m e 103
Command Menu FileS (¥.CM) ...t e e e s e e e e s n e n s m e e e 103
Configuration Files (.CfQ)cuueiiriiiiiriir it 105

© 1998-2005 GSE Software, Inc.

Contents 1}

Alarm Monitor Configuration
AlArm MONIEOTr SAMPIE.......eieiiiie et rt e et e e et e e et e e e et e e e s aaeeesabeeessseeesaseeessseeessseeeasneeas
Formula Definition Files (*.qIf) ... s s s s

gseos.ini
Buffer
(07073 111 1= 1o T I TSSO T TSP PP PSP PROTRPRPPRPPIOE
Config
Console
INSEANCE .
Net
Printer
[(0] =] S PSP PU PP PPPROTPPN
PyStartup
RECOIABT ..ttt e b e b e e s e e sbeesine e
TIMEDASE e e
System ...
Text Reference Files (*.tr)
b 1 =T o2 Lo VS €T o {0]
3 Gseos Python INterface ... ———
oY 1] - N 131
T 11 11 TSP S TUPTOTRU SO PR USOPPRPPN 132
GSE0SBDM.ENADIEDAtaSOUICE.ottt ettt e esene e 132
£ o o R TRN 133
7= 7o T 11 PSS STSN 133
] =T o] =SSOSR 134
(o0 0] 1 0T o PSRRI 134
[7= 1= SRS 135
Lo 1 o PR TSRN 135
XIS bt h e h e n ettt e e re et e e 135
SIMPIE DECOTET ...ttt sttt ettt et b e st e bt sttt e nee e ereenaeeeane 135
Variable LENGth DECOTEToiiiiiiiietiei ettt ettt ettt sene e 138
£=3 14 NV =T 03T USSR 140
(770 TSRS 140
GSEOS.FIHEIMENU ...ttt e et e e et e e e s e e e s anee e e saeeeeseeeeanseeeenseeeeanseeeannneeennnen 140
GSEOS.FIlEOPENDIAIOG. ... ettt ettt ettt et 141
[T T=T oL € g TS = oSSR 142
GSEO0S.GEtPrOJECIPAtN........ceiiiii e 142
(LT o T o T ST TTSTUU VR OPPRPR 142
GSEOS.INPULDIAIOG. ...ttt b e e et nat e ettt et et enee s 143
GSe0S.INPULDIAIOGIMOTEIESS ...ttt ettt ettt et e nreeseneens 143
BSOS L0 i ettt ettt ettt et nre e e 143
GSEOS.LOGREIOAM.......coeiiiiiii ettt ettt ettt sne e 144
GSEOS.LOGSAVE ...ttt ettt et snee s 144
GSE0S.MaKEPAtNREIALIVE. ...t et e e s e e et e e et e e e snte e e e neeeennnes 145
GSEOS.MESSAGEBOX. ...ttt ettt et sne e 145
GSe0S.MESSAGEBOXMOUEIESS.......c.eiiiiiiiiiie ettt ettt 146
GSe0S. PUMPWaItINGIMESSAGES. ..ottt ettt ettt ettt et et enneesenee s 146
G5e0S.SetACHVEDESKIOPPAGE. ...ttt 147
GSEOS. SESTATUSTEXE ...ttt ettt ettt 147
GSEOS.SNEIIEXECULE......ceeieiie ettt e e e et e e et e e e ste e e s nneee e saeeesaseeeeanseeeenseeeesnseeeansneeenneen 148
GSEOS.MAIDIAIOG ...ttt ettt et h bbbttt b et ene e 148
[0 T =1 o T 1€ 148
{70 T 01 o RSSO 149

© 1998-2005 GSE Software, Inc.

Gseos

GseosCmd.batchstart
[T T=Te T @704 To I o =1 (o g 157 (o] o OSSO P PP PROPRRRROY
[CET =Y 013 To 1 4o T=Te TSR SRUPPR
GseosCmd.send.....

GSEOSCIMA.SOUNG.......uiiiieiiiee et e ettt e e ettt e ettt e e et e e e ste e e e e te e e s aeeeeaabeeeasteeeassaeeesaeeesasseesasseeeanteeesaasseeasaeesnnres
GSEOSCMAWINEXECveeeiiiiieeeitee e ettt e e ettt e et ee e st e e e sta e e e e te e e e eaeeeeaabaeesasteeeassaeeasseeesasseesassaeeanseeesaaseeeasnnesanres
GseosConsole..............
GSEOSCONSOIE.OM ...ttt et e et e e s e e et e e e eaae e eab e e e saaeeeeaseeeeteeeeeareeearaeeeanres
GSEOSCONSOIE.ON. ...ttt ettt e ettt e e ettt e ettt e e et e e e ste e e e e ate e e e aeeeeaabeeeasseeeassaeeasseeesasseesasseeeenteeesassseeansneesanres
GseosConsole.write...

[T o1 070 41V o AU UP PR
[T 0o 0 1Y7=T o (o SRR SRUPPR
GseosConvert.ltof..

(R Yoo 0o g 1Y7=T § B o [T I TSRS UUPPR

[T o]V =oAL T o [1 U R UP PR 157
BringToTop
Clear
Close
New
Print

[T =T o] L= USSP PR
GseosNet.ClientConnect..... ... 157
GSEOSNEt.ClIENDISCONNECTeiiiiiiie ettt ettt et e et e et e e beeenbeesneeaneeens 158
GSEOSNEL. ClIENESTAtUS. ... ettt et e ettt et e et e e beeenbeesneeaneeens 158
GseosNet.Disable
GSEOSNEE.ENGDIE.......cotiiiieee ettt ettt e et e bt e s hb e bt e sat e et e e e nee e abe e teeenbeenaeeaneeens
GSEOSNEL.ISENGDIEA ...ttt b et b e sae e et e e ne e et e e beeenbeesaeeaneeens 159
GseosNet.ServerReset.... ... 160
GSEOSNEE. SEIVEISTATUS.eoueiiiiiieie et ettt bt e it e et e e s aeeeabeesbeeenbeesaeeaneeens 160

[T o] =Yt] (o [U PRTUP PR 160
GseosRecorder.AddPlaybackBlock. ... 161
Gse0SRecorder. AddRECOIABIOCKcciuiiiiiitieiee ettt ettt ettt e e aeesaeeaneeens 161
GseoSRecorder.GetDataPathooiii i 162
GseosRecorder.GetPlaybackBlocks.... ... 162
GSEOSRECOIAEI.GEEPTETIX ... ittt ettt et e st e et e beeebeesneeaneeean 162
Gse0SRecorder.GetRECOIABIOCKS.........cc.iiiiiiiieiii ettt ettt et e st e b e saeeeneeens 163
GseosRecorder.IsPlayingBack
GSE0SRECOrAEr.ISRECOITING. iiiiiiiieeie ettt ettt e sttt e ae e et e e sbeeenbeesneeaneeens
GseosRecorder.RemovePlaybackBIOCKcoiiiiiiiiiiieiie e 163

GseosRecorder.RemoveRecordBlock
GseosRecorder.SetDataPath............co.oi i
GSEOSRECOIAEI.SEPIEFIX ...ttt ettt ettt et et e et e e beeebeesaeeaneeens
GseosRecorder.StartRecording....
GSE0SRECOrder.StOPRECONING ... eiiiieiieiiit ettt sb et b et e bt e s aeeebeesbeeenbeesneeaneeens
[T o3 U UP PR
FileAppend
FileOpen
Y =Ta 7Y o) o] Toz= T[] TSSO OP PSRRIt
WindowClose
WindowMaximize
WINAOWMINIMIZE ...ttt bt e e bt e e s he et e et et e e st et e e abe e e e nbe e e aanneeenbeeennneeeas
WindowPrint
WindowRestore
[(15 (oo = o PSP P PP PPPROTPRIN

© 1998-2005 GSE Software, Inc.

Contents \"/

HISTOGramL.DAULOSCAIE........ooiieiee et ettt e e s e e et e e e nane e e e nanee s
[[(eTe =10 T2 =T PRSP POURROPP
HISTOGramMLAWREANGE. ...ttt ettt et e e e hb e e e e b e e e ssb e e e aabe e e eba e e e nnbeeeenneee s
Histogram.Histogram1D....

Histogram.Histogram2D

1Y/ [o] 11 (o] PP P PP PPPR PPN
o] = g = o] = PP PP PP OPPRUOPPIOY
[oTo] 01 1 £ V[o] PP OO P PP TP PPRRPTN
Delete
dwCnt
=TT o] L= PRSPPI
(7101 (=Y £ O 31T o! USSP TP
[3311 (07 3 =Y o QT TSSO T PP PT PP OPPPRE
F53 14 N\ = 03T PRSP PPPROTPPN
Y=Y (U= g Lo PO SRR SPRPRPI
SEAUENCEI.DEIELE. ...ttt e e e e ettt e e e e e et e e e e e eaaaatteeeaeee s antaeeeeeeenntaeneaeeeaanes
Sequencer.InputDialog...
SEQUENCEI.MESSAGEBOX......cciiitiieiiiie ettt ettt e et e s st e e s s b et e et bt e e e bb e e e ahb et e e be e e e et e e e anneeennee 183
SEQUENCEI.SEUUENCENuvieeiuteeeeeiteeeiteeeeeteeeeeteeeastaeeaateeeaeaseeeasaeesasseeeassaeeasseeessseesasseeeanseeesasseeeasaeesanres 184
SOQUENCET.SIBEP.eeciteeeiite ettt e ettt e e ettt e et e e et e e e sta e e e e te e e e aseeeaabaeeasbeeeassaeeesseeesasseesaaseeeanteeeeaaseeearneeaanres 184
Y=o (U= g ot g o= o SO O PRSP PRSRPRROY 185
Sequencer.Stop
Sequencer.Wait
SEQUENCEI.WSTALUSvieeiiiee ettt e ettt e e et e e e ae e e e e e e e esbeeeeaaaeeesbeeesasaeessaseeeeteeeeaaseeearaeeeanres 186
4 Recorder File Format
PartV Howdo l... 200
1 How do | display alarm information?ccceeeimirecemesssee e 200
2 How do | configure an alarm monitor?ccccciiiiiiccisemrrrrr e sss e e 200
3 How do | configure the networking module? ... 200
4 How do | configure startup settings?cccucviiiiniinn e ————_—— 203
5 How do | open a screen file programmatically?cccorroooiriicecirsncere e 205
6 How do | use Expressions and Conversion FUNCLIONS?cccccoiiiiiiccceecrren s nsscccseeeee e e 206
7 How do | write @ GSEOS extension DLL?cciiiiimmiririnscemrre s sssssssss s s ssmsns e s essnnes 207
Index 210

© 1998-2005 GSE Software, Inc.

Welcome to GSEOS 7

1 Welcome to GSEOS

Ground Support Equipment
Operating System

55E 50

1.1 A Quick Tour

This section will take you on a quick tour through GSEOS and explain the most important
concepts in GSEOS. It will outline the general structure and configuration of the system
and give an overview of the various capabilities of GSEOS. For a detailed description
please refer to the GSEOS Reference chapter.

GSEOS is a 'shrink-wrap' application that you can run stand-alone. However, you have to
configure the system to your needs. This paragraph will outline the various files you will
have to create/modify in order to set up a working system.

gseos.ini
This file configures the system parameters like network settings, printer settings,
recorder path, project name, etc.

MyProject.blk

The block definition file(s) will hold your telemetry and other block definitions. You can
split your block definitions over multiple files if you like. The block definition files to be
loaded are specified in the gseos.ini file. These settings have to be initialized when the
system starts up. If you have to change your block definitions you will need to shut down
and restart GSEOS for these settings to take effect. The following paragraph shows a
sample block definition. For a detailed description of the bock definition format refer to
the section: Block Definition Files.

TLM {

(ApId 11116;)

rer 93
InstId rrr 4;
PacketId rrr 7;
Seq 11132;
Len 11132;
Data [40000] 0 ,,, 8;

}

Once you configured your gseos.ini file and set up your block definition file you are ready

© 1998-2005 GSE Software, Inc.

Gseos

1.1.1

start GSEOS. You will see the application like shown below.

® MyProject [1] - Offline
File Wiewy Toolz Windowe Help

B NE =

untitled |

Add a screen window

Now that the system is up and running lets display the TLM block that is defined in our
block definition. To create a new screen you select File|New from the main menu or click
the File|New toolbar button.

vew 2] x|

Save in: II:I E5EOS j = |EF E-

_1EIOS [JINSTALL TlALARMLIMSCR [)C_HIS.5CF
_1DaTA Cus [FlaLarms.scr o _pHa_ay
| IDELAY C15ySTEM Fletosstar.scr Flo r_pLoT
| 1Demo CaTEST Fertmar.scr [_pates.:
_1DoC Flaacs.scr Mlc emratEscr [Tl _paw.s:
| JINCLUDE Flatarmicz.scr Clc_ENERGY.SCR [TC_TOFXE.:
1] | 2
File name: | Save I
Save as type: I Screen [*.zc1] j Canicel |

The above dialog opens and prompts you to enter a new file name. Note that in the
combo box 'Save as type' you can select various different file types. In order to create a
new screen file you have to select 'Screen (*.scr)'. Once we specify the file name e.g.:
TLM1.scr an empty screen opens up in GSEOS and you can place objects on the screen.
You will notice that the menu and toolbar expand and contain screen editing specific
commands. The application now looks like this:

© 1998-2005 GSE Software, Inc.

Welcome to GSEOS 9

*. MyProject [1] - Offline =lol =]

Fil= Edit Draw 3Style Options Tools window Help

D=lgl & & By k

A00|C|d T] 3| malto] = g|3] %]

[Untitled {

| Mot in recording mode

The thin line that shows in the TLM1.scr window is the border of the printing area. Each
screen represents a printable sheet. The dimensions of the limiting rectangle are
controlled by the printer settings.
To place a data item on the screen we select the 'Data Item' tool. Hint: If you move the
mouse cursor over the toolbar buttons their function is indicated in the status bar. The
button shown below invokes the 'Data Item' tool (alternatively you can choose
Draw|Data Item from the main menu.

E iﬂﬁiﬁl

i 7150 I

"

Once you select a tool the according button appears depressed to inidcate the tool
selected in addition the mouse cursor takes a tool specific shape. Now drag a rectangle
on the screen by pressing the left mouse button and moving the mouse while holding the
mouse button down. Once you release the mouse button the select data item dialog
appears:

© 1998-2005 GSE Software, Inc.

10 Gseos

Mo ltem Selected

Block: [term:

HE. | |Apld
HS _I Dratal]
MESSAGE Inztld
Periodich zg Len
Pizture Packetld
PRHCommett Seq
RecCaomment

R5232Ram

SyncCommand

SynicSto

Step

Firgt——— At
] [

[

] % |

Cancel |

Select the TLM block and then the Data item. Select 100 for the amount to restrict the
number of elements to display. The screen should now look similar to the following
picture and display your TLM.Data item.

Kl

ao
ao
ao
ao
ao
ao
ao
ao

oo
oo
oo
oo
oo
oo
oo
ao

ao
ao
ao
ao
ao
ao
ao
ao

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

ao
ao
ao
ao
ao
ao
ao
ao

The default display type is hexadecimal. You can change the properties of the display
object once you placed it on the screen. After placing multiple other items and some
static elements like rectanges the TLM.scr file finally looks like this:

© 1998-2005 GSE Software, Inc.

Welcome to GSEOS 11

=10l x|

% MyProject [1] - Offline
File Edit Draw Skyle Options Tools ‘Window Help

nllgl 8l B 18y 2 Aololeld T E] 5] =]
=10l x|

Length: 0

ApId: ooao

00 00 oo 00 d0 00 oo 00 d0 00 0o 0o 4o oo oo oo
00 00 oo 00 00 00 o0 00 00 00 00 00 00 0o oo oo
00 00 oo 00 00 00 o0 00 00 00 00 00 00 0o oo oo
00 00 oo 00 00 00 o0 00 00 00 00 00 00 0o oo oo
00 00 oo 00 00 00 o0 00 00 00 00 00 00 0o oo oo
00 00 oo 00 00 00 o0 00 00 00 00 00 00 0o oo oo
00 0o oo oo

[Untitied
| I at in recarding mode

1.1.2 Histogram Data

This chapter demonstrates the use of the histogram decoder and displays the TLM data
as a histogram. A histogram decoder classifies the input data and maps in into an output
block. Let's assume the first 100 items of the TLM block contain event data that you want
to histogram and display the distribution as a two dimensional spectrum.

This task involves various steps:

e Create the histogram block definition
e Setup the histogram decoder
e Setup the histogram display

¢ At first we have to define the destination block. The event values of the TLM block can
be in the range [0..255]. We create a TLMHisto block that will take the histogram data
and consists of one array item with dimension 256. This way each source value gets
mapped onto a destination slot.

TLMHisto

{
Histo[128] O ,,, 16;

}

The next step is to create the histogram decoder. We can either write a python script
TLMHisto.py which we then load or we can directly type it in the console window. If you
don't have a console window open select File|New from the main menu and select file
type Console (*.con). This will open a new console window. The application will look like
this:

© 1998-2005 GSE Software, Inc.

12

Gseos

* MyProject [1] - Offline =10] %]

File Edit Search Tools Window Help

D= & &t ElY]

Length: 1]

ApId: o015

Oz eb 36 bf &7 fa 30
bl 88 8e 4d £9 d9
of 30 85 97 kb7 3e

1d 01 41 Oz 10 f£f 29

83 of 1z 43 31 78 71

al &f b3 50 hO 4c O3

a2 cd coc d2

Console - MyProject.con

R

[1M f
|

| Mt in recarding mode

To create the histogram decoder we type into the console:

>>> import Histogram
>>> histo=Histogram.HistogramlD('TLM Event Spectrum', 'TLM.Data', 'TLMHisto.Histo',
0, 256, 100)

This creates the histogram decoder and starts it. We hold on to a reference in the histo
variable. This allows us to call various functions on the histogram decoder later. Now lets
check out the decoder in the GSEOS Explorer:

=10l x|

E||:|I35EEIS— Decoder Count | Installed On D escription
[:l Blocks WFIEL TLM Evert.. 83 TLM
Ela Decoders
- fﬁ TLM Event Spectrum
1 Monitars

: -7 Sequencers
*D Metwork
D Syztem
D Tazks

‘| | i

You can see the 'TLM Event Spectrum' histogram in the decoders node. The checkmark
indicates that the decoder is running (as you can also tell from the count). The GSEOS
Explorer is a useful tool to get a quick system overview and to manage your block
definitions, decoders, monitors, histograms, network connections, etc.

© 1998-2005 GSE Software, Inc.

Welcome to GSEOS 13

As the last step we have to create the spectrum display. We create a new screen that
displays the TLMHisto.Histo item.

i x]

o0Z4 0029 0013 0016
o0l1f 0011 0O0le OO0l1e
o0Z3 o01f 0017 0012
001k 0014 0O0la 0OO19
001z 001k OO1f OO0l
o0Zo o013 001d 0016
001z 00le 0015 001e
00le 0026 0012 0019

Lets change the display style to 'Bargraph' to display the histogram as a spectrum and
not just as plain hex data. Right click on the data item and select 'Data Item'. This pops
up the Style dialog, choose 'Bargraph' and set the width to 100%. We also have to adjust
the range property of the Data Item. By default the range is [0..1]. We want to display a
range from [0..1000]. Right click on the data item and select Range. This brings up the
Range dialog. Select 1000 for the Y max value. Now a bargraph maps all values from 0
to 1000 into a graphical representation. If the value exceeds 1000 it is simply clipped. By
now we have the following display:

_iojx

One obvious flaw is that the histogram is upside down. All displays have a default
orientation of right-handed 4th quadrant (which is what you usually use for a textual
representation, that is left to right, top to bottom). For graphical representations we
usually want to have the origin in the lower left corner which is the 1st quadrant. To
change the orientation right click on the data item and select Orientation. This results in
our final display:

© 1998-2005 GSE Software, Inc.

14

Gseos

1.2

1.3

_inix

: imMu ol

About this document

Release Date Changes

5.0.176 Jan-02-2003 |Update Gseos5.0 documentation

5.1.217 Nov-30-2003 |Add documentation on Expressions and Conversion
Functions.

Features

Simple bit-level telemetry format definitions

Rapid GUI driven display development

Data display in various numeric and graphical formats
Easy command interface

Monitoring of data

Powerful decoding of telemetry data

Recording and playback of data and commands
Built-in networking

Distributed operations (Remote commanding)

Easy to script for regression testing

Batch file capabilities

Easy to learn generic scripting language

Open system can easily be extended and customized
Simple integration of instrument hardware

© 1998-2005 GSE Software, Inc.

Welcome to GSEOS 15

Ela Edt [wa Gedn Optwec WRICed DESKTOPS SCREERE BATCH: Spkcstoro 'Srddwa Halp

Dl=igl S| B ¢Im = = ADoloin| Tl gt o Sls] sl

[IHCA Ratea I (=1] A At Simutabnn, [ET=Er =10 =]

Totsl Fulze Baight

¥ revfunning |F5% 5.0 -
CHENE Proc DEE Cloead T
TRCh Pene S |THER b2 Fixed ’J-'L o E‘::‘ilf Egsgggs
- v . - Fotate In :
CHEHE :g’ E:: T BAt ont 10332 |-5.29 520 B Froc Blocie: Pl
TLH il L f+12% 17. 5 53504 ETES Itaratians: 1
TR WY W oo seemitor 1555 |oyme 1o s 43004 hived Usmnd, %] g
LeE Wotor CEE |ww sgme 1.€0 00 |oooy 29 2 R -

toms sencoz D | GANINEEIEEN eyt a3 034 Allos Calls:

Starring Backup Bt OEF EIEEr volunterd 01 Fras Call=:
swctor: it spis @ 2F AE-I G0.% e DiEF Calla:
Epin Pesiod: CPU Wer: 3, 5 L1957 Ma¥ 0 0: DERT fuat-x FF 077a Bllos Fails:

Zimin, 0 5ec R Ver: 29. 3 =
walid omd Cnt a7 LE Cnt 00
Etal Emable Off | povalid omd cnt 0 il [EFu up o |
"“: B SEE | opmmani Echo Datal ’ AR
c-rfal En BEE) horg coco 0000 (000 SOm 0WD E02 000
EouTt Lewel 0 | papg qoco apdp p9oe food apdp bios cacd || ol CRRRLE o 2, SEE+04
E0UTZ Level 0 0 G0Dg 00 GO0k DOM QEg 0D o T_ILH | . 5. BIE+D04
Tizm Lawel] D0 2000 0D D00 a0 G103 DA FoA] o 1, GEE+04
= o . 4.1E+0F

617,

4, 43E+04

Timr e Apw 50 1707 521557

Mawe: TLH (a-"
[mctSeres (FelsgponDiphes | phe J e] Swiswsoeen | GeenDeng | CEMG Semion | LEMMG S | e
| Erncchea Dl 51| Edl poordngiet. | Edplaback el

5[W e R | L 453

14 Introduction

What is GSEOS?

GSEOS (Ground Support Equipment Operating System) was designed to support the
testing and integration of instruments and small spacecraft.

GSEOS meets the need for a low cost, flexible, and maintainable spacecraft ground
system which is a common denominator across most space programs.

Low Budget

One of the most common requirements of any spacecraft program is the need to test and
operate the hardware prior to launch, and monitor its operation after launch. In recent
years, spacecraft and missions have grown more complex while budgets and schedules
have grown ever tighter. While such an environment puts pressure on all aspects of a
mission, it is particularly difficult on the elements that support ground test and
operations, since these elements must be in place to support early hardware
development, and yet must last throughout the mission.

Bench Checkout Equipment

Typically, this capability has often been met by developing and supporting several
independent systems. The first, often called bench checkout equipment, is designed
primarily to help engineers test the flight hardware in a stand-alone configuration. Due to
the need to support early testing, the BCE's capability is often limited. Despite these

© 1998-2005 GSE Software, Inc.

16

Gseos

limitations, and the fact that it is not intended for long-term use, the BCE development
often requires significant resources to insure that the hardware delivery is not imperiled.

Spacecraft Integration

A second system, developed in parallel with the BCE, is intended primarily to support
mission operations. Because such systems can not be fully checked until late in the
hardware development cycle, significant resources are expended to run simulated
hardware interface tests. Such tests are not a complete substitute for testing with real
hardware, however, and invariably, problems are discovered in the hardware and/or
software. A third system may also be used solely to support system-level testing during
spacecraft integration. It shares problems with both of the systems described above; it
must be available in time for system integration, but the opportunity for testing may be

limited.

GSEOS addresses these problems by providing a common platform that allows to
perform bench checkout as well as spacecraft integration and flight operations. The

advantages of recycling a system in such a way are manyfold. The picture below depicts

three possible system configurations:

Assembly-Level Test Configuration

Flight
Instrument

Spacecraft

Local
Storage

Interface 'IC':IR/IIVIID&
Emulation BIOS N
Hardware Network nterface

Interface

i

Common GSEOS Elements

System -Level Test Configuration

Spacecraft

Flight
Instrument

Local
Storage

TLM &
CMD

Interface

Spacecraft
GSE

[

Network
Interface

Common GSEOS Elements

Mission Operations Configuration

Flight Spacecraft —p Local
Instrument ‘ Storage
N | Svst TLM &
s ! BIOS ysem CMD
- Core Interface
Ground Network
Station Interface
n

Common GSEOS Elements

© 1998-2005 GSE Software, Inc.

18

Gseos

2.1

Architecture Overview

This chapter gives a brief description of the GSEOS internal structure and of its main
features.

During the development of data processing units (DPU) for scientific space experiments,
sophisticated test equipment is needed. In particular a spacecraft simulator (S/C Sim) is
needed to simulate the electrical interface between the experiment data processing unit
(DPU) and the spacecraft data and power system. A computer which is connected to the
spacecraft simulator emits control commands to the spacecraft simulator and receives
DPU data from the simulator. The whole arrangement (computer & S/C Sim) is referred
to as the Experiment Ground Support Equipment (EGSE).

Primary tasks of the EGSE are to send commands and to receive data from the
connected hardware. The following tools are supported to achieve the mentioned
purpose:

o Spacecraft simulator and instrument control. Instrument and spacecraft
commands can be send through the BIOS.

o Data monitoring. Any data item can be checked automatically.

o Data display. Data items can be displayed on the screen in selectable formats
(hex, decimal, binary, graphic). The data items can be organized in different
windows which in turn can be arranged on various pages. This allows for a quick
and easy navigating to access your data.

o Data logging. The recorder module allows you to store data and to write
command protocols to mass storages in real-time. Conventional hard disks and
optical disks can be used as mass storage devices.

o Automatic test procedures. End to end testing can be achieved by writing
sequencer scripts that issue commands and verify the appropriate behavior of the
instrument. This allows to automatic test sequences and regressing testing.

Data Flow

Data Flow

The data flow in GSEQOS is shown below. This figure shows, that the BDM plays a central
role for the data flow. When a data block has been received by the active data source,
i.e. the S/C simulator BIOS, this module informs the BDM about the "arrival" of new
data. The BDM then activates all consumer modules (e.g. Qlook, RECORDER,
MONITOR,...) that want to work on the arrived data. For this purpose the BDM keeps a
list of consumers for every block definition.

Command Flow
The command flow in GSEOS is outlined in the following picture.

© 1998-2005 GSE Software, Inc.

Architecture Overview 19

R
I
Y A I

il

. e
. e | B —

””””” VLVA
I HE I I

The GSEOS command processor intercepts CMDSTRING blocks that contain command
text and generates a binary command representation suitable to your instrument. This
translation is defined in a command script. The binary command data is relayed to the
BIOS as the BINCOMMAND block. The BIOS then invokes the appropriate hardware to
send the command to the spacecraft simulator and/or the instrument.

Each command can be executed by a batch file that contains time information when the
command has to be executed. Relative and absolute time tags are possible. "Relative" in
this case means for example "100 minutes after the previous command".

With the Recorder tool all commands which arrive at the command processor (in the
CMDSTRING block) can be protocolled on a mass storage device. A replay of such a
command file can regenerate test scenarios. Together with the time tagging capability a
convenient way of implementing time dependent batch jobs is provided.

2.2 Real-time control

After informing a data consumer about the arrival of data, the BDM accesses the whole
data block or single data items which are defined in the block definition. The decoder
module also allows you to build new data blocks tell the BDM about the "arrival” in the
same way the S/C SIM BIOS does. At any given time the system uses one of the
mutually exclusive data sources available: BIOS, Recorder, Net, or a custom Python data
source (you can set this with the EnableDataSource command). I.e. when data is played
back from disk the Recorder is the data source and all data coming in on the other
channels is discarded.

Data processing within GSEQOS is inherently data driven. Therefore it is easy to provide
real time control, i.e. to test whether the whole system keeps up with the incoming data
load or is overloaded.

Every data block is assigned to an input buffer memory that is managed with a FIFO

© 1998-2005 GSE Software, Inc.

20

Gseos

2.3

(first in, first out) buffer technique. Several blocks can be read into the FIFO. To detect a
real time violation, every consumer has to inform the BDM about finishing its work. This
is called the "consumer acknowledge". If the BDM detects, that one of the consumers did
not send its acknowledge before a new block arrives, BDM buffers the data in a queue
and does not call that consumer again before the acknowledge is received. Generally all
consumers of a block "acknowledge" the processing of the data block within the time the
next block needs to arrive. However there are situations where GSEOS cannot process its
applications, for example when the user interacts in Windows (moving or resizing a
window) or when another application has access to the CPU. Then the FIFO queues will
fill. You can configure buffer space and threshold values. If FIFO overflow and therefore
data loss should occur an error counter is incremented. The system condition can be
checked with the GSEOS Explorer.

System Structure

Within the DPU data items are assembled into Experiment Data Blocks (EDBs) according
to experiment specific block definitions. The incoming data blocks will be stored in buffers
(exchange buffers, FIFOs) for subsequent decoding in the GSEOS.

The data access is through symblic lookup as defined in the according the block
definitions.

Data items with low update rates are often transferred using a subcommutation scheme.
Each time such a block is received, the data items meaning can change and is pointed
out by an index. GSEOS has a built-in decoder mechanism that makes it easy to define
custom decoders to perfom decommutation of arbitrarily subcommutated data. The
decoder output will feed into a new block that can then be displayed or used for further
decoding. The decoder/block hierarchy can be visualized with the GSEOS Explorer.

The block disassembly and data processing has to be completed during the average block
repetition period, this imposes a rigid real-time condition. GSEOS consists of several
kernel modules:

e BIOS, the basic input/output system. This is the experiment specific part of Gsesos
that needs to be customized to the specific spacecraft/instruments needs. It collects
data from the spacecraft simulator box and provides a defined interface to the other
GSEOS modules.

e BDM, the block data manager, handles the data blocks and the memory management.

e GseosCommand, the command processor, which interprets and executes commands
and runs test procedures without supervision. It interprets all commands for the
experiment, the S/C Simulator and commands for GSEOS. The open source
programming language Python is used to control all aspects of the system. It provides
a very intuitive syntax, a small learning curve and an efficient implementation to meet
the needs of a real-time system. The command processor can execute command
macros and time dependent batch jobs. Commands can be assigned to custom menus
as well as command buttons.

e Monitor, performs range checks against definable bounds and calculations on the data
items.

e Decoder, runs custom decoder scripts to decode dynamic data into derived data
products which are GSEOS blocks. These blocks can be accessed like all other blocks in
the system, especially they can be used as sources for further decoders. In this
manner a decoder hierarchy can be built that allows visibility of decoding layers where

© 1998-2005 GSE Software, Inc.

Architecture Overview 21

appropriate.

¢ Qlook, an interactive configurable quick-look tool for all data items defined in the block
definition file. Data items can be displayed in various textual as well as graphic
formats. All the displays are updated in real-time to give a precise view of the system
condition.

e Recorder, the data logging module enables GSEOS to store data and to write command
protocols to mass storages in real-time. Conventional hard disks and optical disks are
used as mass storage devices. Since the recorder can store all BDM blocks, an entire
test session including commands and system messages can be recorded and replayed
at a later time.

¢ Message Window, the message module, which logs all user and system messages with
the ability to print out a protocol of a test session.

e Log, the log module allows to set up custom logging files that can be accessed through
user interface windows.

e Net, the network module allows to connect to arbitrary TCP/IP data sources and
destinations. Simple configuration of the available client or server connections will set
up a data source within GSEQS. This also enables to distribute data to various
instances of GSEOS running on the same or separate boxes.

© 1998-2005 GSE Software, Inc.

User Interface

3 User Interface

23

© 1998-2005 GSE Software, Inc.

24

Gseos

3.1

3.2

Desktop Management

GSEQOS combines features of a Multiple-Document-Interface (MDI) application with a
custom desktop scheme. In order to be able to quickly navigate between various screens
you can place the GSEOS screen windows on different desktop pages. Pages can be
selected by clicking on the according tab. The entire configuration is saved in a Desktop
file. On shutdown of GSEOS the system saves the current desktop into the file
AutoDeskxx.dt where xx refers to the instance of GSEOS running. On startup the last
desktop file is automatically loaded so you will find your last configuration being restored.
You can also save the desktop file at any time with the Save As... menu, or restore a
previously saved one.

You can override this behavior by loading a desktop file in the gseos.ini Config/Load
section. This will cause GSEOS to always appear as determined by the desktop file
specified regardless in what state the system was terminated previously.

Appending a desktop file to the currently loaded one will append the desktop pages to
the current pages. This allows for easy merging of desktop pages.

The picture below shows a typical desktop layout:

I I| Bl mmman Ol — e an— nlin]
4
I I P

Conzole EMB: IMesﬁagel TLM | Parameter&l #R5 Statusl A5 Sciencel Science [Eu:ump.]l Raw I
| XRS5 _EE_232Raw.Diatal0..255] | S

You can create a new desktop page from the File/New Desktop Page... menu.
By right-clicking on the active desktop tab you can rename, move, or delete the page.

Rename page. ..
Delete page
Movve to left

To programmatically set the active page use the following command:

>>> Gseos.SetActiveDesktopPage (strPageName)
>>>

where strPageName is the name of the page you want to activate.

GSEOS Explorer

The GSEOQOS Explorer window allows you to control and monitor the GSEQOS system status.
You can monitor the currently installed Blocks, Decoders, Monitors, and Sequencers. The
System node gives access to system parameters and performance data. In the network
section you can monitor and modify your network connections.

You invoke the GSEOS Explorer from the main menu Tools/Explorer, or the Toolbar:

© 1998-2005 GSE Software, Inc.

User Interface 25

hyFroject [1] - Offline

L& S| ! =

e |

These selections toggle the Explorer window on and off.

The Explorer window itself consists of two panes, similar to the Windows Explorer
interface. On the left hand side you select the specific node you are interested in, on the
right hand side you will see the detail information about the selected node. In the figure
below the System/Memory node is selected and you can see the memory status on the
right hand side.

" GSECQS Explorer

=1 G5E0S
-2 Blocks Tatal 18628608
..... [Decoders Free 16335136
----- [Monitors Used 2233472
----- [Sequencers Sz 1) 1
EEI"'* 3 Network Free Eh:u:k Count 3
52 Sust [terations 1
-0 System Allac Calls 1142
-] M emony Free Call: 1106
.1 BOM Queue Diff Calls 36
H- Tasks System Load [3] o
Alloc: Fails 0

3.21 Alarms

The Alarms node displays all the alarms currently loaded. To change or add new alarms
load an alarm file.
The picture below shows the GSEOS Explorer with the Alarms node expanded.

© 1998-2005 GSE Software, Inc.

26 Gseos
=4
] Alam j‘ Mame FHed Low | ‘vellow Low | “Yellow High Red High
~=# MDS_ANDDE_SAFEMASK_alarm =/ MDS_ANODE_SAFEMASE_Alarm 0o None 1.0 20 CAG
MDS_ANODE_SAFETY_ST_Alam)=/ yns_aNDDE_SAFETY_ST_Alam 0.0 Nane None 10 CAG:
Z ﬂgg‘iﬁgg;‘ﬁgﬂ‘gﬂ‘i:a'm =/ MDS_ANODET_VOLT_EU_&lam 6800 6500 Nane 00 CAG:
 MDS APDOOR ST |5 MDS_ANDDEZ_VOLT_EL|_Alam 6800 650.0 Nane 00 CAG
. MDS BRIGHT SAFEMARK At | =7 MDS_APDOOR_ST_plam 05 Morie 25 15 CAG
; DS BRIGHT SAFETY &7 Alam | =7 MDS_BRIGHT_SAFEMASK_Alarm il Mone 10 20 TG
2 MDS_CDH_TEMP EU Al =7 MDS_BRIGHT_SAFETY_ST_&lam il Mone None 1.0 TG
= MDS_CODE_5T_alam =7 MDS_CDH_TEMP_ELL_&larm 300 200 50.0 B0 CAG:
MDS_COUNT_RATE Alarm %7 MOS_CODE_ST_aAlarm 1.0 Mone Maone 20 CAG:
MDS_DET_ELEC_TEMP_EU_Alar %f MDS_COUNT_RATE_&lam 0o MNane 12000.0 15000.0 CAG:
MDS_DET_HOUSE_TEMP_EU_&l | 57 MDS_DET_ELEC_TEMP_EU_Alarm 300 200 50.0 B0 CAG:
52 MDS_EXPIRE_CNT_glam _(|Z#MDS_DET_HOUSE_TEMP_EUI_AL. 00 200 E0.0 B0 CAG:
| IR _»l_l o e o b I o "_TDI
3.2.2 Blocks

The Blocks node displays all the blocks currently configured in the system. To change or
add new blocks modify the block definition files.

When you expand a particular block you can see three folders, Items, Decoders, and
Monitors. The Items folder displays all the data items this block is comprised of. The
picture below shows the GSEOS Explorer with the Block AAl expanded and the items
folder selected.

=) =) =)

=1 GSEOS ! ltem | Dimension| Bit Size | B*
=~ Blocks Block 3455 g
= AA1 Sync 3 8
MzgType 2
Check.zum g
tzglen 16

Header 12 a -
MET 32
Heartbeat 1

Boot_App 1 =

== | ol

The Decoders folder lists all decoders that are installed on this block, that is all decoders
that fire upon arrival of this block. In the following example you can see that the decoder
'CCSDS Packet Decoder' is installed on the TLM block. The decoder node then lists all the
blocks generated by the decoder. The block nodes here have the same properties as the
block nodes in the main Blocks folder. That is you can recurse through the decoder
hierarchy using the GSEOS Explorer getting a quick overview of the system block and
decoder topology. The Decoder subnode of a block node has the same properties as the
main Decoder folder, the same is true for the Monitors node. The Monitors subnode of a
block node lets you determine what monitors are installed on that particular block. For
more details on the Decoder node please refer to GSEOS Explorer/Decoders, for more
details on Montiors please refer to GSEOS Explorer/Monitors.

© 1998-2005 GSE Software, Inc.

User Interface 27

=8 SyncCommand E—Jt
- SuncStop

-z EPP_Alamm

& EPP_Boolt_Status
& EFF_CmdEcho |
-=p EPP_MemChecksum
& EPP_MemDump
2 YEFP Monitorlimits

lﬂé GRS Prant Stabis ;L.

3.2.3 Conversions

The Conversions node displays all the conversion functions currently loaded. To change
or add new conversion functions modify the formula file and load it.

Bl GSEOS =11 Ibem Function File

(0 Blocks =@MDS_Status.. EU(Raw=MDS5_Status MIRRDOR_SETPOINT_TEMP) =-. alice_testsMDS5...
&0 Conversions =@MDS_Status.. EU[Raw=MD5_Status GRATING_SETPOINT TEMP7:=-. alice testsMDS...
B-F =@MDS_Status.. EURaw=MD5_Status MIRRDR_A_TEMP):= -31.985878.. alice_testsMD5 ..

----- @ MDS_Status.COH_TEMP
----- g MDS_Status.DET_ELEC_]
MDS_Status.DET_HOUSE

=@ MOS_Status.... EU[Raw=MDS_Status MIRROR_B_TEMP'):= -31.986878... alice_test\MDS...
=@MOS_Status... EU[Raw=MDS_Statuz GRATING_4_TEMP':=-31.98687... alice_test'MDS...
MDS_Status. GRATING_A, =@MDS_Statuz... EU[Raw=MD5_Status GRATING_B_TEMP'] := -31.98687... aI?ce_lesl\MDS...
MDS_Status GRATING_B, =@MDOS_Status.... EU[Raw=MDS_Status DET_ELEC_TEMP:=-31.986875... alice_test\MDS...
MOS Statuz GRATING 5 =@MDS_Status.... EU[Raw=MDS_Status DET_HOUSE_TEMPY:=-31.9865... alice_test'MDS...
MDS_Status.MIHHDH _A =@ MD5_Statuz. .. EU[Raw=MDS5_Statuz COH_TEMP'] ;= 31 98687876 + 1. alice_test\MDS ..
MDS:Status.MIHHDH:B: =MD _Statuz... EURaw=MD5S_Status.S0C_TEMPY:= 3198687376 + 1.... alice_testhMDS5...

MDS_Statuz.MIRROR_SE

MDS_Status. SOC_TEMP
. | e T ¥ P I _'I_I

The right hand pane shows the data items the conversion function is defined for. Multiple
data items can share the same conversion function name. The function body is listed as
well as the formula file the conversion function was loaded from.

3.2.4 Decoders

The Decoders node displays all decoders currently installed in the system. For more
information on how to configure a decoder please refer to Modules/Decoder. As you can
see in the picture below the Decoders node lists all the decoders currently installed. In
the right hand pane you can see the number of invocations, the source block, i.e. the
block that triggers the decoder execution. And finally a description which is the doc string
that can be specified with the decoder definition.

© 1998-2005 GSE Software, Inc.

28 Gseos
* GSECS Explarer
=3 GSEOS
g Blocks ¥ %12 Calculate CHEMS . 0 C_PHA
S % ¥F 12 Calculate INCA His... 0 M_UpdatedRaw
Elf Calculate CHEMS Higtoagram wariables f% Calculate LEMMS 0 L_PH& Dec
E-----lecltEhems HOI; Calculate mare CH... 0 CalcChems
[:l D:z;ders fal; Calculate Faw CH... 0 C_Raw
CI Moritors ¥ ¢ Clear LEMMS Sum... 5 BINCOMMAMD
----- fag Calculate IMCA Histogram variables E%Decnde CHEMS ... U SubPacket
----- ¥ Caloulate LEMMS Summed PHA, data ¥ ¢ Decade CHEMS Fi... 0 SubPacket
----- Wi Calculste more CHEMS Histogram va ¥ ¢ Decode INCA PHA... U SubPacket
----- f&; Calculate Baw CHEMS Histogram va fé‘; Decode [MCA Lpd... 0 SubPacket
..... f@g Clear LEMMS Summed PHA data :5 Decode LEMMS P... 0 SubPacket
Upon expanding a particular decoder node in the left pane you will see the output blocks
this particular decoder generates. From here on you have the same properties as the
Blocks node.
i clicking on any decoder node will pop u e following menu:
Right click decod d Il the foll
Here you can Enable/Disable the decoder or delete it altogether. Keep in mind, if you
assign the decoder to a variable that you maintain, for example in a Python script, the
decoder will not be removed until you release this variable. The delete operation only
releases the internal reference that is held by the Explorer. If the decoder is a histogram
decoder you can additionally set some of the histogram decoder properties here.
In the right hand pane you can select multiple decoders and invoke the operation on all
the selected decoders at once. This feature is not possible with the left hand pane since
you can only select one node at a time.
3.2.5 Expressions

The Expressions node displays all the expressions currently loaded. To change or add
new a new Expression modify the formula file and load it.

© 1998-2005 GSE Software, Inc.

User Interface 29

=1 Expressions =1 [Mame Function File

e And £ tind Bndiab) =akh C\GeeosS 14Pj\Geosh, .
ﬁ‘ Bool F Bool Eool [a] ;= al=0 SystemtSystem. qif
- f Clock £+ Clack Clack [a] := a%12+183 SpstemtSpstem g
;i g:if £ Di Diff (a.b) = ab SystemtSystem.ql
ﬁ‘ Fercent £ Div Div [a.b) = a/b SyztemSystem.glf
ﬁ‘ Tetris £ Percent Percent [ab) ;=100 - [foat{a] / b ... System‘System.glf

_____ (3 Decoders £ Tetris Tetiz [a,b,c.de) = [[a%d)==b]l[a.. System‘System.glf

----- [C3 Monitars ;|

The right hand pane shows the Expression name together with the function body and the
formula file the expression was loaded from.

3.2.6 Monitors

The Monitors node displays all monitors currently installed in the system. For more
information on how to configure a monitor please refer to Modules/Monitor. The picture
below displays a view of the currently installed monitors. They can be displayed by
expanding the Monitors node underneath the GSEOS root node.

In the right hand pane you can see the number of invocations, the source block, i.e. the
block that triggers the monitor execution, and finally a description which is the doc string
that can be specified with the monitor definition.

|:| Blocks
I:I Decoders
SR Moritors
¢ M0 Besp after each command ech
I:I Sequencers
- FF L Network
G- System
H-] Tasks

f@ Beep after .. 0 CmdEchoFlat

Right clicking on any monitor node will pop up the following menu:

Here you can Enable/Disable the monitor or delete it altogether. Keep in mind, if you
assign the monitor to a variable that you maintain, for example in a Python script, the
monitor will not be removed until you release this variable. The delete operation only
releases the internal reference that is held by the Explorer.

© 1998-2005 GSE Software, Inc.

30

Gseos

3.2.7

In the right hand pane you can select multiple monitors and invoke the operation on all
the selected monitors at once. This feature is not possible with the left hand pane since
you can only select one node at a time.

Network

The Network node lets you display and modify the status of your network connections. It
is categorized into Servers and Clients. The network connection themselves are
configured in the gseos.ini file in the [Net] section.

The Network main node lets you enable or disable the network as a data source. When
the network is the active data source all data received on the network connections is
forwarded to the system and data coming from any other data sources is discarded.
When the network is disabled no data from the network is forwarded to the system. By
right clicking on the main Network node you can enable/disable the network as a data
source. The current active data source is indicated in the GSEOS main title bar.

", GSEOS Explorer

=[] GSEQS
- Blocks Mot connect . 128244148 22
----- (3 Decoders P SOPCFLE Mot connect...
""" 1 Meritars U MM_2232 Notconnect.. 128244148226
""" L Sequencers T MIMI_2233 Notconnect.. 128244148226
Eg% k P MM_2234 Notconnect.. 128.244.148.226

3 SoPC Mot connect... 128244148226
%= SOPC_FILE Mat connect... 128244148226
W MIMI_2232 L Mot connect... 128244148226
i MIMI_2233 L Mot connect... 128244 148 226
£ MIMI_2234 - Mot connect... 128.244.148.226
B MIMI_2235 - Mot connect... 128.244. 148226

85 MIMI_2236 Mot connect.. 128.244.148.226
T MM 2237 R AT W le T Lo S 1 PO Sy L 170 744 1 A0 20

1]
1]
1]
1]
1]
0
1]
1]
1]
1]
1]
0

O =— LaiLa1 Ao

Under the Clients node you will find all your network clients as configured in the gseos.ini
file. In addtion the current connection status as well as the incoming and outgoing block
counts are reported. By right clicking on any particular client (or selection of multiple
clients) you can connect or disconnect the client, depending on connection status. A
green light in the icon associated with the connection indicates an established
connection, whereas a red light indicates the client as disconnected.

© 1998-2005 GSE Software, Inc.

User Interface

3.2.8

TG er
=0 GSE0S
G- Blacks

----- [Z] Decoders

----- (21 Monitars

----- Z1 Sequencers

EI*[:I Metwork,

-2 Clients

E|[:| Servers

T TLMSry
W TestServer
W TomsServer
W SOPC33
T SOPC331
- Systern

|+

=l

31

Server Statug Address Fort | InBlock In Count | Out Block Out Count

*T TLMSrv Listen FYTHON 200 0 TLH

*T TestServer Listen FYTHOM 2mo 0 BINCOMMAND 0

¥ i PYTHOM 200 0 BINCOMMAND 0
PYTHOM 2001 CMDSTRING i} HE i}

!TSDPCSB‘I Listen PYTHON 2001 CMDSTRING 0 HE 0

Underneath the Servers node the configured network servers are displayed. In addition
to the configuration parameters you can see the connection status and the incoming and
outgoing block counts. By right clicking on a server node (or a selection of multiple
server nodes) you can bring up the server menu. This menu allows you to reset the
connection if it is established. A green light indicates an established connections, whereas
a red on indicates the server in listen mode, waiting for a client to connect.

Sequencers

© 1998-2005 GSE Software, Inc.

32

Gseos

3.2.9

3.2.10

System

The System node give you system performance measures. It lists all memory related
performance counters in the Memory node and the status of the Block queue in the BDM
Queue node.The following pictures shows a view of the System/Memory node:

1z Explarer

=1 G5EQS

-7 Blocks

----- [Decoders

----- [Moritars

----- [Sequencers
-3 L0 Network
=L System

LT T

------ [BOM Queue
-0 Tasks

M ame I W alue I
Tatal 18628608
Free 16393728
IJzed 2234380
Jzed [%] 11
Free Block Count 4
[terations 1
Alloc Callz 2364
Free Callz 2324
Diff Callz 40
System Load [%] 1]
Alloc: Failz 1]

The Total lists the total number of bytes allocated for GSEOS block buffer. This
corresponds to the setting in the gseos.ini [Buffer] section. The Free count lists the
available memory and the Used count the space that is currently occupied by
unprocessed blocks. A percentage counter is provided as well. One very important
counter is the Alloc Fails counter. This counter should always be zero. If the system can
not accocate any space for a new buffer this counter will be incremented and the
received data discarded. This means that incoming data was not processed and lost. If
this counter is different from zero you might try to increase the buffer space allocated for
the use of GSEQS. If this problem still persists, even with an adequately configured

buffer the system is overloaded.

Tasks

All data sources and data consumers in GSEQOS are listed in the Tasks node. This list give
you an overview of the performance of the individual data sources.

© 1998-2005 GSE Software, Inc.

User Interface

33

o
[Monitars Task Count Curr. Time | Total Time | Awg. Time | Used Buffer | LostBlocks | Ack | Teminated
i L] Sequencers W BOMCmd 0 a 0 0 a 0 Yes Mo
-3] Metwork wBesp 0 0 0 0 0 0 Yes Mo
= %S‘;m ! Command 0 0 0 0 D 0 ves No
) onsole s o
= Bgﬂ”g l? Consol 0 0 0 0 0 oo M
Tk 2D ataDst 0 0 0 0 0 0 es Mo
D atal st 1] 0 1] 1] 1} 0 “es Mo
3l BOMCmd &
D ataSrc 1] 0 1] 1] 1} 0 “es Mo
P b e
3% Command l? Export i 0 i i 0 0 es Mo
-5l Console Wl Legacybdoritor a 0 a a 1] 0 Yes Mo
ezzage e 0
o DataDst M 7 £0 171 E7 a o v M
e} [atal) st 2 Print 0 0 0 0 0 0 es No
-l DataSre al? Pythan 2778 1] 0 0 1} 0 “es]
7l Export wal? Python Data Source 0 1] 0 0 1] 0 Yes Mo
2 Legacytoritor w2 OLook 1] 0 1] 1] 1} 0 “es Mo
eszage ecPlaybac &3 o
i M_ al? RecPlayback 0 a 0 0 1] [N N
g Frint a? RecwWhite 0] 0 0 1] 0 Yes Mo
Pytharn
@2 Python Data Source
-l ALOOK,
-2 RecPlayback
-l Rechwiite =
= | B e

Task
The name of the data source.

Count
The number of blocks that this task has processed.

Curr. Time
The time in ms this task takes to generate one block. This is a sliding average over the
last few blocks so you can determine the current performance of the task.

Total Time
The total time in ms this task has been executing.

Avg. Time
The average time in ms needed to generate a block. This is the quotient of total time
over count.

Used buffer
The buffer in bytes that is allocated in blocks that have not been processed by this task.
This should typically be a small number, ideally zero.

Lost Blocks

The number of blocks that could not be allocated due to insufficient memory. See also
the Explorer System node for information on allocation failures. If a task has requested
notification of a particular block and this block could not be put on the BDM queue due to
allocation failures that lost block counter of this task is incremented. This should not
happend and the system needs to be configured to avoid lost blocks. This counter gives
you some visibility into the performance of the system.

Ack

A data consumer has to acknowledge the processing of a particular block with the BDM.
It will not get notified of new block arrivals until the acknowledgement for the current
block is received. If this flag is permanently 'No' the task will not process blocks and
there is most likely a bug in the task.

© 1998-2005 GSE Software, Inc.

34

Gseos

3.3

3.4

Log Windows

Log windows can be used as general purpose reporting windows. Each log window is
associated with a log file. Content written to the log window will be automatically saved
on system exit.

You can write content to a log file without the corresponding log window to be open. Log
windows are regular MDI child windows like Qlook screen windows. They are located on a
particular desktop page and their layout will be saved with the desktop settings. The
caption bar indicates the log file the log window associated with.

There can be only one window open per log file, although you can have several different
log files open. You can use the File menu to open and save log windows.

As opposed to the message window you can search and copy and paste in log windows.
Once a log window is active the GSEOS main menu merges the Edit and Search menus:

% MESSEMGER (XRS) Desktop Master [1] - RS232 Bios
File Edit Zearch XES Common ARS Custom

5
NEEERIEE »

E Log - Log FilestWlarm log

Programmatic Access:
Most of the access to log windows will be programmatic from Python scripts. The Gseos
module exports two functions you can use with log windows:

Gseos.Log

Gseos.LogSave
Gseos.LogReload

Menus

The GSEOS main menu consists of various different kinds of menus. The base menu
consists of:

% MESSEMGER (XRS) Desktop Master [1] - RS232 Bios
File Edit Drawwe Style Options HES Common XRES Custom XRES EMBOX COMFIG Miew Tools Window Help

O 5= = [S - N e =1 [P (SN '

File: All file related operations

View: Open can close various View windows like the GSEOS Explorer or the
Console window.

Tools: Invoke GSEOS tools like configuration Wizards

Window: Window management. Minimize, maximize, close windows, etc.
Help: Access to this file and the online GSEOS web site for up to date

© 1998-2005 GSE Software, Inc.

User Interface 35

3.4.1

information.

Depending on what kind of child window is active in GSEOS specific menus will be
merged into the main menu, between the File and View menus. In the above image a
Qlook window is active and the menus: Edit, Draw, Style, and Options are merged into
the main menu.

In addition to the automatic merging you can define your own custom menus that will be
placed before the View menu. In this case the XRS Common, XRS Custom, and XRS
EMBOX menus have been added.

The File Menu

File management is accomplished with the File menu. The following picture shows the
File menu.

B Mirmi [1] - Offline
| File Toolz ‘Window Help
e, ..
Qpen...
Append...
Save Az

Mewy Deskiop Page...

Print...
Print Desktop
Printer Setup...

1 Documertstion .ot

2 hitni.can

3 hindl_C21_|IEB_Defn.zas
4 =tol =tol

2 5ToL3 Jog

G stal txt

7 test log

8 xxx log

Exit

—EE

To create a new file you use the File/New... menu. You have to select the type of file you
want to create from the 'Save as type' list box. The following options are available:

[Con on]
Log [*.log)

Mezzage [*.mzg)
Lizt Blocks [*.lst

The system only allows one Message window open at the same time. If the Message

© 1998-2005 GSE Software, Inc.

36

Gseos

window is already open the according entry will not appear in this select list.

Screen files will create a new GSEQOS screen window. Screens allow to display the
different data items in numerical or graphical form. Log will create a new Log window.
The List Blocks setting allows you to get more detailed information about your block
definitions in form of a list file. You have to enable the block listing capability in the
gseos.ini file [System] section.

Open...
To open an existing file use the File/Open... menu. Select the type of file you want to
open from the 'Files of type' select list. The following options are available:

esktu:-p H]

Command batch [*.cpb) P
Console [*.con) 4
Lag [*.laa) F
Puthon Module [*.py: * pec; * ped; #.dil) i
Table file [* thl)

Initialization [*.ini) J
Help [*.chm]

You can select multiple files at one time and all of them will be opened, this is espcially
useful for window based files like Screen files or Log files.
The Screen, and Log files are the same you can find in the File/New... menu.

A Desktop file loads an entire screen configuration. This allows you to store the positions
of all windows on all desktop tabs in one convenient format. You can also combine
different desktop files by using the File/Append... menu.

A Command Batch file will start a time controlled command file. The start and end of the
batch execution will be logged in the Message Window.

If you open an existing Python module (which can be either a .py, .pyc, .pyd, or .dll file)
the system will try to reload the file first. If you made any changes to the file after it was
imported already these changes will take effect. If the reload operation is not successful
an import operation is performed. Any errors that occur during the load process will be
reported in the Console window. Initialization files will open any *.ini file in the editor you
have configured in the gseos.ini [System] section or Notepad if you have not configured
an editor of your choice. This will give you quick access to gseos.ini the main
configuration file. Note that most settings in gseos.ini don't take effect until you restart
the application.

The file type Help lets you open Windows help files (*.chm) like this file. Finally, the
Table file entry is a custom file type. To find out how to register your own custom file
types in the GSEOS file management check the Gseos module for more information.

Append...

The Append... menu will append to the currently loaded files of the same file type. The
system only supports the Desktop file type for append operations. If you append a
desktop file the new desktop will be merged into the existing one. If you want to save
this newly merged desktop use the File/SaveAs... menu and select the file type Desktop.
Please note that the default name for the desktop will be the one of the desktop file last
appended.

SaveAs...
The SaveAs... combines the functionality of the conventional Windows Save and SaveAs

© 1998-2005 GSE Software, Inc.

User Interface 37

commands. It will default to the current file name for the file type you select. In this way
it acts like the Save command found in other applications. If you change the file hame
you can save the file under a different name and will therefore get the SaveAs
functionality. You can save the following file types:

New Desktop Page...

In order to add additional desktop pages to the desktop use this menu. You will have to
provide a unique name. The name can contain spaces and special characters. Please
refer to the Desktop section for more information on desktop management.

Print...

The print menu opens the print dialog that allows you to print the active window. You can
optionally provide comment information for the page. If you click Ok the comment
information will be saved and the dialog closed without printing. If you choose Print the
active window will be printed and the the comment information will be saved. For the
various printer options please refer to the gseos.ini Printer section documentation.

Prirter Camment Line Editar

Caption: bitmaptest].scr Ea F
Title 1: IM ezzenger *AS 4
Title2 [Test Dec-30-02 r
Teed [EM 1
Titled: | !

| k. I Print I Ear‘u:ell il

Print Desktop...
The Print Desktop menu allows you to print the entire GSEOS application. This feature
allows to quickly print the current configuration for documentation purposes.

Printer Setup...
This menu invokes the standard Windows printer setup dialog and lets you configure the
current printer settings from within GSEOS.

Most recently used list

The following entries represent the most recently used files and by simply clicking on the
name you can load the according file quickly. This is especially useful for loading Python
modules that you might change in an editor and want to reload.

© 1998-2005 GSE Software, Inc.

38

Gseos

3.4.2

3.4.3

The Help Menu

The Help menu allows you to invoke the GSEOS help system. It also provides a link to
the GSEOS home page at www.gseos.com, as well as access to the About dialog that
gives you detail version information about the system and any modules.

% MyProject [1] - Offline
File Meszage Wigws Tools Window | Help

|_L|| 15'| Hl @ !lmgl Contents J

N EE0E COm

Abot

The About dialog shows the current version information as well as per module version
information.

g Ground Suppart Equipment Operating System

Gzeos 50183 [Feb-20-2003]
Puthor: 2.2.2 [#37, Feb 16 2003, 12:46:57) [M5C

— Wersior;
Meszzage 176 [Dec-31-2002) ;l
Met 176 [Dec-31-2002)
Conzole 177 [Jan-08-2003)
Esport 176 [Dec-31-2002)
Log 176 [Dec-31-2002) J
Gzeoskodule 176 [Dec-31-2002]
DataSocket 176 [Dec-31-2002) ;l

Copyright(iz] 1938-2003 GSE Software, [hc.

The GSEQS version number is the major and minor version, in this case 5.0. The last
number represents the release in this case 183.

The next line indicates the current Python version number. In the list box below you can
see all the modules registered in GSEOS with their according release number.

The Tools Menu

The Tools menu allows you to access various GSEOS tools like the Data Export Tool or
configuration wizards. Also any plug-ins you have loaded my add an entry to the Tools
menu.

© 1998-2005 GSE Software, Inc.

User Interface 39

3.4.3.1 The Data Export Menu

You can log any data item to a flat ASCII file with the Export Tool. When you select the
Data Export menu from the Tools main menu the Data Export dialog is displayed:

[tem Mew Group| Trgger Count| Format &dd ltem...
1 TLM.Data[l:21] v 1|Dec - i
Edit Iterm...
2 TLM.Data[0:512] rd 1|Dec -
3 |CLTU_IGSE_RxData:600] 1|Dec - Bemove ltem
4 CLTU_IGSE_R#.Len v 1|Dec - Change File...
Wirite Header...
Help... |
[tems Per Row: |3EI 3:
v Enabled
[T Header
[~ Line Mumbers
¥ Inzert Blank Lines
File:
k. Cancel Apply
V7

The listbox on the left displays all items to be exported. The Add Item button opens the
data item selection dialog and allows you to pick an item and its dimension if it is an
array item. The Change File button lets you specify the export file. If you have array
items in the export list you can specify in the 'Items on row' edit window how many
elements you want to place on one line.

The enabled flag lets you turn on and off the export of the selected items. If the
'Description’ check box is checked each item will be reported with its block and item
name, otherwise only the data is written.

For more elaborate formatting a GSEOS Monitor will be more appropriate. The monitor
function will then write the data items out to a file in the formatting desired. This also
has the advantage of programmatic access.

3.4.4 The View Menu

The View menu gives you access to various system windows and dialogs. The following
picture shows the View menu. The menu items toggle the display state of the window or
dialog refered to by the menu. The state of the dialog or window is indicated with a
checkmark by the menu. If the menu entry is checked the dialog or window is open,
otherwise it is closed. Most of the windows can be activated with a hotkey (as indicated
on the menu) or via the tool bar as well.

© 1998-2005 GSE Software, Inc.

40

Gseos

3.4.5

5 WyProject [1] - COffline

File Edit Draw Style Options Wigsy Toole Windowe Help

UL &t @] Commend.. 77 sl - As] T

Recorder... F&
Conzole Fa

Explorer... F10

Trigger:
0 Option=z

1]

Declatency:
Min:

Mazx:
SrcTick:
Min:

Mazx:

s T s Y s Y o)

Command...
The Command menu entry opens/closes the modeless Command dialog. You can also use

the F7 hotkey or the ¥ toolbar button to open or close the Command dialog.

Recorder...
The Command menu entry opens/closes the modeless Recorder dialog. You can also use

the F8 hotkey or the =] toolbar button to open or close the Recorder dialog.

Console...
The Console menu entry opens/closes the Console window. You can also use the F9

hotkey or the & toolbar button to open or close the Console window. Another way to
close the Console window is to right click on the window and choose the Hide menu.

Explorer...
The Explorer menu entry opens/closes the GSEOS Explorer window. You can also use the
F10 hotkey or the ™ toolbar button to open or close the GSEOS Explorer window. You

can also close the GSEOS Explorer from the system menu of the GSEOS Explorer window
itself.

The Window Menu

The Window menu allows you to modify the display status of the child windows on the
desktop page. You can also adjust the settings of the tool and status bars of the
application. A list of all windows on the current page is appended to the menu so you can
quickly activate a particular window. The following image displays the Window menu:

© 1998-2005 GSE Software, Inc.

User Interface 41

Arrange [cons

Dizplay lcons
Tile Horizantal
Tile Yertical
hinimize All
Restore Al
Close All

Tool Bar k
Status Bar

1 Instrumertti_MLAWLA _HardwareError scr

2 Imstrumerntti_MLAWLA Softwwaremonitar sk
3 Instrumenty_MLAWLA ScienceDataSHz scr
4 Instrumenthi_MLAWALA_Hardwarebonitor . scr
S MLA Mematry Dump

G Im=trumertti_MLAWALL DisgnosticData scr

7 MLA Command Echo

g MLA Alarm

9 Instrumentti_MLAWALA _Temperaturehlonitor scr
10 1SR Courters:

11 MLA Memory Checksum

12 Instrumentti_MLAWLA_ScienceDatal Hz . zcr

Arrange Icons

The Arrange Icons entry will place all minimized windows to the bottom of the desktop
page. Each window has a normal display position and a minimized display position. That
is if you minimize a window and move the icon to a particular position on the desktop
page it will be restored to that position the next time you minimize the window. If you
use the Arrange Icons entry all icons will be laid out at the bottom (even if a window is
not minimized, it's minimized position is arranged in line with all other icons).

Display Icons

Minimized windows are displayed as icons. These icons can be covered by other windows.
If you select Display Icons the icons will be brought to the foreground so you can select
the window of your choice.

Tile Horizontal
Lays out the windows in a horizontal fashion.

Note
This changes the size of the window. If you have sized the window to fit it's contents you
will loose this sizing! Be careful using this function.

Tile Vertical
Lays out the windows in a vertical fashion.

Note
This changes the size of the window. If you have sized the window to fit it's contents you
will loose this sizing! Be careful using this function.

© 1998-2005 GSE Software, Inc.

42

Gseos

3.5

Minimize All

Minimizes all windows on the current desktop page. The icons will take on their
minimized positions. If you want to lay out the icons at the bottom of the desktop page
you can use the Arrange Icons menu.

Restore All
Restores all windows on the current desktop page to their normal size. The windows will
take on their normal positions and size as configured.

Close All
Closes all windows on the current desktop page.

Tool Bar

This menu lets you reposition the tool bar to either the left, top, or right edges of the
GSEOS main window. However, this setting is not permanent. You can set the default
tool bar position in the gseos.ini file [System] section.

Status Bar

This menu lets display or hide the GSEOS status bar. However, this setting is not
permanent. You can set the default status bar display setting in the gseos.ini file
[System] section.

Screen Windows

Screen windows, also referred to as Qlook (Quick Look) windows are the heart of the
GSEOS application. They display your data in real-time. The graphical, interactive editor
lets you place data items on the screen window while the data is being displayed. You
can place data items in various formats, command buttons, bitmaps, various static
graphical elements such as lines and rectangles, as well as static text on a screen
window. Once configured you can save the window to a .scr file. The following picture
shows a screen window:

M Vversion 0 MET 0 365 00: 00: 00 MET 13-Jan-2003 19:42:23 Local Volt:
Alarms Count 0 TypeFersistent ID (0ONo Error Pr}mary L
. Switched 0

Response Disabled w5 0.0 0
Commands Command Executed] Uplink Rejected] -5 D:D i]

Macro Executed 0 Macro Rejected 0 +12 0.0 i]

Ho error, command executed Real-time -12 0.0 0

Tenperature -39
Macros Mode Not Learning Blocks Free 0 Temperature :

Most Recent O M¥II ADC RRE °C
Telemetry Status Interval 0 Length] ApID 000 Packets lost 0| 32X Det.| <45C: 107C
Write Disabled Sequence Count 0 Spacecraft: Range 0 Angle 0 BaX Box -273 °C

GPC1 GEC2 GEC3 SAY Rates: GPCl-no GPC2-Al GPC3-Myg 2ol Mon
Preamps| Off Off Off Off Supply | Center Anode 0.0 0.0 0.0 [

+5 0.0 0.0 0.0/ 0.0 0.0 Veto Anode 0.0 0.0 0.0

-5 0.0 0.0 0.0 0.0 0.0 - ~ ~ ~

eto . . .
Safing | OE 0E 0K 0.0+3D :

retries] i} 0 Pile-up 0.0 0.0 0.0 L

HVPS | Off Off Off Off Rise Pile-up 0.0 u.0 g.0
. Stepping| No | No | No | Esl_or“_ ~ |__valid S 0.0 0.0 0.0 jtf

T 0.k — ol = .

5 ‘

© 1998-2005 GSE Software, Inc.

User Interface 43

Screen windows are regular MDI child windows and are placed on a particular desktop
page. You can arrange multiple screen windows on a page and switch between pages to
display various configurations of screen and other windows.

When a screen window is activated the GSEOS main menu will be merged with the Qlook
menu. The following menus are added:

iaster [1] - Offline

F|Ie Ediit Draw Style thlnns “iew Tools ‘Windoww Help

RN N e = T (2 D= S e —

PacketCount SeqgCo

Edit: Copy and paste objects, change their Z-order, and zoom.

Draw: Place various objects on the screen window.

Style: Modify the display style of an object a selection of objects.
Options: Sets global editor settings like zoom factor, grid, and alignment.

The next chapter explains how to place graphical objects on the screen and modify the
properties of display objects. The Menus chapter details the various menu options.

If you want to get a quick overview of how to create a screen file please refer to the
Quick Tour tutorial

3.5.1 Menus

Screen windows offer the following menu additions to the GSEOS main menu:

Edit
Draw
Style
Options

3.5.1.1 Draw

The Draw menu can be invoked from the GSEOS main menu when a screen window is
active.

© 1998-2005 GSE Software, Inc.

44 Gseos

B MyProject [1] - Offline
File Eclit gra% Style Options Viewe Toolz Window Help
i

e[v SooETE] 2e = 2wl

————— Eectangle

Rounded Rectangle
Elipse —

[

lmage
Text
Scale

Data tem
Expres=zion

Command Buttan

L R W N R R

oo oo

The following drawing tools can be selected:

Line

Rectangle

Rounded Rectangle
Ellipse

Image

Text

Scale

Data Item
Conversion Function
Command Button

3.5.1.1.1 Command Button

The Command Button tool allows you to place a Push-button on the screen. On activation
this button will issue the command you configure. A simple text preprocessing module
allows you to prompt for command parameters. Commands can be any valid Python
command. Another option to use commands in an easy fashion from the user interface is
to configure command menus.

The Command Button tool can also be activated from the toolbar with the = button.
After you finish selecting your drawing area the specific dialog to specify your command

© 1998-2005 GSE Software, Inc.

User Interface 45

parameters pops up:

Button = | ‘

— Button Mame
IS kart

— Command String

Iimpu:urt Gentlm

corce_|

The Command Button dialog lets you specify the button name, that is that text that is
display on the button, as well as the command string to be executed. Upon execution a
new CMDSTRING block will be generated with the contents of this command string copied
into the CMDSTRING block. Then the CMDSTRING block is processed by the GSEOS
command processor and forwarded to the Python interpreter.

The following snapshot shows the resulting button:

The Command String text allows simple text replacement:

If you specify the $' escape sequence a dialog box will be displayed when the command
is executed. The dialog will prompt the user for input. Everything between and including
the $' escape sequence and the terminating ' will be replaced by the users input. You can

have multiple replacement strings in one Command String, this will pop up multiple input
boxes.

The following example will query the user for a command parameter:

© 1998-2005 GSE Software, Inc.

46 Gseos

L CAL SET("E RANGE1", $'Enter setting [0..255]")
On execution the following dialog will be displayed:

Macro Parameter
Command: L_CAL_SET
" Enter zetting [0..255]

|

Cancel |

If the user enters 20 the following command will be generated:

L CAL SET("E RANGE1", 20)

When you move the mouse cursor over the button the Command String will be displayed
in the GSEOS status bar. The command button object can be configured with the
following attributes: Text, Color.

3.5.1.1.2 Data ltem

The Data Item tool allows you to place data objects. Data objects are visible
representations of the items you define in the block definition file. Data items can be
displayed in a variety of formats, numeric as well as graphic formats. Please refer to the
Style/Data Item section for a detailed explanation of the various formats available. The

Data Item tool can also be activated from the toolbar with the 314 button. After you finish
selecting your drawing area the specific dialog for data items pops up:

© 1998-2005 GSE Software, Inc.

User Interface 47

Zelect tem

Block: [berm:

PFicture =] [Ap1d
PRMCamment

RecComment [hztld
RS232R.aw Len

sSC Packetld
SignedDec Seq
SyncCarmmand
SyncStop
Timek =

TLMHizta -

Direngion: 10000
First——— AmoLnt Step—————
(| 0 (| 100 (| 1

Corcel_|

This dialog allows you to enter select the data block and the item within the block you
want to display. On the left hand pane select the block the item is a part of. Once you
select a block the right hand listbox gets populated with the items of the selected block.
If you select an array item, which is indicated by the square brackets you have the
choice to select the range of the array you wish to display. The First edit box specifies
the first index in the array to be displayed. Arrays are zero based. The Amount edit box
specfies the number of items to display starting with the First item. The Step edit box
can be used to skip over a number of items, i.e. if you want to display every other item
you would set Step to 2. If you want to display every tenth item you would set Step to
10 and so on. After you confirm the selection the data item will be displayed on the
screen within your selection area. Note that the selection area is adjusted according to
your selection and may be enlarged if the data item does not fit into the area selected. If
you plan on displaying large array items you might want to select a smaller range at first
and verify the display dimensions. It is easy to change to range by simply double-clicking
on the data object and adjusting the range.

Once a data item is placed on a screen it will be updated automatically every time the
according data block is generated by the system.

If the selected data item has Conversion Functions associated the dialog box will allow
you to select the conversion function you wish to apply to the item before displaying it.
The image below shows a dialog for a data item that has several conversion functions
associated with it:

© 1998-2005 GSE Software, Inc.

48 Gseos

Zelect tem

Block: [berm:

SIM_ITFDecStatuz j Apld
SIk_LazerData Dratal
SIM_Pcalata

SIM_Rrmulata Len
Sk _Telemetry Packetld
SyncCommand Seq
SyncStop

Timetdzg

Timet zg o

Tirnekd si

EIN

ElJ2

Mo Conversion

Cancel |

If you choose 'No Conversion' the raw value of the data item is displayed.

Note
If your default drawing style is a graphic mode (Bargraph or y(t) display modes) and the
range is not set properly the display might appear empty.

Note

For fast updating items the font selection for numeric format display is critical to system
performance. True Type fonts require a lot of system resources to render. The fastest
fonts are fixed pitch fonts, variable pitch and True Type fonts are the slowest to display.
This is mainly a problem for fast updating items (refresh time less than 100ms).

The following attributes can be set on a data item object include: Color, Text, Range,
Orientation, and Data Item.
The foll

3.5.1.1.3 Ellipse

The Ellipse drawing tool allows you to place circles/ellipses on the screen. The Ellipse tool
can also be activated from the toolbar with the £ button. After you finish selecting your
drawing area the ellipse is painted with the default line width and colors. The line width
can be adjusted with the line style. The border will be painted in the foreground color and
the inside of the ellipse in the background color. Line width and colors can be changed at
any time with the Style menu.

3.5.1.1.4 Expression

The Expression tool is similar to the Data Item tool in that is allows you to place dynamic
data items. However, the Expression tool lets you combine several data items in a
mathematical expression. This is useful if you don't want to decode a specific data block
using an according mathematical expression but just want to setup a quick Conversion
Function. This way you don't have to set up a decoder that decodes the source block(s)

© 1998-2005 GSE Software, Inc.

User Interface 49

into a destination block, define the destination block and finally display the result. Once
you define an Expression and load the Formula Definition file you can access the function
from the dialog displayed below as well as from Python code.

Expression objects can be displayed in the same styles as a simple data item. Please
refer to the Style/Data Item section for a detailed explanation of the various formats
available. The Expression tool can also be activated from the toolbar with the £ putton.
After you finish selecting your drawing area the specific dialog to specify your Expression
and parameters pops up:

Source of Data
Ilze Formula ISignecﬁ G j
Signed16 [z] = sighed] Gz] ;l
=l
Select parameters:
2 FTLM. Apld
Select ltem... I Enter constant. .. Toggle trigger |
| ok I Catizel |

The Expression dialog is structured into two parts. First you have to select a predefined
Expression. Expressions are defined in Formula Definition files and have to be loaded
before they can be accessed. If you don't find your Expression function in the drop down
list you can use the GSEOS Explorer to show you all loaded Expressions. Once you select
an Expression, the function is displayed with it's formal parameters. The second part of
the dialog assists you with filling in the actual parameters to be evaluated. Actual
parameters can either be data items as described in the block definition file or constants.
It is not possible to nest Expressions. Although, when defining an Expression you can use
other Expression functions and nest them in this way.

Triggers

The actual parameters of an Expression can be data items located in different blocks.
This means that these blocks will arrive at different times. The question is: When should
the function be evaluated? To allow you to specify the execution sequence the concept of
triggers is introduced. If your function takes parameters from different data blocks you
can set a trigger on any block to invoke the evaluation of the function. A trigger is
indicated with an asterisk. There only needs to be one trigger per block, however, if you
set a trigger on multiple items of the same block the function is only evaluated once.
There needs to be at least one trigger on one of the data items to evaluate the
Expression.

© 1998-2005 GSE Software, Inc.

50 Gseos

To set a parameter select the according formal parameter in the Select Parameters list
box. To select a data item click on the Select Item... button, to select a constant click on
the Enter Constant... button.

When you click on the Select Item... button the standard data item select dialog opens
and you can specify the data item you want to use as the actual parameter. Note that
you can use array items as parameters, however in this case the dimensions of all
parameters need to be the same. Constants can be used in conjunction with array item
parameters. To specify a constant use the Enter Constant Dialog:

Erter constant

" Float value

1
0k, I Cancel

Any valid float number is acceptable as a constant.

Please note that data items are not typed, so if you need a signed or floating point
representation of the bit pattern you have to use one of the conversion functions
available. For more complex Expressions a specific decoder is the more appropriate
solution. As with the data item be careful with displaying large array items. Otherwise, all
the stlye options that can be set for a data item are also applicable to Expressions.

3.5.1.1.5 Image

The Image tool places static bitmap images on the screen. The images have to be in the
Windows bitmap (*.bmp) format. The Image tool can also be activated from the toolbar
with the B button. After you finish selecting your drawing area the Image tool specific
dialog pops up. This is a simple file open dialog that allows you to specify the bitmap file
you wish to display. The default extension is *.bmp. The image will be scaled to the

dimensions of the drawing area you selected. There are no attributes for the image
object.

3.5.1.1.6 Line

The Line drawing tool allows you to place lines on the screen. Lines are helpful in
separating a screen into logical divisions (sometimes rectangles may be more
appropriate). The Line tool can also be activated from the toolbar with the button.
After you finish selecting your drawing area the line is painted with the default line width.
The width of the line can be adjusted with the line style. The line width and color
attributes are the only ones that can be set for a line object. To move or change the line,
simply click on the line itself to select it.

© 1998-2005 GSE Software, Inc.

User Interface 51

3.5.1.1.7 Rectangle

The Rectangle drawing tool allows you to place rectangles on the screen. Rectangles like
Lines are helpful in separating a screen into logical divisions. The Rectangle tool can also
be activated from the toolbar with the LI button. After you finish selecting your drawing
area the rectangle is painted with the default line width and colors. The line width can be
adjusted with the line style. The border will be painted in the foreground color and the

inside of the rectangle in the background color. Line width and colors can be changed at
any time with the Style menu.

3.5.1.1.8 Rounded Rectangle

The Rounded Rectangle drawing tool allows you to place rounded rectangles on the
screen. The Rounded Rectangle tool only be selected from the Draw menu. This tool is
very similar to the Rectangle tool. The radius of the corners can not be adjusted.

3.5.1.1.9 Scale

The Scale tool will place a scale on the screen. Scales are typically used in conjunction
with other graphical object like bargraphs or y(t) plots. You usually compose the graphic
by placing one or two scales for the horizontal and/or vertical axis and the graphic object
itself. After you finish selecting your drawing area the specific dialog for the scale tool
pops up:

Attach to
i~ %.Range
&+ Y-Fange

Cancel |

This dialog allows you select the range to use. The range style covers two dimensions, x
and y for horizontal and vertical respectively. When selecting multiple objects like the
three objects mentioned above (two scales and the graphical object) you can set the
range for all three of them at the same time. In this case you want to use the x-range for
the scale attached to the horizontal axis and the y-range for the scale attached to the
vertical axis. In this dialog you can specify which range to use to dimension the scale.
The following image shows a scale attached to the y-range and the range set to x: (O,

1); y: (0, 10):

© 1998-2005 GSE Software, Inc.

52 Gseos

The attributes you can set on the scale object include: Color, Text, Line, Range, and
Orientation.

3.5.1.1.10 Text

The Text tool allows you to place static text on the screen. Static text is useful in
describing data items placed on the screen. The Text tool can also be activated from the

toolbar with the ‘I button. After you finish selecting your drawing area the specific dialog
for the text tool pops up:

—Enter Text to display

] I Cancel |

This dialog allows you to enter the text you want to display. To enter carriage returns in
the text use Ctrl-Enter. The text object recognizes the Color and Text attributes. You can
change these attributes with the Style menu. Since various fonts render differently on a
printer than on the display your layout may be distorted on the printer. To avoid this you
can choose printer fonts, these fonts will render the same on the screen and on the
printer. To change the text simply double-click on the text object and the Text dialog will
pop up and allow you to change the text.

© 1998-2005 GSE Software, Inc.

User Interface

3.5.1.2 Edit

53

© 1998-2005 GSE Software, Inc.

54 Gseos

3.5.1.3 Options

The options menu controls the three modeless dialogs Grid, Zoom, and Align that can be
used to control the placement of items on a grid, the zoom factor, and the alignment
respectively.

3.5.1.3.1 Align

The Align dialog allows you to align screen objects on a screen window. The alignment
will adjust the elements according to the alignment selected. The item(s) moved will
move off the grid if that is required for the alignment to take effect.

The following image displays the Alignment dialog. The Alignment dialog is a modeless
dialog box, this means you can continue to use the GSEOS user interface while the
Alignment dialog remains open.

Alignment
—Harizontal align

Left | Eenterl Hightl

—ertical align

Tu:upl Eenterl E-:uttu:uml

—Size

Height |

K.eep SHIFT-KEY prezsed to align
relative to the first selected item.

3.5.1.3.2 Grid

The Grid dialog allows to switch the item grid on/off and to set the grid spacing for the
active screen window. When you switch windows the current grid settings of the window
selected will be displayed in the Grid dialog. The grid settings are saved with the window.
So if you load a window the grid settings there were in effect when the screen was saved
will be restored.

Display objects are aligned to the current grid if it is enabled. If you change the grid
spacing or turn it off the alignment of newly placed items may not be on the grid as
defined before. Changing grid spacing within a screen definition should in general be
avoided.

The following image displays the Grid dialog. The Grid dialog is a modeless dialog box,
this means you can continue to use the GSEOS user interface while the Grid dialog
remains open.

© 1998-2005 GSE Software, Inc.

User Interface 55

F

¥ Giid on

Cloze |

3.5.1.3.3 Zoom

The Zoom dialog allows you to change the zoom factor for the active screen window.
When you switch windows the current zoom factor of the window selected will be
displayed in the Zoom dialog. The zoom factor is saved with the window. So if you load a
window the zoom factor that was active when the screen was saved will be restored.

The following image displays the Zoom dialog. The Zoom dialog is a modeless dialog box,
this means you can continue to use the GSEOS user interface while the Zoom dialog
remains open.

Zoomfactar; | 100 :ll =

sox | to0x | 200% |

k. | Cloze |

3.5.1.4 Style

The Style menu is available from the main menu or by right clicking on a screen item
while in editing mode.

© 1998-2005 GSE Software, Inc.

56 Gseos

2

The raw pattern: ooo Ied

. , | Color

Displaved as int: aor Line o
Displayed as float: éange

Crrientation

Tvpe in the following I:_:Iatartem o le window:

TLM.Seg = 0xz3f9df3ke ;ﬂd

TLM.send () I
I I a7

You use this menu to set display styles of the screen objects. A style specific dialog box
will open upon menu selection and you can set the properties accordingly. The style is
applied to the object(s) selected. If no object is selected the default style is modified. The
default style gets applied to newly created objects. Say you set the background color to
red with no object selected. This will set the default background color to red. All objects
you create new will have a red background.

The following styles are supported:

Text

Color

Line

Range
Orientation
Data Item
Window

3.5.1.4.1 Color
The Color style modifies the foreground and background color of the object. Almost all
objects support foreground and background color, the only exception are Data Items or
Conversion Functionss that use the casting (text reference style).

You can change the color settings with the following dialog box:

© 1998-2005 GSE Software, Inc.

User Interface 57

Faoreground:
|BLUE =
B ackground:
TELLOMW

To set the foreground color you use the upper drop down box, to select the background
color you use the lower one. The only special 'color' is Transparent. This means that
nothing is drawn. This typically only makes sense for graphical objects and only for the
background color. This this case the background is not erased and you can stack multiple
objects on top of each other. The refresh of one will not erase the other.

y(t) objects can display multiple graphs and you can set the color of each graph
independently. If you select the Color dialog with one or multiple y(t) displays selected
you will get the following dialog box:

cor M

GraphO: [LIGHTRED =l
Graph 1= JywHITE =l
Graphe: |GREEN =]
Graph 3 LIGHTCYAN |
Giaph & [CvaN -
Background: [vELL 0w -
Cancel |

The color for Graph 0 is equivalent to the foreground color. If you convert a y(t) display
to a different type you will lose the settings for the colors of Graph 1 to 4.

3.5.1.4.2 Data ltem

The Data Item style dialog box is invoked by selecting Data Item from the Style menu,
either on the main menu or from the context sensitive menu which you can pop up by
right clicking on a data item object. The Data Item style lets you display the data item in
a number of different styles from various numeric formats to textual display to graphic
representation like bargraph, y(t) and bitmap. Depending on the style you choose you
can set different properties of the display. The following image shows the data item style
dialog:

© 1998-2005 GSE Software, Inc.

58 Gseos

Shiovy Data as

T Bi Format Froperties
L —[t] Farmat
' Decimal — Update Maode
™ Signed Decimal i~ Realtime % Block Arival
i~ Hexadecimal —Gnd
" Float i VY
; Test IJpdate F'eriu:u:l:|3 TEC
Cazting
S croll “width: I 4
" Bargraph 0
i~ Eitmap
s
Lo

Cancel |

On the left hand pane you can select the format you want the item to be displayed as,
the right hand pane allows you to modify the properties of that particular style. In the
picture above the style y(t) is selected and you can set the y(t) display properties like
update mode, grid, and scroll width which are specific to the y(t) display style on the
right hand side of the dialog.

The numeric formats supported are Binary, Octal, Decimal, Signed Decimal,
Hexadecimal, and Float. The available text formats are Text and Casting. The graphic
formats are Bargraph, Bitmap, Y(x), and Y(t).

Some formats also allow you to select alarm properties, in this case the dialog shows an
additional tab 'Alarm Properties' that controls the alarm settings.

3.5.1.4.2.1 Alarm Properties

The following data item formats support alarmed display mode:
Binary

Decimal

Float

Hexadecimal

Octal

Signed Decimal

If you select one of these formats the right hand pane will display an additional tab with
alarm properties:

© 1998-2005 GSE Software, Inc.

User Interface 59

Showy Data az
" Binam Format Properties Alarm PTDDETtiES|
" Dctal ¥ &larm Enabled
% Decimal Name: [¥CERETRS I
BEADS CODE ST Alarm
" Signed Decimal RSt A
" Hexadecimal —Bed Law
" Float Color: IEl--"l"-I:K d
" Test Back: IHED j
€ Casting —ellow Low
" Bargraph Calor: IBL.-'l'-.EK j
i~ Eitmap
Back: [vELLOw -
s I J
— Tellovs High
v Color: IBL.&EK j
Back: |\ELL Ow =
— Red High
Color: II:Y.-“-‘-.N j
Back: [LIGHTRED -
Cancel |

The settings on this tab let you specify the alarm definition to use. Keep in mind that for
your alarm definitions to show up in the select box you have to load them first. Once you
select a valid alarm definition the Enabled flag is automatically checked for you. If you
select "No Alarm" the Enabled box will be unchecked and disabled. You can also manually
uncheck the Enabled box even when you have selected a valid alarm. Setting alarm
checking on an item adds considerable processing overhead and should be used
accordingly. Especially fast updating items and large array items might slow down the
system.

The color drop boxes allow you to specify the colors to use for the individual alarm
conditions.

3.5.1.4.2.2 Bargraph

The Data Item style Bargraph displays a data item with the graphical representation of a
bar. The following picture shows a Bargraph display:

il

The above display shows an array item in Bargraph format. You can specify the width of
the graphs in percent, this allows for a configurable gap between the bars. If you set the

© 1998-2005 GSE Software, Inc.

60

Gseos

width to 100% there will be no gap. For scalar items the Width setting has no effect.

The Data Item style dialog box for Bargraph displays looks as follows:

=]|
T Binans — Bargraph Farmat
~ Elctal "Ealculatinn Miode
 Decimal = Min C Maxw % Mean
™ Signed Decimal
" Hexadecimal
" Float woidth: Iﬁ
) Text
" Casting
= Bargraph
i~ Bitmap
L]
Y Cancel |

The bars are drawn so they spread evenly into the selected display area. If the array can
not be displayed in the space available bars will be dropped from the display. The
following image shows such a configuration.

In the above picture an array item with 1000 elements is displayed. The screen can not
hold that many values on the display area and bars get dropped. The calculation mode
determines how to calculate the value of the resulting bar, if values are dropped. Say
there are three values that need to be mapped to one bar. Min picks the minimum of the
three, Max the maximum, and Mean the mean value of the three data points. The
resulting values is used for the display.

As with other graphical displays the proper setting of the range is important. In the case
of the Bargraph display only the y-dimension of the range is used. It maps the values
onto the graphical display. Say your y-range is 0..1000. If your data value is 333, the
bar will extend to about 1/3 of the total display height. The orientation of the bar
depends on the settings of the Orientation property.

3.5.1.4.2.3 Binary

The Data Item style Binary displays a data item in binary format:

© 1998-2005 GSE Software, Inc.

User Interface 61

If you want to display status data the Casting display may be the better choice since it
lets you assign text labels for the individual status values.
The Data Item style dialog box for Binary displays looks as follows:

Showy Data as [=] h

Elnar_l.x — Integer Format

Decimal . .. -
Signed Decimal Limnit of Crigits: Iﬁj
Hexadecimal
Float

Text
Casting
Bargraph

o Nie NieNie Nie e e e N RO

[l] Cancel |

The limit of digits sets the number of digits to display per item. If the item can not be
displayed within this limit the display will show as hash characters (######). The
default value of the limit corresponds to the bit length of the item selected.

3.5.1.4.2.4 Bitmap

The Data Item style Bitmap displays a data item as a two dimensional bitmap with the
data values encoded as color mappings of the bitmap pixels. This display stype is
typically used to illustrate two dimensional histograms. See the histogram decoder
section for more information on histograms. with the graphical representation of a bar.
The following picture shows a Bitmap display:

© 1998-2005 GSE Software, Inc.

62

Gseos

The Data Item style dialog box for Bitmap displays looks as follows:

]|

" Binan: - Bitmap
" Octal — Scaling
" Decimal ¥ Fived [y-Fange]
@ Sy Doeliue] © Auto [Mazximum Y alue]
" Hexadecimal ~ Palette
 Flagt & Linear T Grey-Secale

o " Log
= Teu
" Casting ~ Sizing
" Bargraph " Fized [«Fange]
% Bitrap &+ Waniable
)
vy Cancel |

Range:

The Bitmap display maps an array item to a two dimensional display. The dimensions of
the bitmap are determined by the Range setting. The x-Range determines the width of
the bitmap in pixel, the height is the result of the dimension of the array item divided by
the x-Range. Say you have an item of dimension 1024 and set the x-Range to 128 the
resulting bitmap will be 128 pixel wide and 8 pixel high (The mapping to the
horizontal/vertical dimensions can be changed with the Orientation setting). The y-Range
is used to map the data values onto colors as outlined in the following paragraph.

Scaling:

The scaling section of the Bitmap properties determines how the colors are mapped to
the data values. If you select Fixed (y-Range) the entire y-Range is mapped to the
available 256 colors. Say your y-Range is 0..100 and your data value is 10 you would see
a pixel with about 10% 'intensity'. This setting will keep a constant mapping of colors to
values, depending on the y-Range and the color mapping.

Sometimes it may be desirable to have a relative mapping, that is the largest value on
the display should be displayed with the 'highest' color, all other values are mapped onto
the interval 0 .. largest value. This Auto mode utilizes the entire color mapping.

© 1998-2005 GSE Software, Inc.

User Interface 63

However, the mapping will change depending on the currently largest value on the
display. This is an appropriate mode for histograms to display the relative distribution of
data.

Palette:

The value to color mapping is accomplished with different palettes. Each palette has 256
different colors and the values to be displayed get mapped to that range. Three palettes
are available, Linear, Grey-scale, and Log. Please refer to the images below for the color
mappings. The linear palette distributes the values linearly over the available RGB range,
the grey scale uses a linear distribution as well with R=G=B resulting in a grey mapping.
The log palette uses a logarithmic distribution to map 0..256 to the resulting RGB values.

Linear palette:
| |

Grey-scale palette:
|

Log palette:
|

Sizing:
If you choose fixed sizing the dimensions of the bitmap are mapped 1:1 to physical pixels

© 1998-2005 GSE Software, Inc.

64 Gseos

on the screen. In variable mode you can resize the bitmap and it is mapped to physical
pixels as appropriate. The fixed sizing mode is useful for getting an undistorted display
and map be appropriate for larger bitmaps. The variable mode allows for a zoomed in
view.

3.5.1.4.2.5 Casting

The Data Item style Casting displays a data item as text looked up in a reference file.
This display mode is suited for status data or non-linear lookup. ASCII text. The lookup
file has the extension .tr for text reference. The following example shows an item
displayed in casting mode

| .
Inactive

[| |
The Data Item style dialog box for the Text display looks as follows:

Showy Data as [=] b

Binany — Castfile Farmnat

Octal
Decimal myproject. b
Sigried Decimal _
Hexadecimal Active j
Float Change Castfile... |

Text

Cazting

Bargraph

e O NS e e i Nie N N

Y Cancel |

The text reference file has the following syntax:
Reference Name
{

Item Definition;
Item Definition;

Item Definition

}
Item Definition:

Value [- Range], "Text", ColorCode

© 1998-2005 GSE Software, Inc.

User Interface 65

Examples:

ErrOk

Illegal

EPU_ Status

{

{

o, "Error", 0x0C;
1-65355 , "Ok", 0x02 }
0 , "Legal", 0x02;

1, "Illegal", 0x0C }

0 ,"Booting", 0x70;

1 ,"Calc ...", 0x70;

2 ,"Running", 0x70 }

The reference name describes the name of the text reference and is selected in the
Casting dialog as described above. The item definitions define which values get mapped
to what text and in what color representation. The most significant nibble of the color
code byte describes the foreground color and the least significant nibble describes the
background color. You can either specify an idividual value or a range that gets mapped
to the display text. The data item displayed on the screen will take up as much space as

the longest text in the reference definition.

3.5.1.4.2.6 Decimal

The Data Item style Decimal displays a data item in decimal format:

]
133

g5
(ags]
o8
g5
121

106
130
85
7B
118
80

105
102
73
aa
gl
1z0

]
74
=1
93
116
1349

o]
|

111
g2
1249
143
101
94

106
114
852
93
114

|
126
106
118
11-’-1.

114
|

This display style is different from the Binary, Octal, and Hexadecimal styles in that the
value will not be zero padded but is padded with spaces. The Data Item style dialog box
for the Decimal display looks as follows:

© 1998-2005 GSE Software, Inc.

66 Gseos

we Data as

Elnar_l.s — Integer Format

..............

Diecimal Lirriit of Chigit: |3 :I

Signed Decimal

Hexadecimal
Float

Teut

Cazting
Bargraph

e e Nie e e i Nic e N

Y Cancel |

The limit of digits sets the number of digits to display per item. If the item can not be
displayed within this limit the display will show as hash characters (#####4#). The
default value of the limit corresponds to the bit length of the item selected. The value will
be padded with spaces to the left to the limit of digits specified.

3.5.1.4.2.7 Float

The Data Item style Float displays a data item in float format:

[] | |
235.000 105.000 2Z26.667 160.000
130,000 171.60%7 183.333 195.000
lel.667 126.667 250.000 1e60.000
203.333 200.000 173.333 185.000
.195.EIEIEI le6.667 123.333 1Y96.667 -
150.000 135.000 185.000 221.667
*160.000 158.333 191.667 235.000
138.333 130.000 143.333 196.667
148.333 155.000 150.000 173.333
131.66%7 173.333 118.333 148.333
| | |
Since GSEOS does not assign data types the float representation is only useful with an
Conversion Functions. The format string you can specify in the properties section of the
dialog is a subset of the C printf format parameter. 'G, g' chooses the shortest format
possible, 'F, f' displays the item in fixed point notation, 'E, e' uses the exponent,
mantissa format. Various precision parameters and padding options can be applied. The
Data Item style dialog box for the Float display looks as follows:

© 1998-2005 GSE Software, Inc.

User Interface 67

we Data as

Elnar_l.s — Float Format

..............

Diecimal Lirriit of Chigit: |5 :I

Signed Decimal

Hexadecimal
Float Faormat String: I?.;E_EG

Text
Cazting

e NeNe e e

Bargraph

a0 00

Y Cancel |

The limit of digits sets the number of digits to display per item. This does not include the
leading negative sign. If the item can not be displayed within this limit the display will
show as hash characters (####+##). The default value of the limit corresponds to the bit
length of the item selected. The padding depends on the format string specified.

Note:

If you have a data item that is the binary represenation of a IEEE float and you want to
display as float you have to interpret it as a float value using the dtof() or Itof() functions
before using the float style.

3.5.1.4.2.8 Hexadecimal
The Data Item style Hexadecimal displays a data item in hexadecimal format:

[]] [|
fO0 ¥9 91 53 54 Fkb 5f
5 S 55 55 58 4e 62

.5d 50 87 7a 48 82 4E.
65 6d 5c 78 49 65 75
b 5a 6O Bo Ye Y0 de

77 81 70 B o
| | |

This display style is similar to the Octal and Binary styles in that the value will be zero
padded to the limit specified. The Data Item style dialog box for Hexadecimal displays
looks as follows:

© 1998-2005 GSE Software, Inc.

68 Gseos

we Data as

..............

Decimal

Float
Teut
Cazting
Bargraph

(al
o
~
~
=
r
~
~
~
~

Signed Decimal
Hewradecimal

— Integer Format

Limit of Digits: [z =

Cancel |

The limit of digits sets the number of digits to display per item. If the item can not be
displayed within this limit the display will show as hash characters (#####4#). The
default value of the limit corresponds to the bit length of the item selected. The value will
be zero padded to the left to the limit of digits specified.

3.5.1.4.2.9 Octal

The Data Item style Octal displays a data item in octal format:

n
341
223
216

.146
141

16k
|

The Data Item style dialog box for Octal displays looks as follows:

127
171
133
063
143
141

137
132
152
143
157
113

]
101
134
114
117
101

152
|

164
114
110
103
202
203

212
124
127
162
167

|
167
201
076
111.

163
|

© 1998-2005 GSE Software, Inc.

User Interface 69

we Data as

Elnar_l.s — Integer Format

..............

Diecimal Lirriit of Chigit: |3 :I

Signed Decimal

Hexadecimal
Float

Teut

Cazting
Bargraph

o Ne RieNie e e B Nie N N

Y Cancel |

The limit of digits sets the number of digits to display per item. If the item can not be
displayed within this limit the display will show as hash characters (#####4#). The
default value of the limit corresponds to the bit length of the item selected. The value will
be zero padded to the left to the limit of digits specified.

3.5.1.4.2.10 Signed Decimal

The Data Item style Signed Decimal displays a data item in signed decimal format:

] |
-8B 85 L g4 897 105 109
98 52 g4 115 116 100 g4

m 97 g4 g1 117 111 1049 EEI.
496 895 91 101 a4 B4 104
70 97 7B 125 99 -107 98

= g8 108 11Z 85
| | |

GSEOS does not assign data types to the data items specified in the block definition file.
That is all values are raw bit patterns. In order to display an item as signed it will be
interpreted as if the most significant bit indicates the sign bit. The Data Item style dialog
box for the Signed Decimal display looks as follows:

© 1998-2005 GSE Software, Inc.

70 Gseos

we Data as

Elnar_l.s — Integer Format

..............

Decimal . ..

Lirnit of Digits: |3 -
Signed Decimal :I
Hewradecimal
Flaat

Teut
Cazting

Bargraph

o Nie Nie Nie e e RO Ne N N

Y Cancel |

The limit of digits sets the number of digits to display per item. This does not include the
leading negative sign. If the item can not be displayed within this limit the display will
show as hash characters (####+##). The default value of the limit corresponds to the bit
length of the item selected. The value will be padded with spaces to the left to the limit
of digits specified.

3.5.1.4.2.11 Text

The Data Item style Text displays a data item as ASCII text. It does not interpret
carriage return or line feed or other control characters. Only a single line can be
displayed at a time. In order to display multiple lines you have to place multiple items.

Thi=s is data in text format.

| |
The Data Item style dialog box for the Text display looks as follows:

© 1998-2005 GSE Software, Inc.

User Interface 71

3.5.1.4.2.12 Y(t)

we Data as

Binamy

Cctal

Decimal

Signed Decimal
Hexadecimal

aRsNaNaRie e

(Ol
o
" Bargraph
i~ Bitmap

)

U

Cancel |

The Data Item style Y(t) displays a data item as a strip chart, that is the data value is
displayed over time. The following picture illustrates a typical Y(t) display:

The Y(t) format can display up to five graphs. If you select an array item and choose to
display five or more elements the first five elements will be charted in the color specified

with the color dialog.

The Data Item style dialog box for Y(t) displays looks as follows:

© 1998-2005 GSE Software, Inc.

72

Gseos

Shovwy Data as

T Bi Format Froperties
L —[t] Farmat
' Decimal — Update Maode
™ Signed Decimal i~ Realtime % Block Arival
i~ Hexadecimal —Gnd
" Float i VY
; Test IJpdate F'eriu:u:l:|3 TEC
Cazting
S croll “width: I 4
" Bargraph 0
i~ Eitmap
s
Lo

Cancel |

You can configure the update mode to be either Real-time or Block Arrival. In Real-time
mode the display update is triggered by clock time. The interval to poll the data is
specified in the Update Period field. You can specify fractions of a second.

Typically block arrivals are periodic. If your data is generated on a schedule and you
know what the time base of the data is you can use Block Arrival mode. In Block Arrival
mode a new value is plotted each time a block arrives. You can specify in the Update
Period what the interval between your arrivals is. This way you will get a correct time
base. The x-dimension of the Range determines the time interval that is displayed. Say
you specify Block Arrival and your period is 2s and that's what you specify in the Update
Period field. If you select a x-Range of 0 .. 200, you will see 100 data points on the
display which equals 200s. The x-range is specified in seconds.

The y-range determines the mapping of the values to be displayed. By default the y-
range is 0 .. 1, so you most likely have to adjust it to fit your data accordingly.

The scroll width determines how much of the x-range is displayed at least at any given
time. Say you specify 50%, the display will scroll back 50% as soon as it reaches the end
of the display. Scroll width 0% equals smooth scrolling but incurs the most overhead. If
you have very fast updating data items you might want to at least allow for about 25%
scroll width to keep the data update efficient. Every time the display needs to be scrolled
the entire display needs to be rendered, whereas if no scrolling is necessary only the
according data line needs to be drawn.

As with other graphical displays the Orientation dialog allows you to configure different
orientations. The most appropriate for a Y(t) display is probably the 1-L orientation
displayed above where the origin is in the lower left corner. The picture below shows the
same display with right hand orientation.

© 1998-2005 GSE Software, Inc.

User Interface 73

The check boxes for the x- and y-Grid let you turn on/off the respective grid. To make
the display range visible a scale object can be attached to a Y(t) scale. This will result in
a display similar to the one below.

200

150

100

3.5.1.4.2.13 Y(x)

© 1998-2005 GSE Software, Inc.

74 Gseos

3.5.1.4.3 Line

The Line style modifies the line width of static graphic objects like Line, Rectangle, Ellipse
and so on.

You can change the line width with the following dialog box:

Line Style % | ‘

|1_j Sample Line
k. I Cancel

|' Line Width: ————

3.5.1.4.4 Orientation

The Orientation style modifies the way the data is displayed. Typically text items are
displayed from left to right and top to bottom (this is called 4th quadrant left hand
system). There is a total of eight different orientations available. The following example
will demonstrate the different orientations. The data in the example is an array item with
dimension 17 displayed in all possible orientations:

© 1998-2005 GSE Software, Inc.

User Interface

The default orientation is 4L which is fine for text. For graphical representations like

75

Crientations scr

Left Hand Svstem [
2L - Orientation 1L - Orientation
16 15 14 13 12 12 13 14 15 16
1110 9 8 7 & HE 7 8 9 10 11 [
5 4 3 2 1 0O o1 2 3 4 5
3L - Orientation 4L - Orientation
5 4 3 2 1 0 o1 2 3 4 5
1110 9 8 7 & B 7 G 9 10 11
16 15 14 13 12 12 13 14 15 16
Right Hand System
2R - Orientation 1R - Orientation
14 11 § &5 2 2 5 8 11 14
16 13 10 7 4 1 1 4 7 10 13 16
15 12 9 & 3 0O 03 &6 9 12 15
3R - Orientation 4R - Orientation
15 12 9 & 3 0O 03 & 9 12 15
16 13 10 7 4 1 1 4 7 10 13 16
14 11 8 &5 2 2 5 8 11 14

bargraphs, y(t), and bitmaps the origin is usually in the lower left corner which is the 1L
orientation. You might want to adjust the orientation for graphical displays. If you use
any non standard orientation for any of the items you display you might want to put

some text on the screen that indicates on how to interpret the data.

The picture below shows a bargraph display with all possible orientations:

© 1998-2005 GSE Software, Inc.

76 Gseos

E Bar Crientations

I | f

3.5.1.4.5 Range

The Range style modifies the range settings of the display object. Ranges are used for
graphical objects like Bargraph, y(t), y(x), and Bitmap. For two dimensional items like

Bitmap graphs (2D histograms typically) , y(t), and y(x) both dimensions are used, for
Bargraphs only the y dimension is used.

You can change the range settings with the following dialog box:

© 1998-2005 GSE Software, Inc.

User Interface 77

= - Walue
[]EUD

Mir:]':'

Cancel I

Bargraph

For Bargraph displays the y dimension determine the minimum and maximum values of
the Bargraph. Any values smaller then Min or greater then Max are clipped. When
displaying a Bargraph you want to make sure the y range is set properly so the graph
displays the range of values of interest.

y(t)

For the y(t) displays both dimensions are used. The y dimension maps the value between
the Min and Max limits, the x dimension determines the time base. For the time base
only the difference between Min and Max matters. The unit of the time base is 1sec.

Bitmap

The bitmap display is a 2D display. The one dimensional vector item is mapped into the
two dimensional bitmap by means of the x-dimension of the range. Let's assume you
want to display a 128 x 64 pixel bitmap the source array item needs to have the
dimension of 128*64 = 8192. Now, when you display the item as a bitmap you have to
indicate how wide the image is, that is how many pixels one line holds, this is what is
specified by the x-range.

The y-range defines the 'intensity'. The y-range is mapped to the color scheme selected.
Say your values are in the range 0 - 10 and you want to map those to the full range of
colors available you would set the y-range to 0 - 10.

3.5.1.4.6 Text

The Text style modifies the font of the object. Only numerical and textual objects like
Data Item, Conversion Function and so on are effected by this style.

You can change the font settings with the following dialog box:

© 1998-2005 GSE Software, Inc.

78 Gseos

Sizer

H|fe &

¥ FrinterFontz

¥ ScreenFonts

[Bold [ltaic [T Undeilined

k. I Cancel

The font drop down list box allows you to select the font. You can choose to display
printer fonts or screen fonts or both. Screen fonts are prepended with a dash '-'
character.

Printer fonts are guaranteed to render the same on the print output as on the screen.
However, due to this property these are mostly true type fonts and therefore slow to
display on the screen. If printing the screen is not the main purpose you will achieve
faster display with the screen fonts. Especially fixed pitch fonts are to be preferred for
system performance. If you select a screen font the printout may be slightly out of
alignment.

3.5.1.4.7 Window

The Window style sets properties for the entire screen window as opposed to an
individual item on the screen. This dialog allows you to change the window title and
controls the display of scroll bars and the window caption.

The following image shows the Window style dialog:

Style of YWindow

Filenarne:
SystemsFecBlockStatuz. zcr

YWindaw Title
“H ecBlockStatus

[T Scrollbars
¥ Caption Bar

Cancel |

The window title is the text that gets displayed in the caption bar or the window (if any).
The Scrollbars check box allows you to turn scroll bars on or off. The Caption Bar check
box controls if a caption bar is displayed. If you turn the caption bar of a window off the
window can not be moved any longer on its desktop page. This can be useful if you want
to create a desktop page that contains various groups but don't want to incur the
overhead of the window frames. You would simply place the windows and turn the

© 1998-2005 GSE Software, Inc.

User Interface 79

caption bars off. The following image shows a desktop page with four screens without
caption bars. Note that the windows can not be repositioned until the caption bar is
reenabled.

3.5.1.4.7.1 Snapshot

[1] - Offline
File Edit Draw Style OCptions Tom MyProject Cmod Miew Tools Window Help

e & e v SloosEma] @me =5 2

o

G |

Crod Ha:pg D. Total Cmd Cnt: u] Version: 0
Length: u] Seg: u]
Tick oo] a Time [m=]: u]

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 | _,j
3

]
TLM | Meszage MIF I

IFBios. ResetStatus(] Mot in recording mode

3.5.2 Placing objects

When a screen window is active the GSEOS merges the Qlook menus into the main
menu. The toolbar also displays some of the most often used commands to place objects.

™ MESSEMGER =sktop Master [1] - Oifline
File Edit Draw Style Options “iew Tools ‘Windoww Help

R = = S e e[=) o [W 2 =

‘\| qmﬁl

& —Tor=| .

Len: £
e e e ,..,.l PaclketCount SeqCous

© 1998-2005 GSE Software, Inc.

80 Gseos

Placing an object involes several steps:

Selecting a drawing tool
Selecting a drawing region
Selecting object properties
Adjust display style

3.5.2.1 Adjust Display Style

The newly created object is placed with default attributes. The Style menu allows you to
change these attributes. To change an objects size, position, or display attributes it
needs to be selected. A left mouse button click on the object will select the object and
this selection is indicated by chooser pads on the corners and edges of the object.

[[| !
ch 533 62 BA Sd >

789 76 Bl 45 35

W54 61 3e 54 55 o

BB 73 V3 B 4o

| | | r___p

By double-clicking on a selected object you can invoke the properties dialog for this
object and change the objects properties. The chapter on the Draw menu explains the
various object properties in detail.

To move an object you can simply drag it with the move, that is you click within the
object, hold the left mouse button down move the object to its destination and release
the mouse.

Alternatively you can use the cursor keys to move the object on a pixel-by-pixel (if a grid
is enabled then the object will be move on grid steps) basis.

To size the object move the mouse on one of the choose pads and drag the mouse to the
desired size of the object. Some objects only support discrete sizes, in this case the
objects size will snap back to the closest allowed dimension.

By right-clicking on the object you will open the Style menu that will allow you to set the
style of various attributes on the selected object.

© 1998-2005 GSE Software, Inc.

User Interface 81

3.5.2.2

3.5.2.3

Selecting a Drawing Region

The second step in placing a new object on a screen is selecting the area of the screen
the object will be placed. Once you move the mouse over the screen window with a
drawing tool selected the tool will be indicated by the mouse cursor. To select the
drawing region where the object will be placed click the left mouse button, hold it down
and move the mouse (drag the mouse) to the destination. You will see a selection
rectangle indication your drawing region. To finish the selection release the left mouse
button at the destination. Don't worry if the size or placement of the object is not
optimal, you can move and resize the object at any time after you created it. See below
for a picture of the selection rectangle:

Once you release the mouse button the selection of the drawing region is complete and,
depending on the drawing tool, a properties dialog will allow you to specify properties of
the object you are about to place.

Selecting a Drawing Tool

You can either use the Draw menu or select one of the drawing tools from the tool bar:

© 1998-2005 GSE Software, Inc.

82 Gseos

Drawing Tool Toolbar Cursor Description
Button
Select @ Selects one or multiple screen
b objects.
Line %\% Draws a line.
Rectangle Q Draws a rectangle.
u []
Rounded Rectangle %D Draws a rounded rectangle.
Ellipse QO Draws an ellipse.
Image Q Draws an image from a bitmap file.
E] [|
Text i %Te:-:t Draws static text.
i
Scale X% g Draws a scale.
3 ’
Data Item Q Draws dynamic data items as
315 pats defined in your block definition file.
Conversion Q Draws the result of a mathmatical
Function F expr Conversion Function of data items.
Command Button Q Draws a command button.
=

Once you selected a drawing tool the according submenu in the Draw menu will be
checked and the toolbar button will be depressed. The following picture shows the
drawing tool 'Rectangle’ selected:

B hhyProject [1] - Offline
File Edit | Drawy Style Options YWiewe Toolz Windowe Help

I e Line &l S JooET 3| e

v Rectangle

Ellpse D
Image ___*. h
IE)Ct f—-———‘—-“—I

3.5.2.4 Selecting Object Properties

For most of the simpler drawing tools like line, rectangle, etc. you are done with the
object. You can change the size and position or attributes of the object at any time. Refer
to the next chapter on how to adjust the display style.

© 1998-2005 GSE Software, Inc.

User Interface 83

However, for more complex objects you will need to specify object properties. These
properties vary from one drawing tool to the next. For a detailed description of all the
properties of the various drawing tools refer to the Draw section in the Menus chapter.
Here we want to demonstrate how to place a data item. Once you complete the drag
operation and release the left mouse button the Select Item dialog specific to the
drawing tool Data Item will pop up:

Zelect tem
Black: [bem:
EPF_FIFS_HiSci ;l Apld
EPP_FIPS_MedDCom Block[]
EPF_FIFS_edPHA I CosDsHeader1])
EPF FIFS MedSci CC5D5Header?[]

EPP MacrolChecksum Checksumsz(]
EPF_kacroDurmp Dratal
EPP_kMemChecksum

EPP_MemDump Dratald

EPF_konitorLimitz Firsttd acro

EPP_Statusz Grouping

FPU_FG_Cmd =l |HasHeader2 =l
Dirnenzion: 257

Firgt———— ArmoLink Step————
(| 0 (| 257 (| 1

Cancel |

The Select Item dialog allows you to select the data item you want to display. On the left
hand side you will see all the blocks defined in your various block definition files as well
as the system blocks. Select the block that contains the data item of interest. The right
hand list box gets populated with the items contained in the block selected on the left.
Now choose the item to display. If the data item you select is an array item (indicated by
the square brackets) the First, Amount, and Step fields are enabled and you can choose
the part of the array you want to display.

Note:

Be aware that if the data item is very large and you choose a textual presentation the
screen may not be able to hold the entire item, in this case it might be a good idea to
start out with a subset of the data and increase it later.

Once you select Ok and your selection is valid the new data item will be displayed with
the default data style like in the image below. You can adjust the data style with the
Data Style menu.

© 1998-2005 GSE Software, Inc.

84

Gseos

3.6

20 7b Sk Ga 76 L
b 71 4c be Ba f

58 43 3a 47 4f ot

5f Sa B8 BZ Ff

The Command Dialog

The Command dialog, similarly to the console window, allows you to interact with the
built-in Python interpreter. You can issue commands, execute Python scripts, import
modules, examine block data, etc.

As opposed to the console window no Python output is written to the command dialog.
This dialog is strictly for issuing commands. If you happend to load a script that
generates periodic error messages or that writes continuously to the console window the
console window is rendered useless for input. In this case you can terminate the
offending script or command and continue working with the console window. Besides
issuing commands you can also stop batch files and access a command history from the
command dialog.

To execute the command you can either use the Enter key or click on the Execute
button. If you retrieve a command from the history it will paste the text into the input
window, you still have to issue the command.

Note

The command dialog is a line editor so you can only issue simle one line Python
commands. For any commands but simple statements you should use the console
window.

Command Line Editar [1]

Execute I Histary.... | Stu:upﬁatu:hl Cloze |

You can open the command dialog from the View menu, the F7 hotkey, or the ? toolbar

© 1998-2005 GSE Software, Inc.

User Interface 85

button.

3.7 The Console Window

The console window allows you to interact with the built-in Python interpreter. You can
issue commands, execute Python scripts, import modules, examine block data, etc.

The console window is not a regular MDI child window like for example the screen or log
windows. Instead it is a floating window that will be in the foreground no matter what
desktop page is selected. The window can be easily displayed and hidded with the View
menu, the Console window tool bar button or the F9 hotkey. The console window is
associated with a file and all output written to the console window is also logged to this
file when the console window is closed or the application is shut down.

The Python icon on the tool bar allows you to open/close the console window:

The file name of the Console window can be specified in the gseos.ini configuration file.
The entry FileName in the [Console] section specifies the file the console window
contents will be written to. If you do not supply this file name it defaults to
ProjectName[Instance].con, where the ProjectName is the name of you project as
configured in the [Project] section. When the system restarts the console file from the
previous session will be restored and any new text will be appended to the file. The
maximum size of this file can be configured in the [Console] section as well. The console
file will not grow beyond this size and the oldest content will be discarded. The default
value is 512KB.

The picture below shows a typical console window:

% Conzole - O

¥y import GeEeos _r-,.:i'"
»r» TLH

Block: 'TIH': ['ApId'., 'Data’'., 'InstId'., 'Len'. 'PacketId'. 'Seqgwy

»r»» TLM. ApId =

0 :
r

q | i

The >>> is the Python command prompt and indicates that the system is ready for input.
The caption bar indicates the current console file associated with the console window.

In case the console window is not opened or iconized and new data is written to the
console window this activity is flagged to the user by flashing the caption bar of the
console window if it is iconized and by highlighting the toolbar button of the Console
window:

© 1998-2005 GSE Software, Inc.

86

Gseos

Context Menu:

A right mouse button click will open the console context menu:

Hidle
Ediit 3
Zearch bk

Snap to main wwindoss

The Hide command will close the console window and automatically save the current
content to the associated console file. This is an alternative to the toolbar button, the
View menu, or the hotkey F9.

The Edit menu allows you to copy and paste and perform general edit functions in the
console window.

The Search menu opens a dialog to search or replace text in the console window.

The Snap to main window function will reposition the console window to the bottom of
the GSEOS main window. If the main window is too close to the bottom edge of the
screen it will move it up so it will fit on the screen in its entirety, partially covering the
GSEOS main window. The console window is not permanently docked to the main
window and a move of either window will not move the other.

Command History:

The console window provides two different mechanisms to retrieve previously entered
commands. If you position the cursor on any but the current input line and press Enter
that line will be copied to the current input line. There you can modify the command as
necessary and issue it.

If you have a lot of output in the console window the commands you entered previously
may be scrolled out of sight or burried somewhere in the output. In this case you can use
the ESC history. If you type the first letters of any command and press the ESC key a
menu with all matching previously typed commands pops up. Here you can select the
command you are interested in. Upcon selection the command is copied into the current
input line and you can modify and issue the command from there.

impart Gentlm

impart GenHk
import GenStatus
impart sys

The above example show the history menu on typing: 'im' + ESC.

Programmatic Access:

You can programmatically hook the console output. The system generates the
ConsoleOut block (if it is defined in the system.blk block definition file) every time output
is written to the console window. Here the block definition:

ConsoleOut INTEL

© 1998-2005 GSE Software, Inc.

User Interface 87

3.8

Len rrr 327
Truncated rrr 87
WindowState rrr 85
Text [1024] OIII 8;

}

You can set the length of the Text item to any size appropriate, the default is 1024. If
the text that is inserted into the Console window exceeds this length the content in the
Text item is truncated and the field Truncated is set to 1. The Len field indicates the
number of valid characters in the Text field. To detect if the console window toolbar
button has been flagged you can check the WindowState field. The WindowState field is
set to O if the window is visible, to 1 if it is closed and to 2 if it is open but iconized. So if
the WindowsState field is not equal to 0 the console window toolbar button is flagged. This
block can be used to write a simple Monitor to notify the user of new activity in the
console window. The sample below implements a monitor that plays a sound to notify the
user of new console activity when the window is not visible or iconized:

import Gseos

import GseosCmd

import Monitor

from main import ConsoleOut

- Monitor the ConsoleOut block. If we see one, play a sound if the
- #

- window is not visible or iconized.

def MonConsoleOut (oBlock) :
if oBlock.WindowState <> 0O:
GseosCmd.sound ('boing.wav')

ConsoleOut.Monitors.append (Monitor.Monitor ('Console Activity',
MonConsoleOut))

For more information about programmatic access to the console window check the
GseosConsole module.

The Data Export Dialog

The Data Export dialog allows you to export GSEQOS data to a flat ASCII file. You can
configure multiple items to be written to the output file. The following figure shows the
Data Export dialog.

© 1998-2005 GSE Software, Inc.

88

Gseos

[kem M ew Group Trigger Count| Format &dd Ibem...
1 TLM.Data[0:21] ~ T|Dec i
Edit ltem...
2 |TLM.Datall:512] W 1|Dec
3 |CLTU IGSE P Data[0:e00) W 1[Dec Bemove [tem
4 CLTU_IGSE_F#.Len v T1|Dec Change File...
Wiite Header...
Help... |
[terms Per Fow: |3EI 3:
v Enabled
[~ Header
[T Line Mumbers
¥ Inzert Blank Lines
File:
Mk LCancel Apply
o

You can display the Data Export dialog from the main menu: Tools\DataExport.

The items to be exported can be added with the 'Add Item...' button and are displayed
on the left hand side of the dialog. Items can be scalar or array items of any dimension.
Conversion functions can also be selected to be exported. If you want to select
Conversion functions please make sure the proper conversions are loaded.

You can group export items which means they are displayed on the same line (except
when the line wraps around). This makes for a more compact export.

Enabled

The enabled check box determines if the data export tool is active or inactive. If the
Enabled checkbox is not checked not data is written to the output file.

File Header

In order to associate the data with the item that are being output you can check the
'Header' checkbox. This will write a file header every time the export file gets changed or
the export settings are modified. Clicking the 'Write Header...' button will also write a

header to the file. See below for a sample of the file header:

GSEOS Data Export

The following items are exported with the corresponding line numbers:

Line #0: TLM.Len
TLM.PacketId

Line #1: Clock.DayOfYear

Line #2: CLTU IGSE RX.Len

Line #3: CMDSTRING.abyData[0:511]

© 1998-2005 GSE Software, Inc.

User Interface 89

Line #4: ConsoleOut.Len
##

The header displays the output line number assignment. If the 'Line Numbers' check box
is checked the data it prefixed with the line humber per output line like in the following

example:
#0: 0, O
#0: 0, O
#4: 4
#0: 0, O
#0: 0, O
#4: 4

Line Numbers
You can also choose not to have the line numbers printed by unchecking the 'Line
Numbers' check box.

Insert Blank Line
For easier import into Excel you can uncheck the 'Blank Line' checkbox. If this check box
is checked a blank line will be inserted after every output line.

Items Per Row

To restrict the line length the 'Iltems Per Row' setting allows you to select any number of
elements per line. An output line as indicated by the file header might be printed on
multiple physical lines depending on the 'Items Per Row' setting.

New Group
If the New Group check box is checked a new export group is started. An export group
arranges the items on a line until the maximum line length is reached and then wraps
the line. Depending on the setting of 'Items Per Row' the number of physical lines may
be more than one per output line. However, each trigger set in a group will trigger the
entire group.

Trigger

The trigger setting allows you to control when each output line is printed. Each time a
block arrives the trigger counter is decremented, if it reaches zero the output line is
printed. There can be multiple triggers per output line. If you don't have any triggers set
(the trigger count is 0) the line will not be printed.

Format

Currently there are two output formats: Decimal and Hexadecimal. When decimal is
selected the necessary nhumber of digits is displayed. In case of conversion functions a
floating point value is printed. If Hex is selected conversion function results will be
clipped to integer and displayed as 32-bit hex values. For regular items the number of
digits is determined by the size of the item.

Order of Export Items

You can change the order of the export items by holding down the Ctrl key and dragging
the item row number(s) you want to move to a different location. The following picture
shows the row numbers to drag.

© 1998-2005 GSE Software, Inc.

90

Gseos

3.9

H’Data Export Tool

[term

TLM.Len

TLM. Packetld
Clock.Dap0frear
CLTU_IGSE_R¥.Len
CMDSTRIMG. abyl at:

CongoleCut.Len

[=p B 0 I T S)

The GSEOS Main Window

GSEOS is a Multiple Document Interface (MDI) application. Data is organized in child
windows within the main application window. Besides just being an MDI application
GSEQS also organizes its windows on Desktop tabs. This allows you to configure various
window layouts and to easily switch between them. Fig. 1 shows the empty main
application.

urtitled I

| Mot in recolﬂing mode

In the caption bar of the main window you can see: Mimi [1] - Offline. This is the title of
the main window and consists of three fields:

MyProject: The project name as configured in gseos.ini.

[1] The number of the current instance. The GSEQOS application can
be run as multiple concurrent instances. You can specify the instance number on the
command line, the \In switch will indicated the instance number. This allows you to
configure different application settings for different instances of the application.

Offline The currently active data source. The system can have different
data sources, but only one active one at a given time. These data sources are Offline,
Bios (Spacecraft Simulator), Net, Recorder, or your own custom data source.

© 1998-2005 GSE Software, Inc.

User Interface 91

On the bottom of the application you can see the currently active desktop tab which is
'Untitled' initially. The recorder mode is indicated in the lower right of the status bar.

3.10 The Message Window

The message window is the means for GSEOS to post system message, certain error
messages and general purpose messages. You can also post messages to the message
window. However, log windows may be the more appropriate place to post user
messages.

The following snapshot depicts the message window:

£ - ik ;
Jan-12-2003 : ©34 1553: ERROE Can't allocate mnessage buffer.

Jan-12-2003 19:48:34 Cmd: ERROE Error loading Hodule
Jan-12-2003 19:48:34 ETIU: IHFO Entering SHE thread. 3
Jan-12-2003 19:48:34 Cmd: ERROE Tracebacl (most recent call last): 'JP'
Jan- 122003 19:48: 34 Cmd: ERROE File "D:\gSEDSS.D\prj\mimi\Startupj’Fl’
Jan- 122003 19:48: 34 Cmd: ERROE import LP1553Bios ’
Jan-12-2003 19:48:34 Cmd: ERROE FuntimeError: Either L13 card number 0 i
Jan-12-2003 19:48:34 Cmd: EREOE 3) opening the card. The module will be ¥
Jan-12-2003 19:48:34 Cmd: IHFO import ADCBios N
Jan-12-2003 19:48:34 Cmd: ERROR Error loading Module 'f
Jan-12-2003 19:48:34 Cmd: EREOE Tracebacl: (most recent call last):
Jan-12-2003 19:458: 34 Cmd: ERROFE File "c:\gseoSE.D\prj\mimi\Startup.py':
Jan-12-2003 19:458: 34 Cmd: ERROF import ADCEio= 2
Jan-12-2003 19:458: 34 Cmd: ERROF InportError: DLL load failed: The Specif:;-
Jan~12-2003 19:48: 34 Cmd: IHFO import ADC -
Jan-12-2003 19:48:34 Cmd: IHFO from HimiCmd import =
Jan-12-2003 19:48:34 Cmd: IHFO import HimiTiming 4
Jan~12-2003 19:48:34 Cmd: IHFO End loading Startup. py r
Jan-12-2003 19:48: 34 Command: IHFO Batch job ended normally 3
Jan-12-2003 19:48:51 ETIU: ERROE Device timeout occurred. Device stopped! :
Jan-12-2003 19:48:51 RTIT: IHFOQ Exiting SHMF thread. 5
21 L

The message window is a regular MDI child window and 'lives' on a particular desktop
page. In general it is a good idea to reserve a page for the message window so it can be
easily located. There can be only one message window open at a time. A message
window is associated with a file and all contents are written to the message file. The file
will not be truncated and grow over time. You might want to purge it from time to time.

The default display of the message window prints the data and time, the source that
generated the message, an error status that can either be INFO, WARNING, or ERROR,
and the message itself. Messages are limited to 80 characters and will be truncated after
80 characters and continued on a new line.

When the message window is active the GSEOS main menu changes and offers an
additional drop down menu Message:

% irmi [1] - Bios
File Message hIhAl

N *!Hﬁ%"

© 1998-2005 GSE Software, Inc.

92

Gseos

3.1

The Message menu allows you to clear the contents of the message window and to
configure the display. Any of the fields, date, time, source, and type can be enabled or
disabled.

When no message window is open you can create a new one by selecting the File/New
menu and specifying file type Message.

Once a message window is open this choice disappears from the File/New menu.
All messages that get written to the message window get routed through the system

block MESSAGE.
Below is the definition of the MESSAGE block that is defined in System.blk:

MESSAGE {MSG_TYPE .., 32;
App Name (roy o ,,, 8;
Message (861 0 ,,, 8}

You can intercept this block with a GSEOS Monitor or Decoder and perform the
appropriate action.

Programmatic Access:

The GesosCmd module offers the method: GseosCmd.msg() which you can call to post
your own messages to the message window. This is useful for short, infrequent
messages like exceptions or errors you want to report. For more extensive logging a log
window might be more appropriate.

It is also conceivable to directly generate a MESSAGE block from a Python script. For
more information on how to generate GSEOS data blocks from Python scripts refer to the
__main__ module.

The Recorder Dialog

GSEOS is capable of real time data logging to standard Windows storage devices (hard
disks, optical disks, etc.). These files can be played back for data evaluation purposes. In
playback mode the Recorder module is the active data source and will provide all input
data. The Recorder allows to record/play back any block that is defined in the system.
The data is written in sequential manner only and no backward references are required,
this allows the usage of strictly sequential writeable media like tape drives. The file
format is detailed in the Recorder File Format chapter.

The user interface for the Recorder is the Recorder dialog box shown below:

g ”Stu:up HEC' b | >3 II_ Scan

Enmmentl Seek | Settingz | kare >>I|- File

The Recorder dialog can be invoked from the View menu or with the F8 hotkey.
The caption bar incidates the instance number of the currently running GSEOS instance.

© 1998-2005 GSE Software, Inc.

User Interface 93

The recorder can
be controlled with the following buttons:

£ Playback single step reverse

<4 Playback fast reverse

ok

i

Stop Stop

Fec Record

Playback single step
Playback fast

Cettings Recorder settings

i ke

Mare Expand Recorder dialog

[#i5can Scan mode

I fFile File mode

Recorder Settings Dialog

Play back one data block in reverse direction.
Only blocks on the playback list will be played
back.

Start reverse fast playback. Only blocks on the
playback list will be played back. The playback
speed can be adjusted with the Settings
Dialog.

Stops the fast playback modes or the recording
mode, depending on which is active.

Start recording of blocks. Only blocks on the
record list will be recorded. When in recording
mode the available disk space will be displayed
in the status bar.

Play back one data block.

Start fast playback mode. Only blocks on the
playback list will be played back. The playback
speed can be adjusted with the Settings
Dialog.

This opens the Recorder Settings dialog.

The More button expands the Recorder dialog
and displays addional status information while
recording or playing back.

In scan mode the recorder moves through the
blocks like in regular playback mode, except
without generating any data blocks.

The file mode checkbox selects between
automatic and single file mode. In automatic
file mode the recorder automatically generates
a file name for the data. The file will be closed
once it reaches a threashold that can be set in
the gseos.ini file. A new file will be opened
automatically and the recording continued. In
single file mode you have to specify the file
name to record to and no automatic file switch
is performed.

The Recorder Settings dialog allows you to specify several recorder options:

© 1998-2005 GSE Software, Inc.

94

Gseos

Recorder Data Path:

Recorder File Prefi: | TestPh

Flayback Speed: _i 10 ms

Playback List... | Becording List. .. |

{n]3 Cancel |

The data path edit box displays the current path for files generated in automatic mode.
The path can be changed and will be saved in the gseos.ini file in the [Recorder] section.
The prefix is the string that will be prepended to all automatically generated recorder
blocks.

The playback speed can be set to either fast which is approximately every 50ms or to
slow which is approximately once a second.

The playback and recording list buttons open dialog windows to add or remove blocks
from the playback or recording list respectively.

Note

The Recorder writes the GSEOS data blocks as binary data to the record medium. This
means the interpretation of the data is left to the block definition. Therefore these two
files have always be synchronized. Say you record data, later change the block
definitions of the already recorded block in a way that is not compatible to the old
format. E.g. new item has been inserted somewhere in the block. This will cause the
recorder to generate 'wrong' data on playback since now the interpretation of the data
has changed over the way it was interpreted when the data was recorded.

You should always back up your block definition files (and probably your monitor and
decoder files as well) together with your recorder data files so you have a coherent
snapshot of the system at a given time. A good version control system like CVS or Visual
SourceSafe is highly recommended to support this task.

Programmatic Access:

The GesosRecorder module exports functions to perform most of the actions that can be
accomplished with the Recorder dialog. Please refer to the GseosRecorder module for
more details on how to script the recorder module.

© 1998-2005 GSE Software, Inc.

96

Gseos

4

GSEOS Reference

© 1998-2005 GSE Software, Inc.

GSEOS Reference

4.1 Configuration Files

97

© 1998-2005 GSE Software, Inc.

98

Gseos

41.1

Alarm Limit Files (*.alarm)

You can configure alarm limits in one or more alarm definition files. The alarm definitions
are stored in flat ASCII files with the .alarm extension. You can specify the alarm
definition files to load in the Load entry of the [Config] section of the gseos.ini file.

The following snapshot shows data items that use the alarm feature:

Alarm MDS_RESTART REQUEST, 0,
Alarm MDS_TURNOFF REQUEST, 0,
Alarm MDS APDOOR ST, 0.5,
Alarm MDS COUNT RATE, 0,
Alarm MDS_HVPS SET VOLT EU, -4.5,

An alarm is defined on a single line. The definition has the following syntax:

Alarm Name, Red Low, Yellow Low, Yellow High, Red High

It starts with the keyword: 'Alarm' followed by a unique name for the Alarm and the four
comma separated limits for Red Low, Yellow Low, Yellow High, Red High. Not all limits
need to be specified. If you only require some of the limits you can just leave the ones
not required blank. However, you have to specify the commas.

The numeric value of the limits has to be in order, that is the following rule must be true
for all limits specified:
Red Low < Yellow Low < Yellow High < Red High

In order for the alarm file to take effect you have to load it. This can either be done at
startup with a Load entry in the gseos.ini file [Config] section or by manually loading the
file at runtime. Select the file type 'Alarm Files (*.alarm)' in the File Open dialog box.

You can verify all loaded alarms with the GSEOS Explorer. Once an alarm is loaded you
can use it in your screen definition to apply it to a data item.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 99

41.2

Block Definition Files (*.blk)

The block definition file defines the bit level structure of all your data products like
telemetry data. A block definition is similar to a structure declaration in the 'C’
programming language. A block definition consists of a unique block name and a listing
of all the data items that comprise this block.

This section will give a detailed description of data block definitions and the format of
data block definition files (*.blk).

If you don't specify any block definition files to load in the gseos.ini configuration file a
default file will be loaded. The file has to be located in the GSEOS working dircetory (e.g.
in the same directory as the GSEOS.EXE file). The name of the block definition file
consists of the poject name specified in the gseos.ini file and the extension '.blk'. You can
override this by specifying your block definition files in the config section of the gseos.ini
file. In general you want to include the system block definitions that can be found in
system\system.blk.

Comments can be inserted anywhere in the file. A comment starts with the '#' character
(the old notation is the '*' character) and ends at the end of the line.

Block Definition

BlockName TypeModifier
{

ItemlName [Dimension] Gap, StartByte, StartBit, BitLength,
TypeModifier;

Item2Name [Dimension] Gap, StartByte, StartBit, BitLength,
TypeModifier;

Item3Name [Dimension] Gap, StartByte, StartBit, BitLength,
TypeModifier;

Item4Name [Dimension] Gap, StartByte, StartBit, BitLength,
TypeModifier;

Item5Name [Dimension] Gap, StartByte, StartBit, BitLength,
TypeModifier;
}

A block definition starts with a unique block name. The maximum length of the block
name is 32 characters. After the block name an optional block type modifier can follow.
The two types allowed are MOT (the default) for Motorola (big) endianity or INTEL for
Intel (little) endian. Motorola endianity means that the most significant bit resides on the
highest address while the Intel endianity is defined with the least significant bit on the
highest address. All items defined in this block are handled with the block default that is
specified here. You can override individual items if the endianity changes on item
boundaries. The maximum size of a block must not exceed 500kB.

Item definition
The item definitions are enclosed in curley brackets '{' '}'. One block may contain any
number of item definitions.

Push address
The optional push address operator '(* pushes the address of the item onto a stack. It

© 1998-2005 GSE Software, Inc.

100 Gseos

can be retrieved through the pop operator ')'. This can be used to access a single address
with multiple items, i. e. have multiple names for the same address space. The push and
pop operators can be nested to any level.

Item name

An item definition starts with a block unique item name. The maximum length of the item
name is 32 characters. The item name can be omitted. If no item name is specified this
item can not be accessed but it inserts a gap of its according size in the block definition.
This way you can gap areas of no interest without using an absolute addressing mode.

Array specifier

An optional array specifier indicates an array. The dimension of the array, declared in
square brackets, is determined by the dimension field. Array elements do not have to be
contiguous but may be subdivided by a bit gap of a constant length. The bit gap length
must be less then 65500 bits. If a data item is defined as an array and no bit gap is
defined, the array elements are contiguous (packed). If the array specifier is omitted the
item is assumed to be a scalar.

Start byte
The offset of the beginning of the block for this data item. The first byte in a block has

offset 0. If the start byte is omitted the current byte position, contiguous to the previous
defined item, is used as start byte position. Using start bytes defines an absolute
addressing scheme which gives you less flexibility in changing your block definitions.
Defining a start byte allows you to insert an item into the middle of a block definition
without changing all the start addresses of the items defined after the inserted one.
However, if you specify the start byte the current position is set to this address. It is not
necessary to order the item definitions in the order of the start byte. You can use this
feature to overlap multiple items. I.e. you can specify the same start byte for multiple
items.

Start bit

The first bit covered by the data item. For type INTEL the first bit in a byte is defined to
bit 7, the most significant bit. The last bit in a byte is bit 0, the least significant bit. For
type MOT the first bit is bit 0, and the last bit is bit 7. If the start bit is omitted the item
is packed behind the previous item.

Bit length
The length of the data item in bits. This can be a number from 1 to 32. If the data item

was defined as an array, this is the length of one single array element. The bit length
must be specified!

Item type modifier
By default the item type is the block type (MOT or INTEL). This default can be overriden
for an item by MOT or INTEL.

Pop startaddress

The optional pop address operator ')' pops an address from the stack. This address has
to be pushed onto the stack with the push operator '(* before. It restores the start byte
address of the matching pop operation.

Comments
To be more flexible you should omit the start byte and start bit specifiers. The

© 1998-2005 GSE Software, Inc.

GSEOS Reference 101

disadvantage of this approach is that you cannot directly tell at what absolute address an
item is positioned. GSEOS allows you to print out a detailed map of your block definitions
which contains the absolute byte and bit positions of every data item. You have to create
a file of type 'Block Listing' from the File|New menu.

Example
The following block definition shows a simple block with all items on byte boundaries.
This block is a GSEQOS system block:

Status block for dynamic storage allocation

DSACtrl INTEL

{

dwTotal s 323

dwTotalFree yrr 323

wFreeCnt rrr 165

wlterations , ., 16;

dwAllocCalls s 323

dwFreeCalls s 0 323

dwFailCnt rrr 323

}

The block listing of the above block shows the absolute offsets of all data items and the
endianity of each individual item.

Block Name: DSACtrl
Size: 24 Byte
dNumber of items: 7

Item Name Offset Size Gap Endian
[Byte/Bit] [Bit] [Bit]

dwTotal 0/0 32 - Intel
dwTotalFree 4/0 32 - Intel
wFreeCnt 8/0 16 - Intel
wlterations 10/0 16 - Intel
dwAllocCalls 12/0 32 - Intel
dwFreeCalls 16/0 32 - Intel
dwFailCnt 20/0 32 - Intel

The next example demonstrates the push address and pop address operators. The start
address of the item Block is pushed. In this case the start address is 0 (since Block is the
first item in the SimTmMode block definition). Before defining the item State the address
is popped. This means that the offset of State is 0 and therefore overlaps Block[0]. If we
had not used the push and pop operators the byte offset (start byte) of State would have
been 128. You can verify the positioning of the items in the block listing below.

e

telemetry mode change control

© 1998-2005 GSE Software, Inc.

102

Gseos

SimTmMode { (Block [128] O P 8;)

State rrr 87

}
Block Name: SimTmMode
Size: 128 Byte
Number of items: 2
Item Name Offset Size Gap Endian
[Byte/Bit] [Bit] [Bit]

Block[128] 0/0 8 0 Motorola
State 0/0 8 Motorola

The next example shows a block definition with items which are not aligned on byte
boundaries. It also uses absolute addressing by specifying the start position of every

item.

S/C telemetry inter-experiment data packet

SimIePkt {

Ident , 0, 7, 16;

Segmentation , 2, 7, 2;

Tag , 2, 5, 14;

Length , 4, 7, 16;

OBT [6] O, 6, 7, 8;

Data [2] 0, 12, 7, 16;

Validity [2] 15, 12, 7, 1;

Master , 12, 6, 4;

Event , 14, 6, 4;

Type [2]1 15, 12, 2, 1;

X , 12, 1, 10;

% , 14, 1, 10;

}

Oftentimes it is necessary to define arrays of structures as opposed to single items. E.g.
assume we have an Event block that defines 10 events with each event consisting of two
items: Time-of-Flight (ToF) and Mass. Lets further assume that ToF and Mass have a
resolution of 14-bit and are packed like this:

ToF1
Massl
ToF2
Mass?2
ToF3
Mass3
ToF4
Mass4

© 1998-2005 GSE Software, Inc.

GSEOS Reference 103

In this scenario we can define two array times which overlap in the address space. Here
is the block definition:

Event

{
ToF [10]1 28, , , 14;
Mass [10] 28, 1, 1, 14;

The first element of ToF starts at byte offset 0 bit offset 7 (remember big endian is MSB
on high address). You don't have to specify any of this. But we have to indicate a spacing
of 28 bits between the individual elements. 14 bit for the ToF item and a gap of 14 bit
where the Mass item will reside.

The Mass item as the same layout as ToF with the exception that it is shifted by 14 bit.
We specify the start position as byte 1, bit 1. This is 8 bit for the first byte plus 7-1 = 6
bit in the second bit. Resulting in 14 bit offset from the start of the ToF item.

41.3 Command Batch Files (*.cpd)
Enter topic text here.
41.4 Command Menu Files (*.cm)

GSEOS allows you to define custom menus to easily access any of your commands. The
command menu definitions are stored in flat ASCII files with the .cm extension. You can
specify the command menu files to load in the Load entry of the [Config] section of the

gseos.ini file.

The following image shows a custom menu:

2 [1] - =3
File Edt Search ¥ES Common ¥RS Custom XRS EMBOX | CONFIG Yiew Tools Window Help
I 5 = = Y Locs d
— Arg Walidation » —
€ Loy - Log Fi JIog cmel Walidation » [_To]=]
__ RES-422 LoopBack 4
Ued Jan 08 20:24:21 2003, at 2 seconds § DEBUS i’
IRS Transient Alarm: Set MET
Bad transter frams Valuesd kux=S | sciMeToLocelTine
Wed Jan 08 20:24:22 2003, at 258 seconds RUMSTOL SCRIPT
IRS Persistent Alarm: CCSDS PrtMkr »
Tnknown Alarm Humbsr 32 Valus=4 Aux=t "
==| File Load hMode 4
Wed Jan 08 20:24:50 2003, at 2 seconds M CmdMsg Echo 3
XRS Transient Alarm: Set M Default e
Bad transfer frame Value=4 Aux=§ a?ro. etad
==========================z============== Eftor Injection 3
Wed Jan 08 20:24:50 2003, at 258 seconds| Dislog Boxes L4
¥RS Per=si=tent Alarm: P . Stor Salt Tests
Unknown &lerm Humber 32 Valus=d4 Aux=G Self Test 3 DPU Emulstor Self Tests Command Tests »
== _ Command Routing F MDIS Tester Self Tests Elemetry : Commaon Telemetry
Wed Jan 08 22:24:.28 2003, at 2 second= M Telemetry Decoding b IEM Emulstor Seif Tests »
IRS Transient Alarm:
Bad transfer frame Values=4 Aux=5%
=
- — | gt
— ~ ——— — —ar
e e P T | - —— T r P ——TeEe——

© 1998-2005 GSE Software, Inc.

104

Gseos

Below is a sample command menu file to demonstrate the syntax:

*/
*/

Menu &Config
{
Popup &Logs
{
Popup S&TOL Log

{

Menuitem Enable, fEnablelog ()

Menuitem Disable, fDisablelLog()

Separator

Menuitem Comment, fEnterLogComment ("$'Enter STOL LOG comment'")
} /* End of Popup STOL Log */

Menuitem &Start, fStart ()

}
Include MyIncludeFile.cm

The command menu file recognizes the following keywords:
Menu, Popup, Menuitem, Separator, and Include.

A command menu file can have multiple main menu entries. Each main menu entry is
defined with the Menu keyword followed by the menu name. In the above case &Config.
The ampersand character '&' can be used to define keyboard shortcuts for the menu. The
character following the ampersand character can be used to activate the command.

The Menu body as well as the Popup body is enclosed in curly braces '{', '}'. The Menu
body and contain any number of Popup, Separator, and Menuitem entries. A Menuitem
entry lets you specify a command to be excuted. The syntax is:

Menuitem Menu Name, Command

where the Menu Name is the name as it appears on the menu and the command is any
valid command you have defined. Make sure you use the proper nhamespaces. IL.e. if you
have your commands defined in a module called InstCmds and you import the module
with import InstCmds you would need to use InstCmds.MyCommand() to issue the
MyCommand() command.

A Separator places a separator between menu items. The Popup keyword allows you to
set up a command hierarchy by nesting menus. You can place and number of Popup,
Menultem, and Separator keywords within the body of a Popup statement. You can nest
to any level.

As with the command button definition you have a simple text preprocessor available
that lets you prompt for parameters and does simple text replacement. If you have
Python commands that expect strings you have to make sure to embed the parameter in
quotation marks. You can do this in the menu definition so the user does not have to

© 1998-2005 GSE Software, Inc.

GSEOS Reference 105

supply the quotation marks. See the example above.

The Include statement lets you include other command menu files. The file to be included
will be inserted in place of the Include statement. The included command menu file must
be itself a well-formatted command menu file. The Menu statements in the included file
will be converted into Popup statements in the including file. The included file may have
multiple Menu statements.

41.5 Configuration Files (.cfg)

Configuration files are used to store GSEOS system configuration parameters. They are
specified in a modified XML syntax. A configuration file can hold configuration information
for various different modules of GSEOS. Currently the only module implemented is the
Alarm Monitor configuration. These configuration files are usually generated and modified
from the GSEQOS user interface. However, they can be edited with a regular ASCII editor
as well. Any changes to the configuration file will be recognized by the GUI tools and
displayed accordingly. In order for the configurations to take effect in GSEOS they have
to be loaded either at startup with an entry in the gseos.ini initialization file or at runtime
from the File/Open menu.

Note:
The Alarm Monitor configuration Wizard is currently not implemented, so the only way to
configure an Alarm Monitor is to manually create the configuration file.

The following subchapters explain the different configuration settings:

Alarm Monitor configuration
4.1.51 Alarm Monitor Configuration

Alarm Monitors scan a data item for a certain condition. Once the condition is met the
alarm fires and executes one or many actions. The trigger condition as well as the
actions are defined in a Alarm Monitor section of a GSEOS configuration file.

The format is similar to XML but not well-formed XML. Typically the trigger condition
contains special characters like (<, >, etc.). For easy configuration these characters can
be embedded in the configuration file in clear text and therefore violate the XML
definition. If you prefer you can escape these characters yourself and therefore generate
well-formed XML. So for example to specify the trigger condition: Value < 20 you would
write:

<Trigger Condition="Value < 20"/>

This way you can run your configuration file through an XML checker and it will be parsed
successfully given your other XML definitions are correct.

If you want to check out your config file in Internet Explorer or some other XML display
tool you will have to make sure you escape any special characters you use in conditions
or other text items. For example:

<Trigger Condition="Value < 20"/>

has to be converted to

© 1998-2005 GSE Software, Inc.

106

Gseos

<Trigger Condition="Value < 20"/>
in order to display your config file in an XML display tool.

You don't have to escape if you use the config file with GSEOS, this conversion happens
automatically.

Please use the sample file as a template and documentation of the various elements.

<AlarmMonitor>

An alarm monitor is defined in an <AlarmMonitor> element within a GSEOS configuration
file. There can be any number of <AlarmMonitor> elements in any given configuration
file.

The <AlarmMonitor> element has the following attributes:

Name: The unique name of the alarm monitor. If the name exists already and this
file gets loaded the old monitor will be replace with the new one.

Subelements of the <AlarmMonitor> node are <Dataltem>, <Trigger>, and <Actions>.

<Dataltem>

There must be exactly one <Dataltem> element per <AlarmMonitor> element. This
element specifies the GSEOS data item to monitor. This node takes two attributes: Name
and Conversion.

Name: The name of the GSEQOS data item to monitor. If the item is an array item
you have to specify the element of the array you wish to monitor.
Currently you can only monitor scalar items or individual elements of an
array item.

Conversion: If the data item has a conversion function associated you can specify the
conversion function to apply before evaluating the trigger condition. Note
that the conversion function does not need to be loaded at the time when
you load the alarm monitor configuration, however. As soon as the monitor
is installed and gets evaluated the proper formula file (*.qlf) has to be
available, otherwise an exception will be raised. This behavior allows you
to specify the *.qlf and *.cfg files in any order in the gseos.ini file without
creating dependencies.

<Trigger>

There must be exactly one <Trigger> element per <AlarmMonitor> element. This
element specifies the trigger condition that will determine when the alarm monitor
fires.GSEOS data item to monitor. This node takes three attributes: Condition, Count,
and Timeout. The condition is evaluated every time the data item specified in the
<Dataltem> element arrives. Once the outcome is positive the timeout conditions are
applied to determine if the alarm fires or not. The Count and Timeout attributes control
the dynamic behavior.

Condition: This element contains the actual trigger condition that gets evaluated
every time the monitored data block arrives. As mentioned above you
don't need to escape special characters when defining your condition. The

© 1998-2005 GSE Software, Inc.

GSEOS Reference 107

special variable 'Value' represents the current value of you data item under
investigation. You should use this variable to refer to the data item value
and use it in your condition. Another special variable name is 'Delta'. Delta
represents the difference from the previous value to the current value. E.g.
if the previous value was 27 and the current value is 11 Delta would be -
16. You can use Delta to check for differentials. You can use both Value
and Delta in the same expression if required. The condition statement
should evaluate to a boolean value. Keep in mind that the data item
element defines if a conversion function should be applied to the data item.
If so you want to compare against the engineering units instead of the raw
count.

Conversion: If the data item has a conversion function associated you can specify the
conversion function to apply before evaluating the trigger condition. Note
that the conversion function does not need to be loaded at the time when
you load the alarm monitor configuration, however. As soon as the monitor
is installed and gets evaluated the proper formula file (*.qlf) has to be
available, otherwise an exception will be raised. This behavior allows you
to specify the *.qlf and *.cfg files in any order in the gseos.ini file without
creating dependencies.

Count: The value for count has to be numeric. If not specified it defaults to 1. The
Count determines how often the condition has to evaluate to True before
the alarm fires. The condition has to evaluate to True consecutively, that is
once it evaluates to False the count will be reset. Also not the Timeout
attribute that applies a timing condition to the count.

Timeout: Specifies the timeout in seconds. If not specified or 0 no timeout is applied.
The timeout determines the interval in seconds in which the condition has
to evaluate to True Count number of times. The timeout is implemented as
a sliding window. Every time the Count condition is met the timeout is
evaluated from the first item that made the Count condition successful.

<Actions>
The <Actions> element configures the actions that can be executed when the alarm
fires. You can configure one or more actions within the one and only <Actions> element.

Message: This element configures the text that gets written to the Message window.
The text you specify between the sub-elements <Text> </Text> is
prepended with some Alarm information.

<Message>
<Text>
A red high
alarm has occurred.
</Text>
</Message>

LogFile: This element configures the text that gets written to a log file. The file
name is specified with the attribute FileName. The log text is configured
as in the Message element.

© 1998-2005 GSE Software, Inc.

108

Gseos

<LogFile FileName="MIMIAlarmLog.log">
<Text>

A red high alarm has occurred.

</Text>
</LogFile>

Command:

The <Command> element issues a command. This is it generates a
CMDSTRING block with the contents you specify here. The attribute Name
is the command string that gets executed.

<Command Name="PS DECON OFF"/>

Python:

This element allows you to call an arbitrary Python function. The function is
specified with the Function attribute.

<Python Function="fMyFunction (4 < 55)"/>

Email:

The <Email> element configures the email action. This action can send out
an email to one or more recipients. The SMTPHost attribute of the Email
element specifies the SMTP host you are sending your email from. The
sub-element <From> specifies the sender name and email address. The
sub-element <To> specifies one recipient, there can be multiple <To>
tags within one <Email> node. The <Subject> and <Body> nodes set the
subject line and the email body respectively.

The attributes Quota and QuotaPeriod control the number of emails that
can get send out. The value of Quota has to be an integer value. It
represents the maximum number of emails that can get send out during
the time period QuotaPeriod. QuotaPeriod specifies the time the Quota
applies to. After the period expires another Quota emails can be sent
within the next period. The value of QuotaPeriod has to be a number
(floating point is fine) that ends in either m (minutes), h (hours), or d
(days) to indicate the dimension. It is usually recommented to set a quota
since an ill-behaved alarm monitor could possibly generate emails on a
basis of a fraction of a second.

<Email SMTPHost = "smtp.jhuapl.edu" Quota="5" QuotaPeriod="2h">
<From>SOPC@jhuapl.edu</From>
<To>hauck@gseos.com</To>
<To>Joe.User@jhuapl.edu</To>
<Subject>MIMI Alarm</Subject>
<Body>

by

This is the message body. In addition this text will be prefixed

some general information about the alarm.

</Body>
</Email>

© 1998-2005 GSE Software, Inc.

GSEOS Reference 109

4.1.5.1.1 Alarm Monitor Sample

<l == ====== === === ===
-—>
<!-- This configuration file defines one or more GSEOS Alarm Monitors.
-—>
<!-- In order to install the Alarm Monitors in GSEOS load the file from
-—>
<!-- the File/Open menu or specify it in the Load entry in gseos.ini
-—>
<l--
-—>
<!-- GSE Software, Inc.
-—>
<!-- Author: Thomas Hauck
-—>
<!--
-—>
<!-- History: Apr-08-2004 th R001 First implementation.
-—>
<!--
-—>
<lo- ====== === === ===
-—>
<GSEOSConfig Version = "1.0">
<AlarmMonitor Name="AlarmTestl">
<Dataltem Name="AlarmMonitorTestBlk.X1"/>
<Trigger Condition='4.0 > Value >= 5.0' Count="2" Timeout = "6.3"/>
<Actions>
<Message>
<Text>
A red high
alarm has occurred.
</Text>
</Message>
<LogFile FileName="MIMIAlarmLog.log">
<Text>
"A red high alarm has occurred."
</Text>
</LogFile>
<Command Name = "PS DECON1l OFFE"/>
<Command Name = "PS DECON2 OFF"/>
<Python Function = "GseosCmd.sound('alarm.wav')" />
<Python Function = "GseosCmdl.sound('alarm.wav')" />
<Email SMTPHost = "mail.gseos.com" Quota="4" QuotaPeriod= "2h" >
<From>SOPC@jhuapl.edu</From>
<To>aaalbbb.ccc</To>
<To>xxxQyyy.zzz</To>
<Subject>AlarmMonitorTestl</Subject>
<Body>
This is the message body. In addition this text will be prefixed
by
some general information about the alarm.
</Body>
</Email>

© 1998-2005 GSE Software, Inc.

110 Gseos
</Actions>
</AlarmMonitor>
</GSEOSConfig>
4.1.6 Formula Definition Files (*.qlf)

Formula Files allow you to define Expressions and Conversion Functions.

Expressions

Expressions are mathematical expressions that can take any number of parameters and
you can select Expressions as display objects on the screen. Expressions can be used to
perform a mathematical operation on a data item before displaying it. Expressions can
also be accessed from Python script as explained later in this chapter.

A simple example of an expression definition would be:

Linear(m, x, t) := m*x+t

Conversion Functions

Conversion functions are similar to Expressions in that they allow you to use a define a
mathematical function. However, they are closely related to a specific data item in that
they represent a conversion for this particular item. The following example shows the
engineering unit conversion for the data item HK.HTR_5V

EU (Raw="HK.HTR 5V") := (Raw*5.0)/256

A Conversion function can have only one parameter and it needs to define a default value
which is the name of a data item (Note that you have to specify the name of the item as
opposed to the value). You can then use the formal argument name in the function
definition to refer to the data item. As opposed to expressions you can define multiple
conversion functions with the same name (the data items these functions are tied to
should be different though). Usually this is exactly what you want to do. This way you
can define for example a EU engineering unit conversion and can call this function on
various data items. In this case the appropriate conversion function (which may differ
from data item to data item) will be invoked. This feature is used for the STOL emulator
to map to the correct conversion function depending on telemetry point.

Both Conversion functions and Expressions are defined in a .qlf formula file. The formulas
need to be loaded either at runtime or from the gseos.ini file. Once the formula is loaded
it can be accessed from GSEOS when displaying an Expression or in the item select
dialog when selecting a data item.

The loaded formulas are also displayed in the GSEOS Explorer underneath the nodes
Conversions and Expressions.

If you change the formula file and load it into GSEQOS the formula definitions will be
updated accordingly and reflected in the display.

Expressions and Conversion functions are mapped into the Conversion module. The two
examples defined above can be accessed from Python in the following way:

Conversion.Linear (2.3, PHA.TOF1l, 20)

Conversion.EU ("HK.HTR 5V")

This feature now allows you to use the same Expressions that you have used in the past
for display purposes only from Python script. It effectively can be used instead of going

© 1998-2005 GSE Software, Inc.

GSEOS Reference 111

through the effort and writing a separate decoder. Since Expressions and Conversions
functions are limited to one line statements and can not contain flow control directives
any complex decoding tasks are still better managed in a separate decoder generating a
new output block that then in turn can get displayed.

On the other hand, if the expression needed is very simple instead of writing Decoders to
convert data items you can use Expressions to display items modified by a simple
function. The latter approach allows you to quickly assemble display screens without
going through the overhead of defining a separate block and writing a Decoder.

Formula files must have the extension .glf and contain one function per line. The syntax
of a Conversion Function definition is:

FunctionName(Parameterl, Parameter2, ... ParameterN) := Expression

or
ExpressionName(Param1="Block.ItemName") := Expression

The formal parameter names can be used in the expression. These parameters will be
replaced with GSEQS data items when an Expression is displayed on a screen. For
Conversion functions you have to provide exactly one parameter that has a default value
which is the name of a data item.

The body of the Expression/Conversion function can be any valid Python expression. The
expression must not span multiple lines and it can not contain flow control statements.
For backward compatibility the old Qlook Formula File format is still supported. However,
it is strongly recommended to only use valid Python constructs, i.e. use 0xE43F instead
of 0E43Fh for hexadecimal numbers.

In order to use Expressions/Conversion Functions you have to load them. This can either
be done with the user interface File/Open function or at startup time in the gseos.ini
Config/Load section. Once the functions are loaded they are available to be placed on
display screens as Expressions or Conversion Function items. They can also be accessed
from Python via the Conversion module. The module Conversion is automatically
imported and is updated when new Formula files are loaded. You can load any number of
Formula files, the Expressions and Conversion Functions contained in these files will be
added to the pool of available Conversion Functions.

You should avoid using the same name for different Expressions since they will overwrite
each other. As explained above for Conversion functions you might want to do exactly
that and choose the same name for multiple functions (using different data items).
Comments can be inserted anywhere in a Formula file and are started with the '#'
character.

If a formula raises an exception during runtime the result of the conversion will be set to
0.0. and the exception will be displayed in the status line when moving the cursor onto
the data item.

The following functions are available for use in a formula file:

© 1998-2005 GSE Software, Inc.

112

Gseos

sin Sine

cos Cosine

tan Tangent

max The maximum of the two values

min The minimum of the two values

ftol Float interpreted as signed long

Itof Signed long interpreted as float

swapl6 Swap bytes in a 16-bit item

swap32 Swap bytes in a 32-bit item

signed8 Interpret 8-bit value as signed

signed16 Interpret 16-bit value as signed

signed32 Interpret 32-bit value as signed

log Log

exp Exponent

year Get the year (the full 4-digit year) from the number of seconds as of Jan-
01-1958 00:00:00

month Get the month (Jan=1, Feb=2, ...)from the number of seconds as of Jan-
01-1958 00:00:00

day Get the day from the number of seconds as of Jan-01-1958 00:00:00

hour Get the hour from the number of seconds as of Jan-01-1958 00:00:00

minute Get the minute from the number of seconds as of Jan-01-1958 00:00:00

sec Get the second from the number of seconds as of Jan-01-1958 00:00:00

pow Power

Besides the functions mentioned above all the functions from the standard Python math
module are available.

The sample file below shows a simple formula file:

#

Sample Expressions.

#

Analog (a,b) = ltof(a)*b

Div (a,b) = a/b

Equal (a, b) = a ==

Ever (a) =1

Lin (m, x, t) = m*x+t

Percent (Total, Used) = Used / Total * 100
Year (Time) = year (Time+378691200)
Month (Time) = month (Time+378691200)
Day (Time) = day(Time+378691200)
Hour (Time) = hour (Time+378691200)
Minute (Time) = minute (Time+378691200)
Second (Time) = sec(Time+378691200)
Mod (a,b) =a %$b

f (x,vy) = 2*sin(x) - 2* cos(y)

© 1998-2005 GSE Software, Inc.

GSEOS Reference 113

41.7

NadirCycle (flNadirCycle) := ltof (flNadirCycle)

CheckInstNPacket (byInstIs, byInstWant, byPacketlIs, byPacketWant) :=
(byInstIs == byInstWant) && (byPacketIs == byPacketWant)

LongToFloat (1) := ltof (1)

FloatToLong (f) := ftol (f)

TicksToMs (Ticks) := (Ticks*1000)/515625

Signed8 (s) := signed8(s)

Signedlé6 (s) := signedl6 (s)

Signed32 (s) := signed32(s)

#

Sample Conversion Functions.

#

EU (Raw="'MDS Status.MIRROR SETPOINT TEMP') := -31.98687876 + 1.23958063*Raw
+ (-.01357386) *pow (Raw, 2) + 8.788e-005*pow (Raw, 3) + (-2e-007) *pow (Raw, 4)

EU (Raw= 'MDS_StatuS . GRATING_SETPOINT_TEMP') := -31.98687876 + (-1.7654) *Raw
+ 0.0065*pow (Raw, 2) + 8.788e-005*pow (Raw, 3) + (-2e-007)*pow (Raw, 4) +
0.0*pow (Raw, 7)

EU(Raw='MDS_Status.MIRROR_A_TEMP') := —-31.98687876 + 2.9833*Raw + (-
0.00333) *pow (Raw, 2) + 8.788e-005*pow (Raw, 3) + (-2e-007) *pow (Raw, 4)

gseos.ini

You can configure various parts of GSEOS with options you set in the configuration file
gseos.ini. The gseos.ini file is an ASCII file organized like a typical Windows configuration
file (e.g. WIN.INI). It contains sections and keys with associated values in the various
sections. Sections are delimited by '[Section]'. The sample below shows a sample entry:

[Project]
Name=MyProject
Title=MyProject

This entry defines the section 'Project' which has two keys: 'Name' and 'Title'.

Command line

You can specify a different ini file on the command line with the /ini switch. The
argument following the /ini switch must be the path to a valid GSEOS configuration file
(although it does not need to be named gseos.ini). This allows to manage several
projects independently of each other. Also see the [ChooseConfig] section later in this
chapter.

The syntax of the GSEOS ini handling is a superset of the Windows format. Please refer
to the following paragraphs for more details:

Section and entry names are not case sensitive.

Section

The ini file consists of a sequence of sections. A section is identified by a section name
embedded in square brackets. There can be only whitespaces leading the open bracket
and only whitespace or comment after the section name. Comment characters are hash
'#', and semi-colon ';".

© 1998-2005 GSE Software, Inc.

114

Gseos

[Section]
Key = Value

[Section] # This is a comment, this is still a valid section.
Name = Image

Section Entries
A section can have a body consisting of Name = Value entries.

Load = System.cpd

It is also possible (unlike with regular Windows style ini files) to have multiple entries
with the same name. In this case all values are added to the multi value list for that
name.

[Config]
Load = System.cpb
Load = Rtiu\Rtiu.py

Instances

The special section [Instance] allows to map various different instances of GSEOS to
start with different settings. The command line switch /Ixxx lets you specify the instance
number you want to start. The entries in the [Instance] section have to list the section
mappings you want to apply to the instance to start.

[Instance]
Project = ProjMOC PrjXRS PrjGRS

In the above example the section [Project] gets mapped to section [ProjMOC] for /I1, to
[PrjXRS] for /12, and to [PrjGRS] for /13.

Note that the values have to be specified in the numerical order of the instance number.
I.e. if you want to configure an instance /I5 you have to specify all instance mappings
from 1 to 5. If you don't have any custom settings for a particular instance you can map
this to the original section:

[Instance]
Project = Project Project PrjGRS Project Project5

If a particular instance mapping is not specified a section with the name of
[InstanceNNN.Section] is looked up. If you run /I8 on the above configuration and you
have defined a section [Instance8.Project] this section will be used.

The /I instance switch also takes a name argument. This name will be used to look up
the instance section in the following way: InstanceName.Section

So if you specify /I MOC on the command line all sections will be mapped to
MOC.Section.

[MOC.Project]
[MOC.Config]

If a section with that name doesn't exist it falls back to the original section name. If you
have multiple configurations that share common sections like: Masterl, Master2, Master3
all use the same [Config] section you can map the [Masterl.Config], [Master2.Config],

© 1998-2005 GSE Software, Inc.

GSEOS Reference 115

[Master3.Config] sections to another section (probably [Config]) with the following
entries in the [Instance] section:

Masterl.Config=Config
Master2.Config=Config
Master3.Config=Config

Choosing a configuration

The section [ChooseConfig] acts as an interactive configuration selector. You can
configure various command line options and they are displayed in a dialog for the user to
choose a configuration.

The [ChooseConfig] section has two entries: Option and CmdLine. The format of the
entries is somewhat special. The entries have to be specified in pairs, Option and
CmdLine together. The Option key specifies the name that is listed in the list box and the
CmdLine is the command line switches with which GSEOS will be invoked. The following
settings generate the dialog box above:

[ChooseConfig]
Option = P-ALICE
CmdLine = /ini i ALICE/gseos.ini

Option = LORRI Master (Connect to Emulator Box)
CmdLine = /I Master /ini i LORRI/LORRI ConfigFiles/gseos.ini

Option = LORRI Slavel (Connect to Master)
CmdLine = /I Slavel /ini i LORRI/LORRI ConfigFiles/gseos.ini

Option = LORRI Slave2 (Connect to Master)
CmdLine = /I Slave2 /ini i LORRI/LORRI ConfigFiles/gseos.ini

Option = PEPSSI Master (Connect to Emulator Box)
CmdLine = /I Master /ini i PEPSSI/PEPSSI ConfigFiles/gseos.ini

Option = PEPSSI Slavel (Connect to Master)
CmdLine = /I Slavel /ini i PEPSSI/PEPSSI ConfigFiles/gseos.ini

Option = PEPSSI Slave2 (Connect to Master)
CmdLine = /I Slave2 /ini i PEPSSI/PEPSSI ConfigFiles/gseos.ini

Option = RALPH
CmdLine = /ini i RALPH/gseos.ini

Option = SDC

CmdLine = /ini i SDC/gseos.ini
Option = SWAP

CmdLine = /ini i SWAP/gseos.ini

The entries are listed in the order in which they are specified in the ini file. Note that you
can specify the /I and /ini switches especially which allows you to redirect to other
configuration files. Processing of the [ChooseConfig] section is recursive. That is if you

© 1998-2005 GSE Software, Inc.

116 Gseos
have another [ChooseConfig] section in another instance or ini file you direct to you can
display child dialogs and can therefore build a hierarchy for more complex configurations.
__include___ Directive
The __include___ directive allows you to reference information from other ini files and
therefore decentralize management of the gseos.ini file. The __include___ directive has
the following syntax:
__include Filename [Section [Entry]]
__include___ directives can be placed either at top level or within a section. Depending on
the arguments specified in the __include__ directive the amount of data to be included
can be controlled. If only the file name is specified the entire file is added. If a section
name is specified the section is added. If a section and entry is specified only the
particular entry (or if multiple entries exist for the same name, those entries) will be
added.
The process of adding is a merging process. If the section in question does not exist a
new one is created and the contents added to the new section. If the section does exist
the entries from the source section are added to the existing section. If an __include___is
specified on section level no new section is created but the entries from the source
section are added (at the position where the include is located) to the existing section. If
the __include___ directive specifies individual entries only those are added.
Writing sections takes the __include__ directive into account and writes the section back
to the proper file. However, if single entries are __include__ed those are not written back
to the include file, only entire included sections will be written to the source file.
The following sections list the configuration options recognized by GSEOS.
[Buffer]
[Command]
[Config]
[Console]
[Instance]
[Net]
[Printer]
[Project]
[PyStartup]
[Recorder]
[System]

41.71 Buffer

The [Buffer] section manages the GSEOS data buffers. This is a critical system parameter
and determines the amount of data buffer available for GSEQOS. You can monitor this
value as well as the currently used buffer in the GSEOS Explorer.

Entry Description

FixedBuffer This entry specifies the total amount of memory (in kB) available to
GSEOQOS. The amount of memory corresponds directly to the time the
data can be buffered by GSEOS. When there is no more memory
available the system will lose data. The default is 512 (512 kB).

© 1998-2005 GSE Software, Inc.

GSEOS Reference 117

41.7.2

Example
The following example sets the total amount of available memory to 10 MB.

[Buffer]
Fixedbuffer = 10240

Command

The [Command] section sets some values for the COMMAND module. Especially for the
batch handling.

Entry Description

SendLateCmd This entry specifies what to do when a late command is detected in a
command batch. If 'Yes' is specified the command is send immediately.
If 'No' is entered the command is not send at all. For the definition of a
late command see MaxDelay.

MaxDelay MaxDelay specifies when a command is to be considered as late
command. The entry must be a positive integer and specifies a time in
seconds. During processing of a batch file it is possible that a time mark
is missed due to system overload. If the time is within the limit specified
by MaxDelay the command is considered as 'not late' and processed
normally. Otherwise it is a late command and processed as specified by
SendLateCmd.

CMDPEnNable Deprecated! Enable or disable the legacy command processor. The
default is 1 meaning the legacy command processor is enabled. Unless
upgrading an old system you should not use the old command
processor, it will not be supported in future versions. The Python
GseosCmd module replaces the command processing functionality. If the
command processor is enabled you can still issue python commands but
the error reporting will be crippled. If the legacy command processor is
enabled all commands are first routed to the Python cmmd module. If the
command can be executed successfully the command is not propagated.
If the command could not be executed successfully it will be forwarded
to the legacy command processor. If the command is still not executed
without error the error will be reported according to the legacy
command processor. Assume to try to issue a python command but
make an error, in this case the legacy command processor will intercept
the command and issue an error message with has nothing to do with
the actual python error. If you do not use the legacy command
processor you should set this entry to 0. In this case an erroneous
command will properly be reported in the console window.

Example
The following example consideres a command as late when it is processed at least 11
seconds past its time mark and sends a late command immediately.

[Command]
SendLateCmd = Yes
MaxDelay = 11

© 1998-2005 GSE Software, Inc.

118

Gseos

41.7.3

4174

Config

The [Config] section defines the configuration files that are loaded when the system is
started.

Entry Assignment

BlkFiles The BlkFiles entry specifies the block definition files to be loaded. If you
don't specify a file here the block file with the project name is loaded.
You usually want to include the system block definitions from
system\system.blk. In addition you want to provide your specific block
definitions in one or multiple additional files. Multiple file names are
separated by spaces.

Load This entry specifies the configuration files to be loaded when the system
comes up. The file names specified in this enty must be separated by
spaces. The path names can be absolute or relative to the working
directory the system starts in. It is important that the files specified
have well known extensions. The recognized extensions are:

*.cpd: Command definition file (legacy module)
*.cpb: Command batch file

*.cm: Command menu file

*.dt: Desktop

*.scr: Screen file

*.log: Log file

It is possible to specify more than one configuration files for all types
except the desktop. If no desktop file is specfied the desktop
configuration that was active when the last session was closed is loaded
(autodskN.dt). When a desktop file is specified this desktop is loaded on
every start of the system. This enables the same appearance of the
system with every start.

Example
The following example installs a desktop, two command files, one monitor condition file
and one monitor check file.

[Config]

BlkFiles =system\system.blk MyProject.blk demo\monl\monl.blk
Load = general.dt mimi.cm startup.cpb

Console

The [Console] section defines the configuration settings for the Console window.

Entry Assignment

MaxFileSize Specifies the maximum size of the console file in KB. The file will be
truncated once it reaches the MaxFileSize limit. The oldest content will
be discarded. The default value is 512KB.

FileName The name of the console window file. Defaults to
ProjectName[Instance].con if not specified. If the console window file is
not writeable (read-only) the contents of the console window are not

© 1998-2005 GSE Software, Inc.

GSEOS Reference 119

logged.

4.1.7.5 Instance

The [Instance] Section allows you to run multiple instances of GSEOS at the same time
on the same machine. Each instance picks up its assigned configuration information from
the gseos.ini file by using the [Instance] section as a lookup table.

Entry Description

[Section] A list of reference sections to look up for the according instance. The
first entry identifies the section referenced by the first instance, the
second entry identifies the section referenced by the second instance
and so on. If no entry is found for the current instance, the default
section is taken. If no instance dependent handling is used for a
predefined section the default section is assumed. If you don't plan
using this feature you don't need to supply the [Instance] section.

Example

The following example shows how to install different [Recorder] sections depending on
the current instance. The first instance for example is used for recording data, whereas
the second instance is mainly used to replay data from an archive.

[Instance]

; 1st 2nd 3dr 4th ... 1instance
Project = Prjl Prj2
Bios = Biosl Bios2
Recorder = Recl Rec?2
[Project]

Name = CELIAS

Title = CELIAS
[Prjl1]

Name = CELIAS

Title = CELIAS Sim-I
[Prj2]

Name = CELIAS

Title = CELIAS Sim-II
[Biosl]

IOBaseAddress = 0x300
HSSInterrupt =11

[Bios2]

IOBaseAddress = 0x140
HSSInterrupt = 10
[Recorder]

DataPath = ..\data
FileSize = 1024

[Recl]

DataPath = ..\write

© 1998-2005 GSE Software, Inc.

120 Gseos
FileSize = 1024
[Rec?2]
DataPath = ..\read
FileSize = 1024
41.7.6 Net

GSEOS network support is very flexible and accommodates various different networking
configurations. The basic concept of the network module is to import/export data blocks
via the TCP/IP protocol. The network module functions as a data source when importing
data. You can configure any number of network connections. Each network connection
can be associated with at most two blocks. One that gets exported on this connection
and one that gets imported. From a network perspective GSEOS can act as a server or a
client. For each connection you have to specify if you want GSEQOS to act as a server or a
client. This does not necessarily determine if you export or import blocks on that
connection. A common scenario is to configure a server connection and export a block on
that connection. However you may as well configure a client connection and export a
block on that connection.

The [Net] section determines the network configuration. The keys you specify in this
section are the names of the connections you want to configure. The value can be either
Server or Client for a network server or a network client respectively.

[Net]
TLMSrv=Server
TestServerl=Server
TomsServer=Server
SOPC33=Server
TLMClnt=Client
CmdSrc=Client
TestClient=Client

The above example configures four server connections and three client connections. You
can manage these connections from within the GSEOS Explorer. In order to configure the
individual connections you have to create new sections with the connection name as the
section name, e.g.:

[TLMSrv]
Port=2001
Source=TLM

The section above specifies the setting for the TLMSrv server connection you defined in
the [Net] section. This particular example configures the server to listen on port 2001
and export the TLM block.

The next paragraphs explain the various options you can specify for a network
connection. The settings that only apply to client connections are indicated.

Entry Description

IP-Address Only for client connections. The IP address of the remote server. Specify
the IP address in 4-byte dotted format, e.g. 150.144.103.23

Port The port number of the remote machine in case of a client connection,

the listen port in case of a server connection. There must be a server
listening on this port at the IP-Address specified in order for a client

© 1998-2005 GSE Software, Inc.

GSEOS Reference 121

Source

Destination

AutoConnect

VariableLen

Exclusive

connect attempt to be successful.

The data block you want to export on this connection. Every time the
system encounters this block it will send the contents of the block to the
remote machine. The actual amount of data sent depends on the
VariableLen setting.

The data block you want to import on this connection. All data received
from the server will be written to this block. Once the number of bytes
specified in the block definition is received the block is submitted to the
system. This is the default behavior and can be modified with the
VariableLen setting. The default behavior is appropriate for fixed length
data packets. For variable length packets you want to use the
VariableLen flag.

Only for Client connections. Allows to automatically connect to a server.
Specify a number of seconds that will elapse before an attempt is made
to connect to the remote machine. If the connection is already
established no attempt to connect will be made. If you set this value to
0 (default) automatic connection is disabled.

This setting controls the amount of data sent over the network
connection. The default is 'No'. For the source block the amount of bytes
specified in the block definition file is sent. for the destination block the
amount of bytes specified in the block definition has to be received
before a block is generated. This setting is preferred for inter GSEOS
connections or connections that generate fixed length data.

If you specify 'Yes' for this setting the connection uses variable length
packets. The blocks specified in either Source or Destination have to
have a 32-bit field called 'Len' as the first data item. For Source blocks
the Len field specifies how many bytes of data are transferred. The Len
field itself is not sent, only the data immediately following the Len field.
For Destination blocks the Len field is filled with the amount of data read
from the network connection. When more data is received than can be
placed in the block multiple blocks are generated.

The network module is considered a data source. The default behavior
for the network will be to discard all data received on the network
connection unless the network is enabled. There are some
circumstances where this is not desirable. E.g. consider the case of
remote commanding. In this case we may have incoming data from the
Bios but want to be able to feed in command data over the network. If
we were to enable the network the Bios data would be discarded, not an
option. However if the Bios is enabled (and the network therefore
disabled since all data sources are mutual exclusive) all command data
from the network would be discarded. To enable network input while
getting data from another data source set this value to 'No' and do not
enable the network. The default is 'Yes' which means all incoming data
from the network is discarded unless the network is enabled.

Connecting two GSEOS machines

Oftentimes it is desirable to distribute the data decoding/display to various machines.
This can easily be done by having one machine exporting a data block and the other
importing the same block. The default behavior of a connection is to export/import the
entire block. This is a fixed size packet based on the block definition for the block you

© 1998-2005 GSE Software, Inc.

122

Gseos

41.7.7

import or export. This is what you need to interconnect two GSEOS machines (given of
course that the block definitions on both machines are the same!). The decision which
machine to configure as server and which one as client pretty much depends on where
you want to initiate the connection from. The client machine has to initiate the
connection. Lets assume we have two machines, the Lab machine with the physical data
connection to the instrument and an Office machine were we want to run remote display.
The Lab machine will be configured as server and the Office machine as client so we can
start the remote display from the Office machine. The block exported by the Lab machine
and imported into the client machine is TLM. We also want to enable commanding from
the Office machine. This means we have to set the Exclusive setting on the Lab machine
to 'No'. If we don't want to enable commanding we would not need to set the Exclusive
flag to 'No' and we would not need to specify the CMDSTRING block in either
configuration. Here the configuration for the Lab machine:

[Net]
TLMSrv=Server

[TLMSTrv]

Port=2020

Source=TLM
Destination=CMDSTRING
Exclusive=No

Here the configuration for the Office machine:

[Net]
TLMClient=Client

[TLMSrv]
IP-Address=150.134.123.87
Port=2020
Source=CMDSTRING
Destination=TLM

Printer

The [Printer] section allows to configure the printer settings.

Entry Description

PrinterInit Allows to send an initialization file to the printer when GSEOS is started.
The name of this file is specified with this entry. If you don't want to
send a file to the printer specifiy 'None'.

Pagelnit The entry Pagelnit allows to send a file to the printer before a page is
printed (e.g. a printer macro). The name of this file is entered here. If
you don't want to send a file to the printer before every page specifiy
'None'.

PageExit The entry PageExit allows to send a file to the printer after a page has
been printed. The name of this file is entered here. If you don't want to
send a file to the printer after every page specifiy 'None'.

MetaFile The entry Metafile allows to send a Windows Metafile to the printer
before a page is printed. The name of this file is entered here. If you
don't want to send a file to the printer after every page specifiy 'None'.

FontSize Specifies the requested height, in logical units, for the font. If this

© 1998-2005 GSE Software, Inc.

GSEOS Reference 123

Font

UserOrigin

UserArea

DatePos

TimePos

PagePos

TitlelPos

Title2Pos
Title3Pos
Title4Pos
CaptionPos

Example

parameter is greater than zero, it specifies the cell height of the font. If
it is less than zero, it specifies the character height of the font.
(Character height is the cell height minus the internal leading.
Applications that specify font height in points typically use a negative
number for this member.) If this parameter is zero, the font mapper
uses a default height. The font mapper chooses the largest physical font
that does not exceed the requested size (or the smallest font, if all the
fonts exceed the requested size). The absolute value of the nHeight
parameter must not exceed 16,384 after it is converted to device units.
The font size is used for the fields Date, Time, Page, Caption and Titlel
to Title4.

Specifies a font. The font must be available in the windows environment.
The default font is Courier. The font is used for the fields Date, Time,
Page, Caption and Titlel to Title4.

Specifies the user origin of the paper. The entry is entered as 'x,y',
where x is the x-positon in mm and vy is the y-position in mm relative to
the upper left corner of the paper. All following position are relative to
the user origin.

Specifies the area GSEOS can print in. The entry is entered as 'x,y',
where x is the width in x-direction in mm and vy is the height in y-
direction in mm. This means that the top left corner is the UserOrigin
and the bottom right corner is UserOrigin + UserArea.

Specifies the position where the date will be printed. The entry is
entered as 'x,y', where x is the x-positon in mm and vy is the y-position
in mm relative to the UserOrigin. If 0,0 is specified no date is printed.
Specifies the position where the time will be printed. The entry is
entered as 'X,y', where x is the x-positon in mm and vy is the y-position
in mm relative to the UserOrigin. If 0,0 is specified no time is printed.
Specifies the position where the page number will be printed. The entry
is entered as 'x,y', where x is the x-positon in mm and y is the y-
position in mm relative to the UserOrigin. If 0,0 is specified no page
number is printed.

Specifies the position where the title 1 will be printed. The entry is
entered as 'x,y', where x is the x-positon in mm and vy is the y-position
in mm relative to the UserOrigin. If 0,0 is specified no title is printed.
The titles can be entered in the printer dialog box.

See TitlelPos.

See TitlelPos.

See TitlelPos.

Specifies the position where the caption title of the window will be
printed. The entry is entered as 'x,y', where x is the x-positon in mm
and y is the y-position in mm relative to the UserOrigin. If 0,0 is
specified no caption title is printed.

The following example sets up a typical printer environment.

[Printer]
PrinterInit
MetaFile
FontSize
Font
UserOrigin

none
celias.wmf
60
Helv

30,70

© 1998-2005 GSE Software, Inc.

124

41.7.8

41.7.9

Gseos

UserArea = 150,200
DatePos = 154,13
TimePos = 154,22
PagePos = 154,31
CaptionPos = 40,65
TitlelPos = 80,13
Title2Pos = 80,22
Title3Pos = 80,31
Title4Pos = 60,50
Project

The [Project] section holds some project specific attributes like the project name and
main window caption bar title.

Entry

Name

Title

Version

SplashBitmap

Example

Description

This entry specifies the name of the project. The name of the project
must match the name of the block definition file. (e.g. for the project
'image' the blk-file must be named 'image.blk"). If you specify block
definition files in the Config section the default block file is not loaded by
default but the files you specify in the BlkFiles entry of the [Config]
section.

The title entry specifies the entry in the main window caption bar
(usually the same entry is used for Name and Title). The default is
GSEOS.

This takes an arbitraty string and is reported in the version information
section on system startup.

You can specify a .bmp file (256 colors) that is displayed as the splash
screen on system startup. If you don't specify an entry a file with the
name of the project (as specified with the Name entry) with the
extension .bmp is opened. If no such file exists the GSEQOS internal
bitmap is displayed.

The following example shows the project setup for the experiment Image.

[Project]
Name = Image
Title = Image
Version = 4.2.2
PyStartup

The [PyStartup] section allows you to import Python modules and packages and to
execute Python statements at startup.

Entry
Import

Exec

Assignment

The module or package to import. Do not specify the file extension. The
module name specified should be the same that you would use in a
Python import statement. The module or package must be in the Python
search path to be loaded successfully.

This entry executes the Python statement listed. This is especially useful
to import startup files into the __main__ namespace. Please check the

© 1998-2005 GSE Software, Inc.

GSEOS Reference 125

41.710

FAQ for more details on how to configure startup behavior.

Example

The following example lists a typical startup scenario. The package TC_TLM_Load is
imported and accessible from the console window as TC_TLM_Load. The Startup.py
module is loaded into the __main__ namespace and all attributes defined in the startup
module will be available from __main__.

[PyStartupMaster]
Import = TC_ TLM Load

Exec = from Common.Startup import *
Exec = from i LORRI.StartupMaster import *
Recorder

The [Recorder] section is used to control the recorder module. Another section that is
used in conjuction with the recorder is [Timebase].

Entry Description

DataPath This entry specifies the path where the recorder files are stored. The
path can be relative to the project path, or absolute. If an absolute path
is specified only physical drives are allowed. If you have a substituted
drive g: on the path c:\users\gseos, for example, and you want to store
recorder data in g:\data you have to specify c:\users\gseos\data. Note
that changing this setting does not take effect until you restart GSEOS.
This setting is also modified using the Recorder Settings dialog.

FileSize The entry FileSize specifies the length of a recorder file in kB. When the
size limit is reached the current recorder file is closed and a new file is
opened.

Prefix In automatic mode the automatically generated file name will be

prefixed with the value under this entry.

IdleCheckPeriod When playing back data in the fast forward or fast backward mode the
system throttles the playback speed depending on the system load. By
default an idle check is performed every 10 blocks. If the system is still
busy no data is played back until the timer expires again and the idle
check is performed again. You can adjust the number of blocks to play
back before performing this idle check. The larger the humber the fast
the playback will be at the expense of system responsiveness. The
default value is 10.

FastPlaybackBlockCnt When playing back data in the fast forward or fast backward
mode one block gets played back every time the playback timer expires.
You can adjust this setting to play back more blocks and therefore
speeding up the playback of data. As with the IdleCheckPeriod setting
this will increase playback speed at the expense of system
responsiveness. The default value is 1.

© 1998-2005 GSE Software, Inc.

126 Gseos

Compress If this setting is 'Yes' compression is turned on. Depending on the data
contents you will be able to save significantly more data (3-20 times)
within the same file size. You might want to adjust the FileSize setting
accordingly. By default Compression is turned on, if you want to turn it
off set it to 'No'. The default is 'Yes'.

Record The value has to be the block name to be recorded. You need one
Record entry per block you want to record. Typically these entries are
set interactively from the Recorder Settings Dialog.

Playback The value has to be the block name to be played back. You need one
Playback entry per block you want to put on the playback list. Typically
these entries are set interactively from the Recorder Settings Dialog.

Timebase This setting allows you to configure a time base for the recorder data.
You can specify multiple different time bases. You need one Timebase
entry per time base you want to configure. The value of this entry is the
name of the time base section that configures this time base. See also
in the [Timebase] chapter for the individual time base configuration
options and a sample.

Example

The following example sets up a recorder environment.

[Recorder]
DataPath=Data
Prefix=EM
FileSize=1000
Record=RecComment
Record=SFDUCmd
Record=PeriodicMsg
Record=NoData
Record=CIDPRequest

Playback=RS232Raw
Playback=SFDUCmd
Playback=HK
Playback=CMDSTRING
Playback=TLM

4.1.7.10.1 Timebase

The [Timebase] section configures different time bases you can use to save in your
recorded data. The section name is actually not [Timebase] but a name you specify in
the Timebase entry in the [Recorder] section. Please see the example below. Once you
specify a time base you can navigate the recorder data by this time base. See also the
[Recorder] section for other recorder specific configuration settings.

Entry Description

© 1998-2005 GSE Software, Inc.

GSEOS Reference 127

41.7.11

Name The name is used as a label in the user interface. Please keep it
relatively short since it will determine the space of the other user
elements. This name is also saved in the recorder file together with the
actual times recorded.

Time A Python expression that returns a long value that represents the
current time of you time base. Python long values are not restricted in
length so you can use any precision required.

Format A Python expression that results in a string representing a given time.
The time variable you will get passed to this function is 'Time'. The value
of 'Time' is the long you saved earlier with your Time function. You
should return a string that is a human readable representation of your
time.

Example

The following example defines a Timebase Clock and configures it in the time base
section [Clock]:

[Recorder]

TimeBase = Clock

[Clock]

Name = Realtime

Time = long(time.time ())

Format = time.strftime ("%Y/%m/%d $H:3M:%S", Time)
System

The [System] section allows to setup some GSEOS system specific attributes.

Entry Description

Configurable This entry can be 'Yes' or 'No'. If you specify 'Yes' (the default) the
system allows the full flexibility and is interactively configurable by
the user. This involves modifying screens, and desktop files. If the
system is setup as not configurable no files can be modified by the
user. This may be useful as safety precaution and prevent
accidental system misconfiguration.

Editor This entry specifies the default editor to be used.

Net 'Enable’ sets the network as the default data source. By default the
network is no enabled. You can also enable the network once the
system is running using the GSEOS Explorer.

BlockListing This setting enables or disabled the block listing capability. See also
the Block Definition File section for further information on block
definitions. If you set this entry to 'Yes' the File/New dialog will
contain file type: Block listing (*.Ist). This will allow you to generate
a detailed report about the bit allocations of your blocks.

© 1998-2005 GSE Software, Inc.

128 Gseos

StatusBar Display the GSEOS status bar. 'Yes' (default) will display the bar,
'No' will hide it.

ToolBar The position of the ToolBar, you can specify 'Top' (default), 'Left', or
'Right'.

ConfirmTermination If this entry is set to 'Yes' a dialog will pop up to confirm
termination of GSEOS. This may be useful when you run important
tests and don't want to accidentally shut down GSEOS. The default
is 'No' and the system terminates without prompting.

DesktopAutosave GSEOS by default saves the current desktop as AutoDskN.dt where
N is the current instance. If you load a saved desktop any changes
to this desktop are not saved automatically and the system does
not prompt for confirmation if you want to save the changed
desktop. If you set DesktopAutoSave to 'Yes' the currently active
desktop will be saved on system exit. If you specify this file in the
Load entry of the [Config] section this will automatically restore the
last desktop configuration (similar as the AutoDskN.dt behavior). If
you set the DesktopAutosave entry to 'No' (the default) the file
AutoDskN.dt will still be written to disk.

Example

The following example shows a fully configurable system that uses notepad for editor

purposes.

[System]

Configurable = Yes

Editor = notepad.exe

4.1.8 Text Reference Files (*.tr)

Text reference files let you map numeric values into text. This is especially useful for
status values. Besides the text representation a color code can be stored with the text
reference. If you choose to display a data item represented as a text reference (casting)
the colors will be displayed accordingly.

File Format

Each text reference must have a unique name, enclosed in curly brackets. Then the
lookup items are listed. The value to be looked up or a range indicated by low limit - high
limit is followed by a comma and the text to be displayed. The last parameter is a color
code, alternatively the color code can also be spelled out by listing the color by name in
the order:

foreground color on background color

The colors are only used for display purposes, if you access the text reference through
Python you will only retrieve the string but you can also request the color code if you
want to implement your own color display.

Color Names
The following strings are valid color names (the names are case insensitive):

e BLACK
e BLUE
e GREEN

© 1998-2005 GSE Software, Inc.

GSEOS Reference 129

CYAN

RED
MAGENTA
BROWN
LIGHTGRAY
DARKGRAY
LIGHTBLUE
LIGHTGREEN
LIGHTCYAN
LIGHTRED
LIGHTMAGENTA
YELLOW
WHITE

Python Access
All text references can be accessed through the GseosTextRef module.

Here is how you query for the text reference:
GseosTextRef.fGetText ('TextReferenceName', Value)

The return value is the string defined for the value that was passed in or the empty
string if the value doesn't match any defined lookup item or range. If the text reference
specified in the function call is not loaded a KeyError exception will be raised.

The fGetltem() function returns the text and the color code as a tuple:
strText, iTextColor, iBackColor =
GseosTextRef.fGetItem('TextReferenceName', Value)

#
Sample text reference file.
#
D

igSnsr { 0, "OK ", OxAOQ0;
1, "Err", 0xCO}

PriSec { 0, "Primary " , 0xb0;
1, "Secondary" , 0xb0}

AliceState { 0, " Off ", 0x0C;
1, " Checkout ", 0xBO;
2, " Safe ", 0xBO;
3, " Acquire ", 0xBO}

AcgMode { 0, "™ Pixel ", 0x70;
1, " Histo ", 0x70}

StateMode { 0, ™ Off ", BLACK on WHITE;
1, " Checkout ", MAGENTA on LIGHTRED;
2, " Safe ", GREEN on WHITE;
3, " Acquire-Pixel ", GREEN on WHITE;
4, " OFF (4) ", GREEN on WHITE;
5, " Checkout ", RED on WHITE;
6, " Safe ", RED on WHITE;
7, " Acquire-Histo ", RED on WHITE}

© 1998-2005 GSE Software, Inc.

130 Gseos
4.2 Directory Structure
The GSEOS application consists of various system as well as configuration files. These
can be moved to any location within the file system as long as the internal structure
remains the same. No Registry settings are necessary or need to get changed in order to
move the GSEQOS directory to another location. The main directory that contains the
gseos.exe executable and the GSEOS DLLs (*.pyd files) is referred to as GSEQOS root
directory.
El _| GEeos 4

A7 Diata -

_| Demo -F”

..... _| Doc

27 Include

7 Pythan

é ----- _J Sampmg

...... _I S':."S‘tem
The GSEOS root directory contains all the GSEOS executable files like gseos.exe, *.pyd
files, as well as various configuration files, gseos.ini being the most important one. Block
definition files as well as other configuration files can be located in the main directory as
well. Typically this directory is named after your instrument or spacecraft, i.e.: Mimi
The Data directory is just by convention and receives the recorded files. The Demo and
Sample directorys contain sample files.
The Doc directory contains this file which will be invoked from the GSEQOS help. The
Include directory contains all the include and library files necessary to build Python
extension modules for GSEOS. The Python directory and subdirectories contain all the
Python files for the current distribution.

4.3 Gseos Python Interface

GSEOS uses the scripting language Python as its command and control language. You
can interact with the GSEOS Python interpreter directly using the Console window. You
can issue ordinary Python commands in this window and interface to GSEQOS. The rest of
this chapter describes the GSEOS Python interface. For further information on Python in
general please refer to the Python Documentation on the Python home page at
http://www.python.org.

The GSEOQS interface to Python is relatively small. It provides support for commanding as
well as Decoder, Monitor, and Sequencer modules. Your block definitions are exported as
Python classes which allows you to access your real-time data easily through Python
scripts.

Let's assume you defined a block called TLM in the block definition file with the following
layout:

TLM

{
Length ;0 4 32;
ApID , 4, 4, 16;

Data[800] , , , 8;
}

© 1998-2005 GSE Software, Inc.

GSEOS Reference 131

To access the value of the ApID item in the TLM block you simply type TLM.ApID in the
console window. This prints out the current value of the ApID item. Note, that if you
would issue the same command again you may get a different value since your
instrument may have generated a new TLM block. Besides reading items you can also
write items. This is useful when you write a decoder script to generate derived data (e.g.
de-subcommutation). To write an item you simply assign a value to it, e.qg.:

PHA.Data[10:20] = 2

The above line would set all elements between 10 and 20 (not including 20) of the Data
item in the TLM block to 2. However, at this point you have not generated a new data
block! If you would read the data back you would not get 2! In order for the block to be
generated you have to forward it to the system with the send() command:

PHA.send ()

Python structures it's modules in namespaces. The default namespace is __main__, this
is the namespace you will see when using the console window. All the default GSEOS
modules are imported into the __main__ namespace. The command handling is
implemented in the GseosCmd namespace which in turn is imported into the __main__
namespace. E.g. to issue a command you would use the send() function. To send the
byte sequence 1, 2, 3 to the command channel DEV_POWER you would simply type
cmd.send (DEV_POWER, 1, 2, 3) in the console window. To use the cmd module in your
own scripts you have to import it, e.g.:

import cmd
cmd.send (DEV_POWER, 1, 2, 3)

The following subchapters describe the various interface modules in detail.

4.3.1 Modules

© 1998-2005 GSE Software, Inc.

132 Gseos

4311 _ _main__

The __main__ module imports the GSEOS block and item definitions. You can access
data items with the usual Block.Item notation. All the block definitions from the block
definition files are imported so you can directly access them from the console window. If
you want to use the block definitions in your scripts you have to include an import
__main__ statement at the top of your script. When you read data items you get their
current value, that means two consecutive reads may result in two different values if the
data changes in the meantime. To access arrays you use Pythons slicing syntax. Keep in
mind that writing a data item does not result in the block being posted to the GSEQOS, nor
can you read the value you just wrote! In order to make the data available to the system
you have to call the send() function on the block once you have written all the necessary
data items of that block. Check the Decoder module for more detailed information on
how to create data blocks. Keep in mind that the block variables are shared resources, if
you want to generate a block from multiple threads you have to synchronize access to
the block variables. Refer to the Python thread module for more detailed information
about threading and synchronization.

To write a Decoder or Monitor you want to take action whenever a new data block arrives
in the system. You can create an instance of the Decoder or Monitor objects and add
them to the list of Decoders or Monitors for that particular block. Your Decoder or
Monitor will be called and evaluated every time a new block of that type arrives. Please
refer to the documentation of the Decoder and Monitor modules for more detailed
information.

GSEQS supports the concept of data sources. The Bios, Recorder, Net, etc. are all data
sources. They are mutually exclusive, i.e. if you turn on the recorder for playback the
Bios data source will be stopped and not generate any data (which otherwise could
interfere with the recorder output). By default all blocks you generate from your Python
scripts will be handled as decoder output (not as a data source). This means all your
decoders will perform no matter what the input data source is. This is usually the
behavior you would expect if you write a Decoder. If you plan on using Python as a data
source you will have to first enable the Python data source by calling
GseosBDM.EnableDataSource (strName, bEnable). Once you call this function with the
bEnable parameter set to 1 all data sources but Python will be disabled. All the blocks
you want to generate from the data source take an additional parameter in the send()
call. If you pass TRUE as the bDataSource parameter of the send() call your blocks will
be generated from the Python data source and participate in the mutually exclusive data
source scheme.

4.3.1.1.1 GseosBDM.EnableDataSource

EnableDataSource(strName, bEnable)

This function allows you to generate your blocks from the Python data source. Set
bEnable to TRUE if you want to enable this data source, set it to FALSE if you want to
disable it. Make sure to generate your blocks with the bDataSource parameter set to
TRUE in the send() function.

Parameter Description

strName The name of your data source. This name will be displayed in the
caption bar if the data source is active.

bEnable TRUE to enable the data source, FALSE to disable it.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 133

Returns
None

4.3.1.1.2 send

4.3.1.2

send([bCopyMode], [bDataSource])

The send member function is a method of all BDM blocks. You use this function to
generate blocks of that particular type.

Parameter Description

bCopyMode Optional. If TRUE the contents of the block will be copied into the next
block. The default is FALSE and you will get an uninitialized block after
you sent off the current one.

bDataSource Optional, defaults to FALSE if not specified. If TRUE the block is
generated from the Python data source and is mutually exclusive with all
other data sources in the system. To enable the data source call
GseosBDM.EnableDataSource(). You usually specify this parameter only
if you write a data source in a Python module.

Returns

None

Example
TestDec.Data[0:100] = TLM.Data[0:100]
TestDec.send ()

Decoder

A decoder is a function that gets triggered on arrival of a specific block. It then reads
data from this block and maybe other blocks and generates new blocks. In order for the
decoder to be called on the arrival of a specific block it has to be registered with this
block. To do this you have to create a decoder object and add it to the list of decoders
for that block. Every time the block arrives your decoder will be executed. The decoders
will be executed in the order they appear in the list of decoders for the block. Usually as
the system grows you will need to refine your data products more and more. This will
naturally lead to a layered system of blocks and decoders. You can display the decoder
hierarchy in the GSEOS Explorer.

To construct a decoder you have to instantiate a decoder object of the decoder class. The
constructor of the decoder object takes the unique decoder name, the decoder function
you want executed and a list of blocks the decoder outputs. The decoder function itself
takes one parameter. The block that triggers the decoder is passed into the decoder
function. Therefore when you register one decoder for multiple blocks you will be able to
distinguish which block arrived. In the list of output blocks you specify all blocks you may
generate. This allows the system to give you an overview of the decoder hierarchy. You
can manage your decoders with the GSEOS Explorer.

The decoder can be disabled by setting bEnable to false. It can be reenabled by setting
bEnable to true. The variable dwCnt holds the number of times the decoder has been
executed. You can reset this value if desired.

If the decoder raises an exception it will be disabled. You should catch all exceptions you

© 1998-2005 GSE Software, Inc.

134 Gseos

don't want to terminate the decoder.
It is advised that you give your decoder a documentation string. This documentation will
be displayed in the GSEQOS Explorer.

For more information please refer to the examples:

e Simple dispatch decoder
e Variable length spin decoder

4.3.1.2.1 bEnable

Property: bEnable
Enable or disable the decoder.

Example
Disable the decoder from a script:

oMyDec.bEnable = 0

4.3.1.2.2 constructor

Decoder(strName, fDecoder, ctChildBlocks)

The Decoder constructor creates a new decoder. You have to specify a unique name, a
decoder function, and a container of child blocks generated by the decoder. In order to
start the decoder you have to add it to the list of decoders for the block(s) you want to
register your decoder for.

Parameter Description

strName The unique name identifies the decoder. This is the name you will see in
the GSEOS Explorer.

fDecoder Your decoder function. It takes one parameter which is the block that

triggers the decoder (if you register the decoder for more than one block
you can use this parameter to determine the source block). If this
function throws an exception the decoder is terminated.

ctChildBlocks = The data blocks your decoder is going to generated. List all blocks your
decoder may generate. Given this information the decoder hierarchy can
be examined with the GSEOS Exporer.

Returns
The new decoder object.

Comments

In order for the decoder to be useful you have to hook it on the arrival of a block. You do
this by adding it to the list of decoders for the block you are interested in. See the
example below.

Exceptions

TypeError The decoder name has to be a string.

DecoderError The fDecoder parameter has to be a callable object. The child list
contains invalid blocks.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 135

Example

The following example defines a decoder function that simply converts the input data and
generates one output block for every input block. It then sets the arrival hook for the
input block.

#
Simple conversion decoder
#
def fDec (oInputBlock):
for i in range(len(oInputBlock.Data)):
OutBlock.Data[i] = oInputBlock.Datal[i] * 23
OutBlock.send()

#

Hook the decoder to the input block

#

oMyDec = Decoder.Decoder ('Convert', fDec, [OutBlock])
InputBlock.Decoders.append (oMyDec)

4.3.1.2.3 Delete

Delete()
Deletes a decoder.

Returns
None

Comments

The GSEOS Explorer holds a reference to every decoder created. Even if your object goes
out of scope the Explorer will hold on to the decoder. To release the decoder you have to
call Delete() first and then destroy the decoder object itself (e.g. by letting it go out of
scope). Usually there is no need to delete a decoder.

Example
Release our current decoder and then destroy the decoder object.

oMyDec.Delete ()
oMyDec = None

4.3.1.2.4 dwCnt

Property: dwCnt
The number of invocations of the decoder. You can set this value if desirable.

4.3.1.2.5 Examples

4.3.1.2.5.1 Simple Decoder

This simple decoder dispatches one incomming block into different output blocks
depending on the item:ApID. The ApID determines the type of the block. Lets say we

© 1998-2005 GSE Software, Inc.

136

Gseos

have four different data packets which are all received through one common block:

RawTLM. The block definition of the RawTLM block is given below:

RawTLM

{
ApId ror o 167
Length v 323

Data[4000] , , , 8;
}

The Length item indicates the number of valid data bytes in the Data item. Our four

destination blocks are Sc,

Sc
{
Length v o0 32;
Data[4000] , , , 8;
}

Hk
{
Length v 323
Data[4000] , , , 8;
}

Pha
{
Length r oo 325
Data[4000] , , , 8;
}

Rates
{
Length v oo 32;
Data[4000] , , , 8;
}

The ApIDs for the various blocks are listed in the table below:

ApId Block
1 Sc

2 Hk

3 Pha

4 Rates

Hk, Pha, Rates with the following block definitions:

The decoder function has to determine which destination block to generate depending on
the ApID and then copy the data depending on the Length field to the destination block.
Finally we have to set the Length field of the destination block and forward it to the

system. Here the decoder function:

#

Import block definitions,
#

from main import *

import Decoder
import Gseos

Decoder class and other stuff

© 1998-2005 GSE Software, Inc.

GSEOS Reference 137

#
RawTLM Block decoder Function
#
def fDecRawTLM (oBlock) :
"RawTLM decoder dispatches raw data into high level packets"

wLength = oBlock.Length

If we have any clue of the distribution of the blocks
order the following switch by frequency.

H= o o

if oBlock.ApID ==
oDest = Sc

elif oBlock.ApID ==
oDest = Hk

elif oBlock.ApID ==
oDest = Hk

elif oBlock.ApID ==
oDest = Hk

#

Oops, invalid type id. Log error to message window and ignore.

#

else:
GseosCmd.msg ('DecTLMRaw: Invalid ApId %d received' % oBlock.ApID)
return

#

Copy the data to the destination block and send it off.

#

oDest.Data[:wLength] = oBlock.Data[:wLength]

oDest.Length
oDest.send ()

wLength

Once we have the decoder function defined we have to assign it to the RawTLM block to
get executed:

#
Create a new decoder.

#
oDecRawTLM = Decoder.Decoder ('DecRawTLM', fDecRawTLM, [Sc, Hk, Pha, Rates])

#
Assign it to the RawTLM block.
#
RawTLM.Decoders.append (oDecRawTLM)

After we execute this script we can examine the decoder in the GSEOS Explorer. If we
choose the Block node and list all the blocks in the system we should see our RawTLM
source block. Extending the Decoders node beneath the RawTLM block lists our decoder
and indicates that it is running. On the right hand pane we can also see the output blocks
generated by the RawTLM decoder.

By right-clicking on the decoder node you can also disable or delete the decoder.

© 1998-2005 GSE Software, Inc.

138

Gseos

* GSEDS Explorer =] E3

Pha Block Size Count | First Item | Items | Type T azks

Ficture =@ Hk 4004 0 136 2 Intem 1024

PRMCommert -4 Pha 4004 0 138 2 Intem 1024

Rates “@Rates 4004 0 40 2 Intem 1024
0 2

Em;l;l'ell_-nh: =@Se 4004 134 Intern 1024

-1 Decoders

3R € = v TL
f[] Moritars

¥l-=@ RecComment

@ RS232Raw

= Sc

---.-:-4 SpncCommand LI 4 |

If we now further expand the DecRawTLM decoder node we can traverse the entire
decoder hierarchy. In our case we don't have any child blocks after the Sc, Hk, Pha,
Rates blocks.

To run this example please install the decl.blk block definition file in the demo/decl
folder, restart GSEOS and load the decl.py decoder script from the same directory.

4.3.1.2.5.2 Variable Length Decoder

Oftentimes the data is not formatted at fixed boundaries but 'variable length'. The
following decoder gives an example of how to deal with this kind of data. Here we get a
block called Event that contains 8 spins with time-of-flight data. The spins variable length
and 'packed' in the Events TOFData item. The length of the following spin is indicated in
the word preceding the spin data. Our job is to 'walk' the linked list of spin data fields,
and copy the data from the source block into the TOFSpin destination block. Below are
the definitions of the Event source block and the TOFSpin destination block. If you plan
to install this example please load the Dec2.blk block definition file by entering it in the
gseos.ini file in the Config/BlkFiles section. Run the dec2.py sample decoder to install the
decoder.

* Event Data Blocks

*

Event ({
(Data[6008] s 81)
Met ;00 32;
SpinVern 0, 832
TOFData[3000] ,,,16;
Cksum s 87

© 1998-2005 GSE Software, Inc.

GSEOS Reference 139

TOFSpin {
Cnt[8] rrr16;
DataSp0[260] ,,,16;
DataSpl[260] ,,,16;
DataSp2[260] ,,,16;
DataSp31[260] ,,,16;
DataSp4[260] ,,,16;
DataSp5[260] ,,,16;
DataSp6[260] ,,,16;
DataSp7[260] ,,,16;

}

The following decoder script gets a local copy of the destination data items for quicker
access during decoder runtime. It takes advantage of the naming of the items in the
TOFSpin block and loops over the dictionary extracting the items by name. It then
defines the decoder function fDecEvent and registers it for the Event block. As you can
see it is not necessary to create a temporary decoder object which you then append to
the decoder list of the Event block. Instead you can simply pass the result of the
constructor into the append function directly.

#

Decode Event Data

The Event Data consists of 8 spins with variable length data. Each spins
data is prepended with a count indicating the length of the following
data

field. Walk the list of spins and extract the event count and event data
for every spin and assign it to the appropriate items of the TOFSpin
Block.

#

from main import Event, TOFSpin

import Decoder

#

#

Get the SpinData items from the TOFSpin block. Instead of assigning

one array item at a time we loop over the items accessing the

dictionary directly.

#

SpinData = []

for wSpin in range(8):
SpinData.append (TOFSpin. dict ['DataSp'+str(wSpin)])

def fDecEvent (Event) :
"TOF Event Decoder"
wLengthPos = 0

#
Loop over all spins, extract the length of the following spin, and
copy the spin data. The advance to the next spin.
#
for wSpin in range(8):
wSpinLen = Event.TOFData[wLengthPos]
TOFSpin.Cnt[wSpin] = wSpinLen

#
Get the spin data

© 1998-2005 GSE Software, Inc.

140

Gseos

#
wPos = wLengthPos+1
SpinData[wSpin] [:wSpinLen] = Event.TOFData[wPos:wPos+twSpinLen]

wLengthPos = wPos + wSpinLen
#
Now we have filled in all our spins, ship the block to the system.
#
TOFSpin.send ()

#

Hook the decoder on arrivals of Event blocks.

Don't bother creating a temporary decoder object.

#

Event.Decoders.append (Decoder.Decoder ('TOF Event Decoder', fDecEvent,
[TOFSpin]))

4.3.1.2.6 strName

4313

Property: strName
The unique name of the decoder. You should not change this name after you created the
decoder. Rather delete the current one and create a new one with the desired name.

Gseos

The Gseos module implements several helper functions related to the GSEOS application.
You should import Gseos whenever you need to access application specific services. The
function help() which is implemented by this module is also directly available in the

~ main namespace. It displays this helpfile. Most of the functions also have a doc
string which you can access with: Gseos. function. doc
The FileMenu() function allows you to hook your own file types into the GSEOS file
handling. The Log() and LogSave() functions are used to append text to a GSEOS log and
to save the log file respectively. The MessageBox() and InputDialog() functions give you
simple input dialog boxes. The function PumpWaitingMessages() has a special meaning:
If you plan on performing time consuming computations in your scripts you will
effectively block the GSEOS user interface. To give the user interface a chance to operate
you should intersperse calls to PumpWaitingMessages() into your script (preferably into
the inner loop).

4.3.1.3.1 Gseos.FileMenu

FileMenu(fCallback, strFilterName, strExt, wFlags, [bPriority])

The FileMenu() function allows you to hook into the GSEQOS file handling and use the
common File/Open, File/SaveAs, etc. menus for your own file types. When you register
for file handling your callback routine will be called with the file name the user selected
and the operation he wants to perform on the file. You can register for all supported file
modes: New, Open, Append, SaveAs.

Parameter Description

fCallback The callback function should take two parameters: fCallback(strFile,
wMode) Where strFile is the file name the user selected and wMode is
one of the file modes specified in the flags parameter.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 141

strFilterName Description of the filter name. It should contain the extension, e.qg.
"Image Files (*.img)".

strExt The file extension including "*.", e.g. "*.img".

wFlags Specifies the file mode to register for. If this parameter is 0 this filter is
removed from the file handling. wFlags can be one or more of the
following constants. If you specify just one parameter you can simply
use the constant, for more than one parameter you have to supply the
values in a tuple. Here the constants valid for wFlags: REG_FILENEW,
REG_FILEOPEN, REG_FILEAPPEND, REG_FILESAVEAS

bPriority Optional, specifies the order in the list. Smaller numbers occur higher up
in the list. You should not install your custom filters before or in between
the standard GSEOS filters. If you don't specify this parameter the filter
is appended at the end of the list.

Returns
None

Comments

When your callback function is called all it gets passed is the name of the file the user
wants to operate on and the mode flag. The file is not opened or touched in any way.
The file operations you want to perform are up to you. However, if the callback function
is called with REG_FILEOPEN it is guaranteed that the file exists.

Example
The following sample defines a callback function that processes the file a user selects
from the File/Open menu. It then registers the filter with GSEOS:

from Gseos import *
def fOnImgFile (strFileName, wMode) :
if (wMode == REG_FILEOPEN):
fProcessMyFile (strFileName)

elif (wMode == REG_FILESAVEAS):
fSaveMyResult (strFileName)

Register with GSEOS

FileMenu (fOnImgFile, 'Image Files (*.img)', '*.img', (REG_FILEOPEN,
RE G_F ILESAVEAS))

4.3.1.3.2 Gseos.FileOpenDialog

FileOpenDialog([strDirectory], [strFileName])

The FileOpenDialog() function opens a Windows file open dialog that allows the user to

select a file.

Parameter Description

strDirectory Optional. The initial directory to set the dialog box to.
strFileName Optional. The file name to preset the dialog box to.
Returns

The file name of the file the user selected, None if the user canceled the selection.

© 1998-2005 GSE Software, Inc.

142 Gseos

4.3.1.3.3 Gseos.Getlnstance

GetInstance()

Gets the instance number of the currently running GSEOS instance. It is possible to start
multiple instances of GSEOS a the same time. If you specify the \I command line
parameter you can specify an instance number. This allows for different configurations
being launched for different instances. Check the gseos.ini file for more information on
instance settings.

Returns
The instance number.

Example
Gseos.GetInstance ()

4.3.1.3.4 Gseos.GetProjectPath

GetProjectPath()

The GSEQOS project path is the directory the gseos.exe application resides in. This is the
default directory for all file operations. This function returns the project path if you need
to access files relative to the GSEQOS project path.

Returns
The project path.

Example
Get the project path:

>>> Gseos.GetProjectPath ()
'c:\\gseos5.0\\prj\\messenger\\"

4.3.1.3.5 Gseos.help

help()

Shows the online help (this file).

Returns
None

Comments
This command is also imported into the __main__ namespace. That means that you can
simply type 'help' in the console window to get the help pages.

Example
The following examples displays this file.

help ()

© 1998-2005 GSE Software, Inc.

GSEOS Reference 143

4.3.1.3.6 Gseos.InputDialog

InputDialog(strText, [strTitle])

Displays an input dialog box. The text strTitle is displayed in the title bar of the dialog
box. The text strText is displayed as the input prompt.

Parameter Description

strText The input dialog prompt text.

strTitle Optional, The caption bar text. Default: GSEOS.
Returns

The text entered by the user or None if the user selected cancel.

Example
Display an input box asking for a HV level:

Gseos.InputDialog('Please enter the new HV level in [kV]', 'HV Level')

4.3.1.3.7 Gseos.InputDialogModeless

InputDialogModeless(strText, [strTitle])

Displays a modeless input dialog box. The text strTitle is displayed in the title bar of the
dialog box. The text strText is displayed as the input prompt. This function is the
modeless counterpart of the InputDialog() function. It allows you to perform other
operations within GSEOS while the dialog box is open.

Parameter Description

strText The input dialog prompt text..

strTitle Optional, The caption bar text. Default: GSEOS.
Returns

The text entered by the user or None if the user selected cancel.

Example
Display an input box asking for a HV level:

Gseos.InputDialogModeless ('Please enter the new HV level in [kV]', 'HV
Level')

4.3.1.3.8 Gseos.Log

Log(strLogFile, strText, [sColor], [byAttr])

Append text to a log file. The text strText is appended to the file strLogFile. The Log
command can even be issued if the corresponding Log window is not open. In that case
the text will be written directly to the file (a LogSave() is not necessary). If the file can't
be written the function throws an IOError.

Parameter Description
strLogFile The file name of the log file. You can specify a relative file name. The

© 1998-2005 GSE Software, Inc.

144 Gseos

default extension for log files is *.log.

strText The text to be appended to the the log file..

sColor Optional, an RGB tuple (iii) specifying the color of the text to insert. The
module defines several color definitions you can use instead of the RGB
representation: BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN,
LTGRAY, GRAY, LTBLUE, LTGREEN, LTCYAN, LTRED, LTMAGENTA,
YELLOW, WHITE.

byAttr Optional, specifies the text attribute. One or more of the following
attributes can be specified: BOLD, ITALIC, UNDERLINE. The default
turns all attributes off.

Returns
None

Comments

The color and text attributes are only displayed as long as the window is not closed. After
you reopen the window all these attributes will be gone. The reason for that is that the
text is stored in plain ASCII format which makes it easier for standard text editors and
processing software to handle the text. The text appended to the file is not written to
disk immediately. If you want to access the log file from another program you should use
the LogSave() function first.

Example

Log a comment:
Gseos.Log ('testprotocol.log', 'Start of test procedure A', gseos.BOLD)

4.3.1.3.9 Gseos.LogReload

LogReload(strLogFile)

The log file window is updated with the contents of the file from disk. This is useful when
the contents have been changed from another process.

Parameter Description

strLogFile The file name of the log file to reload.
Returns

None

Example

Reload the log file from the previous example:

LogReload ('testprotocol.log')

4.3.1.3.10 Gseos.LogSave

LogSave(strLogFile)

Save the log file to disk. The log file is not written to file with every Log() update but
when the window is closed. In order to access the log contents from outside the
application you have to save it.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 145

Parameter Description

strLogFile The file name of the log file. The default extension for log files is
*.log.

Returns

None

Example

Save the log file from the previous example:

LogSave ('testprotocol.log')

4.3.1.3.11 Gseos.MakePathRelative

MakePathRelative(strPath)

Returns a path relative to the GSEQOS project path. To get the GSEOS project path use
the function GetProjectPath(). If strPath is not a subdirectory of the GSEQOS project path
an absolute path will be returned.

Parameter Description
strPath The absolute path.
Returns

The path relative to the GSEOS project path.

Example
Make the path relative to the project path:

>>> Gseos.MakePathRelative ('c:\\gseos5.0\\prij\\messenger\\xrs")

'xrs'

4.3.1.3.12 Gseos.MessageBox

MessageBox(strText, [strTitle], [cButtons], [cIcon])

Displays a message box. The text strTitle is displayed in the title bar of the message box.
The text strText is displayed as the message prompt. The standard windows buttons can
be specified in the cButtons parameter. This message box is a modal window, that means
you can't access any other GSEOS user interface elements until you close the message
box. If you need a modeless message box use the MessageBoxModeless() function.

Parameter Description

strText The message prompt text.

strTitle Optional, The caption bar text. Default: GSEOS.

cButtons Optional, specifies the buttons to display. One of the following attributes

can be specified: MB_OK, MB_OKCANCEL, MB_RETRYCANCEL,
MB_YESNO, MB_YESNOCANCEL. The default is MB_OK.

clcon Optional, specifies an icon to display. MB_ICONEXCLAMATION,
MB_ICONINFORMATION, MB_ICONQUESTION, MB_ICONSTOP.

© 1998-2005 GSE Software, Inc.

146

Gseos

Returns
One of the following constants depending on the user action: IDCANCEL, IDNO, IDOK,
IDRETRY, IDYES.

Example
Display a message box that prompts the user to confirm issuing a dangerous command:

import Gseos
Gseos.MessageBox ('You are about to increase the HV level\n Do you want to
continue?',

'Confirm hazardous command', MB YESNO, MB ICONEXCLAMATION)

4.3.1.3.13 Gseos.MessageBoxModeless

MessageBox(strText, [strTitle], [cButtons])

Displays a modeless message box. This is useful if you want to prompt the user for input
while still being able to interact with the GSEOS main window. If you need a modal
message box please use Gseos.MessageBox(). In general you want the behavior of a
modal message box and stop the excution of your script until the user provides the
requested input.

The text strTitle is displayed in the title bar of the message box. The text strText is
displayed as the message prompt. The standard windows buttons can be specified in the
cButtons parameter.

Parameter Description

strText The message prompt text.

strTitle Optional, The caption bar text. Default: GSEOS.

cButtons Optional, specifies the buttons to display. One of the following attributes

can be specified: MB_OK, MB_OKCANCEL, MB_RETRYCANCEL,
MB_YESNO, MB_YESNOCANCEL. The default is MB_OK.

Returns
One of the following constants depending on the user action: IDCANCEL, IDNO, IDOK,
IDRETRY, IDYES.

Example
Display a modeless message box.

import Gseos
Gseos.MessageBoxModeless ('You are about to increase the HV level\n Do you
want to continue?', 'Confirm hazardous command', MB_ YESNO)

4.3.1.3.14 Gseos.PumpWaitingMessages

PumpWaitingMessages()

The function PumpWaitingMessages() allows all message queues to be processed and
therefore enables GSEQOS to run while a lengthy script is being processed. Call this
function several times (probably within a time consuming loop) to keep the system
responsive. An alternative to using this cooperative preemption scheme is the use of
threads.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 147

Returns
None

Example
The following example does some lengthy processing and enables the foreground
program to execute by calling PumpWaitingMessages().

for i in range (0, 2000):
fThisTakesAbout200ms ()

G
seos.PumpWaitingMessages ()

4.3.1.3.15 Gseos.SetActiveDesktopPage
SetActiveDesktopPage(strPageName)
Sets the active Desktop page to the one specified by strPageName.

Parameter Description
strPageName The name of the desktop page to activate.

Returns
None

If a page with the name strPageName does not exist a ValueError exception is thrown.

Example
Switches to the 'Test' page:

import Gseos
Gseos.SetActiveDesktopPage ('Test')

4.3.1.3.16 Gseos.SetStatusText
SetStatusText(strText)

Sets the text in the status bar of the GSEOS main window.

II-H--_:' —yp—- ——— 1

| | [

Eunsulel Mezsage | ITF EMBO IF'-.ﬂ‘n.Iic:el Glaphsl

| | Macro Mode On - STOL Log File: C:hGzeozb. 04PrivPlutatLog Files'AliceSTOL log Nu:ut.. !ecordin

Parameter Description

strText The text to display in the status bar.
Returns

None

Example

© 1998-2005 GSE Software, Inc.

148

Gseos

import Gseos
Gseos.SetStatusText ('STOL Log File: C:\\Gseos\\Prj\\Pluto\\Log")

4.3.1.3.17 Gseos.ShellExecute

ShellExecute(strPageName)

Invokes the default application that is associated with the document passed in. I.e. if
your htm documents are associated with Internet Explorer and you call
ShellExecute("index.htm") the browser will be launched with index.htm loaded.

Parameter Description
strDocument The document to view.

Returns
None

If an error occurs, like the file can not be found, a RuntimeError exception will be thrown.

Example
Open this file in HTML help:

import Gseos
Gseos.ShellExecute ("doc\\gseos.chm")

4.3.1.3.18 Gseos.WaitDialog

431.4

WaitDialog(iTimeout, strText, [strTitle])

Displays a wait dialog box. The text strTitle is displayed in the title bar of the DialogBox.
The text strText is displayed as the message prompt. A timeout value iTimeout specifies
the timeout in seconds. The timeout is counted down and can be interrupted with the
'Skip wait' button. The 'Abort' button returns also but with a result value of IDCANCEL. If
the timeout expires the function returns and the dialog box closes.

Parameter Description

iTimeout The timeout value in seconds.

strText The prompt text.

strTitle Optional. Specifies the title bar of the dialog, if not specified defaults to
'GSEOS'.

Returns

One of the following constants depending on the user action: IDCANCEL, IDOK. If the
Abort button was pressed IDCANCEL is returned, otherwise IDOK.

GseosBlocks

The GseosBlocks module replaces the old Blocks module. It allows easy access to the
GSEOS block definitions.

It provides to containers that allow access to blocks:

© 1998-2005 GSE Software, Inc.

GSEOS Reference 149

Blocks: This dictionary is keyed by block name and contains objects of type
GBlockProps.

BlocksByHandle: A list that is keyed by block handle. The values contained are objects
of type GBlockProps. See below for a description of these objects.

GBlockProps
You can access the following attributes of a GBlockProps object:

Block: The actual block object

Items: A list with all the item names of this block

EnableSelect: This attribute controls if the block is displayed in the block and item select
dialog boxes. This lets you simplify the user interface for complex
configurations (i.e. multipe instruments defining all their blocks). By
default EnableSelect is True, if you set it to False the block will be taken of
the select list. However, the block is still accessible from Python and is
otherwise not changed at all.

The following sample removes all blocks with block names starting with 'XRS_' from the
select block and select item dialog:

#
Remove all blocks starting with 'XRS '
#

import GseosBlocks

for strBlockName in GseosBlocks.Blocks.keys () :
if strBlockName[:4] == 'XRS ':
GseosBlocks.Blocks[strBlockName] .EnableSelect = False

To simulate the old Blocks module Blocks list you can use the following code:

#

The old code: Blocks.Blocks[hBlock] is equivalent to:
#

GseosBlocks.BlocksByHandle [hBlock] .Block

4.3.1.5 GseosCmd

The GseosCmd module implements the GSEOS command interface. The commands
availabe to you highly depend on your particular instrument and the hardware interface
to your instrument. In general all commands are byte sequences. The command module
implements the notion of command channels. You can use the command channels from
100 to 250 for instrument specific purposes. The assignment of command channels to
your instrument hardware depends on your BIOS module that handles all low level
commanding and hardware abstraction. The most important function in the cnd module
is send(). This function allows you to send byte sequences to various command channels.
You will usually implement a higher level of commanding on top of this function instead
of using it directly. Lets assume you have a power channel that allows you to power
various subsystems on the instrument. You then may want to define the following
command definitions:

#
#

Define the power command channel

© 1998-2005 GSE Software, Inc.

150

Gseos

#
DEV_POWER = 102

#
Define subsystem states
#

PRW_ON
PRW_OFF

1
0

#
Define subsystem IDs
#
SUB_HTR1
SUB_HTR2
SUB_HV

1
2
3

#

Define the subsystem power command

#

def SubSystemPower (SubSystem, bPower) :
send (DEV_POWER, (SubSystem, bPower)

4.3.1.5.1 GseosCmd.batchstart

batchstart(szFileName)

The batchstart function starts the execution of a GSEQOS batch file. To stop a running
batch file issue batchstop. See batch files for a description of the GSEOS batch file
format.

Parameter Description
szFileName The name of the batch file you want to start. Batch files have the file
extension .cpb.

Returns
None

Comments

If the file specified can not be opened no exception is thrown. The command processor
handles this error and pops up a dialog box. If you use this function in a script you may
want to open the file to make sure it exists before calling batchstart if this behavior is not
desirable.

Example
GseosCmd.batchstart ("mybatch.cpb")

4.3.1.5.2 GseosCmd.batchstop

batchstop()

The batchstop function stops the currently executing batch file.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 151

Returns
None

Comments
As opposed to the batch stop function of the command processor the cmd.batchstop
function does not ask for confirmation.

Exceptions
RuntimeError No batch file is currently executing.

Example
Stop the currently executing batch job.

GseosCmd.batchstop ()

4.3.1.5.3 GseosCmd.msg

msg(szMessage)

The msg function logs a message to the message window.

Parameter Description
szMessage The message to print.
Returns

None

Comments

This function emulates the msg command of the command processor and can be used
the same way as for the legacy command processor.

Example
Print a message into the message window.

GseosCmd.msg ("Hello, World")

4.3.1.5.4 GseosCmd.send

send(byChannel, ctData)

The send function issues a command to the underlying hardware. Refer to your
instrument documentation regarding the commands supported.

Parameter Description

byChannel The command channel to send the command to. The channel number
allows to address different hardware devices (depending on the BIOS).
The range from 100 to 200 is available for your own command devices
you may want to define. 0 to 99, and 201 to 255 are reserved for
system purposes.

ctData The data you want to send. This parameter accepts a single value or a
sequence. A sequence can contain nested sequences. A sequence is a

© 1998-2005 GSE Software, Inc.

152

Gseos

Returns
None

Comments

tuple, a list, or a string. If you use nested sequences the structure is
resolved depth first left to right. Strings are resolved character by
character, a terminating zero is not appended. A number or a character
is a terminal node and has to be in the range -127 to 255 (it has to be a
byte sequence). If you need to send words you can use a function that
takes a word and returns a tuple of bytes (using your required
endianity). Since only bytes are accepted the issue of endianity does not
arise. The total number of terminal nodes (bytes) in ctData can not be
larger than 256.

This is the lowest level function available for commanding. You generally want to wrap it
into higher level command functions which you then in turn assign to command buttons,
command menus and so on.

Exceptions
ValueError
TypeError
OverflowError

Example

One or more values of the ctData parameter are out of bounds (-127 to
255) or can not be converted into and integer value. The byChannel
parameter is out of bounds (0 to 255).

A value passed into the ctData parameter is not of type sequence (tuple,
list, string) or number.

The total number of bytes in the ctData sequence exceeds 256.

The following examples show different sequences passed into cmd.send().

#

Just a simple integer

#
cmd.send (22,

#
A tuple
#

cmd.send (22,

#
A string
#

cmd.send (22,

3)

(1,2,3))

"Hello, World")

A nested sequence

#

GseosCmd.send (22, ("This goes out first", 2, [3, 4, 5, "Another string",

(6, 7, 8)1))

© 1998-2005 GSE Software, Inc.

GSEOS Reference 153

4.3.1.5.5 GseosCmd.sound

sound(szWaveFile)

The sound function plays a wave file.

Parameter Description
szWaveFile The wave file to play.
Returns

None

Comments

This function emulates the sound macro defined in the system.cpd file. This macro is
obsolete, use the sound function instead.

Exceptions
RuntimeError The wave file could not be played.

Example
Play a wave file.

GseosCmd.sound ("boing.wav")

4.3.1.5.6 GseosCmd.winexec

winexec(szApplication, [iShow])

The winexec function launches an application.

Parameter Description
szApplication The application to start.
iShow The initial state of the application. This parameter is optional. The

default value is 1 (show normal).
0: Hide the application

1: Show normal

2: Show minimized

3: Show maximized

Returns
None

Comments
This function implements the Windows API function WinExec().

Exceptions
RuntimeError The application could not be started.

Example
Start notepad.

GseosCmd.winexec ("notepad.exe”, 1)

© 1998-2005 GSE Software, Inc.

154 Gseos

4.3.1.6 GseosConsole

The console module implements the GSEOS console interface. You usually don't need to
access the console module directly. In fact, tampering with this module may disable all
console output. This module is not imported into the __main__ namespace by default. In
order to use the console module directly you have to import it.

4.3.1.6.1 GseosConsole.off

off()
Disables the console window.

Returns
None

Comments

Be careful with this command. If you issue this command from the console window it will
be the last one! To turn the console window back on you can use the command line
editor and issue GseosConsole.on().

Example

The following examples disables the console window.
GseosConsole.off ()

4.3.1.6.2 GseosConsole.on

on()

Enables the console window.

Returns
None

Comments

This command enables the console output. To issue this command from the console
window the console has to be on to begin with! Therefore if the console window is
disabled you can not switch it on from within the console window. You can use the
command line editor to issue the command.

Example
The following examples enables the console window.

GseosConsole.on ()

4.3.1.6.3 GseosConsole.write

write(szText, [iRed, iGreen, iBlue])

The write function writes text to the console window. All output (from print commands

© 1998-2005 GSE Software, Inc.

GSEOS Reference 155

and so on) is redirected to this function. You can use it directly. The RGB parameters are
optional and allow you to specify any text color. The default color is black.

Parameter Description

szText The text to write to the console window.

iRed Optional parameter which specified the red component of the text color.
This value can be in the range 0 to 255.

iGreen Optional parameter which specified the green component of the text
color. This value can be in the range 0 to 255.

iBlue Optional parameter which specified the blue component of the text

color. This value can be in the range 0 to 255.

Returns
None

Comments

If this function actually outputs any data depends on the enable state of the console
window. If the console is disabled all output will be suppressed. You usually don't use
this function directly, however all standard Python functions you invoke that output any
text will use this function indirectly. After your text is output a prompt will be displayed.
In order to start the prompt on a new line you should include a carriage return character
at the end of your output.

Example
The following examples prints some text in red to the console window.

GseosConsole.write ("Hello, World", 255, 0, 0)

4.3.1.7 GseosConvert

The block definitions in GSEOS are not typed. This means all items are interpreted as raw
bit storage with no sign bit or floating point format. You may run into the problem that
your items are not raw binary data but signed values or floating point data. The
GseosConvert module offers functions to convert between various data representations:

ftol(): Performs a float to long conversion.
Itof(): Performs a long to float conversion.
signed(): Performs an unsigned to signed conversion.

4.3.1.7.1 GseosConvert.ftol

ftol(flvalue)

Performs a float to long conversion. The binary representation of the IEEE floating point
value is returned as a long. This function does not coerce to a long but interprets the
floating point value as a signed long.

Parameter Description
flValue The IEEE floating point value to convert.
Returns

© 1998-2005 GSE Software, Inc.

156 Gseos

The binary representation of the passed in floating point value as a signed long.

Example
The following example converts a floating point value to a binary representation that can
be assigned to a 32-bit data item:

flTemp = 72.34

HK.Temp = GseosConvert.ftol (fl1Temp)

4.3.1.7.2 GseosConvert.ltof

Itof(IValue)

Performs a long to float conversion. The binary representation of the long value is
returned as a floating point value. This function does not coerce to a float but interprets
the long parameter as a floating point value.

Parameter Description
IValue The long value to convert.
Returns

The corresponding IEEE floating point representation.

Example
The following example converts a long value (which is the binary representation of an
IEEE float) into a float:

72.34
GseosConvert.ftol (f1Temp)

flTemp
1Temp

print GseosConvert (.ltof (1Temp)

>>> 72.34

4.3.1.7.3 GseosConvert.signed
signed(IValue, wSignBit)

Interpretes an unsigned BDM item as a signed value. The wSignBit parameter specifies
the bit to interpret as sign bit. (This must be the most significant bit in the item, all bits
to the left of the sign bit will be overwritten with the sign expansion).

Parameter Description
IValue Unsigned long value to convert into a signed value.
Returns

The sign converted value.

Example

The following example assigns -2 to a 9 bit long data item. It then prints the results after
it posted the block to the system. The value is 510. To get the signed value we use the
signed conversion function and specify bit 8 as sign bit (the MSB).

© 1998-2005 GSE Software, Inc.

GSEOS Reference 157

4.3.1.8

HK.Temp = -2
HK.send ()

print HK.Temp
>>> 510

print GseosConvert.signed (HK.Temp, 8)

>>> -2
GseosMsgWindow

The GseosMsgWindow module gives access to the GSEOS Message window.

You can open a new message window with the New() function. You can close the
message window using Close(), to clear the contents of the message window you use
Clear(). BringToTop() brings the window to the foreground, and Print() prints it.

4.3.1.8.1 BringToTop

Enter topic text here.

4.3.1.8.2 Clear

Enter topic text here.

4.3.1.8.3 Close

Enter topic text here.

4.3.1.8.4 New

Enter topic text here.

4.3.1.8.5 Print

4.3.1.9

Enter topic text here.
GseosNet

The GseosNet module exposes the Python interface to the GSEOS networking
functionality.

The status of the network module as a datasource can be queried with IsEnabled().
Enable() and Disable() will activate or disactivate the network as a data source.

The client and server connections can be queried and managed with the client and server
methods. These methods take the connection name as a parameter to identify the
connection to manipulate. ClientConnect() will try to establish a connection and
ClientDisconnect() will terminate a connection if it is connected. ClientStatus() returns
the status of the connection.

ServerStatus() returns the current status of a server connection and ServerReset()
terminates a server connection if it is connected and goes back to listening on the
configured server port.

4.3.1.9.1 GseosNet.ClientConnect

ClientConnect(strClientName)

© 1998-2005 GSE Software, Inc.

158 Gseos

Connect the client connection. This function returns instantly without blocking for the
connection to be established. In order to find out if the connect call was successful use
the ClientStatus() function. Establishing a connection may take several seconds so
polling in a separate thread is one solution to determine the success or failure of the
connect call. Performs a float to long conversion. The binary representation of the IEEE
floating point value is returned as a long. This function does not coerce to a long but
interprets the floating point value as a signed long.

Parameter Description
strClientName The name of the client connection to connect.

Returns
None.

4.3.1.9.2 GseosNet.ClientDisconnect
ClientDisconnect(strClientName)
Disconnect the client connection.

Parameter Description
strClientName The name of the client connection to disconnect.

Returns
None.

4.3.1.9.3 GseosNet.ClientStatus

ClientStatus(strClientName)

Returns the current connection status. It can be one of the following constants defined in
this module:

GseosNet.NOTCONNECTED
GseosNet.CONNECTING
GseosNet.CONNECTED

Parameter Description
strClientName The name of the client to get the status of.

Returns
The connection status.

4.3.1.9.4 GseosNet.Disable

Disable()

Disable the network as the current data source. All data coming from the network is
discarded.

Note:

© 1998-2005 GSE Software, Inc.

GSEOS Reference 159

Network sources can be configured to be non-exclusive (see the last setting in the
configuration section below). This means that the data will be generated even if the
network is not enabled. For these data sources the Disable() function does not discard
the incoming data.

[CmdSrc]
IP-Address=127.0.0.1

; IP-Address=128.125.143.61
Source=Event

Port=2002

;AutoConnect=0
Exclusive=No

Returns
None.

4.3.1.9.5 GseosNet.Enable

Enable()

Enable the network as the current data source. All data coming from other data sources
than the network (i.e. Recorder, Bios, etc.) is discarded.

Note:

Network sources can be configured to be non-exclusive (see the last setting in the
configuration section below). This means that the data will be generated even if the
network is not enabled. For these data sources the Enable() function has no effect (they
will generate data blocks regardless of the network being enabled as a data source or
not).

[CmdSrc]
IP-Address=127.0.0.1

; IP-Address=128.125.143.61
Source=Event

Port=2002

;AutoConnect=0
Exclusive=No

Returns
None.

4.3.1.9.6 GseosNet.IsEnabled

IsEnabled()

Returns the status of the network. If the network is enabled all other data sources in the
system are disabled. However, even if the network is disabled it can generate data blocks
if the network connection is tagged as Non-Exclusive (see Disable() and Enable()
functions also).

Returns
True if the network is enabled, false otherwise.

© 1998-2005 GSE Software, Inc.

160

Gseos

4.3.1.9.7 GseosNet.ServerReset

ServerReset(strServerName)

Reset the server connection. The server will go back into listen status. If a connection is
established it will be disconnected before the server goes back to listen mode.

Parameter Description
strServerName The name of the server to reset.

Returns
None.

4.3.1.9.8 GseosNet.ServerStatus

4.3.1.10

ServerStatus(strServerName)

Returns the current connection status. It can be one of the following constants defined in
this module:

GseosNet.NOTCONNECTED
GseosNet.CONNECTING
GseosNet.CONNECTED
GseosNet.LISTEN

Parameter Description
strServerName The name of the server to get the status of.

Returns
The connection status.

GseosRecorder

The GseosRecorder module exposes the Python interface to the GSEOS Recorder
functionality.

The status of the Recorder module can be queried with IsRecording() and
IsPlayingBack(). Use StartRecording() and StopRecording() to start and stop the
Recorder respectively.

To modify the blocks to be recorded or to be played back you can use the following
functions:

AddRecordBlock(), RemoveRecordBlock(), AddPlaybackBlock(), and
RemovePlaybackBlock(). GetRecordBlocks() and GetPlaybackBlocks() return lists with the
blocks currently on the record/playback list.

To access and change the file prefix and the Recorder data path you can use GetPrefix(),
SetPrefix(), and GetDataPath(), and SetDataPath(). The SetPrefix() and SetDataPath()
functions will also write the new value to the gseos.ini file so it will be preserved across
invocations of the software.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 161

Getting status information on playback data

In order to get status information about played back data blocks you can refer to the
RecBlockStatus block. If you select this block in the playback list it will be generated for
every played back block (except the RecBlockStatus block itself, of course).

The RecBlockStatus block should be defined in the system.blk file, if you don't have this
block defined the mechanism to get status information on recorded data is disabled.

The RecBlockStatus is not a block that is recorded but a block that gets generated for
every played back block and contains meta-data for that block. The time field contained
in the RecBlockStatus block indicates the time the block was recorded and can be
decoded with the Python time.localtime() function. It denotes the number of seconds
since Jan, 1 1970. The Name item holds the name of the block that was played back. If
you write a script to evaluate the RecBlockStatus block you can either use the name or
the Handle item. The handle item will result in the same number for every block as long
as the block definition is the same. So you should cache the handle and map the proper
name to the handle the first time you encounter a new handle. From that point on you
can use the handle instead of the block hame which should make for faster processing.
Keep in mind that the association between block name and handle can be different for
every run of GSEOS.

4.3.1.10.1 GseosRecorder.AddPlaybackBlock

AddPlaybackBlock()

This function adds a block to the Recorders playback list. If the recorder is in playback
mode this takes effect immediately and the block won't be played back any more. To
check if a block is on the playback list you can use GetPlaybackBlocks(). To remove
blocks from the playback list use RemovePlaybackBlock().

Parameters
strBlockName: Name of the block to put on the playback list.

Returns
None.

4.3.1.10.2 GseosRecorder.AddRecordBlock

AddRecordBlock()

This function adds a block to the Recorders recording list. If the recorder is in recording
mode this takes effect immediately and if the block arrives in the system it will be
recorded. To check if a block is on the record list you can use GetRecordBlocks(). To
remove blocks from the record list use RemoveRecordBlock().

Parameters
strBlockName: Name of the block to put on the record list.

Returns
None.

© 1998-2005 GSE Software, Inc.

162 Gseos

4.3.1.10.3 GseosRecorder.GetDataPath

GetDataPath()

Returns the currently selected data path. The data path is the directory where the
automatically generated files are stored. In single file mode you specify the location of
the recorder file. To change the data path use SetDataPath().

Returns
The current data path.

Example
>>> GseosRecorder.GetDataPath ()
'c:\\temp'

4.3.1.10.4 GseosRecorder.GetPlaybackBlocks

GetPlaybackBlocks()

This function returns a tuple with all the names of the blocks that are on the playback
list. Note, these are not the actual block objects but the names of these blocks. Any
block that is on the playback list will be played back when the Recorder is in playback
mode. To get a list of the blocks on the playback list use GetPlaybackBlocks(). To add or
remove blocks from the playback list you can use the Recorder interface or the functions
AddPlaybackBlock() and RemovePlaybackBlock().

Returns
Tuple of the block names of blocks on the recording list.

Example
>>> GseosRecorder.GetPlaybackBlocks ()
("CMDSTRING', 'RS232Raw', 'TLM', 'HK')

4.3.1.10.5 GseosRecorder.GetPrefix

GetPrefix()

The file prefix is a string that gets added to the automatically generated Recorder file
name. This takes effect only in multi file mode. That is if the Recorder automatically
generates the file names. In single file mode you determine the file to record to.
GetPrefix() returns the current file prefix. You can use SetPrefix() to modify the prefix.

Returns
The current file prefix.

Example
>>> GseosRecorder.GetPrefix ()
'EM 1 '

© 1998-2005 GSE Software, Inc.

GSEOS Reference 163

4.3.1.10.6 GseosRecorder.GetRecordBlocks

GetRecordBlocks()

This function returns a tuple with all the names of the blocks that are on the recording
list. Note, these are not the actual block objects but the names of these blocks. Any
block that is on the record list will be recorded when the Recorder is in record mode and
the block arrives. To get a list of the blocks on the record list use GetRecordBlocks(). To
add or remove blocks from the record list you can use the Recorder interface or the
functions AddRecordBlock() and RemoveRecordBlock().

Returns
Tuple of the block names of blocks on the recording list.

Example
>>> GseosRecorder.GetRecordBlocks ()
('RecComment', 'DSACtrl', 'RS232Raw', 'PeriodicMsg')

4.3.1.10.7 GseosRecorder.IsPlayingBack
IsPlayingBack()
Determine if the Recorder is in playback mode.

Returns
True if the Recorder is in playback mode, false otherwise.

4.3.1.10.8 GseosRecorder.IsRecording

IsRecording()

Determine if the Recorder is in recording mode. In order to put the Recorder into
recording mode use StartRecording(), to stop it use StopRecording().

Returns
True if the Recorder is in recording mode, false otherwise.
4.3.1.10.9 GseosRecorder.RemovePlaybackBlock

RemovePlaybackBlock()

This function removes a block from the Recorders playback list. If the recorder is in
playback mode this takes effect immediately and the block will no longer be played back.
To check if a block is on the playback list you can use GetPlaybackBlocks(). To add blocks
to the playback list use AddPlaybackBlock().

Parameters
strBlockName: Name of the block to remove from the playback list.

Returns

© 1998-2005 GSE Software, Inc.

164

Gseos

4.3.1.10.10

4.3.1.10.11

4.3.1.10.12

None.

GseosRecorder.RemoveRecordBlock

RemoveRecordBlock()

This function removes a block from the Recorders recording list. If the recorder is in
recording mode this takes effect immediately and the block will no longer be recorded. To
check if a block is on the record list you can use GetRecordBlocks(). To add blocks to the
record list use AddRecordBlock().

Parameters
strBlockName: Name of the block to remove from the record list.

Returns
None.

GseosRecorder.SetDataPath

SetDataPath()

Set the data path of the recorder. This is to be used for multi file mode only, in single file
mode you will provide the file and directory. See also GetDataPath(). The Recorder can't
be in recording mode while changing the data path. You have to stop recording first. To
determine if the Recorder is in recording mode use IsRecording(), to stop the Recorder
from recording use StopRecording(). The changes to the prefix are made permanent by
writing them to the gseos.ini configuration file. On the next invocation of GSEOS you will
have the prefix preserved.

Parameters
strDataPath: The new data path.

Returns
None.

GseosRecorder.SetPrefix

SetPrefix()

Set the file prefix to be used for multi file mode, see also GetPrefix(). Make sure this
string does not contain any forward or backward slashes or the colon character since this
will lead to errors in the file name generation. The changes to the prefix are made
permanent by writing them to the gseos.ini configuration file. On the next invocation of
GSEQS you will have the prefix preserved.

Parameters
strPrefix: The new file prefix.

Returns
None.

© 1998-2005 GSE Software, Inc.

GSEOS Reference

4.3.1.10.13 GseosRecorder.StartRecording

StartRecording()

165

Switch the Recorder into recording mode. All blocks that arrive after the Recorder is in
recording mode and that are on the recording list (to get a list of blocks that are on the
recording list use GetRecordBlocks()) will be recorded. To determine if the Recorder is in

recording mode use IsRecording().

Returns
None

4.3.1.10.14 GseosRecorder.StopRecording

StopRecording()

Stop recording. To determine if the Recorder is in recording mode use IsRecording().

Returns
None

4.3.1.11 GseosSys

The GseosSys module hosts several system classes and mappings mostly used for

internal purposes. It also supports some useful utility functions.

FileOpen() allows you to open any GSEOS file. systemRecorder module exposes the

Python interface to the GSEOS Recorder functionality. The window functions
WindowPrint(), WindowMinimize(), WindowMaximize(), WindowRestore(), and
WindowClose() allow you to control some of the window behavior. StartApplication() lets

you invoke external programs.

4.3.1.11.1 FileAppend

Enter topic text here.

4.3.1.11.2 FileOpen

Enter topic text here.

4.3.1.11.3 StartApplication

Enter topic text here.

4.3.1.11.4 WindowClose

Enter topic text here.

4.3.1.11.5 WindowMaximize

Enter topic text here.

4.3.1.11.6 WindowMinimize

Enter topic text here.

© 1998-2005 GSE Software, Inc.

166 Gseos

4.3.1.11.7 WindowPrint

Enter topic text here.

4.3.1.11.8 WindowRestore

Enter topic text here.

4.3.1.12 Histogram

The histogram module allows you to easily histogram/classify your data. A histogram
decoder is a specialized Decoder. There are two types of histogram decoders a 1D
histogram decoder and a 2D histogram decoder. The purpose of a histogram decoder is
to classify or histogram the source data. This can be used to display a spectrum of the
distribution of events. The picture below depicts samples of a 1D histogram and a 2D
histogram.

*. MyProject [1] - Offline =10 x|
File Edit Draw Stwle Options Tom MyProject Cmd Tools Window Help

8| B 1Byl [Aololol Tl ol = 811 &

Rangs 0014 pi|Range 500 Divisor oool

0OC01lE 0000 0000 Q001 0001 0001 0000 0000 0000 Qoo0 of
0000 000l 0000 Qo000 0000 Q0001 000l 0000 000l Qo000 of
Qo000 Qo000 Q000 0003 0000 Q0000 0000 0000 000l Qo000 of
000l 0000 0000 Q000 0000 Q000 Q000 0000 0000 Qo000 of

| o

| Hal in razarding mad=

The histogram decoders take input array items and generate an output block containing
the histogrammed data.

In the 1D case a single value will be mapped to a destination array. If we for example
get a value of 5 in our source data we would increment the destination item at index
position 5 by one. In the 2D case a pair of

source values (x,y) will be mapped to a destination entry in the following way:

Destination Position = x + Width * y

where Width is the width of the matrix. Since in GSEQOS all array items are vectors and
not two-dimensional matrixes the Width is used to determine the x-dimension of the
matrix. The destination array item can then in turn be displayed as a two dimensional
bitmap with various color mappings to indicate the distribution of 'intensity' in the two

© 1998-2005 GSE Software, Inc.

GSEOS Reference 167

dimensional space.

Autoscaling

The histogram decoders also allow for automatic rescaling of the histogram. If the
maximum value in the histogram reaches a certain limit the histogram will be scaled
down by simply dividing all values in the histogram by 2. This process is repeated over
every time we reach the upper limit. If a 'Divisor' item exists in the destination block the
current scale value will be exported to that item. This way you can determine what the
absolute values for the histogram are (approximately only since we lose resolution every
time we scale own).

Configuration
The histogram decoders can be configured with the following parameters most of which
can be specified in the according constructor:

1D: Name
SourceX
Destination
Left
Right
Range
EventCnt

2D: Name
SourceX
SourceY
Destination
Left
Top
Right
Bottom
Range
EventCnt

The SourceX and SourceY parameters specify the item names of the source items. In the
case of a 1D histogram only the X source is needed. For the 2D histogram a pair of
values is required, therefore SourceX and SourceY. Usually these items have to be array
items. If you only have a single value declare an array item with dimension 1. The
Destination parameter specifies the destination item name, its dimension must be at
least Right-Left in the 1D case and (Right-Left)*(Bottom-Top) for the 2D histogram.

Be aware that the histograms require according memory. Especially for the 2D
histograms if you chose for example (0, 1024, 0, 1024) as the dimensions of your
destination histogram the internal histogram buffer alone will occupy 1024*1024*4 byte
= 4MB of memory!!!

The Left, Top, Right, Bottom parameters specify the dimensions of the clipping area. For
the 1D histogram this is a simple interval for the 2D histgram this is a rectangle. The
source values are only mapped into the destination item if they fall within the clipping
area. E.qg. if the clipping interval is Left=6, Right=12 a source value of 5 would be
discarded, a source value of 7 would cause to increment the destination item at position
7-6 = 1.

© 1998-2005 GSE Software, Inc.

168

Gseos

Therefore the clipping area gives you the opportunity to map a certain area of your
source data onto the destination. You could also think of it as a kind of zoom in/zoom out
feature. The Right and Bottom values are not included in the range. E.g.: If you specify 0
for Left and 256 for Right the indices from 0..255 will be covered.

The Range parameter allows you to set an initial range for the histogram. This is the
maximum value in the histogrammed data. In the case of autoscaling the entire
histogram is scaled down by a factor of 2 if any destination value reaches the range
value. If autoscaling is off the destination item is simply not incremented.

The EventCnt parameter is the name of a data item that is read at runtime to determine
the range of input values to read. By default, that is if no EventCnt item is specified all
values in the SourceX item will be added to the histogram. This may not always be the
appropriate behavior. In case not all values are valid or the number of valid values
changes you may want to use the EventCnt item. It is assumed that the EventCnt will
hold the currently valid number of items in the SourceX data item. Only these items
contribute to the histogram.

If your destination block has the scalar items 'Divisor' and 'Range’' these items will be
updated every time a new histogram block is generated. This feature gives you some
feedback as to what Range you have selected for autoscaling. The Divisor will be set to
the current value of the scaling factor used for autoscaling. This allows you to find out
how often the histogram has been scaled down.

For more information please refer to the 1D and 2D histogram decoders:

e 1D Histogram
e 2D Histogram

4.3.1.12.1 Histogram.bAutoscale

Property: bAutoscale
Enable or disable the auto scale feature. When auto scale is enabled the entire histogram
is scaled by .5 if any value in the histogram reaches the dwRange value.

4.3.1.12.2 Histogram.Clear

Clear()
The Clear() function resets all values in the destination histogram to 0.

4.3.1.12.3 Histogram.dwRange

Property: dwRange

The dwRange property determines the maximum value your destination histogram will
accumulate. Once this value has been reached this particular point is not further
incremented if auto scaling is not enabled. If auto scaling is on, all values in the
histogram are divided by 2 and the destination point is incremented by the appropriate
amount.

4.3.1.12.4 Histogram.Histogram1D

Histogram1D(strName, SourceX, Destination, Left, Right, [Range], [EventCnt])

The Histogram1D constructor creates a new 1D histogram decoder. You have to specify a

© 1998-2005 GSE Software, Inc.

GSEOS Reference 169

unique name, the source data item, the destination data item, and the dimensions of the
clipping area. Optionally you can also specify a range and an item that specifies the
event count.

Parameter Description

strName The unique name identifies the histogram decoder. This is the name you
will see in the GSEOS Explorer.

SourceX The SourceX parameter specifies the item name of the source item. You

have to specify the name of a data item here and not the data item
itself. This parameter is a string! Usually the source item has to be an
array item. If you only have a single value declare an array item with
dimension 1.

Destination This parameter specifies the destination item name (note again that this
is a string, e.g.: 'Histo.Data'). The dimension of the destination item
must fit in the clipping area (Right-Left).

Left The Left and Right parameters specify the dimensions of the clipping
area. The source values are only mapped into the destination item if
they fall within the clipping area. E.g. if the clipping interval is Left=6,
Right=12 a source value of 5 would be discarded, a source value of 7
would cause the destination item at position 7-Left = 7-6 = 1 to be
updated (incremented). Therefore the clipping area gives you the
opportunity to map a certain area of your source data onto the
destination. You could also think of it as a kind of zoom in/zoom out
feature. The Right and Bottom values are not
included in the range. E.g.: If you specify 0 for Left and 256 for Right
the indices from 0..255 will be covered.

Right See Left

Range The range specifies the maximum value that can be accumulated in the
histogram. If autoscaling is enabled the histogram will be scaled down,
otherwise it will be clipped at the range value.

EventCnt The EventCnt parameter is the name of a data item that is read to
determine the range of input values to use. By default, that is if no
EventCnt item is specified all values in the SourceX item will be added to
the histogram. This may not always be true. In case not all values are
valid or the number of valid values changes you may want to use the
EventCnt item. It is assumed that the EventCnt will yield the currently
valid number of items in the SourceX data item. Only these items
contribute to the histogram. The EventCnt item does not have to be
located in the source block but can be any item.

Returns
The new histogram object.

Comments

The histogram is automatically registered for its source block. There is no need to
append it to the Decoder list of the source block like you have to do for an ordinary
decoder.

If your destination block has the scalar items 'Divisor' and 'Range' these items will be
updated every time a new histogram block is generated. This feature gives you some
feedback as to what Range you have selected for autoscaling. The Divisor will be set to
the current value of the scaling factor used for autoscaling. This allows you to tell how
often the histogram has been scaled down.

© 1998-2005 GSE Software, Inc.

170

Gseos

Be aware that the items specified in the contstructor are names of data items and
therefore strings. Do not pass in the item directly. The item would be resolved and
therefore an integer would be passed in the constructor.

E.g.: Use: Histogram.HistogramlD('Block.SourceX',)
Do NOT use: Histogram.HistogramlD (Block.SourceX,)

This applies to all items you specify in the constructor. In addition to the special
histogram functionality you can use all the methods a normal decoder offers like bEnable
to enable or disable the histogram.

Example
The following example defines a simple 1D histogram decoder.

Histogram.HistogramlD('MylDHistogram',
'SrcBlock.SrcltemX',
'DestBlock.DestItem’,
0, 128,
20,
'Block.EventCnt')

4.3.1.12.5 Histogram.Histogram2D

Histogram2D(strName, SourceX, SourceY, Destination, Left, Top, Right, Bottom,
[Range], [EventCnt])

The Histogram2D constructor creates a new 2D histogram decoder. You have to specify a
unique name, the source data items (one for the x- and one for the y-axis), the
destination data item, and the dimensions of the clipping area (in the 2D case a
rectangle). Optionally you can also specify a range and an item that specifies the event
count.

Parameter Description

strName The unique name identifies the histogram decoder. This is the name you
will see in the GSEOS Explorer.

SourceX The SourceX parameter specifies the item name of the source item for

the x-coordinate. A point in the destination histogram is determined by

© 1998-2005 GSE Software, Inc.

GSEOS Reference 171

the tuple (X, y). The SourceX item supplies the x-part, the SourceY item
the y-part. You have to specify the name of a data item here and not
the data item itself. This parameter is a string! Usually the source item
has to be an array item. If you only have a single value declare an array
item with dimension 1.

SourceY See SourceX. This item supplies the y-value.

Destination This parameter specifies the destination item name (note again that this
is a string, e.g.: 'Histo.Data'). The dimension of the destination item
must fit in the clipping area (Right-Left)*(Bottom-Top).

Left The Left, Right, and Top, Bottom parameters specify the dimensions of
the clipping area. The source values are only mapped into the
destination item if they fall within the clipping area. The Right and
Bottom values are not included in the range. E.g.: If you specify 0 for
Left and 256 for Right the indices from 0..255 will be covered.

Be aware that the histograms require according memory. Especially for
the 2D histograms if you chose for example (0, 1024, 0, 1024) as the
dimensions of your destination histogram the internal histogram buffer
alone will occupy 1024*1024*4 byte = 4MB of memory!!!

Right See Left.
Top See Left.
Bottom See Left.
Range The range specifies the maximum value that can be accumulated in the

histogram. If autoscaling is enabled the histogram will be scaled down,
otherwise it will be clipped at the range value.

EventCnt The EventCnt parameter is the name of a data item that is read to
determine the range of input values to use. By default, that is if no
EventCnt item is specified all values in the SourceX item will be added to
the histogram. This may not always be true. In case not all values are
valid or the number of valid values changes you may want to use the
EventCnt item. It is assumed that the EventCnt will yield the currently
valid number of items in the SourceX data item. Only these items
contribute to the histogram. The EventCnt item does not have to be
located in the source block but can be any item.

Returns
The new histogram object.

Comments

The histogram is automatically registered for its source block. There is no need to
append it to the Decoder list of the source block like you have to do for an ordinary
decoder.

If your destination block has the scalar items 'Divisor' and 'Range’' these items will be
updated every time a new histogram block is generated. This feature gives you some
feedback as to what Range you have selected for autoscaling. The Divisor will be set to
the current value of the scaling factor used for autoscaling. This allows you to tell how
often the histogram has been scaled down.

Be aware that the items specified in the contstructor are names of data items and
therefore strings. Do not pass in the item directly. The item would be resolved and
therefore an integer would be passed in the constructor.

E.g.: Use: Histogram.Histogram2D('Block.SourceX',)
Do NOT use: Histogram.Histogram2D (Block.SourceX,)

© 1998-2005 GSE Software, Inc.

172 Gseos
This applies to all items you specify in the constructor. In addition to the special
histogram functionality you can use all the methods a normal decoder offers like bEnable
to enable or disable the histogram.
Example
The following example defines a simple 2D histogram decoder that expects its source
values to be in the range (0..127/0..127).
Histogram.Histogram2D ('My2DHistogram',
'SrcBlock.SourceXItem',
'SrcBlock.SourceYItem',
'DestBlock.DestItem’',
0, 128,
0, 128,
20,
'Block.EventCnt')
4.3.1.13 Monitor

The main purpose of the Monitor module is to verify the integrity of the incomming data
and to report alarm conditions. It works similar like the Decoder in that it hooks on the
arrival of a data block. However, opposed to the Decoder it does not generate any child
blocks but reports alarms or issues commands depending on the outcome of the monitor
condition. In most cases a simple limit check will be sufficient, but even complex monitor
conditions are easy to manage.

In order for the monitor to be called on the arrival of a specific block it has to be
registered with this block. To do this you have to create a monitor object and add it to
the list of monitors for that block. Every time the block arrives your monitor condition is
evaluated.

To construct a monitor you have to instantiate a monitor object of the monitor class. The
constructor of the monitor object takes the unique monitor name and the monitor
condition you want evaluated. The monitor function itself takes one parameter. The block
that triggers the monitor is passed into the monitor function. Therefore when you
register one decoder for multiple blocks you will be able to distinguish which block
arrived.

The monitor can be disabled by setting bEnable to false. It can be reenabled by setting
bEnable to true. The variable dwCnt holds the number of times the monitor has been
executed. You can reset this value if desired.

If the monitor raises an exception it will be disabled. You should catch all exceptions you
don't want to terminate the monitor.

It is advised that you give your monitor function a documentation string. This
documentation will be displayed in the GSEQOS Explorer.

For more information please refer to the examples:

e Limit Check
e Counter Check

© 1998-2005 GSE Software, Inc.

GSEOS Reference 173

4.3.1.13.1 bEnable

Property: bEnable
Enable or disable the monitor.

Example
Disable the monitor from a script:

oMyMon .bEnable = 0

4.3.1.13.2 constructor

Monitor(strName, fMonitor)

The Monitor constructor creates a new monitor. You have to specify a unique name and
the monitor function. In order to start the monitor you have to add it to the list of
monitors for the block(s) you want to register your monitor for.

Parameter Description

strName The unique name identifies the monitor. This is the name you will see in
the GSEOS Explorer.

fMonitor Your monitor function. It takes one parameter which is the block that

triggers the monitor (if you register the monitor for more than one block
you can use this parameter to determine the source block). If this
function throws an exception the monitor is terminated.

Returns
The new monitor object.

Comments

In order for the monitor to be useful you have to hook it on the arrival of a block. You do
this by adding it to the list of monitors for the block you are interested in. See the
example below.

Exceptions
TypeError The monitor name has to be a string.
MonitorError The fMonitor parameter has to be a callable object.

Example
The following example defines a simple limit check monitor. In case of an out of range
condition a message is posted to the GSEOS message window:

*
i‘t**
*

#* * Import the block names into our namespace.

* *#

#*

L I S S i S i S A S S I i S S i S S S S e S S S e e e e e e e e e e S A e S e S S S S S S S S S S S S
x4

from main import *

import Monitor

import Gseos

© 1998-2005 GSE Software, Inc.

174

Gseos

def MyMonitorl (oBlock):
if oBlock.Templ > 200:
cmd.msg ('Monitorl: Sensor temp out of range')

HK.Monitors.append (Monitor.Monitor ('Sensor Temp Check', MyMonitorl))

4.3.1.13.3 Delete

Delete()
Deletes a monitor.

Returns
None

Comments

The GSEQOS Explorer holds a reference to every monitor created. Even if your object goes
out of scope the Explorer will hold on to the monitor. To release the monitor you have to
call Delete() first and then destroy the monitor object itself (e.g. by letting it go out of
scope). Usually there is no need to delete a monitor.

Example
Release our current monitor and then destroy the monitor object.

oMyMon.Delete ()
oMyMon = None

4.3.1.13.4 dwCnt

Property: dwCnt
The number of invocations of the monitor. You can set this value if desirable.

4.3.1.13.5 Examples

© 1998-2005 GSE Software, Inc.

GSEOS Reference 175

4.3.1.13.5.1 CounterCheck

Besides limit checking the verification of a sequence of events may be important. This
example demonstrates how to set up a monitor that checks the proper sequence of a
counter. Let's assume we get a block TLM that contains a sequence number. This
sequence number should be incrementing by one with every sample we receive. If we
get a number that is not in sequence we want to report this in a separate log file and set
the current sequence number to the one we just received. The block definition of the TLM
block is given below:

TLM

{
ApID rrr 165
Seq rrr32;
Data[2000] Y

}

In this example the monitor has to maintain state information which is a simple value
holding the last sequence number seen. The monitor function has to compare the value
of the latest sequence number with the one stored and check if the sequence is in proper
order. If so our local data needs to be updated. If not report and error and update the
sequence number with the last sample received. Here the monitor function:

#

Import block definitions, Monitor class and other stuff
#

from main import *

import Monitor
import gseos

#

Define our local sequence number and initialize to O.
#

dwSeq = 0

#

TLM Sequence Monitor

#

def fMonSeqg(oBlock) :
"TLM Sequence Monitor"

global dwSeq

if oBlock.Seqg != dwSeqg+l:
gseos.Log('error.log', 'TLM Sequence out order. Expected sequence
number: %d, \
'received sequence number: $d' % dwSeq,
oBlock.Seq)
dwSeq = oBlock.Seqg

Now assign it to the TLM block:

#

Create a new monitor.

#

oMonSeq = Monitor.Monitor ('MonSeq', fMonSeq)

© 1998-2005 GSE Software, Inc.

176

Gseos

#

Assign it to the TLM block.
#

TLM.Monitors.append (oMonSeq)

4.3.1.13.5.2 LimitCheck

The most straightforward use of the monitor is as a limit check on individual items. This
simple limit check example demonstrates how to set up such a simple monitor. Let's say
we have a HK block with some voltage items. We want to log a message in the GSEOS
message window when the voltage of Plus_12V_Mon exceeds 15. The block definition of
the HK block is given below:

HK

{
Plus 12V Mon
Plus 28V Mon
Plus 5V _Mon
Plus 6V _Mon
Minus 5V Mon
Plus 5DPU_ Mon
Minus_ 12V _Mon
Minus 6V _Mon
I Stop MCP V
I Start MCP V

Ne Ne Ne N

o ~e

~e N

~e

N SN NS S S S S SN S~ N

N N SN S NS S S SN S~ N

N SN SN S S S S SN S~ O~

QO GO 0O CO 0O GO OO CO O O
~

~e

}

The monitor function has to compare the value of the item Plus_12V_Mon to the limit of
15. If the condition holds a message is issued. Here the monitor function:

#

Import block definitions, Monitor class and other stuff
#

from main import *

import Monitor

import gseos

#

12V Monitor

#

def fMonl2V (oBlock) :
"12V Monitor"

if oBlock.Plus 12V Mon > 15:
cmd.msg ('12V Monitor: Limit exceeded, current voltage %d' %
oBlock.Plus 12V Mon)

Once we have the monitor function defined we have to assign it to the HK block to get
executed:

#

Create a new monitor.

#

oMonl2V = Monitor.Monitor ('Monl2V', fMonl2V)

© 1998-2005 GSE Software, Inc.

GSEOS Reference 177

#

Assign it to the HK block.
#

HK.Monitors.append (oMonl2V)

After we execute this script we can examine the monitor in the GSEQOS Explorer. If we
choose the Block node and list all the blocks in the system we should see our HK source
block. Extending the Monitors node beneath the HK block lists our monitor and indicates
that it is running. You can also get to all monitors from the Monitors node beneath the
main GSEOS node.

By right-clicking on the decoder node you can also disable or delete the decoder.

:1_; GSEODS Explorer M=l E3
ENE: GSEOS P aniitor Count | Installed on Dezcription
-] Blacks ¥ P Mon1 2v 0 HK 12 Monitor
i [Decoders
SRS oo
] f@ bon

o [Sequencers
*l:l M etwork,
I:l Syztem
-0 Tasks

<] | ol

To run this example please install the mon1.blk block definition file in the demo/mon1l
folder, restart GSEOS and load the mon1.py monitor script from the same directory.

Keep in mind that the block definitions are not typed. This means your data items are
treated as unsigned binary fields. Assume the most significant bit of the 8-bit
Minus_5V_Mon item in the HK block is a sign bit a -5 would be represented as 256-5 =
251. To convert this number to a signed value which you can compare to -5 instead of
251 in your monitor function use the GseosConvert.signed() function e. g.:

#
-5V Monitor
#
def fMonNegb5V (oBlock) :

"-5V Monitor"

MinusbV = GseosConvert.signed(oBlock.Minus 5V Mon, 7)

if Minusb5V < -7:
cmd.msg ('-5V Monitor: Limit exceeded, current voltage %d' % Minus5V)

4.3.1.13.6 strName

Property: strName
The unique name of the monitor. You should not change this name after you created the
monitor. Rather delete the current one and create a new one with the desired name.

© 1998-2005 GSE Software, Inc.

178

Gseos

4.3.1.14 Sequencer

The Sequencer module allows you to run and control test sequences. Using the
Sequencer module it is easy to write test scripts for closed-loop instrument control. You
can command the instrument and verify that certain values are met within a certain
time. Depending on the outcome you can issue further commands to log the success of
failure in a test procedure log. This allows you to set up test sequences that can be run
to autonomously verify the proper performance of the system which is especially useful
as a regression testing tool. Although it may seem that the Monitor and Sequencer have
overlapping functionality they have an entirely different focus and concept. The
Sequencer module allows you to write synchronous test control sequences meaning that
you can write down a sequential test procedure whereas the Monitor module works
asynchronous (event driven) and makes it therefore hard to write a sequential control
script. The central functionality of the Sequencer is provided by the Wait() function. You
provide a list of blocks (events), a condition and an optional timeout value. Your
condition is evaluated whenever one of the blocks in the list arrives. If your condition
evaluates to true the Wait() returns otherwise the condition will be reevaluated with the
next block arrival. There are two possible scenarious that the Wait() function can return
before your condition returns true. If you specify a timeout value and the timeout timer
expires before your condition returns true the Wait() function throws a TimeoutError
exception. If you stop the Sequencer the Wait() function will throw an AbortError
exception. For trivial condition functions (one liners) you can make use of the lambda
function of Python. Let's just start with a simple example to demostrate the use of the
Sequencer:

import Sequencer

A Sequencer script turning on the heater circuit, waiting for the
temperature to
rise to 20 and turn the heater off.
def fWarmUp (oSeq) :
It is always a good idea to document your Sequencer scripts. These
document strings
are also accessible from the Sequencer user interface. Here we go:
Fire up the heater, wait until we reach 20C and turn the heater off.
Start the heater with our heater command
fStartHeater ()

Wait until we reach 20C
oSeqg.Wait (HK, lambda: HK.Temp == 20)

Stop the heater
fStopHeater ()

Start the Sequencer
Sequencer.Sequencer ('Heater Control 1', fWarmUp)

This simple Sequencer turns on a heater circuit, waits for the temperature to rise (the
heater presumably changes the temperature which is reflected in the HK.Temp item) to a
desired value and stops the heater.

Well, this script is far from perfect, for example if the temperature is higher than 20 to
begin or we don't get a block with HK.Temp equal to 20 with we will never exit the
Wait().

© 1998-2005 GSE Software, Inc.

GSEOS Reference 179

The last line then finally starts the Sequencer. To start the Sequencer you have to
provide a unique name, the Sequencer function, an optional argument, and an optional
flag that indicates if you want to create the Sequencer in the stopped state. By default
the Sequencer starts running as soon as you create it. The Sequencer runs in it's own
thread (in the background) and the call to create the Sequencer returns immediately.
Now let's assume we have three similar heaters and we want to control all of them.
Instead of defining three Sequencer scripts we can parameterize the sequencer function
fWarmUp(). When we start a Sequencer we can pass an optional argument which then in
turn is passed to the sequencer function. Here our example for multiple heaters:

import Sequencer

Parameterized heater script. Pass two arguments, the heater number and
the
destination temperature.
def fWarmUp (oSeq, (wHeater, wDestTemp)) :
"Heater Control 2. Takes the heater number and the destination temp."

Start the heater with our heater command
fStartHeater (wHeater)

Wait until we reach our destination temperature
oSeq.Wait (HK, lambda Heater=wHeater, Temp=wDestTemp: HK.Temp [Heater]
Temp)

Stop the heater
fStopHeater (wHeater)

Fire up the Sequencer for heater 2 and 30C.
Sequencer.Sequencer ('Heater Control 2', fWarmUp, (2, 30))

Fire up the Sequencer for heater 3 and 25C.
Sequencer.Sequencer ('Heater Control 3', fWarmUp, (3, 25))

Fire up the Sequencer for heater 4 and 45C.
Sequencer.Sequencer ('Heater Control 4', fWarmUp, (4, 45))

The above script expects a second tuple parameter besides the Sequencer reference that
is passed in as the first parameter. In our case we pass two different values in this tuple,
the heater number and the destination temperature. When we invoke the Sequencer we
have to provide the parameters as the third parameter of the Sequencer() call. Now we
can start as many Sequencers as needed (three in the above example) using just one
sequencer function.

The above examples both terminate when the desired temperature is reached. To restart
them we can just call the Start() function of the Sequencer. (This can easily be done
from the GSEOS Explorer).

In order to programmatically restart the sequencer we of course have to keep a
reference of the Sequencer when we create it. Here is how you would do it:

Fire up a Sequencer
oHeaterCtrl = Sequencer.Sequencer ('Heater Control 5', fWarmUp, (5, 10))

At some later point restart the Sequencer to bring
the heater 5 back up to it's temperature.
oHeaterCtrl.Start ()

© 1998-2005 GSE Software, Inc.

180

Gseos

The other functions of interest are Stop() to stop a running Sequencer, and Delete() to
delete it. Besides the Wait() function there are three other functions the Sequencer
provides: MessageBox(), InputDialog(), and Sleep(). Let's look at one more example
which simulates a two-point control for the temperature:

The Sequencer script of the two-point heater control
def fTwoPointHeater (oSeq, (wLowTemp, wHighTemp)) :
"Heater Control. A two-point heater control."

Control our heater circuit until we get terminated
while 1:
if HK.Temp >= wHighTemp:
fStopHeater ()
oSeqg.Wait (HK, lambda wTemp=wLowTemp: HK.Temp <= wTemp)

elif HK.Temp <= wLowTemp:
fStartHeater ()
oSeqg.Wait (HK, lambda wTemp=wHighTemp: HK.Temp >= wTemp)

If we are in the right range just wait for a while
else:
0Seq.Sleep (300)

Fire up the two-point controller.
Sequencer.Sequencer ('Two-point controller', fTwoPointHeater, (20, 30))

Although this functionality could also be implemented with a Monitor it demonstrates
some of the Sequencer functions.

The next paragraph covers some Sequencer internals:

To understand how the Sequencer works here some details about it's implementation:
Every Sequencer you start runs in it's own thread of execution and is therefore very
efficient in a Wait() state. Whenever one of the trigger blocks arrives the Sequencer
preserves the state of all the blocks (e.g. there won't be any block arrivals before the
condition is completely evaluated) and runs your condition function. The condition
function is therefore guaranteed to see a consistent view of the system. Once your
condition returns however the blocks are released and if there are any new arrivals they
will overwrite the contents of the old blocks. This means that if you would perform the
same condition right after you exit out of a Wait() function it may not evaluate to true
any more. E.g.:

Check for the counter value to be 10
def fCheckCount () :
return Block.Count == 10

The Sequencer script waiting for the counter to turn 10
and log this event
def fLogCounterEvent (oSeq) :

while 1:
oSeq.Wait (Block, fCheckCount)
Gseos.Log ('Count.log', 'The counter is ' + str(Block.Count))

Besides the fact that a Monitor would be more appropriate for this kind of checking the
above Sequencer waits (in a loop) for the item Block.Counter to become 10. If this is the
case the Wait() function returns and the value of the counter is logged to a log file.
However when we fetch the counter value after the Wait() function returned the count

© 1998-2005 GSE Software, Inc.

GSEOS Reference 181

may have already changed. This is because the Sequencer runs in it's own thread a new
block may arrive while we perform the Log function. If you were to log the event from
within the condition it is guaranteed that the data does not change. This is exactly the
reason why for example limit checking is better done with the Monitor module where you
get a notification of every block no matter if you happen to be in a Wait() state or not.
You should keep this behavior in mind while designing Sequencer scripts. However for a
Sequencer script this is perfectly okay since we want to trigger on a certain event and
then take action. In general you want to use the Sequencer if you have a sequence of
events to check, perform some sort of verification and move on to the next part of the
sequence. The beauty of the Sequencer is that you can just write down your script in a
sequential (hence the name) manner:

Sample sequence

oSeq.Wait (BINCOMMAND, fWaitForMyCommand)
0Seq.Sleep (2000)

oSeqg.Wait (HK, fIsTempOk)

fSetLimits ()

oSeq.Wait (TLM, fWaitForImage)
fMoveCamera ()

etc, etc.....

Tip: It is a good idea to document the progress of the Sequencer in for example a log file
with the Log() function.

Now that we know how to use the Sequencer from a script let's have a brief look at the
Sequencers in the GSEOS Explorer. You will find the Sequencers beneath the GSEOS

main node:
* GSEOS Explorer —|Of x
-] GSEOS Seguencer | Dezcription
+-[_7] Blocks !%; Check for ...
[Decoders *%’ M Box | Thiz iz a document sting that iz dizplayed in the Sequence
[Monitors

=[] Sequencers
Check for my command
% ME o
+ *[:I M etk
+-[_7] System
+-[7] Tasks

1] | 2

The Explorer lists all Sequencers in existence and their respective status. The docstring
of the selected Sequencer is displayed in the left pane (it is always a good idea to provide
a short description). If you right-click on the Sequencer you get a menu that allows you
to Start/Stop/Delete the Sequencer depending on its state. You can also highlight
multiple sequencers and right-click on the selection to invoke the operation for a number
of sequencers at once. The Start/Stop button allows you to start or stop the selected
Sequencer(s). You can also delete the Sequencer from the control dialog. This tool gives
you a quick overview of the state of your Sequencers. One important implementation
detail: In order to manage the Sequencers with the Explorer a reference to each created

© 1998-2005 GSE Software, Inc.

182

Gseos

Sequencer is held by the Sequencer manager. This means if you create a Sequencer and

assign it to a variable, e.g.:
oMySeq = Sequencer.Sequencer ('MySeq', fMyCond)

There are two references to the sequencer. To remove the sequencer you have to delete
the reference from the Sequencer manager, you do that by issuing the Delete command
from the menu. If then your object goes out of scope the sequencer is removed from the
system. After you call Delete() either from within a script or from the control dialog the
Sequencer is marked for deletion and can not be started any more. As soon as the last
reference to the Sequencer is removed the Sequencer is deleted from the system. In
general it should not be necessary to keep a reference to a Sequencer around, in this
case the Sequencer will be deleted as soon as you select Delete from the Explorer
window.

The sequencer module exports the following Methods and Properties:
Sequencer

Start

Stop

Delete

Wait

Sleep

MessageBox

InputDialog

Properties:
wStatus

Most of the above functions also have a doc string which you can access with:
Sequencer.function.__doc_

4.3.1.14.1 Sequencer.Delete

Delete()
Delete a Sequencer.

Returns
None

Comments

The call to Delete() removes the reference held by the control dialog. It marks the
sequencer as deleted and renders it unusable for all other references. As soon as the last
reference terminates the Sequencer is deleted. If the Sequencer is still running it will be
stopped first.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 183

Example
Delete the Sequencer from the above example:

oMySeq.Delete

Now remove our object reference
del oMySeq

4.3.1.14.2 Sequencer.InputDialog

InputDialog(strText)

Displays an input dialog box. The text strText is displayed as the input prompt. If the
user pressed Cancel or does not provide any input an AbortError execption is raised.

Parameter Description
strText The input dialog prompt text.
Returns

The text entered by the user or None if the user selected cancel.

Example
Display an input box asking for a HV level:

def fMySeqg(oSeq) :
oSeq.InputBox ('Please set a new HV level in the range 1 .. 4!)
oSeqg.Wait ([HK], fCheckHV)

4.3.1.14.3 Sequencer.MessageBox

MessageBox(strText, [cButtons], [cIcon=MB_ICONEXCLAMATION])

Displays a message box. The text strText is displayed as the message prompt. The
standard windows buttons can be specified in the cButtons parameter. If the user choses
Cancel the function throws an AbortError exception.

Parameter Description
strText The message prompt text..
cButtons Optional, specifies the buttons to display. One of the following attributes

can be specified: MB_OK, MB_OKCANCEL, MB_RETRYCANCEL,
MB_YESNO, MB_YESNOCANCEL.

cIcon Optional, specifies an icon to display. MB_ICONEXCLAMATION,
MB_ICONINFORMATION, MB_ICONQUESTION, MB_ICONSTOP.

Returns
One of the following constants depending on the user action: IDNO, IDOK, IDRETRY,
IDYES.

Example
Display a message box that prompts the user to confirm a parameter and continue with
the sequence:

© 1998-2005 GSE Software, Inc.

184

Gseos

def fMySeqg(oSeq) :

oSeq.Wait ([HK], fSetHV)

oSeqg.MessageBox ('Please make sure the HV value is in the range 1 .. 4!,
MB OKCANCEL)

4.3.1.14.4 Sequencer.Sequencer

Sequencer(strName, fSequencer, [Args=None], [bStart=1])

Create a Sequencer instance and start the Sequencer.

Parameter Description

strName A unique name for the Sequencer. This name will be used to identify the
Sequencer in the control dialog.

fSequencer The Sequencer function. It takes one or more arguments (depending if

you supply arguments in the Args parameter). The first argument is an
instance of the Sequencer itself. You will use this to invoke the
Sequencer methods on this object. You have to provide an additional
argument for every argument you pass in the Args tuple.

Args Optional, any arguments you want to pass to your Sequencer function.
If you need more than one argument you have to wrap them in a tuple.
Make sure you have a matching parameter in your fSequencer function
for every argument you list. The default is no arguments.

bStart Optional, start flag. If you set this flag to false the Sequencer is not
started until you explicitly call the Start() method. The default is true
and therefore runs the Sequencer as soon as you create it.

Returns
Instance of the Sequencer class. See the comments section.

Comments

As mentioned in the section above you usually dont have to hold on to a reference to the
Sequencer object since the control dialog will allow you to manage the Sequencer.
However if you need to control the Sequencer from within a program you have to
explicitly call Delete() if you want to get rid of the Sequencer (to delete the reference the
control dialog holds).

Example
Create a Sequencer:

def fMySeqg(oSeq) :
oSeqg.MessageBox ('Hello from your sequencer')
oMySeq = Sequencer.Sequencer ('MySeq', fMySeq)

4.3.1.14.5 Sequencer.Sleep

Sleep(dwTimeout)

Put the Sequencer to sleep for the specified number of seconds.You should always use
this function to put the Sequencer to sleep. This Sleep() function reacts to the control
dialog as opposed to the sleep() function of other modules. If the function gets aborted
by the user through a Stop() command an AbortError is raised.

© 1998-2005 GSE Software, Inc.

GSEOS Reference 185

Parameter Description

dwTimeout Timeout value in seconds.
Returns

None

Comments

The Sleep() function puts the Sequencer thread in an effective state where is consumes
only very little processor time.

4.3.1.14.6 Sequencer.Start

Start()
Start (restart) a Sequencer.

Returns
None

Comments
If the Sequencer is still running or if it is deleted a RuntimeError exception is thrown.

Example
Restart the Sequencer from the above example:

oMySeq.Start ()

4.3.1.14.7 Sequencer.Stop

Stop()

Stop a Sequencer.

Returns
None

Comments

A Sequencer can only be stopped at certain points during its execution. In a Wait(),
MessageBox(), InputDialog(), Sleep() function. If the Sequencer is not in any of these
states while the Stop() is issued it will be stopped as soon as it executes one of the
above functions. If the Sequencer is already stopped or if it is deleted a RuntimeError
exception is thrown.

Example
Stop the Sequencer from the above example (this will throw an exception since the
Sequencer terminates right away):

oMySeq.Stop ()

© 1998-2005 GSE Software, Inc.

186

Gseos

4.3.1.14.8 Sequencer.Wait

Wait(ctBlocks, fCondition, [0Args=()], [dwTimeout=INFINITE])

Wait for one of the events (block arrivals) specified in the event list (ctBlocks) to be
signaled. Evaluate the condition and return if the condition evalutates to true. If the
condition evaluates to false go back and wait for the next block arrival, if it evaluates to
true return from the function call. If the function gets aborted by the user through a
Stop() command raise an AbortError. If an optional timeout value is specified and the
timer expires before the condition evaluates to true raise a TimeoutError.

Parameter Description

ctBlocks The block(s) to trigger on. If one of these blocks arrives the condition is
evaluated. A single block can simply be passed in as is. Multiple blocks
have to be wrapped in a tuple.

fCondition The condition to evaluate when any of the above blocks arrives. If true
the Wait() function finishes, otherwise it will block until the next arrival
of a trigger block. The condition function must take an according
number of parameters depending on oArgs. I.e. if you pass three values
in the oArgs tuple fCondition() needs to have three argument

parameters.

0Args: Optional. A tuple with command arguments that get passed to the
condition function.

dwTimeout Optional, timeout value in seconds. A TimeoutError is raised if the

timeout value is met before the condition evaluates to true.

Returns
None

Comments
Oftentimes it is convenient to use a lambda function for a simple condition instead of
defining a separate condition handler.

Example
Delete the Sequencer from the above example:

def fMySeqg(oSeq) :
try:
oSeqg.Wait ([BINCOMMAND], lambda: BINCOMMAND.byChan == 123, (), 20)

except sequencer.TimeoutError, e:
print 'Did not receive a command on channel 123 in the last 20 seconds'
return

print 'Got a command on channel 123’

Now remove our object reference
del oMySeq

4.3.1.14.9 Sequencer.wStatus

Property: wStatus
Get the status of a Sequencer. Do not modify this value!

© 1998-2005 GSE Software, Inc.

GSEOS Reference 187

Comments
The property can have three states: RUNNING, STOPPED, or DELETED.

Example
Query the state from the Sequencer from the above example:

if oMySeg.wStatus == sequencer.RUNNING:
print 'The sequencer is running'

elif oMySeqg.wStatus == sequencer.STOPPED:
print 'The sequencer is stopped'

else:
print 'The sequencer is deleted'

44 Recorder File Format

The Gseos Recorder can record the data blocks defined in the block definition file (*.blk file). The data
blocks contained in the binary recorder files can pe accessed via a simple filter. The following
description shows how to make the GSEOS Recorder data available for further evaluation by writing a
specific filter.

The files consist of three different record types: File Header, Block Header and Block Body.

Every file starts with a File Header that allows you to check whether this file is a GSEOS Recoder file
for your project. It has only one single file header.

Every GSEOS Recorder file may contain different block types. The first time a specific block is
recorded in that file a Block Header is written. It contains some block specific data like the block name.
The Block Header is followed by one or more Block Bodies, which contain the data. The next time a
data block of that type is recorded only the Block Body is written to the file. This means that there is
always exactly one Block Header and one or more Block Bodies for a block type in the recorder file.
The following picture shows a possible structure of File Header, Block Headers and Block Bodies:

File Header

Block Header for Block "EDB"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Header for Block "HK1"
Block Body for Block "HK1"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Body for Block "HK1"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Header for Block "HK2"
Block Body for Block "HK2"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Body for Block "HK1"

© 1998-2005 GSE Software, Inc.

188

Gseos

Block Body for Block "HK2"
Block Body for Block "EDB"
Block Body for Block "EDB"
Block Body for Block "EDB"

The layout of the FileHeader, Block Header and Block Body structures is as follows:

1. File Header

Name
byID[5]
wVersion

szProjectName[19]
dwTime

dwNull

2. Block Header

Name
wiD

wBIlockID
szName[32]

dwlLen

3. Block Body

Name
wiD

wBlockID

dwStamp

dwSize

dwTime

abyData
dwLen

Size

32

Size

dwSize

Contents
OxEB 0x90 "GSE"
0x0100

Name of Project (zero
terminated)

Time in seconds since
Jan/01/70 00:00:00

0

Contents
llDEll

File local block ID

Name of data block
(zero terminated)
40

Contents
IlTAll

File local block ID (link
to header)
Stamp number

Size of data area in
bytes

Reception time in
seconds since
Jan/01/70 00:00:00.
data bytes

wSize+20

Description
Unique identification

Version of recorder
format
Identification of project

File creation time

Spare

Description

Block Header
identification
Link to block bodies

Name of data block

Length of this structure

Description

Block Body
identification
Link to block header

The stamp number
must be consecutive
for each block type

Block data
Length of this structure

© 1998-2005 GSE Software, Inc.

GSEOS Reference 189

The following source code is a sample on how to parse the recorder data:

/*******
***/

/*
/* DUMP
/* Dump

/* high

R R I b I b e S b I S b I S b b S R S S R S b I S b S I S b e S b S b I S b I S b I S 2R S S b S S R S dh S db b S b 4

DAT32.CPP

s the recorder contents of GSEOS recorder files for GSEOS 4.0 and

er.

/* Copyright (C) 1997-1999, GSE Software, Inc.

/* Auth

/* Hist
/* Feb-

/*******
'k'k*/

#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define
#define
#define
#define

#define
#define

#define

typedef

typedef

or: Thomas Hauck (th)

ory:
10-1999 th V 2.0 Adapted to new 32-bit structures.

AR A AR A AR A AR A AR A AR A AR A I A A AR AR AR A AR AR A AR A IR A A A A A A A A A A Ak Ak Ak kA Ak kA h kK

<stdio.h>
<stdlib.h>
<dir.h>
<dos.h>
<io.h>
<fcntl.h>
<time.h>

MAX FILES 700
MAX BLOCKS 400
MAX_ERRORS 100

BYTE unsigned char
WORD unsigned short
DWORD unsigned long

BOOL int
TRUE 1
FALSE O
BLOCKNAME LEN 32 // length of blockname

struct DATABLOCK
{
DWORD dwLastStamp ;
int iBlockID ;
char szName [BLOCKNAME LEN] ;
} DATABLOCK ;

struct DATAFILE
{

© 1998-2005 GSE Software, Inc.

190 Gseos

char szName[l6] ;
DWORD dwTime ;
} DATAFILE ;

typedef struct FILEHEADER

{
BYTE byID[5];
WORD wVersion;
char szProjectName[19];
DWORD dwTime;
DWORD dwNULL;

} FILEHEADER ;

typedef struct BLOCKHEADER
{
WORD wID;
WORD wBlockID;
char szName [BLOCKNAME LEN];
DWORD dwlLen;

} BLOCKHEADER ;

typedef struct BLOCKBODY

{
WORD wID;
WORD wBlockID;
DWORD dwStamp;
DWORD dwSize;
DWORD dwTime;

} BLOCKBODY ;

static BLOCKHEADER sBlkHdr ;
static BLOCKBODY sBlkBody ;
static FILEHEADER sFileHdr ;

static DATABLOCK sBlock[MAXiBLOCKS] ;
static WORD wBlockCount = 0;

static DATAFILE sFile[MAX_FILES] ;
static int iFileCount = 0 ;

static BYTE abyBuffer[0x20000] ;

int fCompTime (DATAFILE * pl, DATAFILE * p2)
{
if (pl->dwTime < p2->dwTime)
return -1 ;

else if (pl->dwTime == p2->dwTime)
return 0 ;
else

return 1 ;

}
int main (int argc, char * argv([])
{

BOOL bWriteDirectory;

BYTE abyID[2] ;

© 1998-2005 GSE Software, Inc.

GSEOS Reference 191

int 1,73,
iDone,
iErrCount = 0O,
iBlockNumber,
iFirstArg;

char szPath[64],
szFileMask([64],
szFileName[64],
szProjectName[64] ;

DWORD dwLen;
struct ffblk ffblk ;

FILE * pFile ;

bWriteDirectory = FALSE ;
iFirstArg = 1 ;

while ((iFirstArg < argc) && (argv[iFirstArg][0] == "'-"))
{

switch(argv[iFirstArg] [1])

{

case 'l' : bWriteDirectory = TRUE ;
break ;
default : printf("Wrong option switch : %s\n",argv[iFirstArgl) ;

exit (-1) ;
}
iFirstArg++ ;
}

if (argc-iFirstArg != 2)
{
printf ("usage :\n") ;
printf ("dumpdat32 [switches] path projectname\n\n") ;
printf ("This program dumps GSEOS 4.0 data files from the specified
path\n")
printf ("to standard output.\n")
return -1 ;

strcpy (szProjectName,argv[iFirstArg+l]) ;
strcpy (szPath,argv[iFirstArg+0]) ;
if (strlen(szPath))
{
if (szPath[strlen(szPath)-1] != "\\")
strcat (szPath, "\\")
}

strcat (strcpy(szFileMask, szPath),"*.*")

© 1998-2005 GSE Software, Inc.

192

Gseos

*/

iDone = findfirst (szFileMask, &ffblk,0) ;

while (!iDone)

{
fprintf (stderr,"\r%13s ...",ffblk.ff name) ;
/* ____________________________________

strcat (strcpy(szFileName, szPath), ffblk.ff name) ;
pFile = fopen(szFileName, "r+b") ;

if (!pFile)
{

fprintf (stderr,"\n Error : '%s' could not be opended.\n",szFileName)

exit (-1) ;
}
else
{

if (fread(&sFileHdr,sizeof (sFileHdr),1l,pFile) != 1)

{

fprintf (stderr,"\n Warning : file header could not be read from
'$s'\n",szFileName) ;

}

else
{
if ((sFileHdr.byID[0] == 0OxXEB) &&
(sFileHdr.byID[1] == 0x90) &&
(sFileHdr.byID[2] == 'G') &&
(sFileHdr.byID[3] == 'S') &&
(sFileHdr.byID[4] == 'E') &&
((sFileHdr.wVersion == 0x0100) || (sFileHdr.wVersion ==
0x0200)) &&

(strcmp (strupr (sFileHdr.szProjectName), strupr (szProjectName))

if (iFileCount < MAX FILES)
{
strcpy (sFile[iFileCount] .szName, ffblk.ff name) ;
sFile[iFileCount] .dwTime = sFileHdr.dwTime ;
iFileCount++ ;
}
else
{
fprintf (stderr, "\nWarning : too many files, can open only %d
files !\n",MAXiFILES) ;
fclose (pFile) ;
}
}
else
{
fprintf (stderr,"™ no valid data file\n") ;
}

© 1998-2005 GSE Software, Inc.

GSEOS Reference 193

}

fclose (pFile) ;

}

iDone = findnext (&ffblk) ;

gsort (sFile,iFileCount, sizeof (DATAFILE), (int (*) (const void *a, const
void *b)) fCompTime) ;

if (bWriteDirectory)

{ printf ("Directory of %s data files\n\n",strupr (szProjectName)) ;
for (i=0; i<iFileCount; i++)
{ printf ("%$12.12s %s",sFile[i].szName, ctime (& (sFile[i].dwTime)))
;xit (-1) ;

printf ("GSEOS 4.0 data dump\n")
printf("-----—--———————————— \n\n\n")
printf ("Data path : %$s\n",szPath) ;

for (i=0; 1< iFileCount; i++)

iBlockNumber = 1 ;
for (w=0; w<wBlockCount; w++)

{
sBlock[w] .iBlockID = -1 ;

© 1998-2005 GSE Software, Inc.

194 Gseos

}

strcat (strcpy(szFileName, szPath),sFile[i].szName) ;
pFile = fopen(szFileName, "r+b")
(

printf ("\nFile : %s of %$s\n",sFile[i].szName,ctime (& (sFile[i].dwTime)))
if (!pFile)
{

extern char * sys errlist[] ;

extern int errno ;

fprintf (stderr,"\n Error : '$s' could not be opended
(%s) .\n",sFile[i] .szName, sys errlist[errno]) ;

iErrCount++ ;
if (iErrCount > MAX ERRORS)
goto TOO MANY ERRORS ;

}

else
{

/* ___
read the header again and test the data
___ */

if (fread(&sFileHdr,sizeof (sFileHdr),1l,pFile) != 1)

{

printf (">> FileHdr could not be read from '%$s'\n",sFile[i].szName)

iErrCount++ ;
if (iErrCount > MAX_ERRORS)
goto TOO MANY ERRORS ;
}
else
{
if (sFileHdr.dwNULL != 0)

{
printf (">> FileHdr.dwNULL is not 0 but %4.4X\n",sFileHdr.dwNULL)

iErrCount++ ;
if (iErrCount > MAX ERRORS)
goto TOO MANY ERRORS ;

S —
read records from file until file is empty
__ */

while (fread(abyID,sizeof (abyID),1,pFile) == 1)

{

if ((abyID[0] == 'D'") &&
(abyID[1] == 'E'"))
{
2 S —
block definition record
__ */
if (fread (& (sBlkHdr.wBlockID),sizeof (sBlkHdr)-2,1,pFile) != 1)

{
printf (">> BlkHdr could not be read from

© 1998-2005 GSE Software, Inc.

GSEOS Reference 195

'$s'\n",sFile[i] .szName) ;
iErrCount++ ;
if (iErrCount > MAX ERRORS)
goto TOO MANY ERRORS ;
}

else
{

/* _______________________________________
test 1if block ID has already been used
_______________________________________ */

for (j=0; j<wBlockCount; j++)

{

if (sBlkHdr.wBlockID == sBlock[j].iBlockID)

{
printf (">> BlockID %d used twice.\n",sBlkHdr.wBlockID) ;
printf (" Block '%$s' will not be
recognized.\n", sBlkHdr.szName) ;
iErrCount++ ;
if (iErrCount > MAX ERRORS)
goto TOO MANY ERRORS ;
break ;

if (j == wBlockCount)
{
WORD w = 0O;
while ((w<wBlockCount) &&

(strcmp (sBlock[w] .szName, sB1kHdr.szName)))
wt++

sBlock([w] .iBlockID = sBlkHdr.wBlockID ; // set a new
block ID

if (w == wBlockCount)

{
strcpy (sBlock[w] .szName, sBl1kHdr.szName) ;
wBlockCount++ ;
sBlock[w] .dwLastStamp = 0 ;

}

if (sBlkHdr.dwlLen != sizeof (sBlkHdr))
{

printf ("BlkHdr.dwLen is incorrect for definition of block

o\
)]

(5d)\n",
sBlkHdr.szName, sBlkHdr.dwLen) ;
iErrCount++ ;
if (iErrCount > MAX ERRORS)
goto TOO MANY ERRORS ;

}
}
else if ((abyID[0] == 'T') &&

{

© 1998-2005 GSE Software, Inc.

196 Gseos

block data record

if (fread (& (sBlkBody.wBlockID),sizeof (sBlkBody)-2,1,pFile) !=

{
printf (">> BlkBody could not be read from
'$s'\n",sFile[i] .szName) ;
iErrCount++ ;
if (iErrCount > MAX ERRORS)
goto TOO MANY ERRORS ;

1)

}
else
{
for (3j=0; j<wBlockCount; j++)
{
if (sBlkBody.wBlockID == sBlock[j].iBlockID)
{
if (sBlock[j].dwLastStamp+l != sBlkBody.dwStamp)
{
printf ("\n>> Missing sample #%d of block %s. Next
recorded sample is #%d\n\n",
sBlock[]J] .dwLastStamp+1,
sBlock[]].szName,
sBlkBody.dwStamp)
}
printf ("\nBlock %3d : %18.18s #%d:[%d] %s\n",
iBlockNumber++,
sBlock[j].szName,
sBlkBody.dwStamp,
sBlkBody.dwSize,
ctime (& (sBlkBody.dwTime))) ;

sBlock[j].dwLastStamp = sBlkBody.dwStamp ;
break ;

if (j == wBlockCount)
{

printf ("\n\n>> Block with ID %d is not defined
'\n\n", sBlkBody.wBlockID) ;

iErrCount++ ;
if (iErrCount > MAX_ERRORS)
goto TOO MANY ERRORS ;

if (fread(abyBuffer, sBlkBody.dwSize,1l,pFile) != 1)
{
printf (">> Data could not be read\n")
iErrCount++ ;
if (iErrCount > MAX ERRORS)
goto TOO MANY ERRORS ;

’

}

else

{
int iPos ;
int k ;

iPos = 0;

© 1998-2005 GSE Software, Inc.

GSEOS Reference 197

for (j=0; j<sBlkBody.dwSize; j++)
{
if (iPos == 0)
{
printf ("%$4.4X ",3) ;
}

printf ("%2.2X ", (WORD) abyBuffer[j]) ;
iPos++ ;
if (iPos == 16)
{
printf ("™ ") ;

for (k=j-15; k<=j; k++)
{
if (abyBuffer[k] >= 0x20)
printf ("%c",abyBuffer[k]) ;
else
printf(".") ;
}
printf ("\n") ;
iPos = 0 ;

}

if (iPos != 0)
{
j =3 - iPos ;
for (k=iPos; k<16; k++)
printf (" "y
printf (" ") ;
for (;j<sBlkBody.dwSize; j++)
{
if (abyBuffer[j] >= 0x20)
printf ("%c",abyBuffer[j])

else
printf(".") ;
}
printf ("\n")
}
printf ("\n")
}
}
if (fread(&dwlen, sizeof (dwlen),l,pFile) != 1)
{
printf (">> Back Pointer could not be read\n") ;

iErrCount++ ;
if (iErrCount > MAX_ERRORS)
goto TOO MANY ERRORS ;
}
else

{

if (dwlLen != sBlkBody.dwSize+sizeof (sBlkBody)+sizeof (DWORD))
{

printf (">> Back Pointer has wrong value (0x%4.4X), expected
0x%4.4X\n",

© 1998-2005 GSE Software, Inc.

198 Gseos

dwlLen,
sBlkBody.dwSize+sizeof (sB1lkBody) +sizeof (DWORD)) ;

iErrCount++ ;
if (iErrCount > MAX ERRORS)

goto TOO MANY ERRORS ;

}

else

{
0x%4.4X\n",

printf (">> Record Header has wrong format

abyID[0], abyID[1]) ;
iErrCount++ ;
if (iErrCount > MAX ERRORS)

goto TOO MANY ERRORS ;

}

}
fclose (pFile) ;

}
return 0 ;

TOO MANY ERRORS
printf ("\nToo many errors, program aborted.\n")

return -1 ;

© 1998-2005 GSE Software, Inc.

200

Gseos

5.1

5.2

5.3

How do |...

How do | display alarm information?
Setting up an alarm item is a three step approach:

- Create your alarm definition and load an alarm file.
- Place the data item on a screen.

- Select the alarm and configure the alarm properties.

Once you have the alarm loaded you will be able to verify it in the GSEOS Explorer.

The image below shows a screen shot of a data item that has an alarm set up.

. =]
20
16 BEE

How do | configure an alarm monitor?

Alarm monitors are useful to inform you of certain conditions in your telemetry data.

An Alarm Monitor monitors one data item with a trigger condition. The alarm trigger
condition can be any operation that returns a boolean result. You can define the actions
that you want to invoke once the alarm fires. The possible actions are:

a) Write message to the message window.
b) Write message to a log file.

c) Send command.

d) Execute Python function.

e) Send email.

You configure the alarm monitor in a GSEOS configuration file. For more information on
the alarm monitor configuration file please see the Alarm Monitor Configuration section.

How do | configure the networking module?

GSEOS network support is very flexible and accommodates various different networking
configurations. The basic concept of the network module is to import/export data blocks
via the TCP/IP protocol. The network module functions as a data source when importing
data. You can configure any number of network connections. Each network connection
can be associated with at most two blocks. One that gets exported on this connection
and one that gets imported. From a network perspective GSEOS can act as a server or a
client. For each connection you have to specify if you want GSEQOS to act as a server or a
client. This does not necessarily determine if you export or import blocks on that
connection. A common scenario is to configure a server connection and export a block on
that connection. However you may as well configure a client connection and export a

© 1998-2005 GSE Software, Inc.

How do I... 201

block on that connection.

Configuration options

The network module is configured in the gseos.ini configuration file. Specify all your
connections in the [Net] section (or an according instance specific name). The keys you
specify in this section are the names of the connections you want to configure. The value
can be either Server or Client for a network server or a network client respectively.

[Net]
TLMSrv=Server
TestServerl=Server
TomsServer=Server
SOPC33=Server
TLMClnt=Client
CmdSrc=Client
TestClient=Client

The above example configures four server connections and three client connections. You

can manage these connections from within the GSEOS Explorer. In order to configure the
individual connections you have to create new sections with the connection name for the
section name, e.g.:

[TLMSrv]
Port=2001
Source=TLM

The section above specifies the setting for the TLMSrv server connection. This particular
example configures the server to listen on port 2001 and export the TLM block.

The following sections discuss the various options you can specify. The settings that only
apply to client connections are indicated.

© 1998-2005 GSE Software, Inc.

202 Gseos

Key Assignment

IP-Address Only for Client connections. The IP address of the remote server. Specify
the IP address in 4-byte dotted format, e.g. 150.144.103.23

Port The port number of the remote machine. There must be a server listening
on this port in order for a connect attempt to be successful.
Source The data block you want to EXPORT on this connection. Every time the

system encounters this block it will send the contents of the block to the
remote machine. The actual amount of data sent depends on the
VariableLen setting.

Destination The data block you want to IMPORT on this connection. All data received
from the server will be written to this block. Once the number or bytes
specified in the block definition is received the block is submitted to the
system. (This is the default behavior and can be modified with the
VariableLen setting.)

AutoConnect Only for Client connections. Allows to automatically connect to a server.
Specify a number of seconds that will elapse before an attempt is made
to connect to the remote machine. If the connection is already
established no attempt to connect will be made. If you set this value to 0,
the default value, automatic connection is disabled.

VariableLen This setting controls the amount of data sent over the network
connection. The default is "No". For the source block the amount of bytes
specified in the block definition file is sent. for the destination block the
amount of bytes specified in the block definition has to be received before
a block is generated. This setting is preferred for inter GSEOS connections
or connections that generate fixed length data. If you specify "Yes" for
this setting the connection uses variable length packets. The blocks
specified in either Source or Destination have to have a 32-bit field called
"Len" at the beginning of their block definition. For Source blocks the Len
field specifies how many bytes of data are transferred. The Len field itself
is not sent, only the data immediately following the Len field. For
Destination blocks the Len field is filled with the amount of data read from
the network. When more data is received than can be placed in the block
multiple blocks are generated.

Exclusive The network module is considered a data source. The default behavior for
the network will be to discard all data received on the network connection
unless the network is enabled. There are some circumstances where this
is not desirable. E.g. consider the case of remote commanding. In this
case we may have incoming data from the Bios but want to be able to
feed in command data over the network. If we were to enable the
network the Bios data would be discarded, not an option. However if the
Bios is on all command data from the network would be discarded. To
enable network input while getting data from another data source set this
value to "No" and do not enable the network. The default is "Yes" which
means all incoming data from the network is discarded unless the
network is enabled.

Connecting two GSEOS computers

Oftentimes it is desirable to distribute the data decoding/display to various machines.
This can easily be done by having one machine exporting a data block and the other
importing the same block. The default behavior of a connection is to export/import the

© 1998-2005 GSE Software, Inc.

How do I... 203

entire block. This is a fixed size packet based on the block definition for the block you
import or export. This is what you need to interconnect two GSEOS machines (given of
course that the block definitions on both machines are the same!). The decision which
machine to configure as server and which one as client pretty much depends on where
you want to initiate the connection from. The client machine has to initiate the
connection. Lets assume we have two machines, the Lab machine with the physical data
connection to the instrument and an Office machine were we want to run remote display.
The Lab machine will be configured as server and the Office machine as client so we can
start the remote display from the Office machine. The block exported by the Lab machine
and imported into the client machine is TLM. We also want to enable commanding from
the Office machine. This means we have to set the Exclusive setting on the Lab machine
to "No". If we don't want to enable commanding we would not need to set the Exclusive
flag to "No" and we would not need to specify the CMDSTRING block in either
configuration.

Here the configuration for the Lab machine:

[Net]
TLMSrv=Server
[TLMSrv]
Port=2020
Source=TLM
Destination=CMDSTRING
Exclusive=No

Here the configuration for the office machine:

[Net]

TLMClient=Client

[TLMSrv]
IP-Address=150.134.123.87
Port=2020

Source=CMDSTRING
Destination=TLM

5.4 How do | configure startup settings?

When GSEQOS starts up your custom configuration files can be loaded to setup GSEOS for
your environment. There is two categories of startup files that can be loaded:

e Configuration Files
e Python scripts

Loading of Configuration files at startup

Configuration files are screen files (*.scr), command menu files (*.cm), desktop files
(*.dt), log files (*.log), formula files (*.qlf), text reference files (*.tr), and any custom
files you register with GSEQS. These can be loaded automatically by specifying the file
name in the gseos.ini [Config] section. See the example below for a typical configuration

entry:

[Config]

Load = System\System.glf Common\Pluto.glf i LORRI\LOR cust.qlf
Load = system\system.cpd Common\sce.cm

Load = Common\common.tr Common\basic.tr Common\Common ltgray.tr
Load = i LORRI\LOR cust.tr

© 1998-2005 GSE Software, Inc.

204

Gseos

Load = i LORRI\CMD n TLM\ApId 601.gqlf
Load = i LORRI\CMD n TLM\ApId 60l.alarm
Load = i LORRI\CMD n TLM\ApId 601.tr

It is also possible to load Python files (*.py, *.pyd, *.dll) here, this is only recommended
for simple configurations, complex (mission or multipe instrument) configurations should
use the alternate appoach listed below.

Loading of Python scripts at startup
It is often it is necessary load Python scripts at startup time. There are several different
approaches with different consequences:

1. Specify the scripts to load in the gseos.ini [Config] section.

2. Specify the scripts to load in a command batch file that is specified in the [Config]
section of the gseos.ini file.

3. Use a Python startup script that imports all the necessary configuration scripts.

1. Using the [Config] section

The first approach is the simplest and most straightforward, you can just specify the
Python scripts to load at startup time in the gseos.ini file [Config] section. You have to
use the Load entry. You can specify multiple files for one Load entry and you can also
specify as many Load entries in the [Config] section as you like. Please see the sample
below:

[Config]

BlkFiles=system\system.blk Messenger.blk common\pkt tlm.blk rtiulrtiu.blk
Load = LP1553Bios.dll common\common cmds.py core\test arg.py

Load core\RTIUDec.py common\embx cmds.py core\core.py common\config.py
Load system\system.cpd common\com DPU\instrument.cm
common\com_DPU\embox.cm

Load = Instrument\i DPU\startup dpu.cpb

Multiple entries on one Load line are separated by white-spaces. In general it is probably
the best approach to just specify one file per line.

Two things happen when these files get loaded:

The system checks if the path specified is already in the sys.path (the Python search
path). If it is not the path gets prepended to sys.path to load the file. Once the file is
successfully loaded the sys.path is restored to its previous contents.

If the module has been loaded before it will get reloaded, otherwise it will be imported.

The import is run in the __main__ namespace context. Say you specify xyz.py, this
means you can access the module xyz directly from the __main__ namespace, i.e. the
console window: dir (xyz) .

However, one limitation of this approach is that you can't do the equivalent of:

from xyz import *

and therefore import the contents of the module into the __main__ namespace. Say you
define a command script MyCmds.py and you want to issue the commands directly from
a button or the console window. You would need to invoke a command like so:
MyCmds.POWER_ON(). The next approach will show you how to address this problem.
Also, loading a package is not possible only Python modules can be loaded with this
approach.

For simple configurations this is the recommended approach. More complex

© 1998-2005 GSE Software, Inc.

How do I... 205

configurations for entire mission support or multiple instrument configurations should use
approach 3.

Note:

In general it is a good idea to explicitly use namespaces and only import an entire
module. If you load everything directly into the __main__ namespace this namespace
gets cluttered and it is difficult to track down where individual attributes are defined.

2. Using a command batch (*.cpb) file

With this approach we can address the problem we encountered with directly specifying
the Python scripts in the Using batch files for startup configuration is strongly
discouraged since it might introduce time dependent behavior that is hard to control.
Please refer to the next section for Python script based startup configuration.

3. Python script based startup configuration
The problem with the simple approach of loading Python scripts directly from the [Config]

section is that you don't have the equivalent of:
from xxx import *

To facilitate this you can use the [PyStartup] section in the gseos.ini file. The [PyStartup]
section has two keys: 'Import' and 'Exec'. 'Import’ lets you import Python modules as
well as Python packages. The module/package has to be on the search path to be loaded
successfully.

'Exec' lets you execute an Python statement. We will use this feature to import the
contents of the startup script into the __main__ namespace. Please see the example
below for a startup configuration using the 'Exec' approach:

[PyStartup]

Import = TC TLM Load

Exec from Common.Startup import *

Exec from i LORRI.StartupMaster import *

The statements are executed in the order listed. You can enter any number of startup
scripts you need. However, it is recommended to perform all imports and other
configuration within your startup script.

GSEOS startup order
The following lists the order in which GSEOS bootstraps the configuration files:

e Load block definition files from [Config] BlkFiles entries.
e Execute [PyStartup] Import/Exec entries.
e Load configuration files from [Config] Load section.

Since batch files are time depended they will be executed when loaded from the [Config]
Load section but may be preempted by other scripts depending on the processing of the
message queue. Therefore it is not recommended to load batch files at startup.

5.5 How do | open a screen file programmatically?

Sometimes it is desirable to open or close GSEQOS screen files from a script. To open a
screen window you use the FileOpen() method of the GseosSys module. You specify the
file name of the screen file you wish to open and the file gets loaded and the window

© 1998-2005 GSE Software, Inc.

206

Gseos

5.6

displayed.

The window is displayed on the active desktop page. If you want to locate the screen on
a different desktop page you have to activate that desktop page. You can do this with
Gseos.SetActiveDesktopPage().

Once a screen is open you can change it's appearance with WindowMinimize(),
WindowMaximize(), or WindowRestore(). You can also close it with WindowClose(). All
these functions are located in the GseosSys module. Note that the Window... functions
take the window caption as their parameter to identify the screen you want to operate
on. So if you have assigned a title to the window that is different from the file name you
want to use that title to access the correct window.

Oftentimes you might want to activate or restore a window if it exists, and if it doesn't
you want to load it. This will make sure you don't load the same window multiple times.
The following example defines a command that will open the window if it exists and load
it otherwise. fOpenScreen() assumes that the title of the window is that same as the file
name. This is also the parameter you have to pass into the function. fOpenScreen() take
advantage of the fact that GSEOS throws a RuntimeError when it can't locate the window
you try to restore. It then tries to load the file with FileOpen().

Example

import GseosSys

def fOpenScreen (strScreenFileName) :
try:
GseosSys.WindowRestore (strScreenFileName)

except RuntimeError:
GseosSys.FileOpen (strScreenFileName)

How do | use Expressions and Conversion Functions?

GSEOQS offers two different kinds of mathematical conversions for data items and display
purposes. Expressions are general purpose formulas that can take data items as well as
constants as parameters and that can be displayed on a screen.

Conversion functions are bound to a particular data item and perform a conversion for
this specific data item, usually an engineering unit conversion.

Both Expressions and Conversion functions are defined in a formula file. This formula file
needs to be loaded for the formulas to be accessible (as opposed to GSEOS 5.0 and
earlier where the formula file was referenced directly from the screen file).

Once you have defined and loaded your Expressions and Conversion functions you can
access them by placing an Expression object on a screen. If you place a simple data item
that has a conversion function associated you can select the conversion function with the
item select dialog.

Expressions and Conversions can also be accessed from Python and are available in the
Conversion module. In order to use your functions all you have to do is import the

© 1998-2005 GSE Software, Inc.

How do I... 207

Conversion module:

Example

import Conversion
Conversion.Calibrate (3, Rates.Mass[0], 0.9899)

5.7 How do | write a GSEOS extension DLL?

Dynamic linking of Python extension DLLs is supported as of Version 4.1. It is pretty
straightforward as explained in the Python extension manual. However there are a couple
of things to watch out for. You need a compiler (C/C++) that is capable of generating
Windows 32-bit DLLs, you also have to be familiar with writing Python extension
modules. The Python documentation provides a good overview. When you extend GSEOS
you have to link the appropriate export library. For Borland use gseos45bc.lib, for
Microsoft use gseos45ms.lib. You should also use the GSEOS specific Python header files.
The following source demonstrates how to write a simple extension module. You can use
this file as a skeleton to build your own modules. Once you have created your DLL (by
convention all compiled Python DLLs have the extension .pyd) and placed on the GSEQOS
path (type sys.path in the console window to learn about the search path, you can also
add a path right there) you should be able to import your module with:

import dynaload

Here the dynaload source code:

/*
e e e e S i S I i S e S e e e e A A i i e e I S S S S S S S
*/

/* *

* */

/* * DYNALOAD.CPP

* */

/* *

* */

/* * Demonstrate loading of dynamic python modules.

* */

/* *

* */

/* * History:

* */

/* * Sep-08-98 th V1.0 File creation

* */

/*

KA KKk Kk Kk kk ok khkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkkkkkkk*k

*/
/*

R R IR I e dh b dh Ib b 2 IR I b db S b S db b dh Ib b 2R db b b S I b b S b S IR Ib b 2R db b b db b b 2R Ib b S Sb b b 2R Sb b b db b b 2 db b S db ab i dh Ib b S g 4
*/
/* * Imports

**/

© 1998-2005 GSE Software, Inc.

208

Gseos

/*
* %
*/
#1i

ER I b e S b S b S b S b I S b I S I S b S S S b e S b e S 2R S IR e S b S IR S 2R S b S b I S b I S I b S 2b b S b b S 4

nclude "python.h"

static PyObject* pPyModuleError = NULL;

*/

#pragma argsused
PyObject* fPyDLAdd (PyObject* pSelf, PyObject* pArgs)

{

/*
* *
*/
/*
*

/*
* %
*/
st
{

}s
/*

int iLeft;
int 1iRight;

/* - Get the arguments.
*/
/* __
*/
if (!PyArg ParseTuple(pArgs, "ii", &iLeft, &iRight))
return (NULL) ;

return (PyInt FromLong (iLeft+iRight));

ER I b e S b S b I S b S b I S b I S I S b I 2 R S b e S 2 e S IR S b S b S IR S SR I S b S b I S b I S I b S 2b b S b b S 4

* DL exported methods
*/
R IR IR e e dh b b db Sh b 2 dh b b dh b b S I b b db S b b b b dh b b 2 dh b b dh b b 2 dh b b dh b b S dh b db b b S db b b S b b S Sb b dh b b b dh o 4

atic PyMethodDef sDLMethods[] =

{"Add", fPyDLAdd, 1},
{NULL, NULL}

© 1998-2005 GSE Software, Inc.

How do I... 209

R R I i b b I b I e b b b S b I b b b 2h b b 2 Sh b b b b b b b b b b I 2 b b S b b I 2 Sh b b b b b S b e b b b Sh b b dh b i dh Sb i b i
*/
/* * wvoid initdynaload()
* */
/* *
* */
/* * Description : The module initialization function.
* */
/*
R Rt I e dh b b 2h b b 2 Sh b b Sh b I S Sh b 2b b b 2 Sh b dh b b 2 ah b dh b b 2 Sh b b dh b b 2 Sh b S Sh b b dh Sh b b dh b b 2h dh b S dh S 2b Sb i b g
*/
extern "C" void declspec(dllexport) initdynaload(void)
{
PyObject* pPyModule;
PyObject* pPyDict;

/* - Create the module and add the functions

pPyDict PyModule GetDict (pPyModule);
pPyModuleError = PyErr NewException("dynaload.error", NULL, NULL);
PyDict SetItemString(pPyDict, "error", pPyModuleError);

© 1998-2005 GSE Software, Inc.

210 Gseos

Index G-

Gseos Main Window 90
- A - gseos.ini 113

About this document 14 - L -
Alarm 98
Alarm Limits 98 log 34

Application 90
Architecture 18
Architecture Overview 18

Log windows 34
logging 34

_B - -M -

Main Window 90
Block 99 34

message
Block Definition 99 Message Window 91

Modules 20, 131
Change Report 14

Command 84 Python 131
Command Window 84

config file 113

configuration file 113 - R -

Console Window 85

Conversion Functions 110 Recorder 92
Recording 92
D Red Alarm 98
Data Export 87 - S -
Data Flow 18
DataExport 87 Screen 42

Decoder Explorer 27 System Structure 20

Export 87 Yellow Alarm 98

Expression 110

-F -

Features 14

File Open 141
FileOpenDialog 141
Formula 110

© 1998-2005 GSE Software, Inc.

	Welcome to GSEOS
	A Quick Tour
	Add a screen window
	Histogram Data

	About this document
	Features
	Introduction

	Architecture Overview
	Data Flow
	Real-time control
	System Structure

	User Interface
	Desktop Management
	GSEOS Explorer
	Alarms
	Blocks
	Conversions
	Decoders
	Expressions
	Monitors
	Network
	Sequencers
	System
	Tasks

	Log Windows
	Menus
	The File Menu
	The Help Menu
	The Tools Menu
	The Data Export Menu

	The View Menu
	The Window Menu

	Screen Windows
	Menus
	Draw
	Command Button
	Data Item
	Ellipse
	Expression
	Image
	Line
	Rectangle
	Rounded Rectangle
	Scale
	Text

	Edit
	Options
	Align
	Grid
	Zoom

	Style
	Color
	Data Item
	Alarm Properties
	Bargraph
	Binary
	Bitmap
	Casting
	Decimal
	Float
	Hexadecimal
	Octal
	Signed Decimal
	Text
	Y(t)
	Y(x)

	Line
	Orientation
	Range
	Text
	Window
	Snapshot

	Placing objects
	Adjust Display Style
	Selecting a Drawing Region
	Selecting a Drawing Tool
	Selecting Object Properties

	The Command Dialog
	The Console Window
	The Data Export Dialog
	The GSEOS Main Window
	The Message Window
	The Recorder Dialog

	GSEOS Reference
	Configuration Files
	Alarm Limit Files (*.alarm)
	Block Definition Files (*.blk)
	Command Batch Files (*.cpd)
	Command Menu Files (*.cm)
	Configuration Files (.cfg)
	Alarm Monitor Configuration
	Alarm Monitor Sample

	Formula Definition Files (*.qlf)
	gseos.ini
	Buffer
	Command
	Config
	Console
	Instance
	Net
	Printer
	Project
	PyStartup
	Recorder
	Timebase

	System

	Text Reference Files (*.tr)

	Directory Structure
	Gseos Python Interface
	Modules
	__main__
	GseosBDM.EnableDataSource
	send

	Decoder
	bEnable
	constructor
	Delete
	dwCnt
	Examples
	Simple Decoder
	Variable Length Decoder

	strName

	Gseos
	Gseos.FileMenu
	Gseos.FileOpenDialog
	Gseos.GetInstance
	Gseos.GetProjectPath
	Gseos.help
	Gseos.InputDialog
	Gseos.InputDialogModeless
	Gseos.Log
	Gseos.LogReload
	Gseos.LogSave
	Gseos.MakePathRelative
	Gseos.MessageBox
	Gseos.MessageBoxModeless
	Gseos.PumpWaitingMessages
	Gseos.SetActiveDesktopPage
	Gseos.SetStatusText
	Gseos.ShellExecute
	Gseos.WaitDialog

	GseosBlocks
	GseosCmd
	GseosCmd.batchstart
	GseosCmd.batchstop
	GseosCmd.msg
	GseosCmd.send
	GseosCmd.sound
	GseosCmd.winexec

	GseosConsole
	GseosConsole.off
	GseosConsole.on
	GseosConsole.write

	GseosConvert
	GseosConvert.ftol
	GseosConvert.ltof
	GseosConvert.signed

	GseosMsgWindow
	BringToTop
	Clear
	Close
	New
	Print

	GseosNet
	GseosNet.ClientConnect
	GseosNet.ClientDisconnect
	GseosNet.ClientStatus
	GseosNet.Disable
	GseosNet.Enable
	GseosNet.IsEnabled
	GseosNet.ServerReset
	GseosNet.ServerStatus

	GseosRecorder
	GseosRecorder.AddPlaybackBlock
	GseosRecorder.AddRecordBlock
	GseosRecorder.GetDataPath
	GseosRecorder.GetPlaybackBlocks
	GseosRecorder.GetPrefix
	GseosRecorder.GetRecordBlocks
	GseosRecorder.IsPlayingBack
	GseosRecorder.IsRecording
	GseosRecorder.RemovePlaybackBlock
	GseosRecorder.RemoveRecordBlock
	GseosRecorder.SetDataPath
	GseosRecorder.SetPrefix
	GseosRecorder.StartRecording
	GseosRecorder.StopRecording

	GseosSys
	FileAppend
	FileOpen
	StartApplication
	WindowClose
	WindowMaximize
	WindowMinimize
	WindowPrint
	WindowRestore

	Histogram
	Histogram.bAutoscale
	Histogram.Clear
	Histogram.dwRange
	Histogram.Histogram1D
	Histogram.Histogram2D

	Monitor
	bEnable
	constructor
	Delete
	dwCnt
	Examples
	CounterCheck
	LimitCheck

	strName

	Sequencer
	Sequencer.Delete
	Sequencer.InputDialog
	Sequencer.MessageBox
	Sequencer.Sequencer
	Sequencer.Sleep
	Sequencer.Start
	Sequencer.Stop
	Sequencer.Wait
	Sequencer.wStatus

	Recorder File Format

	How do I...
	How do I display alarm information?
	How do I configure an alarm monitor?
	How do I configure the networking module?
	How do I configure startup settings?
	How do I open a screen file programmatically?
	How do I use Expressions and Conversion Functions?
	How do I write a GSEOS extension DLL?

