
Program lunland 
 

Lunar Landing Trajectory Optimization with SOCS 
 
This document is the user’s manual for a Fortran computer program called lunland that uses the 
Sparse Optimal Control Software (SOCS) object code library developed by Boeing Phantom Works 
(www.boeing.com/phantom/socs/) to solve the finite burn lunar landing trajectory optimization 
problem.  The trajectory is modeled as a single phase with user-defined initial and final boundary 
conditions.  This computer program attempts to maximize the final spacecraft mass, or minimize the 
total flight time.  The type of optimization is selected by the user. 
 
The important features of this scientific simulation are as follows: 
 

 Automated deorbit delta-v algorithm 
 

 User-defined flight path angle and altitude at the descent interface 
 

 2-DOF flight path equations of motion relative to a spherical, non-rotating Moon 
 

 Thrust magnitude and thrust direction control variables 
 

SOCS is a direct transcription method that can be used to solve a variety of trajectory optimization 
problems using the following combination of numerical methods: 
 

 collocation and implicit integration 
 

 adaptive mesh refinement 
 

 sparse nonlinear programming 
 
Additional information about the mathematical techniques and numerical methods used in SOCS 
can be found in the book, Practical Methods for Optimal Control Using Nonlinear Programming by 
John. T. Betts, SIAM, 2001. 
 
The lunland software consists of Fortran routines that perform the following tasks: 
 

 main program that sets algorithm control parameters and calls the SOCS 
transcription/optimal control subroutine 

 

 define problem definition and perform initialization related to scaling, lower and upper 
bounds, initial conditions, etc. 

 

 evaluate the right-hand-side differential equations 
 

 define and compute any point and path constraints 
 

 display the optimal solution results 
 
The SOCS software will use this information to automatically transcribe the user’s problem and 
perform the optimization using a sparse nonlinear programming method.  The software allows the 
user to select the type of collocation method and other important algorithm control parameters.   
With the appropriate substitution of fundamental constants, this simulation can also be used to 
model landings on other airless celestial bodies. 
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Typical input file 
 
The lunland software is “data-driven” by a user-created text file.  The following is a typical input 
file used by this computer program.  In the following discussion the actual input file contents are in 
courier font and all explanations are in times italic font. 
 
This data file defines a typical descent analysis starting from a 100 kilometer circular lunar orbit 
and ending at an altitude of 10 meters and a speed of 1 meter per second.  This simulation 
maximizes the final spacecraft mass. 
 
Each data item within an input file is preceded by one or more lines of annotation text.  Do not 
delete any of these annotation lines or increase or decrease the number of lines reserved for each 
comment.  However, you may change them to reflect your own explanation.  The annotation line 
also includes the correct units and when appropriate, the valid range of the input.  ASCII text input 
is not case sensitive but must be spelled correctly. 
 
The first six lines of any input file are reserved for user comments.  These lines are ignored by the 
software.  However the input file must begin with six and only six initial text lines. 
 

**************************************** 
** lunar landing trajectory optimization 
** optimal thrust level and steering 
** lunland1.in 
** October 31, 2005 
**************************************** 
 

The first program input is an integer that defines the type of trajectory optimization to perform. 
 
type of trajectory optimization 
******************************* 
1 = maximize final mass 
2 = minimize flight time 
------------------------ 
1 
 

The following series of data items are reserved for user-defined initial conditions.  This information 
includes initial flight conditions, propulsive characteristics and lower and upper bounds for the 
thrust angle.  Please note the units and valid data range for each item. 

 
altitude of initial circular lunar orbit (kilometers) 
100.0 
 
altitude at descent interface (meters) 
10000.0d0 
 
flight path angle at descent interface (degrees) 
-1.0d0 
 
initial spacecraft mass (kilograms) 
1000.0d0 
 
maximum thrust (newtons) 
5000.0d0 
 
minimum thrust (newtons) 
1000.0d0 
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specific impulse (seconds) 
300.0d0 
 
lower bound for thrust angle (degrees) 
-90.0d0 
 
upper bound for thrust angle (degrees) 
+90.0d0 
 

The following series of data items allow the user to define guesses for the final time, flight 
conditions and spacecraft mass.  To fix one or more conditions, the user should input identical 
lower and upper bounds.  Please note the units and valid data range for each item.  Also note that 
the final speed must be greater than zero. 

 
************************************** 
final time, mass and flight conditions 
************************************** 
 
initial guess for final time (seconds) 
50.0 
 
initial guess for final spacecraft mass (kilograms) 
900.0d0 
 
initial guess for final altitude (meters) 
10.0d0 
 
lower bound for final altitude (meters) 
10.0d0 
 
upper bound for final altitude (meters) 
10.0d0 
 
initial guess for final speed (meters/second) 
1.0d0 
 
lower bound for final speed (meters/second) 
1.0d0 
 
upper bound for final speed (meters/second) 
1.0d0 
 
initial guess for final flight path angle (degrees) 
-90.0d0 
 
lower bound for final flight path angle (degrees) 
-90.0d0 
 
upper bound for final flight path angle (degrees) 
-90.0d0 
 

The next series of program inputs are algorithm control options and parameters for the SOCS 
software.  The first input is an integer that specifies the type of collocation method to use during the 
solution process.  For most simulations, the trapezoidal method is recommended. 

 
********************************* 
discretization/collocation method 
********************************* 
 1 = trapezoidal 
 2 = separated Hermite-Simpson 
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 3 = compressed Hermite-Simpson 
 4 = Runge-Kutta 4-stage 
------------------------ 
1 
 

The next integer defines the number of initial grid points to use in the collocation modeling of the 
descent trajectory. 

 
number of initial guess grid points to use 
25 
 

The software also creates a comma-separated-variable (csv) ascii data file that contains the optimal 
control solution and other flight parameters.  The name of this output file is specified in the next 
line of information.  Please consult Appendix B for information about the contents of this file. 

 
name of comma
lunland1.csv 

-delimited solution data file 

 

This next input specifies the type of solution data file to create. 
 
****************************************** 
type of comma-delimited solution data file 
****************************************** 
 1 = SOCS-defined nodes 
 2 = user-defined nodes 
 3 = user-defined step size 
--------------------------- 
1 
 

For options 2 or 3, this input defines either the number of data points or the time step size of the 
data output in the solution file. 

 
numbe
10.0 

r of user-defined nodes or print step size in solution data file 

 

The next series of program inputs are algorithm control options and parameters for the SOCS 
software. 

 
**************************** 
algorithm control parameters 
**************************** 
 

This input defines the relative error in the objective function. 
 
relativ
1.0d-5 

e error in the objective function (performance index) 

 

The next input defines the relative error in the solution of the differential equations. 
 
relative error in the solution of the differential equations 
1.0d-7 
 

The next input is an integer that defines the maximum number of mesh refinement iterations. 
 
maximum number of mesh refinement iterations 
20 
 

The next input is an integer that defines the maximum number of function evaluations. 
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maximum
100000 

 number of function evaluations 

 

The next input is an integer that defines the maximum number of algorithm iterations. 
 
maximum number of algorithm iterations 
10000 
 

The level of output from the SOCS NLP algorithm is controlled with the following integer input. 
 
*************************** 
sparse NLP iteration output 
*************************** 
 1 = none 
 2 = terse 
 3 = standard 
 4 = interpretive 
 5 = diagnostic 
--------------- 
2 
 

The level of output from the SOCS optimal control algorithm is controlled with the following integer 
input.  Please note that option 4 will create lots of information. 

 
********************** 
optimal control output 
********************** 
 1 = none 
 2 = terse 
 3 = standard 
 4 = interpretive 
----------------- 
1 
 

The level of output from the SOCS differential equations algorithm is controlled with the following 
integer input.  Please note that option 5 will create lots of information. 

 
**************************** 
differential equation output 
**************************** 
 1 = none 
 2 = terse 
 3 = standard 
 4 = interpretive 
 5 = diagnostic 
--------------- 
1 
 

The level of output can be further controlled by the user with this final text input.  This program 
option sets the value of the SOCOUT character variable described in the SOCS user’s manual.  To 
ignore this special output control, input the simple character string no. 

 
******************* 
user-defined output 
------------------- 
input no to ignore 
******************* 
a0b0c0d0e0f0g0h0i0j1k0l0m0n0o0p0q0r0 
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SOCS solution and graphics 
 
The following is the SOCS trajectory summary for this example. 
 

--------------- 
program lunland 
--------------- 
 
input data file ==> lunland1.in 
 
 
< maximize final mass > 
 
 
initial circular orbit altitude    100.000000000000      kilometers 
 
impulsive deorbit delta-v          23.1907400535548      meters/second 
 
flight path angle at interface    -1.00000000000000      degrees 
 
 
conditions at descent interface 
------------------------------- 
 
altitude             10000.0000000000      meters 
 
speed                1693.20179797398      meters/second 
 
flight path angle   -1.00000000000000      degrees 
 
spacecraft mass      1000.00000000000      kilograms 
 
 
final conditions 
---------------- 
 
time                 355.040890866099      seconds 
 
altitude             10.0000000000000      meters 
 
speed                1.00000000000003      meters/second 
 
flight path angle   -90.0000000000000      degrees 
 
spacecraft mass      555.640683701348      kilograms 
 
propellant mass      444.359316298652      kilograms 
 
deltav               1729.04078952476      meters/second 

 
 
The following are trajectory plots created from the user-defined summary file.  The first two plots 
illustrate the behavior of the altitude and velocity during the descent. 
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This next plot summarizes the flight path angle and spacecraft mass as a function of time since the 
descent interface. 
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The final two plots illustrate the behavior of the thrust and thrust steering angle during the descent. 
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Problem setup for SOCS 
 
This section provides additional details about the SOCS software implementation.  It briefly 
explains such things as path constraints and the performance index options. 
 
(1) Performance index 
 
For the maximize final spacecraft mass optimization, the performance index is simply 
 

 fJ m  
 

where fm  is the spacecraft mass at the final time. 

 
For the minimize flight time optimization, the performance index is simply 
 

 fJ t  
 

where ft  is the final time. 

 
The value of the maxmin indicator in SOCS tells the software whether the user is minimizing or 
maximizing the performance index. 
 
(2) Path constraints 
 
This section summarizes how the software bounds the trajectory characteristics and spacecraft mass 
during the optimization. 
 
altitude 
 0 ih h   

 
where  is the user-defined initial altitude. ih

 
velocity 
 00.1 v v   

 
where  is the user-defined initial velocity. iv

 
flight path angle 
 0 090 90     
 
spacecraft mass 
 0.05 1.05i im m m   

 
where  is the user-defined initial spacecraft mass. im
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Technical Discussion 
 
Deorbit delta-v 
 
The scalar magnitude of the deorbit maneuver that satisfies the user-defined altitude and flight path 
angle at the descent interface is determined from the following expression: 
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This algorithm is described in “Deboost from Circular Orbits”, A. H. Milstead, The Journal of the 
Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966. 
 
Equations of motion 
 
The first-order, flight path equations of motion relative to a non-rotating, spherical Moon with the 
propulsive thrust aligned opposite to the direction of motion are as follows: 
 
altitude 

 sin
dh

h V
dt

   

 
speed 

cos
sin

dV T
V g

dt m

      

 
flight path angle 

sin cos
cos

d V T g

dt r mV V

        
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propellant flow rate 
 

 
e sp

dm T
m

dt g I
    

 
where 

 

 

2

 altitude

 speed

 flight path angle

 thrust angle

 gravity 

 gravitational constant of the moon
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 propulsive thrust
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 Earth surfae

h
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The thrust angle is defined with respect to the velocity of the vehicle.  It is similar to the angle-of-
attack for vehicles flying within an atmosphere.  It is measured positive above the velocity and 
negative below. 
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APPENDIX A 
 

Compiling and Running the Software 
 
This appendix describes how to compile and run the lunland computer program.  This software 
was created using version 6.3.3 of SOCS and Compaq Visual Fortran. 
 
A DOS/Windows version of lunland using Compaq Visual Fortran version 6.6C can be created 
with the following command: 
 

df /arch:host lunland.f *.for c:\socs\socs633.lib advapi32.lib 
 
This command assumes the SOCS library is located in the subdirectory c:\socs. 
 
An input file created by the user can be run from the command line or a simple batch file with a 
statement similar to the following: 
 

lunland lunland1.in 
 
If the software is executed without an input file on the command line, the computer program will 
display the following information screen and file name prompt: 
 

*************************************' 
*          program lunland          *' 
*                                   *' 
*     lunar landing trajectory      *' 
*      optimization with SOCS       *' 
*                                   *' 
*         October 31, 2005          *' 
*************************************' 
 
please input the name of the simulation definition file 

 
The source code that reads the name of an input file included on the command line is 
 
c     if present, use command line argument #1 for input file 
 
      call getarg(1, inputfname$, istatus) 
 
The source code that creates the file name input prompt is as follows: 
 
c     clear screen 
 
      isys = system("cls") 
 
      if (istatus .eq. -1) then 
c        ************************************************ 
c        input filename not on command line 
c        request name of simulation definition input file 
c        ************************************************ 
 
         print *, ' ' 
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         print *, ' ' 
 
         print *, '        *************************************' 
         print *, '        *          program lunland          *' 
         print *, '        *                                   *' 
         print *, '        *     lunar landing trajectory      *' 
         print *, '        *      optimization with SOCS       *' 
         print *, '        *                                   *' 
         print *, '        *         October 31, 2005          *' 
         print *, '        *************************************' 
         print *, ' ' 
         print *, ' ' 
 
         print *,  
     &      'please input the name of the simulation definition file' 
  
         read (*, *) inputfname$ 
      end if 
 
If your compiler does not accept input from a command line, you will have to modify this source 
code for your particular Fortran compiler.  You may also choose to eliminate the code that accepts a 
command line input file.  Please note also that your compiler may have a different command to 
clear the screen. 
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APPENDIX B 
 

Contents of the Simulation Summary CSV File 
 
This appendix is a brief summary of the information contained in the CSV data file produced by the 
lunland software.  The comma-separated-variable disk file is created by the odeprt subroutine 
and contains the following information: 
 

time (seconds) = simulation time since descent interface in minutes 
 
altitude (meters) = altitude relative to a spherical Moon in meters 
 
velocity (mps) = Moon-relative velocity in meters per second 
 
fpa (degrees) = Moon-relative flight path angle in degrees 
 
mass (kilograms) = spacecraft mass in kilograms 
 
thrust (newtons) = propulsive thrust in newtons 
 
thrust angle (deg) = thrust angle in degrees 
 
deltav (mps) = accumulated delta-v in meters per second 
 
downrange (meters) = downrange distance in meters 
 
thrust-to-weight = ratio of thrust to weight in Earth g’s 

 
Notes: 
 
(1) The accumulated delta-v is determined from a cubic spline integration of the thrust acceleration 
at all collocation nodes. 
 
(2) The downrange distance is determined from a cubic spline integration of the range-rate at all 
collocation nodes.  The range-rate equation is given by 
 

 
cosm

m

r V

r h

 


  

 
where  is the radius of the Moon, h is the altitude, V is the velocity and mr   is the flight path angle. 
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APPENDIX C 
 

Fortran Functions and Subroutines 
 
This appendix is a brief summary of the major Fortran functions and subroutines included in the 
lunland computer program. 
 
lunland.f    - SOCS main executive program 
 
atan3.for    - four quadrant inverse tangent function 
 
csint.for    - cubic spline integration of tabular data subroutine 
 
cdeorbit.for – subroutine that computes deorbit deltav 
 
eci2orb.for  - convert eci state vector to classical orbital elements subroutine 
 
odeinp.for   - SOCS simulation input subroutine 
 
odeprt.for   - SOCS print subroutine – creates comma-separated-variable file 
 
oderhs.for   - SOCS subroutine that evaluates the equations of motion and any 

algebraic equations 
 
orb2eci.for  - convert orbital elements to eci state vector subroutine 
 
readfpn.for  - read and echo floating point number from an input file subroutine 
 
readint.for  - read and echo an integer from an input file subroutine 
 
readtext.for - read and echo text from an input file subroutine 
 
utility.for  - number and text manipulation functions and subroutines 
 
uvector.for  - unit vector subroutine 
 
vcross.for   - vector cross product subroutine 
 
vdot.for     - vector dot product subroutine 
 
vecmag.for   - vector scalar magnitude function 
 
xmod.for     - modulo 2 pi function 
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APPENDIX D 
 

Example Fortran Subroutine 
 
This appendix contains the source code for a single Fortran 77 routine and illustrates typical 
programming conventions used in the lunland software.  This subroutine is the differential-
algebraic equations routine required by the SOCS software. 
 
      subroutine oderhs(iphase, t, y, ny, p, np, f, nf, iferr) 
 
c     computes the right hand sides of the 
c     differential-algebraic (dae) equations 
 
c     dynamic variables 
 
c       y(1) = altitude (meters) 
c       y(2) = velocity (meters/second) 
c       y(3) = flight path angle (radians) 
c       y(4) = mass (kilograms) 
 
c     control variables 
 
c       y(5) = thrust (newtons) 
c       y(6) = thrust angle (radians) 
 
c     ************************************ 
 
      implicit double precision (a-h, o-z) 
 
      include 'socscom1.inc' 
 
      integer iphase, ny, np, nf, iferr 
 
      dimension y(ny), p(np), f(nf) 
 
c     set function error flag 
 
      iferr = 0 
 
c     extract current flight conditions 
 
      altitude = y(1) 
 
      velocity = y(2) 
 
      fpa = y(3) 
 
      xmass = y(4) 
 
c     extract current thrust (newtons) 
 
      thrust = y(5) 
 
c     extract current angle-of-attack (radians) 
 
      alpha = y(6) 
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c     current spacecraft radius (meters) 
 
      rscm = rm + altitude 
 
c     acceleration of gravity at altitude (m/s**2) 
 
      agrav = 1.0d9 * xmu / rscm**2 
 
c     altitude derivative (meters) 
 
      f(1) = velocity * sin(fpa) 
 
c     velocity derivative (meters/second) 
 
      f(2) = -agrav * sin(fpa) - thrust * cos(alpha) / xmass 
 
c     flight path angle derivative (radians)  
 
      f(3) = ((velocity / rscm) - (agrav / velocity)) * cos(fpa) 
     &       - thrust * sin(alpha) / (xmass * velocity) 
 
c     propellant flow rate (kg/sec) 
 
      f(4) = -thrust / vexhaust 
 
      return 
      end 
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