
Program lunland

Lunar Landing Trajectory Optimization with SOCS

This document is the user’s manual for a Fortran computer program called lunland that uses the
Sparse Optimal Control Software (SOCS) object code library developed by Boeing Phantom Works
(www.boeing.com/phantom/socs/) to solve the finite burn lunar landing trajectory optimization
problem. The trajectory is modeled as a single phase with user-defined initial and final boundary
conditions. This computer program attempts to maximize the final spacecraft mass, or minimize the
total flight time. The type of optimization is selected by the user.

The important features of this scientific simulation are as follows:

 Automated deorbit delta-v algorithm

 User-defined flight path angle and altitude at the descent interface

 2-DOF flight path equations of motion relative to a spherical, non-rotating Moon

 Thrust magnitude and thrust direction control variables

SOCS is a direct transcription method that can be used to solve a variety of trajectory optimization
problems using the following combination of numerical methods:

 collocation and implicit integration

 adaptive mesh refinement

 sparse nonlinear programming

Additional information about the mathematical techniques and numerical methods used in SOCS
can be found in the book, Practical Methods for Optimal Control Using Nonlinear Programming by
John. T. Betts, SIAM, 2001.

The lunland software consists of Fortran routines that perform the following tasks:

 main program that sets algorithm control parameters and calls the SOCS
transcription/optimal control subroutine

 define problem definition and perform initialization related to scaling, lower and upper
bounds, initial conditions, etc.

 evaluate the right-hand-side differential equations

 define and compute any point and path constraints

 display the optimal solution results

The SOCS software will use this information to automatically transcribe the user’s problem and
perform the optimization using a sparse nonlinear programming method. The software allows the
user to select the type of collocation method and other important algorithm control parameters.
With the appropriate substitution of fundamental constants, this simulation can also be used to
model landings on other airless celestial bodies.

page 1

http://www.boeing.com/phantom/socs/

Typical input file

The lunland software is “data-driven” by a user-created text file. The following is a typical input
file used by this computer program. In the following discussion the actual input file contents are in
courier font and all explanations are in times italic font.

This data file defines a typical descent analysis starting from a 100 kilometer circular lunar orbit
and ending at an altitude of 10 meters and a speed of 1 meter per second. This simulation
maximizes the final spacecraft mass.

Each data item within an input file is preceded by one or more lines of annotation text. Do not
delete any of these annotation lines or increase or decrease the number of lines reserved for each
comment. However, you may change them to reflect your own explanation. The annotation line
also includes the correct units and when appropriate, the valid range of the input. ASCII text input
is not case sensitive but must be spelled correctly.

The first six lines of any input file are reserved for user comments. These lines are ignored by the
software. However the input file must begin with six and only six initial text lines.

**
** lunar landing trajectory optimization
** optimal thrust level and steering
** lunland1.in
** October 31, 2005
**

The first program input is an integer that defines the type of trajectory optimization to perform.

type of trajectory optimization

1 = maximize final mass
2 = minimize flight time

1

The following series of data items are reserved for user-defined initial conditions. This information
includes initial flight conditions, propulsive characteristics and lower and upper bounds for the
thrust angle. Please note the units and valid data range for each item.

altitude of initial circular lunar orbit (kilometers)
100.0

altitude at descent interface (meters)
10000.0d0

flight path angle at descent interface (degrees)
-1.0d0

initial spacecraft mass (kilograms)
1000.0d0

maximum thrust (newtons)
5000.0d0

minimum thrust (newtons)
1000.0d0

page 2

specific impulse (seconds)
300.0d0

lower bound for thrust angle (degrees)
-90.0d0

upper bound for thrust angle (degrees)
+90.0d0

The following series of data items allow the user to define guesses for the final time, flight
conditions and spacecraft mass. To fix one or more conditions, the user should input identical
lower and upper bounds. Please note the units and valid data range for each item. Also note that
the final speed must be greater than zero.

final time, mass and flight conditions

initial guess for final time (seconds)
50.0

initial guess for final spacecraft mass (kilograms)
900.0d0

initial guess for final altitude (meters)
10.0d0

lower bound for final altitude (meters)
10.0d0

upper bound for final altitude (meters)
10.0d0

initial guess for final speed (meters/second)
1.0d0

lower bound for final speed (meters/second)
1.0d0

upper bound for final speed (meters/second)
1.0d0

initial guess for final flight path angle (degrees)
-90.0d0

lower bound for final flight path angle (degrees)
-90.0d0

upper bound for final flight path angle (degrees)
-90.0d0

The next series of program inputs are algorithm control options and parameters for the SOCS
software. The first input is an integer that specifies the type of collocation method to use during the
solution process. For most simulations, the trapezoidal method is recommended.

discretization/collocation method

 1 = trapezoidal
 2 = separated Hermite-Simpson

page 3

 3 = compressed Hermite-Simpson
 4 = Runge-Kutta 4-stage

1

The next integer defines the number of initial grid points to use in the collocation modeling of the
descent trajectory.

number of initial guess grid points to use
25

The software also creates a comma-separated-variable (csv) ascii data file that contains the optimal
control solution and other flight parameters. The name of this output file is specified in the next
line of information. Please consult Appendix B for information about the contents of this file.

name of comma
lunland1.csv

-delimited solution data file

This next input specifies the type of solution data file to create.

**
type of comma-delimited solution data file
**
 1 = SOCS-defined nodes
 2 = user-defined nodes
 3 = user-defined step size

1

For options 2 or 3, this input defines either the number of data points or the time step size of the
data output in the solution file.

numbe
10.0

r of user-defined nodes or print step size in solution data file

The next series of program inputs are algorithm control options and parameters for the SOCS
software.

algorithm control parameters

This input defines the relative error in the objective function.

relativ
1.0d-5

e error in the objective function (performance index)

The next input defines the relative error in the solution of the differential equations.

relative error in the solution of the differential equations
1.0d-7

The next input is an integer that defines the maximum number of mesh refinement iterations.

maximum number of mesh refinement iterations
20

The next input is an integer that defines the maximum number of function evaluations.

page 4

maximum
100000

 number of function evaluations

The next input is an integer that defines the maximum number of algorithm iterations.

maximum number of algorithm iterations
10000

The level of output from the SOCS NLP algorithm is controlled with the following integer input.

sparse NLP iteration output

 1 = none
 2 = terse
 3 = standard
 4 = interpretive
 5 = diagnostic

2

The level of output from the SOCS optimal control algorithm is controlled with the following integer
input. Please note that option 4 will create lots of information.

optimal control output

 1 = none
 2 = terse
 3 = standard
 4 = interpretive

1

The level of output from the SOCS differential equations algorithm is controlled with the following
integer input. Please note that option 5 will create lots of information.

differential equation output

 1 = none
 2 = terse
 3 = standard
 4 = interpretive
 5 = diagnostic

1

The level of output can be further controlled by the user with this final text input. This program
option sets the value of the SOCOUT character variable described in the SOCS user’s manual. To
ignore this special output control, input the simple character string no.

user-defined output

input no to ignore

a0b0c0d0e0f0g0h0i0j1k0l0m0n0o0p0q0r0

page 5

SOCS solution and graphics

The following is the SOCS trajectory summary for this example.

program lunland

input data file ==> lunland1.in

< maximize final mass >

initial circular orbit altitude 100.000000000000 kilometers

impulsive deorbit delta-v 23.1907400535548 meters/second

flight path angle at interface -1.00000000000000 degrees

conditions at descent interface

altitude 10000.0000000000 meters

speed 1693.20179797398 meters/second

flight path angle -1.00000000000000 degrees

spacecraft mass 1000.00000000000 kilograms

final conditions

time 355.040890866099 seconds

altitude 10.0000000000000 meters

speed 1.00000000000003 meters/second

flight path angle -90.0000000000000 degrees

spacecraft mass 555.640683701348 kilograms

propellant mass 444.359316298652 kilograms

deltav 1729.04078952476 meters/second

The following are trajectory plots created from the user-defined summary file. The first two plots
illustrate the behavior of the altitude and velocity during the descent.

page 6

0 100 200 300 400
simulation time (seconds)

0

2000

4000

6000

8000

10000

a
lt

it
u

d
e

 (
m

e
te

rs
)

Lunar Landing Trajectory Optimization

Maximize final spacecraft mass

initial circular orbit altitude = 100 km
descent interface flight path angle = -1o

descent interface altitude = 10,000 meters

0 100 200 300 400
simulation time (seconds)

0

400

800

1200

1600

2000

ve
lo

c
it

y
(m

e
te

rs
/s

e
c

o
n

d
)

Lunar Landing Trajectory Optimization

Maximize final spacecraft mass

initial circular orbit altitude = 100 km
descent interface flight path angle = -1o

descent interface altitude = 10,000 meters

page 7

This next plot summarizes the flight path angle and spacecraft mass as a function of time since the
descent interface.

0 100 200 300 400
simulation time (seconds)

-100

-80

-60

-40

-20

0

fl
ig

ht
 p

at
h

a
ng

le
 (d

e
g

re
es

)

Lunar Landing Trajectory Optimization

Maximize final spacecraft mass

initial circular orbit altitude = 100 km
descent interface flight path angle = -1o

descent interface altitude = 10,000 meters

0 100 200 300 400
simulation time (seconds)

500

600

700

800

900

1000

sp
a

c
e

c
ra

ft
 m

a
ss

 (
k

ilo
g

ra
m

s)

Lunar Landing Trajectory Optimization

Maximize final spacecraft mass

initial circular orbit altitude = 100 km
descent interface flight path angle = -1o

descent interface altitude = 10,000 meters

page 8

The final two plots illustrate the behavior of the thrust and thrust steering angle during the descent.

0 100 200 300 400
simulation time (seconds)

0

1000

2000

3000

4000

5000

6000

th
ru

st
 (

n
e

w
to

n
s)

Lunar Landing Trajectory Optimization

Maximize final spacecraft mass

initial circular orbit altitude = 100 km
descent interface flight path angle =-1o

descent interface altitude = 10,000 meters

0 100 200 300 400
simulation time (seconds)

-20

0

20

40

60

80

th
ru

st
 a

n
g

le
 (

d
e

g
re

e
s)

Lunar Landing Trajectory Optimization

Maximize final spacecraft mass

initial circular orbit altitude = 100 km
descent interface flight path angle = -1o

descent interface altitude = 10,000 meters

page 9

Problem setup for SOCS

This section provides additional details about the SOCS software implementation. It briefly
explains such things as path constraints and the performance index options.

(1) Performance index

For the maximize final spacecraft mass optimization, the performance index is simply

 fJ m

where fm is the spacecraft mass at the final time.

For the minimize flight time optimization, the performance index is simply

 fJ t

where ft is the final time.

The value of the maxmin indicator in SOCS tells the software whether the user is minimizing or
maximizing the performance index.

(2) Path constraints

This section summarizes how the software bounds the trajectory characteristics and spacecraft mass
during the optimization.

altitude
 0 ih h 

where is the user-defined initial altitude. ih

velocity
 00.1 v v 

where is the user-defined initial velocity. iv

flight path angle
 0 090 90   

spacecraft mass
 0.05 1.05i im m m 

where is the user-defined initial spacecraft mass. im

page 10

Technical Discussion

Deorbit delta-v

The scalar magnitude of the deorbit maneuver that satisfies the user-defined altitude and flight path
angle at the descent interface is determined from the following expression:

 

2

2 11
1

1
cos

ce

e

r
V V

r r


 
 

    
      


 

where

 

 radius ratio

 local circular velocity at reentry altitude

 flight path angle at descent interface

 altitude of initial circular lunar orbit

 altitude at descent inter

i eq

e eq

ce

e eq

e

i

e

h r
r

h r

V
h r

h

h






 



 








face

 equatorial radius of the moon

 gravitational constant of the moon
eqr







This algorithm is described in “Deboost from Circular Orbits”, A. H. Milstead, The Journal of the
Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966.

Equations of motion

The first-order, flight path equations of motion relative to a non-rotating, spherical Moon with the
propulsive thrust aligned opposite to the direction of motion are as follows:

altitude

 sin
dh

h V
dt

 

speed

cos
sin

dV T
V g

dt m

    

flight path angle

sin cos
cos

d V T g

dt r mV V

      

page 11

propellant flow rate

e sp

dm T
m

dt g I
  

where

2

 altitude

 speed

 flight path angle

 thrust angle

 gravity

 gravitational constant of the moon

 selenocentric radius of the spacecraft

 propulsive thrust

 spacecraft mass

 Earth surfae

h

V

g r

r

T

m

g












 




 ce gravity

 specific impulsespI 

The thrust angle is defined with respect to the velocity of the vehicle. It is similar to the angle-of-
attack for vehicles flying within an atmosphere. It is measured positive above the velocity and
negative below.

References and Bibliography

(1) “Direct Trajectory Optimization Using Nonlinear Programming and Collocation”, C. R.
Hargraves and S. W. Paris, AIAA Journal of Guidance, Control and Dynamics, Vol. 10, No. 4, July-
August, 1987, pp. 338-342.

(2) “Optimal Finite-Thrust Spacecraft Trajectories Using Direct Transcription and Nonlinear
Programming”, Paul J. Enright, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1991.

(3) “Improved Collocation Methods with Application to Direct Trajectory Optimization”, Albert L.
Herman, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1995.

(4) “Survey of Numerical Methods for Trajectory Optimization”, John T. Betts, AIAA Journal of
Guidance, Control and Dynamics, Vol. 21, No. 2, March-April 1998, pp. 193-207.

(5) “Parametric Study of Lunar Landing Techniques Using a Predetermined Thrust Orientation”,
Sam H. Harlin, Jr., NASA CR-61075, June 1965.

(6) “Powered Descent Guidance Methods for the Moon and Mars”, R. Sostaric and J. Rea, AIAA
2005-6287, AIAA Guidance, Navigation and Control Conference, 15-18 August 2005.

page 12

APPENDIX A

Compiling and Running the Software

This appendix describes how to compile and run the lunland computer program. This software
was created using version 6.3.3 of SOCS and Compaq Visual Fortran.

A DOS/Windows version of lunland using Compaq Visual Fortran version 6.6C can be created
with the following command:

df /arch:host lunland.f *.for c:\socs\socs633.lib advapi32.lib

This command assumes the SOCS library is located in the subdirectory c:\socs.

An input file created by the user can be run from the command line or a simple batch file with a
statement similar to the following:

lunland lunland1.in

If the software is executed without an input file on the command line, the computer program will
display the following information screen and file name prompt:

*************************************'
* program lunland *'
* *'
* lunar landing trajectory *'
* optimization with SOCS *'
* *'
* October 31, 2005 *'
*************************************'

please input the name of the simulation definition file

The source code that reads the name of an input file included on the command line is

c if present, use command line argument #1 for input file

 call getarg(1, inputfname$, istatus)

The source code that creates the file name input prompt is as follows:

c clear screen

 isys = system("cls")

 if (istatus .eq. -1) then
c **
c input filename not on command line
c request name of simulation definition input file
c **

 print *, ' '

page 13

 print *, ' '

 print *, ' *************************************'
 print *, ' * program lunland *'
 print *, ' * *'
 print *, ' * lunar landing trajectory *'
 print *, ' * optimization with SOCS *'
 print *, ' * *'
 print *, ' * October 31, 2005 *'
 print *, ' *************************************'
 print *, ' '
 print *, ' '

 print *,
 & 'please input the name of the simulation definition file'

 read (*, *) inputfname$
 end if

If your compiler does not accept input from a command line, you will have to modify this source
code for your particular Fortran compiler. You may also choose to eliminate the code that accepts a
command line input file. Please note also that your compiler may have a different command to
clear the screen.

page 14

APPENDIX B

Contents of the Simulation Summary CSV File

This appendix is a brief summary of the information contained in the CSV data file produced by the
lunland software. The comma-separated-variable disk file is created by the odeprt subroutine
and contains the following information:

time (seconds) = simulation time since descent interface in minutes

altitude (meters) = altitude relative to a spherical Moon in meters

velocity (mps) = Moon-relative velocity in meters per second

fpa (degrees) = Moon-relative flight path angle in degrees

mass (kilograms) = spacecraft mass in kilograms

thrust (newtons) = propulsive thrust in newtons

thrust angle (deg) = thrust angle in degrees

deltav (mps) = accumulated delta-v in meters per second

downrange (meters) = downrange distance in meters

thrust-to-weight = ratio of thrust to weight in Earth g’s

Notes:

(1) The accumulated delta-v is determined from a cubic spline integration of the thrust acceleration
at all collocation nodes.

(2) The downrange distance is determined from a cubic spline integration of the range-rate at all
collocation nodes. The range-rate equation is given by

cosm

m

r V

r h

 




where is the radius of the Moon, h is the altitude, V is the velocity and mr  is the flight path angle.

page 15

APPENDIX C

Fortran Functions and Subroutines

This appendix is a brief summary of the major Fortran functions and subroutines included in the
lunland computer program.

lunland.f - SOCS main executive program

atan3.for - four quadrant inverse tangent function

csint.for - cubic spline integration of tabular data subroutine

cdeorbit.for – subroutine that computes deorbit deltav

eci2orb.for - convert eci state vector to classical orbital elements subroutine

odeinp.for - SOCS simulation input subroutine

odeprt.for - SOCS print subroutine – creates comma-separated-variable file

oderhs.for - SOCS subroutine that evaluates the equations of motion and any

algebraic equations

orb2eci.for - convert orbital elements to eci state vector subroutine

readfpn.for - read and echo floating point number from an input file subroutine

readint.for - read and echo an integer from an input file subroutine

readtext.for - read and echo text from an input file subroutine

utility.for - number and text manipulation functions and subroutines

uvector.for - unit vector subroutine

vcross.for - vector cross product subroutine

vdot.for - vector dot product subroutine

vecmag.for - vector scalar magnitude function

xmod.for - modulo 2 pi function

page 16

APPENDIX D

Example Fortran Subroutine

This appendix contains the source code for a single Fortran 77 routine and illustrates typical
programming conventions used in the lunland software. This subroutine is the differential-
algebraic equations routine required by the SOCS software.

 subroutine oderhs(iphase, t, y, ny, p, np, f, nf, iferr)

c computes the right hand sides of the
c differential-algebraic (dae) equations

c dynamic variables

c y(1) = altitude (meters)
c y(2) = velocity (meters/second)
c y(3) = flight path angle (radians)
c y(4) = mass (kilograms)

c control variables

c y(5) = thrust (newtons)
c y(6) = thrust angle (radians)

c ************************************

 implicit double precision (a-h, o-z)

 include 'socscom1.inc'

 integer iphase, ny, np, nf, iferr

 dimension y(ny), p(np), f(nf)

c set function error flag

 iferr = 0

c extract current flight conditions

 altitude = y(1)

 velocity = y(2)

 fpa = y(3)

 xmass = y(4)

c extract current thrust (newtons)

 thrust = y(5)

c extract current angle-of-attack (radians)

 alpha = y(6)

page 17

page 18

c current spacecraft radius (meters)

 rscm = rm + altitude

c acceleration of gravity at altitude (m/s**2)

 agrav = 1.0d9 * xmu / rscm**2

c altitude derivative (meters)

 f(1) = velocity * sin(fpa)

c velocity derivative (meters/second)

 f(2) = -agrav * sin(fpa) - thrust * cos(alpha) / xmass

c flight path angle derivative (radians)

 f(3) = ((velocity / rscm) - (agrav / velocity)) * cos(fpa)
 & - thrust * sin(alpha) / (xmass * velocity)

c propellant flow rate (kg/sec)

 f(4) = -thrust / vexhaust

 return
 end

	(1) Performance index
	(2) Path constraints

