

User’s Manual and Quick Reference Guide

©Photo By Jürgen Keller, 2011.

Programmed by Ángel M. Martin

January 2012

This compilation revision 2.G.01

Copyright © 2012 Ángel Martin

Published under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

CLWRITE Source Code written by Raymond Wiker.

Cover photo © Juergen Keller, 2011.
Inside photos © Geoff Quickfall, 2011

© Ángel M. Martin Page 1 of 31 08/01/2012

Acknowledgment.- This manual and the CLUTILS module would obviously not exists without the
41CL. Many thanks to Monte Dalrymple for the development of the amazing CL board.

http://www.hp41.org/

CL-UTILS Module
Extension Functions for the 41CL

Table of Contents.

1. Introduction.

1.1. A word of Caution. 5
1.2. The Functions at a glance 6

2. The functions in detail

2.1 Function Launchers 7
2.2 Catalogues and CATalogs 9
2.3 Interrogating the MMU 12
2.4 A wealth of a Library 13

3. HEPAX and Security

3.1. Configuring the HEPAX system 14
3.2. Page-Plug Functions 15
3.3. Security Functions 16

4. Advanced Territory

4.1. Using Page #4 17
4.2. Calculator Flash Backup & Restore 17

5. Other Extensions

5.1 Alpha and Display Utilities 19
5.2 Other Utilities 20
5.3 Farewell.

6. Appendixes. 21

© Ángel M. Martin Page 2 of 31 08/01/2012

© Ángel M. Martin Page 3 of 31 08/01/2012

CL-UTILS Module
Extension Functions for the 41CL

1. Introduction.

Without a doubt the 41CL can be considered in many ways to be the pinnacle of the HP-41 system. It
comes with a well thought-out function set to manage its capabilities, from the basic to the more
adventurous ones – which have inspired the writing of yet further extensions to that capable toolset.

This collection is designed to enhance and complement the YFNS function set, providing easier access
to the many powerful capabilities of the 41CL platform. Some are function launchers, grouping several
functions by their area of functionality into a single, prompt-driven one – like it’s the case for the
Plug/Unplug functions, the Baud rate, TURBO and MMU settings functions. A launcher of launcher sits
atop these, providing quick access to 35 YFNS and other functions from a single key assignment.

Some other extend the functionality by providing new features and more convenient alternative to
manual tasks. Examples of these are:

- A fully-featured ROM library CATALOG system, allowing direct plugging into the port of choice
- The Page Plug functions (alternative to the Port ones), including routines to handle page #4.
- Programs to backup and restore the complete calculator contents to/from Flash
- HEPAX configuration and set-up, making the HEPAX integration a simple and reliable affair.
- Security functions to password-protect your machine from prying hands.

Other housekeeping functions roundup the set, making for a total of 44 functions tightly packed into a
4k ROM. This is a design criterion, as the small footprint of the module makes it ideal to share with
other utility packs, most notoriously the CCD OS/X (or its alter-ego AMC OS/X) for the ultimate control
- so save some small exceptions there is no duplication between these two.

A word of caution.

As wise men remind us all, “with power comes responsibility”. Indiscriminate usage of some of these
functions can have unpleasant consequences, ranging from unexpected results and easy-to-recover
machine lock-ups to more serious ones involving loss of Flash sectors or even electrical damage in the
worst scenario. Functions have some built-in protection to ensure that they’re used properly, but they
are not absolutely foolproof in that such protection can always be circumvented. So beware, and as
general rule “if you don’t understand something, don’t use it”.

To help you with this the more dangerous functions are marked with the WARNING sign all
throughout this manual. Avoid them if you’re not absolutely sure that you know what they are for, and
fully understand their operation. And always, always have fresh batteries on when using the Flash
backup!

It had to be said – so now that we got it out of the way we’re ready to dive into the CL UTILS
description and usage example. May you have a nice ride!

Note: CLUTILS is designed to work paired with the XROM #15 version of YFNZ.

© Ángel M. Martin Page 4 of 31 08/01/2012

Function index at a glance.

And without further ado, here’s the list of functions included in the module:

Function Description Inputs Output
1 -CLUTLS 2E Module Header n/a n/a
2 ?MMU MMU Status Yes/No none YES/NO, skip if false
3 ΣCLF _ Global Launcher Prompts "B:M:P:T:U" Launches selected Launcher
4 BAUD _ Baud functions launcher Prompts "1:2:4:9" Launches selected function
5 CLLIB _ CL ID Library Prompts "A-Z" Starts listing at selected letter
6 MMU _ MMU functions launcher Prompts "C:D:E:?" Launches selected function
7 MMUCAT MMU Catalog none Sequential list of MMU Entries
8 PLUGG _ Plug Page Prompts for page Plugs ROM in page
9 PLUGG? _ Page Location MMU Prompts for page content of MMU entry for page
10 PLUGGX Plug Page by X page# in X Plugs ROM in page
11 PLG#4 _ Page#4 Plug Prompts "F:L:S" Selected ROM plugged
12 PLUG _ PLUG functions launcher Prompts for location ROM with ID in ALPHA is plugged
13 ROMLIB ROM Library Displays all ROMs Sequential list of ROM ID's
14 UPPG4 Clears MMU entry for page #4 none MMU entry cleared
15 TURBO _ TURBO functions launcher Prompts "X:2:5:1:0:,:?" Launches selected function
16 UPLUG _ UPLUG functions Launcher Prompts for location Location is removed from MMU
17 YBSP ALPHA back Space string in ALPHA Deletes rightmost character
18 YCL> Clears string from ">" string in ALPHA Clears from ">" char to the right
19 YCL- Clears string from hyphen string in ALPHA Clears from "-" char to the right
20 YFNZ? Page location of YNFS none Location in MMU
21 YINPT _ Y Input none HEX entry plus control chrs
22 YRALL Y-Read-ALL none Reads Calculator/MMU from Flash
23 YSWAP> swaps both sides of ">" string in ALPHA Alpha swapped around ">"
24 YSWAP- swaps both sides of hyphen string in ALPHA Alpha swapped around "-"
25 YWALL Y-Write-ALL none Writes Calculator/MMU to Flash
26 -SYS/EXT Section Header n/a n/a
27 ADRID Address ID Flash addr in Alpha ROM ID in Alpha
28 BFCAT Buffer Catalog none Shows present buffers
29 BLCAT Block Catalog none Lists block contents
30 CDE Code HexCode in ALPHA NNN in X
31 DCD Decode NNN in X HexCode in Alpha
32 DTOA Display to ALPHA Display contents Text in Alpha
33 DTST Display Test none Shows display all lit up
34 HEPINI HEPAX FileSys Init Prompts for values Iinitializes HEPAX File System
35 HEPX _ HEPAX Launcher Prompts "4:8:6:I:D" Launches selected function
36 HEPYX HEPAX FileSys Init # pages in Y, first page in X Iinitializes HEPAX File System
37 "HPX4" HEPAX Config 4k - CL none Configures 4k HEPAX on CL
38 "HPX8" HEPAX Config 8k - CL none Configures 8k HEPAX on CL
39 "HPX16" HEPAX Config 16k - CL none Configures 16k HEPAX on CL
40 SECURE enable password lock none Sets SECURE mode ON
41 UNLOCK disable password lock asks for password Sets Secure mode OFF
42 XPASS change password asks old/new passwords Password is changed
43 XROM ROM function Launcher Prompts for values Launches function
44 ΣDGT Sum of Digits number in X sum of mantissa digits

Functions in BLUE are all in MCODE.
Functions in BLACK are MCODE entries that call FOCAL programs.
Functions in “QUOTES” italics are FOCAL programs.

© Ángel M. Martin Page 5 of 31 08/01/2012

Functions in RED denote prompting entries.

2. The functions in detail.

The following sections of this document describe the usage and utilization of the functions included in
the CL-UTILS module. While some are very intuitive to use, others require a little elaboration as to
their input parameters or control options, which should be covered here.

2.1 Function Launchers.

The table below lists the launchers by function groups:

Index Function Warnings Description
1 BAUD None Calls BAUD12, BAUD24, BAUD48, or BAUD96
2 MMU None Calls MMUDIS, MMUEN, or MMU?
3 TURBO None Calls the corresponding TURBOxx function
4 PLUG Light Prompts for port location. Enter L/U first (when needed)
5 UPLUG Light Prompts for port location. Enter L/U first (when needed)
6 HEPX Medium Configuration loading for HEPAX set-ups
7 ΣCLF None Launcher of Launchers -> invokes any of the five above

When you assign ΣCLF to any key that alone will give you access to more than 35 functions (!) from
that single key – an effective way to make it compatible with other existing key-assignments, saving
memory (KA registers) and time. So go ahead and get comfortable with that arrangement as your
baseline.

Prompting functions use a technique called partial key entry, dividing the data entry in two (or more)
parts. The keyboard is also re-defined, in that just those keys corresponding to the appropriate
options are active. The cues in the prompt will offer you indication of which keys are active on the
keyboard, and typically are intuitive enough to figure out in each case.

 options for: none, 2x, 5x, 10x, 20x, 50x, and ?
Use “0” for 20x, Radix for “50” - as 2 and 5 are already taken for 2x and 5x speeds.

In general all launchers behave in a similar manner.

- The Back Arrow key will either cancel out entirely or remove partial entries;
- Non-active keys will blink the display and maintain the prompt
- Holding down the last key briefly shows the invoked function name – visual feedback.
- This will be followed by NULL if kept depressed long enough – last chance to bail out.
- Launchers are not programmable per-se – but:
- They can be used in PRGM mode to enter the called-upon function as a program line.

© Ángel M. Martin Page 6 of 31 08/01/2012

The PLUG and UPLUG launchers don’t offer any cues in the prompt – and therefore deserve special
consideration. The picture below shows the convention for the external pages of the 41:

Valid entries for the prompt are:

1, for port 1 – comprising pages 8 and 9
2, for port 2 – comprising pages A and B
3, for port 3 – comprising pages C and C
[L], to flag a LOWER half-port condition, followed by the port number
[U], to flag an UPPER half-port condition, followed by the port number

For the (U)PLUG cases the prompt completes either when the number 1-4 or the letter {G,P,H} is
entered, and the corresponding function is launched.

For half-port (or 4k) modules use the L/U keys first in the (un)plugging prompts, then the port
number. These keys act as toggles when pressed sequentially, replacing each other in the display
upon repeat usage. Also during these events pressing BackArrow removes the half-port condition and
returns to the main prompt.

Remember that plugging a module into the “wrong” port location can create minor issues (or major
havoc) if you’re overwriting some/part of the machine’s configuration. A good example is overwriting
YFNS itself, or a HEPAX RAM block. Always make sure the destination is safe – using BLCAT, the
standard CAT2 or better yet the CCD CAT’2.

Also valid entries are :

[H], for page #7 – the HP-IL reserved page
[P], for page #6 -- the Printer reserved page
[G], for page prompt 6-F – effectively calling the PLUGG(?) functions

Caution.-

Both PLUG/UNPLUG offer all the 14 available choices in YFNS, including (U)PLUGP and (U)PLUGH.
Exercise extra caution with those two locations, as they may be used by system extensions like Printer
or HP-IL. Page #6 in particular has more strict demands on the ROM layout that makes it non-suitable
for the majority of ROMS. Also because pages #6 and #7 on the CL don’t support bank-switching,
they unfortunately aren’t a good place for the HEPAX ROM.

© Ángel M. Martin Page 7 of 31 08/01/2012

Note: PLUGG will also allow “4” as valid input, which invokes the PGG#4 function settings. More
about this one will follow later.

2.2. CATALOGS, CATALOGUES…

The additional CATalogs are as follows:

Index Function Warnings Description
1 BLCAT None Borrowed from the HEPAX ROM – shows the 4k-blocks contents.
2 BFCAT Light Lists those elusive buffers present in the system.
3 MMUCAT None Lists the MMU mappings into each block.
4 ROMLIB Light List the ROM Library ID’s available in Flash.
5 CLLIB _ Light Same as above with an Alpha prompt for beginning section

If you’re like me you’ll like to have good visibility into your machine’s configuration. With its ROM
Library and MMU settings the CL adds a few dimensions to the already rich 41CX system – and the
goal is to have equivalent catalogue functions to review the status and options available.

Each CATalog has its own idiosyncrasies, but in general they feature single-step modes, and have “hot
keys” to allow for specific actions – like deletion of buffer, navigation shortcuts, and direct plugging of
ROMs into a port. This makes chores like searching for the correct syntax and plugging a module from
the library a trivial task.

Both BLCAT and BFCAT are not strictly related to the CL, and will also work on a standard 41.
Obviously MMUCAT is only meaningful for a CL machine, and will return all zeroes if the CL board is
not installed.

CATalog functions are notoriously complex and take up a significant amount of space – yet you’d
hopefully agree with me that the usability enhancements they provide make them worthwhile the
admission price.

2.2.1. Block CATALOG

BLCAT Block Catalog Author: VM Electronics Source: HEPAX Module

Lists the first function of every non-empty ROM block (i.e. Page), starting with Page 3 in the 41 CX or
Page 5 in the other models (C/CV). The listing will be printed if a printer is connected and user flag 15
is enabled.

- Non-empty pages will show the first function in the FAT, or “NO FAT” if such is the case
- Empty pages will show the “NO ROM” message next to their number.
- Blank RAM pages will show “QUASI RAM”, indicating their RAM in ROM space character.

No input values are necessary. This function doesn’t have a “manual mode” (using R/S) but the
displaying sequence will be halted while any key (other than R/S or ON) is being depressed,
resuming its normal speed when it’s released again.

© Ángel M. Martin Page 8 of 31 08/01/2012

2.2.2. Buffer CATALOG

BFCAT Buffer CATalog Hot keys: R/S, SST, SHIFT, D, H

[D] Deletes Buffer In manual mode
[H] Decodes Header register In manual mode

This function is very close to my heart, both because it was a bear to put together and because the
final result is very useful and informative. It doesn’t require any input parameter, and runs
sequentially through all buffers present in the calculator, providing information with buffer id# and its
size.

41 buffers are an elusive construct that is mainly used for I/O purposes. Some modules reserve a
memory area right above the KA registers for their own use, not part of the data registers or program
memory either. The OS will recognize those buffers and allow them to exist and be managed by the
“owner” module – which is responsible to claim for it every time the calculator is switched on.

A good example is the Time module, which uses it to store the alarms data.

Each buffer has an id# number, ranging from 1 to 14. Only one buffer with a given id# can exist, thus
the maximum number present at a given time is 14 buffers – assuming such hoarding modules would
exit – which thankfully they don’t.

The table below lists the well-known buffers that are possibly to be found on the system:

For instance, plug the AOSX module into any available port. Then type PI, SEED, followed by BFCAT
to see that a 2-register buffer now exists in the 41 I/O area – created by the SEED function.

 id# = 5, buffer size =2, properly allocated.

Suppose you also change the default word size to 12 bits, by typing: 12, WSIZE. This has the effect
of increasing the buffer size in one more register, thus repeating BFCAT will show:

 id# = 5, buffer size = 3, properly allocated.

© Ángel M. Martin Page 9 of 31 08/01/2012

Say now that you also plug the 41Z module into a full port of your CL. Just doing that won’t create the
buffer, but switching the calculator OFF and ON will – or alternatively execute the -HP 41Z function.
After doing that execute BFCAT again, then immediately hit R/S to stop the listing of the buffers and
move your way up and down the list using SST and BST. You should also see the line for the 41Z
buffer, as follows:

 id#=8, buffer size = 12, properly allocated.

If the module is not present during the CALC_ON event (that’s to say it won’t re-brand the buffer id#)
the 41 OS will mark the buffer space as “reclaimable”, which will occur at the moment that PACKING
or PACK is performed. So it’s possible to have temporary “orphan” buffers, which will show a question
mark next to the id# in the display. This is a rather strange occurrence, so most likely won’t be shown
– but it’s there just in case.

BFCAT has a few hot keys to perform the following actions in manual mode:

1. R/S stops the automated listing and toggles it with the manual mode upon repeat pressings.
2. [D] – for instant buffer deletion – there’s no way back, so handle with care!
3. [H] - to decode the buffer header register. Its structure contains the buffer ID#, as well as

some other relevant information in the specific fields - all buffer dependent.
4. [SHIFT] to flag the listing to go backwards – both in manual and auto modes.
5. SST and BST to move the listing in manual mode, until the end (or beginning) is reached
6. BackArrow to cancel out the process and return to the OS.

Like it is the case with the standard Catalogues, the buffer listing in Auto mode will terminate
automatically when the last buffer (or first if running backwards) has been shown. In manual mode
the last/first entry will remain shown until you press BackArrow or R/S.

Should no buffers are present, the message ”NO BUFFERS” will be shown and the catalog will
terminate. Note also that the catalogue will not be printed - being shown only on the display.

© Ángel M. Martin Page 10 of 31 08/01/2012

Photo courtesy of Geoff Quickfall.

2.2.2. Interrogating the MMU.

MMUCAT MMU CATalogue No inputs
ADRID Gives ROM id# from ADR Expects string in Alpha
FYNZ? FYNS Location Finder No inputs
PLUGG? ROM id# in page by X Prompts for page# Valid inputs are 4, 6-F

MMUCAT is really a FOCAL program that drives the function ADRID, the real engine behind it – not
to be confused with the capital city of a country I know quite well. ADRID is obviously
programmable. The idea is simple: produce a list of the MMU mappings into the different pages,
showing either the ROM id# or the address (Flash or SRAM) currently mapped to the port.

A loop is executed starting on page #4, and up until page #F. Each iteration retrieves (pokes more
appropriately) the address written into the corresponding MMU register, then searches it against the
internal ROM id# table written into the CL_UTILS module. More about this later.

Note that full-port modules will return the ROM id# attached to the lower half, and the address to the
upper half. RAM MMU entries will return the corresponding RAM address.

While similar to the CAT2 concept, this really has an MMU-oriented perspective of things, and thus is
purely a 41 CL feature – it’ll render all entries zero if used on a “regular” 41. The program listing is
rather simple – as ADRID does all the weight lifting under the hood:

A related function is YFNZ?, which returns the page number the YFNS is currently plugged in. This
can come very handy in your programs to avoid overwriting it with other modules – as we’ll see in the
HEPAX configuration routines.

Another related function is PLUGG? - It interrogates the MMU to find out which module is plugged
into a given page – the input to the function placed in X. This is all page-driven, and not based on
the port number. There is no restriction in the input to the page number, however the returned values
for pages 0,1,2,3, and 5 don’t quite have the same meaning.

PLUGG? Also uses ADRID to decode the string returned by YPEEK – which provides the MMU
address mapping the corresponding page. In the YFNZ? case there’s no need to look up in the ROM
id# table since we know what we’re looking for – just need to check all pages looking for that specific
string.

© Ángel M. Martin Page 11 of 31 08/01/2012

2.2.4. A wealth of a Library.

ROMLIB ROM Library No inputs
CLLIB CL Library Prompts for A-Z

[P] Invokes PLUG _
[A] Copies id# shown to Alpha

One of the most notable features of the CL is its extensive ROM image library, allowing you to plug
almost any conceivable module ever made (of which I have contributed a few) into your 41CL just by
using one of the PLUGxx functions. The input syntax requires that the correct ROM ID string be
placed in Alpha, and certainly there are a few of those to remember – and rather similar to each other
since the string is only 4 characters long.

These two functions come to the rescue – by providing an alphabetical listing of all the module ID’s so
you can review them and –eventually – plug the ROM directly from the catalogue, for convenience
sake.

ROMLIB starts the listing at the top of the list, whereas CLLIB prompts for an alphabetical section, A
to Z. Choosing “A” here is of course equivalent to executing ROMLIB. Both catalogues can run in
auto mode of can be stopped using R/S, and then the listing can proceed in manual mode using SST
and BST as you can expect.

It is in manual mode where you can use the other shortcuts or “hot keys”, as follows:

- ENTER^ skips to the next section (or previous if running backwards)
- [A] will copy the id# shown to Alpha
- [P] will exit the catalog and invoke the PLUG_ function launcher
- [SHIFT] changes the direction of the listing, backwards <-> forwards
- BackArrow will cancel out the catalog.

The enumeration terminates in auto mode when the last ROM id# (or first one if running backwards)
has been reached. Also keeping any key depressed in RUN mode will halt the sequence displaying
until it’s released again, so it’s easier to keep tabs with the enumeration.

The same considerations made about plugging modules can be made here – be careful not to
overwrite anything you’re using with a new ROM image, as there’s no check whether the target
location is already used or not.

As you can imagine there is a lot of code sharing between ADRID and these two ROM library
catalogue functions. Fundamentally they all use a ROM id# table within the CL-UTILS ROM to look up
for the string, and fetch the address in Flash of the corresponding image. This table is quite long,
occupying almost 1k in the ROM – yet worth every byte.

The “A-Z” prompt entry in CLLIB is a refinement of the same idea: it provides a handy shortcut to
start your search in the appropriate section, so there’s no need to review all the preceding ones –
which can be very lengthy considering the sheer number of them, even if you used ENTER^ to skip
sections. The implementation is quite nice, even if it’s the author who says it – have a look at the
CLUTILS_Blueprint if you’re curious about the MCODE implementation details.

© Ángel M. Martin Page 12 of 31 08/01/2012

If the section doesn’t have any ROM id# starting with such letter (which currently only occurs with [V]
and [W] letters) the message “NO SUCH” will be shown. Non-alphabetical keys are not valid entries,
and will cause the display to just blink and maintain the prompt. Lastly, selecting [X] will list the
general-purpose placeholders; refer to the CL manual for details on those.

2.3.1. Configuring the HEPAX system.

HEPX HEPAX Fns. Launcher Prompts “4:8:6:I:D” Accessible from ΣCLF
HEPINI Initializes File System Prompts for values
HEPYX Initializes File System Takes inputs from Stack Author: Howard Owen

Use these functions to initialize the HEPAX File System on the CL. This is needed on the CL because
this feature is disabled in the HEPAX ROM image included in the CL Library, and therefore the addition
here.

The function takes two parameters: the number of HEPAX RAM pages to configure and the
address of the first one. These are expected to be in the Y and X registers respectively for HEPYX,
whereas they’ll be manually entered as prompts in HEPINI.

 Note that even if the first prompt is a DECIMAL entry, the
double quotes will remind you that the second one is in HEX, with valid inputs being 8,9, and A-F.

The procedure consists of writing a few bytes into strategic locations within each HRAM page so that
the HEPAX will recognize them as being part of the HEPAX File System. Those locations and byte
values are shown in the table below:

Address Byte value
x000 ROM id# => equal to the page#
xFE7 Previous HRAM page id# (zero if first)
xFE8 Next HRAM page id# (zero if last)
xFE9 Fixed value = 091
xFED Fixed value = 090
xFEF Fixed value = 091
xFF1 Fixed value = 0E5
xFF2 Fixed value = 200

The maximum number of HRAM pages accepted by the function is 9, but typical HEPAX configurations
have TWO pages (Standard HEPAX, 8k) or FOUR (Advanced HEPAX, 16k). The ROM id# is assigned
by giving it the same value as the page number – be aware that this may conflict with other ROMS
currently plugged in your CL, notably CLUTILS uses ROM id# “C”, and YFNS uses “F” so those two
pages will have to be renumbered manually to avoid any issues (!)

For this to work the target pages must be mapped to SRAM – or otherwise the byte values could
obviously not be changed.

“HPX4” 4k RAM HEPAX Setup RAM page F, ROM page E
“HPX8” 8k RAM HEPAX Setup RAM pages E-F, ROM page D
“HPX16” 16k RAM HEPAX Setup RAM pages C-F, ROM page B

© Ángel M. Martin Page 13 of 31 08/01/2012

These three functions will prepare the CL ports to hold a properly configured HEPAX file system,
starting from the scratch. The process can be divided into four distinct parts:

1. First copying the HEPAX RAM template from Flash into the appropriate number of SRAM
blocks, as many times as needed.

2. Followed by mapping those SRAM blocks to the 41 ports, and
3. Then configuring them using HEPYX - so that they are enabled for the HEPAX ROM to use.
4. Besides that, the functions will also map the HEPX ROM image to the page preceding the first

HRAM block, as shown in the table above.

So even if they don’t require any input parameter you must be fully aware that the previous MMU
mapping to those ports will be overwritten. The exception being the YFNS ROM itself – as the
programs will check whether it is currently mapped to the page being copied – and abort if that’s the
case. A nice built-in protection to avoid getting in trouble.

Obviously these functions are not to be used frequently, since each execution will wipe off the
contents of the HRAM pages, overwritten with blank FLASH templates (!). Therefore the “medium”
warning sign, proceed with caution.

See the appendix 2 for a listing of the FOCAL programs that implement this functionality.

2.3.2 Page-Plug functions.

PLUGGX PLUG Page by X Page# in X 4k ROMS only
PLUGG _ PLUG page by prompt Prompts for page: “6-F” 4k ROMS only
PLUGG? _ Get plugged ID# Prompts for page: “6-F” 4k ROMS only

Plugging the HEPAX ROM into the appropriate page is accomplished by a single function, using a
parameter to define the page address. This function is PLUGGX, or “Plug Page by X” (and its
prompting doppelgänger PLUGG). Contrary to the port-related convention of the “native” CL
functions we’re now referring to a page-related one, whereby the arguments of the function are the
ROM id# in Alpha (same as usual) and the page# in X – removing the hard-coded dependency of the
location used by the PLUGLxx and PLUGUxx functions.

Note that PLUGG and PLUGG? are mutually complementary functions, as they both operate on page
id# and will take or return the corresponding ROM id# from/to Alpha. You could use PLUGG? to
interrogate the MMU about page#4, and you can use PLUGG to plug take-over ROMS to page#4 – by
directly invoking the dedicated function PLGG#4, which will be covered in section 2.4 of the manual
later on.

The following error conditions can happen:

- Because of dealing with pages and not full ports, PLUGGX will only work with 4k ROMS, or
otherwise “DATA ERROR” will occur.

- Main valid page# inputs are within to the 6-F range. Letters other than A-F will be inactive
during the prompt, but it will allow any numeric keys - yet values less than 6 will also be
rejected, resulting in a“DATA ERROR”.

- Also a valid input is “4” – but it requires the string “OK” placed in ALPHA to accept it.
- Any other value will trigger a “DATA ERROR” message.
- Attempting to plug a ROM to the page currently used by YFNS will also trigger an error code.
- If the string in Alpha is not a valid ROM id# you’ll get “BAD ID” – as expected.
- If the YFNS ROM is not present (not mapped to the MMU or running on a standard 41 without

the CL board) you’ll get “NONEXISTENT” error.

© Ángel M. Martin Page 14 of 31 08/01/2012

The picture below (taken from the HEPAX manual) provides the relationship between ports and pages,
also showing the physical addresses in the bus and those reserved for special uses (like OS, Timer,
Printer, HP-IL, etc). Note that some pages (also called 4k-blocks or simply “blocks”) are bank-
switched. As always, a picture is worth 1,024 words:

2.3.3 Security functions.

The following group of functions are a small detour, in that they aren’t directly related to the CL but
they come to full fruition when used on this platform.

SECURE Activate Security Author: Nick Harmer Source: Data File
UNLOCK Deactivate Security Author: Angel Martin
XPASS Change Password Author: Nick Harmer Source: Data Fie

Here we have a nice practical application of advanced system control. Use these functions to manage
a password-protection scheme for your CL – so nobody without authorized access can use it.

They were published in Data File back in 198x by Nick Harmer, and implemented in Q-RAM devices
(a.k.a MLDL). Obvious caveat there was that removing the MLDL from the machine dismantled the
whole scheme – but the CL has made it possible as integral part of the core system now.

The protection works as follows:-

1. Function SECURE activates the security by setting the protection flag. The execution also
switches off the machine. This sets up a process executed on each CALC_ON event, causing
to prompt the user for the password during the start-up process.

© Ángel M. Martin Page 15 of 31 08/01/2012

2. Function UNLOCK deactivates the security by clearing the protection flag.

3. Function XPASS allows the user to change the password from the default one to his/her
favorite one. The length of the password is limited to six (6) characters.

 Enter code (up to 6 chrs. long) and end with R/S

Inputting the password is very simple but very unforgiving as well: at the prompt “PASSWORD=?” just
type the letters one by one until completing the word, and you’re done. If you make a mistake the
machine will switch itself off and it’ll be “groundhog day” all over gain – until you get it right.

Each keystroke will be acknowledged by a short tone, but no change to the display – so nothing like
“*****” as you type the word. If the wrong letter is entered a lower-pitch sound will be heard and the
calculator will go to sleep.

Be especially careful when entering a new password code – as there is no repeat input to confirm the
entry, so whatever key combination you type will be taken when ending the sequence with R/S. The
initial password (“factory default”, so to speak) is “CACA”.

 Enter code (up to 6 chrs. long) and end with R/S

Here again it comes without saying that this will only work when the CL-UTILS module is mapped to a
SRAM block in the MMU – or otherwise none of the ROM writing will work.

Note: this is how you’d get yourself out of trouble if somehow you forgot the right code: do a memory
lost to disable the MMU, then reload the CLUTILS from flash – which has the protection flag cleared.
Map it to the right page and enable the MMU again – you’re back in charge.

© Ángel M. Martin Page 16 of 31 08/01/2012

 © Photo by Geoff Quickfall, 2011

2.4.1. Using Page#4

As mentioned previously page#4 is a special case that requires its own dedicated (un)plugging
functions, not covered by PLUGGX or the native (U)PLUG ones either.

PPG#4 Plugs ROM in page#4 Prompts F:L:S WARNING
UPGG4 Unplugs ROM from p4

The 41 OS reserves Page #4 as a special location. There are frequent checks done during strategic
moments to specific locations that can be used to take control on the system, even over the OS itself
if that was required – as it happens with the diagnostics executed from the different SERVICE ROMS.

Because of that, only “take-over” ROMS can be plugged in page#4. They have been written
specifically for it and will either take complete control of the system (like the FORTH Module), or drive
it from their own directive (like the LAITRAM Module).

Function PPG#4 prompts for the ROM to plug into the page, options being just those three
mentioned above: FORTH, LAITRAM, or SERVICE modules – by their initials: “F:L:S”. Once the
selection is made the function transfer execution to a hidden FOCAL program that writes the
appropriate entries into the MMU registers, so that the mapping is correct. Refer to the CL manual for
details on this.

WARNING: Be aware that once the order is complete you’ll be at the mercy of the plugged module.
Going back to the “normal” OS may not be as simple as you think, specially with the Service ROM
plugged – which requires removing the batteries, then clearing the MMU entry with the MMU disabled
after you switch it back on.

For the other instances it is possible to “exit” back to the OS, and thus you could execute UPPGG4 to
unplug the module from the page. Obviously no inputs are needed in this case.

Note that because of their titles being not directly key-able using XEQ (an intentional measure) you’ll
have to use another approach to invoke them. It’s a trivial task with the CCD-style CAT’2, either
during the catalog run or through a previous assignment to any USER key. Of course as a CL owner
you’re only one YPOKE away from a permanent solution if CLUTILS resides in RAM ☺.

2.4.2. Calculator Flash Backup & Restore.

YFRALL Backs up to Flash “OK” or “OKALL” in Alpha *WARNING*
YFWALL Restore from Flash “OK” or OKALL” in Alpha *WARNING*

The MMU content is preserved during a MEMORY LOST event, and the same is true with the SRAM on
the CL board. So using RAM for a complete calculator backup and restore is not a bad idea at all, and
it will allow you different setups or complete configurations to be swapped back and forth directly
from SRAM.

© Ángel M. Martin Page 17 of 31 08/01/2012

However SRAM will be erased if the batteries are removed from the calculator for a certain period of
time – longer than what it takes to reset a small glitch, but shorter than it used to be for the standard
41, - due to the increased current required to maintain its contents.

Early CL beta user Geoff Quickfall prepared a few FOCAL programs to commit the calculator contents
to FLASH, so that even without the batteries it’ll be preserved for a restore at any later time. It’s a
powerful concept, but it doesn’t come free from pitfalls if you’re not careful.

• The first consideration is related to the Flash write function and you should read and
understand all about it in the CL manual. Specifically pay strong attention to the
recommendations about the battery state before performing any flash-write operation.

• The second one is that YFWALL will pick certain hard-coded FLASH locations as destination

for the backup, so the 32k sector 0x0D8000 - 0x0DFFFF will be ERASED by YFERASE.
Note that earlier versions of CLUTILS used sector 0x0C8-0x0CF instead. This was moved to
the current location to avoid erasing the Solution Books ROMS, added to said sector later on.

• Then there’s the question about having to run the programs from RAM for the flash-

write/read to work. One could assume that YFNZ is already there but it’s much better to make
sure that’s the case by making a copy on the fly and plugging it to the MMU under program
control. Such copy goes to RAM block 0x80C – overwriting anything you may have
plugged in there previously.

• Finally the programs also assume that YFNZ is plugged in page#8, that is Lower port 1.

Therefore all MMU mapping to YFNS from SRAM and Flash will use that location.

The FOCAL code used by the function is shown below – There is also a check done in MCODE looking
for the string “OK” or “OKALL” to be present in Alpha. If none is there the execution will end with
“DATA ERROR” – as a protection against accidental usage. “OK” will get the Calculator content
backed up, whilst “OKALL” will also include the MMU entries into Flash. Note that on either case the
whole 32k sector will be used.

Should any of those default settings clash with your system setup I’d suggest you change it to match
them as the easiest way to go around the incompatibilities. Even if it’s possible, re-writing the
program in 41-RAM is strongly not recommended.

Backing up MMU entries may be seen as superfluous, yet think about the issues arising from restoring
MMU configurations that don’t include CLUTILS – which is from where the program is being run:
welcome to CL-limbo! - Surely something to be avoided.

Note that CLUTILS module may reside in Flash during the process, even if the FOCAL program calls
upon YFWRT – as the “from-RAM-only” restriction is for YFNS instead.

© Ángel M. Martin Page 18 of 31 08/01/2012

2.5.1. Alpha and Display Utilities.

The following functions relate to Alpha string manipulation, as the main vehicle for many YFNS
functions and are included in the CLUTILS for added convenience. Some

YINPT _ Input Y-String Prompts for string
YBSP Alpha Back Space Author: W&W GmbH
YCL- Alpha Delete from “-“ Author: W&W GmbH
YCL> Alpha Delete from “>”
YSWAP- Swap around “-“
YSWAP> Swap around “>”

The reason why characters “-“ and “>” are so relevant is the formatting required by many of the YFNZ
functions, like YPEEK, YPOKE, PLUGxx, etc. To that effect the most useful function of this group is
no doubt YINPT, which redefines the keyboard as a hex entry {0-9, A-F}, plus a few special control
characters, as follows:

- [J] will add character “>” to the display and Alpha
- [Q] will add character “-“ to the display and Alpha
- [M] will add the string “RAM” to the Display and Alpha
- [K] will add the string “16K” to the Display and Alpha
- BackArrow will remove the last character (or groups above), or cancel out if Empty
- ENTER^ will terminate the entry process and perform AVIEW

Using this function expedites the construction of the Alpha strings required by all other Y-Functions,
make sure you have it assigned to a handy key as it’s likely to be used quite frequently.

DTOA Display to Alpha
DTST Display Test Author: Chris L. Dennis Source: PPCJ V18 N8 p14

DTOA is an elusive one to grasp, but basically is the inverse of AVIEW – as it copies the characters
in the Display to Alpha. The need for this doesn’t usually present to the user, as the normal text entry
always involves Alpha – but there are times when the reverse is also needed. DTOA is used as
subroutine by other functions in the module.

As a totally useless demo, assign DTOA to any key, then press it in USER mode long enough to see
its name shown, then release the key – the words “DTOA” will be copied from the display to Alpha.

DTST Simultaneously lights up all LCD segments and indicators of the calculator display, preceded by
all the comma characters (which BTW will be totally unnoticed if your CL is running at 50x Turbo!).
Use it to check and diagnose whether your display is fully functional. No input parameters are
required.

© Ángel M. Martin Page 19 of 31 08/01/2012

2.5.2. Other Utilities.

The following functions perform housekeeping tasks and are included in the CLUTILS for added
convenience. Some are a remake of the native YFNS with slightly improved behavior, while others just
add up for a “rounder pack”.

?MMU Is the MMU enabled? No Input Author: Monte Dalrymple
CDE HEX string to NNN String in Alpha Author: Ken Emery
DCD NNN to HEX string NNN in X Author: W&W GmbH
ΣDGT Sum of Mantissa digits Number in X
YFNZ? Location for YFNZ No Input
XROM Rom function Launcher Prompts for values Author: Clifford Stern

Some brief comments follow:

- ?MMU is almost identical to MMU? In the YFNS ROM, but the result in RUN mode is
“YES/NO” , and will follow the “skip program line if false” rule - like the other conditional
functions of the machine.

- YFNZ? is completely equivalent to YFNS?, in fact is just a code stub that invokes the latter.

It must be in the CLUTILS module for subroutine purposes. Incidentally, this is how PLUGGX
checks for YFNS being currently mapped to the target page, and discards the request if so.

- CDE and DCD are the classic NNN to/from Hex utilities, also used as subroutines throughout

the module and thus made available to the user as individual functions as well.

- XROM is a well-known function to directly call any function within a plug-in ROM, knowing its
ROM id# and function#. Written by Clifford Stern in the heydays of the 41 systems, with a
real inside knowledge of the internal OS routines. Both prompt inputs are to be entered as
DECIMAL values.

- ΣDGT is a nice utility to calculate the sum of the mantissa digits of the number in X. It only

occupies 16 bytes, so it’s hard to leave it out from any collection!

Farewell.

And with this you’ve reached the end of the CLUTILS manual. – I hope these few pages have proven
useful to you in your quest to become familiar with its capabilities and whet your appetite for even
more to come.

The 41CL is an innovative realization nothing short of incredible, with amazing possibilities that open
the door to yet new developments on the HP-41 platform; all this still happening 33+ years after the
original 41 was launched. Now that’s what I call an achievement!

© Ángel M. Martin Page 20 of 31 08/01/2012

Appendix 1 – Detailed ROM id# table – in alphabetical order.

© Ángel M. Martin Page 21 of 31 08/01/2012

ID Size Name Author / Compiler
1 A41P 12k Advantage Pac HP Co.
2 AADV 4k Advantage Applications J-F Garnier
3 ADV1 16k Adventure_1 Angel Martin
4 ADV2 12k Adventure_2 Angel Martin
5 AEC3 8K AECROM 13-digit Angel Martin
6 AECR 8k AECROM Red Shift
7 AFDE 8k AFDC1 GunZen
8 AFDF 8k AFDC2 GunZen
9 AFIN 4k Auto Finance GMAC

10 ALGG 8k Algebra ROM Angel Martin
11 ALGY 4k Astro*ROM Elgin Knowles & Senne
12 ALPH 4k ALPHA ROM A. Martin & D. Wilder
13 AOSX 4k AMC OS/X Angel Martin
14 ASM4 4k Assembler4 ??
15 ASMB 4k Assembler3 ??
16 ASTT 16k ASTRO-2010 Module Jean-Marc Baillard
17 AUTO 4k Auto-Start / Dupl ROM HP Co.
18 AV1Q 4k AV1 ROM Beechcraft
19 AVIA 4k Aviation Pac HP Co.
20 B52B 8k B-52 ROM Boeing
21 BCMW 4k BCMW ROM ??
22 BESL 8k Bessel ROM A. Martin & JM Baillard
23 BLDR 8k BLD ROM W. Doug Wilder
24 BLND 4k Bufferland ROM Angel Martin
25 CCDP 8k CCD Plus Angel Martin
26 CCDR 8k CCD Module W&W GmbH
27 CCDX 4k CCD OS/X Raymond del Tondo
28 CHEM 4k Chemistry User ROM ??
29 CHES 8k Chess/Rubik's ROM Claude Roetlgen
30 CIRC 4K Circuit Analysis Pac HP Co.
31 CLIN 4K Clinical Lab Pac HP Co.
32 CLUT 4k CL Utilities Angel Martin
33 CURV 8k Curve-Fitting Module Angel Martin
34 CVPK 8k Cv-Pack ROM ??
35 DA4C 4k DisAssembler 4C W. Doug Wilder
36 DACQ 8k Data Acquisition Pac HP Co.
37 DASM 4k DisAssembler 4D W. Doug Wilder
38 DAVA 4K David Assembler 2C David van Leeuwen
39 DEVI 8k HP-IL Development HP Co.
40 DIIL 4k HP-IL Diagnostics HP Co.
41 DMND 4k Diamond ROM ??
42 DYRK 4k Dyerka ROM David Yerka
43 E41S 8k ES41 Module Eramco
44 ESML 4k ES MLDL 7B Eramco
45 EXIO 4k Extended I/O Module HP Co.
46 EXTI 4k Extended-IL ROM Ken Emery
47 FACC 4k 300889_FACC ??
48 FINA 4k Financial Pac HP Co.
49 FRTH (*) 8k FORTH Module Serge Vaudenay
50 FUNS 8k Fun Stuff Module Angel Martin
51 GAME 4k Games Pac HP Co.
52 GMAS 4k Auto Fiance-2 Module GMAC
53 GMAT 8k Auto Fiance-3 Module GMAC
54 HCMP 4k HydraComp ROM Paul Monroe
55 HEPR 4k HEPAX RAM Template VM Electronics

© Ángel M. Martin Page 22 of 31 08/01/2012

56 HEPX 16k HEPAX Module VM Electronics
57 HOME 4k Home Management. Pac HP Co.
58 ICDO 4k Icode ROM ??
59 IDC1 8k ML-ICD BCMC 1987
60 IDC2 4k BG/UG IDC BCMC 1985
61 JMAT 8k JMB Math Jean-Marc Baillard
62 JMTX 8k JMB Matrix Jean-Marc Baillard
63 ILBF 4k IL-Buffer Angel Martn
64 KC135 12k Weight & Balance Comp. ??
65 L119 8k AFDC-1E-003 Zengun
66 LAIT (*) 4k LaitRAM XQ2 LaitRam Corp.
67 LAND 4k Land Navigation ROM Warren Furlow
68 LBLS 4k Labels ROM W. Doug Wilder
69 MADV 12k Modified Advantage ROM Angel Martn
70 MATH 4k Math Pac HP Co.
71 MCHN 4k Machine Construction Pac HP Co.
72 MDP1 8k AFDC-1F ROM Zengun
73 MDP2 8k AFDC-1F ROM Zengun
74 MELB 4k Melbourne ROM PPC Members
75 MILE 8k Military Engineering ROM ??
76 MLBL 4k Mainframe Labels David van Leeuwen
77 MLRM 4K ML ROM Frits Ferwerda
78 MLTI 8k? Multi-Prec. Library Peter Platzer
79 MTRX 4k MATRIX ROM Angel Martin
80 MTST 4k MC Test ROM ??
81 MUEC 8k Muecke ROM Mücke Software GmbH
82 NAVI 8k Navigation Pac HP Co.
83 NCHP 4k NoVoCHAP G. Isene & A. Martin
84 NFCR 4k NFC ROM Nelson F. Crowe
85 NPAC 8k NavPac ROM ??
86 NVCM 8k NaVCOM 2 ??
87 OILW 8k OilWell Module Jim Daly
88 P3BC 16k Aviation for P3B/C ??
89 PANA 8k PANAME ROM S. Bariziene & JJ Dhenin
90 PARI 4k PARIO ROM Nelson F. Crowe
91 PCOD 4k Proto-Coder 1A Nelson F. Crowe
92 PETR 8k Petroleum Pac HP Co.
93 PLOT 8k Plotter Module HP Co.
94 PMLB 4k PPC Melb ROM PPC Members
95 POLY 8k Polynomial Analysis A. Martin & JM Baillard
96 PPCM 8k PPC ROM PPC Members
97 PRFS 4k ProfiSet Winfried Maschke
98 PRIQ 8k PRIDE ROM ??
99 QUAT 8k Quaternion ROM Jean-Marc Baillard
100 RAMP 4k RAMPage Module Angel Martin
101 REAL 8k Real State Pac HP Co.
102 ROAM 4k ROAM Module Wilson B. Holes
103 ROMS 4k SV's ROM Serge Vaudenay
104 SANA 12k SandMath-12k Angel Martin
105 SBOX 8k SandBox Angel Martin
106 SEAK 4k SeaKing MK5 Navy Air
107 SECY 4k Securities Pac HP Co.
108 SGSG 4k Gas Module SGS Redwood
109 SIMM 16k SIM Module ??
110 SKWD 4k Skwid's BarCode Ken Emery
111 SMCH 8k Speed Machine Alameda Mngmt. Corp.
112 SMPL 4k Simplex Module Phillipe J. Roussel
113 SMTS 8k SandMath-8k Angel Martin

114 SND2 8k SandMath-II Angel Martin
115 SPEC 4k Spectral Analysis Jean-Marc Baillard
116 SRVC (*) 4k Service ROM HP Co.
117 STAN 4k Standard Pac HP Co.
118 STAT 4k Statistics Pac HP Co.
119 STRE 4k Stress Analysis Pac HP Co.
120 STRU 8k Structural An, Pac HP Co.
121 SUPR 8k SUP-R-ROM James W. Vick
122 SURV 4k Surveying Pac HP Co.
123 THER 4k Thermal Pac HP Co.
124 TOMS 4k Tom's ROM Thomas A. Bruns
125 TOOL 4k ToolBox-II Angel Martin
126 TREK 4k Start Trek Angel Martin
127 TRIH 4k 83Trinh Phil Trinh
128 UNIT 4k Unit Conversion Angel Martin
129 USPS 8k Mail Delivery USPS
130 XXXA 4k Empty Not listed
131 XXXB 4k Empty Not listed
132 XXXC 4k Empty Not listed
133 XXXD 8k Empty Not listed
134 XXXE 8k Empty Not listed
135 XXXF 16k Empty Not listed
136 YFNS 4k Alternate YFNS Monte Dalrymple
137 YFNZ 4k Main YFNS Monte Dalrymple
138 Z41Z 8k 41Z Module Angel Martin
139 ZENR 4k Zenrom Zengrange Ltd.
140 ZEPR 4k Programmer Zengrange Ltd.

(*) Take-over ROMS

Other modules not included in the Library:-

For sure many more of these abound, yet these are the ones I have knowledge of – feel free to
complete the list with your own entries, and don’t forget to share it with the whole community.

1. CCD Advanced Apps. 4k Ángel Martin
2. Geometry 2011 4k Jean-Marc Baillard
3. Market Forecast 4k Forecaster?
4. MONOPOLY ROM 8k Thomas Rodke
5. Mortar Fire Data Calculator 8k MDN Canada
6. Mountain Computer EPROM 4k Paul Lind
7. Dr. Z RaceTrack Module 4k William T. Ziemba
8. SNEAP1/2/3 3x 8k SNEAP Society (F)
9. SUDOKU & Sound 4k JM Baillard & Á. Martin
10. VECTOR Analysis 4k Ángel Martin
11. Yach Computer 4k Bobby Schenk

Modules included in Flash without Module ID#

1. ISENE ROM 0x0C9 Geir Isene
2. Bus Sales/Mkt/Stat. 0x0CA HP Co.
3. Control Systems 0x0CB HP Co.
4. Electrical Eng. 0x0CC HP Co. + ÁM
5. Lend, Lease & Sav. 0x0CD HP Co.
6. Test Statistics 0x0CE HP Co.
7. Mechanical Eng. 0X0CF HP Co.+ ÁM

8. Antennas 0x0D1 HP Co.
9. Optometry I & II 0x0D2 HP Co.
10. Physics 0x0D3 HP Co.
11. Geometry 0x0D4 HP Co. + ÁM
12. High-Level Math 0x0D5 HP Co.
13. Interchang. Sol. 0x0D6 UPLE
14. Module Database 0x0D7 MD

© Ángel M. Martin Page 23 of 31 08/01/2012

Appendix 2. FOCAL program Listings.

Provided for your reference and in case you feel
like experimenting with your own settings.

As always, mind the potential conflicts with other
modules when plugging stuff, and pay special
attention not to overwrite YFNS. (you’re safe if
using PLUGGX – it won’t let you to :-)

In the HEPAX configuration code the role of
HEPINI is to write the appropriate words into
the HRAM pages, as per the description provided
before. This could also be done using YPOKE,
but the memory requirements are much larger
due to all the alpha strings that would be
required to do so.

For example, see below for the 16k case, using
pages C,D,E, and F.

This would mean having to write on each page
the four page id#s, plus the pointers to the
previous and next pages, for a total of 10x – or
equivalent to 110 bytes:

"809FE7-000C"
"808000-000C"

"808FE8-000D"
"80AFE7-000D"
"809000-000D"

"809FE8-000E"
"80BFE7-000E"
"80A000-000E"

"80AFE8-000F"
"80B000-000F"

© Ángel M. Martin Page 1 of 31 08/01/2012

Apendix 3.- MCODE Listing showing the Alphabetical sections prompting code.

The function CLLIB begins by building the prompt text in the display. Using the OS routine [PROMF2]
is helpful to save bytes, so there’s no need to write the function name again, “CLLIB”. Alpha is cleared
using [CLA], just to prepare for a possible copy of the ROM id# to Alpha using the [A] hot-key in run
mode. Then we get into a partial data entry “condition”, waiting for a key to be pressed.

Back Arrow sends the execution to [EXIT3], to do the housekeeping required to reset everything back
to the standard OS-required status (disable Display, resetting Keyboard bits, CPU flags, etc.).

Since the valid keys are quite a lot [A-Z] we need to use multiple conditions in the logic. The first two
rows are the easiest; as they set up CPU flag#4 and that can be tested easily. In this case we copy
the mantissa sign in A to C[S&X], then store it in B[S&X] and we move on.

For the rest [K-Z] we’ll need to read the keycode of the pressed key and act accordingly. Also we
need to discard any non-letter key, rejecting it if its keycode value is outside of the [A,Z] range.

© Ángel M. Martin Page 2 of 31 08/01/2012

Now the show is about to start: see how the key pressed value (in N) is compared with every
possible value in the [K-Z] range, building the “pointer” in C[S&X] by repeat one-additions until
coming up to its final result.

© Ángel M. Martin Page 3 of 31 08/01/2012

The last part is about presenting the chosen key – allowing NULLing if it’s held down long enough –
Resetting everything back to normal conditions [CLNUP], and see whether there actually exists such a
section – before we launch into a blindfold enumeration. This is done by the subroutine [SRCHR],
which will fetch the address in the ROM id #table where the section starts. With that we’ll transfer the
execution to the ROMLIB function code where the actual enumeration will take place - only with a
padded value to start from, as opposed to doing it from the top of the table.

Note how [SRCHR] is really part of the ADRID function code, which also does table look-ups for its
own purpose. This code is written around the table structure; refer to the Blueprints for more details.

© Ángel M. Martin Page 4 of 31 08/01/2012

And that’s all folks - easy when you know the tricks ☺

Appendix 4.- Serial Transfer CLWRITE source code. – written by Raymond Wiker.

using System;
using System.IO;
using System.IO.Ports;
using System.Threading;

public class CLWriter
{
 public static void Main(string [] args)
 {
 int baudrate = 1200;
 int delay = 0;
 if (args.Length < 2) {
 Console.Error.WriteLine("Usage:");
 Console.Error.WriteLine(" {0} file port [baudrate [delay]]", "CLWriter");
 Console.Error.WriteLine();
 Console.Error.WriteLine("Where baud defaults to {0}", baudrate);
 Console.Error.WriteLine("and delay defaults to {0}", delay);
 Console.Error.WriteLine("Available Ports:");
 Console.Error.WriteLine();
 foreach (string s in SerialPort.GetPortNames())
 {
 Console.Error.WriteLine(" {0}", s);
 }
 return;
 }
 string filename = args[0];
 string portname = args[1];
 if (args.Length > 2) {
 baudrate = int.Parse(args[2]);
 if (baudrate != 1200 && baudrate != 2400 &&
 baudrate != 4800 && baudrate != 9600) {
 Console.Error.WriteLine("Invalid baudrate {0}; should be one of", baudrate);
 Console.Error.WriteLine("1200, 2400, 4800, 9600");
 return;
 }
 }
 if (args.Length > 3) {
 delay = int.Parse(args[3]);
 if (delay > 10) {
 Console.Error.WriteLine("delay {0} probably too large.", delay);
 return;
 }
 }

 if (!File.Exists(filename)) {
 Console.Error.WriteLine("File {0} does not exist.", filename);
 return;
 }

 FileStream fstream = File.Open(filename, FileMode.Open);

 if (fstream.Length > 8192) {
 Console.Error.WriteLine("WARNING: {0} is over 8192 bytes long ({1});", filename,
fstream.Length);

© Ángel M. Martin Page 5 of 31 08/01/2012

 Console.Error.WriteLine("Will only transfer the first 8192 bytes.");

 }

 BinaryReader binReader = new BinaryReader(fstream);

 SerialPort serialport = new SerialPort();
 serialport.PortName = portname;
 serialport.BaudRate = baudrate;
 serialport.Parity = Parity.None;
 serialport.DataBits = 8;
 serialport.StopBits = StopBits.One;
 serialport.Handshake = Handshake.None;

 serialport.Open();

 try {
 byte[] buffer = new byte[8192];
 int count = binReader.Read(buffer, 0, 8192);

 // swap high & low bytes:
 for (int i = 0; i < count; i+= 2) {
 byte tmp = buffer[i];
 buffer[i] = buffer[i+1];
 buffer[i+1] = tmp;
 }

 for (int i = 0; i < count; i++) {
 Console.Write("{0:x2} ", buffer[i]);
 if (i % 16 == 15) {
 Console.WriteLine();
 }
 serialport.Write(buffer, i, 1);
 if (delay > 0) {
 Thread.Sleep(delay);
 }
 }
 Console.WriteLine();
 }
 catch (EndOfStreamException) {
 // nada
 }
 serialport.Close();
 }
}

© Ángel M. Martin Page 6 of 31 08/01/2012

 1) Copy YFNS-1A to RAM at 80C000, and patch for items 2, 5, 8. These
 affect the operation of YIMP. I did this with a variation of the
 PATCHIT program posted earlier.

 2) Execute TURBO50.

 3) Execute SERINI

 4) Execute BAUD12. From the documentation, this should not be
 necessary, but I had to explicitly set 1200 baud to get the transfer
 to work.

 5) The file yfns-1e.rom has the opposite byte order of what YIMP
 expects, so the transfer program needs to perform byte swapping.
 Alternatively, you might do the byte-swapping before you do the
 transfer.

 6) Transfer the ROM; I chose to transfer it to 80D000 (i.e, put
 80D000-0FFF in the alpha register, start YIMP). For the transfer, I
 used the CLWriter program that I posted a few days back, with the
 command

 CLWriter.exe yfns-1e-fixed.rom com1 1200 5

 --- the file yfns-1e-fixed.rom is the byte-swapped version of
 yfns-1e.rom. I probably should have chosen a slightly different
 name, but that does not really matter. The "5" means that I put a 5
 millisecond delay after each byte. It may not actually be necessary;
 I added it because I got timeouts, but these were probably because I
 left out step 4 (BAUD12).

 7) Execute PLUG1L with "80D-RAM" in the Alpha register.

 8) Verify (using CATALOG 2) that I'm now running YFNS-1E.

© Ángel M. Martin Page 7 of 31 08/01/2012

	January 2012
	 This compilation revision 2.G.01
	Copyright © 2012 Ángel Martin

