NIC-51240

Quad Copper Gigabit Ethernet
PCI-E Bypass Adapter

User’s Manual

Revision: 1.2

Table of Contents

1. GENERAL INTRODUCTION L.ttt ettt e eaee s eaaneaneennen s enas 2
1.1 INTIRODUGCTION 11 tutttttnttttenes et enes et enteseease s e eate st e ea s e ea s e ensa e e eereaenrerens 3
1.2 P RODUCT PACKING LIS T tiiiititiit ettt sttt ettt ettt et e e e et ea e ea e eneneens 3
1.3 [=T 4
1.4 Y = =0 [=T 1 1] £ 4
1.5 BLOCK DIAGRAM vttt sttt ettt ettt e it et e e et e e et ea et ea e e eneerens 6

2. HARDWARE INSTALLATION . ..t et aa i aenens 7
2.1 B LY =] =1 = 8
2.2 (070] N N o3 0] 23T 8
2.3 LOCATING JUMPERS & CONNECTORS .. eututeteneeeeeeeeeeneeeeenseeeenseaeaenenaens 9

3. ETHERNET INTERFACE ... ettt et e eaneen 10
3.1 ETHERNET DRIVER SUPPORT 1.tuttittttttttttnttteatnteseaenssseasnssseasssssenensenens 11
3.2 INSTALLATION OF ETHERNET DRIVER ON WINDOWS XP ..covviviiiiviiiiiiiieenns 11
3.3 INSTALLATION OF ETHERNET DRIVER ON LINUX .iviiiieiieiii e ceeeeneeens 15

4. PROGRAMMING BY PASS ..o e 16
4.1 NS0] 51003 @] N 17
4.2 (O70] /=11 (0] N TR 17
4.3 =T YISO 1 1 220 20

4.4 PROGRAMMING GUILD ...vieninieeee et et e et e e e e e ee e e e e e e e en e eneaneeenas 22

[

General Introduction

1.1 Introduction

The NIC-51240 is PCIl Express x4 interface cards, contains four
independent Gigabit Ethernet ports. To enhance Ethernet controller
performance, it is designed with one Intel® 82580EB Gigabit Ethernet

Controller to provide four Gigabit Ethernet ports.

1.2 Product Packing List

Before beginning installing, please make sure the following items have
been included in the box.

1. NIC-51240 quad copper Gigabit Ethernet PCI-E bypass adapter
2. Quick Installation Guide

If any of these items is missing or damaged, contact you local dealer from
whom you purchased the product.

1.3 Features

o Quad copper PCI-E Gigabit Ethernet ports via Intel® 82580EB
controller

« Built-in Watchdog Timer (WDT) to bypass Ethernet ports on a host
system hang or power failure

« Easy configuration of Normal/Bypass model and WDT timer

« Built with both onboard LED indicators and LED pin-out for LAN status
and bypass mode, provides variable LED location for system

integration

1.4 Specifications

Technical Specifications:

o Standard: IEEE 802.3z 1000BASE-SX Gigabit Standard; IEEE 802.3x
Flow Control

« Interface: PCI-Express base specification Rev. 1.1

o PCI-Express Bus Type : x4

« Installbale PCI Slot : PCI Express x4/x8/x16

o Controller: Intel® 82580EB

« Holder: Metal bracket for both full height PCI-E x4 slots (metal bracket in
low profile is optional)

o Driver Support: Windows, Linux, FreeBSD & VMware, from

http://downloadcenter.intel.com/

« Bypass APl Sample code: Linux Stable kernel version 2.6

Mechanical and Environmental:

« Board Size: 110 (W) x 100.7 (L) mm

« Power Consumption: 4.1W

« Operating Temperature: 0to 60 C (32 to 140°F)

« Operating Storage: -20to 80 C (-68 to 176°F)

o Operating Humidity: 5% to 90% RH(non-condensing)

« Weight: 77.7g

1.5 Block Diagram

Universal PCI-E x4 Golden Finger

PCI-E x4

Intel®
82580EB

1 OR
O

1

OR
gm——

L

L

L

L

Normal Mode

Bypass Mode

Figure 1.5: NIC-51240 Block Diagram

X

AP

L]

Hardware Installation

2.1 Jumpers

Label Function

JP2 Bypass Function and Bypass Function Boot-up Setting for
LAN1 / LANZ2 (Segment 1)

JP1 Bypass Function and Bypass Function Boot-up Setting for

LAN3 / LAN4 (Segment 2)

Bypass Function Boot-up Setting (JP1/JP2)

Setting Function

1-3(default) Active Bypass Function

3-5 Inactive Bypass Function

2-4 Enable Bypass Function before OS boot-up

4-6(default) Disable Bypass Function before OS boot-up

Note: To active this function, jumper should be set on Bypass mode

2.2 Connectors

Label Function

J2 LAN1 and LAN2 Connector

J3 LAN3 and LAN4 Connector

2.3 Locating Jumpers & Connectors

H & L]
oy IE EI — iH I
|L._’)-JJI = 18F_Segmentl)|(BF_Segment2 |
\{J o :J/ E E| rr:;:l 1-3 1-3 Fewer
_ - o5 Brpuss 3-5 3- uef:ur
Mede
o © >0 I
- 204 [N a5
o~
O3S ju(
>B o0 —
BP_SEGMENT 1C Q Qg'
- o O o 00
,‘“j olg)
003
890
O 083
— O~ O —
Faow) A~
e
dl#ad
| = = o
_— ~ 23z +
B DI/'“\, o .
S e} :}U'
o 89
o O
0o53f
¥3 98
BP_SEGMENT 2 O ¢ 88
- o) o 00 Lrj
029)
8o T
a9
O\
I] :;'.(-\
5O N 00 MADE IN TAIWAN
— -~ P
TN)
HOL)
\5 0]

LLLEDITRTD (RERRRARRRARARIACE

Figure 2.3.1: Jumper & Connector (component side)

Ethernet Interface

3.1 Ethernet Driver Support

The Ethernet drivers are supported under Windows, Linux, FreeBSD & VMware.
For other supported drivers, please contact your distributors or sales
representative, or refer to Intel http://downloadcenter.intel.com.

3.2 Installation of Ethernet Driver on Windows XP

The following steps are manual installation for Windows XP

Step 1 Download the latest Intel 82580EB driver at
http://downloadcenter.intel.com. If your operating system is 32 Bit,
download and execute PROwin32.exe; If your operating system is 64
Bit, download and execute PROwinx64.exe

Step 2 Click “Next” to start installation

‘_’@ Intel(R) Metwork Connections - InstallShield Wizard
Welcome to the InstallShield Wizard for . :
ntel)

Intel(R) Network Connections |: l

Installs drivers, Intel(R) PROSet for Windows™ Device
Manager, and Advanced Metworking Services.

WARMING: This program is protected by copyright law and
international treaties,

InstallShield

< Back Mext =] [Cancel

Step 3 Check the agreement box and click “Next”

‘ﬁ InteliR) Metwork Connections - InstallShield Wizard

License Agreement

Fleaze read the following license agreement carefully. (lntE!:

INTEL SOFTWARE LICENSE AGREEMENT (Final, License) i

MPORTANT - READ BEFORE COPYING, INSTALLING OR USING.

Do not use or load this software and any associated materials (collectively, the
“Software™) until you have carefully read the following terms and conditions. By
loading or using the Software, you agree to the terms of this Agreement. If you
do not wish to so agree, do not install or use the Software.

LICEMSES: Please Mote:

-

@ I accept the terms in the license agreement

() I do not accept the terms in the license agreement

InstallShield

< Back ” Mext =] [Cancel

Step 4 Select “Default” and press "Next” to continue

Step 5

InteliR) Metwork Connecticns

Setup Options

Select the program features you want installed,

Install:

Drivers
o[Intel{R) PROSet for Windows* Device Manager

----- Advanced Metwork Services

----- [TJintel{R) Metwork Connections SMMP Agent

Feature Description

« Back][Mext =

] [Cancel

Driver installing

ﬁ' Intel(R) MNetwork Connections - InstallShield Wizard

Installing Intel{R) Network Connections
The program features vou selected are being installed,

Connections, This may take several minutes,

Status:

- .

Please wait while the InstallShield Wizard installs Intel{R) Network

Inztallshield

< Back Mext =

Cancel

Step 6 Click “Finish” to complete the installation

‘E! Intel(R) Metwork Connections - InstallShield Wizard
InstallShield Wizard Completed

To access new features, open Device Manager, and view the
properties of the network adapters.

InztallShield

< Bac

Cancel

i

Step 7 Confirm installation successful in Control center > Hardware > device
management

A Computer Management
File Action View Help

e | A[E

(&1 Computer Management (Local | 4 {2 Allen-PC] Actions

4 |f} System Tools g8 Computer Device Manager -
b (D) Task Scheduler 1 g Disk drives
» @ Event Viewer B8 Display adapters More Actions 4
» Gl Shared Folders b g IDE ATA/ATAPI controllers

@8l Local Users and Groups
» @) Performance
24 Device Manager
4 3 Storage
(29 Disk Management
I+ [y Services and Applications

b & Keyboards
18 Mice and other pointing devices
1 B Monitors

ETWOTT: a0aprers

F Intel(R) 82574L Gigabit Network Connection
Intel(R) 82574L Gigabit Network Connection 2
Intel(R) 82580 Gigabit Network Connection
Intel(R} 82580 Gigabit Network Connection £2
Intel(R} 82580 Gigabit Network Connection 23

¥ Intel(R) 82580 Gigabit Network Connection =4
o

Ay

7 PoTE
o |5} Processors
& 78 System devices

1+ @ Universal Serial Bus controllers

3.3 Installation of Ethernet Driver on Linux

Most of the kernels contain the driver for NIC-51240, and these OS will
automatically install the new hardware when booting up. If this doesn’t

happen, please follow the step to install.

Step 1 Download the latest Intel 82580EB driver at
http://downloadcenter.intel.com

Step 2 Run “ tar zxvf igh-x.x.x.tar.gz “ to extract
EX: #tar zxvf igh-x.x.x.tar.gz
Step 3 Change to the driver src directory: cd igh-x-x-x/src, and Enter "make
install” to compile
EX: #cd igb-x-x-x/src
#make install
Step 4 Run “ifconfig -a” to ensure the installation successful
EX: #ifconfig -a

Programming Bypass

4.1 Introduction

The ‘bypass utility’ provides a user space tool ‘bpcmd’ for user to control
bypass device and several API functions for programming. We describe the

usage in the following section.

4.2 Compilation

This program has been tested under Fedora core 8 /12 and Red Hat
Enterprise 5.4 with gcc version 4.1.2 20070925 (Red Hat 4.1.2-33) ,version
4.4.2 20091027 (Red Hat 4.4.2-7) and version 4.1.2 20080704 (Red Hat
4.1.2-46) (GCC)

All the makefiles are tested with GNU Make 3.81.

4.2.1 Uncompress the package

The user can uncompress the package according to the following command

Step 1: make a directory to place the source code

Ex/

[userl@host work]$ mkdir bypass

[userl@host work]$ cd bypass

Step 2: Copy the source code to the directory
Ex/

[userl@host work]$cp /mnt/sdbl .

Step 3: Uncompress the source code

[userl@host work]$ unzip util_bypass-mac-sdp-x.x.X.zip

After uncompression, we can see two directories and several files

Jsrc @ All the source codes of bypass API and bpcmd are placed here
Jsample : Several sample code developed by API functions can be found
here

README : This file provide description for APIs and bpcmd
SUPPORT_LIST : This file provide the NIC card supported by this package

make_all.sh : A shell script that can help to compile all the source code

4.2.2 Jsrc

The targets of the Makefile are list in as the follows :

libso: Compile the bypass shared liberary and its soft link. The output file
should be libbp_macspd.so.XXXX and a soft link libbp_macspd.so.

static_bpcmd: compile the utility 'opcmd’ statically.

all : compile the bypass shared liberary and its soft link.

'‘bpcmd' is compiled dynamically.
Note this is the first target in the Makefile.

clean: remove all the output files

4.2.2 .Isample

The targets of the Makefile are list in as the follows :
all: compile all the sample codes dynamically
clean: remove all the output files

4.2.3 compile.sh

Execute this script is equivalent to run ‘make clean’ and ‘make’ under ./src
and ./sample

4.2.4 Dynamically compiling the source code and sam ple code

When we execute the executable which is compiled dynamically, the
shared library has to set up properly. For example, after compilation
[userl@host src]$ cp —ar libbp_macsdp.so* /lib
[userl@host src]$ldconfig

4.3 Bypass Utility

The program 'bpcmd' is a sample utility written by these APIs. Users can use
this utility to test and control bypass device. This program can be compiled
in ./src by

[userl@host work]$ make

It will generate an executable which dynamically links libbp_macsdp.so in run
time.
Moreover, an static compilation can be done by
[root@localhost src]# make static_bpcmd

A complete executable '‘bpcmd' can be found under ./src
We list the complete usage of bpcmd in the following

[SYNOPSIS]
bpcmd <software info command> . -v/-h
bpcmd -i <interface> <command> . -V/-1/-H

bpcmd -i <interface> <command> [option]

bpcmd -i <interface> -s norm / non / read

bpcmd -i <interface> -t read / cl

bpcmd -i <interface> -w 0 / SEC, where SEC is a positive integer.
bpcmd -i <interface> -W SEC

[Comand Description]

-h shows a help message

-v show software version

-i specify network interface relative to bypass device

-s set/read the bypass device:
[norm] set bypass device to normal mode
[non] set bypass device to non-normal mode
[read] read the status of bypass device

-t clear/read the time-out flah
[c]] clear the time-out flag
[read] read the time-out flag

-w control the WDT timer

4.4 Programming Guild

All the APIs are defined in "mac_sdp_init.h" and "bypass_cmd.h". We describe
all these APIs in the following context.

4.4.1 Initialize and release function

The initializing and releasing function are defined in "mac_sdp_init.h".
When we try to control a bypass device, we have to initialize a variable of
structure bp_seg. After all the work done, we have to release the resource
of bp_seg (like semaphore).

Function |init_seg

name

Description|Initial the structure bp_seg. The bp_seg structure is
recorded all required data to control a bypass device

and all bypass APIs need this object.

Format:

intinit_seg (bp_seg* seqg, char const* iface_name, const unsigned

char period_time)

Input: seg — the pointer to the structure bp_seg to be initialized
iface_name — the interface name of network device
period_time — the timeout value for WDT

Return:

O: If the initialization is successful

Function |release_seg

name

Description|This function is used to release resource of a bp_seg

Format:

void release_seg(bp_seg* segQ)

Input: seg — the pointer to the structure bp_seg to be released

442 Command APIs

All the APIs that control bypass device are define in "bypass_cmd.h”. All of
name require a initialized bp_seg. We list them as the follows/.

Function |set _bp_normal

name

Description|Set the bypass device of seg to normal mode.

Format:

void set_bp_normal(bp_seg* seq)

Input: seg — the pointer to the structure bp_seg to be controlled

Function |set _bp_normal

name

Description|Set the bypass device of seg to normal mode.

Format:

void set_bp_normal(bp_seg* seq)

Input: seg — the pointer to the structure bp_seg to be controlled

Function |set_bp_nonormal

name

Description|Set the bypass device of seg to non-normal mode.

Format:

void set_bp_nonormal (bp_seg* seq)

Input: seg — the pointer to the structure bp_seg to be controlled

Function |read_bp

name

Description|Read the status of the bypass device of seg.

Format:

void set_bp_nonormal (bp_seg* seq)

Input: seg — the pointer to the structure bp_seg to be read

Function |stop_wdt

name

Description|Stop the WDT timer.

Format:

void stop_wdt (bp_seg* seq)

Input: seg — the pointer to the structure bp_seg to be controlled

Function |set_period

name

Description|Set the WDT timer with the period value seg->period.

Format:

int set_period (bp_seg* seq)

Input: seg — the pointer to the structure bp_seg to be controlled
Return:

-EINVAL: when the value of seg->period is invalid.

0: when the value of seg->period is valid.

Function |trigger_wdt

name

Description|Trigger the WDT with previous value.
Note this function only issue command to hardware,

and does not check the correctness of the period

value. Make sure set_period is called at least once.

Format:

void trigger_wdt (bp_seg* seq)

Input: seg — the pointer to the structure bp_seg to be controlled

Function |read_timeout_bit

name

Description|Read the time-out flag

Format:

int read_timeout_bit (bp_seg* seq)
Input: seg — the pointer to the structure bp_seg to be controlled
Return:

0: the WDT never time out.

1: the WDT has timed out at least once.

Function |clean_timeout_bit

name

Description|Clear the timeout flag to 0

Format:

void clean_timeout_bit(bp_seg* seq)

Input: seg — the pointer to the structure bp_seg to be controlled

Function |read_firmware_ver

name

Description|Read the firmware version

Format:

unsigned char read_firmware_ver (bp_seg* seg)
Input: seg — the pointer to the structure bp_seg to be controlled
Return:

0: invalid firmware version. The firmware does not support
this function.

1-254: the firmware version

4.4.3 Note for Programming

1. Avoid terminating signal

Since these APIs are relative to hardware access, abnormal terminating
above functions may cause some serious error. Do not send SIGKILL and
SIGSTOP to the process issuing command to bypass device if not
necessary.

2. Semaphore Lock

When the process is terminated abnormally, the semaphore to avoid
concurrent access of hardware may not be unlocked. If this happens, the
system may hang when any other bypass command is issue. Try to
remove all the files under /dev/shm with prefix 'sem. Bypass-' and send
SIGKILL signal to all the processes which hangs when issuing command
to bypass device.

