

NIC-51240
Quad Copper Gigabit Ethernet

PCI-E Bypass Adapter

User’s Manual
Revision: 1.2

Table of Contents

1. GENERAL INTRODUCTION …..2

1.1 INTRODUCTION ...3

1.2 PRODUCT PACKING LIST..3

1.3 FEATURES..4

1.4 SPECIFICATIONS ...4

1.5 BLOCK DIAGRAM ..6

2. HARDWARE INSTALLATION........................... ...7

2.1 JUMPERS ...8

2.2 CONNECTORS ..8

2.3 LOCATING JUMPERS & CONNECTORS ...9

3. ETHERNET INTERFACE...10

3.1 ETHERNET DRIVER SUPPORT .. 11

3.2 INSTALLATION OF ETHERNET DRIVER ON WINDOWS XP 11

3.3 INSTALLATION OF ETHERNET DRIVER ON LINUX15

4. PROGRAMMING BYPASS.............................. ..16

4.1 INTRODUCTION ...17

4.2 COMPILATION ...17

4.3 BYPASS UTILITY ...20

4.4 PROGRAMMING GUILD ..22

General Introduction

1.1 Introduction

The NIC-51240 is PCI Express x4 interface cards, contains four

independent Gigabit Ethernet ports. To enhance Ethernet controller

performance, it is designed with one Intel® 82580EB Gigabit Ethernet

Controller to provide four Gigabit Ethernet ports.

1.2 Product Packing List

Before beginning installing, please make sure the following items have

been included in the box.

1. NIC-51240 quad copper Gigabit Ethernet PCI-E bypass adapter

2. Quick Installation Guide

If any of these items is missing or damaged, contact you local dealer from

whom you purchased the product.

1.3 Features

�� Quad copper PCI-E Gigabit Ethernet ports via Intel® 82580EB

controller

�� Built-in Watchdog Timer (WDT) to bypass Ethernet ports on a host

system hang or power failure

�� Easy configuration of Normal/Bypass model and WDT timer

�� Built with both onboard LED indicators and LED pin-out for LAN status

and bypass mode, provides variable LED location for system

integration

1.4 Specifications

Technical Specifications:

� Standard: IEEE 802.3z 1000BASE-SX Gigabit Standard; IEEE 802.3x

Flow Control

� Interface: PCI-Express base specification Rev. 1.1

� PCI-Express Bus Type : x4

� Installbale PCI Slot : PCI Express x4/x8/x16

� Controller: Intel® 82580EB

� Holder: Metal bracket for both full height PCI-E x4 slots (metal bracket in

low profile is optional)

� Driver Support: Windows, Linux, FreeBSD & VMware, from

http://downloadcenter.intel.com/

� Bypass API Sample code: Linux Stable kernel version 2.6

Mechanical and Environmental:

�� Board Size: 110 (W) x 100.7 (L) mm

�� Power Consumption: 4.1W

�� Operating Temperature: 0 to 60 ℃ (32 to 140℉)

�� Operating Storage: -20 to 80 ℃ (-68 to 176℉)

�� Operating Humidity: 5% to 90% RH(non-condensing)

�� Weight: 77.7g

1.5 Block Diagram

Universal PCI-E x4 Golden Finger

 PCI-E x4

 OR OR

 Normal Mode

 Bypass Mode

Figure 1.5: NIC-51240 Block Diagram

Intel®

82580EB

Hardware Installation

2.1 Jumpers

Label Function

JP2 Bypass Function and Bypass Function Boot-up Setting for

LAN1 / LAN2 (Segment 1)

JP1 Bypass Function and Bypass Function Boot-up Setting for

LAN3 / LAN4 (Segment 2)

Bypass Function Boot-up Setting (JP1 / JP2)

Setting Function

1-3(default) Active Bypass Function

3-5 Inactive Bypass Function

2-4 Enable Bypass Function before OS boot-up

4-6(default) Disable Bypass Function before OS boot-up

Note: To active this function, jumper should be set on Bypass mode

2.2 Connectors

Label Function

J2 LAN1 and LAN2 Connector

J3 LAN3 and LAN4 Connector

2.3 Locating Jumpers & Connectors

Figure 2.3.1: Jumper & Connector (component side)

Ethernet Interface

3.1 Ethernet Driver Support

The Ethernet drivers are supported under Windows, Linux, FreeBSD & VMware.

For other supported drivers, please contact your distributors or sales

representative, or refer to Intel http://downloadcenter.intel.com.

3.2 Installation of Ethernet Driver on Windows XP

The following steps are manual installation for Windows XP

Step 1 Download the latest Intel 82580EB driver at

http://downloadcenter.intel.com. If your operating system is 32 Bit,

download and execute PROwin32.exe; If your operating system is 64

Bit, download and execute PROwinx64.exe

Step 2 Click “Next” to start installation

Step 3 Check the agreement box and click “Next”

Step 4 Select “Default” and press ”Next” to continue

Step 5 Driver installing

Step 6 Click “Finish” to complete the installation

Step 7 Confirm installation successful in Control center > Hardware > device

management

3.3 Installation of Ethernet Driver on Linux

Most of the kernels contain the driver for NIC-51240, and these OS will

automatically install the new hardware when booting up. If this doesn’t

happen, please follow the step to install.

Step 1 Download the latest Intel 82580EB driver at

http://downloadcenter.intel.com

Step 2 Run “ tar zxvf igb-x.x.x.tar.gz “ to extract

EX: #tar zxvf igb-x.x.x.tar.gz

Step 3 Change to the driver src directory: cd igb-x-x-x/src, and Enter ”make

install” to compile

EX: #cd igb-x-x-x/src

 #make install

Step 4 Run “ifconfig -a” to ensure the installation successful

EX: #ifconfig -a

Programming Bypass

4.1 Introduction

The ‘bypass utility’ provides a user space tool ‘bpcmd’ for user to control

bypass device and several API functions for programming. We describe the

usage in the following section.

4.2 Compilation

This program has been tested under Fedora core 8 /12 and Red Hat

Enterprise 5.4 with gcc version 4.1.2 20070925 (Red Hat 4.1.2-33) ,version

4.4.2 20091027 (Red Hat 4.4.2-7) and version 4.1.2 20080704 (Red Hat

4.1.2-46) (GCC)

All the makefiles are tested with GNU Make 3.81.

4.2.1 Uncompress the package

The user can uncompress the package according to the following command

Step 1: make a directory to place the source code

Ex/

[user1@host work]$ mkdir bypass

[user1@host work]$ cd bypass

Step 2: Copy the source code to the directory

Ex/

[user1@host work]$cp /mnt/sdb1 .

Step 3: Uncompress the source code

[user1@host work]$ unzip util_bypass-mac-sdp-x.x.x.zip

After uncompression, we can see two directories and several files

./src：All the source codes of bypass API and bpcmd are placed here

./sample：Several sample code developed by API functions can be found

here

README：This file provide description for APIs and bpcmd

SUPPORT_LIST：This file provide the NIC card supported by this package

make_all.sh：A shell script that can help to compile all the source code

4.2.2 ./src

The targets of the Makefile are list in as the follows：

libso: Compile the bypass shared liberary and its soft link. The output file

should be libbp_macspd.so.XXXX and a soft link libbp_macspd.so.

 static_bpcmd: compile the utility 'bpcmd' statically.

 all : compile the bypass shared liberary and its soft link.

 'bpcmd' is compiled dynamically.

 Note this is the first target in the Makefile.

 clean: remove all the output files

4.2.2 ./sample

The targets of the Makefile are list in as the follows：

 all: compile all the sample codes dynamically

 clean: remove all the output files

4.2.3 compile.sh

 Execute this script is equivalent to run ‘make clean’ and ‘make’ under ./src

and ./sample

4.2.4 Dynamically compiling the source code and sam ple code

When we execute the executable which is compiled dynamically, the

shared library has to set up properly. For example, after compilation

 [user1@host src]$ cp –ar libbp_macsdp.so* /lib

 [user1@host src]$ldconfig

4.3 Bypass Utility

The program 'bpcmd' is a sample utility written by these APIs. Users can use

this utility to test and control bypass device. This program can be compiled

in ./src by

 [user1@host work]$ make

It will generate an executable which dynamically links libbp_macsdp.so in run

time.

 Moreover, an static compilation can be done by

 [root@localhost src]# make static_bpcmd

A complete executable 'bpcmd' can be found under ./src

We list the complete usage of bpcmd in the following

[SYNOPSIS]

 bpcmd <software info command> : -v/-h

 bpcmd -i <interface> <command> : -V/-I/-H

 bpcmd -i <interface> <command> [option]

 bpcmd -i <interface> -s norm / non / read

 bpcmd -i <interface> -t read / cl

 bpcmd -i <interface> -w 0 / SEC, where SEC is a positive integer.

 bpcmd -i <interface> -W SEC

[Comand Description]

 -h shows a help message

 -v show software version

 -i specify network interface relative to bypass device

 -s set/read the bypass device:

 [norm] set bypass device to normal mode

 [non] set bypass device to non-normal mode

 [read] read the status of bypass device

 -t clear/read the time-out flah

 [cl] clear the time-out flag

 [read] read the time-out flag

 -w control the WDT timer

4.4 Programming Guild

All the APIs are defined in "mac_sdp_init.h" and "bypass_cmd.h". We describe

all these APIs in the following context.

4.4.1 Initialize and release function

The initializing and releasing function are defined in "mac_sdp_init.h".

When we try to control a bypass device, we have to initialize a variable of

structure bp_seg. After all the work done, we have to release the resource

of bp_seg (like semaphore).

Function

name

init_seg

Description Initial the structure bp_seg. The bp_seg structure is

recorded all required data to control a bypass device

and all bypass APIs need this object.

Format:

int init_seg (bp_seg* seg, char const* iface_name, const unsigned

char period_time)

Input: seg － the pointer to the structure bp_seg to be initialized

 iface_name － the interface name of network device

 period_time － the timeout value for WDT

Return:

 0: If the initialization is successful

Function

name

release_seg

Description This function is used to release resource of a bp_seg

Format:

void release_seg(bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be released

4.4.2 Command APIs

All the APIs that control bypass device are define in "bypass_cmd.h”. All of

name require a initialized bp_seg. We list them as the follows/.

Function

name

set_bp_normal

Description Set the bypass device of seg to normal mode.

Format:

void set_bp_normal(bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Function

name

set_bp_normal

Description Set the bypass device of seg to normal mode.

Format:

void set_bp_normal(bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Function

name

set_bp_nonormal

Description Set the bypass device of seg to non-normal mode.

Format:

void set_bp_nonormal (bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Function

name

read_bp

Description Read the status of the bypass device of seg.

Format:

void set_bp_nonormal (bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be read

Function

name

stop_wdt

Description Stop the WDT timer.

Format:

void stop_wdt (bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Function

name

set_period

Description Set the WDT timer with the period value seg->period.

Format:

int set_period (bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Return:

-EINVAL: when the value of seg->period is invalid.

0: when the value of seg->period is valid.

Function

name

trigger_wdt

Description Trigger the WDT with previous value.

Note this function only issue command to hardware,

and does not check the correctness of the period

value. Make sure set_period is called at least once.

Format:

void trigger_wdt (bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Function

name

read_timeout_bit

Description Read the time-out flag

Format:

int read_timeout_bit (bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Return:

0: the WDT never time out.

 1: the WDT has timed out at least once.

Function

name

clean_timeout_bit

Description Clear the timeout flag to 0

Format:

void clean_timeout_bit(bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Function

name

read_firmware_ver

Description Read the firmware version

Format:

unsigned char read_firmware_ver (bp_seg* seg)

Input: seg － the pointer to the structure bp_seg to be controlled

Return:

0: invalid firmware version. The firmware does not support

this function.

 1-254: the firmware version

4.4.3 Note for Programming

1. Avoid terminating signal

Since these APIs are relative to hardware access, abnormal terminating

above functions may cause some serious error. Do not send SIGKILL and

SIGSTOP to the process issuing command to bypass device if not

necessary.

2. Semaphore Lock

When the process is terminated abnormally, the semaphore to avoid

concurrent access of hardware may not be unlocked. If this happens, the

system may hang when any other bypass command is issue. Try to

remove all the files under /dev/shm with prefix 'sem. Bypass-' and send

SIGKILL signal to all the processes which hangs when issuing command

to bypass device.

