
ADNK-3061
Optical Mouse Designer’s Kit

Design Guide

Introduction
This design guide describes how a cost-effective combi-
nation USB­‑PS/2 yet feature-rich optical mouse can be
built using the Avago Technologies high performance
ADNS-3060 optical mouse sensor and Cypress Semi-
conductor CY7C63743-PC USB microcontroller. The
document starts with the basic operations of a computer
mouse peripheral followed by an introduction to the
ADNS-3060 optical mouse sensor and CY7C63743-PC
USB microcontroller. A schematic of the ADNS-3060
optical mouse sensor to the CY7C63743-PC USB micro-
controller buttons of a standard mouse is also shown in
this document. The software section of this design guide
describes the architecture of the firmware required to
implement the USB and PS/2 mouse functions.

Optical Mouse Basics
The optical mouse measureschanges in position by
optically acquiring sequential surface images (frames),
and mathematically determining the direction and
magnitude of movement. The Z-wheel movement is
done in the traditional method by decoding the quadra-
ture signal generated by optical encoder. This design
guide shows how to connect to and manage a standard
configuration of mouse hardware, as well as handle
the USB and PS/2 protocols. Each of these protocols
provides a standard way of reporting mouse movement
and button presses to the PC.

Introduction to ADNS-3060 Optical Mouse Sensor
Avago’s ADNS-3060 optical mouse sensor is used in
this reference design as the primary navigation engine.
This Optical Navigation Technology contains an Image
Acquisition System, a Digital Signal Processor, and a
four-wire serial port. The CY7C63743-PC periodically
reads the ADNS-3060’s Delta_X and Delta_Y registers
to obtain any horizontal and vertical motion informa-
tion happening as a result of the mouse being moved.
The four-wire synchronous serial port is used to set
and read parameters in the ADNS-3060, and to read
out the motion, (triangle)x and (triangle)y information.
This motion information is reported to the PC updating
the position of the cursor. The advantages of using the
ADNS-3060 optical sensor are: best tracking accuracy,
sensor programming flexibility via SPI port, and the
automatic frame rate feature (1000fps to 6400fps). Fur-
thermore, the ADNS-3060 sensor has excellent tracking
performance on difficult surfaces such as wood and half-
tone surfaces. Additionally, the Burst mode is another
special serial port operation mode which may be used
to reduce the serial transaction time for three predefined
operations: motion read, SROM download, and frame
capture. Speed improvement is achieved by continuous
data clocking to or from multiple registers during this
operation.

Motion Read is activated by reading the Motion_Burst
register. The ADNS-3060 will respond with the contents
of the Motion, Delta_X, Delta_Y, SQUAL, Shutter_Upper,
Shutter_Lower and Maximum_Pixel registers in that
order. SROM download uses Burst Mode to load the
Avago-supplied firmware file contents into the ADNS-
3060. The firmware file is an ASCII text file with each 2-
character byte (hexadecimal representation) on a single
line. Frame Capture is a fast way to download a full array
of pixel values from a single frame.

To learn more about sensor’s technical information,
please visit the Avago web site at http://www.semicon-
ductor.Avago.com

�

Mouse Optics
The of Z-wheel motion is detected using the traditional
method by decoding the quadrature signal generated
by optical encoder. Two phototransistors are connected
in a sourcefollower configuration. An infrared LED
shines, causing the phototran-sistors to turn on. In
between the phototransistors and LED is a pinwheel
that turns on the mouse ball rollers. The fan of this
pinwheel is mechanically designed to block the infrared
light such that the phototran-sistors are turned on and
off in a quadrature output pattern. Every change in the
phototransistor outputs represents a count of wheel
movement. Comparing the last state of the optics to the
current state derives direction information. As shown
in Figure 1, traveling along the quadrature signal to
the right produces a unique set of state transitions, and
traveling to the left produces another set of unique state
transitions. For a lower power system solution, using a
mechanical z-wheel is recommended instead of a Z LED
and Optical Encoder combination.

Infrared
LED

Photo-
transistors

Q1.1 output

Q1.3 output

Figure 1. Optics Quadrature Signal Generation.

Mouse Buttons
Mouse buttons are connected as standard switches.
These switches are pulled up by the pull up resistors
inside the microcontroller. When the user presses a
button, the switch will be closed and the pin will be
pulled LOW to GND. A LOW state at the pin is interpreted
as the button being pressed. A HIGH state is interpreted
as the button has been released or the button is not
being pressed. Normally the switches are debounced in
firmware for 15–20 ms. In this reference design there are
three switches: left, Z-wheel, and right.

Introduction to the CY7C63743-PC
The CY7C63743-PC is an 8-bit RISC microcontroller with
an integrated USB Serial Interface Engine (SIE). The ar-
chitecture executes general-purpose instructions that
are optimized for USB applications. The CY7C63743-PC
has a built-in clock oscillator and timers, as well as pro-
grammable drive strength, and pull-up resistors on each
I/O line. High performance, low-cost human interface
type computer peripherals can be implemented with a
minimum of external components and firmware effort.

Serial Peripheral Interface (SPI)
The CY7C63743-PC provides a SPI compatible interface.
The SPI circuit supports byte serial transfer in either
Master or Slave mode. The integrated SPI circuit allows
the CY7C63743-PC to communicate with an external
SPI compatible hardware, in this case the ADNS-3060
sensor.

Hardware Implementation
The standard hardware to implement a mouse is shown
in Figure 2. For X and Y movement, the optical mouse
sensor is used. The Z wheel movement is detected by
another set of optical encoder that outputs quadrature
signals. For each button there is a switch that is pulled up
internally by the built-in in pull up resistors. The D-line is
pulled up via a 1.3k ohm resistor connected to the VREG
pin.

Firmware Configurable GPIO
The reference firmware is configured to use the GPIO pins
as shown in the schematic under Appendix A. However, it
may be more optimal to use a different I/O configuration
to meet the mechanical constraints of PCB design. The
reference firmware is designed to be easily configured
to another set of pin connections. This is accomplished
through changes in the I/O definitions at the beginning
of the adns- 3060.asm listing. The following statements
are the pin definitions as they exist today. The firmware
will use these definitions to read and configure the GPIO
pins, without any other modifications.

�

Avago ADNS-3060
optical mouse sensor

Wheel Button

Right Button

Z Optics
Cypress

CY7C63743A-PC
enCoRe

USB Controller

USB/PS2 Interface

MISO

MOSI

SCLK

NCS

D+/D-
SCLK/SDATA

VREG

1.3 k Ohm

Left Button

Z LED

Figure 2. CY7C63743-PC –ADNS-3060 Optical Mouse Hardware Block Diagram.

Communications between the CY7C63743-PC and
the ADNS-3060 are done through the integrated SPI
interface. The serial port cannot be activated while the
chip is in power down mode (NPD low) or reset (RESET
high). When the SPI is enabled thru P0.4 (NCS), P0.7
(SCLK), P0.6 (MISO), and P0.5 (MOSI) GPIO pins serve as
special functions enabling the SPI interface to talk with
the external hardware. (Sensor) During normal operation,
the CY7C63743-PC SPI is always configured as a Master
to output the serial clock on P0.7. So, the USB microcon-
troller always initiates communication. Data sent by the
ADNS-3060 optical sensor is received on the P0.6 (MISO),
and data is shifted out to the same sensor through P0.5
(MOSI). See schematic in Appendix A. When writing to
the ADNS-3060, the microcontroller drives both SCLK
and MOSI lines. When reading from the ADNS-3060, the
microcontroller drives both SCLK and MOSI lines initially.
After tSRAD delay, the ADNS-3060 will drive the data via
MISO. The microcontroller is only driving the SCLK line (
for the serial interface).

USB and PS/2 Connection
The CY7C63743-PC has a configuration register that
switches control from the SIE to manual control on the
D+ and D- pins. This allows the firmware to dynami-
cally configure itself to operate as a USB or PS/2 mouse,
allowing signal lines to be shared without using extra

GPIO pins for PS/2 operation. The firmware for this
reference design will automatically detect the host
topology (USB or PS/2) at plug-in, and will configure
itself for operation on that bus. If a USB host connection
is detected, the firmware will enable the VREG pin, such
that the 1.3k ohm resistor connected to the D- line, can
be pulled up to 3.3V. Through this action, the host is able
to recognize there is a lowspeed USB peripheral attached.
These connections are shown in Figure 3 below.

ADNK-3061 Designer’s Kit - Optical Mouse
The ADNK-3061 optical mouse unit allows users to
evaluate the performance of the Avago’s Optical Tracking
Engine (sensor, lens, LED assembly clip, LED) over both
a USB or PS/2 connection, using a Cypress enCoRe USB
Controller. This kit also enables users to understand the
recommended mechanical assembly. (See Appendices
C, D, and E).

System Requirements
PCs using Windows® 95/ Windows® 98/ Windows® NT/
Windows® 2000 with PS/2 port and standard 3-button
USB mouse driver loaded.

Functionality
3-button, scroll wheel combi-mouse.

�

Figure 3. USB and PS/2 peripheral connectors.

Figure 4. Exploded view drawing of optical tracking engine with ADNS-3060 optical mouse sensor.

Sensor

Lens

Object Surface

2.40 mm
(0.094 in)

Figure 5. Distance from lens reference plane to surface

USB type-A connector

Operating (For PS/2 Mode)
Step 1: Turn off the PC.

Step 2: Plug the mouse unit’s PS/2 connector into the
PC’s PS/2 port.

Step 3: Turn on the PC. All of the mouse buttons and scroll
wheel will function exactly like a standard PS/2 mouse.

Operating (For USB Mode)
Hot pluggable with USB port. The PC does not need to
be powered off when plugging or unplugging the evalu-
ation mouse.

To Disassemble the ADNK-3061 Unit
The ADNK-3061 comprises of the plastic mouse casing,
printed circuit board (PCB), lens, buttons, and USB cable.
(See Figure 4.) Unscrewing the one screw located at the
base of the unit can open the ADNK-3061 unit. Lifting
and pulling the PCB out of the base plate can further dis-
assemble the mouse unit.

While reassembling the components, please make sure
that the Z height (Distance from lens reference plane to
surface) is valid. Refer to Figure 5.

Enabling the SROM
The ADNS-3060 must operate from the externally loaded
programming. This architecture enables immediate
adoption of new features and improved performance al-
gorithms. The external program is supplied by Avago as
a file which may be burned into a programmable device.
A microcontroller with sufficient memory may be used.
On power-up and reset, the ADNS-3060 program is
downloaded into volatile memory using the burst-mode
procedure described in the Synchronous Serial Port
section. The program size is 1986 x 8 bits.

For more information, please refer to the ADNS-3060
datasheet.

�

Regulatory Requirements
•	 Passes FCC B and worldwide analogous emission

limits when assembled into a mouse with shielded
cable and following Avago recommendations.

•	 Passes IEC-1000-4-3 radiated susceptibility level when
assembled into a mouse with shielded cable and
following Avago recommendations.

•	 Passes EN61000-4-4/IEC801-4 EFT tests when
assembled into a mouse with shielded cable and
following Avago recommendations.

•	 UL flammability level UL94 V-0.

•	 Provides sufficient ESD creepage/clearance distance
to avoid discharge up to 15kV when assembled into a
mouse according to usage instructions above.

Below is the summary of the components contained in
the ADNK-3061 Designer’s Kit.

Sensor
The sensor technical information is contained in the
ADNS-3060 Data Sheet.

USB Controller
Technical information on the Cypress encore USB con-
troller is contained in the CY7C63743-PC Data Sheet.
The enclosed ADNK-3061 CD-ROM contains the devel-
opment tools for the CY7C63743-PC. These tools will
allow the designer to make changes and recompile the
source code. To perform In-Circuit Emulation for easier
debugging of new code development, contact Cypress to
purchase the CY3654 Development Kit and the CY3654-
P05 Personality Board. Programming support and pro-
grammer adaptors for the Cypress CY7C63743-PC can
be found through Cypress (CY3649-xxxV + CY3083-SC28
+ CY3083-08) or through most 3rd party programming
companies.

Lens
The lens technical information is contained in the ADNS-
2120 Data Sheet. The flange on the standard ADNS-2120
lens is for ESD protection.

LED Assembly Clip
The information on the assembly clip is contained in the
ADNS‑2220 Data Sheet.

LED
The LED technical information is contained in the HLMP-
ED80-XX000 Data Sheet.

Base Plate Feature – IGES File
The IGES file on the CD-ROM provides recommended
base plate molding features to ensure optical alignment.
This includes PCB assembly diagrams like solder fixture
in assembly and exploded view, as well as solder plate.
See Appendix D for details.

Reference Design Documentation – Gerber File
The Gerber File presents detailed schematics used in
ADNK-3061 in PCB layout form. See Appendix C for more
details.

Overall circuit
A schematic of the overall circuit is shown in Appendix A
of this document. Appendix B lists the bill of materials.

Firmware Implementation
The firmware for this reference design is written in the
Cypress assembly language. The following files are
required to compile the mouse firmware 637xx.inc – the
CY7C63743-PC I/O registers definition.

adns-3060.asm – main mouse firmware

macros.inc – general macros used with this design

ps2.inc – PS/2 interface constants

usb.inc – USB interface constants

adns-3060_srom_12.inc – SROM firmware

At power up, the firmware examines the host interface
and automatically determines if the mouse is plugged
into a USB or a PS/2 host connection. After the interface
type has been determined, the host firmware configures
itself to operate on the detected interface.

USB Interface
All USB Human Interface Device (HID) class applications
follow the same USB start-up procedure. The procedure
is as follows:

1. Device Plug-in
When a USB device is first connected to the bus, it is
powered and running firmware, but communications on
the USB remain non-functional until the host has issued
a USB bus reset.

2. Bus Reset
The pull-up resistor on D– notifies the hub that a low
speed (1.5 Mbps) device has just been connected. The
host recognizes the presence of a new USB device and
initiates a bus reset to that device.

�

3. Enumeration
The host initiates SETUP transactions that reveal general
and device specific information about the mouse. When
the description is received, the host assigns a new and
unique USB address to the mouse. The mouse begins
to respond, communicating with the newly assigned
address, while the host continues to ask for information
such as the device description, configuration description
and HID report description. Using the returned informa-
tion from the mouse, the host now knows the number
of data endpoints supported by the mouse (2). At this
point, the process of enumeration is completed.
Notes:
1. 	 idVendor should be changed to the value as supplied by the USB-

IF
2. 	 idProduct should be assigned for specific product.
3. 	 MaxPower value should be changed as per specific circuit’s current

draw.

4. Post Enumeration Operation
Once communication between the host and mouse is
established, the mouse now has the task of sending and
receiving data on the control and data endpoints. In this
case, when the host configures endpoint 1, the mouse
starts to transmit button and motion data back to the
host when there is data to send. At any time, the periph-
eral may be reset or reconfigured by the host.

USB Requests – Endpoint 0
Endpoint 0 acts as the control endpoint for the host.
On power-up, endpoint 0 is the default communication
channel for all USB devices. The host initiates Control-
Read and Control-Write (see Chapter 8 of the USB speci-
fication) to determine the device type, as well as how
to configure communications with the device. In this
particular design, only Control-Read transactions are
required to enumerate a mouse. For a list of valid requests
see Chapter 9 of the USBG specification. In addition to
the standard “Chapter 9” requests, a mouse must also
support all valid HID class requests for a mouse.

USB Requests – Endpoint 1
Endpoint 1 is the data transfer communications channel
for mouse button, wheel, and movement information.
Requests to this endpoint are not recognized until
the host configures endpoint 1. Once this endpoint is
enabled, then interrupt IN requests are sent from the
host to the mouse to gather mouse data. When the
mouse is left idle (i.e. no movement, no new button click,
no wheel movement) the firmware will NAK requests
to this endpoint. Data is only reported when there is a
status change within the mouse. Two HID report formats
are used in this design. The boot protocol, as defined by
the HID specification, is the default report protocol that
all USB enabled systems understands. The boot protocol
has a three-byte format, and does not report wheel in-
formation. The HID report descriptor defines the report
protocol format. This format is four bytes and is the same

as the report format with the exception of the fourth
byte, which is the wheel information. Appendix F of this
document lists the USB Data Reporting Format.

PS/2 Interface
The host driver determines the PS/2 mouse start up
sequence. However, to enable all PS/2 mice, a few
standard commands must be sent. must be sent in order
to enable all PS/2 mice. The mouse is the clock master on
this bus. The host must request the mouse to clock data
into itself.

1. Device Plug-in
When a PS/2 mouse is first connected to the bus, it is
powered and is running the system’s firmware. PS/2
communications generally begin with the host sending
a RESET command to the mouse. The mouse will not
report button, wheel, or movement back to the host until
the ENABLE command is sent. The start-up sequence
is dependant on the operating system the mouse is
hooked up to.

2. Device Configuration
During this time the host will set the standard PS/2 pa-
rameters such as scaling, resolution, stream mode;
enabling stream mode for data reports. For a list of valid
PS/2 commands the mouse recognizes, see Appendix G.

3. Wheel Enable (optional)
Since the wheel is not part of the standard PS/2 specifi-
cation, there is a sequence of commands that enable the
wheel. Wheel-aware drivers, such as those for Microsoft
and Linux operating systems will initiate this special
sequence.

After the following sequence of commands, the wheel
report format is enabled.

0xF3, 0xC8 Set Sampling Rate 200 per second

0xF3, 0x64 Set Sampling Rate 100 per second

0xF3, 0x32 Set Sampling Rate 50 per second

0xF2, 0x03 Read Device Type returns a value of 0x03

After the Read Device Type command returns 0x03,
indicating this is a Microsoft compatible three button
wheel mouse, the wheel report format is enabled. See
Appendix G for information on PS/2 standard and wheel
reporting formats.

4. Post Start Up Operation
After the streaming mode is set and data reports are
enabled, the mouse will send button, movement, and
optionally, wheel reports back to the host. Whenever the
mouse has new data to send it will initiate a transfer to
the host.

�

Figure 6. USB Operation Function Call Map.

DualMain

GetMouseType

USB Main PS2 Interface

System
Initialization

USB Initialization

USBTaskLoop

ProcessButtons

ProcessOptics

ReadMotionReg

ReadDeltaX

ReadDeltaY

Read Z WheelLoad new mouse
packet to EP1

buffer & enable
EP1

Load SROM

USB Firmware Description
A function call map for USB operation is shown in Figure 6. Following are descriptions of the functions in adns-3060.
asm.

�

Dual USB and PS2 Functions
GetMouseType – called in dualMain when the mouse is first
plugged into the PC. This routine returns the interface of
the mouse. The following sequences are performed by
the micro-controller to determine the mouse type.

•	 Delay 50mS.

•	 Initialize the PS2 BAT delay counter.

•	 For a period of 2ms, poll the SCLK and SDATA lines
every 10µs. If we get 4 samples in a row with non-
zero data on either line, detect a PS2 interface. If 2mS
expires, enable the USB pull up resistor and delay
500µS.

•	 Poll the SCLK and SDATA lines indefinitely until a non-
zero condition exists on either line. During this polling
period, we begin to count down the PS2 BAT delay.

•	 If SCLK(D+) is sampled high, detect a PS2 interface.
If SDATA(D-) sampled high, disable the USB connect
resistor and Delay 100µS.

•	 If D+ and D- are both 0, detect a USB interface, else
detect a PS2 interface.

SPIInit – This routine is called in the try_download to enable
the SPI interface. The CY7C63743-PC is always configured
as a Master to drive the serial clock on P0.7. The clock is
set to HIGH in idle state, and the SCLK frequency is set to
send a bit rate of 1Mbit/s.

SensorReset – This routine resets the serial interface and
the ADND-3060 internal registers by generating a pulse
on the RESET pin.

LoadSROM – called in try_download after the initialization
of the SPI interface. This routine is used to load the SROM
(Shadow ROM) firmware into the ADNS-3060 optical
sensor. It should be called after SensorReset.

ProcessButtons – This routine is called within the infinite
loop of usbTaskLoop and ps2TaskLoop. The state of the
buttons is updated every one ms in the Dual1msTimer
Interrupt Service Routine (ISR). This routine compares
the current state of the buttons with their last state to
detect any changes in the status. If the status of these
buttons remains until the expiration of debounce timer
(15ms), the new button state is confirmed. This routine
will record the new button state in the [buttonValue]
variable which will be reported to the host in the main
loop.

ReadProcessOptics – This routine returns any updates in the
X, Y and Z-wheel motion information. The motion of the
Z‑wheel is detected using the traditional method by
decoding the quadrature signal generated by the pho-
totransistors. The X and Y directions of the movement
are obtained by calling the ReadDeltaX and ReadDeltaY
routines. The X, Y, and Z-wheel movement is stored in the
[xCount], [yCount], and [zCount] variables which will be
sent to the host in the main routine.

ReadMotionReg – Reads the ADNS-3060 Motion register.
The data returned from this register will be used to
determine if any motion has occurred or if any fault
condition exists.

ReadDeltaX – Reads the ADNS‑3060 Delta_X register for the
X movement. Calls the ReadSPI routine to enable the SPI
interface and perform reading operations through the
four-wire serial interface. Any new X motion information
is added to the [xCount] variable.

ReadDeltaY – Reads the ADNS‑3060 Delta_Y register for
the Y movement. Calls the ReadSPI routine to enable the
SPI interface and perform reading operations through
the four-wire serial interface. Any new Y motion informa-
tion is added to the [yCount] variable.

WriteSPI – Writes to the ADNS‑3060 register. A write
operation consists of two bytes. The first byte contains
the address (7 bits) and has “1” as its MSB. The second
byte contains data. The microcontroller to drive both
the SCLK and the MOSI lines. SPIWriteRoutine is called to
carry the write operation.

ReadSPI – Reads the desired ADNS-3060 registers. A read
operation is composed of two parts. First, the microcon-
troller performs a write to the ADNS-3060, sending the
address of the target register to be read. The microcon-
troller drives both the SCLK and MOSI lines. After tSRAD
delay, the ADNS-3060 will drive the data via MISO. The
microcontroller is only driving the SCLK line (outputs
SCLK for the serial interface). SPIWriteRoutine is called to
carry the write operation.

SPIWriteRoutine – Writes the data to be transmitted onto
the SPI pins.

CheckProductID – This function checks the product ID of the
sensor chip being used. The ID returned should match
with the ADNS-3060’s ID.

GetButtons – Returns the current state of the buttons.

�

USB Functions
usbMain – This routine initializes the USB related parame-
ters and enables VREG to signal the host that the mouse
has been connected. The program then goes to the us-
bTaskLoop .

usbTaskLoop – This function spins in an infinite loop waiting
for an event that needs servicing. The ProcessButtons and
ReadProcessOptics functions are called within this loop
to retrieve any new motion or button information. The
data received from these functions will be loaded into
the endpoint 1 buffer to be sent to the host.

ep0SetupReceived – This routine is entered whenever a
SETUP packet is received on endpoint 0. It parses the
packet and calls the appropriate routine to handle the
packet.

ep0InReceived – This routine is entered whenever an IN
packet is received on endpoint 0.

ep0OutReceived – This routine is entered whenever an OUT
packet is received on endpoint 0.

setDeviceConfiguration – This routine is entered when a SET
CONFIGURATION request has been received from the
host.

setDeviceAddress – This routine is entered whenever a SET
ADDRESS request has been received. The device address
change cannot take place until after the status stage of
this no-data control transaction. So the address is saved
and a flag is set to indicate that a new address was just
received. The code that handles IN transactions will
recognize this and set the address properly.

getDescriptor – This routine is entered when a GET DE-
SCRIPTOR request is received from the host. This function
decodes the descriptor request and sends the proper
descriptor.

setInterfaceIdle – This routine is entered whenever a SET
IDLE request is received. See the HID specification for
the rules on setting idle periods. This function sets the
HID idle time. See the HID documentation for details on
handling the idle timer.

setInterfaceProtocol – This routine is entered whenever a
SET PROTOCOL request is received. This no-data control
transaction enables boot or report protocol.

getInterfaceReport – This routine is entered whenever a GET
REPORT request is received.

getInterfaceIdle – This routine is entered whenever a GET
IDLE request is received. This function then initiates a
control-read transaction that returns the idle time. See
the HID class documentation for more details.

getInterfaceProtocol – This routine is entered whenever a
GET PROTOCOL request is received. This request initiates
a control-read transaction that tells the host if the mouse
is configured for boot or report protocol. See the HID
class documentation for more details.

getDeviceConfiguration – This routine is entered whenever a
GET CONFIGURATION Request is received. This function
then starts a control read transaction that sends the con-
figuration, interface, endpoint, and HID descriptors to
the host.

requestNotSupported – Unsupported or invalid descriptor
requests will cause this firmware to STALL these transac-
tions.

10

Figure 7. PS/2 Operation Function Call Map.

ps2Main

PS2 Initialization

ps2TaskLoop

PS2BAT

SetDefault

ps2SendNextByte ProcessOptics PS2DoCommand ProcessButtons GetHostByte LoadMousePacket

HostRequestToSend

PS2Receive

GetBit

send0

ReadMotionReg PS2SendResponseByte

PS2Send

Send_1

Send_0

ResetInterval

PS2SetScaling

SetWrapMode

SetDefault

PS2StatusRequest

SetRemoteMode

CheckWheel

Resend

PS2SetStreamMode

ReadDeviceType

Reset

Enable

ResetWrapMode

Disable

PS2ResetScaling

ReadDeltaX

ReadDeltaY

Read Z Wheel

HostRequestToSend

PS2HostINhibit

PS2Send

Send_1

Send_0

PS/2 Firmware Description
A function call map for PS/2 operation is shown in Figure 7. The following are descriptions of the functions in Adns-
3060.asm

11

PS/2 Functions
PS2Main – Initializes the PS/2 related parameter to their default
state, enables the serial interface and sends a BAT code (AAh
followed by 00h) to the host. After the initialization, the
program goes into the infinite PS2TaskLoop loop.

PS2TaskLoop – This function spins in an infinite loop waiting for
an event that needs servicing. The ProcessButtons and Read-
ProcessOptics functions are called within this loop to retrieve
any new motion or button information. The data received
from these functions will be loaded into the endpoint 1
buffer to be sent to the host.

PS2BAT – delays for 500 milliseconds, then sends the AAh
followed by 00h initialization string to the host for the PS/2
Basic Assurance Test.

PS2SendResponseByte – Sends a response byte (ACK, ERROR,
RESEND) to the host.

PS2Send – This routine sends a byte to the host according to
the standard PS/2 protocol. This routine calls send_0 and
send_1 routines that shift the bits out serially over the PS/2
interface.

PS2Receive – This routine receives a byte from the host according
to the standard PS/2 protocol. This routine calls the GetBit
function to clocks each bit in.

PS2Resend – A copy of the last transmission is always left intact
in the message buffer. To re-send it, this routine simply resets
the message length.

PS2SetDefault – This routine is called in response to a SET
DEFAULT command from the host. It then sets the mouse
parameters to the default settings.

PS2DisableMouse – Disables the mouse.

PS2EnableMouse – Enables the mouse.

PS2SetSampleRate – This routine is called in response to a SET
SAMPLE RATE command from the host. It then verifies that
the requested sample rate is valid and sets the sample rate
for the mouse. Valid sample rates are defined in the PS/2
Mouse specification.

PS2ReadDeviceType – This routine is called in response to a READ
DEVICE TYPE request from the host. This mouse always sends
a 0x00 in response to this request.

PS2SetRemoteMode – This routine is called in response to a SET
REMOTE MODE command from the host. The PS/2 mode is
then set to remote mode.

PS2SetWrapMode – This routine is called in response to a SET
WRAP MODE command from the host. It then sets the
mouse mode to wrap mode. See the PS/2 specification for
more details on wrap mode.

PS2ResetWrapMode - This routine is called in response to a RESET
WRAP MODE command from the host. The mode is then
reset to the previous mode. According to the IBM PS/2 speci-

fication, if stream mode is enabled, the mouse is disabled
when the wrap mode is reset.

PS2ReadData – This routine is called in response to a READ DATA
command from the host. This routine then sends a mouse
packet in response to the command.

PS2SetStreamMode – This routine is called in response to a SET
STREAM MODE command from the host. Stream mode is
then enabled. See the PS/2 specification for more informa-
tion about stream mode.

PS2StatusRequest – This routine is called in response to a STATUS
REQUEST command from the host. A three byte report is sent
to the host in response to this request. See the PS/2 mouse
specification for more details.

PS2SetResolution – This routine is called in response to a SET
RESOLUTION command from the host. Set Resolution is a
two byte command; the 2nd byte being the resolution itself.
This routine is called after reception of the first byte, and so
does nothing by itself.

PS2SetScaling – This routine is called in response to a SET
SCALING command from the host. Scaling then changes to
2:1.

PS2ResetScaling – This routine is called in response to a RESET
SCALING command from the host. The scaling is then reset
back to 1:1.

PS2GetHostByte(void) – This routine checks to see if the host is
requesting to send data, and if so, it clocks in a data byte from
the host. The function returns the received byte in the accu-
mulator and implicitly clears the carry to 0 if the reception
occurred without errors.

PS2DoCommand – This routine dispatches the received PS/2
command byte to the proper handler.

LoadMousePacket – This routine formats a mouse packet
according to the PS/2 Mouse specification and loads it to the
buffer.

PS2SendNextByte – This routine sends the next byte in buffer to
the host.

ResetMouseReportInterval – This routine resets the mouse report
interval to the value last sent by the host. The report interval
is counted down in the main loop to provide a time base for
sending mouse data packets.

CheckWheel – This function checks whether the proper
sequence of commands have been issued by the host to
enable the wheel of the mouse. The sequence is three con-
secutive setting rate commands of 200, 100 and 80 reports
per second.

send_1 – sends a PS/2 1 bit

send_0 – sends a PS/2 0 bit

GetBit – receives a PS/2 bit from the host

12

Interrupt Service Routines (ISR)
The CY7C63743-PC features 12 different sources of inter-
rupts. There are only four ISRs implemented in this appli-
cation. If an interrupt is enabled and the conditions for
the interrupts are met, the microcontroller will generate
an interrupt. Upon servicing the interrupt, the hardware
will first disable all interrupts by clearing the Global
Interrupt Enable bit. This is followed by an automatic
CALL instruction to the ROM address of the interrupt
being serviced in the Interrupt Vector. The instruction in
the Interrupt Vector is typically a JMP instruction to the
Interrupt Service Routine (ISR). A RETI or RET instruction
at the end of the ISR brings the program counter (PC)
back to the location prior to the interrupt (POR and USB
Bus Reset are exceptions).

DualMain – When power is first applied to the CY7C63743-
PC, a Power On Reset (POR) occurs; the microcontroller
starts executing code from address 0x00. This is a JMP
instruction to the DualMain routine. This routine initial-
izes the program stack pointer (PSP), data stack pointer
(DSP), ram variables, and the GPIO pins. This routine calls
GetMouseType which returns the interface of the mouse.
If a USB interface is detected, the program jumps to
the usbMain loop. Otherwise, the program goes to the
ps2Main loop.

DualUsbBusReset_ps2Error – The USB-PS2 Interrupt Mode bit
in the USB Status and Control Register is defaulted to
“0”, or USB mode. This indicates that the USB Bus Reset
interrupt will be generated if the SE0 condition (D+ and
D- are both LOW) exists for 256us. This ISR enables the
USB Device Address, sets up the endpoint modes and
jumps to usbMain for the USB initialization.

Dual1msTimer – This ISR reads the current status of the
buttons. Therefore, every one millisecond the button
state is updated; the button status information will be
used by the ProcessButtons function at a later time. This
ISR maintains the dualInterface1ms counter variable
which is used as a 1ms timing reference in other parts
of the program. This routine also handles the entrance
or exit from suspend. The mouse will prepare to enter
a suspend (low power) state if there is no bus activity in
3ms. If the mouse is configured for remote wakeup, the
Bus Reset and wakeup interrupts are enabled prior to sus-
pending the chip. The program then enters a suspended
state, and will wake at least as often as the wakeup timer
interrupts or as a result of the USB Bus Reset interrupt.
Each time the chip wakes up due to the wake up timer
interrupt, the state of the buttons is examined by the
GetButtons function. If a change in the button state has
occurred, the mouse will generate a resume signal to
the host and exit the ISR. If the device is not enabled
for remote wakeup, only the USB bus reset interrupt is
enabled, and the part is suspended. Only a Bus Reset can
wake up the chip. If the resume was due to bus activity,

the firmware returns to the main loop. If the resume was
due to a button press, a K state is driven upstream for 14
milliseconds prior to returning to the main loop. Moving
the mouse will not wake the suspended system.

DualUsbEndpoint0_ps2Error – This ISR is entered upon
receiving an Endpoint 0 interrupt. Endpoint 0 inter-
rupts occur during the Setup, data, and status phases of
a control transfer. This ISR handler jumps to the proper
routine to handle one of these phases.

DualUsbEndpoint1_ps2Error – This ISR is entered upon
receiving an Endpoint 1 interrupt. If the ACK bit is set,
indicating that a mouse packet was just transmitted
to the host successfully, the SIE automatically sets the
endpoint mode to NAK_IN mode, and the data toggle
bit is flipped for the next transaction. The data toggle bit
should never be toggled if the interrupt was a result of a
NAK transaction.

Manufacturer String
A request for the manufacturer string will return the
following string: “Avago Mouse”.

Product String
A request for the product string will return the following
string:

“ADNS-3060 Mouse”.

Configuration String
A request for the configuration string will return the
following string: “HID-Compliant Mouse”.

Endpoint 1 String
A request for the endpoint string will return the following
string:

“Endpoint 1 Interrupt Pipe”.
Notes:
1. 	 The Manufacturer String should be changed to the name of your

company.
2. 	 The Product String should be changed to your product’s name.

13

Figure A1. Circuit-level block diagram for ADNK-3061 designer’s kit optical mouse using the Avago ADNS-3060 optical mouse sensor and Cy-
press CY7C63743-PC enCoRe USB Controller.

AD
NS

-3
06

0

CY
PR

ES
S

CY
7C

63
74

3-
PC

0.1 F
14

10
Vcc

Vpp

9VSS

4.7 F

Ceramic Resonator
Murata CSALS24M0X53-B0
TDK FCR24.0M2G

17

5

 V DD

LED_CTRL

SURFACE

Internal
Image

Sensor

ADNS-2120 Lens
HLMP-ED80

24 MHz

8

10

 OSC_OUT

OSC_IN

15

 GND

0.1 F

24

P0.5

3

P0.4

4

6

MOSI

RESETP0.2

23

1.3 KΩ

16

15
D -

D +

Vreg11

P1.7

P1.5

P1.4
Z LED

17

18

7

Vcc

D +

D -

GND

SHLD

240Ω

6 MHz

1213
XTALINXTALOUT

(Optional)

6

5

P1.2

P1.0

Buttons

L

M

QA

QBVcc

GND

 V DD

19

16 GND

1K

REFB 14

P0.3
7

NPD4

P0.7
3

SCLK
21

P0.6
2

MISO
22

9GUARD

NC NC

11 18

20
P1.1 R

20 KΩ20 KΩ

1
NCS

LP2950ACZ-3.3
3 1

2

VoVin
 GND

4.7 F 0.1 F

0.1 F

MMBT2222A

13REFC

2.2 F

187Ω
1/8 W

Vo

Vo 3.3V12
OPTP

NC

20

 10 K

 10 K

Appendix A: Schematic Diagram of the Overall Circuit

14

Appendix B: Bill of Materials for Components Shown on Schematic

Part Type	 Footprint	 Quantity	 Designators

0R (Jumper)	 AXIAL 0.35	 2	 R1, R3	

0R (Jumper)	 0805_CUS	 6	 R6, R11, R12, R13, R14, R15	

Ceramic cap. 0.1uF (104)	 0805_CUS	 4	 C1, C3, C6, C7	

Chip resistor 10K 1% 	 0805_CUS	 2	 R7, R9	

Resistor 187R 1% 0.125W	 AXIAL0.3	 1	 R2	

Chip resistor 1K 1% 	 0805_CUS	 1	 R5	

Chip resistor 1K3 1%	 0805_CUS	 1	 R16	

Chip resistor 20K 1%	 0805_CUS	 2	 R8, R10	

Chip resistor 240R 1%	 0805_CUS	 1	 R4	

Resonator 24MHz	 XTAL4	 1	 X1	

Transistor 2N2222	 TO92C	 1	 Q3	

Ceramic cap. 2.2uF 16V	 1206	 1	 C5	

Tant. cap. 4.7uF 16V	 1206	 2	 C2, C4	

Resonator 6MHz (optional)	 XTAL4	 1	 X2	

ANDS-3060 image sensor	 DIP1x2MM	 1	 U1	

Micro-controller CY7C63743	 DIP24-300	 1	 U2	

HLMP-ED80-PS000	 LED	 1	 D2	

LED Clip 	 clip	 1	 D2*	

Voltage Regulator LP2950ACZ-3.3	 TO92C	 1	 Q1	

Molex-5P latch / 2.54mm pitch	 MOLEX5P /0.1	 1	 J1	

Mouse button switch	 SW-SPDT-ZIPPY	 3	 S1, S2, S3	

XX (Reserved)	 0805_CUS	 2	 R17, R18	

Z-ENCODER	 ZDET	 1	 Q2	

Z-LED	 ZLED	 1	 D1	

15

Figure C1. PCB Schematic (Bottom Layer).

Figure C2. PCB Schematic (Top Overlay).

Appendix C: PCB Layout

16

Figure C3. PCB Schematic (Bottom Overlay).

17

Appendix D: Base Plate Feature

Figure D1. Bottom, top and side view of base plate.

Figure D2. Overall top view of base plate.

Appendix E: Sectional View of PCB Assembly

Surface

Base Plate

Lens/Light Pipe

Sensor

Clip
LED

PCB

Figure E1. Sectional view of PCB assembly highlighting all optical mouse components (optical mouse sensor, clip, lens, LED, PCB, and base plate).

18

Appendix F: USB data reporting format
The USB report has two formats, depending whether boot or report protocol is enabled. The following format is the
boot protocol, and is understood by a USB aware BIOS.

	 Bit 7							 Bit 0

Byte 0	 0	 0	 0	 0	 0	 Middle	 Right	 Left	

Byte 1	 X	 X	 X	 X	 X	 X	 X	 X	

Byte 2	 Y	 Y	 Y	 Y	 Y	 Y	 Y	 Y	

The following is the USB report protocol format allowing the additional wheel movement information in the fourth
byte. When the wheel is moved forward, the fourth byte reports a 0x01. When moved backward, the fourth byte
reports 0xFF. When the wheel is idle, then this byte is assigned 0x00.

	 Bit 7							 Bit 0

Byte 0	 0	 0	 0	 0	 0	 Middle	 Right	 Left	

Byte 1	 X	 X	 X	 X	 X	 X	 X	 X	

Byte 2	 Y	 Y	 Y	 Y	 Y	 Y	 Y	 Y	

Byte 3	 R	 R	 R	 R	 R	 R	 R	 F/R

Appendix G: PS/2 reporting format
The PS/2 portion of the firmware handles the following requests and commands listed in the table below.

Hex Code	 Command	 Action

0xFF	 Reset	 Resets mouse to default states	

0xFE 	 Resend 	 Resends last data to host	

0xF6	 Set Default	 Sets mouse to use default parameters	

0xF5	 Disable	 Disables the mouse	

0xF4	 Enable	 Enables the mouse	

0xF3	 Set Sampling Rate	 Set sampling rate to 10,20,40,60,80,100,200/second	

0xF2	 Read Device Type	 Returns 0x00 to host, indicating the device is a mouse	

0xF0	 Set Remote Mode	 Sets remote mode so data values are only reported after a read data command	

0xEE	 Set Wrap Mode	 Set wrap mode until 0xFF or 0xEC is received	

0xEC	 Reset Wrap Mode	 Reset to previous mode of operation	

0xEB	 Read Data	 Responds by sending a mouse report packet to host	

0xEA	 Set Stream Mode	 Sets stream mode	

0xE9	 Status Request	 Returns current mode, en/disabled, scaling, button, resolution, and sampling rate
		 information to the host.	

0xE8	 Set Resolution	 Sets resolution to 1,2,4,8 counts/mm	

0xE7	 Set Scaling 2:1	 Sets scaling to 2:1	

0xE6	 Reset Scaling	 Resets scaling to 1:1	

0xAA 	 Completion Code	 Command completion code	

0xFA	 Peripheral ACK	 Sent to acknowledge host requests	

19

The PS/2 specification calls out the following default mouse report format. Byte 0 is the button data (1=pressed,
0=released), X and Y optics sign bits, and X and Y overflow bits. Byte 1 is the X optics data in 2’s complement format.
Byte 2 has the Y optics data in 2’s complement format. At reset or power-on the standard PS/2 reporting format is
enabled.

	 Bit 7							 Bit 0

Byte 0	 Y Overflow	 X Overflow	 Y sign	 X sign	 Reserved 0	 Reserved 0	 Right button	 Left button	

Byte 1	 X	 X	 X	 X	 X	 X	 X	 X	

Byte 2	 Y	 Y	 Y	 Y	 Y	 Y	 Y	 Y	

After the following sequence of commands, the wheel report format is enabled.

0xF3, 0xC8 	 Set Sampling Rate 200 per second

0xF3, 0x64 	 Set Sampling Rate 100 per second

0xF3, 0x32 	 Set Sampling Rate 50 per second

0xF2, 0x03 	 Read Device Type returns a value of 0x03

After the Read Device Type command returns 0x03 to indicate that this is a Microsoft compatible three button-wheel
mouse, the wheel report format is enabled. After this initialization sequence, the PS/2 wheel reporting format is
enabled. The fourth byte represents the wheel data. This byte is assigned 0x01 for forward wheel movement and 0xFF
for backward wheel movement. When the wheel is idle, this value is 0x00.

	 Bit 7							 Bit 0

Byte 0	 Y Overflow	 X Overflow	 Y sign	 X sign	 Always 1	 Middle Button	Right button	 Left button	

Byte 1	 X	 X	 X	 X	 X	 X	 X	 X	

Byte 2	 Y	 Y	 Y	 Y	 Y	 Y	 Y	 Y	

Byte 3	 Wheel*	 Wheel*	 Wheel*	 Wheel*	 Wheel*	 Wheel*	 Wheel*	 Wheel*	

The PS2 data transmission according to the PS/2 Hardware Interface Technical Reference including eleven bits for
each byte sent. The bits are sent in the following order with data valid on the falling edge of the clock. See the PS/2
Hardware Interface Technical Reference manual for timing information.

Start Bit 	 Data 	 Data 	 Data 	 Data 	 Data 	 Data 	 Data 	 Data Bit 7	 Odd 	 Stop Bit
(Always 0)	B it 0	B it 1	B it 2	B it 3	B it 4	B it 5	B it 6	B it 6	 Parity Bit	 (Always 1)

Kit Components
The designer’s kit contains components as follows:

Part Number	 Description	 Name	 Quantity

ADNS-3060	 Optical Mouse Sensor	 Sensor	 5	

ADNS-2120	 Round Lens Plate 	 Lens	 5	

ADNS-2120-001 	 Trim Lens Plate	 Lens	 5	

ADNS-2220	 LED Assembly Clip (Black Clip)	 LED Clip	 5

ADNS-2220-001	 LED Assembly Clip (Transparent)	 LED Clip	 5	

HLMP-ED80-XX000	 639 nm T 1 _ (5 mm) Diameter LED	 LED	 5	

ADNK-3061 CD	 Includes Documentation and Support Files for ADNK-3061 and CY7C63743-PC		 1	

	 Documentation
	 a.	 ADNS-3060 Data Sheet
	 b.	 CY7C63743-PC Data Sheet
	 c.	 ADNS-2120 Data Sheet
	 d.	 ADNS-2220 Data Sheet
	 e.	 HLMP-ED80-XX000 LED Data Sheet
	 f.	 AN 5035 – PCB Mounting Method for ADNS-3060 Optical Sensor
	 g.	 AN 5034 – ADNS-3060 Power Saving Methodology
	 h.	 AN 5036 – ADNS-3060 Eye Safety Calculations

	 Hardware Support Files
	 a.	 ADNK-3061 BOM List
	 b.	 ADNK-3061 Schematic
	 c.	 3D Model IGES Files
	 d.	 Gerber File

	 Software Support Files
	 a.	 Microcontroller Firmware

	 Cypress LAB™ Documentation and Support Files 	
	 a.	 CY Debugger
	 b.	 CYASM Assembler Software
	 c.	 Code Examples
	 d.	 User Manual

ADNK-3061 Mouse 	 High Performance Reference Design Mouse	 Optical Mouse	 1

Appendix H: Kit Components

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-0690EN
AV02-1034EN - September 8, 2008

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Avago Technologies:

 ADNK-3061

http://www.mouser.com/avagotechnologies
http://www.mouser.com/access/?pn=ADNK-3061

