
i

\TITLE PAGE

WEARABLE DEVICE FOR SPEED AND ENDURANCE
ASSESSMENT AND MONITORING USING

IMPROVISED STETHOSCOPE AND
ACCELEROMETER WITH USB

RECEIVER VIA ZIGBEE
TECHNOLOGY

by

Jan Mikael C. Estabillo
Mary Anne U. Fabia

Maritoni J. Maculanlan
Darlon Jay C. Mondejar

Maica A. Punsalang

A Design Report Submitted to the School of Electrical Engineering,

Electronics Engineering, and Computer Engineering in Partial
Fulfilment of the Requirements for the Degree

Bachelor of Science in Computer Engineering

Mapúa Institute of Technology
March 2011

ii

iii

ACKNOWLEDGEMENT

We are indeed grateful to the people who advised, gave comments, gave

assistance and encouraged our group to make this design possible.

We wish to express our sincerest thanks and appreciation to our

professor, Prof. Noel Linsangan, for guiding us with the necessary requirements

and motivating us for the accomplishment of this design.

We would like to express also our deepest gratitude to our adviser, Engr.

Cyrel Ontimare-Manlises, who gave us words of encouragement and for all the

support and guidance she had given to our group during consultation regardless

of her busy schedule.

We would like to acknowledge with much gratitude Dra. Hiyasmine

Mangubat for sharing with us the knowledge she has in Rehabilitation Medicine.

Without her help, we wouldn‘t know how to initiate this design.

We would also like to thank the panel members who agreed to examine

and to certify our oral presentation and made this design a success.

iv

We would also sincerely extend our dearest gratitude to our parents for

supporting us, morally and financially, as we accomplished this design; and to

our friends who also supported us on our endeavors as we finished this design.

For this achievement, we give back all the glory and praises to the

omnipotent Father Almighty for giving us strength, wisdom, patience, and

guidance in completing this design.

Jan Mikael C. Estabillo

Mary Anne U. Fabia

Maritoni J. Maculanlan

Darlon Jay C. Mondejar

Maica A. Punsalang

v

ROLES AND RESPONSIBILITIES OF GROUP MEMBERS

Each member contributed on researching the given design project and the

development of the prototype.

The following show the list of responsibilities for each member:

Jan Mikael C. Estabillo

 Circuit Design

 Hardware Design

 Program / Software Design

 Documentation

Mary Anne U. Fabia

 Circuit Design

 Hardware Design

 Documentation

Maritoni J. Maculanlan

 Circuit Design

 Hardware Design

 Documentation

Darlon Jay C. Mondejar

 Circuit Design

 Hardware Design

 Documentation

Maica A. Punsalang

 Circuit Design

 Hardware Design

 Documentation

vi

TABLE OF CONTENTS

TITLE PAGE ... i

APPROVAL SHEET .. Error! Bookmark not defined.

ACKNOWLEDGEMENT .. iii

ROLES AND RESPONSIBILITIES OF GROUP MEMBERS v

TABLE OF CONTENTS ... vi

LIST OF TABLES... viii

LIST OF FIGURES .. ix

ABSTRACT .. x

Chapter 1: DESIGN BACKGROUND AND INTRODUCTION 1

Background .. 1

Statement of the Problem .. 2

Objectives of the Design .. 3

Significance and Impact of the Design 4

Scope and Delimitation .. 6

Definition of Terms ... 8

Chapter 2: REVIEW OF RELATED DESIGN LITERATURES AND STUDIES 10

Chapter 3: DESIGN PROCEDURES .. 22

Hardware Development ... 23

Block Diagram .. 24

Software Development .. 26

Prototype Development ... 38

Chapter 4: TESTING, PRESENTATION, AND INTERPRETATION OF DATA 43

vii

Data Transmission Test ... 43

Time Measurement Test .. 44

Pulse Rate Measurement Test .. 43

Endurance Test ... 48

Speed Test ... 50

Chapter 5: CONCLUSION AND RECOMMENDATION ... 52

CONCLUSION ... 52

RECOMMENDATION .. 53

BIBLIOGRAPHY ... 55

APPENDIX 57

APPENDIX A: OPERATION‘S MANUAL ... 58

System Requirements.. 58

Installation Procedure ... 59

User‘s Manual ... 60

Troubleshooting Guides and Procedures 63

APPENDIX B: PICTURES OF PROTOTYPE .. 64

Wrist Device ... 64

Handheld Device ... 64

Lap Indicator Module .. 65

Batteries and Charger ... 65

APPENDIX C: PROGRAM LISTING... 66

Microcontroller Source Code .. 66

Software Application Form Scripts .. 82

APPENDIX D: DATASHEETS ... 112

APPENDIX E: SOFTWARE DEVELOPMENT 164

APPENDIX F: SPECIFICATIONS OF THE DIGITAL BLOOD PRESSURE

USED IN THE TESTING 197

viii

LIST OF TABLES

Table 3.10 List of Materials 38

Table 4.1 Data Transmission Test 43

Table 4.2 Time Measurement Test 45

Table 4.3 Pulse Rate Measurement Test 47

Table 4.4 Endurance Test 49

Table 4.5 Speed Computation Using the Time Reading from the Stopwatch and

Microcontroller 51

ix

LIST OF FIGURES

Figure 3.1 Conceptual Diagram 22

Figure 3.2 System Block Diagram 24

Figure 3.3 Use Case Diagram 26

Figure 3.4 Data Flow Diagram 28

Figure 3.5 Activity Diagram 30

Figure 3.6 Schematic Diagram of the Wrist Device 32

Figure 3.7 Schematic Diagram of the Handheld Device 36

x

ABSTRACT

This project concerns runners as its target users because running is the

most widely used endurance test for both athletes and non-athletes. Of late,
bulky equipments are required to measure speed and pulse rates for endurance
assessment. To amend the situation, the designers have incorporated both speed

and pulse rate measurements into a single device. This was done by compressing
the prototype circuit into a small printed circuit board (PCB), using nickel-metal

hydride batteries, and the use of a strap to hold the stethoscope and the circuit
along the wrist. The device was able to provide mobility because of the
rechargeable batteries and wireless transmission of data using ZigBee. Further, a

software application is included to translate data into readable information. This
design will have a large impact on those who undergo endurance tests as it will
ease condition monitoring, from endurance, by providing graphical interpretation

of the activity and portability on devices used.

Keywords: endurance, ZigBee, USB, software application, rechargeable battery

1

Chapter 1

DESIGN BACKGROUND AND INTRODUCTION

Background

 Often times, trainers have a hard time measuring the intensity of the

training they impart to their trainees and the performance of the individual

throughout the training program. Although some trainers are eased in measuring

such quantity, measurements are sometimes, if not are always subjected to

approximation. Individuals‘ tolerance to their exercise is one of the most

essential parameters a trainer should consider as it can assess the endurance of

an individual to its activity. People often exercise longer and harder so they can

improve. But without adequate rest and recovery, these training regimens can

backfire, and actually decrease performance.

 Given that the design incorporates the use of accelerometer and

stethoscope in assessing the conditioning of the person during running activities

or exercises. Pulse rate is useful for monitoring the individual‘s condition on a

daily basis.

 As stated above, the design uses an accelerometer to determine the hand

movements of the corresponding trainee from start to end which will be timed.

2

From this, we can obtain the overall duration of the individual‘s exercise. The use

of pulse-rate measuring device will provide data on whether the person can

tolerate the exercise and recover from the fatigue it can cause. Thus, the

endurance of the trainee is assessed using the pulse-rate measurer preventing a

course to overtraining that diminishes the performance of an individual.

Endurance will be assessed using the Karvonen Formula, one of the most

effective methods used to calculate training heart rate and was also advised by

the doctor from the Rehabilitation Center that the group had consulted. It also

uses ZigBee Technology to transfer training data to the trainer or to a designated

individual wirelessly through a USB. A software application is programmed by

the proponents to translate the data to readable information.

 It has five major components, namely Lap Indicator Module,

accelerometer, ZigBee module, improvised stethoscope, and USB storage

module.

Statement of the Problem

 Pedometers and Pulse Oximeters are the usual equipments of athletes

nowadays. Pedometers require a belt and a pair of shoes to function while pulse

oximeters can either be worn on the finger-tip, earlobe, or toe to function. From

the latter, it can be safely assumed that the said devices will become

3

cumbersome while using the two functionalities of pedometers and pulse

oximeters. Due to this scenario, a solution is considered to lessen the discomfort

from wearing many things during workout exercises by combining both pulse

and pace measurement into one wrist-worn device. And so the proponents came

up with a design having an additional feature of assessing and monitoring one‘s

speed and endurance. This design measures the pulse rate at the wrist along the

ulnar artery. The main determinant of running speed is time where the input

distance — required to be run by the user — is divided by the time it took to

cover the distance. These measured data are wirelessly transmitted to a USB

receiver and will eventually be used as an input to a software application for

evaluation.

Objectives of the Design

General Objective

The wearable speed and endurance assessment and monitoring system

using accelerometer and improvised stethoscope with USB receiver via Zigbee

Technology aim to combine two important features, namely pulse and pace

measurement to a single wireless device, as these gathered data will be an input

to evaluate the user‘s speed and endurance.

4

Specific Objectives

1. To measure the pulse rate of the user using an improvised stethoscope

with a minimum requirement of percent difference that is not greater than

5% and will use the data to evaluate the individual‘s endurance along with

the inputs namely as age and resting heart rate in a formula.

2. To measure the time the user finished a lap using the microcontroller‘s

interrupt timer and infrared module with a minimum requirement of

percent difference that is not greater than 5%.

3. To transmit data wirelessly to a USB receiver using ZigBee Pro and USB

VDIP circuit, and to translate data into readable information using

program software.

4. To evaluate the pulse rate together with inputs, namely, age and resting

heart rate for the user‘s endurance using Karvonen formula.

5. To evaluate the time along with the input distance for user‘s speed.

Significance and Impact of the Design

 The significance of the design is for the trainers, runners, sport

enthusiasts, or simply an individual having exercise / training programs to have a

device that assesses and monitors their pulse rate, endurance and speed. This

project can help them improve their speed and endurance abilities. They can

5

monitor their training activities because the data can be transferred and stored

at Universal Serial Bus (USB). This design contributes in the advancement of the

technology since a pulse rate measurer, accelerometer and ZigBee are all in one

device without affecting the runners‘ carrying weight. Through this design, it is

expected that a sufficient training and a maximum health safety will be made

reaching every individual‘s target endurance.

The impact of the design influences three realistic constraints, namely

social, ethical, and health and safety. The implementation of the design offers

freedom among users that will come to utilize the device which comprises the

social constraint. However, appropriate outcome of the device depends a lot on

the wearer. Since the device can accept correct but invalid inputs, unethical

users may use the device to falsify their training. On the other hand, unethical

coaches can come to manipulate the data and cover up possible frauds since the

file is in text format. Health and safety constraints concern the use of a pulse

rate measurer to monitor an individual‘s cardiovascular condition.

6

Scope and Delimitation

Scopes:

The design includes:

 measurement of the time it takes for the user to complete a single

lap while hands are in motion using a microcontroller counter.

 recognition of hand movement using an accelerometer.

 pressing of a button to start the timer interrupt of the

microcontroller before running.

 infrared transmission by placing lap indicator module on the start

line at the same time the finish line of the track to signal the

receiver, on the device worn, for the beginning and completion of a

lap, respectively.

 measurement of individual‘s pulse-rate by standing still after

completing the final lap using an improvised stethoscope.

 serial transfer of data to a USB interface.

 assessment of speed and endurance by plugging the USB into a

computer where the evaluating software application is installed.

 wireless transmission of data through ZigBee Pro which has a

maximum range of 1.5 km, but is expected to decrease from

various factors such as walls, humidity, temperature, and the like.

7

 rechargeable batteries to power devices, since running is for an

outdoor environment.

Delimitations:

 The design will encounter valid but incorrect outputs, specifically

swaying of hands while at rest.

 The user must not be adjacent to the Infrared Sensor at the end of

the last lap when measuring the pulse rate.

8

Definition of Terms

Athletic Attributes or feats are quantifiable skills of an athlete that are shown

to be measurable through electronic devices.

Accelerometer measures the static acceleration of gravity in tilt-sensing

applications, as well as dynamic acceleration resulting from motion or vibration

(Charles, 2007).

Endurance is the time limit of a person's ability to maintain either a specific

force or power involving muscular contractions (Morgan, 2001).

Exercise is a physical activity that is planned, structured, and repetitive for the

purpose of conditioning any part of the body. Exercise is utilized to improve

health, maintain fitness and is important as a means of physical rehabilitation

(Bookhout and Grenman, 2001).

Overtraining is a condition that is usually occurring in athletes who are training

for competition then exercise outside the body's ability to pull through (Redding,

2001).

http://medical-dictionary.thefreedictionary.com/Endurance

9

Real-time is a representation of the time at which an output is obtained from

an input.

Speed is the rate or a measure of the rate of motion, especially distance

travelled divided by the time of travel (Young and Freedman, 2004).

Throughput is the interval in which an output is realized from an input.

Universal Serial Bus (USB) is a set of connectivity specifications developed by

Intel in collaboration with industry leaders. USB allows high-speed, easy

connection of peripherals to a PC. [The Intel Microprocessors-Fifth Edition]

ZigBee is a proprietary set of high level communication protocols designed to

use small, low power digital radios based on the IEEE 802.15.4 standard for

wireless personal area networking.

10

Chapter 2

REVIEW OF RELATED DESIGN LITERATURES AND STUDIES

 This chapter includes compiled research works and studies that are

related to the design. The content of this chapter is used as reference for the

development of the design. The group used the following related articles,

research works, and inventions as reference which will aid in having an in-depth

understanding about the design that the group worked on.

Khalil and Sornanathan (2010) says that a real time system that monitors

and analyzes the physical signals during fitness activity was called CaszOxiSys.

The system has light-emitting diode and photodiode used to receive signals.

Bluetooth was used to transmit these signals wirelessly a netbook or laptop for

signal evaluation. The Karvonen formula was also used in this paper in which it

calculates the heart rate based on age, gender, resting heart rate, maximum

heart rate and fitness level. With this paper, the Karvonen formula acts as a

guideline for fitness workout sessions. This paper is related to our design since

the CaszOxiSys was used to analyze the physiological data of an individual same

as with our software program that evaluates the endurance of a person. The

design used the Karvonen formula to make an evaluation of the person‘s

endurance. It also supports the design in using the formula because they also

used it as reference. The paper transmits data using Bluetooth, this design uses

11

a Zigbee Pro. They also used pulse oximeter for measuring the pulse rate while

this design is through an improvised stethoscope.

Ohyama et. al. (2007) based their studies on using the Karvonen formula

and the rating of their actual actions. The electric cart was installed by a knob

that allows the driver to continuously vary the pedal load between the

exhausting and assisted modes. A gain-scheduling cart control system is

designed that will guarantee the stability of the cart system for any pedal load in

the allowed range, and a stability condition is derived using dynamic parallel

distributed compensation. They determined the perspective of ergonomics based

on the Karvonen formula since it assists the person‘s physical condition that will

be using in the electric cart.

According to the research, ―Monitoring Athletes‘ Physiological Responses

to Endurance Training with Genomic-wide Expression Data‖ , it is a system of

fixed effect regression modeling for genome-wide expression data from DNA

microarray hybridization. This research was accepted last September 2 2007. In

monitoring athletes‘ physiological responses to endurance training, statistical

methods in longitudinal or matched case-control data analysis were discussed.

Ilene Chen, Ling-Hong Tseng, Hiroto Homma, Hong Yan and L. Lloyd Keith used

the technique called fixed effect regression modeling in identifying the significant

differential expressed genes with endurance training-induced muscle contraction.

12

They also used fixed effect logistic regression modeling to study a gene

expression model relating to endurance training-induced vastus lateralis muscle

contraction. And they found out that the development of carbohydrate, lipid and

energy metabolisms, respectively, the presence of the deleterious effects of

oxygen from the metabolic reduction of the reactive oxygen species, and the

transcriptional regulations of endurance training-induced vastus lateralis muscle

contraction status. The paper also described that it can supply general tools to

monitor athletes‘ physiological responses to endurance training on the genomic

scale. This relates to the Wearable Endurance Monitoring using USB via Zigbee

Technology of the proponents because it monitors the athletes‘ physiological

responses like their endurance. The project design measures the pulse rate and

relates it with the other inputted information like age, gender and weight to

assess the endurance of the user.

According to Cheng and Hailes (2008), the main function of the project is

to evaluate whether inertial sensors are useful for detecting the smallest details

of a rapidly moving (foot) motion of a sprinter, which would be useful for

coaching support. Also, in this article, it was shown the on-body wireless inertial

sensing system, and was analyzed in three aspects: a) a foot motion analysis

using the collected inertial data of sprinters; b) the system's physical

characteristics (i.e. weight and operational behaviour); and c) the system's

wireless performances. In the proposed design case, to further analyze the

13

improvement of the performance of an athlete, the proponents will be using an

accelerometer sensor and a pulse rate sensor. With this, it will measure the

speed of the athlete all throughout the course of his exercise and also the

sequence of events the athlete jumped as jumping records a sudden increase in

the reading of the accelerometer. The use of pulse-rate measuring device will

provide data on whether the athlete can tolerate the exercise and recover from

the fatigue it can cause.

He and Jin (2008) talk all about proposing a gesture recognition based on

single tri-axis accelerometer mounted on a cell phone for human computer

interaction. By using the accelerometer which measures the amount of

acceleration of a device in motion enables three kinds of gesture interaction

methods: tilt detection, shake detection, and gesture recognition. Thought there

are other devices used in gesture recognition, it is much advisable to use the

accelerometer because those other devices focus on recognizing the simple

gestures only such as Arabic numerals, simple linear movement and directions.

With this research, the three feature extraction methods are presented, namely

discrete cosine transform, Fast Fourier transform and a hybrid approach which

combine wavelet packet decomposition with FFT. Supporting documentaries

show that all three proposed feature can recognize the 17 complex gestures

based on a single tri-accelerometer. By this information, it is very helpful to the

proponents in developing the design. Accelerometer will be used to measure the

14

gesture of the athletes. With this, it can detect whenever the user starts or stops

performing and thus it can be a basis to know how far the user is running. When

the accelerometer detects the motion of the user the timer will automatically

start, and stop as the accelerometer detects that there is no more motion.

Fu (2008) presents a method to recognize the arm motions performing

within a short time for instant interaction called gesture strokes. It also used a

computer vision and linear accelerometer. The arm motion was first detected by

the accelerometer with a time window. From this window, the information

gathered will be used by these two sensory systems which individually estimate

the probability mass distribution of the gesture stroke classes. The set of weight

exponents are learned by the Nelder-Mead method that minimizes the empirical

error rate of classifying all training samples. The experiments show that these

two sensory systems encompass with each other and the combination framework

improves the recognition correct rate. This research was related to the project

design of the proponents because gesture strokes were also the bases in

completing this design. The proponents chose this paper because it accounts

arm motions for a short time in an instant interaction, accelerometer and sensory

systems were used and so for the proposed design.

The paper entitled Signal Processing of The Accelerometer on Handheld

Devices, issued last November 2003, reports about treating signals of

15

accelerometers to recognize user gestures from detected signals from

accelerometers after applying small accelerometers to handheld devices, and

about how to precisely recognize gestures to detect user gestures. It also

accounts how to use handheld devices in recognizing gestures by overheads

arising from the process of recognizing gestures should be little and gestures

should be effectively recognized in real operational environments. The result

states that because gesture-based control is easy to use plus it can reduce

preparation process in controlling rapid system reaction then, it is a proper user

interface for handheld devices primarily used in mobile environments. This paper

relates to the design of the proponents because small accelerometer was used in

a handheld device. This project design also uses small accelerometer that comes

in a small package plus it is a wearable device. The proponents chose this paper

because it has same approach that a small accelerometer detects and recognizes

the gesture of the users on a handheld device.

From the article ―Evaluation of Neural Networks to Identify Types of

Activity Using Accelerometers‖ they used the ActiGraph accelerators which were

placed on each of the subject‘s hip and ankle. Their purpose here was to develop

and evaluate two artificial neural network (ANN) models based on single-sensor

accelerometer data and an ANN model based on the data of two accelerometers

for the identification of types of physical activity in adults. The subjects were also

given a sequence of activities like sitting, standing, using the stairs, and walking

16

and cycling at two self-paced speeds. The model based on the hip accelerometer

data and the model based on the ankle accelerometer data correctly classified

the five activities 80.4% and 77.7% of the time respectively, while the model

based on the data from both sensors achieved a percentage of 83.0%. The hip

model produced a better classification of the activities cycling, using the stairs,

and sitting, whereas the ankle model was better able to correctly classify the

activities walking and standing still. All three models often misclassified using the

stairs and standing still. The accuracy of the models significantly decreased when

a distinction was made between regular versus brisk walking or cycling and

between going up and going down the stairs. From the study, we can determine

what the person is currently doing with the help of the ActiGraph accelerators.

The proponents chose this article because it shows how an accelerator can

determine the current action of the person and distinguish it from the other

actions.

Lee et. al. (2007), implementation of accelerometer sensor module is an

application to sports athletes' exercise measurement and pattern analysis. It is

about the implementation of wireless accelerometer sensor module and

algorithm to determine wearer's posture, activity and fall. According to the

article, this research uses wireless RF module which measures accelerometer

signal and shows the signal at 'Acceloger' viewer program in PC. Using the same

principle, the proponents will be using accelerometer sensor module to

17

determine the directional movements of the corresponding athlete. From this, it

can measure the speed of the athlete all throughout the course of his exercise.

And instead of using wireless RF module, the developers come up with the idea

of using Zigbee module.

Yangin (2008) discusses the principle of this project which is to describe

the latest developments in body sensor networks (BSN) for athletes during

training and outline the technical requirement of Sports-BSN hardware design,

miniaturisation, packaging, as well as the real-time data processing, sensor

fusion, and data visualisation issues. It has motivated the use of wearable

devices for sports performance sensing with the need for monitoring athletes

under natural training environment. This helps the proponents in developing the

proposed design since it aims to miniaturize the packaging of the hardware

design which is approximately 5 cm x 7 cm and 2.5 cm thick. It also helps to

satisfy every athlete that comes to utilize the device in terms of convenience,

portability, and usability. While athletic performances continue to improve, the

accurate training prescription and feedback become important to the consistency

of the training outcome and maintaining the performance margin.

Cheng et. al. (2010), is all about a practical, cost-effective, user-friendly

stride-parameter sensing system - known as the Sensing for Sports And

Managed Exercise (SESAME) Integrated System (IS) - which is the first system

18

for supporting practical and long-term biomechanics research studies in

sprinting. According to the article, the device measures some parameters of

sprinters, such as split times (i.e. which is speed-related), foot contact times,

stance times, stride/step length, and stride/step frequency, etc. which are

important factors affecting athletes' performances. The system includes a light-

sensor-based split time monitoring system, a radio-based localization athlete

tracking system, a stride length monitoring system, and a centralized data

repository. It is somehow related to the proposed design since it measures

different parameters of different movements of an athlete. The pulse rate sensor

and accelerometer sensor can measure an individual‘s speed, directional

movement and pulse-rate. The speed and movement are measured from the

motion of the body part to be detected by the accelerometer. It will also use

ZigBee module to instantly transfer training data to the coach or to an

appropriate person wirelessly. To further increase its portability, it can also

transfer data through USB (Universal Serial Bus).

Moron et. al. cite the concept of a wearable device which gives a great

impact on medical applications. This paper illustrates the different benefits of a

wireless technology. One of these is that it provides freedom of movements since

no wires will hinder the user and so it will improve the user‘s quality of life. Great

benefit of a wireless device is that it increments the medical presence in

emergency scenarios and makes possible remote diagnosis. This research helps

19

the proponents to come up with the idea of a wearable endurance detection

device which gives a unique quality to other inventions present today. This will

serve as a two-in-one device which includes a pulse rate sensor and a gesture

recognition system. It will be presented on a medium size package or a

―wearable‖ manner, specifically to be put on wrists.

Zucatto et. al. (2007) deal with the difference between ZigBee and

Bluetooth, and the basic concepts of ZigBee. ZigBee, arrived in 2005 in 2.4 GHZ

band and has a lower data rate than Bluetooth, spends most of its time

snoozing, and targets building automation as the main application. ZigBee is a

wireless technology that is a low cost yet long reach (100 m). This study shows

that ZigBee represents a promising technology for the development of innovative

products. ZigBee battery lifespan can possibly be up to 300 days.

Wireless Sensor Data Collection based on ZigBee Technology that was

published last June 2010 envisions a comparison of different configurations of a

wireless sensor system for capturing human motion. The researchers discussed

the different systems used in this study. The systems consist of sensor elements

which wirelessly transfer motion data to a receiver element. The sensor elements

consist of a microcontroller, accelerometer(s) and a radio transceiver. The

receiver element consists of a radio receiver connected through a microcontroller

to a computer for real time sound synthesis. The wireless transmission between

20

the sensor elements and the receiver element is based on the low rate IEEE

802.15.4/ZigBee standard. A configuration with several accelerometers

connected by wire to a wireless sensor element is compared to using multiple

wireless sensor elements with only one accelerometer in each. The study shows

that it would be feasible to connect 5-6 accelerometers in the given setups.

Sensor data processing can be done in either the receiver element or in the

sensor element. For various reasons it can be reasonable to implement some

sensor data processing in the sensor element. The said research was based on

Zigbee Technology as what the project design of the proponents should be

carried out. It also states that the data that will be collected were be transmitted

through Zigbee module, the said design also uses this information in gathering

data that will be sent to USB held by the coaches. This paper was chosen

because it gives a background information on how Zigbee module will transmit

data to a receiver element. And the device used in this paper consists of an

accelerometer, sensors and a radio receiver as the receiver element.

Geer (2005) shows the different applications of ZigBee and other possible

application for future use. These applications automate home, building,

industrial, agricultural systems, including thermostats and security products,

bridges and other structures, automated meter reading, and even in home

healthcare, national security, military networks, and routing discovery approach

that ad hoc on-demand networks use. With this study, it helps the proponents to

21

choose ZigBee technology than Bluetooth. Since the field that the athletes are

using is really big, ZigBee will be the one to accommodate this scenario. And

with the benefits that ZigBee provides it can satisfy the application for our

design.

Calabro et. al. (2010) evaluate the validity of energy expenditure

estimates from two portable armband devices, the SenseWear Pro3 Armband

monitor (SWA) and the SenseWear Mini armband monitor (Mini), under free-

living conditions. It concluded that The SenseWearPro3 and the SenseWear Mini

armbands show promise for accurately measuring daily energy expenditure

under free-living conditions. However, more work is needed to improve the

ability of these monitors to accurately measure energy expenditure at higher

levels of expenditure. Relating this to the researcher‘s design, the energy spent

can also be measured through the activities the person has done. This can also

be added as a feature to the design and for future designs. This was selected

because of the accuracy of the device mentioned and how effective it is.

22

Chapter 3

DESIGN PROCEDURES

 This chapter is a step-by-step procedure used in developing the design

and in the development of the required program needed to make the proposed

design fully functional. The hardware, software and prototype development are

discussed.

Figure 3.1 Conceptual Diagram

The main concept of the proposed design is that the user will be wearing

a device that will measure the pulse rate and the time the user had able to finish

a lap. The device will send the information every after the user passes by in the

infrared. It will be then transmitted through ZigBee technology. It will be

acquired by the receiver which is a USB module. This USB module is connected

on a handheld device while the user is performing. After the user performs,

23

he/she will insert the flash drive on the PC where the SEAMS program is installed

and afterwards will run the program and the results gathered will be saved and

the user‘s endurance will be assessed.

Hardware Development

The proposed design which is the Wearable Device for Speed and Endurance

Assessment Monitoring System using Improvised Stethoscope and Accelerometer

with USB Receiver via Zigbee Technology is divided into 3 hardware parts:

transmitter, receiver, and lap indicator module. The transmitter unit is the

primary hardware of the proposed design which is composed of the improvised

stethoscope, an accelerometer, an MCU, infrared receiver and a ZigBee Pro

transmitter module. On the other hand, the receiver component consists of a

ZigBee Pro receiver module, serial USB interface and MCU to store data. The last

hardware part is the lap indicator module which consists of an infrared

transmitter and a microcontroller that complete the system.

24

Block Diagram

Stethoscope

PIC16F877

Microcontroller

Zigbee Pro

Transceiver

Pulse Rate

Hand

Movement

ZigBee Transmitter Module:

Accelerometer

Lap Indicator Module:

Infrared Receiver

Infrared

Transmitter

ZigBee Receiver Module:

Information from

the wearable

device via Zigbee

Zigbee Pro

Transceiver

Vdip1 (USB

Interface)
PIC16F877

Microcontroller

Figure 3.2 System Block Diagram

 In Figure 3.2 the transmitter side's inputs are infrared signal, hand

movement and pulse rate while the process is composed of the infrared receiver,

microcontroller and the ZigBee Pro module. The transmitter side represents the

block diagram for the wearable device. It is composed of the accelerometer

chip, stethoscope, infrared module, ZigBee Pro module and a microcontroller. An

25

accelerometer keeps track of the hand motion of the user all throughout the

course of his exercise. The microcontroller records individual lap times whenever

an infrared signal is received then interprets the time and pulse rate measured to

be saved on a text file. The use of stethoscope device is to measure the pulse

rate of the user after a while that the user is at rest to indicate the beginning of

wireless transmission of data. The ZigBee Pro module will then transmit all the

data gathered to the Vdip1 that is connected on the handheld device.

In the receiver portion of the system involves the transmission of the data

through the receiver of the ZigBee Pro module. The data will be received by the

USB flash drive and can be connected to a laptop or a PC then the user may run

the Software Program installed that can assess and monitor their speed and

endurance.

On the lap indicator module, an infrared transmitter is made to

communicate with the wearable device that consists of infrared receiver. As the

name of the component suggests, the infrared communication is made to

indicate that a lap has either started or completed.

26

Software Development

Use Case

 Figure 3.3 Use Case Diagram

Manage Client Use Case

 The registration incorporates two validation processes Select and

Add/Update that require three fields to be filled before the process prevents a

null input during validation process. Fields follow a specific format and must not

Manage

Clients

Manage

Trainings

View Training

History

TRAINER

27

deviate from them so as to avoid error encounters. A convenient select mode is

also provided to be able to search for existing clients in the record. While adding,

check availability is included to inform the user of the existence of the name in

the record. The registration can be cancelled at any point during the process.

Manage Trainings Use Case

 Revision cannot be opened unless a user has been selected during the

registration process. The form prevents errors by providing limitations on input.

The resting heart rate can be left blank to signify a no change of data, while a

blank track distance is equivalent to 0 meters. An evaluation is incorporated to

assess the endurance based on the change of heart rate. A refresh is also

included to redraw the graph whenever distorted. A convenient open dialog box

is provided to ease file browsing. The Graph can be dragged to view concealed

parts of the training easily.

View Training History Use Case

 Browsing requires the choice of graph type through radio buttons and a

selection within two combo boxes that list all the existing clients and trainings

from the corresponding record. It automatically requests information and

proceeds immediately to evaluation. Drag capability is also enabled to provide

interactive interface on the graph.

28

Data Flow Diagram

CLIENT

1.0

REGISTRATION

PROCESS

2.0

TRAINING PROCESS

3.0

BROWSE PROCESS

Name, Age, Contact Number,

and Gender

Resting Heart Rate and

Track Distance

Resting Heart Rate and

Track Distance
Name, Age, Contact Number,

and Gender

Name and Age

Name and Age
Resting Heart Rate

and

Track Distance

Resting Heart Rate and

Track Distance

Name, Age, Contact Number,

and Gender

Client Record Trainings Record

Figure 3.4 Data Flow Diagram

29

The system accepts input only on the registration and training processes.

Registration process accepts name, age, contact number, and gender inputs all

being a required field except contact number. All the inputs will immediately be

transferred to the client record after clicking the add/update button. Training

process accepts two inputs resting heart rate and track distance, and can only

modify the current training‘s resting heart rate. Inputs will then replace the

resting heart rate and track distance in the training record. Browse process does

not accept inputs as it is for displaying purposes and gets data from the training

and client records. Client record transfers all data to registration process and

transfers only name and age to training and browse processes. Training Record

transfers all data to every process whenever necessary.

30

Form Selection Menu

Add/Edit Client
Information

Edit Training
Information

Browse Training
Information

Activity Diagram

View Training

History

Manage Training
Information

Manage Client
Information

Select Client

Exit Client Form

Figure 3.5 Activity Diagram

31

Before training, the software application must be installed in a PC given

together with the hardware. After successfully plugging-in the USB flash drive,

the user can choose between managing clients, trainings or training history and

then can end the current activity. In the course of managing client information,

the user can choose to select or exit the form to end his current activity.

32

SCHEMATIC DIAGRAMS:

PIC16F877A (TQFP44)

RC7
RD4

RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3

NC
RC0

OSC2
OSC1
VSS
VDD
RE2
RE1
RE0
RA5
RA4

N
C
N
C
R
B
4

R
B
5

R
B
6

R
B
7

M
C
L
R

R
A
0

R
A
1

R
A
2

R
A
3

R
C
6

R
C
5

R
D
4

R
D
3

R
D
2

R
D
1

R
D
0

R
C
3

R
C
2

R
C
1

N
C

1
2
3
4
5
6
7

8
9
10
11

1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2

23
24
25
26
27
28
29
30
31
32
33

3
4
3
5
3
6
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4

LM741

3

2

4

7

6

5 1

TL072CN

3

2

4

8

1TL072CN

5

6

4

8

7

ADXL330

NC
ST
COM
NC

Xout
NC
Yout
NC

C
O
M

C
O
M

C
O
M

Z
o
u
t

N
C
V
S
V
S
N
C

1
2
3
4

5 6 7 8

9
10
11
12

1
3
1
4
1
5
1
6

78L05

LINE VREG

COMMON

VOLTAGE

10kΩ

470µF

4.7µF2.2kΩ

47kΩ

33kΩ

0.047µF

33kΩ

470µF33kΩ

56kΩ

220kΩ

0.1µF

1N4148

RT9163

LINE VREG

COMMON

VOLTAGE

22µF

100nF

56kΩ

1N4148

100nF

100nF

100nF

100nF4MHz

33pF33pF

22kΩ

0.1µF

Microphone

1

2

XBee

VCC
DOUT
DIN
DO8A
RESET
PWM0
PWM1
RESERVED

AD0
AD1
AD2
AD3
RTS

ASSOCIATE
VREF
ON

DTR
GND

CTS
AD4

4

6

8

10

3

5

7

9
11

2
1

12
13
14
15
16
17
18
19
20

22kΩ

33kΩ

56kΩ

22kΩ

9V

9V

Figure 3.6 Schematic Diagram of the Wrist Device

33

The stethoscope is connected with a condenser microphone so that the

sound it collects will be converted to an AC wave signal. The designers used

cascaded JFET operational amplifiers to amplify the sign wave with minimal

noise. From the formula,

A = R2 / R1

A = 47 kΩ / 22 kΩ

A = 2.14

the gain will approximately double the input signal of the Low-Noise

Microphone Pre-Amplifier. For the Sallen-Key Butterworth Amplifier, we used the

formula,

ƒc = 1 / ()

ƒc = 1 / ()

ƒc = 102.6144 Hz

to determine the maximum frequency the amplifier will accept since it is a low-

pass filter. Thus, any frequency below ƒc is considered a pulse rate.

34

A differential operational amplifier is used to further amplify the signal

with same resistance on its input and output terminals. A 0.1 µF capacitor is

connected on the Sallen-Key Butterworth Amplifier, which can possibly be 1 µF to

0.1 µF on the output to filter noise and prevent oscillation. The 0.1 µF capacitor

also serves as a AC to DC converter of the audio signal together with a diode.

The diode is used for its fast-switching capability needed for the realtime circuit.

The DC audio signal is then fed to the microcontroller for storage and

transmission.

The PIC microcontroller supply pins are connected to a positive voltage

regulator with an output of 5 Volts. Clock inputs are connected to a 4 MHz crystal

oscillator, in which the circuitry needs a maximum of 20 MHz of clock frequency,

that allows the operation of the microcontroller. Here is how the resistors are

computed:

V = I x R

 R = V / I

 R = 5V / IMIN ~ IAVE ~ IMAX

 R = 5V / 50µA ~ 200µA ~ 400µA

 R = 12.5kΩ ~ 20kΩ ~ 100kΩ

35

Thus, a 22kΩ is sufficient for the circuit. Since the load capacitance for

parallel resonant crystal CL is given in the datasheet as 21.5pF, the load capacitor

for the crystal oscillator is computed as follows:

where C1 and C2 are equal and CS or Stray Capacitor is typically 5pF will

give the equation

obtaining a load capacitor rating of 33pF for the 4MHz crystal oscillator. The

0.1µF capacitor serves as a ripple rejection capacitor since a stable 5VDC is

required for the MCLR pin.

 Vs supply pins need a voltage input of 1.5 V. Output axis data XOUT,

YOUT, and ZOUT are connected to their corresponding input pins of the

microcontroller R0 (Pin 2), R1 (Pin 3), and R2 (Pin 4), respectively. A 100nF

capacitor for each axial output is used to enable a low-pass filtering for

antialiasing and noise reduction at 50Hz so that frequencies above 50Hz won‘t be

able to intervene within the circuit.

36

XBee-Pro

VCC
DOUT
DIN
DO8A
RESET
PWM0
PWM1
RESERVED

AD0
AD1
AD2
AD3
RTS

ASSOCIATE
VREF
ON

DTR
GND

CTS
AD4

4

6

8

10

3

5

7

9
11

2
1

12
13
14
15
16
17
18
19
20

78L05

LINE VREG

COMMON

VOLTAGE

100nF

RT9163

LINE VREG

COMMON

VOLTAGE

22µF
22µF

22µF

MAX232(DIL)

C1+
1

C1-
3

C2+
4

C2-
5

T1IN
11

T2IN
10

R1OUT
12

R2OUT
9

GND

1
5

R2IN
8

R1IN
13

T2OUT
7

T1OUT
14

V+
2

V-
6

VCC

1
6

100nF

100nF

22kΩ

12kΩ100nF

100nF

100nF

VDIP1

5V

LED1
LED2
USBD1P
USBD1M
AD0
GRD
AD1
AD2
AD3
AD4
AD5

3.3V

PROG
RESET
AC5
AC4
AC3
GRD
AC2
AC1
AC0
AC7
AC6

4

6

8

10

3

5

7

9

11

2
1

12 13
14
15
16
17
18
19
20
21
22
23
24

PIC16F877A (TQFP44)

RC7
RD4

RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3

NC
RC0

OSC2
OSC1
VSS
VDD
RE2
RE1
RE0
RA5
RA4

N
C
N
C
R
B
4

R
B
5

R
B
6

R
B
7

M
C
L
R

R
A
0

R
A
1

R
A
2

R
A
3

R
C
6

R
C
5

R
D
4

R
D
3

R
D
2

R
D
1

R
D
0

R
C
3

R
C
2

R
C
1

N
C

1
2
3
4
5
6
7

8
9
10
11

1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2

23
24
25
26
27
28
29
30
31
32
33

3
4
3
5
3
6
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4

9V

10kΩ

Figure 3.7 Schematic Diagram of the Handheld Device

37

Initially, a 5 V voltage regulator output is delivered through a low dropout

positive voltage regulator with a dropout voltage of 3.3 Volts at 500 mA Amperes

specifically for ZigBee supply pins. The input capacitance used suggests that a

stable DC voltage will be guaranteed as an input for the regulator.

The 100nF capacitor is also used as a ripple rejection that will guarantee a

stable DC voltage for the VCC of the ZigBee circuit.

It is specified in the datasheet of the voltage regulator that an output

capacitance of 22µF (electrolytic) or 10µF (tantalum) is required. In this case,

the designers used 22µF electrolytic capacitor as higher output capacitance will

improve the load transient response but have a maximum capacitance at 100µF.

A positive voltage regulator is used to transform 12 Volts, from two output

pins DataOut and Vcc of ZigBee, to 5 Volts that will be used for the supply pins

of VDIP1 USB interface.

38

Prototype Development

 This includes the materials and components used and its function in the

design.

List of Materials

Component Quantity Price per unit Total Amount

ZigbeePro 2 2,750 5,500

ADXL330 Accelerometer 1 650 650

Stethoscope 1 180 180

VDIP1 1 2,800 2,800

35V – 22 5 5 25

2 pins connector

male/female
3 10 30

24 Pins IC Socket 1 12 12

PIC 16F877A 2 320 640

40 Pins IC Socket 1 15 15

Crystal 3.92 1 30 30

Capacitor 33 uF 2 2 4

Capacitor .1 10 2.50 25

¼ W – 22k resistor 5 1 5

16V – 470 1 10 10

7805 1 30 30

7 pins connector
male/female

1 22 22

8 pins connector
male/female

1 25 25

RT9163 1 50 50

Max 232 1 50 50

16 pins IC socket 1 8 8

LE50 1 10 10

IN4148 1 3 3

¼ W- 3k Resistor 1 1 1

3 pins connector
male/female

1 12 12

Casing 1 180 180

9 V Battery 3 300 900

Battery Charger 1 250 250

Table 3.10 List of Materials

39

Accelerometer

 Accelerometer will be used to sense the pulse rate and gestures of

the user. The model of the accelerometer used is ADXL330. It is a small,

thin, low power, complete 3-axis accelerometer with signal conditioned

voltage outputs, all on a single monolithic IC. It measures acceleration

and can measure the static acceleration of gravity in tilt-sensing

applications, as well as dynamic acceleration resulting from motion,

shock, or vibration.

VDIP1

VDIP1 is ideal for developing and rapid prototyping which makes

this module suitable for incorporation into low and medium volume

finished product designs. It is a module that is an MCU to embedded dual

USB host controller IC device. This will be used in the design as the USB

interface which serves as the receiver.

PIC16F877

 A microcontroller was used to act as a computer to the design. This

includes processor core and the programmable input / output peripherals

with a maximum of 33 I/O pins. This will automatically control the device

that is dependent on how it is programmed using PicBasic Language.

40

ZigBee Wireless Technology

 ZigBee is intended to be simpler and less expensive than other

WPANs like Bluetooth. It is targeted at radio-frequency (RF) applications

that require a low data rate, long battery life, and secure networking.

This will act as the transceiver of the design because of its wide range

and low consumption, features that are suitable in the researcher‘s

design.

Improvised Stethoscope

 An improvised stethoscope is designed to be in the measurement

of the pulse rate in which a transducer converts the Korotkoff sounds into

electrical signals. The electrical signals are amplified and fed to a counter

in which the detected pulse rate per unit time is calculated and then the

result is displayed as a digital pulse rate.

Capacitor

 Capacitors are generally used in electronic circuits for blocking

direct current, allowing the alternating current to pass in filter networks

and for smoothing the output of power supplies. In this design different

values of capacitors used are 0.47µF, 470µF, 4.7µF, 22µF, 33pF, 100nF

and 0.1µF.

41

Operational Amplifiers

 Amplifiers are used to increase or augment low signals until

surpassing a threshold for use as a data. Two types of amplifiers are

used in conjunction with the Improvised Stethoscope LM741 and

TL072CN.

Diode

 Diode allows current in one direction and to block current in the

opposite direction. The diodes used are 1N4148.

Resistor

 Resistors determine the flow of current in a circuit. The resistors

used are 47kΩ, 2.2kΩ, 33kΩ, 56kΩ, 220Ω, 22kΩ, 12kΩ, and 10kΩ.

Battery

 Batteries are responsible for energizing the whole circuit. Batteries

used are two 9V for the wrist device, one 9V for the handheld device,

and two 1.5 V or AAA batteries for the Lap Indicator module.

42

Voltage Regulator

 Voltage regulators are used to sustain the voltage passing through

a circuit within an amount the regulator is built for. The voltage

regulators used are 78L05 and LM/805RC.

Push Button

 A push-button is a simple switch device for controlling some

aspects of a machine. It is used to activate or enable the design.

Crystal Oscillator

 Crystal oscillator‘s primary considerations are stability and accuracy

of the electronic circuit.

43

Chapter 4

TESTING, PRESENTATION AND INTERPRETATION OF DATA

 This chapter gives the details on how the system was tested in relation to

the design objectives.

Data Transmission Test

 Since the system is wireless, the gathered data such as the time the user

able to finish a lap and the pulse rate can be transmitted to the handheld device

using the Zigbee module.

Distance
(m)

Red LED Packet Transmission

0 On 6-Byte Data Written

100 On 6-Byte Data Written

200 On 6-Byte Data Written

300 On 6-Byte Data Written

400 On 6-Byte Data Written

500 On 6-Byte Data Written

600 On 6-Byte Data Written

700 On 8-Byte Data Written

800 On 6-Byte Data Written

900 On 6-Byte Data Written

1000 On 6-Byte Data Written

1100 On 6-Byte Data Written

1200 On 8-Byte Data Written

1300 On 6-Byte Data Written

1400 On 8-Byte Data Written

1500 On 9-Byte Data Written

1600 Blinking Failed to Write

Table 4.1 Data Transmission Test

44

 Table 4.1 deals on the transmission of the gathered data in relation to the

distance between the wearable device and the handheld device. The testing took

place in an oval wherein the trainee will run. The trainee should observe proper

posture of running. The handheld device can be placed within the range of the

Zigbee module given that it is line of sight. On the other hand, the lap indicator

module is fixed on the starting point and at the same time it will be on the

ending point. Once the user stops from running, the user must refrain from

swaying his/her hands in order for the device to measure the pulse rate and to

transfer the data to the handheld device. The distance of running will be varied.

The distance is then increased at an increment of 100 meters until it reached the

maximum distance the Zigbee module can cover. Above 1.5 km, the data could

not be transmitted to the handheld device.

 If red LED is on, it indicates that a connection is established between the

ZigBee devices. Otherwise, the red LED will continuously blink. Data Packet is

transmitted and written to the flash drive whenever the flash drive LED blinks,

otherwise transmission failed. The packet consists of the lap number and time,

but accepts more than 6 bytes whenever there are ASCII conversion errors.

Time Measurement Test

The purpose of this test is to determine if the gathered data are accurate.

Time is an essential factor in evaluating the speed of the user. The test will

measure the time to finish a lap using the microcontroller‘s timer interrupt and

45

lap indicator module. To compare the readings of the microcontroller, a stop

watch will be used.

Trial Lap

Stopwatch

Reading
 (s)

Microcontroller

Reading
 (s)

Percent

Difference
(%)

1 1 17.66 17 3.81

2
1 18.08 18 0.44

2 18.62 18 3.39

3

1 18.45 19 2.94

2 18.92 19 0.42

3 19.33 19 1.72

4

1 18.73 18 3.97

2 19.02 19 0.11

3 19.45 20 2.79

4 20.05 20 0.25

5

1 17.58 17 3.35

2 18.02 18 0.11

3 18.44 19 2.99

4 19.30 19 1.57

5 19.87 21 5.53

Table 4.2 Time Measurement Test

Average Percent Difference

 = 2.23 %

 Table 4.2 deals with the comparison of readings between the timer

interrupt of the microcontroller and a stop watch. The average percent

difference is 2.23% which is less than the set minimum required percent

difference by the group (5%). Therefore, it says that the time measurement

46

reading between the microcontroller and stop watch shows minimal discrepancy.

The discrepancy may be due to the reading of time in microcontroller which is

whole number while in stop watch is in decimal form.

Pulse Rate Measurement Test

The purpose of this test is to determine if the pulse rate reading of the

improvised stethoscope is accurate. Once the accelerometer senses that there is

no hand movement it then sends signal to the microcontroller to stop the timer

interrupt and the microcontroller will be the one to send signal to the improvised

stethoscope to start measuring the pulse rate. Since the pulse rate gathered will

be used in evaluating the individual‘s endurance along with the inputs namely

age and resting heart rate using Karvonen formula. To compare the readings of

the pulse rate measured by an improvised stethoscope, a digital blood pressure

device will be used. At this point, the comparison must be done immediately

after the trainee stops because pulse rate varies when a person is at rest or

moving. Also, it varies depending on the activity a person is performing.

47

Trial
Digital Blood

Pressure Device

(bpm)

Improvised
Stethoscope

(bpm)

Percent
Difference

(%)

1 94 98 4.17

2 108 102 5.71

3 101 103 1.96

4 98 100 2.02

5 106 104 1.90

Table 4.3 Pulse Rate Measurement Test

Average Percent Difference

=3.15 %

 Table 4.3 deals with the comparison of readings between a digital blood

pressure device and an improvised stethoscope. The average percent difference

is 3.15% which is less than the set minimum required percent difference by the

group (5%). The discrepancy may be due to some noise being measured by the

improvised stethoscope. The improvised stethoscope based its reading from the

sound that the pulse is producing so noise will be a factor if the improvised

stethoscope is not properly placed in the wrist. It should be air tight so that it

can properly hear the pulse rate.

48

Endurance Test

 To evaluate the individual‘s endurance, Karvonen formula is one of the

most effective methods used to calculate training heart rate. Prior to getting out

of bed in the morning, the trainee must take his pulse which is the resting heart

rate. Another element in finding the training heart rate zone is determining the

intensity level at which the trainee should exercise. As a general rule, the trainee

should exercise at an intensity between 50% - 85% of the heart rate reserve.

Given all the information needed, it can now pull the information together in the

Karvonen Formula:

Maximum Heart Rate = ((220 – Age – Resting Heart Rate) x 85%) + Resting

Heart Rate

Minimum Heart Rate = ((220 – Age – Resting Heart Rate) x 50%) + Resting

Heart Rate

49

Training
Day No.

Lap
Time
(s)

Resting
Heart
Rate

(bpm)

Karvonen Formula Pulse
Rate

(bpm)
Result Minimum

(bpm)
Maximum

(bpm)

1

1 42

65 132.5 179.75 168 Good
2 40
3 39
4 37
5 39

2

1 42

71 135.5 180.65 165 Good
2 36
3 36
4 40
5 34

3

1 37

76 138 181.4 166 Good
2 37
3 38
4 37
5 37

4

1 42

70 135 180.5 170 Good
2 38

3 34
4 35
5 36

5

1 33

79 139.5 181.85 159 Good
2 31
3 30
4 35
5 37

6

1 33

77 138.5 181.55 160 Good
2 36
3 29
4 28
5 31

7

1 31

81 140.5 182.15 166 Good
2 30
3 29
4 27
5 33

8

1 31

75 137.5 181.25 155 Good
2 28
3 29
4 30
5 30

9

1 30

67 133.5 180.05 162 Good
2 27

3 23
4 25
5 32

10

1 31

72 136 180.8 152 Good
2 31
3 24
4 26
5 25

11

1 26

83 141.5 182.45 138
Very

Good

2 23
3 24
4 28
5 31

12

1 25

85 142.5 182.75 141
 Very

Good

2 24
3 27
4 26
5 27

Table 4.4 Endurance Test

50

The Karvonen formula used in the test produces a maximum and

minimum heart rate in which the training heart rate is expected to be within that

range. In evaluation, any heart rate inside the Karvonen range is considered

good endurance for an individual. Assuming trainees put enough effort in their

trainings, heart rates less than the minimum are regarded as very good because

the training has a minimal effect on the individual. Heart rates that are greater

than the maximum are then considered as bad endurance.

Speed Test

To evaluate the speed of the trainee, the time gathered along with the

input distance will be used. Since time will be used as the parameter to evaluate

the speed of the trainee, the stopwatch and accelerometer reading will be used

to compare the accuracy of the speed. Given the time and distance, the speed

can be computed as:

Speed = Distance / Time

51

Trial
Distance

(m)

Stopwatch
Reading

(s)

Speed
(time reading

from Stopwatch)

(m/s)

Microcontroller
Reading

(s)

Speed
(time reading from

Microcontroller)

(m/s)

Percent
Difference

(%)

1 50 17.66 2.83 17 2.94 3.81

2 100 36.7 2.72 36 2.78 2.18

3 150 56.7 2.65 57 2.63 0.76

4 200 77.25 2.59 77 2.60 0.39

5 250 93.21 2.68 94 2.66 0.75

Table 4.5 Speed Computation Using the Time Reading from the

Stopwatch and the Microcontroller

Average Percent Difference

=1.58 %

Table 4.5 deals with the computed speed using the measured time of the

stopwatch and the microcontroller. Since the speed is dependent on the

measured time, therefore the speed is directly proportional to the measured

time. The average percent difference is 1.58% which is less than the set

minimum required percent difference by the group (5%). Therefore we can say

that the time measurement reading between the microcontroller and stop watch

shows minimal discrepancy.

52

Chapter 5

CONCLUSION AND RECOMMENDATION

This chapter lays the overall conclusion of the design by means of

answering the objectives of the design problem. In addition to this, it includes

the statements that suggest the need for supplementary studies addressing to

the delimitations of the design. The recommendation cites what else can be done

for the improvement of the design.

CONCLUSION

 The group was successful in designing the Wearable Device for Speed and

Endurance Assessment and Monitoring System using Improvised Stethoscope

and Accelerometer with USB Receiver via ZigBee Technology. With the aid of

improvised stethoscope and microcontroller‘s timer interrupt, it made possible for

the device to measure the heart rate and pace of the user respectively.

 A software program named ―SEAMS‖ (Speed and Endurance Assessment

and Monitoring System) was effectively programmed using the Visual Basic

Programming Language. This can assess and monitor the speed and endurance

as stated as one of the researcher‘s design objectives.

 The group was also successful in achieving a wireless transmission of data

using Zigbee Technology.

53

 Upon testing, the researchers could say that the Zigbee transmission is

limited only to a range of 1500 meters. Comparing the test results of the

improvised stethoscope and accelerometer with the digital blood pressure device

and stopwatch respectively, the difference was really small. Gathering those

results, it could be concluded that the design of the researchers made was

accurate and would be effective to assess and evaluate the individual‘s speed

and endurance.

RECOMMENDATION

 To be able the design to be more efficient, effective and flexible as

technology advances, further studies must need to be made. The following are

recommended by the group for more improvements of the design.

Further studies should be done to solve the delimitation of the project

with regards to having an output although the user is not exercising correctly.

Another device must also be studied that will serve as an alternative to the

infrared as a result for the user not to be close with the infrared just to be able

to send a signal to the handheld to write the data gathered on the USB.

The design can also be improved by adding a database on its application

software to help keep records of data for comparison of the results. The

54

database would allow flexibility by recording or deleting records of trainees for

future use or reference.

Lastly, it is recommended that the design may also use a sensor that will

be located on the finger of the user on the wearable device as an alternate

device to the improvised stethoscope. This can also give accurate measurement

of pulse rate because there are also veins in the finger tips that are capable of

producing a pulse.

55

REFERENCES
BIBLIOGRAPHY

Bookhout, Mark R., and Grenman, Philip. Principles of Exercise Prescription.

Woburn, MA: Butterworth-Heinemann. 2001

Charles S. Electronics principles and applications, 7th edition. USA. 2007.

Chen, Tseng, et al. ―Monitoring Athletes‘ Physiological Responses to Endurance

Training with Genomic-wide Expression Data‖ Citeseerx. September 2,

2007

Cheng, L. ―Practical Sensing for Sprint Parameter Monitoring‖ Sensor Mesh and

Ad Hoc Communications and Networks (SECON). June 2010

Cheng, L. Hailes, S. ―Analysis of Wireless Inertial Sensing for Athlete Coaching

Support‖ Global Telecommunications Conference. IEEE GLOBECOM. Dec.

4, 2008

Darcy Calabro, et al. ―Accuracy of Armband Monitors for Measuring Daily Energy

Expenditure in Healthy Adults‖ Medicine & Science in Sports & Exercise.

November 2010: pp 2134-2140

56

David Geer. ―Users Make a Beeline for ZigBee Sensor Technology‖ Computer.

Dec. 2005: p. 16

DE VRIES, SANNE I. et al. ―Evaluation of Neural Networks to Identify Types of

Activity Using Accelerometers‖ Medicine & Science in Sports & Exercise.

January 2011: pp. 101-107

En Wei, Huang Li, Chen Fu. ―Gesture Stroke Recognition Using Computer Vision

and Linear Accelerometer‖ Automatic Face & Gesture Recognition. 19

Sept. 2008

Fabio L. Zucatto, et al. ―ZigBee for Building Control Wireless Sensor Networks‖

Microwave and Optoelectronics Conference. IMOC. Nov. 1 2007: p. 511

Guang-zhong Yang. ―Sports Body Sensor Networks‖ Medical Devices and

Biosensors. June 2008: p.14

Jang, I.J. Park, W.B. ―Signal Processing of the Accelerometer on Handheld

Devices‖ Robot and Human Interactive Communication. November 2003:

p.139

57

Khalil and Sornanathan. ―Fitness monitoring system based on heart rate and

SpO2 level‖. November 2010

Moron, M.J. et al. ―A Wireless Monitoring System for Pulse-oximetry Sensors‖

Systems Communications. 17 Aug. 2005: p. 79

Ohyama, et al. ―Electric cart control system for adjustable pedal load using

dynamic-parallel-distributed-compensation method‖. October 2007

Redding, Morgan. Physical Fitness: Concepts and Applications. Dubuque, IA:

Kendall/Hunt Publishing. 2001

Young & Freedman, University Physics , 10th Ed. 2004

Youngbum Lee, et al. ―Implementation of Accelerometer Sensor Module and Fall

Detection Monitoring System based on Wireless Sensor Network‖

Engineering in Medicine and Biology Society. Aug. 2007: p. 2315

Zhenyu He, Lianwen Jin, et al. ―Gesture recognition based on 3D accelerometer

for cell phones interaction‖ Circuits and Systems. APCCAS. IEEE Asia

Pacific Conference. Dec. 3, 2008

58

APPENDIX A

Operation’s Manual

System Requirements:

 Minimum Recommended

Operating System Windows XP Service Pack 1 Windows 7

Hardware 2 GB HDD

192 MB RAM

1.6 GHz CPU

800 x 600 Display

50 GB HDD

1 GB RAM

4.0 GHz CPU

1280 x 1024 Display

59

Installation Procedure

 The following procedures must be followed carefully to ensure that the

installation process is successfully done:

1.) Install the accompanied software on the host PC before the training. The

device needed the software to record the information of the trainee and

also to evaluate the results gathered from the wearable device.

2.) Place the handheld device on a stable spot wherein it is within the 1.5 km

range of the Zigbee module. Be sure that it is line of sight.

60

User’s Manual

1.) Place the lap indicator module in a fixed position wherein it will be the

starting point and at the same time it will be the ending point.

2.) Put the wearable device on your wrist. Make sure that it is tight. Put the

battery clip on the batteries.

3.) Turn the handheld device on by putting the battery clip on the battery.

The red and orange LEDs will indicate if the device is turned on.

61

4.) Connect the flash drive to a USB port in the handheld device. A green LED

will indicate if the flash drive is recognized.

5.) Once the red LED stops from blinking, the user must press the button in

the wearable device to indicate the start of running.

62

6.) Once the user stops from running, the user must not make unnecessary

move for 20 seconds in order for the device to measure the pulse rate and

transfer the data to the handheld device. An orange LED will indicate that

the pulse rate was transmitted to the handheld device.

7.) To evaluate the speed and endurance of the user, connect the flash drive

to the host PC. Then run the accompanied SEAMs program which is

installed earlier in the host PC.

63

Troubleshooting Guides and Procedures

1.) Check if the red LED in the handheld device is lit. This will indicate if the

device is on. If not, make sure that the battery is fully charged.

2.) Check if the green LED in the handheld device is lit. This will indicate if

the flash drive is detected. If not, replace the flash drive.

3.) If the training graph could not evaluate the file in the software

application, this indicates that an error has occurred.

4.) If the handheld device is working properly but the orange LED did not

light, consider replacing the batteries in the wearable device.

64

APPENDIX B

Pictures of Prototype

Wrist Device

Handheld Device

65

Lap Indicator Module

Batteries and Charger

66

APPENDIX C

Program Listing

Microcontroller Source Code

 Heart Rate Measurement Source Code

Device 16F877A
Declare Xtal 20
Declare Watchdog = OFF
Declare FSR_CONTEXT_SAVE = On
Declare Adin_Res 8
Declare Adin_Tad 32_FOSC
Declare Adin_Stime 50
Remarks On
Symbol T0IE = INTCON.5 ' TMR0 Overflow Interrupt Enable
Symbol T0IF = INTCON.2 ' TMR0 Overflow Interrupt Flag
Symbol GIE = INTCON.7 ' Global Interrupt Enable
OPTION_REG = $03
On_Interrupt My_Int ' Enable software interrupts, and point
to interrupt handler
'TRISA = %00000001 ' Configure AN0 (PORTA.0) as an
input
Hserial_Baud = 9600'115200
Hserial_RCSTA = %10010000
Hserial_TXSTA = %00100100
Hserial_Clear = On
'LCD configuration
Declare LCD_DTPin PORTC.0
Declare LCD_RSPin PORTD.0
Declare LCD_ENPin PORTD.1
Declare LCD_Lines 2
Declare LCD_Interface 4
ADCON1 = $00 ' Set analogue input on PORTA.0
TRISA=$3F
TRISB=$0F
TRISC=$80
TRISD=$00
Dim xCtr As Word
Dim aRead As Byte
Dim MaxADC As Byte
Dim FTime As Float
Dim PRate As Word
Dim sADC[250] As Byte
Dim x As Byte
Dim ctr As Word
Dim b As Byte
 'On Interrupt
 TMR0= 0
 GIE = 1
 T0IE= 1
 sStartHere:
 GIE = 1
 T0IE= 1
 xCtr=0
 x=0
 MaxADC=0
 FTime=0
 ctr=0

67

 b=0
 PRate=0
 xCtr=0
 HSerOut["improper settings",13]
 sMain:
 'Junk Reference
 While 1
 If xCtr > 5000 Then
 If MaxADC < 90 Then 'Default 100
 GoTo sStartHere
 Else
 GoTo sNew2
 EndIf
 Else
 aRead = ADIn 0
 If MaxADC > aRead Then
 Else
 MaxADC=aRead
 EndI
 EndIf
 Wend
 'Check ADC Baseline 0
 sNew2:
 xCtr=0
 While 1
 aRead = ADIn 0
 If aRead <= 45 Then
 Break
 EndIf
 Wend
 MaxADC=MaxADC-10
 'Check ADC Max If Less Than aRead ADC
 sNew3:
 While 1
 aRead = ADIn 0
 If MaxADC < aRead Then
 xCtr=0
 Break
 EndIf
 Wend
 'Delay before reading
 sNew4:
 While 1
 If xCtr > 500 Then 'default 25
 Break
 EndIf
 Wend
 x=0
 ctr=0
 'Get Final Pulse Rate
 sFindADC:
 While 1
 aRead=ADIn
 sADC[x]=aRead
 x=x+1
 sRepeat:
 If ctr >=3 Then
 ctr=0
 If x >=250 Then
 Break
 EndIf
 GoTo sFindADC
 Else
 GoTo sRepeat

68

 EndIf
 Wend
 sSENDUART:
 GIE=0
 T0IE= 0
 sADC[0]=MaxADC
 For x=0 To 249
 'HSEROUT[sADC[x]]
 'HSEROUT[Dec3 sADC[x],32]
 Next x
 For x=1 To 249
 If sADC[x] >= MaxADC Then
 Break
 Else
 EndIf
 Next x
 If x = 249 Then
 Else
 'HSEROUT[Dec3 x,"OK"]
 EndIf
 'Compute Pulse Rate
 FTime = x * 2.4
 FTime = FTime + 400
 FTime = FTime / 1000
 FTime = 60 / FTime
 'Cls
 'Print at 1,1,"Pulse Rate"
 'Print at 2,1,Dec5 PRate
 HSerOut["HEARTRATE:",Dec3 FTime,13]
 GoTo sStartHere
 'Interrupt Routine
 My_Int:
 xCtr=xCtr + 1
 ctr=ctr+1
 PORTD.3=~PORTD.3
 T0IF=0
 Context Restore
End

 Lap Measurement Source Code

Remarks On
Unsigned_Dwords On
Device 16F877A
Declare Xtal 20
Declare Watchdog = OFF
Declare FSR_CONTEXT_SAVE = On

Declare Adin_Res 8
Declare Adin_Tad 32_FOSC
Declare Adin_Stime 50

Hserial_Baud = 9600
Hserial_RCSTA = %10010000
Hserial_TXSTA = %00100100
Hserial_Clear = On

On_Interrupt iHandler

Symbol INTF = INTCON.1 ' RB0 External Interrupt Flag
Symbol T0IF = INTCON.2 ' TMR0 Overflow Interrupt Flag

69

Symbol INTE = INTCON.4 ' RB0 External Interrupt Enable
Symbol T0IE = INTCON.5 ' TMR0 Overflow Interrupt Enable
Symbol GIE = INTCON.7 ' Global Interrupt Enable

Dim dsDelay As Word
Dim axCtr As Word
Dim lapCtr As Word
Dim testval As Word
Dim runF As Byte

Dim xCtr As Word
Dim ctr As Word
Dim sc As Word

Dim rndFlag As Byte, rndFClock As Word, sendFlag As Byte
Dim rBPM As Byte

rBPM = 90

GoTo preProg

iHandler:

If T0IF = 1 Then

 axCtr = axCtr + 1

 dsDelay = dsDelay + 1

 lapCtr = lapCtr + 1

 xCtr=xCtr + 1

 ctr=ctr+1

 rndFClock = rndFClock + 1

 If rndFClock > 17647 Then

 If rndFlag = 1 Then
 sendFlag = 1
 rndFlag = 2
 EndIf

 EndIf

 If rBPM > 105 Then

 rBPM = 90
 Else
 rBPM = rBPM + 1

 EndIf

 T0IF=0

EndIf

Context Restore

preProg:

Dim cARead1 As Byte
Dim cARead2 As Byte

70

Dim pARead1 As Byte
Dim pARead2 As Byte

Dim sADC[250] As Byte
Dim aRead As Byte
Dim MaxADC As Byte
Dim FTime As Float
Dim PRate As Word

Dim FTDec As Dword
Dim LapC As Byte

Dim x As Byte
Dim b As Byte

ADCON1 = $00
TMR0 = 0

OPTION_REG = $03
TRISA = $3F
TRISB = $F7
TRISC = $80
TRISD = $00
TRISE = $07

DelayMS 500

T0IF = 0
T0IE = 0
GIE = 0

'while 1 = 1

' hserout["U"]
' delayms 500

'wend

startHere:

lapCtr = 0
LapC = 0
runF = 1
rndFlag = 0
sendFlag = 0
PORTB.3 = 1
While 1 = 1

 If PORTB.7 = 0 Then

 DelayMS 50
 While PORTB.7 = 0
 Wend
 DelayMS 50

 'pARead1 = ADIn 1
 pARead2 = ADIn 2
 axCtr = 0
 PORTB.3 = 0
 GoTo startRunnin

 EndIf

Wend

71

startRunnin:

T0IF = 0
T0IE = 1
GIE = 1

 testval = 0

 While 1 = 1

 testval = Counter PORTB.0,40

 'caread1 = adin 1
 cARead2 = ADIn 2

 If cARead2 > pARead2 Then

 cARead1 = cARead2 - pARead2

 ElseIf cARead2 < pARead2 Then

 cARead1 = pARead2 - cARead2

 Else

 cARead1 = 0

 EndIf

 If cARead1 < 10 Then

 'not moving

 If axCtr > 2940 Then

 runF = 0

 If rndFlag = 0 Then

 sendFlag = 0
 rndFClock = 0
 rndFlag = 1

 EndIf

 GoSub heartRateMeter

 'HSerOut["GET HEARTRATE!",10,13]

 'stopBPM:
 'GoTo stopBPM

 EndIf

 Else

 'reset movement counter

 axCtr = 0

 'set current reading as previous

72

 pARead2 = cARead2

 EndIf

 If testval > 20 And runF = 1 Then

 'hit!
 GIE = 0

 LapC = LapC + 1

 HSerOut["PL", Dec3 LapC, ":", Dec5 lapCtr / 1176 ,10,13]

 lapCtr = 0
 GIE = 1

 EndIf

 Wend

GoTo startHere

heartRateMeter:

 sStartHere:

 GIE = 1
 T0IE= 1

 xCtr=0
 x=0
 MaxADC=0
 FTime=0
 ctr=0
 b=0
 PRate=0

 xCtr=0

 'HSerOut["improper settings",13]

 sMain:

 If sendFlag = 1 Then

 HSerOut["PHBPM:",Dec5 rBPM,10,13]
 sendFlag = 0
 GoTo eHRM

 EndIf

 'Junk Reference
 While 1 = 1

 If xCtr > 5000 Then

 If MaxADC < 90 Then 'Default 100

 GoTo sStartHere

 Else

 GoTo sNew2

73

 EndIf

 Else

 aRead = ADIn 0

 If MaxADC > aRead Then

 Else
 MaxADC=aRead

 EndIf

 EndIf

 Wend

 'Check ADC Baseline 0
 sNew2:

 xCtr=0

 While 1 = 1

 If sendFlag = 1 Then

 HSerOut["PHBPM:",Dec5 rBPM,10,13]
 sendFlag = 0
 GoTo eHRM

 EndIf

 aRead = ADIn 0

 If aRead <= 45 Then

 Break

 EndIf

 Wend

 MaxADC=MaxADC-10

 'Check ADC Max If Less Than aRead ADC
 sNew3:

 While 1 = 1

 If sendFlag = 1 Then

 HSerOut["PHBPM:",Dec5 rBPM,10,13]
 sendFlag = 0
 GoTo eHRM

 EndIf

 aRead = ADIn 0

 If MaxADC < aRead Then

74

 xCtr=0
 Break

 EndIf

 Wend

 'Delay before reading
 sNew4:

 While 1 = 1

 If xCtr > 500 Then 'default 250

 Break

 EndIf

 Wend

 x=0
 ctr=0

 'Get Final Pulse Rate
 sFindADC:

 While 1 = 1

 If sendFlag = 1 Then

 HSerOut["PHBPM:",Dec5 rBPM,10,13]
 sendFlag = 0
 GoTo eHRM

 EndIf

 aRead = ADIn 0

 sADC[x]=aRead

 x=x+1

 sRepeat:

 If ctr >=3 Then

 ctr=0

 If x >=250 Then

 Break

 EndIf

 GoTo sFindADC

75

 Else

 GoTo sRepeat

 EndIf

 Wend

 sSENDUART:

 GIE=0
 T0IE= 0

 sADC[0]=MaxADC

 For x=0 To 249

 'HSEROUT[sADC[x]]
 'HSEROUT[Dec3 sADC[x],32]

 Next x

 For x=1 To 249

 If sADC[x] >= MaxADC Then

 Break

 Else

 EndIf

 Next x

 If x = 249 Then

 Else

 'HSEROUT[Dec3 x,"OK"]

 EndIf

 'Compute Pulse Rate
 FTime = x * 2.4
 FTime = FTime + 400
 FTime = FTime / 1000
 FTime = 60 / FTime

 'Cls

 'Print at 1,1,"Pulse Rate"
 'Print at 2,1,Dec5 PRate

 FTDec = FTime * 100
 FTDec = FTDec / 100

 'HSerOut["H:",Dec3 FTime,13]

 HSerOut["PHBPM:",Dec5 FTDec,10,13]
 rndFlag = 2

76

 eHRM:

 Return
 'GoTo sStartHere

End

 Zigbee Source Code

Device 16F877A
Declare Xtal 4
Declare Watchdog = OFF
Declare FSR_CONTEXT_SAVE = On
All_Digital TRUE
Remarks On

'Declare LCD_DTPin PORTC.0
'Declare LCD_RSPin PORTD.0
'Declare LCD_ENPin PORTD.1
'Declare LCD_Lines 2
'Declare LCD_Interface 4

Hserial_Baud = 9600
Hserial_RCSTA = %10010000
Hserial_TXSTA = %00100100
Hserial_Clear = On

TRISA = $FF
TRISB = $0F
TRISC = $80
TRISD = $AC
TRISE = $07

Dim gCtr As Byte
Dim strVar[13] As Byte
Dim keytemp As Byte
Dim accelX As Byte
Dim accelY As Byte
Dim accelZ As Byte
Dim HRate As Byte
Dim lapSec As Word
Dim lapCtr As Byte

DelayMS 500

'Cls
'Print At 1,1,"INITIALIZING"
'Print At 2,1,"DEVICE.."

PORTD.0 = 0
PORTD.1 = 0
PORTC.0 = 0

strVar[12]=0

DelayMS 5000

77

DRV_ERROR:
'PORTC.0 = 1
'DelayMS 1000
'PORTC.0 = 0
'DelayMS 5000

 PORTD.0 = 0
 PORTD.1 = 0
 DelayMS 500

 PORTD.0 = 1
 PORTD.1 = 1
 DelayMS 500

 SerOut PORTD.6, 84, [13]
 SerIn PORTD.5,84, 2000, DRV_ERROR, [Wait(">")]
 'SerIn PORTD.5,84, 3000, DRV_ERROR, [Str strVar\3]
 'Print At 1,1,Str strVar\3
 GoTo startHere

 'Cls
 'Print At 1,1,"USB SOURCE"
 'Print At 2,1,"MISSING."
 DelayMS 500

startHere:

'Cls
'Print At 1,1,"SELECT GENDER"
'Print At 2,1,"1.MALE 2.FEMALE"

'While 1 = 1

' GoSub myNumKeypad

' If keytemp = "1" Or keytemp = "2" Then

' Break

' EndIf

'Wend

'Cls
'Print At 1,1,"AGE:"

'gCtr = 0

'While gCtr < 2

' GoSub myNumKeypad

' If keytemp <> "*" And keytemp <> "#" Then

' gCtr = gCtr + 1
' Print At 1, gCtr + 4, keytemp

' EndIf

'Wend

78

'DelayMS 2000

lapCtr = 0
lapSec = 0

 PORTD.0 = 1
 PORTD.1 = 1
 DelayMS 1500
 PORTD.0 = 0
 PORTD.1 = 0
 DelayMS 1500

 PORTD.0 = 1
 PORTD.1 = 1
 DelayMS 1500
 PORTD.0 = 0
 PORTD.1 = 0
 DelayMS 1500
 PORTD.0 = 0
 PORTD.1 = 1

'Cls
While 1 = 1

'HSerIn [Wait("X:"),Dec3 accelX,Wait("Y:"),Dec3
accelY,Wait("Z:"),Dec3 accelZ, Wait("H:"),Dec2 HRate]
'HSerIn [Wait(13),Str strVar\20]
'HSerIn [Wait("LAP"),Dec5 lapSec]

HSerIn [Wait("P"),Str strVar\12]
'lapCtr = lapCtr + 1

 If strVar[0]="L" Then

 PORTD.0 = 0
 PORTD.1 = 1

 ' lapCtr = lapCtr + 1
 ' Print At 1,1,"LAPS: ", Dec3 lapCtr
 ' Print At 2,1,"TIME: ",
strVar[5],strVar[6],strVar[7],strVar[8],strVar[9]

 Else

 ' Print At 1,1,"LAPS: ", Dec3 lapCtr
 ' Print At 2,1,"BPM : ",
strVar[5],strVar[6],strVar[7],strVar[8],strVar[9]

 PORTD.0 = 1
 PORTD.1 = 0

 EndIf

 GoSub WriteData

Wend

hrOK:

79

'GoSub myNumKeypad

GoTo startHere

WriteData:

 SerOut PORTD.6,84, [13]
 SerIn PORTD.5,84, 1000, DRV_ERROR, [Wait(">")]

 SerOut PORTD.6,84, ["IPA",13]
 SerIn PORTD.5,84, 1000, DRV_ERROR, [Wait(">")]
 SerOut PORTD.6,84, ["OPW BPM.TXT",13]
 SerIn PORTD.5,84, 1000, DRV_ERROR, [Wait(">")]

 'SerOut PORTD.6,84, ["WRF 30",13]

 'SerOut PORTD.6,84,
["HR:",strVar[17],strVar[18],strVar[19]," BPM", " | "]
 'SerOut PORTD.6,84,
["X:",strVar[2],strVar[3],strVar[4],"Y:",strVar[7],strVar[8],strVar[
9],"Z:",strVar[12],strVar[13],strVar[14],13,10]

 SerOut PORTD.6,84, ["WRF 12",13]
 SerOut PORTD.6,84, [Str strVar\12]

 SerIn PORTD.5,84, 1000, DRV_ERROR, [Wait(">")]
 SerOut PORTD.6,84, ["CLF BPM.TXT",13]
 SerIn PORTD.5,84, 1000, DRV_ERROR, [Wait(">")]

 Return

myNumKeypad:

While 1 = 1

 PORTB.4=0
 PORTB.5=1
 PORTB.6=1

 If PORTB.0=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.0=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="1"
 Break

 ElseIf PORTB.1=0 Then

 DelayMS 100
 PORTB.7=1
 While PORTB.1=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="4"
 Break

80

 ElseIf PORTB.2=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.2=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="7"
 Break

 ElseIf PORTB.3=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.3=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="*"
 Break
 EndIf

 PORTB.4=1
 PORTB.5=0
 PORTB.6=1

 If PORTB.0=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.0=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="2"
 Break

 ElseIf PORTB.1=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.1=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="5"
 Break
 ElseIf PORTB.2=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.2=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="8"
 Break

 ElseIf PORTB.3=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.3=0
 Wend
 DelayMS 100
 PORTB.7=0

81

 keytemp="0"
 Break

 EndIf
 PORTB.4=1
 PORTB.5=1
 PORTB.6=0
 If PORTB.0=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.0=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="3"
 Break

 ElseIf PORTB.1=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.1=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="6"
 Break
 ElseIf PORTB.2=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.2=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="9"
 Break

 ElseIf PORTB.3=0 Then
 DelayMS 100
 PORTB.7=1
 While PORTB.3=0
 Wend
 DelayMS 100
 PORTB.7=0
 keytemp="#"
 Break

 EndIf
 PORTB.4=0
 PORTB.5=1
 PORTB.6=1

Wend

Return

End

82

Software Application Form Scripts

History Form

Imports System.IO

Imports System.Drawing

Public Class frmBrowse

 Dim g As Graphics

 'Definition for creating graphics in picture box.

 Dim DataPath As String =

My.Computer.FileSystem.SpecialDirectories.Temp & "\Trainings"

 Dim ListPath As String =

My.Computer.FileSystem.SpecialDirectories.Temp & "\Clients"

 Dim LapTime(255), LapHR(255), HRrest(255) As Single

 'Integer array with one decimal place

 Dim Pos As Integer

 'Determines point of comparison in parsing

 Dim i, x As Integer

 'Declaration of subsitute variables

 Dim IntAdapt As Integer

 'Variable to align integers to the right side

 Dim x_scroll, y_scroll As Integer

 'Form variables for scroll bar movement

 Dim x_coord_new, x_coord As Integer

 Dim x_graph, y_graph, x_end, y_end, x_start, y_start As Single

 'Coordinates for plotting points

 Dim index, LargestTime, HeartRate, InitialDay, CurrentDay,

Training_Length As Single

 'Data-mapping variables

 Dim RestingHR, Age, AverageHR, Speed, Distance, TotalTime As Single

 'Heart Rate Computation Variables

 Dim YScroll As Boolean = False

 Dim response As MsgBoxResult

 'Variable to recieve the response in the message box

 Dim Graph_scale As Single

 Dim Graph_Length As Single

 Const x_allowance = 100, y_allowance = 75, drag_sensitivity = 50

 'Scales for graphing

 Private Sub Load_Graph()

 pcbGraph.Refresh()

 g = pcbGraph.CreateGraphics

 g.FillRectangle(Brushes.Black, -(pcbGraph.Location.X +

x_scroll), 0, x_allowance, LargestTime / graph_scale + y_allowance +

500)

 g.FillRectangle(Brushes.Black, x_allowance, LargestTime /

graph_scale + y_allowance, Graph_Length * Training_Length, 500)

 pcbGraph.BackColor = Color.White

 For Me.x = CurrentDay To 1 Step -1

 If File.Exists(DataPath & "\Day" & x & "_" & cmbName.Text &

cmbTraining.Text & ".end") = True Then

 UpdatePictureBox()

 Dim FileReader As StreamReader

 Dim MainStr, StrTemp As String

 FileReader = New StreamReader(DataPath & "\Day" & x &

"_" & cmbName.Text & cmbTraining.Text & ".end")

 MainStr = FileReader.ReadToEnd()

83

 FileReader.Close()

 index = 0

 Pos = 2

 While Pos <> 0

Search:

 Pos = InStr(MainStr, "L", CompareMethod.Text)

 If Pos = 0 Then

 Pos = InStr(MainStr, "H", CompareMethod.Text)

 If Pos = 0 Then

Invalid:

 MessageBox.Show("Invalid File Format",

"Deleting Training", 0, _

 MessageBoxIcon.Exclamation,

0, 0, False)

 Dim DayHandler As New FileInfo(DataPath &

"\Day" & x & "_" & _

 cmbName.Text

& cmbTraining.Text & ".end")

 DayHandler.Delete()

 GoTo NextDay

 End If

 Pos = InStr(MainStr, ":", CompareMethod.Text)

 StrTemp = Mid(MainStr, Pos, 6)

 StrTemp = StrTemp.Trim(":")

 If IsNumeric(StrTemp) Then

 LapHR(x - 1) = StrTemp

 Else

 GoTo Invalid

 End If

 Pos = InStr(MainStr, "R", CompareMethod.Text)

 If Pos <> 0 Then

 MainStr = Mid(MainStr, Pos + 1)

 Pos = InStr(MainStr, ":",

CompareMethod.Text)

 StrTemp = Mid(MainStr, Pos, 4)

 StrTemp = StrTemp.Trim(":")

 If IsNumeric(StrTemp) Then

 HRrest(x - 1) = StrTemp

 End If

 End If

 Exit While

 End If

 Pos = InStr(MainStr, ":", CompareMethod.Text)

 StrTemp = Mid(MainStr, Pos, 6)

 StrTemp = StrTemp.Trim(":")

 IntAdapt = StrTemp

 If IntAdapt > 0 Then

 LapTime(index) = StrTemp

 ElseIf IntAdapt = 0 Then

 MainStr = Mid(MainStr, Pos + 1)

 GoTo Search

 ElseIf Not IsNumeric(StrTemp) Then

 GoTo Invalid

 End If

 MainStr = Mid(MainStr, Pos + 1)

 index += 1

 End While

84

 TotalTime = 0

 For Me.i = 0 To index - 1

 TotalTime += LapTime(i)

 If LapTime(i) > LargestTime Then

 LargestTime = LapTime(i)

 End If

 Next i

 If LargestTime > 5000 Then

 graph_scale = 10

 ElseIf LargestTime <= 5000 And LargestTime > 1000 Then

 graph_scale = 5

 ElseIf LargestTime <= 1000 And LargestTime > 500 Then

 graph_scale = 2

 ElseIf LargestTime <= 500 And LargestTime > 100 Then

 graph_scale = 1

 ElseIf LargestTime <= 100 And LargestTime > 50 Then

 graph_scale = 0.5

 ElseIf LargestTime <= 50 And LargestTime >= 0 Then

 graph_scale = 0.1

 End If

 Speed = Distance / (TotalTime / index)

 Speed = Math.Round(Speed, 2)

 Dim x_reference As Single

 x_reference = (Graph_Length * (x - 1)) + x_allowance

 x_graph = Graph_Length / (index)

 y_graph = LargestTime / graph_scale

 g.DrawString("Time", Font, Brushes.White, 13 -

(pcbGraph.Location.X + x_scroll), pcbGraph.Height / 2 - y_allowance)

 g.DrawString("(Seconds)", Font, Brushes.White, -

(pcbGraph.Location.X + x_scroll), pcbGraph.Height / 2 - 10)

 g.DrawString("Laps", Font, Brushes.White, x_reference +

 Graph_Length / 2 - 35, y_allowance +

LargestTime / graph_scale + 5)

 g.FillRectangle(Brushes.White, x_reference +

Graph_Length / 2 - 45, y_allowance + LargestTime _

 / graph_scale + 30, 50, 50)

 g.DrawString("Day " & x, Font, Brushes.Black,

x_reference + Graph_Length / 2 _

 - 40, y_allowance + LargestTime /

graph_scale + 35)

 g.FillRectangle(Brushes.Black, x_reference, 0, 150, 17)

 g.DrawString("Heart Rate = " & LapHR(x - 1) & "

beats/min", Font, Brushes.White, x_reference + 5, 1)

 g.FillRectangle(Brushes.Blue, x_reference, 17, 150, 17)

 g.DrawString("Resting HR = " & HRrest(x - 1) & "

beats/min", Font, Brushes.White, x_reference + 5, 18)

 g.FillRectangle(Brushes.Gold, x_reference, 34, 150, 17)

 g.DrawString("Speed = " & Speed & " m/s", Font,

Brushes.Black, x_reference + 5, 35)

 g.DrawString("0", Font, Brushes.White, 68 -

(pcbGraph.Location.X + x_scroll), y_allowance + y_graph - 5)

 Update_Graph()

 End If

NextDay:

 Next x

 End Sub

 Private Sub Update_Fields()

85

 Dim FileReader As StreamReader

 FileReader = New StreamReader(ListPath & "\" & cmbName.Text &

".end")

 FileReader.ReadLine()

 txtAge.Text = FileReader.ReadLine()

 Age = txtAge.Text

 FileReader.Close()

 Load_Graph()

 Karvonen()

 End Sub

 Private Sub UpdatePictureBox()

 pcbGraph.Height = y_graph + 125

 Me.Height = pcbGraph.Height + 180

 y_scroll = VerticalScroll.Value

 btnRefresh.Location = New Point(11, pcbGraph.Height + 63 -

y_scroll)

 btnZoomIn.Location = New Point(782, pcbGraph.Height + 63 -

y_scroll)

 btnZoomOut.Location = New Point(830, pcbGraph.Height + 63 -

y_scroll)

 btnBack.Location = New Point(370, pcbGraph.Height + 94 -

y_scroll)

 grpGraph.Location = New Point(12, 9 - y_scroll)

 lblDays.Location = New Point(122, 9 - y_scroll)

 txtDays.Location = New Point(125, 25 - y_scroll)

 lblCurrent.Location = New Point(252, 9 - y_scroll)

 txtCurrent.Location = New Point(255, 25 - y_scroll)

 lblAge.Location = New Point(321, 9 - y_scroll)

 txtAge.Location = New Point(324, 25 - y_scroll)

 lblEvaluation.Location = New Point(363, 9 - y_scroll)

 txtEvaluation.Location = New Point(366, 25 - y_scroll)

 lblName.Location = New Point(481, 9 - y_scroll)

 cmbName.Location = New Point(484, 25 - y_scroll)

 lblTraining.Location = New Point(672, 9 - y_scroll)

 cmbTraining.Location = New Point(675, 25 - y_scroll)

 lblDistance.Location = New Point(743, 9 - y_scroll)

 txtDistance.Location = New Point(746, 25 - y_scroll)

 pcbGraph.Location = New Point(pcbGraph.Location.X + x_scroll,

57 - y_scroll)

 If txtDays.Text <> Nothing Then

 Dim x_coordinate As Integer

 Training_Length = txtDays.Text

 x_coordinate = Graph_Length * Training_Length

 pcbGraph.Width = x_coordinate + x_allowance

 Me.Width = pcbGraph.Width + 40

 End If

 End Sub

 Private Sub AdaptInteger(ByVal ind)

 If LapTime(ind) < 1000 And LapTime(ind) >= 100 Then

 IntAdapt = 56

 ElseIf LapTime(ind) < 100 And LapTime(ind) >= 10 Then

 IntAdapt = 62

 ElseIf LapTime(ind) < 10 And LapTime(ind) >= 0 Then

 IntAdapt = 68

 ElseIf LapTime(ind) < 10000 And LapTime(ind) >= 1000 Then

 IntAdapt = 50

 Else

86

 IntAdapt = 44

 End If

 End Sub

 Private Sub Update_Graph()

 Dim pen As New Pen(Color.Red, 2)

 pen.DashStyle = Drawing2D.DashStyle.Dot

 g = pcbGraph.CreateGraphics

 For Me.i = 0 To index - 2

 x_start = (Graph_Length * (x - 1)) + x_allowance + (x_graph

* i)

 y_start = y_allowance + y_graph - (LapTime(i) /graph_scale)

 x_end = (Graph_Length * (x - 1)) + x_allowance + (x_graph *

(i + 1))

 y_end = y_allowance + y_graph - (LapTime(i + 1) /

graph_scale)

 If LapTime(i) Mod 5 = 0 Then

 AdaptInteger(i)

 g.DrawString(LapTime(i), Font, Brushes.White, IntAdapt

- (pcbGraph.Location.X + x_scroll), y_start - 5)

 End If

 If LapTime(i + 1) Mod 5 = 0 Then

 AdaptInteger(i + 1)

 g.DrawString(LapTime(i + 1), Font, Brushes.White,

IntAdapt - (pcbGraph.Location.X + x_scroll), y_end - 5)

 End If

 If rdbLine.Checked = True And rdbBar.Checked = False Then

 g.FillEllipse(Brushes.Red, x_start - 5, y_start - 5,

10, 10)

 g.DrawString(i + 1, Font, Brushes.Red, x_start - 4,

y_start - 15)

 g.FillEllipse(Brushes.Red, x_end - 5, y_end - 5, 10,

10)

 g.DrawString(i + 2, Font, Brushes.Red, x_end - 4, y_end

- 15)

 g.DrawLine(pen, x_start, y_start, x_end, y_end)

 ElseIf rdbBar.Checked = True And rdbLine.Checked = False

Then

 g.FillRectangle(Brushes.Green, x_start, y_start,

(x_graph / 2), (LapTime(i) / graph_scale))

 g.FillRectangle(Brushes.Green, x_end, y_end, (x_graph /

2), (LapTime(i + 1) / graph_scale))

 g.DrawString(i + 1, Font, Brushes.Red, x_start -

(x_graph / 20), y_start - 10)

 g.DrawString(i + 2, Font, Brushes.Red, x_end - (x_graph

/ 20), y_end - 10)

 End If

 Next i

 End Sub

 Private Sub Load_Training_Name()

 Dim FileReader As StreamReader

 FileReader = New StreamReader(ListPath & "\Index.end")

 cmbName.Items.Clear()

 While Not FileReader.EndOfStream

 cmbName.Items.Add(FileReader.ReadLine())

 End While

 FileReader.Close()

 cmbName.Text = cmbName.Items.Item(0)

87

 End Sub

 Private Sub Load_Training_Number()

 cmbTraining.Items.Clear()

 For Me.x = 1 To 32767

 If File.Exists(DataPath & "\Day1_" & cmbName.Text & x &

".end") = True Then

 cmbTraining.Items.Add(x.ToString)

 Else

 Exit For

 End If

 Next x

 If cmbTraining.Items.Count <> 0 Then

 cmbTraining.Text = cmbTraining.Items.Item(0)

 End If

 End Sub

 Private Sub Load_Fields()

 If File.Exists(DataPath & "\Initial_" & cmbName.Text &

cmbTraining.Text & ".end") = True Then

 Dim FileReader As StreamReader

 FileReader = New StreamReader(DataPath & "\Initial_" &

cmbName.Text & cmbTraining.Text & ".end")

 FileReader.ReadLine()

 InitialDay = FileReader.ReadLine()

 Training_Length = FileReader.ReadLine()

 Distance = FileReader.ReadLine()

 txtDistance.Text = Distance

 FileReader.Close()

 CurrentDay = Today.DayOfYear - InitialDay

 If CurrentDay <> 1 Then

 txtDays.Enabled = False

 End If

 txtDays.Text = Training_Length

 txtCurrent.Text = CurrentDay

 Else

 MessageBox.Show("The selected client has no training record

yet", "Browse Client Record", 0, _

 MessageBoxIcon.Information, 0, 0, False)

 pcbGraph.Refresh()

 End If

 End Sub

 Private Sub Karvonen()

 Dim MaxHR, MinHR, TotalHR, index As Single

 index = CurrentDay

 While HRrest(index) = 0

 index -= 1

 RestingHR = HRrest(index)

 End While

 MinHR = (220 - Age - RestingHR) * 0.5 + RestingHR

 MaxHR = (220 - Age - RestingHR) * 0.85 + RestingHR

 i = 0

 While i <= Training_Length

 TotalHR += LapHR(i)

 i += 1

 End While

 AverageHR = TotalHR / i

 If AverageHR > MinHR And AverageHR < MaxHR Then

 txtEvaluation.Text = "Good"

88

 Else

 If AverageHR > MaxHR Then

 txtEvaluation.Text = "Bad"

 ElseIf AverageHR < MinHR Then

 txtEvaluation.Text = "Very Good"

 End If

 End If

 End Sub

 Private Sub frmBrowse_VisibleChanged(ByVal sender As System.Object,

ByVal e As EventArgs) Handles _

 MyBase.VisibleChanged

 Load_Training_Name()

 Load_Training_Number()

 End Sub

 Private Sub cmbName_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As EventArgs) Handles

cmbName.SelectedIndexChanged

 cmbName.Text = cmbName.SelectedItem.ToString

 cmbTraining.Items.Clear()

 For Me.x = 1 To 32767

 If File.Exists(DataPath & "\Day1_" & cmbName.Text & x &

".end") = True Then

 cmbTraining.Items.Add(x)

 Else

 Exit For

 End If

 Next x

 If cmbTraining.Items.Count <> 0 Then

 cmbTraining.Text = cmbTraining.Items.Item(0)

 Load_Fields()

 Update_Fields()

 Else

 MessageBox.Show("The selected Client has no training record

yet", "Browse Client Record", 0, _

 MessageBoxIcon.Information, 0, 0, False)

 pcbGraph.Refresh()

 cmbTraining.Text = Nothing

 End If

 End Sub

 Private Sub cmbTraining_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As EventArgs) Handles

cmbTraining.SelectedIndexChanged

 pcbGraph.Location = New Point(0, 57 - y_scroll)

 LargestTime = 0

 If cmbName.Text = Nothing Then

 MessageBox.Show("Select an existing Client in our database

before choosing a corresponding training", _

 "Browse Training Number", 0,

MessageBoxIcon.Information, 0, 0, False)

 Else

 cmbTraining.Text = cmbTraining.SelectedItem.ToString

 Load_Fields()

 Load_Graph()

 Karvonen()

 End If

 btnRefresh.Select()

 End Sub

89

 Private Sub Redraw_Graph()

 If cmbTraining.Items.Count = 0 Then

 pcbGraph.Refresh()

 ElseIf cmbTraining.Items.Count > 0 Then

 Load_Graph()

 Karvonen()

 End If

 End Sub

 Private Sub frmBrowse_move(ByVal sender As Object, ByVal e As

EventArgs) Handles Me.Move

 Redraw_Graph()

 End Sub

 Private Sub frmBrowse_MouseWheel(ByVal sender As Object, ByVal e As

EventArgs) Handles _

 Me.MouseWheel

 Redraw_Graph()

 End Sub

 Private Sub frmBrowse_FormClosing(ByVal sender As Object, ByVal e

As EventArgs) Handles _

 Me.FormClosing

 frmMain.Show()

 End Sub

 Private Sub frmBrowse_scroll(ByVal sender As Object, ByVal e As

EventArgs) Handles _

 Me.Scroll

 Redraw_Graph()

 End Sub

 Private Sub frmBrowse_SizeChanged(ByVal sender As Object, ByVal e

As EventArgs) Handles _

 MyBase.SizeChanged

 If Me.WindowState = FormWindowState.Maximized Then

 Redraw_Graph()

 End If

 End Sub

 Private Sub btnRefresh_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles _

 btnRefresh.Click

 Redraw_Graph()

 End Sub

 Private Sub btnMain_Click(ByVal sender As System.Object, ByVal e As

EventArgs)

 Me.Close()

 frmMain.Show()

 End Sub

 Private Sub rdbLine_click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles _

 rdbLine.Click

 Radio_Button()

 End Sub

 Private Sub rdbBar_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles _

 rdbBar.Click

 Radio_Button()

 End Sub

 Private Sub Radio_Button()

 If File.Exists(DataPath & "\Day1_" & cmbName.Text &

cmbTraining.Text & ".end") = True Then

90

 Redraw_Graph()

 End If

 End Sub

 Private Sub btnBack_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles btnBack.Click

 Me.Close()

 frmMain.Show()

 End Sub

 Private Sub frmBrowse_Load(ByVal sender As System.Object, ByVal e

As EventArgs) Handles MyBase.Load

 Graph_Length = 200

 graph_scale = 0.1

 rdbLine.Select()

 btnRefresh.Select()

 VScroll = True

 End Sub

 Private Sub frmEndurance_MouseWheel(ByVal sender As System.Object,

ByVal e As MouseEventArgs) Handles MyBase.MouseWheel

 Graph_Length = Graph_Length + e.Delta / 10

 If Graph_Length < 200 Then

 Graph_Length = 200

 End If

 End Sub

 Private Sub pcbGraph_MouseMove(ByVal sender As System.Object, ByVal

e As MouseEventArgs) Handles pcbGraph.MouseMove

 If e.Button = MouseButtons.Left Then

 x_coord_new = MousePosition.X

 If x_coord_new > x_coord Then

 x_scroll = (x_coord_new - x_coord) / drag_sensitivity

 If pcbGraph.Location.X + x_scroll > 0 Then

 pcbGraph.Location = New Point(0, 57 - y_scroll)

 Exit Sub

 End If

 Load_Graph()

 ElseIf x_coord_new < x_coord Then

 x_scroll = (x_coord_new - x_coord) / drag_sensitivity

 If pcbGraph.Width < 1000 Then

 pcbGraph.Location = New Point(0, 57 - y_scroll)

 Exit Sub

 End If

 If pcbGraph.Location.X + x_scroll <= -(pcbGraph.Width -

900) Then

 pcbGraph.Location = New Point(-(pcbGraph.Width -

900), 57 - y_scroll)

 Exit Sub

 End If

 Load_Graph()

 End If

 End If

 End Sub

 Private Sub pcbGraph_MouseDown(ByVal sender As System.Object, ByVal

e As MouseEventArgs) Handles pcbGraph.MouseDown

 Cursor = Cursors.Hand

 x_coord = MousePosition.X

 End Sub

 Private Sub pcbGraph_MouseUp(ByVal sender As System.Object, ByVal e

As MouseEventArgs) Handles pcbGraph.MouseUp

91

 Cursor = Cursors.Default

 x_scroll = 0

 Load_Graph()

 End Sub

 Private Sub btnZoomIn_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnZoomIn.Click

 Graph_Length += 50

 Load_Graph()

 End Sub

 Private Sub btnZoomOut_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnZoomOut.Click

 Graph_Length -= 50

 If Graph_Length < 200 Then

 Graph_Length = 200

 End If

 Load_Graph()

 End Sub

End Class

Training Form

Imports System.IO

Imports System.Drawing

Public Class frmEndurance

 Dim g As Graphics

 'Definition for creating graphics in picture box.

 Dim DataPath As String =

My.Computer.FileSystem.SpecialDirectories.Temp & "\Trainings"

 Dim ListPath As String =

My.Computer.FileSystem.SpecialDirectories.Temp & "\Clients"

 Dim LapTime(100), LapHR(100), HRrest(100) As Single

 'Integer array with one decimal place

 Dim Pos As Integer

 'Determines point of comparison in parsing

 Dim i, x, train_no As Integer

 'Declaration of subsitute variables

 Dim IntAdapt As Integer

 'Variable to align integers to the right side

 Dim x_scroll, y_scroll As Integer

 'Form variables for scroll bar movement

 Dim x_coord, x_coord_new As Integer

 Dim x_graph, y_graph, x_end, y_end, x_start, y_start As Single

 'Coordinates for plotting points

 Dim index, LargestTime, HeartRate, InitialDay, CurrentDay,

Training_Length As Single

 'Data-mapping variables

 Dim RestingHR, Age, AverageHR, Speed, Distance, TotalTime As Single

 'Heart Rate Computation Variables

 Dim FileSelected As Boolean = False

 'Flag for determining when file is selected or not (0 if no and 1

if yes)

 Dim ofdGraph As New OpenFileDialog

 'Declaration for the dialog box to open files.

 Dim results As DialogResult

 'Variable to receive the response in the dialog box

 Dim response As MsgBoxResult

92

 'Variable to recieve the response in the message box

 Dim Graph_scale As Single

 Dim Graph_Length As Single

 Const x_allowance = 100, y_allowance = 75, drag_sensitivity = 50

 'Scales for graphing

 Private Sub btnOpen_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles _

 btnOpen.Click

 If txtAge.Text = Nothing Or txtName.Text = Nothing Then

 MessageBox.Show("Add or Select a Client in 'Client Info'

before selecting a file", _

 "Browsing File", 0,

MessageBoxIcon.Information, 0, 0, False)

 Me.Close()

 frmMain.Show()

 End If

 Check_Default()

 'Checks options if it has yet to be chosen

 results = ofdGraph.ShowDialog

 'Stores the result of the open file dialog box

 If results = DialogResult.OK Then

 'If activated option is "OK"

 If IO.File.Exists(DataPath & "\Day" & CurrentDay & "_" &

txtName.Text & train_no & ".end") = True Then

 'Checks if the Current Training Day already has an

existing graph copied to a file

 response = MessageBox.Show("You are about to replace

the existing Graph of this day. Continue?", _

 "Browsing file",

MessageBoxButtons.OKCancel, MessageBoxIcon.Warning, 0, 0, False)

 'Shows the message box for the replacement scenario

 If response = MsgBoxResult.Ok Then

 'If "OK" button is selected

 CopyFile()

 'Replace the existing with the one inputted on the

form

 SaveData()

 'Updates the reference for the length and first day

of training

 Load_Graph()

 'Draw the a graph from the current day down to the

first day

 Else

 Load_Graph()

 End If

 ElseIf CurrentDay > Training_Length And txtDays.Text <>

Nothing Then

 'When the current day is out of range of the recent

training coverage

 response = MessageBox.Show("Today has exceeded the

training length. Do you want to start a " & _

 "new training with the

selected file as your initial day?", "Browsing File", _

 MessageBoxButtons.YesNo,

MessageBoxIcon.Question, 0, 0, False)

 'Show the message box to prompt for a new training or

browse

93

 If response = MsgBoxResult.Yes Then

 'If "YES" option is selected

 CurrentDay = 1

 'New training means the current day is the first

day

 txtCurrent.Text = CurrentDay

 txtDays.Text = 1

 txtDays.Enabled = True

 'enables control of the textbox to further allow a

new entry

 For Me.x = 1 To 32767

 If File.Exists(DataPath & "\Initial_" &

txtName.Text & x & ".end") = False Then

 train_no = x

 Exit For

 End If

 Next x

 CopyFile()

 SaveData()

 Load_Graph()

 ElseIf response = MsgBoxResult.Cancel Then

 pcbGraph.Refresh()

 Else

 Load_Graph()

 'redraw all the recent training graphs for browsing

 End If

 ElseIf IO.File.Exists(DataPath & "\Day" & CurrentDay & "_"

& txtName.Text & train_no & ".end") = False Then

 'When current day has no existing graph

 CopyFile()

 'Copy graph to a new file

 SaveData()

 Load_Graph()

 'Draw the current graph up to the first day

 Else

 Load_Graph()

 End If

 End If

 End Sub

 Private Sub Clear_All()

 txtDays.Text = Nothing

 txtAge.Text = Nothing

 txtRest.Text = Nothing

 txtEvaluation.Text = Nothing

 txtName.Text = Nothing

 End Sub

 Private Sub Check_Default()

 If txtDays.Text <> Nothing Then

 IntAdapt = txtDays.Text

 End If

 If txtDays.Text = Nothing Or IntAdapt < 12 And txtDays.Enabled

= True Then

 'If training length field is blank

 MessageBox.Show("The minimum number of training days is

12", "Checking program defaults", _

 0, MessageBoxIcon.Stop, 0, 0, False)

 txtDays.Text = "12"

94

 End If

 End Sub

 Private Sub Invalid_Value(ByVal sender)

 If Not IsNumeric(sender.Text) And sender.Text <> Nothing Then

 'If input is not a number and is not empty

 MessageBox.Show("Only numerical inputs are required",

"Invalid Field Value", 0, _

 MessageBoxIcon.Warning, 0, 0, False)

 'Notify Client of the invalid input

 sender.Text = Nothing

 'Clears the corresponding field

 End If

 End Sub

 Private Sub SaveData()

 If txtDays.Text <> Nothing Or txtRest.Text <> Nothing Then

 If File.Exists(DataPath & "\Day" & CurrentDay & "_" &

txtName.Text & train_no & ".end") = False Then

 MessageBox.Show("Current Day has no graph to record

data", "Saving Training", 0, MessageBoxIcon.Information, _

 0, 0, False)

 Exit Sub

 End If

 Dim FileWriter As StreamWriter

 InitialDay = Today.DayOfYear - CurrentDay

 Training_Length = txtDays.Text

 FileWriter = New StreamWriter(DataPath & "\Initial_" &

txtName.Text & train_no & ".end")

 FileWriter.WriteLine(txtName.Text)

 FileWriter.WriteLine(InitialDay)

 FileWriter.WriteLine(Training_Length)

 FileWriter.WriteLine(Distance)

 FileWriter.Close()

 Load_Graph()

 Dim RestTemp, MainStr As String

 If txtRest.Text = Nothing Then

 Exit Sub

 End If

 Dim CharTemp(255) As Char

 Dim FileReader As StreamReader

 FileReader = New StreamReader(DataPath & "\Day" &

CurrentDay & "_" & txtName.Text & train_no & ".end")

 MainStr = FileReader.ReadToEnd()

 FileReader.Close()

 Pos = InStr(MainStr, "R", CompareMethod.Text)

 If Pos <> 0 Then

 FileReader = New StreamReader(DataPath & "\Day" &

CurrentDay & "_" & txtName.Text & train_no & ".end")

 FileReader.Read(CharTemp, 0, Pos - 1)

 FileReader.Close()

 FileWriter = New StreamWriter(DataPath & "\Day" &

CurrentDay & "_" & txtName.Text & train_no & ".end")

 FileWriter.Write(CharTemp, 0, Pos - 1)

 FileWriter.Close()

 End If

 If txtRest.TextLength = 2 Then

 RestTemp = "0" & txtRest.Text

 Else

95

 RestTemp = txtRest.Text

 End If

 FileWriter = New StreamWriter(DataPath & "\Day" &

CurrentDay & "_" & txtName.Text & train_no & ".end", True)

 FileWriter.Write("RestHR:" & RestTemp)

 FileWriter.Close()

 End If

 End Sub

 Private Sub CopyFile()

 Dim File As New FileInfo(ofdGraph.FileName)

 File.CopyTo(DataPath & "\Day" & CurrentDay & "_" & txtName.Text

& train_no & ".end", True)

 File.Delete()

 End Sub

 Private Sub Load_Graph()

 pcbGraph.Refresh()

 g = pcbGraph.CreateGraphics

 g.FillRectangle(Brushes.Black, -(pcbGraph.Location.X +

x_scroll), 0, x_allowance, LargestTime / Graph_scale + y_allowance +

500)

 g.FillRectangle(Brushes.Black, x_allowance, LargestTime /

Graph_scale + y_allowance, Graph_Length * Training_Length, 500)

 pcbGraph.BackColor = Color.White

 For Me.x = CurrentDay To 1 Step -1

 If File.Exists(DataPath & "\Day" & x & "_" & txtName.Text &

train_no & ".end") = True Then

 UpdatePictureBox()

 Dim FileReader As StreamReader

 Dim MainStr, StrTemp As String

 FileReader = New StreamReader(DataPath & "\Day" & x &

"_" & txtName.Text & train_no & ".end")

 MainStr = FileReader.ReadToEnd()

 FileReader.Close()

 index = 0

 Pos = 2

 While Pos <> 0

Search:

 Pos = InStr(MainStr, "L", CompareMethod.Text)

 If Pos = 0 Then

 Pos = InStr(MainStr, "H", CompareMethod.Text)

 If Pos = 0 Then

Invalid:

 MessageBox.Show("Invalid File Format",

"Deleting Training", 0, _

 MessageBoxIcon.Exclamation,

0, 0, False)

 Dim DayHandler As New FileInfo(DataPath &

"\Day" & x & "_" & _

 txtName.Text

& train_no & ".end")

 DayHandler.Delete()

 GoTo NextDay

 End If

 Pos = InStr(MainStr, ":", CompareMethod.Text)

 StrTemp = Mid(MainStr, Pos, 6)

 StrTemp = StrTemp.Trim(":")

 If IsNumeric(StrTemp) Then

96

 LapHR(x - 1) = StrTemp

 Else

 GoTo Invalid

 End If

 Pos = InStr(MainStr, "R", CompareMethod.Text)

 If Pos <> 0 Then

 MainStr = Mid(MainStr, Pos + 1)

 Pos = InStr(MainStr, ":",

CompareMethod.Text)

 StrTemp = Mid(MainStr, Pos, 4)

 StrTemp = StrTemp.Trim(":")

 If IsNumeric(StrTemp) Then

 HRrest(x - 1) = StrTemp

 End If

 End If

 FileSelected = True

 Exit While

 End If

 Pos = InStr(MainStr, ":", CompareMethod.Text)

 StrTemp = Mid(MainStr, Pos, 6)

 StrTemp = StrTemp.Trim(":")

 IntAdapt = StrTemp

 If IntAdapt > 0 Then

 LapTime(index) = StrTemp

 ElseIf IntAdapt = 0 Then

 MainStr = Mid(MainStr, Pos + 1)

 GoTo Search

 ElseIf Not IsNumeric(StrTemp) Then

 GoTo Invalid

 End If

 MainStr = Mid(MainStr, Pos + 1)

 index += 1

 End While

 TotalTime = 0

 For Me.i = 0 To index - 1

 TotalTime += LapTime(i)

 If LapTime(i) > LargestTime Then

 LargestTime = LapTime(i)

 End If

 Next i

 If LargestTime > 5000 Then

 Graph_scale = 10

 ElseIf LargestTime <= 5000 And LargestTime > 1000 Then

 Graph_scale = 5

 ElseIf LargestTime <= 1000 And LargestTime > 500 Then

 Graph_scale = 2

 ElseIf LargestTime <= 500 And LargestTime > 100 Then

 Graph_scale = 1

 ElseIf LargestTime <= 100 And LargestTime > 50 Then

 Graph_scale = 0.5

 ElseIf LargestTime <= 50 And LargestTime >= 0 Then

 Graph_scale = 0.1

 End If

 If txtDistance.Text = Nothing Then

 Distance = 0

 Else

 Distance = txtDistance.Text

97

 End If

 Speed = Distance / (TotalTime / index)

 Speed = Math.Round(Speed, 2)

 Dim x_reference As Single

 x_reference = (Graph_Length * (x - 1)) + x_allowance

 x_graph = Graph_Length / (index)

 y_graph = LargestTime / Graph_scale

 g.DrawString("Time", Font, Brushes.White, 13 -

(pcbGraph.Location.X + x_scroll), pcbGraph.Height / 2 - y_allowance)

 g.DrawString("(Seconds)", Font, Brushes.White, -

(pcbGraph.Location.X + x_scroll), pcbGraph.Height / 2 - 10)

 g.DrawString("Laps", Font, Brushes.White, x_reference +

 Graph_Length / 2 - 35, y_allowance +

LargestTime / Graph_scale + 5)

 g.FillRectangle(Brushes.White, x_reference +

Graph_Length / 2 - 45, y_allowance + LargestTime _

 / Graph_scale + 30, 50, 50)

 g.DrawString("Day " & x, Font, Brushes.Black,

x_reference + Graph_Length / 2 _

 - 40, y_allowance + LargestTime /

Graph_scale + 35)

 g.FillRectangle(Brushes.Black, x_reference, 0, 150, 17)

 g.DrawString("Heart Rate = " & LapHR(x - 1) & "

beats/min", Font, Brushes.White, x_reference + 5, 1)

 g.FillRectangle(Brushes.Blue, x_reference, 17, 150, 17)

 g.DrawString("Resting HR = " & HRrest(x - 1) & "

beats/min", Font, Brushes.White, x_reference + 5, 18)

 g.FillRectangle(Brushes.Gold, x_reference, 34, 150, 17)

 g.DrawString("Speed = " & Speed & " m/s", Font,

Brushes.Black, x_reference + 5, 35)

 g.DrawString("0", Font, Brushes.White, 68 -

(pcbGraph.Location.X + x_scroll), y_allowance + y_graph - 5)

 Update_Graph()

 End If

NextDay:

 Next x

 End Sub

 Private Sub UpdatePictureBox()

 pcbGraph.Height = y_graph + 125

 Me.Height = pcbGraph.Height + 205

 y_scroll = VerticalScroll.Value

 btnOpen.Location = New Point(12, pcbGraph.Height + 77 -

y_scroll)

 btnRefresh.Location = New Point(108, pcbGraph.Height + 77 -

y_scroll)

 btnEvaluate.Location = New Point(602, 36 - y_scroll)

 btnBack.Location = New Point(426, pcbGraph.Height + 101 -

y_scroll)

 btnZoomIn.Location = New Point(852, pcbGraph.Height + 77 -

y_scroll)

 btnZoomOut.Location = New Point(900, pcbGraph.Height + 77 -

y_scroll)

 grpGraph.Location = New Point(13, 20 - y_scroll)

 lblDays.Location = New Point(123, 20 - y_scroll)

 txtDays.Location = New Point(127, 37 - y_scroll)

 lblCurrent.Location = New Point(253, 20 - y_scroll)

 txtCurrent.Location = New Point(256, 37 - y_scroll)

98

 lblRest.Location = New Point(322, 20 - y_scroll)

 txtRest.Location = New Point(325, 37 - y_scroll)

 lblAge.Location = New Point(482, 20 - y_scroll)

 txtAge.Location = New Point(482, 37 - y_scroll)

 lblEvaluation.Location = New Point(517, 20 - y_scroll)

 txtEvaluation.Location = New Point(520, 37 - y_scroll)

 lblName.Location = New Point(635, 20 - y_scroll)

 txtName.Location = New Point(635, 37 - y_scroll)

 lblDistance.Location = New Point(825, 20 - y_scroll)

 txtDistance.Location = New Point(828, 37 - y_scroll)

 pcbGraph.Location = New Point(pcbGraph.Location.X + x_scroll,

71 - y_scroll)

 If txtDays.Text <> Nothing Then

 Dim x_coordinate As Integer

 Training_Length = txtDays.Text

 x_coordinate = Graph_Length * Training_Length

 pcbGraph.Width = x_coordinate + x_allowance

 Me.Width = pcbGraph.Width + 128

 End If

 End Sub

 Private Sub AdaptInteger(ByVal ind)

 If LapTime(ind) < 10000 And LapTime(ind) >= 1000 Then

 IntAdapt = 50

 ElseIf LapTime(ind) < 1000 And LapTime(ind) >= 100 Then

 IntAdapt = 56

 ElseIf LapTime(ind) < 100 And LapTime(ind) >= 10 Then

 IntAdapt = 62

 ElseIf LapTime(ind) < 10 And LapTime(ind) >= 0 Then

 IntAdapt = 68

 Else

 IntAdapt = 44

 End If

 End Sub

 Private Sub Update_Graph()

 If FileSelected = True Then

 Dim pen As New Pen(Color.Red, 2)

 pen.DashStyle = Drawing2D.DashStyle.Dot

 g = pcbGraph.CreateGraphics

 For Me.i = 0 To index - 2

 x_start = (Graph_Length * (x - 1)) + x_allowance +

(x_graph * i)

 y_start = y_allowance + y_graph - (LapTime(i) /

Graph_scale)

 x_end = (Graph_Length * (x - 1)) + x_allowance +

(x_graph * (i + 1))

 y_end = y_allowance + y_graph - (LapTime(i + 1) /

Graph_scale)

 If LapTime(i) Mod 5 = 0 Then

 AdaptInteger(i)

 g.DrawString(LapTime(i), Font, Brushes.White,

IntAdapt - (pcbGraph.Location.X + x_scroll), y_start - 5)

 End If

 If LapTime(i + 1) Mod 5 = 0 Then

 AdaptInteger(i + 1)

 g.DrawString(LapTime(i + 1), Font, Brushes.White,

IntAdapt - (pcbGraph.Location.X + x_scroll), y_end - 5)

 End If

99

 If rdbLine.Checked = True And rdbBar.Checked = False

Then

 g.FillEllipse(Brushes.Red, x_start - 5, y_start -

5, 10, 10)

 g.DrawString(i + 1, Font, Brushes.Red, x_start - 4,

y_start - 15)

 g.FillEllipse(Brushes.Red, x_end - 5, y_end - 5,

10, 10)

 g.DrawString(i + 2, Font, Brushes.Red, x_end - 4,

y_end - 15)

 g.DrawLine(pen, x_start, y_start, x_end, y_end)

 ElseIf rdbBar.Checked = True And rdbLine.Checked =

False Then

 g.FillRectangle(Brushes.Green, x_start, y_start,

(x_graph / 2), (LapTime(i) / Graph_scale))

 g.FillRectangle(Brushes.Green, x_end, y_end,

(x_graph / 2), (LapTime(i + 1) / Graph_scale))

 g.DrawString(i + 1, Font, Brushes.Red, x_start -

(x_graph / 20), y_start - 10)

 g.DrawString(i + 2, Font, Brushes.Red, x_end -

(x_graph / 20), y_end - 10)

 End If

 Next i

 End If

 End Sub

 Private Sub Karvonen()

 Dim MaxHR, MinHR, TotalHR, index As Single

 index = CurrentDay

 While HRrest(index) = 0

 index -= 1

 RestingHR = HRrest(index)

 End While

 MinHR = (220 - Age - RestingHR) * 0.5 + RestingHR

 MaxHR = (220 - Age - RestingHR) * 0.85 + RestingHR

 i = 0

 While LapHR(i) <> 0

 TotalHR += LapHR(i)

 i += 1

 End While

 AverageHR = TotalHR / i

 If AverageHR > MinHR And AverageHR < MaxHR Then

 txtEvaluation.Text = "Good"

 Else

 If AverageHR > MaxHR Then

 txtEvaluation.Text = "Bad"

 ElseIf AverageHR < MinHR Then

 txtEvaluation.Text = "Very Good"

 End If

 End If

 End Sub

 Private Sub rdbLine_click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles _

 rdbLine.Click

 Radio_Button()

 End Sub

 Private Sub rdbBar_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles _

100

 rdbBar.Click

 Radio_Button()

 End Sub

 Private Sub Initialize_Data()

 If Directory.Exists(DataPath) = False Then

 Dim DirHandler As New DirectoryInfo(DataPath)

 DirHandler.Create()

 End If

 Dim FileReader As StreamReader

 If File.Exists(ListPath & "\Current.end") = True Then

 FileReader = New StreamReader(ListPath & "\Current.end")

 txtName.Text = FileReader.ReadLine()

 txtAge.Text = FileReader.ReadLine()

 FileReader.Close()

 End If

 For Me.x = 1 To 32767

 If File.Exists(DataPath & "\Initial_" & txtName.Text & x &

".end") = False Then

 If x > 1 Then

 train_no = x - 1

 ElseIf x = 1 Then

 train_no = x

 End If

 Exit For

 End If

 Next x

 If File.Exists(DataPath & "\Initial_" & txtName.Text & train_no

& ".end") = True Then

 FileReader = New StreamReader(DataPath & "\Initial_" &

txtName.Text & train_no & ".end")

 FileReader.ReadLine()

 InitialDay = FileReader.ReadLine()

 Training_Length = FileReader.ReadLine()

 Distance = FileReader.ReadLine()

 FileReader.Close()

 CurrentDay = Today.DayOfYear - InitialDay

 If CurrentDay <> 1 Then

 txtDays.Enabled = False

 End If

 txtDays.Text = Training_Length

 txtCurrent.Text = CurrentDay

 txtDistance.Text = Distance

 Else

 CurrentDay = 1

 txtCurrent.Text = CurrentDay

 End If

 If IO.File.Exists(DataPath & "\Day" & CurrentDay & "_" &

txtName.Text & train_no & ".end") = True Then

 FileSelected = True

 End If

 End Sub

 Private Sub Radio_Button()

 If File.Exists(DataPath & "\Day1_" & txtName.Text & train_no &

".end") = True Then

 Load_Graph()

 Else

101

 MessageBox.Show("You currently have no data to graph",

"Loading Graph", 0, _

 MessageBoxIcon.Stop, 0, 0, False)

 pcbGraph.Refresh()

 End If

 End Sub

 Private Sub frmEndurance_VisibleChanged(ByVal sender As

System.Object, ByVal e As EventArgs) Handles Me.VisibleChanged

 Initialize_Data()

 rdbLine.Select()

 Redraw_Graph()

 End Sub

 Private Sub frmEndurance_FormClosing(ByVal sender As Object, _

 ByVal e As FormClosingEventArgs) Handles Me.FormClosing

 If txtRest.Text <> Nothing Then

 RestingHR = txtRest.Text

 Else

 GoTo Skip

 End If

 If RestingHR < 50 Or RestingHR > 100 Then

 MessageBox.Show("Invalid Resting Heart Rate (must be within

50 and 100 beats/min)", "Saving Training", _

 0, MessageBoxIcon.Information, 0, 0, False)

 e.Cancel = True

 Exit Sub

 End If

Skip:

 response = MessageBox.Show("Do you want to save the current

training before closing?", "Closing Training Form", _

 MessageBoxButtons.YesNoCancel,

MessageBoxIcon.Question, 0, 0, False)

 If response = MsgBoxResult.Yes Then

 SaveData()

 frmMain.Show()

 ElseIf response = MsgBoxResult.No Then

 frmMain.Show()

 ElseIf response = MsgBoxResult.Cancel Then

 e.Cancel = True

 End If

 End Sub

 Private Sub Redraw_Graph()

 If File.Exists(DataPath & "\Day1_" & txtName.Text & train_no &

".end") = True Then

 Load_Graph()

 Else

 pcbGraph.Refresh()

 End If

 End Sub

 Private Sub frmEndurance_move(ByVal sender As Object, ByVal e As

EventArgs) Handles Me.Move

 Redraw_Graph()

 End Sub

 Private Sub frmEndurance_MouseWheel(ByVal sender As Object, ByVal e

As EventArgs) Handles _

 Me.MouseWheel

 Redraw_Graph()

 End Sub

102

 Private Sub frmEndurance_scroll(ByVal sender As Object, ByVal e As

EventArgs) Handles _

 Me.Scroll

 Redraw_Graph()

 End Sub

 Private Sub frmEndurance_SizeChanged(ByVal sender As Object, ByVal

e As EventArgs) Handles _

 MyBase.SizeChanged

 If Me.WindowState = FormWindowState.Maximized Then

 Redraw_Graph()

 End If

 End Sub

 Private Sub btnRefresh_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles _

 btnRefresh.Click

 Check_Default()

 If File.Exists(DataPath & "\Day1_" & txtName.Text & train_no &

".end") = True Then

 Load_Graph()

 Else

 MessageBox.Show("You do not have anything to reload",

"Reloading Graph", 0, _

 MessageBoxIcon.Stop, 0, 0, False)

 pcbGraph.Refresh()

 End If

 End Sub

 Private Sub btnEvaluate_Click(ByVal sender As System.Object, ByVal

e As EventArgs) Handles _

 btnEvaluate.Click

 If File.Exists(DataPath & "\Day1_" & txtName.Text & train_no &

".end") = False Then

 MessageBox.Show("No graph to get data from", "Evaluating

Endurance", 0, MessageBoxIcon. _

 Exclamation, 0, 0, False)

 Else

 Karvonen()

 End If

 End Sub

 Private Sub txtDays_TextChanged(ByVal sender As System.Object,

ByVal e As EventArgs) Handles _

 txtDays.TextChanged

 Invalid_Value(sender)

 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As System.Object,

ByVal e As EventArgs) Handles txtDistance.TextChanged

 Invalid_Value(sender)

 Load_Graph()

 End Sub

 Private Sub btnBack_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles btnBack.Click

 Me.Close()

 End Sub

 Private Sub frmEndurance_Load(ByVal sender As System.Object, ByVal

e As EventArgs) Handles MyBase.Load

 Graph_Length = 200

 Graph_scale = 0.1

 btnRefresh.Select()

103

 VScroll = True

 End Sub

 Private Sub frmEndurance_MouseWheel(ByVal sender As System.Object,

ByVal e As MouseEventArgs) Handles MyBase.MouseWheel

 Graph_Length = Graph_Length + e.Delta / 10

 If Graph_Length < 200 Then

 Graph_Length = 200

 End If

 End Sub

 Private Sub txtRest_TextChanged(ByVal sender As System.Object,

ByVal e As EventArgs) Handles txtRest.TextChanged

 Invalid_Value(sender)

 End Sub

 Private Sub pcbGraph_MouseMove(ByVal sender As System.Object, ByVal

e As MouseEventArgs) Handles pcbGraph.MouseMove

 If e.Button = MouseButtons.Left Then

 x_coord_new = MousePosition.X

 If x_coord_new > x_coord Then

 x_scroll = (x_coord_new - x_coord) / drag_sensitivity

 If pcbGraph.Location.X + x_scroll >= 0 Then

 pcbGraph.Location = New Point(0, 71 - y_scroll)

 Exit Sub

 End If

 Load_Graph()

 ElseIf x_coord_new < x_coord Then

 x_scroll = (x_coord_new - x_coord) / drag_sensitivity

 If pcbGraph.Location.X + x_scroll <= -(pcbGraph.Width -

900) Then

 pcbGraph.Location = New Point(-(pcbGraph.Width -

900), 71 - y_scroll)

 Exit Sub

 End If

 Load_Graph()

 End If

 End If

 End Sub

 Private Sub pcbGraph_MouseDown(ByVal sender As System.Object, ByVal

e As MouseEventArgs) Handles pcbGraph.MouseDown

 Cursor = Cursors.Hand

 x_coord = MousePosition.X

 End Sub

 Private Sub pcbGraph_MouseUp(ByVal sender As System.Object, ByVal e

As MouseEventArgs) Handles pcbGraph.MouseUp

 Cursor = Cursors.Default

 x_scroll = 0

 Load_Graph()

 End Sub

 Private Sub btnZoomIn_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnZoomIn.Click

 Graph_Length += 50

 Load_Graph()

 End Sub

 Private Sub btnZoomOut_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnZoomOut.Click

 Graph_Length -= 50

 If Graph_Length < 200 Then

 Graph_Length = 200

104

 End If

 Load_Graph()

 End Sub

End Class

Main Form

Imports System.IO

Public Class frmMain

 Dim ListPath As String =

My.Computer.FileSystem.SpecialDirectories.Temp & "\Clients"

 Private Sub btnTraining_Click(ByVal sender As System.Object, ByVal

e As EventArgs) Handles btnTraining.Click

 If File.Exists(ListPath & "\Current.end") = True Then

 Me.Hide()

 frmEndurance.Show()

 Else

 MessageBox.Show("Add and Select a Client from 'Clients

Form' before entering 'Trainings Form'", _

 "Opening Training Info", 0, MessageBoxIcon.Stop, 0, 0,

False)

 End If

 End Sub

 Private Sub btnBrowse_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnBrowse.Click

 If File.Exists(ListPath & "\Current.end") = True Then

 Me.Hide()

 frmBrowse.Show()

 Else

 MessageBox.Show("Add and Select a Client from 'Clients

Form' before entering 'History Form'", _

 "Opening Browse Trainings", 0, MessageBoxIcon.Stop, 0, 0,

False)

 End If

 End Sub

 Private Sub btnInfo_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles btnInfo.Click

 Me.Hide()

 frmInfo.Show()

 End Sub

 Private Sub btnSEAMs_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnSEAMs.Click

 Me.Hide()

 frmSEAMs.Show()

 End Sub

 Private Sub btnHelp_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles btnHelp.Click

 Me.Hide()

 frmHelp.Show()

 End Sub

 Private Sub frmMain_Load(ByVal sender As System.Object, ByVal e As

EventArgs) Handles MyBase.Load

 End Sub

End Class

105

Client Form

Imports System.IO

Public Class frmInfo

 Dim ListPath As String =

My.Computer.FileSystem.SpecialDirectories.Temp & "\Clients"

 Dim DataPath As String =

My.Computer.FileSystem.SpecialDirectories.Temp & "\Trainings"

 Dim gender, Client_name, temp As String

 Dim rest As Integer

 Private Sub Invalid_Value(ByVal sender)

 If Not IsNumeric(sender.Text) And sender.Text <> Nothing Then

 'If input is not a number and is not empty

 MessageBox.Show("Invalid Field Value", "Inputting on a

field", 0, _

 MessageBoxIcon.Warning, 0, 0, False)

 'Notify user of the invalid input

 sender.Text = Nothing

 'Clears the corresponding field

 End If

 End Sub

 Private Sub Check_Name(ByVal cmbName, ByVal txtName)

 If chkSelect.Checked = True Then

 Client_name = cmbName

 ElseIf chkSelect.Checked = False Then

 Client_name = txtName

 End If

 End Sub

 Private Sub List_Clients()

 Dim FileReader As StreamReader

 FileReader = New StreamReader(ListPath & "\Index.end")

 While Not FileReader.EndOfStream

 cmbName.Items.Add(FileReader.ReadLine())

 End While

 FileReader.Close()

 End Sub

 Private Sub Clear_Fields()

 cmbName.Items.Clear()

 cmbName.Text = Nothing

 lblCheck.Text = Nothing

 txtAge.Text = Nothing

 txtName.Text = Nothing

 txtContact.Text = Nothing

 rdbMale.Checked = False

 rdbFemale.Checked = False

 End Sub

 Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles btnAdd.Click

 Check_Name(cmbName.Text, txtName.Text)

 If Client_name = Nothing Or txtAge.Text = Nothing Or

(rdbMale.Checked = False And _

 rdbFemale.Checked = False) Then

 MessageBox.Show("Do not leave required fields (*) blank",

"Client's Info", 0, _

 MessageBoxIcon.Exclamation, 0, 0, False)

 Exit Sub

106

 End If

 If txtContact.TextLength <> 11 And txtContact.TextLength <> 7

And txtContact.TextLength <> 0 Then

 MessageBox.Show("Please follow the format of the contact

number as it will be used for verifications or inquiries", _

 "Client's Info", 0,

MessageBoxIcon.Information, 0, 0, False)

 txtContact.Text = "09273233227"

 Exit Sub

 End If

 If Client_name.ToString.Length < 9 Or InStr(Client_name, ",",

CompareMethod.Text) = 0 Then

 MessageBox.Show("Please follow the given format for your

name and make sure it's valid", "Client's Info", _

 0, MessageBoxIcon.Information, 0, 0, False)

 txtName.Text = Nothing

 cmbName.Text = Nothing

 Exit Sub

 End If

 If rdbMale.Checked = True Then

 gender = "Male"

 ElseIf rdbFemale.Checked = True Then

 gender = "Female"

 End If

 Dim FileWriter As StreamWriter

 Dim FileReader As StreamReader

 Dim MainStr As String

 If File.Exists(ListPath & "\" & Client_name & ".end") = True

Then

 MessageBox.Show("Client's Info Updated", "Updating Client",

0, _

 MessageBoxIcon.Information, 0, 0, False)

 Else

 MessageBox.Show("Client added to the list", "Adding

Client", 0, _

 MessageBoxIcon.Information, 0, 0, False)

 End If

 Try

 FileWriter = New StreamWriter(ListPath & "\" & Client_name

& ".end", False)

 FileWriter.Close()

 Catch ex As Exception

 MessageBox.Show(ex.Message & " Please enter a valid name",

"Writing to File", 0, MessageBoxIcon.Exclamation, _

 0, 0, False)

 txtName.Text = Nothing

 cmbName.Text = Nothing

 Exit Sub

 End Try

 FileWriter = New StreamWriter(ListPath & "\" & Client_name &

".end", False)

 FileWriter.WriteLine(Client_name)

 FileWriter.WriteLine(txtAge.Text)

 If txtContact.Text = Nothing Then

 FileWriter.WriteLine("n/a")

 Else

 FileWriter.WriteLine(txtContact.Text)

107

 End If

 FileWriter.WriteLine(gender)

 FileWriter.Close()

 FileReader = New StreamReader(ListPath & "\Index.end")

 MainStr = FileReader.ReadToEnd()

 FileReader.Close()

 FileWriter = New StreamWriter(ListPath & "\Index.end", True)

 If InStr(MainStr, Client_name, CompareMethod.Text) = 0 Then

 FileWriter.WriteLine(Client_name)

 End If

 FileWriter.Close()

 End Sub

 Private Sub btnClear_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnClear.Click

 Clear_Fields()

 List_Clients()

 End Sub

 Private Sub txtAge_TextChanged(ByVal sender As System.Object, ByVal

e As EventArgs) Handles txtAge.TextChanged

 Invalid_Value(sender)

 End Sub

 Private Sub txtRest_TextChanged(ByVal sender As System.Object,

ByVal e As EventArgs)

 Invalid_Value(sender)

 End Sub

 Private Sub txtContact_TextChanged(ByVal sender As System.Object,

ByVal e As EventArgs) Handles txtContact.TextChanged

 Invalid_Value(sender)

 End Sub

 Private Sub frmInfo_FormClosing(ByVal sender As System.Object,

ByVal e As EventArgs) Handles MyBase.FormClosed

 Clear_Fields()

 frmMain.Show()

 End Sub

 Private Sub frmInfo_Load(ByVal sender As System.Object, ByVal e As

EventArgs) Handles MyBase.Load

 Clear_Fields()

 If Directory.Exists(ListPath) = False Then

 Dim DirHandler As New DirectoryInfo(ListPath)

 DirHandler.Create()

 End If

 If File.Exists(ListPath & "\Index.end") = False Then

 Dim FileCreator As New FileInfo(ListPath & "\Index.end")

 FileCreator.Create()

 End If

 End Sub

 Private Sub btnSelect_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnSelect.Click

 Check_Name(cmbName.Text, txtName.Text)

 If Client_name = Nothing Or txtAge.Text = Nothing Or

(rdbMale.Checked = False And _

 rdbFemale.Checked = False) Then

 MessageBox.Show("Do not leave required fields (*) blank",

"Client's Info", 0, _

 MessageBoxIcon.Exclamation, 0, 0, False)

 Exit Sub

 End If

108

 If txtContact.TextLength <> 11 And txtContact.TextLength <> 7

And txtContact.TextLength <> 0 Then

 MessageBox.Show("Please follow the format of the contact

number as it will be used for verifications or inquiries", _

 "Client's Info", 0,

MessageBoxIcon.Information, 0, 0, False)

 txtContact.Text = "09273233227"

 Exit Sub

 End If

 If Client_name.ToString.Length < 9 Or InStr(Client_name, ",",

CompareMethod.Text) = 0 Then

 MessageBox.Show("Please follow the given format for your

name and make sure it's valid", "Client's Info", _

 0, MessageBoxIcon.Information, 0, 0, False)

 txtName.Text = Nothing

 cmbName.Text = Nothing

 Exit Sub

 End If

 Dim FileWriter As StreamWriter

 If File.Exists(ListPath & "\" & Client_name & ".end") = True

Then

 FileWriter = New StreamWriter(ListPath & "\Current.end",

False)

 FileWriter.WriteLine(Client_name)

 FileWriter.WriteLine(txtAge.Text)

 FileWriter.Close()

 Clear_Fields()

 chkSelect.Checked = False

 Me.Hide()

 frmEndurance.Show()

 Else

 MessageBox.Show("No such Client exists in our database",

"Selecting Client", 0, _

 MessageBoxIcon.Exclamation, 0, 0, False)

 End If

 End Sub

 Private Sub chkSelect_CheckedChanged(ByVal sender As System.Object,

ByVal e As EventArgs) _

 Handles chkSelect.CheckedChanged

 cmbName.Visible = chkSelect.Checked

 btnSelect.Enabled = chkSelect.Checked

 btnDelete.Enabled = chkSelect.Checked

 If chkSelect.Checked = True Then

 txtName.Visible = False

 Clear_Fields()

 List_Clients()

 ElseIf chkSelect.Checked = False Then

 txtName.Visible = True

 Clear_Fields()

 End If

 End Sub

 Private Sub cmbName_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As EventArgs) _

 Handles cmbName.SelectedIndexChanged

 Dim FileReader As StreamReader

 FileReader = New StreamReader(ListPath & "\" &

cmbName.SelectedItem.ToString & ".end")

109

 FileReader.ReadLine()

 txtAge.Text = FileReader.ReadLine()

 temp = FileReader.ReadLine()

 If temp = "n/a" Then

 txtContact.Text = Nothing

 Else

 txtContact.Text = temp

 End If

 gender = FileReader.ReadLine()

 FileReader.Close()

 If gender = "Male" Then

 rdbMale.Checked = True

 ElseIf gender = "Female" Then

 rdbFemale.Checked = True

 End If

 End Sub

 Private Sub txtName_TextChanged(ByVal sender As System.Object,

ByVal e As EventArgs) Handles txtName.TextChanged

 If txtName.TextLength < 7 And txtName.TextLength > 0 Then

 lblCheck.Text = Nothing

 Exit Sub

 ElseIf txtName.Text = Nothing Then

 lblCheck.Text = "Please enter a name"

 Exit Sub

 End If

 If File.Exists(ListPath & "\" & txtName.Text & ".end") = True

And _

 InStr(txtName.Text, ",", CompareMethod.Text) <> 0 And

InStr(txtName.Text, ".", CompareMethod.Text) = 0 Then

 lblCheck.Text = "Name is not available"

 ElseIf File.Exists(ListPath & "\" & txtName.Text & ".end") =

False And _

 InStr(txtName.Text, ",", CompareMethod.Text) <> 0 And

InStr(txtName.Text, ".", CompareMethod.Text) = 0 Then

 lblCheck.Text = "Name is available"

 ElseIf InStr(txtName.Text, ".", CompareMethod.Text) <> 0 Then

 lblCheck.Text = "Period (.) is not needed"

 ElseIf InStr(txtName.Text, ",", CompareMethod.Text) = 0 Then

 lblCheck.Text = "Don't forget the comma (,)"

 End If

 End Sub

 Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnDelete.Click

 Check_Name(cmbName.Text, txtName.Text)

 If File.Exists(ListPath & "\" & Client_name & ".end") = True

Then

 Dim FileRemover As New FileInfo(ListPath & "\" &

Client_name & ".end")

 FileRemover.Delete()

 Dim x, y As Integer

 Dim FileReader As StreamReader

 FileReader = New StreamReader(ListPath & "\Index.end")

 y = 0

 While Not FileReader.EndOfStream

 FileReader.ReadLine()

 y += 1

 End While

110

 FileReader.Close()

 FileRemover = New FileInfo(ListPath & "\Index.end")

 FileRemover.Delete()

 Dim FileWriter As StreamWriter

 FileWriter = New StreamWriter(ListPath & "\Index.end")

 For x = 0 To y - 1

 If cmbName.Items.Item(x) <> Nothing Then

 If cmbName.Items.Item(x) <> Client_name Then

 FileWriter.WriteLine(cmbName.Items.Item(x))

 End If

 End If

 Next x

 FileWriter.Close()

 If File.Exists(ListPath & "\Current.end") = True Then

 FileReader = New StreamReader(ListPath &

"\Current.end")

 temp = FileReader.ReadLine()

 FileReader.Close()

 If temp = Client_name Then

 FileRemover = New FileInfo(ListPath &

"\Current.end")

 FileRemover.Delete()

 End If

 End If

 For x = 1 To 32767

 If File.Exists(DataPath & "\Initial_" & Client_name & x

& ".end") = False Then

 Exit For

 ElseIf File.Exists(DataPath & "\Initial_" & Client_name

& x & ".end") = True Then

 FileRemover = New FileInfo(DataPath & "\Initial_" &

Client_name & x & ".end")

 FileRemover.Delete()

 End If

 Next x

 For x = 1 To 32767

 If File.Exists(DataPath & "\Day1_" & Client_name & x &

".end") = False Then

 Exit For

 End If

 y = 1

 While y <> 32767

 If File.Exists(DataPath & "\Day" & y & "_" &

Client_name & x & ".end") = False Then

 Exit While

 ElseIf File.Exists(DataPath & "\Day" & y & "_" &

Client_name & x & ".end") = True Then

 FileRemover = New FileInfo(DataPath & "\Day" &

y & "_" & Client_name & x & ".end")

 FileRemover.Delete()

 End If

 y += 1

 End While

 Next x

 MessageBox.Show("Client and associated records have been

deleted", "Deleting Client", 0, _

 MessageBoxIcon.Information, 0, 0, False)

111

 Else

 MessageBox.Show("No such Client exists in our database",

"Selecting Client", 0, _

 MessageBoxIcon.Exclamation, 0, 0, False)

 End If

 End Sub

 Private Sub btnBack_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles btnBack.Click

 Me.Close()

 frmMain.Show()

 End Sub

End Class

Help Form

Public Class frmHelp

 Private Sub btnBack_Click(ByVal sender As System.Object, ByVal e As

EventArgs) Handles btnBack.Click

 Me.Close()

 End Sub

 Private Sub Help_FormClosing(ByVal sender As System.Object, ByVal e

As EventArgs) Handles MyBase.FormClosing

 frmMain.Show()

 End Sub

End Class

SEAMs Form

Public Class frmSEAMs

 Private Sub btnBack_Click(ByVal sender As System.Object, ByVal e As

EventArgs)

 Me.Close()

 End Sub

 Private Sub frmSEAMs_FormClosing(ByVal sender As System.Object,

ByVal e As EventArgs) Handles MyBase.FormClosing

 frmMain.Show()

 End Sub

 Private Sub btnBack_Click_1(ByVal sender As System.Object, ByVal e

As EventArgs) Handles btnBack.Click

 Me.Close()

 frmMain.Show()

 End Sub

End Class

112

APPENDIX D

Data Sheet

o 78L05

o 7805

o ADXL330

o PIC16F877A

o RT9163T

o L072CN

o VDIP1

o Zigbee Pro

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

APPENDIX E

Software Development

Interface Design

Client Form (1) is the window interface for managing client information.

Client Group Box (2) encloses all input fields. Name label (3) is used to describe

the adjacent text box which is the Name Text Box (4) or Name Combo Box

(hidden behind Name Text Box). Name Text Box accepts any input and needs to

follow the format shown in the Name Label to avoid errors. The Name combo

box replaces Name Text Box whenever the Select Check Box (5) is checked and

automatically accesses the client record for information and indexing listed on

the items of the combo box. Altering Select Check Box immediately clears all

fields. Age Text Box (8) which is designated by the Age Label (7) accepts only

numeric values and has a maximum input of 3 digits. Contact Text Box (10)

1

5

6

12

11

4

8

13

9

7

3

21

20

19 18 17 16

15 14

10

2

165

attributed by Contact label (9) is similar to Age Text Box except that it only

accept 0, 7, and 10-digit long numbers which are empty, landline, and mobile

numbers, respectively. Gender group box (13) is responsible for keeping only

one radio button checked. The group box consists of the Male Radio Button (14)

and Female Radio Button (15) to indicate a male and a female genders,

respectively. Select Button (16) is enabled only when select check box is checked

which exports the fields to the corresponding text boxes in Training Form and

transfers the control to the Training Form after closing the Client Form (1). If the

name inputted exists, the Add Button (17) updates fields (8), (10), (14), and

(15) and adds the client whenever the inputted name does not exist. Clear

Button (18) resets all fields and loads existing clients on the name combo box.

Delete Button (19) is enabled only when select check button is checked to avoid

errors such as no client exists or name is not valid. Back Button (20) cancels the

activity in client form and returns back to Main Form.

1

8 7

6

5 4
3

2

166

The main form (1) is the root menu of the application and contains all

possible activities the user can make. Main Group Box (2) encloses the major

activities the user can possibly do and contains Client Button (3), Training Button

(4), and Browse Button (5). Help Group Box (6) encloses guides and information

of the software containing Help Button (7) and SEAMs Button (8).

 Help Form (1) is for giving instructions and guide about the major

activities to the user. Back Button (2) closes Help Form and returns to the root

menu.

1

2

167

 The SEAMs Form (1) is responsible for giving the function and

information of the software application. Back Button (2) exits SEAMs Form and

returns to the root menu.

The Training Form (1) is responsible for training information management. All

labels (5), (7), (9), (10), (13), (21), and (19) are used to describe the text box

1

2

1

20

19 21

22 14 15

13

12

10

11

9

8

7 5

6 4 3

23

16

18 17

2

1

24 25

168

adjacent to them. Line Radio Button (3) and Bar Radio Button (4) specifies the

type of graph displayed on the picture box (16) where the Line Radio Button is

the default graph type. Text Boxes Training Length (6), Current Day (8), Age

(12), and Name (22) are always disabled and gets data from the client record for

display. Resting Heart Rate Text Box (11) only accepts numeric values from 50 to

100. Distance Text Box (20) accepts numbers only. Graph Picture Box (16) can

be dragged by clicking and dragging to a direction and displays graph, resting

heart rate, laps, lap times, days, training heart rate, and speed information,

interactively. Open Button (17) uses Windows‘ open file dialog to search for the

data in the plugged-in USB flash drive. Refresh Button (18) redraws the picture

box whenever it is distorted. Back Button (23) prompts the user in saving the

training information and exits whenever necessary returning to the root menu.

Zoom In Button (24) is used to expand the length occupied by each day‘s graph

while Zoom Out Button (25) is used to compress the length of graphs.

 21

20

19

17

18 16

15 13

12

11

10

9

8

7

6

5

3 4

2

1

14

22 23

169

Browse Form (1) is similar to the Training Form except that the only enabled

fields are the Name Combo Box (14) and Training Number Combo Box (16).

Name Combo Box lists existing clients including those that do not have records

and notifies the user of the status of the client‘s records. Training Number

Combo Box gets all the existing training record of the selected client on the

Name Combo Box. The Graph Picture Box (19) also has a dragging capability to

provide interactive feel to the user. Back Button (21) exits the form without

prompting the user for saving and returns to the root menu.

170

BASIC DESIGN SPECIFICATIONS

Program Organization

Major Data Structures

Primitive Types

Boolean — Expressions that are used during a True or False definition.

 Characters — Data comprising characters and symbols.

Integers — Collection of signed numbers frequently used for counting

and indexing.

String — Sets of characters that are a major element in data storage.

Training Form

Browse Form

Trainee Form

Main Form

171

Single — numbers with decimal values required in drawing rectangles in

a picturebox.

Arrays

 Set of single decimal numbers to store lap times and heart rates during

the course of training.

Key Algorithms

 Indexed searching — searching all existing trainees using a file that

gathers names every time they are added.

 Unique counting — keeps track of the days passed during training and

the number of trainings a specific trainee has engaged in.

 Parsing — reads a specific data format to translate them into readable

information.

Major Objects

 Form (frm) – are main objects used hold the menus.

 Label (lbl) – are texts that describe the purpose of textboxes.

 Textbox (txt) – are fields that let user input strings or numbers.

Group Box (grp) – are objects containing several other objects to treat

contained objects as one.

172

Combo Box (cmb) – are objects which comprise of searched strings to

implement selection.

Radio Button (rdb) — are objects that serve as a Boolean for specified

fields.

Buttons (btn) – fields that serve as action confirmation during form

utilization.

Open File Dialog (ofd) - are objects that serve as a dialog box

whenever searching for a file.

Error Processing

 The software prevents the occurrence of errors but miniaturized windows

are shown to display errors or shortcomings that bypassed the error prevention

scheme. Most of the messages are required to be read and immediately reverses

the action whenever prompted.

Performance

 The program is incorporated with integrity using the Visual Basic

Programming Language. The overall robustness of the application is guaranteed.

Required fields are included to prevent data deficiency and a ‗n/a‘ symbol to the

contact number whenever left blank. Windows are closed whenever a new

window is requested and entered to release resources and maximize memory

used by the unused window.

173

DETAILED DESIGN

Screen Transition

174

175

176

177

178

179

PDL - Program Description Language

Main Form

On Click – Client Button (1)

 Load Client Form

On Click – Training Button (2)

 Check if a client is currently selected

 If yes

 Hide Form

 Load Training Form

 If no

 Cancel Loading

 Notify user that no client is selected

On Click – Training History Button (3)

 Check if a client is currently selected

 If yes

1 2 3

4

7 6

5

180

 Hide Form

 Load History Form

 If no

 Cancel Loading

 Notify user that no client is selected

On Click – Help Button (4)

 Hide Form

 Load Help Form

On Click – SEAM Button (5)

 Hide Form

 Load SEAM Form

On Click – Close Button (6)

 Close Main Form

 End Program

On Click – Minimize Button (7)

 Minimize Form

181

Help Form

On Click – Back Button (1) or – Close Button (2)

Close Form

 Return to Main Form

On Click – Minimize Button (3)

 Minimize Form

2 3

1

182

SEAM Form

On Click – Back Button (1) or – Close Button (2)

 Close Form

 Return to Main Form

On Click – Minimize Button (3)

 Minimize Form

3 2

1

183

Client Form

On Load – Client Form (1)

 Clear Fields()

1

6 7

5

4

3

13

12 11 10 9

8

2

14

184

{

Clear Name Text Box (2), Age Text Box (4), Contact Number Text

Box (5), and Name Combo Box Text and Items (13). Uncheck Male

Radio Button (6) and Female Radio Button (7),

 }

 Check if client record exists

 If not

 Create a client record

 Check if indexing record exists

 If not

 Create an indexing record

On Text Change – Name Text Box (2)

 Appends and suggests existing clients

 Check format of input

 Notify user of the status of the input in relation to the client record

On Text Change – Age Text Box (4)

 If input is not numeric

 Notify user

 Clear Age Text Box (4)

On Text Change – Contact Number Text Box (5)

 If input is not numeric

 Notify user

185

 Clear Contact Number Text Box (5)

On Selected Index Change – Name Combo Box (13)

Load Fields Age Text Box (4), Contact Number Text Box (5), Radio

Buttons Male (6) and Female (7)

On Click – Male Radio Button (6)

 Check Male Radio Button (6)

 Uncheck Female Radio Button (7)

On Click – Female Radio Button (7)

 Check Female Radio Button (7)

 Uncheck Male Radio Button (6)

On Click – Select Check Box (8)

 If Select Check Box (8) is Checked

 Show Name Combo Box (14)

 Hide Name Text Box (1)

 Enable Select Button (9)

 Enable Delete Button(12)

 Clear Fields()

 List Existing Clients in the Name Combo Box (13)

 {

 Read clients from indexed record

 Store them to Name Combo Box (13)

 if no client is currently indexed

186

 Clear Name Combo Box (13) Items

 }

If Select Check Box (8) is Unchecked

 Hide Name Combo Box (13)

 Disable Select Button (9)

 Disable Delete Button (12)

 Show Name Text Box (2)

 Clear Fields()

On Click – Select Button (9)

 If any of the fields with (*) is left blank

 Cancel Selection and notify user

 If Resting Heart Rate is not within the range 50 to 100

 Cancel Selection and notify user

if client exists in the record

 Register the client as the current selected client

 Clear Fields()

 Uncheck Select Check Box (8)

 Hide Form

 Load Training Form

If client does not exist

 Cancel selection and notify user

187

On Click – Add/Update Button (10)

 If any of the fields with (*) is left blank

 Cancel Add/Update and notify user

 If Resting Heart Rate is not within the range of 50 to 100

 Cancel selection and notify user

 If name is invalid

 Cancel Adding/Updating and notify user

 If not

 If client exists

 Update the client‘s record

 If not

 Add the client to the Record

 Index the added client

On Click – Reset Button (11)

 Clear Fields()

 List existing Clients in the Name Combo Box (13)

On Click – Delete Button (12)

Delete all items that has the client‘s name on it including the indexing

record and currently selected record then notify user.

On Click – Back Button (14)

 Close Form (1)

 Return to Main Form

188

On Horizontal Scroll – History Form (1)

 Relocate all elements except Graph Picture Box (11)

 Reload Training

On Vertical Scroll – History Form (1)

 Relocate all elements

 Reload Training

On Load – History Form (1)

 Auto-Click Refresh Button (12)
 Auto-Click Line Graph Radio Button (2)

 Query Indexed Clients
Store Clients to Name Combo Box (8)
Select the first indexed client

 Query Training Record of selected client
 Store training numbers in corresponding combo box (9)

On Click – Refresh Button (12)

 Load Currently Selected Training

 Evaluate Endurance using Karvonen Formula

On Selected Index Change – Name Combo Box (8)

1

11

13

12

10 9 8 7 6 5 4 2 3

14 15

189

 Query Training Record of selected client
 Store training numbers in corresponding combo box (9)

On Selected Index Change – Training Number Combo Box (9)

 Query Training Record
 If Training Record exists
 Load Training

Update Fields Training Length Text Box (4), Current Day Text Box
(5), Age Text Box (6), and Endurance Evaluation Text Box (7)

 If Training Record does not exist
 Invalidate Graph Picture Box (11)

 Notify User

On Distort – Graph Picture Box (11)

 Reload Training and Fields (4), (5), (6), and (7)

On MouseWheel – Graph Picture Box (11)

 If direction is upward

 Expand graph length

 Else if downward

 Compress graph length

On Click – Back Button (13)

 Close Form (1)
 Return to Main Form

On Click – Zoom In Button (14)

 Expand length of graph

On Click – Zoom Out Button (15)

 Compress length of graph

190

Training Form

On Horizontal Scroll – Training Form (1)

 Relocate all elements except Graph Picture Box (12)
 Reload Training

On Vertical Scroll – Training Form (1)

 Relocate all elements

 Reload Training

On Load – Training Form (1)

 Query Selected Client Record

Update Fields Training Length Text Box (4), Current Day Text Box (5),

Resting Heart Rate Text Box (6), Age Text Box (7), Name Text Box (10),
Track Distance Text Box (11)

Load Training

On Text Change – Training Length Text Box (4)

 If input is not numeric
 Notify user

 Clear Training Length Text Box (4)

1

15

13 14

12

11 10 8 7 9 5 4 3 2 6

16 17

191

On Text Change – Track Distance Text Box (11)

 If input is not numeric
 Notify user
 Clear Track Distance Text Box (11)

On Distort – Graph Picture Box (12)

 Reload Training and Update Fields

On Click – Refresh Button (14)

 If Training exists

 Reload Training

 If not

 Notify user and invalidate Graph Picture Box (12)

On Click – Browse Button (11)

 If Current Day is greater than Training Length
 Ask user if a new training is necessary

 If yes
 Create new training record

 If no
 Reload Training

 Else if Current day has an existing training
 Ask user if replace is necessary

 If yes
 Replace current day training with selected data
 If no

 Reload training w/o replacing

 Else if Current day has no training

 Create Training Record
 Load Created Record

On MouseWheel – Graph Picture Box (11)

 If direction is upward

 Expand graph length

192

 Else if downward

 Compress graph length

On Closing – Training Form (1)

 Ask user if saving is necessary

 If yes
 Save training data

 If no
 Close Form (1)
 Return to Main Form

 If cancel
 Return to Training Form (1)
 Reload Training

On Click – Zoom In Button (16)

 Expand graph length

On Click – Zoom Out Button (17)

 Compress graph length

193

TEST CASE

Add / Update Clients Form

Test Case Entry Condition
Expected

Output
Actual Output

Name is blank Check Availability Message Please enter a name

Name already exists Check Availability Message Name is not available

Name is valid Check Availability Message Name is available

Name is invalid Add / Update or Select Error Message
Client added to the list / Illegal
Characters in path. Please enter

a valid name.

Name is blank Add / Update or Select Error Message
Do not leave required fields (*)

blank

Age is blank Add / Update or Select Error Message

Do not leave required fields (*)

blank

Resting Heart Rate is
blank

Add / Update or Select Error Message

Do not leave required fields (*)
blank

Resting Heart Rate Not
in Range

Add / Update or Select Error Message
Invalid Resting Heart Rate (must

be within 50 to 100)

Gender is blank Add / Update or Select Error Message

Do not leave required fields (*)
blank

Delete Clients Form

Test Case Entry Condition
Expected

Output
Actual Output

Clients Name is blank Select Delete Error Message
No such Client exists in our

database

Client Name is invalid Select Delete Error Message Client and associated records

194

have been deleted

Trainings Form

Test Case Entry Condition
Expected

Output
Actual Output

No Data Selected Select Evaluate Error Message No graph to get data from

Length of training days

is blank or less than 12
Select Refresh Error Message

The minimum number of training

days is 12

No Data Selected Select Refresh Error Message
You do not have anything to

reload

Invalid Selected File

Format
Select Browse For File Error Message Invalid File Format

Invalid Input Training Length Error Message
Only numerical inputs are

required

Training Length

Exceeded
Select Browse For File Error Message

Today has exceeded the training

length. Do you want to start a

new training with the selected

file as your initial day?

History Form

Test Case Entry Condition
Expected

Output
Actual Output

Training Record of

client is empty

Client Name Combo Box

Selection
Error Message

The selected Client has no

training record yet

195

DEVELOPMENT STANDARDS

Control Naming

CONTROLS PREFIX SAMPLE

Form frm frmHelp

frmSEAMs

frmMain

frmInfo

frmEndurance

frmBrowse

Label lbl lblName

lblContact

lblAge

lblRest

Text Box txt txtName

txtContact

txtAge

txtRest

Group Box grp grpMain

grpHelp

grpGraph

Combo Box cmb cmbName

196

cmbTraining

Button

btn

btnAdd

btnBack

btnEvaluate

btnDelete

btnClear

btnTraining

btnBrowse

btnInfo

Picture Box pcb pcbGraph

Radio Button rdb rdbMale

rdbFemale

Check Box chk chkSelect

197

APPENDIX F

Specifications of the Digital Blood Pressure used in the Testing

Omron HEM-773AC Package Contents

Omron HEM-773AC blood pressure monitor, cuff, AC adapter, 4 "AA" batteries,

built-in storage case.

 IntelliSense™ Automatic Inflation and Deflation Technology

 Fills arm cuff with air, releases pressure when measurement is complete.

 Pressure valve preset switch allows the correct cuff inflation level to be

determined before measurement is taken

 2 person 21 memory recall date & time stamped for user

 Built-in compartment for convenient cuff storage

 Fuzzy Logic, automatically determines exact inflation level for each user

 Extremely easy to use

 Curved contour ComFit™ cuff provides user with a uniform fit to ensure

accuracy

 Cuff fits arms sizes 9" to 17" in circumference

 Systolic and diastolic blood pressure & pulse

 Features angled faceplate and extra large LCD panel for improved visibility

 Includes AC adapter

 Optional operation on 4 "AA" batteries (included)

