Lab 3: Implementing Functions with the Simon Board
CpE 214: Digital Engineering Lab II
Last revised: January 25, 2013 (CAC)
You will extend your knowledge of the original 8051 reference design to that of newer 80C51 derivatives. The Simon
Board, developed here at Rolla, which features a more modern 8051-based architecture will be introduced. The student
will learn in assembly language (ASM) how to configure the port modes, enable/disable Special Function Registers, learn

to debounce signals and perform a simple timing program. Upon completing the lab, a broader understanding of embedded
hardware implementations, and how to write software for them, is achieved.

0.1 Outline and Concepts

1. Intro to the Simon Board, clock sources
2. Port mode configurations

How the timers work, generating frequencies

- W

Writing the ASM program

5. Flashing and testing

1 Intro to the Simon Board, clock sources

The Simon Board, pictured in Figure 1, will be used in your course projects, and sometimes make their way into other
lab/course/senior projects here in the department. In the 213 lecture, you spend most of your time learning the generalized
features/functions of the original 8051 reference design (and for good reason). However, one of the most common mistakes
that students typically make in their projects is to attempt to use certain special functions (that are hardware-specific to
the individual chip) with code configurations straight out of the textbook. Some things work exactly the same, and some
things don’t. In this lab you will learn how read a chip’s datasheet to determine this information: a critical skill you need to
develop as an ECE.

FIG. 1: Simon Board

What features does it have? What can it do?

4 LED’s, 4 push button inputs

Serial port for bidirectional communication and flashing of ROM

2 different oscillator clocks (7.3728MHz RC internal, 11.0592MHz PLL external).

External jumpers for PO, P1, and P2 buses, as well as XTAL, 3.3V and GND rails.

Philips LPC932A1, which features onboard Flash ROM, 2 GP timers, 12C interface, and 1 ded. serial port timer

e The Most Important Thing you need to be aware of: Clock oscillator options

In the 8051 context you're used to, there is a single oscillator, and it drives all functions of the device. In modern designs
like the LPC932A1, this is not the case. There is a buffet of options at your disposal to choose from. Typically for most
people, you never need to change from the default configurations at reset, but IT IS IMPORTANT TO KNOW WHAT ARE

THE DEFAULTS. The oscillator schematic for the Simon Board is shown below in Figure 2.

XTAL4 .| HIGH FREQUENCY
J MEDIUM FREQUENCY » RTC
XTAL2 < LOW FREQUENCY
|) osccik CCLK
» DIVM CPU
RC RCCLK [v
OSCILLATOR =]
(7.3728 MHz +1 %) PCLK
WATCHDOG > WOT
OSCILLATOR
+20% PCLK
(400 kHz *250) o] P]
ccu
TIMER 0 AND
TIMER 1 2C-BUS SPI UART (P8ILPCI32A1)

FIG. 2: Oscillator diagram taken from p.21 of datasheet

Take note of CCLK and PCLK. These are the two most important Clock lines. Both come from OSCCLK, which can

use the DIVM register to divide down (slow down) the clock frequency.

e CCLK goes to your main CPU functions: i.e. exectution of your ASM instructions in your routines

e PCLK is just CCLK/2, and is the clock provided to the special function Timers, and the Serial Port (UART), etc.

OSCCLK is chosen by a 4:1 MUX with the select lines determined by a few different registers. Let’s look at them briefly

in Figure 3.

FOSC2:0 RCCLK RTCS1:0 RTC clock source CPU clock source

on 0 00 High frequency crystal Intemal RC oscillator
01 Medium frequency crystal /DIVM
10 Low frequency crystal
1" Internal RC oscillator
/DIVM

FIG. 3: OSCCLK select bit options

FOSC2:0 is located in the flash bit register UCFG1. RCCLK is located in TRIM register, and RTCS1:0 is located in the
RTCCON register. All can be found in the datsheet if you need to look them up.

The Default Configuration

CCLK, RTC = INTERNAL RC OSCILLATOR/DIVM
We have preconfigured the Simon Board (in the flash bootloader) with the internal RC oscillator/DIVM as the CCLK
line. If you ever need to change it (unlikely), you can with the information above.

2 Port mode configurations

One area that is typically undercovered in the lecture is how to deal practically with port mode configurations. This requires
some basic electrical knowledge, none of which is difficult. For the Simon Board’s LPC932A1, every single Port (P0-P3) are
initialized upon reset as an input only, as shown in Figure 4.

input PORT

data . PIN
glitch rejection

FIG. 4: Input only default for PO-P3

However, many times you want to work with the LED, for example. This is going to require some form of output mode
for these pins (P2.7-2.4). There are two possiblities to achieve this, Bi-directional mode and Open drain mode.

e Let’s look at Open Drain mode first in Figure 5. If the Port bit (say P2.7) is set to a "0", then the NMOS transistor
provides a path to GND. The LED’s on the board are biased in such a way where this NMOS acts as a switch for them.
However the current is limited to the impedances in the KVL path.

PORT
PIN

port latch
data

glitch rejection
FIG. 5: Open Drain mode

e The other choice is Bi-directional. This is a popular choice, and probably what you will want to work with primarily
in your projects. It has the ability to be both an input, and an output pin. This is shown in Figure 6.

Vop
2 CPU P P very P)
CLOCK DELAY strong -I:weak «I:wea
PORT
PIN
port latch -
data =
input
data
glitch rejection

FIG. 6: Bi-directional mode

So what’s the catch to this mode? In a nutshell, you give up not being able to drive as much output current. Here is a
concise description of the 3 PMOS transistors from the datasheet:

e Quasi-bidirectional outputs can be used both as an input and output without the need to

reconfigure the port. This is possible because when the port outputs a logic high, it is
weakly driven, allowing an external device to pull the pin low. When the pin is driven low, it
is driven strongly and able to sink a large current. There are three pull-up transistors in the
quasi-bidirectional output that serve different purposes.

e One of these pull-ups, called the ‘very weak’ pull-up, is turned on whenever the port latch

for the pin contains a logic 1. This very weak pull-up sources a very small current that will
pull the pin high if it is left floating.

e A second pull-up, called the ‘weak’ pull-up, is turned on when the port latch for the pin

contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the
primary source current for a quasi-bidirectional pin that is outputting a 1. If this pin is
pulled low by an external device, the weak pull-up turns off, and only the very weak pull-up
remains on. In order to pull the pin low under these conditions, the external device has to
sink enough current to overpower the weak pull-up and pull the port pin below its input
threshold voltage.

e The third pull-up is referred to as the ‘strong’ pull-up. This pull-up is used to speed up

low-to-high transitions on a quasi-bidirectional port pin when the port latch changes from a
logic 0 to a logic 1. When this occurs, the strong pull-up turns on for two CPU clocks
quickly pulling the port pin high.

Will I ever need more current on the Simon Board?

For LED’s, and the Speaker (P1.7), a very small current is needed (microamps range), therefore Bi-directional mode is
just fine. The Serial Port (UART) is the only interface that typically needs more current, and that is easily rectified with an
alternate mode called Push-Pull.

e Push-Pull mode

Push-pull mode provides a continuous strong pull-up when the port pin has output a latched "1". This is shown in Figure
7. The "strong" meaning that the PMOS is very wide (thus having a smaller resistance), which allows via Voltage Divider
principle to drop more Voltage (and drive more current) through the load. Since the UART (serial port) typically requires
an external IC to convert 0 and VDD signals of our microcontroller into the RS-232 voltage signaling (which are higher
voltages), it is expected that more current is likely needed.

PORT
PIN

port latch N
data

input
prm
glitch rejection

FIG. 7: Push-pull mode for more current

How do I set the Modes?

This is pretty simple. There are two registers you need to work with to set a particular port to your given mode of choice:
PxM1, and PxM2. the x stands for the Port number. Figure 8 shows the Table from the datasheet for how to set the modes
to what you want. REMEMBER: ALL PORTS START AS INPUT ONLY.

PxM1.y PxM2.y Port output mode

0 0 Quasi-bidirectional

0 1 Push-pull

1 0 Input only (high-impedance)
1 1 Open drain

FIG. 8: Port Mode configuration bits

3 How the timers work, generating frequencies

We won’t cover intimately how the timers work. You will cover this in detail in the lecture. In short, there are two primary
modes that are frequently used:

e 16-bit mode, which uses two registers, THx, and TLx to load with the count value

e 8-bit auto reload mode. THx holds the load(reload) value, and TLx is the timer itself.

Once the timer values are loaded, and the timer is turned on, then the timer begins to count upward until it overflows
(in unsigned binary) to OH. When the overflow is detected, it throws the flag TFx.

This TFx can be periodically checked in your program to determine when it has overflowed. This can help us create very
tight delays, and thus generate actions that operate at given intervals/frequencies.

e TIMERS ON THE SIMON BOARD ARE CONFIGURED EXACTLY THE SAME AS THE REFER-
ENCE 8051.

Generating a Frequency
One of the first concepts you will learn is how to determine how long an instruction, or a timer’s tick, takes in time space.

Two variables:

1. Clock oscillator

2. Clock cycles per Machine Cycle. A Machine Cycle can be thought of as going through Fetch/Decode/Execute.

e THE SIMON BOARD’s LPC932A1 USES 2 CLOCK CYCLES/MACHINE CYCLE.

Square wave assumption: For the most pure frequency, it is assumed that you will be generating an action with a 50%
duty cycle. This is particular important when considering the signal processing, and electromagnetic effects in transmission
line circuits found on your typical PCB.

Suppose we have an action we’d like to do at a 5KHz rate. Let us take the two variables mentioned earlier, and do a unit
multiplication/division to determine what is needed:

Fosc clock cycles 1 machine cycle Y machine cycles .
= , or Z sec/machine cycle (1)

* =
sec X clock cycles sec

« A clock tick takes a single machine cycle.

Therefore, for a 5KHz action, you would need to perform it every 1/5000 seconds. IF YOU ARE GENERATING A
WAVE, YOU MUST COMPLEMENT THE SIGNAL EVERY HALF-PERIOD, or 1/10000 seconds.

Do I need 16-bit or 8bit auto-reload mode?

Good question. A typical rule is that low frequencies generally need the full 16-bits (since they are "slower") to delay long
enough. However in many cases, 8-bit auto reload is sufficient. Remember, from the previous section, PCLK is the oscillator
for the Timers, which by default is (7.3728MHz / 2). You need to work the math out to be certain.

4 Writing the ASM program

For your program, you need to use the Keil Microvision software. It is an assembler and compiler for the generalized 8051
platform (often called 80C51). Appendix C can be used as a reference for Keil, and below outlines a general walkthrough for
getting a new project going:

8.

Open Keil - > Project -> Create New Project

On Device 1D, choose Generic -> 8051

On the left hand side, Right-click on Targetl -> Target Options -> Output tab -> Check "Create Hex File"

on A51 Tab, uncheck "Define 8051 SFR’s". Don’t skip this step or you will get compiler redefinition errors!

Close out, and Then go to File - > New. Create a new file and save it in your project’s folder with a "filename.ab51"
extension.

On the left-hand side, right click on Source Group (under Targetl), and choose "Add Files"
Add your file you just saved. This is needed so it will be included in the compiler.

Finally, at the top of your file you need to include (just like in C) a header: #include <reg932.inc>

This file can be found on Blackboard, and needs to be copied into your project’s folder. Don’t add it to your source group
list in Keil itself.

PROGRAM REQUIREMENTS

1. Setup the Push buttons and LED’s to light up when their respective button below each is pushed. The Simon Board
schematic on Blackboard can be helpful for this.

2. Develop a way to debounce the push buttons (where the signal is only recognized a single time). You may need to
experiment with this to ensure reliability.

3. Each time a button is pressed, generate a square wave of 10KHz on the speaker P1.7. You can use any timer mode.
Your textbook can also be useful for the Timer portion for examples.

NOTE THAT THE BUTTONS AND LED’S ARE ACTIVE LOW.

5 Flashing and testing

For flashing your hex file that you have generated from your compiled code, you will need to use the Flash Magic software.
Connect the RS-232 cable to the serial ports on the Simon Board and the PC, and then you are ready to flash. You will need
to browse/select your hex file, and use the settings as shown in Figure 9 below.

e Be sure to Move the Jumper on the Simon Board to ISP (instead of Run) first, before hitting start.

i, Flash Magic - NON PRODUCTION USE ONLY -0 x|

File ISP Options Tools Help

ODHRIBVE> » H O3

Step 1 - Communications Step 2 - Erase
COM Port: [COM 1 ~| |Erase block 0 (0x0000-0x03FF) =
Erase block 1 [0x0400-0:07FF)
Baud Rate: |?200 ﬂ Erase block 2 [0x0800-0x0BFF)
. Erase block 3 (0=0C00-0=0FFF)
Device: |33LPC33241 | |Erase block 4 [01000-0x1 3FF) -
v
- I None (ISF] ﬂ Erase block 5 [0x1400-0x17FF]
; [~ Erase all Flash
Oscillator Freq. (MHz2): I [V Erase blocks used by Hex File

Hex File: lS:\CpE 214_labs\ab74lab7. hey Browse... |

Modified: Tuesday, May 10, 2011, 5:22:55 PM more infa

[~ Yerify after programming | Block 0 Sec Bit0 ;' Start
[~ Fill unused Flash I” Block 0 Sec Bit 1 = |
[~ Gen block checksums I Block 0 Sec Bit 2
[~ Ezecute

On-Line training classes for microcontrollers and embedded networking and

Internetworking

www. esacademy. com/fag/classes »
l | o |

FIG. 9: Flash Magic settings

6 Questions (attach at end of your report)

1. Discuss what you should consider before choosing a port mode configuration (push-pull, bi-directional, open-drain,
input only).

2. List a few things you should always check before writing software routines for an 8051 (or any platform) embedded
device.

3. Discuss how you would implement a function that sends different tones through the speaker on the board, based upon
a given button press.

Reference: PSILPCI32A1 User Manual. (©) Koninklijke Philips Electronics N.V. 2004. All rights reserved.

