The final publication is available at Springer via http://dx.doi.org/10.1007/s11334-013-0201-3

Noname manuscript No.
(will be inserted by the editor)

Reusing models and properties in the analysis of similar

interactive devices

Michael D. Harrison - José Creissac Campos -

Received: date / Accepted: date

Abstract The paper is concerned with the compar-
ative analysis of interactive devices. It compares two
devices by checking a battery of template properties
that are designed to explore important interface char-
acteristics. The two devices are designed to support
similar tasks in a clinical setting but differ in a num-
ber of respects as a result of judgements based on a
range of considerations including software. Variations
between designs are often relatively subtle and do not
always become evident through even relatively thor-
ough user testing. Notwithstanding their subtlety these
differences may be important to the safety or usability
of the device. The illustrated approach uses formal tech-
niques to provide the analysis. This means that similar
analysis can be applied systematically.

Keywords MAL - IVY - medical devices -
ment - interactive systems

procure-

1 Introduction and motivation

The systematic analysis of properties of interactive be-
haviour using Modal Action Logic (MAL) and the IVY
tool has been reported in previous papers [7-9]. This
paper focuses on the modelling and analysis of two de-
vices developed by different manufacturers to support
the same tasks. The two devices manage limited dis-
plays and keys in different ways. The paper demon-

José Creissac Campos
Departamento de Informaética, Universidade do Minho and
HASLab, INESC TEC

Michael D. Harrison, Paolo Masci

School of Electronic Engineering and Computer Science,
Queen Mary University of London

E-mail: michael.harrison@eecs.qmul.ac.uk

Paolo Masci

strates a technique for comparing these user interfaces
based on systematic analysis. The technique relies on
the use of standard property templates. These devices
are analysed, by reusing components of the specifica-
tion that share common properties, and by systemat-
ically checking similar properties. The purpose of the
analysis is to demonstrate:

— the use of a formal analysis technique as a means of
comparison of the interfaces of two actual devices;

— particular mechanisms for the analysis based on the
common use of components of the specification.

The approach will be demonstrated by producing anal-
yses of two intravenous infusion pumps, the Alaris GP
[10] and the B.Braun Infusomat Space [3]. Although
specific devices are being explored the purpose is to
demonstrate the design and the judgements that can
be made rather than to rate the two designs.

The contribution of this paper is to demonstrate
the use of the IVY method and tools in producing de-
tailed specifications of the interactive behaviour of off-
the-shelf state of the art devices. These specifications
are approximately ten times the size of specifications
produced before and demonstrate the scale-up of these
techniques. The paper also shows how the analysis tech-
niques allow an exploration of subtle issues relating to
the interactive behaviour of the two devices, and points
towards a plausible method of comparison between in-
teractive system designs.

Rigorous assessment is made particularly relevant
by well documented concerns about the safety of infu-
sion devices in general (see for example [18)]). Failure to
set up infusions accurately and reliably can have seri-
ous consequences. A number of incidents with a range
of types of infusion pump indicate how the wrong ma-
terial, or the wrong volume at the wrong rate, may in



Michael D. Harrison et al.

rare cases have disastrous consequences for the patient
to whom the infusion was being administered (see, for
example [32]). Part of the problem is due to vulner-
abilities caused by interaction failure. Infusion pumps
are designed to be used in a variety of settings, from
general hospital wards, critical and intensive care, op-
erating rooms to accident and emergency rooms. Some
versions of the device are designed to be used at home
or to be administered by the patients themselves.

The two pumps considered in the paper allow num-
ber entry relating to the volume to be infused and rate
of infusion prior to starting the infusion process. Their
specifications are derived from an understanding of two
infusion pumps. The aim has been to produce specifica-
tions that are as accurate a snapshot of the devices as
possible. However the purpose has not been to demon-
strate in detail the characteristics of current versions as
a way of producing a consumers’ guide, but to demon-
strate the utility of the proposed approach for exploring
subtle design differences in a systematic way. Details
of the description were derived from a combination of
manuals ([10,3]), simulators, as well as some limited
access to the physical devices themselves. The Alaris
simulation is due to Patrick Oladimeji of Swansea Uni-
versity (http://cs.swan.ac.uk/~cspo/simulations)
based on the actual device and the other was provided
by B.Braun of a version of the Infusomat Space.

MAL and IVY were used to model the two devices.
The models are illustrated by providing and explain-
ing fragments of the MAL specification. These frag-
ments both demonstrate process and reuse, indicating
the scale of the undertaking that can be achieved us-
ing the MAL notation and the IVY tool. The paper
demonstrates the extent of commonalities between the
two specifications. It also demonstrates the common ap-
plication of properties of interactive behaviour while at
the same time showing that some properties were only
relevant to one of the devices. A common layer specifies
the attributes of the pump device, how the material is
infused and at what rate or over what period of time.
The paper briefly introduces specifications of the two
devices. It focuses on properties that can be used for the
purposes of comparison. After an overview of the back-
ground and related work (Section 2), the two infusion
pumps are introduced (Section 3). Section 4 explains
the three layers of the models and Section 5 provides
examples of how generic properties were used in the
verification of the model. Six main classes of properties
will be considered: mirroring of device processes (e.g.,
infusing, on hold) in the interface; mode clarity; feed-
back for critical actions; consistency of the interface;
checking ease of recovery; support for normative tasks.
A final section (Section 6) provides some discussion of

the comparison between the two devices and conclu-
sions.

2 Background and related work

Motivation for this analysis has been a concern with the
safety, particular in relation to human error, of medical
devices [24]. The U.S. Food and Drug Administration
(FDA) [18] is now encouraging the use of safety argu-
ments based on formal justifications to provide evidence
of the safety of medical devices. They have launched the
Generic Infusion Pump project to investigate solutions
to safety problems in infusion pump software. Their aim
is to develop a set of safety reference models that can
be used to assess safety of infusion pump software.

Techniques are required to help answer questions
about the design relevant to safety both in the context
of design and procurement. It is important to expand
the analysis to safety in relation to use of these de-
vices. In the context of procurement a number of anal-
ysis techniques have been proposed, for example cogni-
tive walkthrough [4], heuristic evaluation [32] and hu-
man reliability assessment techniques (SHERPA) [22].
The methods have not been adopted in practice be-
cause the cost of using them outweighs their perceived
benefit. Often price is the overwhelming factor in decid-
ing purchase. The manual and non-exhaustive nature of
the techniques referenced above means that alternatives
must be sought.

Empirical studies have been performed for investi-
gating how different design options may affect the out-
come of the task of programming a medical device.
Thimbleby and Oladimeji [26], for instance, used eye
tracking to investigate the ability of users to detect er-
rors on serial interfaces with 12-key numeric keypad
and incremental interfaces with chevron keys. Their re-
sults point out that incremental interfaces are likely to
facilitate error detection. They argue that this is po-
tentially linked to two factors. The first factor relates
to the users’ visual attention: for the incremental inter-
face, users direct their visual attention towards the dis-
play most of the time, while in the serial interface they
focus on the keys and usually omit checking the dis-
play. Because of this, device-dependent errors, like key
bounces!' due to defective buttons, are more likely to
be detected when using the incremental interface. The
second factor relates to syntax errors. With the serial
interface, users may accidentally enter invalid numbers
(e.g., 1.2.0 or 1..2), while such a possibility is designed
out in incremental interfaces. Invalid numbers need to

1A key bounce occurs when physically pressing a button
once causes a repeat of the same key.



Reusing models and properties in the analysis of similar interactive devices 3

be handled, and different manufactures generally imple-
ment different ad hoc solutions, with the net result that
devices deliver an unpredictable user experience [30,31].
The work described in this paper complements empiri-
cal studies such as this one. It is concerned with subtle
differences between apparently similar interfaces — as-
pects that would have been impractical to analyse in
any experiment.

Recent formal modelling work relevant to medical
devices has focused on a number of aspects of their
programming.

Bolton and Bass [5] used SAL [13] to analyse a
model of the Baxter iPump. The pump model is devel-
oped within a framework that takes into account user
goals, normative tasks (i.e., sequences of actions that
must be performed according to written documents,
such as user manuals or training material), and the op-
erational environment. Their main goal is to explore
the possibility of packaging an automated reasoning
tool in such a way that non-experts of formal meth-
ods, such as human factors engineering practitioners,
could (i) specify a realistic interactive system with in-
tuitive modelling constructs, and (ii) verify in a reason-
able amount of time a variety of basic normative tasks,
such as turning on/off the pump, stopping the infusion,
entering a volume to be infused. They performed the
verification on a simplified model of the pump, as the
state space of the full model exceeded the capabilities
of the model checker. This work shares with that paper
the concern that verification tools, when properly pack-
aged, can enable non-experts of formal methods to per-
form the verification of realistic systems. In particular,
a modelling architecture that enables model reuse can
help to reduce the perceived cost of building a formal
specification because representative models can be de-
fined and easily changed to support multiple analyses.
The work described in this paper differs from Bolton
and Bass because its main goal is to compare similar
designs of medical devices systematically. For this rea-
son a detailed model of the interactive behaviour of the
devices, limiting simplification to the minimum, is used.
The layered approach described in the paper proves ef-
fective for this, as it allows some scope for reuse and it
is possible to verify safety and reachability properties
on the full specification of device modes. Examples of
analyses will be explained in detail in section 5

Masci et at [25] analysed the interactive number en-
try systems of the B.Braun and Alaris pumps with the
Symbolic Analysis Laboratory (SAL) [13]. They devel-
oped the specification by reverse-engineering the real
devices from user manuals and manual exploration of
the real devices. They formalised a design principle, pre-
dictability [14], which concerns the ability of a user to

accurately predict the consequences of future interac-
tions from the observable persistent state of the device
(e.g., from what is shown on the device displays). Their
verification approach systematically compares a predic-
tion model, which specifies the expectations of the user,
and relates it to the specification of the actual number
entry system of the devices. The prediction model can
be thought of as a mental model [19] developed by an
idealised expert user that (i) knows perfectly the func-
tionalities of the device, but (ii) makes decisions only
on the basis of the current persistent state externalised
by the device. Their analysis is conservative — if the
ideal user fails to predict the effect of any action, then
real human users would have similar difficulties (they
can do no better than the idealised expert user). They
are able to perform the analysis with SAL on detailed
models that consider the full range of numbers handled
by the real devices. This work complements the anal-
ysis described in this paper in that while it focuses on
the details of the interactive number entry system while
the present paper focuses on the device modes.

Also relevant is the work of Ruksénas and Curzon
[28] who are concerned to model not only the device
but also to incorporate assumptions about the activities
and goals that are to be carried out based on general
cognitive principles. They have used their techniques to
replicate experimental data relating to an ambulance
dispatching system. In the paper two detailed models
of the interactive behaviour of devices are considered
and subjected to systematic analysis using a battery
of properties. There are no assumptions in this work
about cognitive processes. Assumptions about infusion
activities are made however by using an “activity layer”
(see also [15]) as is described in Section 4.5.

Some relevant research is also concerned with the
verification of medical software. For instance, researchers
at FDA and at the University of Pennsylvania have
recently used a model-driven engineering approach to
generate software for a prototype Patient-Controlled
Analgesic infusion pump [20]. Starting from a Simulink
Stateflow model, they translate the model manually
into a specification using timed automata, verifying safety
requirements with UPPAAL [23], and then synthesising
C code with the TIMES tool [1]. Examples of safety re-
quirements are: the pump shall issue an alert if paused
for more than ¢ minutes; each change in dose settings
must be confirmed before it is applied. The complete
list of the considered safety requirements can be found
at [2]. Our work complements these analyses being con-
cerned with interaction properties, such as mode clarity
and consistency of naming and function.



Michael D. Harrison et al.

3 The infusion pumps

The candidate devices for analysis are typical of a class
of devices that control a process over time. The user’s
activities in relation to the device include setting it up,
or modifying it, and monitoring it. Devices of this kind
have been the subject of previous work and, in partic-
ular, the techniques described in this paper have been
applied to a simplification of a flight management sys-
tem [6], an automobile based air conditioning system
[7] and another simpler version of the devices analysed
in this paper [8]. The analysis described here is consid-
erably larger than the previous work, the two models
considered are each ten times the size of the models
considered before. They provide detailed descriptions of
the interactive behaviour of the two devices. The aim
in this paper is to access relatively subtle properties of
more complicated devices. It is not possible to include
the specifications as appendices to the paper, however
they are made available at the Minho HCI specification
repository. The second difference is that the aim is to
provide a means of comparison between two real de-
vices both developed to support the same activity but
in which, for a variety of reasons, quite different design
decisions have been made.

The candidate devices for detailed analysis are the
Alaris GP infusion pump [10] (see Figure 1) and the
B.Braun Infusomat Space [3] (see Figure 2). In the fol-
lowing, the characteristics of the two pumps are illus-
trated along with the aims of the analysis.

3.1 Common features

Most infusion pumps have three basic states: infusing,
holding and off. In the infusing state the volume to be
infused (vtbi) is pumped into the patient intravenously
according to the infusion rate. While in the infusing
state the vtbi can be exhausted, in which case the pump
continues in KVO (Keep Vein Open) mode and sets off
an alarm. In holding state values and settings can be
changed.

3.2 The Alaris Pump

When the Alaris pump is in holding state values and
settings can be changed using a combination of func-
tion keys and chevron buttons (for the device layout,
see Figure 5). A subset of the features that can be
changed in holding state can also be changed when in-
fusing. Number entry is achieved by means of chevron
buttons. These buttons are used to increase or decrease
entered numbers incrementally. Depending on current

Fig. 2 The BBraun Infusomat Space Pump (from [3])

mode the chevron buttons can be used to change in-
fusion rate, volume to be infused and time, or alter-
natively allow the user to move between options in a
menu, for example in bag mode and in query mode.
Bag mode allows the user to select from a set of in-
fusion bag options, thereby setting vtbi to a predeter-
mined value. Query mode, which is invoked by pressing
the query button, generates a menu of set-up options.
These options depend on how the device is configured
by the manufacturer, and include the means of locking



Reusing models and properties in the analysis of similar interactive devices 5

ZHeparin

Dose: 9001

xHeparin
Rate: Smi

Sl B 5

Fig. 3 The B.Braun menu (from [3])

the infusion rate, or disabling the locking of it, or setting
vtbi and time rather than vtbi and infusion rate. There
is also the possibility of changing the units of volume
and infusion rate. The device allows movement between
display modes via three function keys (key!, key2 and
key3). Each function key has a display associated with
it indicating its present function.

3.3 The B.Braun Pump

The B.Braun pump provides a different mode structure
(see Figure 3). The different activities of entering vtbi,
infusion rate and time can be accessed by means of a
main menu that provides these activities as options.
Values are entered for the relevant pump attribute by
selecting the appropriate option and using four but-
tons. Two move the cursor left and right and two in-
crement and decrement the digit associated with the
cursor. When the number is 9 then up increments the
value to 0 and carries, but the cursor remains in the
same position and down has the opposite effect (see
Figure 4). There are fixed function keys: clear, ok, run.
The availability of these fixed function keys is indicated
in the current display.

3.4 The aims of the analysis

The focus of the analysis presented here is to consider
confusions that arise as a result of the mode structures
exhibited by these devices. Furthermore the analysis ex-
plores potential confusions relating to information that
is being displayed. The two devices above are compared

T - -
9[”:“ G%pecial Function
LI/ =

Fig. 4 Entering the rate on the B.Braun (from [3])

in terms of “software” aspects of the design. The rela-
tionship between the device and its environment, which
is of course extremely important, will not be considered
explicitly in this paper. Hence, for example physical as-
pects of the “giving set” used to connect the device to
the vein of the patient will not be considered nor will
any issues associated with electromagnetic interference.
These other aspects are also important in the design
and procurement of these devices but are not the focus
here.

There are a wide range of infusion pumps and sy-
ringe drivers in use in hospitals with a variety of inter-
face styles that differ in terms of data entry and the
ways in which modes are structured. This specific ex-
ample will trigger discussion of broader issues.

4 The model

As stated above, the specifications of the models dis-
cussed in this paper can be seen at the Minho HCI spec-
ification repository (http://hcispecs.di.uminho.pt).
The model is described in three layers. Two layers are
common between the two devices. The innermost “pump”
layer captures the properties of the pumping device that
is controlled by the user interface that is to be analysed.
The layer is described by a reusable module which is



Michael D. Harrison et al.

instantiated in each specification. The middle layer is
specific to the device being modelled and describes its
interface structure. The outermost layer, the activity
model, is described as part of the main module (to re-
duce state space overheads). This layer describes the
constraints on the device that relate to the way it is
used. It will assume the same activities in each device
that is being considered. These activities will be derived
from an understanding of the work that the clinician is
to carry out. This outer layer is not dependent on char-
acteristics of the device though it provides a mapping
into the middle layer thereby grounding it in the spe-
cific details of the device.

4.1 The modelling language

The models are specified in a logic based on Structured
MAL [29]. MAL (Modal Action Logic) is a (deontic)
modal logic that incorporates a notion of action. Struc-
tured MAL adds mechanisms for structuring the specifi-
cation to the basic MAL notation. In our case the notion
of interactor [16,27] is used to structure the specifica-
tion, borrowing the mechanisms from Structured MAL.
Interactors are modules that have a state (defined by
attributes) which is (partially) made available to the
user through some presentation medium, and a set of
actions (some available to users, some internal) that act
on that state.

MAL axioms will be used to define the behaviour
of interactors. In addition to the usual propositional
operators and actions the logic provides:

— a modal operator []- : [ac]expr is the value of expr
after the occurrence of action ac — the modal op-
erator is used to define the the effect of actions;

— aspecial reference event []: [Jexpr is the value of expr
in the initial state(s) — the reference event is used
to define the initial state(s);

— a deontic operator per: per(ac) meaning action ac
is permitted to happen next — the permission oper-
ator is used to control when actions might happen;

— a deontic operator obl: obl(ac) meaning action ac
is obliged to happen some time in the future. Note
that obl is not used in these specifications.

One difference between the logic used here and Struc-
tured MAL is in the treatment of the modal operator.
In Structured MAL the modal operator is applied to
whole propositions. There is no way to relate old and
new values of attributes directly. Old and new values
are often related in practice by the introduction of aux-
iliary variables. For example an action (tick) which in-
crements the value of attribute elapsedtime would be
defined in Structured MAL as:

elaspedtime = aux — [tick] (elapsedtime = auzx + 1)

where auz is an auxiliary variable introduced to carry
the value of elapsedtime into the next state (after tick).
To avoid these auxiliary variables we extended the def-
inition of the modal operator of [17] by using priming
to state explicitly which references to attributes should
be evaluated after the action. Hence the axiom above
can be written as:

[tick] (elapsedtime’ = elapsedtime + 1)

Parentheses will be omitted whenever the scope of the
modal operator can be inferred.

The modal operator makes it possible to prescribe
the effect of actions in the state but says nothing about
when actions are permitted or required to happen. For
this permission and obligation operators must be used.
As in [29], only the assertion of permissions and the
denial of obligations are considered:

— per(ac) — guard — action ac is permitted only if
guard is true;
— cond — obl(ac) — if cond is true then action ac

becomes obligatory.

Permissions are asserted therefore by default and obli-
gations are off by default. This makes it easier to add
permissions and obligations incrementally when writ-
ing specifications. For example, the two permission ax-
ioms per(ac) — guard! and per(ac) — guard2 together
yield: per(ac) — (guardl & guard2) (note that & is
used to denote logical and — | for logical or, and ! for
not). This logic is particularly appropriate for describ-
ing a system in which components can be reused.

The interactor presentation is defined by annotating
actions and attributes to show that they are perceiv-
able. The modality of the perceivable attribute/action
is given using further attributes. For example [vis] as-
serts that the attribute/action is visibly perceivable. In
addition if attached to an action it can be invoked by
the user. Additional annotations are introduced for fur-
ther modalities.

Attributes and action parameters are typed. Types
are represented as enumerations of the “key values” or
as subranges of integer:

types
Tenum = {a7 ba C}
Trange = 0..10

Interactors are composed through aggregation. For
example the pump interactor can be assumed within
the main interactor of the specification

interactor main
aggregates
pump via device

More details of MAL can be found in [6-8].



Reusing models and properties in the analysis of similar interactive devices 7

4.2 The pump layer

The inner layer describes the basic infusion process.
This process is captured in an invariant:

infusionrate > 0 — infusionrateaur = infusionrate
infusionrate > 0 — time = (vtbi/infusionrateaux)

infusionrate = 0 — time = 0 (1)

This invariant asserts a relationship between vtbi, in-
fusion rate and the time to completion of the process.
infusionrateauxr adds slight complication and is intro-
duced to ensure that division by zero is avoided. It
takes values in the range 1..maxrate. The tick action
captures the evolution of the process. It describes the
steps in the process and the alarms that occur when the
volume to be infused is exhausted, whereupon the de-
vice enters KVO mode, or when the device has been left
in a hold state for too long. To illustrate the model’s
specification the normal infusion process is described
using the MAL axiom.

(infusionstatus = infuse) & (infusionrate < vtbi)
— [tick] vtbi’ = vtbi — infusionrate &
elapsedtime’ = elapsedtime + 1 &
volumeinfused’ = volumeinfused + infusionrate &
keep(kvorate, kvoflag, infusionrate, infusionstatus)

This axiom describes tick when the pump is infusing
(infusionstatus = infuse) and vthi exceeds the amount
that is reduced as a consequence of the value of the
infusion rate. The axiom has three elements: the ac-
tion that is being described (contained in square brack-
ets); the conditions that must be satisfied for the ac-
tion to have the stated effect (left side of the implica-
tion); the result of the action under these conditions.
vthi’ = vtbi — infusionrate specifies that the next state
(indicated by the prime symbol) of vthi must be equal
to its old value minus the infusionrate. MAL specifies
that unless a state attribute is explicitly constrained in
a modal axiom then it can change randomly in the next
state. The keep function determines the list of state at-
tributes that cannot change. The pump interactor in-
volves 10 attributes, 3 actions (start, pause and tick)
and 20 axioms.

4.3 The Alaris layer

The difference between the two infusion pumps is cap-
tured in the middle interface layer of the specification.
Both pumps use interface modes to make most effec-
tive use of the devices’ limited display spaces. The mid-
dle interface layer describes the behaviour of interface
modes. It also describes which of the pump variables
are displayed, the displays associated with the function

topline

middisp

fndispl, fndisp2, fndisp3

keyl, key2, key3

fup, sup, sdown, fdown

run

pause, query

on

Fig. 5 Alaris actions

keys and the top line of the display which partly in-
dicates the mode of the device. The Alaris display is
organised into three parts. topline describes the con-
tents of the top line represented by an enumeration of
possible top line displays.

iline = {holding, infusing, volume,
disputbi, attention, vtbidone, dispkvo,
setutbi, locked, options, dispinfo,
vtbitime, dispblank}

middisp is a Boolean array that indicates whether a
state attribute is visible. These state attributes are mainly,
but not entirely, attributes specified in the underlying
pump. Finally fndisp1, fndisp2 and fndisp3 represent
the displays that describe the current purpose of the
three soft keys. The following illustrative axiom de-
scribes the behaviour of the soft key 2 when the top
line of the device shows “holding” (see Figure 5) and
the pump is processing normally (vtbi has not been ex-
hausted i.e. the pump is not in KVO mode).

(topline in {holding, infusing}) & 'kvoflag — [key2]
topline’ = disputbi & oldvtbi’ = vtbi &
middisp[dvtbi]” & 'middisp[dvol]’ &
Imiddisp|dtime]’ & !middisp|dbags]’ &
Imiddisp|dkvorate] & !middisp[dquery]’ &
fndispl’ = fok & fndisp2’ = fbags &
fndisp8’ = fquit & entrymode’ = vtmode &
effect(device.resetElapsed) &
keep(onlight, runlight, pauselight,

rdisabled, rlock)

The axiom asserts that the next top line shows “vol-
ume to be infused” (disputbi) and the value of vtbi is



Michael D. Harrison et al.

displayed (i.e. middisp[dvtbi]’ is true). The soft func-
tion keys (fndispl’ etc.) in this next step show “ok”,
“bags” and “quit” respectively. The mode specified by
the value of entrymode is vtmode, which indicates that
the device is ready to change the value of vtbi. Finally
the elapsed time since there was last a key stroke when
infusionstatus is hold is set to zero.

This Alaris middle layer consists of a specification
that involves: 17 state attributes; 11 actions including
augmentations of pump actions and 75 axioms.

4.4 The B.Braun layer

The B.Braun layer has a different structure than that
of the Alaris pump. The equivalent state attribute to
topline is displaymode which specifies that there is in-
formation in the display that indicates the mode, see
Figure 3. disp is a Boolean array that represents the
visibilities of state attributes including those that are
specified in the pump interactor. There are actions up,
down, right, left and ok that allow users to enter data.
Hence the transition in the B.Braun pump that is equiv-
alent to the Alaris transition that allows the user to
begin entering vtbi is as follows:

(displaymode = mainmenu)&(menucursor = dvtbi)

— [ok] entrymode’ = dataentry &
displaymode’ = disputbi &
dispvalue’ = device.vtbi &
entry’ = mazdigindex & disp[dvtbi]’ &
ldisp[drate]’ & !disp[dtime] &
ldisp[detime]” & !disp[duvol]’ &
ldisp[dalarmwol]’ &
effect(device.resetElapsed) &
keep(target, alarmvolume)

This axiom specifies that if displaymode shows the main
menu and the menu cursor is pointing at the vtbi entry
then on pressing ok the device moves to data entry
mode, as specified by entrymode and the displaymode
shows vtbi, and the temporary state attribute used to
show the number entered is set to the current value of
vtbi. Only vtbi is shown on the display.

This B.Braun middle layer consists of a specification
that involves: 16 state attributes; 9 actions including
3 augmentations of pump actions and 58 axioms. It
should be noted that some of the possible set up options
that are also provided by the B.Braun main menu are
omitted from this model but the equivalent features are
included in the Alaris model.

4.5 The activity layer

The third layer of the model describes the activities
that are assumed to be typical of the clinician’s use of
the device. Whereas the pump layer, which is reused be-
tween devices, is specified as a separate interactor, the
activity layer which has the same shape but different
implementation in the two models, is in each case part
of the interface interactor for the two devices. Activ-
ities are determined through negotiation with domain
and human factors experts. The process of eliciting and
understanding these activity actions and meta-state at-
tributes is a process akin to task modelling [21] where
the human factors or domain expert observes the infu-
sion activity in context. The examples here are intended
to be indicative only and have not been determined by
such a process. One of the activities that may have been
determined as being important in the infusion process
is that another clinician should confirm that the correct
value of vtbi has been entered into the device based on
the original prescription. These meta-state attributes
do not capture any feature of the device or its inter-
face, rather they indicate a state in the activity as as-
sumed to be understood by the clinician who is using
the device. They can be used to constrain the device
actions described in the interface layer. Hence confirm-
ing that the vtbi has been entered involves completing
the entervtbi activity (by requiring that the meta-state
attribute phasevtbi is set to confirmed).

[confirmutbi] phasevtbi’ = confirmed &
keep(. .., phasetime, phaserate, phaseinfuse)

The confirmutbi activity is only permitted if phaseuvtbi
is entering and and the value of vtbi is equal to the
required volume contained in the prescription. This ac-
tivity is generic in the sense that nothing in its descrip-
tion depends on the Alaris or B.Braun interface. This
is expressed in MAL as:

per(confirmutbi) — (mvolume = vtbi) &
phasevtbi = entering

These meta-attributes are used to “resource” the ac-
tions [15] described in the interface layer. In the case of
the Alaris pump the chevron key it is permitted only if
entering the vtbi or entering the infusion rate as part
of an activity defined at the outer layer. These actions
are now assumed to bear a specific relation to the pre-
scribed value that the clinician has taken from the pre-
scription. Hence the “fast up” chevron is only used if
the current value is less than the required value by more
than “big step” in the appropriate activity. This is spec-
ified using the following permission axiom.

per(fup) —



Reusing models and properties in the analysis of similar interactive devices 9

(phasevtbi = entering &
((topline = disputbi & middisp|dvtbi]) |
(topline = vtbitime & entrymode = vttmode)) &
((bigstep + device.vtbi) < mwolume)) |
(phasetime = entering &
(topline = vtbitime & entrymode = ttmode) &
((device.time + bigstep) < mtime)) |
(phaserate = entering &
(topline = holding & entrymode = rmode) &
((device.infusionrate + bigstep) < mrate)) |
((phasetime = ready | phasevtbi = ready) &
topline = options)

This permission axiom provides all the circumstances
in which the button may need to be used and expresses
them as constraints on the use of the button. For ex-
ample, during the phase of the activity in which vtbi is
being entered the top line of the device should either
show “vtbi” and the vtbi should be visible or “vtbi over
time” in wvttmode, that is the cursor indicating mode
should be in the upper part of the display. The permis-
sion also requires that the distance between the current
value of vtbi and the prescribed value of vtbi should
exceed the step that is made by the fast chevron key.
These constraints make assumptions about activities,
for example they assume that the clinician does not
use “bag mode” to select the correct value of vtbi. This
is the kind of assumption that is outside the province of
the analyst and requires input from the domain or hu-
man factors specialist. This particular permission also
describes the constraints that apply when entering time
or entering infusion rate, and also allows use of the key
to select appropriate options. Implementing the con-
straints for the B.Braun demonstrates differences be-
tween the two devices. The B.Braun has two separate
functions that together allow number entry. Modifying
the size of the increment is achieved using the left or
right button. The decrement or increment is achieved
using the down or up buttons. Number entry is only
permitted if the device is in dataentry mode. Entering
vtbi is only allowed, for example, if the display mode
is to display vtbi, and the prescribed vtbi is greater
than the currently displayed value of vtbi. The permis-
sion also includes similar constraints for up when the
display mode is to display time or infusion rate.

per(up) —
(entrymode = dataentry —
(displaymode = disputbi &
muolume > dispvalue) |
(displaymode = disptime &
mtime > dispvalue) |
(displaymode = disprate &
mrate > dispvalue)))

The activity layer captures some of the properties of the
cognitive models described by [28]. It is however sim-
pler, making no assumptions about the cognitive pro-
cess itself, simply concerning itself with observed activ-
ities. This activity layer consists of a specification that
involves: 4 state attributes; 7 actions (activities) and 21
axioms.

5 Verifying the model

The aim of the verification process is that similar prop-
erties, indeed patterns, expressing user interface charac-
teristics can be checked of each candidate device. These
formal properties provide a benchmark against which
each candidate design can be explored. As a result, po-
tentially unforeseen design consequences can be discov-
ered that could not be found simply by reading the
manual or by experimenting with the device. The cir-
cumstances in which properties fail are assessed with
the help of human factors or domain expertise. Failure
acts as a trigger for the consideration of a human in-
terface characteristic that would otherwise lie hidden.
Properties checked of each candidate are of the follow-

ing types.

Checking that the process represented in the inner-
most pump layer is visible through the device inter-
face (mirroring the process in the interface).

— Checking that modes can be determined unambigu-
ously from the interface (mode clarity).

— Checking that actions provide appropriate feedback,
for example when they change mode or change the
values of pump attributes.

— Ensuring consistency of use of the display, or of ac-
tion (consistency of the interface).

— Checking ease of recovery from an action.

— Ensuring that activities described in the outer layer

are supported (supporting activities).

The specific details of the properties in these categories
will differ depending on the device’s interface as is de-
scribed in the middle layer of the model. The aim is
to instantiate standard templates as far as possible.
In the case of the devices modelled here, the proper-
ties that were checked of the inner and middle layers
were checked first before considering the devices con-
strained by activity assumptions. Properties are pre-
sented for analysis using CTL (see [12] for an intro-
duction to model checking). CTL provides two kinds
of temporal operator, operators over paths and oper-
ators over states. Paths represent the possible future
behaviours of the system. When p is a property ex-
pressed over paths, A(p) expresses that p holds for all



10

Michael D. Harrison et al.

paths and E(p) that p holds for at least one path. Op-
erators are also provided over states. When ¢ and s
are properties over states, G(q) expresses that ¢ holds
for all the states of the examined path; F(g¢) that ¢
holds for some states over the examined path; X (¢q) ex-
presses that q holds for the next state of the examined
path; while [¢qUs] means that ¢ holds until s holds in
the path. CTL allows a subset of the possible formulae
that might arise from the combination of these opera-
tors. AG(g) means that ¢ holds for all the states of all
the paths; AF(q) means that ¢ holds for some states in
all the paths; EF(¢) means that ¢ holds for some states
in some paths; FG(q) means that ¢ holds for all states
in some paths; AX(q) means that ¢ holds in the next
state of all paths; EX(¢) means that ¢ holds in the
next state of some paths; A[qUs] means that ¢ holds
until some other property s holds in all paths; E[qUs|
means there exists a path in which ¢ holds until some
property s. The properties are analysed in the IVY tool
by translating the MAL model into SMV and using the
symbolic model checker NuSMV [11] to check the CTL
properties. It was necessary to restrict the state space
by reducing the ranges of vtbi, infusion rate and menu
lengths. Checking the two layer model is a relatively
slow process, for example the set of properties described
in the paper for the Alaris required approximately four
hours of elapsed time of a Lenovo X200.

5.1 Mirroring the process in the interface

The analysis measures the extent to which the infusion
pump process is visible in the device. This visibility re-
lates to basic pump variables: infusion rate, vtbi, time
to infuse. It is also concerned with whether the pump is
infusing or not and whether, while infusing, it has ex-
hausted vtbi and is in KVO (“Keep Vein Open”) mode.
The middle layer (interface) model describes the inter-
face to these attributes by recording whether they are
displayed or not. Visibility is modeled using a set of
Boolean attributes. Hence vtbi is visible in the Alaris
pump if middisp[dvtbi] is true and in the case of the
B.Braun device if disp[dvtbi] is true. The pump de-
vice has two modes. The first, infusion status, describes
whether the pump is infusing or not. The second dis-
tinguishes between normal infusion and KVO infusion.
The two modes are signified by two attributes in the
device model. infusionstatus takes three values namely
infuse, hold and blank. blank is a value that signifies
that the pump device is off. kvoflag is a boolean that
determines whether the device is in kvo mode.

In the case of the Alaris pump the most significant
predictor of what the device is doing is the top line,

see Figure 5. The B.Braun (see Figures 3 and 4) dis-
plays mode related information in different places. This
mode display information is represented in the B.Braun
model by using the state attribute displaymode. Whether
infusion status is represented unambiguously can be as-
sessed by checking display properties relating to the sta-
tus. In the case of Alaris the question leads to a fairly
complicated answer. The Alaris displays the same top
line information while both infusing and holding in a
number of circumstances because it is possible to ad-
just aspects of the process while the device is infusing.
The B.Braun is less complex from this perspective. The
process of checking standard properties is itself a dis-
covery process. Often standard properties of the device
fail because they are only partially true. It becomes nec-
essary to explore counter-examples and to add further
constraints until a true property of appropriate com-
plexity is determined.

AG((device.infusionstatus! = blank) — (2)
(topline in {infusing, dispkvo}
> device.infusionstatus = infuse)

Property 2 shows a stage in the development of the
relevant property for the Alaris. Properties must ex-
clude the possibility of the device being switched off
(expressed as the infusion status not being blank). The
property indicates that infusing status is indicated by
a top line that either displays “infusing” or “KVO”.
This property turns out to be false because the device
can continue to infuse when clearing volume, chang-
ing vtbi, when indicating that the device is locked, and
when selecting certain options using the query button
and when showing the information associated with an
option. These top lines can appear in both infusing and
holding states. In the case of the infusion status being
“hold” the property 3 indicates a more refined stage in
the development of the property for the Alaris.

AG((device.infusionstatus | = blank) & (3)
I(topline in {locked, volume, options,
dispinfo, disputbi}
— (topline in {holding, setvtbi,
attention, vtbitime}
+ device.infusionstatus = hold))

The question that equations 2 and 3 raise is whether
the multiplicity of exceptions is a good or a bad thing.
It is at this stage that further input from domain or
human factors experts is required. Potential ambigui-
ties may not be an issue because other features of the
Alaris interface may make it clear to the user the sta-
tus of the device. Indeed aspects of the design, wholly
unrelated to this interface, may be critical, for exam-
ple the sound of the pump operating. The analysis has



Reusing models and properties in the analysis of similar interactive devices 11

raised these issues in a systematic way that can lead to
the appropriate discussion.

The B.Braun pump is designed differently. There are
a number of ways in which mode is indicated and these
are all captured together in the attribute displaymode.
These different modes can be indicated, for example, by
the size of the label referring to the data entry display
(see Figures 4 and 3 for examples). It is assumed by the
model that this feature (whatever it is) is salient for the
user. In the case of infusing, the display shows arrows
that move dynamically as the pump progresses. The
simple standard property that began the Alaris investi-
gation of pump status turns out to be true immediately
for the B.Braun.

AG((device.infusionstatus | = blank) (4)
— (displaymode = dispinfusing)
< device.infusionstatus = infuse)

There are many more display modes in the case of the
B.Braun that indicate an infusion status of holding.

AG((device.infusionstatus | = blank) (5)
— (displaymode in {disprate, dispvtbi,
disptime, mainmenu, dispalarm,
dispalarmuvol, optionsmenu,
statusmenu, dispblank})
< device.infusionstatus = hold)

Property 5 unambiguously defines the holding behaviour
of the device.

5.2 Checking ambiguity of modes

There are a number of properties that explore the am-
biguity or otherwise of interface modes.

1. Does the display unambiguously determine the mode
of the device? Key attributes here are topline for the
Alaris and displaymode for the B.Braun

2. Are the mode relevant pump variables visible in the
relevant mode?

Exploring the first question in the two devices pro-
duces interesting results. For example, the modification
of vtbi in the Alaris can be achieved in three modes. It
can be changed manually via the data entry keys when
“vtbi” appears as the top line. vtbi can also be en-
tered along with time rather than with infusion rate
(a prescription may require that a particular volume
be infused over a period of time rather than at a par-
ticular infusion rate) by selecting an appropriate op-
tions menu entry. It is also possible to access a menu
of presets (bag mode) either from normal vtbi entry
mode when“vtbi” appears as the topline or from vtbi
entry over time when “vtb/time” appears in the top

line. The simplest mechanism for entering vtbi assum-
ing the specification of infusion rate is also accessible
when infusing including the option of selecting an in-
fusion bag using the bag menu, but it is not possible
to enter vtbi over time. These modes are distinguished
by values of the attribute entrymode: vtmode, bagmode
(when with infusion rate) and vttmode and tbagmode
(when with time). It might be expected that either the
device clearly distinguishes the four modes through the
top line or uses the top line to make it clear that all
modes are about entering vtbi. In fact neither situation
is the case:

AG (entrymode in {vtmode, bagmode, tbagmode}
< topline = disputbi) (6)

is true. But this does not include vttmode which is the
mode of entry of vtbi when entering vtbi over time.

AG(entrymode = vttmode (7)
< topline = vtbitime)

is false because the time entry mode ttmode also oc-
curs when topline = vtbitime (the distinction between
the modes is indicated by the position of an arrow).
The B.Braun does not exhibit such ambiguities. The
B.Braun model includes for example a data entry mode
which is true when the display mode indicates entry of
infusion rate, time and infusion rate.

AG (displaymode in {dispvtbi, disprate, disptime}
< entrymode = dataentry (8)

Similar properties are true of scalemode and alarmmode.

AG (displaymode = dispalarmuvol 9)

< entrymode = scalemode

AG(displaymode = dispalarm (10)
< entrymode = alarmmode

The property 10 is false because there are other sit-
uations that will generate alarm mode. The second fea-
ture of the two devices that is important in considering
modes is whether the pump variables that are being
modified are visible in the relevant mode. For example
it should be expected that the infusion rate is visible
when in a mode in which infusion rate is being entered.
In the case of the Alaris the infusion rate can be entered
either in infusemode or rmode:

AG(entrymode in {rmode, infusemode} (11)
— middisp[drate])

This property of the model is true and similar proper-

ties relate to other modes, for example:
AG(entrymode = vtmode — middisp|[duvtbi))

(12)

AG(entrymode in {bagmode, thagmode} (13)
— middisp[dvtbi])



12

Michael D. Harrison et al.

While properties 11 and 12 are true of the device, prop-
erty 13 is not. The current value of vtbi is not visible
in bagmode or tbagmode. Whether this is a problem de-
pends on if the current value of vtbi is relevant when
choosing a new bag to be infused. This issue would raise
a discussion about the work context. It is likely for ex-
ample that a bag will be selected only at the start of a
new infusion process rather than as an addition to an
existing infusion process.

In the case of the B.Braun, device pump variables
are visible in four situations:

— when the pump is infusing then infusion rate, vtbi,
time and volume infused are visible;

— when the main menu is being shown and infusion
rate, vthi and time are the menu options that are
visible. In this case the three variables are visible.

— in the relevant data entry mode.

— when alarming if the situation before the alarm was
one of the above.

The situations in which vtbi is visible are identified
through the following property.

AG(((device.infusionstatus | = blank) & (14)
(displaymode | = dispalarm)) —
(disp[dutbi] <>
((displaymode = mainmenu &
menucursor < dvol) |
(displaymode in {disputbi, dispinfusing}))))

The visibility of the infusion rate is identified through
the following analogous property.

AG(N(displaymode in (15)
{mainmenu, dispinfusing, dispalarm}) —
(displaymode = disprate &
entrymode = dataentry < disp[drate]))

The analysis of mode in the two devices has revealed
an Alaris device that has a considerably more complex
mode structure than the B.Braun. It is possible in the
case of the Alaris to perform a number of activities
while the pump is infusing which is not possible with
the B.Braun. The Alaris supports four different “vtbi
entry” modes when the device is holding and two of
them can be used when the device is infusing. This
additional complexity is not necessarily a bad thing.
Rather the analysis raises issues that can be further ex-
plored from a domain or human factors perspective. It
is possible for example that this complexity improves
the efficiency if supported by training and a natural
and supportive work structure.

5.3 Checking feedback of actions

A number of issues may be explored that relate to
checking feedback of actions. Here the feedback tem-
plate [7] can be applied. These issues include:

1. will a function key change mode, and will this change
of mode be visible?

2. does a data entry key always change the pump at-
tribute relevant to the mode, and is this change vis-
ible?

These issues are explored through sets of properties.

The first set relates to the visible expression of mode

while the second relates to the internal representation.

Hence in the case of the Alaris these properties are in-

vestigated via the following templates. The visibility

properties are:
AG(topline = value — (16)
AX (function — topline ! = value))

The properties that check the change of mode are as

follows.

AG(entrymode = value — (17)
AX (function — entrymode = value))

Checking this set of properties indicates that:
1. pressing key3 marked as “cancel” leaves the device

in infuse mode when the top line shows “vtbi done”.
2. tick never changes the entrymode.

Otherwise the keys will always change the function. The
second issue can be explored through a set of properties,
see [8], that check the attributes that are changed by
number entry keys in particular modes.

AG(entrymode = IVAL1 & (18)
modeattribute = IVAL2
— AX(action — entrymode = IVAL1
& modeattribute ! = IVAL2))

IVAL1 here is a meta-variable that allows IVY to in-
stantiate and to verify the property with all possible
values for entrymode and IVAL2 to all possible values
of the mode attribute.Hence the following instance of
the set is true.
AG(entrymode = vtmode & device.vtbi = 8 (19)
— AX(sup — entrymode = vtmode
& device.vthi | = 3))
In the case of the B.Braun the relevant properties
are:

AG (displaymode = value — (20)
AX (function — displaymode | = value))
and
AG(entrymode = value — (21)

AX (function — entrymode = value))

Checking these properties has the expected effect.



Reusing models and properties in the analysis of similar interactive devices 13

5.4 Checking consistency of action

As discussed in previous sections the two devices sup-
port function keys that change modes. In the case of
Alaris the function keys are soft keys, they are labeled
(fndispl, fndisp2, fndisp3) in the model. The B.Braun
keys are not soft keys but often how the key is to be
interpreted is indicated in the display, see for exam-
ple the infusion data entry mode described in Figure 3.
Here “OK” is labeled as “confirm”. The main function
of the B.Braun display in relation to function keys is
to indicate their availability. Two types of consistency
are explored here. The differences between the devices
means that a number of properties are only relevant to
one of the devices. Hence in the case of the Alaris the
obvious questions are whether the same soft function is
always associated with the same key and whether the
same soft keys are always associated with a particular
piece of information on the top line. To illustrate how
the model can be analysed with respect to these ques-
tions, consider key3. A first question would be whether
“quit” is always associated with keySd whenever it is
used.

AG(fndisp3 ' = foull — fndisp3 = fquit) (22)
This property turns out to be false. There are a num-
ber of situations where key3 is used for other purposes.
In bags mode function key3 shows “back” rather than
“quit”. When the top line shows “attention” or “vtbi
done” or “set vtbi” then keyd is marked as “ok” and
used to exit the dialogue box. Exploring all these cases
leads to the following true property.

AG(((fndisp3 ' = fnull) & (23)

!(entrymode in {bagmode, tbagmode} &
I(topline in {attention, vtbidone, setvtbi}))
— fndisp3 = fquit)
It can be shown however that if the soft function is
“quit” then it always appears as key3. This can be
demonstrated by checking:

AG((fndispl = fquit | fndisp2 = fquit | (24)
fndisp3 = fquit) — fndisp3 = fquit)
Furthermore general configurations of function keys can
be asserted:
AG(topline = volume — (25)
(fndispl = fnull & fndisp2 = fclear
& fndisp3 = fquit))
It can also be shown that in most circumstances the
same top line is always associated with the same key
configuration. Property 26 is a property that fails.
AG(topline = disputbi — (26)
(fndispl = fok&fndisp2 = fbags &
fndisp3 = fquit))

In bags mode, top line displays “vtbi” but the func-
tion keys show “ok”, “null” and “back” respectively.
The Alaris and B.Braun function keys can be compared
more directly using properties similar to the feedback
template supported by the IVY tool [7]. Several appli-
cations are relevant here in the case of the Alaris.

AG((fndispl = fok & topline | = options) —
AX(keyl — topline = holding)) (27)

AG(fndisp3 = fquit — (28)
AX (key3 — topline = holding))

AG((topline = volume&infusionstatus = hold)
— AX(key2 — volumeinfused = 0)) (29)

Properties 27 - 29 indicate a sample of these consis-
tency type properties. They indicate, for example, that
in the case of Property 27 “ok” always returns the de-
vice to a top line of “holding” except when the top line
shows “options” (a special mode for changing settings
and entering vtbi over time). Property 28 confirms that
“quit” always returns to the “hold” state and property
29 indicates that when top line is volume and key2 is
pressed the volume infused is initialized. The B.Braun
has similar properties which are more direct instantia-
tions of the feedback template.

AG(device.infusionstatus = hold & (30)
displaymode ! = mainmenu —
AX(ok — displaymode = mainmenu))

The effect of action is also consistent in the sense that
the temporary value being entered is always used to
update the attribute relevant to the mode when the
key is used.

AG((displaymode = disptime) & (31)
(dispinftime = IVAL1) &

(device.time | = IVAL1) —
AX(ok — device.time = IVAL1))

IVAL1 here allows IVY to instantiate and to verify the
property with all possible values for device.time and
disptime. The property 31 holds for all values of TVAL1.
The multiple uses of function keys in the case of the
Alaris adds to the complexity of its interface. It is im-
portant however to see how these two devices behave
in relation to the activities that these two design are
intended to support. This issue is discussed in a lit-
tle more detail when discussing activities in the next
section. Data entry keys have quite different charac-
teristics in the two devices. The Alaris chevron keys
increment or decrement the displayed value either by
small steps (sup, sdown) or by big steps (fup, fdown).
The BBraun keys either move the cursor (left, right)
or increment or decrement the digit indicated by the



14

Michael D. Harrison et al.

cursor (up, down). A detailed analysis of number en-
try for these devices can be found in [26]. The model
described has also been translated into an equivalent
model in which the actual number domains are used
and subjected to theorem proving as will be discussed
in a future paper. The properties to prove are exam-
ples of the guarded consistency pattern [7]. The idea is
to demonstrate that whatever the data entry mode, the
keys have a similar effect on the relevant pump variable.
Hence the standard form of the property is that what-
ever the mode, the chevron key will have the relevant
effect on the corresponding mode attribute.

AG((entrymode = mode & (modeattribute)) —
AX(chevron — effect(modeattribute))) (32)

For example in rmode when the infusion rate lock is off
the single chevron up button increments the infusion
rate by 1.

AG((Irlock & entrymode = rmode & (33)
(infusionrate = IVAL1))
— AX(sup — infusionrate = IVAL1 + 1))

The corresponding property for the B.Braun is more
complicated because the effect is defined in terms of
the different elements of the numeral that are significant
depending on the position of the cursor. In the B.Braun
model the cursor is associated with attribute entry and
dispvalue is the attribute that is manipulated in data
entry mode before updating the relevant attributes.

AG((entrymode = dataentry) & (34)
(dispvalue = IVAL) —
AX (down —
((entry = 8 — dispvalue = IVAL — 1)
(entry = 2 — dispvalue = IVAL — 2)
(entry = 1 — dispvalue = IVAL — /)
(entry = 0 — dispvalue = IVAL — 8))))

&
&
&

In practice the property needs adjusting to deal with
values that are too large or too small as constrained by
the invariant in axiom 1, these cases must exclude the
possibility of underflow or overflow. In addition to the
standard property 34, of the same form as the template
30, a further property is required to ensure that when
data entry mode is exited (using ok) then the relevant
pump attribute depending on displaymode is updated

5.5 Checking ease of recovery

The final stage of analysis of the two devices concerns
the ease with which the two devices can recover from
a wrong action. There are a variety of properties to
be explored in this context. One that can be used to
illustrate the analysis is to demonstrate that the data
entry keys always have inverses. This property has a
standard template [7].
AG(attribute = value — (36)
AX(actionl — EX(action2) &
AX(action2 — (attribute = value)))))

In the case of sup in the Alaris pump and rmode when
the infusion rate is not locked the following property
holds for all values of IVAL1 except the limits.

AG((infusionrate = IVAL1 & (37)
entrymode = rmode & !rlock)
— AX(sup —
(EX (sdown) & AX (sdown
— infusionrate = IVAL1))))

The recovery property in the case of B.Braun is compli-
cated because of “carry”. When incrementing the digit
in the leftmost position of the numeral, the model spec-
ifies that “1000” goes to “1111”. This is the largest al-
lowable number given the constraints of the domains
that have been reduced to permit analysis by model
checking. When the left most digit is decremented then
this value returns to “0111”. When numbers are not
subject to this overflow condition then down acts as an
inverse.

AG(entrymode = dataentry & (38)
dispvalue = IVAL1 —
AX(up — ((EX(down) & AX(down —
(entrymode = dataentry &
dispvalue = IVAL1)))))

Perhaps more relevant is the ability of the devices to
allow a sequence of actions to reach a different number
from whatever the current value. This is a property that
can also be proved.

5.6 Checking support for activities

The support of activities is explored by proving that

appropriately. The following property shows how this
works with time entry. displaymode = disptime only when
dataentry is true and therefore the property has been
simplified a little.

AG((displaymode = disptime) & (35)
(dispinftime = IVAL) &
(device.time | = IVAL) —
AX(ok — device.time = IVAL))

specific goals related to the infusion pump can be achieved.
The activity associated with prescription values of vtbi
of 6 (mvolume = 6) and time infused of 3 (mtime = 3)
can be checked in the model with all three layers. Counter-
examples that will result from failure of the property 39
will be subject to the constraints imposed by the third
layer of the model.

AG(device.volumeinfused | = muvolume)) (39)



Reusing models and properties in the analysis of similar interactive devices

15

T B 5 m
modratevtb on ihvibi bshvtbi

[ 1

3 s 5 G 7 5 10 12 ] 1 5 15 % 2 2 2 7]
deviceaction resetElapse resetElapse  resetElapse resetElapse zerohvibi pbshubi pibvtbi modtime(1) time itime resetelapse resetelapse resetelapse start ik tick tick
elapse [ o o o o o 0 o o o ) o o o [] o [} o o o
elapsedtime 0, o [] [} ] [} 0 0 0 [ o o [ o [ 1 2 3
o o o o o o o o 7 7 5 5 2 2 2 2 2 2
1 T 1 1 1 1 1 T 7 74 s 5 7 2 2 2 2
status blank | hold hold hold hold hold hold hold hold hold hold hold hoid hold hold infuse  nfuse  infuse infuse
Woflag FALSE  FAISE  FAISE  FAISE  FALSE  FAISE  FAISE  FALSE FALSE  FAISE  FAISE  FAISE  FALSE FALSE  FAISE  PAISE  FAISE  FALSE  TRUE
orate 0 ] [] ] [] o 0 o [] ] [] ] [] [ o [} o [ 1
time o o o o o o 0 o 0 o 0 1 i 3 3 3 z 1 o
volumeinfused 0. o ) o ) o 0 o [] o ) o 0 ] o ] 2 4 6
vibi o o o ] [ ] 0 o 5 6 6 6 6 3 6 6 4 2 o
key2 on query  sdown  sdown _ sdown  keyl entervibi__sup fup sup. confirmvtbi_keyl entertime keyl startinfuse _run ik ik tick
2 2 0 0 ] o 0 0 [] o ] (] o [) o [] ] [ 0
o o o o 0 o o o o o 0 o o o o o o o o
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7 7 74 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
nulmode  rmode  qmode  qmode  gmode  qmode  vumode  vimode “mo ‘a _rmode  rmode infusemode nfusemode infusemode Infusemode
foull fuol fok fok fok fok fok fok fok K 2 1 fuol fuol fuol foull
foull fvtbi foul fnull foull fnull foags _ foags futbi futbi fvtbi fnull
foull full fauit fquit fauit fquit fauit fauit foull foull foull feancel
ir FASE  © UE UE ALSE
ALSE FALSE LSE

ady
entering

ac re:
e e: ready  ready  enteri ring confirmed _ confirmed ~ confirmed _ confirmed | confirmed ~ confirmed __confirmed.
ready  ready  ready  ready  ready  ready  ready entering entering_ entering__confirmed __confirmed __confirmed | confirmed . confirmed __confirmed _ confirmed __confirmed __confirmed___confirmed __confirmed __confirmed __confirmed __confirmed
0 [ 2 3 o [ [ o [ o o o [ o 0 ] 0 0 i)
FALSE  FAISE  FAISE  FAISE  FAISE  FAISE  FAISE  FAISE  FAISE  FASE  FASE  FASE  FASE  FAISE  FALSE  FAISE  FALSE  FAISE  FAISE  FAISE  FAISE  FAISE  FAISE  FASE  FASE  FALSE
FASE  FALSE  FASE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FAISE  FALSE  FAISE  FALSE  FASE  FPASE  FASE  FASE  FASE  FASE  FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
runlight FALSE  FALSE  FALSE  FAISE  FALSE  FALSE  FALSE  FASE  FALSE  FASE  FASE  FASE  FASE  FASE  FASE  FAISE  FALSE  FAISE  FALSE  FAISE  FALSE  FASE  TRUE  TRUE  TRUE  TRUE
topline dispblank _ holding __ options __ options __ options___ options __ wibitime _ wibitime _ wbitime _ vibitime _ wbitme _ wbitme _ wbitme _ wibitme _ wbitme _ vibiime _ vbitme _ vbiime _ holding  optins _ hoiding _ holding _ infusing _ infusing  infusing  wbidone

Fig. 6 The Alaris activity counter-example

Alaris activities

The trace that specifies a counter-example (see Figure
6) indicates:

use of the query mode, first to lock the infusion rate
(to prevent further modification) then to choose the
option that is used to enter vtbi over time (steps
3-9).

the enter vtbi activity in which double and single
chevron keys are used to reach the prescribed value
of vtbi (steps 10-14).

confirmation that vtbi has been entered (step 15).
the enter time activity using the single chevron up
button (steps 17-19).

confirmation of the time (step 20)

commencement of infusing (step 24)

infusion until the vtbi is exhausted (step 25 on-
wards).

w

o

This sequence can be contrasted with that of the B.Braun
(see Figure 7):

The main menu item is chosen and the enter vtbi ac-
tivity is carried out (steps 5-12). vtbi is entered via
a sequence of up buttons and this requires further
exploration.

The vtbi is confirmed (step 13).

The time choice is selected and the enter time ac-
tivity commenced (steps 16-20).

Time is confirmed (step 21).

5. start infusing at step 22.

It can be seen that the model checker has generated
plausible sequence of actions in both cases. This se-
quence could be further analysed in a more qualitative
way using a clinician or human factors specialist to ex-
plore the implications of these sequences.

6 Discussion and Conclusions

This analysis of the two infusion pumps has provided
solid evidence of areas of concern where redesign would
reduce complexity and increase the reliability of the
two designs. The properties used in the analysis are
largely based on standard patterns either generated by
the IVY tool or easily generated from the requirements
of the device and situation. Analogous properties can
be systematically applied to other candidate pumps.
The procedure is systematic providing a strong basis
for comparison.

Specifically, the analysis has indicated issues associ-
ated with the relation of the display to the underlying
pump process and the mode structure of the particular
device. For example, the analysis indicates that there
are:

possible confusions relating to the use of the display
of vtbi in the top line in the case of the Alaris;
ambiguities about whether the pump is infusing or
not using the top line of the display as a guide in
the case of the Alaris;

inconsistent use of function keys in the case of the
Alaris;

possible confusions combining left, right, up and
down in the case of the B.Braun.

The analysis says nothing about the significance of these
issues. The method is to be used as part of a process
including the active participation of human factors and
domain specialists. In the context of use these discrep-
ancies in the device may not be issues at all. An im-
portant aspect of the method is that it is systematic
and that it has the potential to be reused for every
candidate infusion pump. The inner level of the speci-
fication can be reused for every candidate pump. The
outer activity layer can also be partially reused, guiding
the analyst to create the appropriate constraints on the



16 Michael D. Harrison et al.
: 7 : 7 ; = S S B o
e T —— e — T ———— e g F—
= — 5 B 5 B B B v B B 5 o B ; o o o o o o o o
e {0 5 o G o G o G o ¢ o G o G o G o o o o o o B 1 ? 5
. 5 . 5 . : . . . . . > . . . . . . o : . : z : : :
; ; ; ? ; : ; ; ; ; ; ; ; ; ; ; ; ; 2 2 2 2 2 2 2
i bk i o=l (o= o (i o= ool 1 ool (s (ol o bl (ool i i ot e
Tom BN TS Fast M RS st B M fASE s RIS FASE BISE BSE MAS Puse S TASE e M MAS e A e P TR
oarae 5 o o o o o o o o v o o o o o o o o o o o o o 2
- . . > . . . . . . . . . . . . . H o 3 3 3 3 2 : i
voumeinsed 0 5 o o o o o B o o o B 5 B 5 B 5 o o H o H o : i s
o . . . . . . . o . . . . . . . s s ‘ s : i : o
m: tick. on down left entervtbi  up up. up. up. up. up. ok confirmvibi _down left entertime _up up. up ok confirmtime_startinfuse _start tick tick. tick.
o 3 g 5 $ ) s ; ; ) ? R ? : ; ; i ? ? 5 ; ; B B B
& S S X S S 0N 0 S [ £ [ S— S 0 P ) S— S S O — S o S—] O — 0 A— —
Bus T TWE e f pse  AsE  fas psE  Pse e T T TAE i pse e fase g T Twe T Tk T Twe T
A e Tale— et e — mr— Taur— o — Ta— Thor— Ther— e T — T e e e A T e Tar— Tabe— e o —
WS TRE TRE S RS mst  SE S PSE e RSe TP T TR ToE TRE TR T T T e TRE T e TE e
_FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE F FALSE F
e ke o ko et o [t Aot (AL G [ e B - [ oS [ 1 Bt S [ AL S o s - P
T T T T /T 1T S T /TS TSt TS/ ST S /T S TS T /=Sl T St TSt e —
o 7 7 o " ¥ § ’ ? 7 7 o o , ; ! 7 7 7 7 7 7 7
o ; ; o o : H : 7 ; ; H h ; H 7 ; ; ; 7 Z 2
7 o : ? 3 . H ¢ 7 7 3 7 7 7 7
istroce i e I o A BBt 15 1 b s sl [l Flsbiel il Lo | e - e[l ot S PAMISES (oS EABIT oS oS
et 1D ; 7 ; ¢ 7 ¢ ; ¢ 7 ; ; 5 ¢ o o i i i i i i
el 10 i 1 o o o o o 3 1 n 1 h 1 o o o o 0 1 1 i 1 1 1 1
i 1o H H o o o : ; o o 1 H 1 1 o H o ) 2 1 1 1 h 1 h 1
sl 10 ; 1 G o : v ; o : v ; 1 1 o o i o h 1 h 1 h R h R
e — 5 . 5 . 5 . 5 . 5 . 5 . 5 . . . H o H o o o o o o
P — I s 1 o ; ? 3 ‘ S s 1o o ; 2 5 T T TS (RS T M1
3 B > 3 3 3 } 3 3 3 . > . 3 3 3 3 3 . > . > 5 > 5
entrymode nullmode _nullmode _nullmode  dataentry _dataentry dataentry dataentry dataentry dataentry dataentry dataentry nullmode  nullmode  nullmode  dataentry dataentry dataentry dataentry dataentry nullmode  nullmode  nullmode  nullmode  nullmode alarmmode alarmmode
5 5 5 o o o o o o o o B 5 B o o o o o B B B 5 : 5 :
. : : ; . : . . . . . n H 1 . . . . . : : : . . . .
read ready. ready ready. ready ready. ready ready. ready ready. ready ready. ready ready. ready ready. ready ready. ready ready. ready. entering. entering. entering. entering. entering.
T e e e P e T e e e
ready reac ready ready. ready ady ready ready. ready ready. ready ready. ready ly. ady entering enterir ntering enterir entering confirmed _confirmed _confirmed _confirmed _confirmed _confirmed
ready ready. ready ready entering _entering entering entering entering _entering entering entering confirmed _confirmed _confirmed _confirmed  confirmed _confirmed _confirmed confirmed _confirmed  confirmed _confirmed confirmed _confirmed _confirmed
T T e e e o L e T T e e e e e o e T [T (e o
thi i wibi. i thi i tbi i thi i thi i tbi wibi wbi i i i wbi wibi wbi wibi wbi wibi wbi wibi

Fig. 7 The B.Braun activity counter-example

device model. The middle layer will be created afresh
for each new device. In practice this part of the model
continues to be substantial (perhaps a week’s work for
the second author). Further work is required to develop
methods of reusing models that have similar structure
or drive particular mode structures. It can be argued
that there is still some distance to go before procurers
will find the techniques described here cost-effective,
however the cost of using an infusion device extends
beyond making a good deal on price and ongoing main-
tenance. The work described here is part of the ongoing
analysis of a range of infusion devices with the aim of re-
ducing these costs. Part of this process should include a
comparison with empirical techniques and with usabil-
ity evaluation methods in terms of the range problems
that can be uncovered by these different methods.

Acknowledgements This project was inspired by the goals
of and partly funded by the CHI+MED project: Multidisci-
plinary Computer Human Interaction Research for the de-
sign and safe use of interactive medical devices project, UK
EPSRC Grant Number EP/G059063/1. Computing resources
and office space were also provided to Michael Harrison at
Newcastle University. Patrick Oladimeji of Swansea Univer-
sity provided help with the Alaris pump and Chris Vincent
of UCL provided access to the B.Braun simulation.

References

1. T. Amnell, G. Behrmann, J. Bengtsson, P.R. D’Argenio,
A. David, A. Fehnker, T. Hune, B. Jeannet, K.G. Larsen,
M.O. Moller, P. Pettersson, C. Weise, and W. Yi. UP-
PAAL - Now, Next, and Future. In F. Cassez, C. Jard,
B. Rozoy, and M. Ryan, editors, Modelling and Verifica-
tion of Parallel Processes, number 2067 in Lecture Notes
in Computer Science Tutorial, pages 100—125. Springer—
Verlag, 2001.

David Arney, BaekGyu Kim, Raoul Jetley, Paul Jones,
Insup Lee, Arnab Ray, Oleg Sokolsky, and Yi Zhang.
Safety requirements for the generic patient controlled
analgesia pump.

3. B. Braun Melsungen AG. B. Braun Infusomat Space
User Manual. Technical report, B. Braun Melsungen AG,
34209 Melsungen, Germany, 2007.

L-A. Bligard and A-L. Osvalder. An analytical approach
for predicting and identifying use error and usability
problem. In A. Holzinger, editor, Proceedings of the 3rd
Human-computer interaction and usability engineering
of the Austrian computer society conference on HCI and
usability for medicine and health care, number 4799 in
Springer Lecture Notes in Computer Science, pages 427—
440. Springer-Verlag, 2007.

M. L. Bolton and E. J. Bass. Formally verifying human-
automation interaction as part of a system model: limita-
tions and tradeoffs. Innovations in System and Software
Engineering, 6(3):219-231, 2010.

J.C. Campos and M.D. Harrison. Model checking inter-
actor specifications. Automated Software Engineering,
8:275-310, 2001.

J.C. Campos and M.D. Harrison. Systematic analysis of
control panel interfaces using formal tools. In N. Graham
and P. Palanque, editors, Interactive systems: Design,
Specification and Verification, DSVIS’08, volume 5136
of Springer Lecture Notes in Computer Science, pages
72-85. Springer-Verlag, 2008.

J.C. Campos and M.D. Harrison. Interaction engineering
using the IVY tool. In G. Calvary, T.C.N. Graham, and
P. Gray, editors, Proceedings of the ACM SIGCHI Sym-
posium on Engineering Interactive Computing Systems,
pages 35—-44. ACM Press, 2009.

J.C. Campos and M.D. Harrison. Modelling and
analysing the interactive behaviour of an infusion pump.
Electronic Communications of the EASST, 5, 2011.
Cardinal Health Inc. Alaris gp volumetric pump: direc-
tions for use. Technical report, Cardinal Health, 1180
Rolle, Switzerland, 2006.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV 2: An Open Source Tool for Symbolic Model
Checking. In K. G. Larsen and E. Brinksma, editors,
Computer-Aided Verification (CAV ’02), volume 2404
of Lecture Notes in Computer Science. Springer-Verlag,
2002.

E.M. Clarke, O. Grumberg, and D.A. Peled.
Checking. MIT Press, 1999.

L. de Moura. SAL: Tutorial. Technical report, SRI Inter-
national, Computer Science Laboratory, 333 Ravenswood
Avenue, Menlo Park, CA 94025, 2004.

10.

11.

12. Model

13.



Reusing models and properties in the analysis of similar interactive devices 17

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A.J. Dix. Formal Methods for Interactive Systems. Aca-
demic Press, 1991.

G. Doherty, J.C. Campos, and M.D. Harrison. Resources
for situated actions. In N. Graham and P. Palanque,
editors, Interactive systems: Design, Specification and
Verification, DSVIS’08, volume 5136 of Springer Lecture
Notes in Computer Science, pages 194-207. Springer-
Verlag, 2008.

D.J. Duke and M.D. Harrison. Abstract interaction ob-
jects. Computer Graphics Forum, 12(3):25-36, 1993.

J. Fiadeiro, T. Maibaum, J. de Bakker, W. de Roever,
and G. Rozenberg. Describing, structuring and imple-
menting objects. In Foundations of Object-Oriented Lan-
guages, number 489 in Springer Lecture Notes in Com-
puter Science, pages 274-310. Springer-Verlag, 1991.

US Food and Drug Administration. Infusion pump im-
provement initiative. Technical report, Center for Devices
and Radiological Health, April 2010.

P.N. Johnson-Laird. Mental Models. Harvard University
Press, 1983.

BaekGyu Kim, Anaheed Ayoub, Oleg Sokolsky, Insup
Lee, Paul Jones, Yi Zhang, and Raoul Jetley. Safety-
assured development of the gpca infusion pump software.
In Proceedings of the ninth ACM international confer-
ence on Embedded software, EMSOFT ’11, pages 155—
164, New York, NY, USA, 2011. ACM.

B. Kirwan and L. Ainsworth. A Guide to Task Analysis.
Taylor and Francis, 1992.

R. Lane, N. A. Stanton, and D. Harrison. Applying hi-
erarchical task analysis to medication administration er-
rors. Applied Ergonomics, 37:669679, 2006.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a Nutshell. Int. Journal on Software Tools for Tech-
nology Transfer, 1(1-2):134-152, Oct 1997.

J. L. Martin, B. J. Norris, E. Murphy, and J. A.
Crowe. Medical device development: The challenge for
ergonomics. Applied Ergonomics, 39:271283, 2008.
Paolo Masci, Rimvydas Ruksénas, Patrick Oladimeji,
Abigail Cauchi, Andy Gimblett, Yungiu Li, Paul Cur-
zon, and Harold Thimbleby. On formalising interactive
number entry on infusion pumps. ECEASST, 45, 2011.
P. Oladimeji, H. Thimbleby, and A. Cox. Number entry
and their effects on error detection. In P. Campos et al,
editor, Interact 2011, number 6949 in Springer Lecture
Notes in Computer Science, pages 178-185. Springer-
Verlag, 2011.

F. Paterno and G. Faconti. On the Use of LOTOS to
Describe Graphical Interaction. In A. Monk, D. Diaper,
and M.D. Harrison, editors, People and Computers VII:
HCI’92 Conference, pages 155—-174. BCS HCI Specialist
Group, Cambridge University Press, 1992.

R. Ruksenas, J. Back, P. Curzon, and A. Blandford.
Verification-guided modelling of salience and cognitive
load.  Formal Aspects of Computing, 2009. DOI:
10.1007/s00165-008-0102-7.

M. Ryan, J. Fiadeiro, and T. Maibaum. Sharing actions
and attributes in modal action logic. In Ito and Meyer,
editors, Theoretical Aspects of Computer Software, vol-
ume 526 of Springer Lecture Notes in Computer Science.
Springer-Verlag, 1991.

H. Thimbleby and P. Cairns. Reducing number entry
errors: Solving a widespread, serious problem. Journal
Royal Society Interface, 7(51):1429-1439, 2010.

Harold W. Thimbleby and Andy Gimblett. Dependable
keyed data entry for interactive systems. FCEASST, 45,
2011.

32. J. Zhang, T. R. Johnson, V. L. Patel, D. L. Paige, and

T. Kuboseb. Using usability heuristics to evaluate pa-
tient safety of medical devices. Journal of Biomedical
Informatics, 36:2330, 2003.



