

# User's Manual

# *AD-080GE*

Digital 2CCD Progressive Scan Multi-Spectral Camera

> Document Version: Ver.1.0 AD-080GE\_Ver.1.0\_Oct09

# Notice

The material contained in this manual consists of information that is proprietary to JAI Ltd., Japan and may only be used by the purchasers of the product. JAI Ltd., Japan makes no warranty for the use of its product and assumes no responsibility for any errors which may appear or for damages resulting from the use of the information contained herein. JAI Ltd., Japan reserves the right to make changes without notice.

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners.

# Warranty

For information about the warranty, please contact your factory representative.

#### Certifications

#### CE compliance

As defined by the Directive 2004/108/EC of the European Parliament and of the Council, EMC (Electromagnetic compatibility), JAI Ltd., Japan declares that AD-080GE complies with the following provisions applying to its standards.

EN 61000-6-3 (Generic emission standard part 1)

EN 61000-6-2 (Generic immunity standard part 1)

#### <u>FCC</u>

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

#### Warning

Changes or modifications to this unit not expressly approved by the party responsible for FCC compliance could void the user's authority to operate the equipment.

# Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products ", known as " China RoHS ". The table shows contained Hazardous Substances in this camera.

(1) mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

#### 重要注意事项

#### 有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有 害物质或元素名称及含量表 》如下.

|                                                                  | 有毒有害物质或元素 |             |           |                 |               |                 |  |  |  |  |  |
|------------------------------------------------------------------|-----------|-------------|-----------|-----------------|---------------|-----------------|--|--|--|--|--|
| 部件名称                                                             | 铅<br>(Pb) | 汞<br>( Hg ) | 镉<br>(Cd) | 六价铬<br>(Cr(VI)) | 多溴联苯<br>(PPB) | 多溴二苯醚<br>(PBDE) |  |  |  |  |  |
| 螺丝固定座                                                            | ×         | 0           | 0         | 0               | $\bigcirc$    | 0               |  |  |  |  |  |
| 光学滤色镜                                                            | ×         | 0           | ×         | 0               | 0             | 0               |  |  |  |  |  |
|                                                                  |           |             |           |                 |               |                 |  |  |  |  |  |
| <ul> <li>〇:表示该有毒有</li> <li>×:表示该有毒有</li> <li>(企业可在此处、</li> </ul> | 了害物质至少在   | 该部件的某一步     | 勾质材料中的含   | 量超出SJ/T113      | 363-2006规定的   |                 |  |  |  |  |  |



环保使用期限 电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。

数字「15」为期限15年。



#### Table of Contents

| 1. General                                                                                                             |           |
|------------------------------------------------------------------------------------------------------------------------|-----------|
| 2. Camera nomenclature                                                                                                 | 6         |
| 3. Main Features                                                                                                       |           |
| 4. Locations and functions                                                                                             |           |
| 5. Pin configuration                                                                                                   |           |
| 5.1. 12-pin Multi-connector (DC-in/GPIO/Iris Video)                                                                    |           |
| 5.2. Digital Output Connector for Gigabit Ethernet                                                                     |           |
| 5.3. 6-pin Multi-connector (LVDS IN and TTL IN/OUT)                                                                    |           |
| 5.4. DIP switches                                                                                                      |           |
| 5.4.1 Trigger input 75 ohms termination                                                                                |           |
| 5.4.2 EEN output                                                                                                       |           |
| 5.4.3 Video output for Auto iris lens                                                                                  |           |
| 6. Input and output circuits                                                                                           |           |
| 6.1. Iris Video output                                                                                                 |           |
| 6.2. Trigger input                                                                                                     |           |
| 6.3. EEN (Exposure Enable) output                                                                                      |           |
| 7. System Configuration                                                                                                |           |
| 7.1. System connection                                                                                                 |           |
| 7.2. Lens considerations                                                                                               |           |
| 8. GPIO (Inputs and outputs)                                                                                           |           |
| 8.1. Overview                                                                                                          |           |
| 8.1.1 LUT (Cross Point Switch)                                                                                         |           |
| 8.1.2 12-bit Counter                                                                                                   |           |
| 8.1.3 Pulse Generators (0 to 3)                                                                                        |           |
| 8.1.4 Opto-isolated Inputs/Outputs                                                                                     |           |
| 8.1.5 Recommended External Input circuit diagram for customer                                                          |           |
| 8.1.6 Recommended External Output circuit diagram for customer                                                         |           |
| 8.1.7 Optical Interface Specifications                                                                                 |           |
| 8.2. Inputs and outputs table                                                                                          |           |
| 8.3. Configuring the GPIO module (register settings)                                                                   |           |
| 8.3.1 Input /Output Signal Selector                                                                                    |           |
| 8.3.2 12 bit counter                                                                                                   |           |
| 8.3.4 Pulse generators (20 bit x 4)                                                                                    |           |
| 8.4. GPIO programming examples                                                                                         |           |
| 8.4.1 GPIO Plus PWC shutter                                                                                            |           |
| 8.4.2 Internal Trigger Generator                                                                                       |           |
| 9. GigE Vision Streaming Protocol (GVSP)                                                                               |           |
| 9.1. Digital Video Output (Bit Allocation)                                                                             |           |
| 9.2. Bit Allocation (Pixel Format / Pixel Type) - (monochrome sensor)                                                  |           |
| 9.2.1 GVSP_PIX_MONO8 (8bit)<br>9.2.2 GVSP PIX MONO10 (10bit)                                                           |           |
|                                                                                                                        |           |
|                                                                                                                        |           |
| 9.2.4 GVSP_PIX_MONO12 (12 bit)                                                                                         | .23       |
| 9.2.5 GVSP_PIX_MONO12_PACKED (12 bit)<br>9.3. Bit Allocation (Pixel Format / Pixel Type) - (Baver mosaic color sensor) | .23       |
|                                                                                                                        |           |
|                                                                                                                        | .∠ວ<br>ວວ |
| 9.3.2 GVSP_PIX_BAYRG10 "Bayer RG10"<br>9.3.3 GVSP_PIX_BAYRG12 "Bayer RG12"                                             | .∠⊃<br>∕  |
| 9.3.3 GVSP_PIX_BATRGTZ bayer RGTZ                                                                                      |           |
| 7.3.4 UV3F_FIA_DATODO DAYELODO                                                                                         | .24       |

| 9.3.5        | GVSP_PIX_BAYGB10 "BayerGE10"                       | .24 |
|--------------|----------------------------------------------------|-----|
| 9.3.6        | GVSP_PIX_BAYGB12 "Bayer GB12"                      | .24 |
| 9.3.7        | GVSP_PIX_RGB8_PACKED "RGB 8Packed"                 | .24 |
|              | GVSP_PIX_RGB10V1_PACKED "RGB 10V1 Packed"          |     |
|              | GVSP_PIX_RGB10V2_PACKED "RGB V2 Packed"            |     |
| 10. Function | ons and Operations                                 | .26 |
|              | gE Vision Standard Interface                       |     |
|              | commended Network Configurations                   |     |
| 10.2.1       | Verified Network Interface Cards (NICs)            |     |
| 10.2.2       | Video data rate (network bandwidth)                |     |
| 10.2.3       | Disable Firewalls                                  |     |
| 10.2.4       | Enabling Jumbo Frame                               |     |
| 10.2.5       | Setting Receive Descriptors                        |     |
| 10.2.6       | Interrupt Moderation rate                          |     |
| 10.2.7       | Calculating and setting Inter-Packet Delay         |     |
| 10.2.8       | Confirm the Filter Driver is used                  |     |
| 10.2.9       | Others                                             |     |
| 10.2.10      | Note for 100BASE-TX connection                     |     |
|              | ic functions                                       |     |
| 10.3.1       | CCD optical assembly                               |     |
| 10.3.2       | RJ-45 outputs                                      |     |
| 10.3.3       | Sync Mode (Register 0xA098)                        |     |
| 10.3.4       | Iris Video output                                  |     |
| 10.3.5       | Auto-detect LVAL-sync / async Accumulation         |     |
| 10.3.6       | Partial scan (Fast Dump ON)                        |     |
| 10.3.7       | Bayer color sequence                               |     |
| 10.3.8       | Electronic shutter                                 |     |
| 10.3.9       | Shading correction                                 |     |
| 10.3.10      | Knee compensation                                  |     |
| 10.3.11      | White balance                                      |     |
| 10.3.12      | Blemish compensation                               |     |
| 10.3.13      | Color matrix                                       |     |
| 10.3.14      | Rear Panel Indicator                               |     |
| 10.3.15      | Test signal generator                              |     |
|              | sor Layout and Timing                              |     |
| 10.4.1       | Sensor Layout                                      |     |
| 10.4.2       | Horizontal Timing                                  |     |
| 10.4.3       | Vertical Timing                                    |     |
| 10.4.4       | Partial Scan (When the start line is set at 193th) |     |
|              | eration Mode                                       |     |
| 10.5.1       | Continuous mode                                    | .4/ |
| 10.5.2       | Edge Pre-Select (EPS) trigger mode                 |     |
| 10.5.3       | Pulse Width Control (PWC) trigger mode             |     |
| 10.5.4       | Reset Continuous Trigger (RCT) mode                |     |
| 10.5.5       | Sequential Trigger Mode (EPS)                      |     |
| 10.5.6       | Delayed Readout EPS and PWC Modes (EPS and PWC)    |     |
| 10.5.7       | Smearless mode                                     |     |
| 10.5.8       | Optical Black transfer mode                        |     |
| 10.5.9       | Multi ROI mode (Multi Region of Interest)          |     |
|              | eration Mode and Functions matrix                  |     |
| 10.6.1.      | Sync Mode (0xA098) 0:SYNC                          | .J/ |



See the possibilities

| 10.6.2 SYNC Mode (0xA098) 1:ASYNC             | 57 |
|-----------------------------------------------|----|
| 10.7. Special note for settings               |    |
| 10.7.1 When the image size is changed         |    |
| 10.7.2 When the image is captured             | 58 |
| 10.7.3 Acquisition frame rate                 |    |
| 11. External Appearance and Dimensions        | 59 |
| 12. Specifications                            | 60 |
| 12.1. Spectral response                       | 60 |
| 12.2. Specification Table                     | 61 |
| Register Map                                  | 63 |
| Appendix                                      | 75 |
| 1. Precautions                                | 75 |
| 2. Typical Sensor Characteristics             | 75 |
| 3. Caution when mounting a lens on the camera | 75 |
| 4. Caution when mounting the camera           |    |
| 5. Exportation                                |    |
| 6. References                                 |    |
| Change History                                |    |
| User's Record                                 |    |

# 1. General

This manual covers the digital 2-CCD progressive scan multi-spectral camera AD-080GE.

The AD-080GE is a GigE Vision compliant camera, belonging to the JAI C3 Advanced family. The AD-080GE employs 2 CCDs, one for BAYER color and the other for NIR monochrome utilizing prism optics so that the AD-080GE can inspect the objects by visible color sensor and Near IR sensor with the same angle of view.

The AD-080GE provides a frame rate of 30 frames/second at full resolution. Using partial scan, the camera can achieve faster frame rates up to 85 fps.

The 1/3" CCDs with square pixels offers a superb image quality. The high-speed shutter function and asynchronous random trigger mode allows the camera to capture high quality images of fast moving objects.

The camera features a built-in pre-processing function which includes blemish compensation, shading compensation, Bayer to RGB interpolation, LTT/gamma correction and knee control.

The AD-080GE also complies with the GenlCam standard and contains an internal XML file that is used to describe the functions/features of the camera. For further information about the GigE Vision Standard, please go to <a href="http://www.machinevisiononline.org">www.machinevisiononline.org</a> and about GenlCam, please go to <a href="http://www.genicam.org">www.machinevisiononline.org</a> and about GenlCam, please go to <a href="http://www.genicam.org">www.machinevisiononline.org</a> and about GenlCam, please go to <a href="http://www.genicam.org">www.genicam.org</a>.

As an application programming interface, JAI provides an SDK (Software Development Kit). This SDK includes GigE Vision Filter Driver, JAI Control tool, software documentation and code examples.

The JAI SDK can be downloaded from <u>www.jai.com</u>.

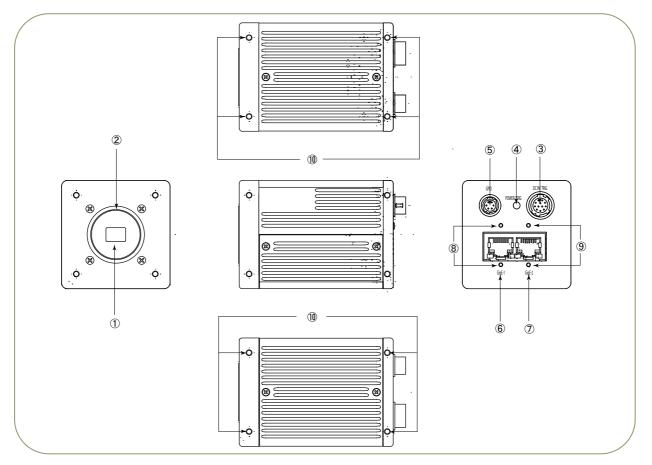
The latest version of this manual can be downloaded from <u>www.jai.com</u>

For camera revision history, please contact your local JAI distributor.

#### 2. Camera nomenclature

The standard camera composition consists of the camera main body and C-mount protection cap.

The camera is available in the following versions:


#### AD-080GE

Where <u>A</u> stands for "Advanced" family, <u>D</u> stands for "Dual CCD", <u>08</u>0 represents the resolution "800K pixels", <u>080</u> represents variation with the same resolution and <u>GE</u> stands for "GigE Vision" interface.



## 3. Main Features

- C3 Advanced series progressive scan camera
- GigE Vision, GenICam compliant
- Multi-spectral 2-channel CCD camera
- Simultaneously captures Visible and Near-IR through the same optical path
- 1/3" progressive scan IT CCDs with 1024 (h) x 768 (v) active pixels
- 4.65 µm square pixels
- RGB 24-bit or 30-bit or Raw Bayer 12- or 10- or 8-bit output for visible
- 12- or 10- or 8-bit output for Near-IR
- 30 frames/second with full resolution
- Variable partial scan is available with user-definable height and starting line
- Programmable exposure from 0.5L(20µs) to 792L(33ms)
- Edge Pre-select, Pulse Width Control and Reset Continuous trigger modes
- Sequence trigger mode for on-the -fly change of gain, exposure and ROI
- Delayed read out mode for smooth transmission of multi camera applications
- Blemish compensation built-in
- Shading compensation circuit built in
- LUT (Look Up Table) for gamma correction
- Knee point and Knee slope can be adjusted
- AGC (Automatic Gain Control) from -3dB to 21dB
- LVAL synchronous/asynchronous operation (auto-detect)
- Auto-iris lens video output for lens control
- Programmable GPIO with opto-isolated inputs and outputs
- Comprehensive software tools and SDK for Windows XP/Vista (32 bit "x86" and 64 bit "x64" JAI SDK Ver. 1.2.1 and after )

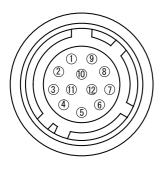


# 4. Locations and functions

| 1          | CCD sensor                  | : 1/3 inch CCD sensor                      |
|------------|-----------------------------|--------------------------------------------|
| 2          | Lens Mount                  | : C-mount ( Note*1 )                       |
| 3          | 12P Multi Connector         | : DC+12V and Trigger Input                 |
| 4          | LED                         | : Power and Trigger indications            |
| 5          | 6P Multi Connector          | : LVDS IN and TTL IN and OUT               |
| 6          | RJ-45 Connector(GigE 1)     | : GigE Vision I/F w/ thumbscrews for color |
| $\bigcirc$ | RJ-45 Connector(GigE2)      | : GigE Vision I/F w/ thumbscrews for NIR   |
| 8          | Holes for RJ-45 thumbscrews | : Vertical type (Note*2)                   |
| 9          | Holes for RJ-45 thumbscrews | : Vertical type (Note *2)                  |
| 10         | Mounting holes              | : M3, max length 5mm (Note*3)              |

\*1) : AD-080GE is based on a Dichroic Prism. For optimal performance, lenses designed for 3CCD cameras should be used with this camera. Be sure to avoid lenses that contain IR filters as this will impair the operation of the NIR sensor. Rear protrusion of the C-mount lens must be less than 4mm to avoid damage to the prism.

- \*2) : When an RJ-45 cable with thumbscrews is connected to the camera, please do not excessively tighten screws by using a screw driver. The RJ-45 receptacle on the camera might be
- damaged. For security, the strength to tighten screws is less than 0.147 Newton meter (Nm). Tightening by hand is sufficient in order to achieve this.
- \*3) : The tripod adapter plate MP-41 can be used with AD-080GE


Fig.1 Locations



# 5. Pin configuration

5.1. 12-pin Multi-connector (DC-in/GPIO/Iris Video) Type: HR10A-10R-12PB (Hirose) male.

(Seen from the rear of camera)



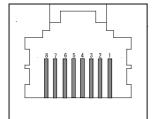

| Pin no. | Signal                           | Remarks       |
|---------|----------------------------------|---------------|
| 1       | GND                              |               |
| 2       | +12 V DC input                   |               |
| 3       | Opt IN 2 (-) / GND (*1)          |               |
| 4       | Opt IN 2 (+)/Iris Video out (*1) |               |
| 5       | Opt IN 1 ( - )                   |               |
| 6       | Opt IN 1 ( + )                   | gpio in / out |
| 7       | Opt Out 1 ( - )                  |               |
| 8       | Opt Out 1 ( + )                  |               |
| 9       | Opt Out 2 ( - )                  |               |
| 10      | Opt Out 2 ( + )                  |               |
| 11      | + 12 V DC input                  |               |
| 12      | GND                              |               |

Fig. 2. 12-pin connector.

\*1: Iris Video output function can be set by the internal DIP switch (SW700).

#### 5.2. Digital Output Connector for Gigabit Ethernet

Type: RJ-45 : HFJ11-1G02E-L21RL or equivalent



The digital output signals follow the Gigabit Ethernet interface using an RJ-45 conforming connector. To the right is a table with the pin assignment for Gigabit Ethernet connector.

| Pin No | In/Out | Name       |
|--------|--------|------------|
| 1      | In/Out | MX1+ (DA+) |
| 2      | In/Out | MX1- (DA-) |
| 3      | In/Out | MX2+ (DB+) |
| 4      | In/Out | MX3+ (DC+) |
| 5      | In/Out | MX3- (DC-) |
| 6      | In/Out | MX2- (DB-) |
| 7      | In/Out | MX4+ (DD+) |
| 8      | In/Out | MX4- (DD-) |

Fig. 3. Gigabit Ethernet connector

#### 5.3. 6-pin Multi-connector (LVDS IN and TTL IN/OUT)

Type: HR-10A-7R-6PB

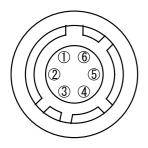



Fig.4 HIROSE 6-pin connector

| No  | I/0 | Name       | Note                      |
|-----|-----|------------|---------------------------|
| 1   | I   | LVDS In 1- |                           |
| 2   | I   | LVDS In 1+ |                           |
| 3   | I   | TTL IN 1   | 75ohm Terminator (Note*1) |
| 4   | 0   | TTL Out 1  | Note*2)                   |
| 5   | I   | TTL IN 2   | 75ohm Terminator(Note*1)  |
| 6 注 | Ξ   | GND        |                           |

\*1:can be changed by DIP switches.

\*2: Open collector or TTL level can be selected by an internal DIP switch. Factory default is TTL.

5.4. DIP switches



5.4.1 Trigger input 75 ohms termination Trigger input can be terminated with 75 ohms if DIP switch SW600 is selected as described below. Factory default is open.

TTL 75 Ω



#### 5.4.2 EEN output

EEN output through HIROSE 6-pin #4 can be selected TTL level or open collector level. The selection is activated by DIP switch SW100 described below.

TTL OPEN



5.4.3 Video output for Auto iris lens

The output through HIROSE 12-pin #4 can be selected OPT IN 2 or Iris video output by DIP switch SW700 described below. Factory default is OPT IN 2.





# 6. Input and output circuits

In the following schematic diagrams the input and output circuits for video and timing signals are shown.

#### 6.1. Iris Video output

Trigger input

6.2.

This signal can be used for lens iris control in Continuous mode. The signal is taken from the CCD sensor output through the process circuit but as the reverse compensation is applied, the signal is not influenced by the gain settings. The video output is without sync. The signal is 0.7 V p-p from 75  $\Omega$  without termination. This signal is taken from sensor 1 but it can be changed by the register. In order to get this signal, DIP switch DSW700 should be changed. Refer to 5.4.3.

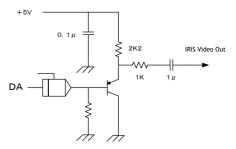
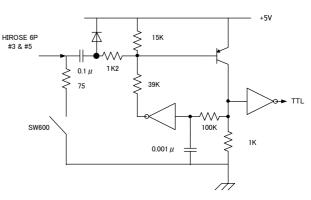




Fig.5 Iris video output





#### 6.3. EEN (Exposure Enable) output

An external trigger input can be applied to

the input circuit is designed as a flip-flop

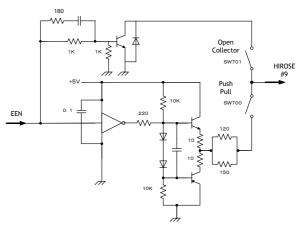
The input is AC coupled. To allow long pulses

circuit. The leading and trailing edges of the

pin 3 and 5 of 6-pin Hirose connector.

trigger pulse activate the circuit.

Trigger input level 4 V  $\pm$ 2 V.


The trigger polarity can be changed.

XEEN is available on pin 4 of the 6-pin Hirose connector.

The output can be selected as either open collector or TTL level.

The TTL output circuit is  $75\Omega$  complementary emitter followers. It will deliver a full 5 volt signal.

Output level  $\geq 4 \text{ V}$  from 75 $\Omega$ . (No termination). For the open collector, the maximum current is 120mA. But if current of more than 50mA is used, use thicker cable. The use of thinner cable may cause a malfunction due to its resistance.





# 7. System Configuration

#### 7.1. System connection

When the AD-080GE is connected to a PC, there are two connection methods.

Method one is to use dual or quad input Network Interface Card (NIC) or two separate network interface cards. The other way is to use a hub as shown below.

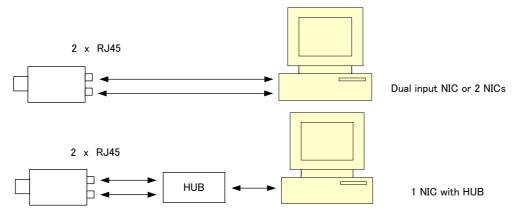



Fig.8 System configuration

It should be noted that the hub being used should comply with Gigabit Ethernet. When JAI SDK control tool is started, AD-080GE is recognized as two cameras. #0 represents the Bayer color imager and #1 represents the NIR imager.

Each imager can be handled as an independent camera.



Two image sensors can be operated either in SYNC mode or ASYNC mode. This can be set by the "Sync mode command".

#### 7.2. Lens considerations

The AD-080GE is based on a dichroic prism, allowing precise separation of the visible (color)

and near-infrared parts of the spectrum. Thanks to the compact design of the prism, C-mount lenses can be used with this camera. For optimal performance it is strongly advised to use lenses designed for 3CCD cameras with the AD-080GE. These lenses have minimal chromatic aberration, thus allowing both the visible and near-IR images to be in focus. Be sure to select a lens that does not have any built-in IR filtering as this will disrupt the proper operation of the near-IR image channel.

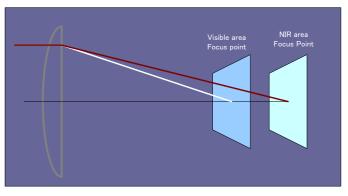



Fig 9 Focal points for Visible and NIR lights



# 8. GPIO (Inputs and outputs)

#### 8.1. Overview

All input and output signals pass through the GPIO (General Purpose Input and Output) module. The GPIO module consists of a Look-Up Table (LUT - Cross-Point Switch), 2 Pulse Generators and a 12-bit counter. In the LUT, the relationship between inputs, counters and outputs is governed by internal register set-up.



Some of the descriptions in this diagram differ from those displayed in the camera control tool. The following table shows display names and descriptions.

| <br>        |              |               |              |  |  |  |
|-------------|--------------|---------------|--------------|--|--|--|
| Line S      | ource        | Line Selector |              |  |  |  |
| Description | Display Name | Description   | Display Name |  |  |  |
| OPT IN 1    | Line 4       | TTL OUT 1     | Line 1       |  |  |  |
| OPT IN 2    | Line 5       |               |              |  |  |  |
| TTL IN 1    | Line 6       | OPT OUT 1     | Line 2       |  |  |  |
| TTL IN 2    | Line 7       | OPT OUT 2     | Line 3       |  |  |  |
| LVDS IN 1   | Line 8       |               |              |  |  |  |
|             |              |               |              |  |  |  |

On the above block diagram, Trigger 0 is used for Exposure and Trigger 1 is used for Delayed Readout. The Time Stamp Reset can reset the time stamp compliant with the GigE Vision standard. This is used for ensuring the same time stamp if multiple cameras are used.

The blocks shown in the preceding diagram have the following functionalities:

#### 8.1.1 LUT (Cross Point Switch)

The LUT works as a cross-point switch which allows connecting inputs and outputs freely. The signals LVAL\_IN, DVAL\_IN, FVAL\_IN and EEN\_IN all originate from the camera timing circuit. On this diagram, Trigger 0 is used for exposure and Trigger 1 is used for Delayed Readout. The Time Stamp Reset signal can reset the time stamp specified in GigE Vision Format. This signal can be used when time stamps from several cameras connected are coincident with each other. The "Sequence reset" resets the sequential settings. Outputs from the LUT described on the right side show GPIO settings for LINE SELECTOR in the JAI Camera Control tool and inputs to the LUT on the left side show GPIO settings for LINE SOURCE in the JAI Camera Control tool. <u>Refer to Chapter 8.2 GPIO inputs/outputs table.</u>

#### 8.1.2 12-bit Counter

A camera pixel clock can be used as a source. The counter has a "Divide by N", where N has the range 1 through 4096, allowing a wide range of clock frequencies to be programmed. Setting value 0 is bypass, setting value 1 is 1/2 dividing, and setting value 4095 is 1/4096 dividing. As the pixel clocks for the AD-080GE are 33.75 MHz, the output frequency is varied from 33.75MHz to 23.768 KHz.

#### 8.1.3 Pulse Generators (0 to 3)

Each pulse generator consists of a 20-bit counter. The behavior of these signals is defined by their pulse width, start point and end point.

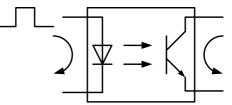
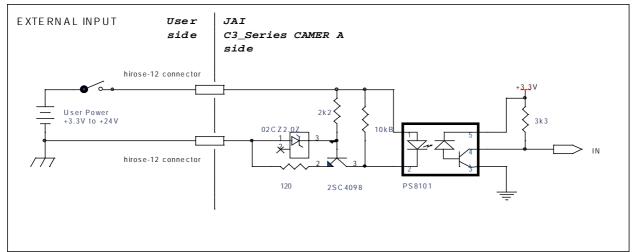
The pulse generator signals can be set in either triggered or periodic mode.

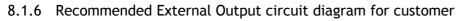
In triggered mode, the pulse is triggered by the rising edge/falling edge/high level or low level of the input signal. In periodic mode, the trigger continuously generates a signal that is based on the configured pulse width, starting point and end point.

Each pulse generator operates at the frequency created in the 12-bit counter. As the pixel clock (33.75 MHz) is used as the main frequency, the frequency of pulse generator is 33.75 MHz to 23.768 KHz.

#### 8.1.4 Opto-isolated Inputs/Outputs

The control interface of the C3 GigE Vision camera series has opto-isolated inputs and outputs, providing galvanic separation between the camera's inputs/outputs and peripheral equipment. In addition to galvanic separation, the opto-isolated inputs and outputs can cope with a wide range of voltages; the voltage range for inputs is +3.3V to +24V DC whereas outputs will handle +5V to +24V DC.



Fig.10 Photo coupler

See the possibilities



8.1.5 Recommended External Input circuit diagram for customer

Fig.11 External Input Circuit, OPT IN 1 and 2



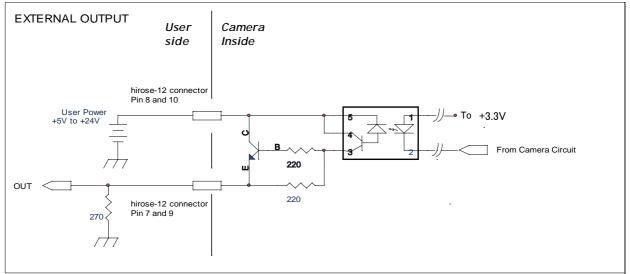



Fig.12 External Output Circuit, OPT OUT 1 and 2

#### 8.1.7 Optical Interface Specifications

The relation of the input signal and the output signal through the optical interface is as follows.



| Conditions for Input                    |              |  |  |  |  |  |  |
|-----------------------------------------|--------------|--|--|--|--|--|--|
| Input Line Voltage Range                | +3.3V ~ +24V |  |  |  |  |  |  |
| Input Current                           | 6mA ~ 30mA   |  |  |  |  |  |  |
| Minimum Input Pulse Width to Turn<br>ON | 0.5µs        |  |  |  |  |  |  |

| Output Specifications        |               |  |  |  |  |  |  |  |
|------------------------------|---------------|--|--|--|--|--|--|--|
| Output Load(Maximum Current) | 100mA         |  |  |  |  |  |  |  |
| Minimum Output Pulse Width   | 20µs          |  |  |  |  |  |  |  |
| Time Delay Rise TDR          | 0.5µs ~ 0.7µs |  |  |  |  |  |  |  |
| Rise Time RT                 | 1.2µs ~ 3.0µs |  |  |  |  |  |  |  |
| Time Delay Fall TDF          | 1.5µs ~ 3.0µs |  |  |  |  |  |  |  |
| Fall Time FT                 | 4.0µs ~ 7.0µs |  |  |  |  |  |  |  |

Fig.13 Optical Interface Performance



#### 8.2. Inputs and outputs table

|             |                      |              | Output Ports |              |              |             |             |             |                             |                    |                    |                      |                      |                      |                      |
|-------------|----------------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-----------------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|
|             |                      | Trig.<br>1-0 | Trig.<br>1-1 | Trig.<br>2-0 | Trig.<br>2-1 | OPT<br>OUT1 | OPT<br>OUT2 | TTL<br>OUT1 | Time<br>Stamp<br>Reset<br>1 | Seq.<br>Reset<br>1 | Seq.<br>Reset<br>2 | Pulse<br>Gen.<br>1-0 | Pulse<br>Gen.<br>1-1 | Pulse<br>Gen.<br>2-0 | Pulse<br>Gen.<br>2-1 |
|             | LVAL IN<br>1         | ×            | ×            |              |              | ×           | ×           | 0           | ×                           | ×                  |                    | 0                    | 0                    | 0                    | 0                    |
|             | DVAL IN<br>1         | ×            | ×            |              |              | ×           | ×           | 0           | ×                           | ×                  |                    | 0                    | 0                    | 0                    | 0                    |
|             | FVAL IN<br>1         | ×            | ×            |              |              | ×           | ×           | 0           | ×                           | ×                  |                    | 0                    | 0                    | 0                    | 0                    |
|             | EEN IN<br>1          | ×            | ×            |              |              | 0           | 0           | 0           | ×                           | ×                  |                    | 0                    | 0                    | 0                    | 0                    |
|             | LVAL IN<br>2         |              |              | ×            | ×            | ×           | ×           | 0           |                             |                    | ×                  | 0                    | 0                    | 0                    | 0                    |
|             | DVAL IN<br>2         |              |              | ×            | ×            | ×           | ×           | 0           |                             |                    | ×                  | 0                    | 0                    | 0                    | 0                    |
|             | FVAL IN<br>2         |              | $\square$    | ×            | ×            | ×           | ×           | 0           |                             |                    | ×                  | 0                    | 0                    | 0                    | 0                    |
|             | EEN IN<br>2          |              | $\square$    | ×            | ×            | 0           | 0           | 0           |                             |                    | ×                  | 0                    | 0                    | 0                    | 0                    |
|             | OPT IN<br>1          | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    |
|             | OPT IN<br>2          | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    |
|             | TTL IN 1             | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    |
| orts        | TTL IN 2             | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    |                      |
| Input Ports | LVDS IN              | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    |
| 느           | Soft<br>Trigger<br>0 | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    |
|             | Soft<br>Trigger<br>1 | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    |
|             | Soft<br>Trigger<br>2 | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    |
|             | Soft<br>Trigger<br>3 | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    |
|             | Pulse<br>Gen.<br>1-0 | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  |                      | 0                    | 0                    | 0                    |
|             | Pulse<br>Gen.<br>1-1 | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    |                      | 0                    | 0                    |
|             | Pulse<br>Gen.<br>2-0 | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    |                      | 0                    |
|             | Pulse<br>Gen.2-<br>1 | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0                           | 0                  | 0                  | 0                    | 0                    | 0                    |                      |

LEGEND: 0 = valid combination / x = Not valid (do not use this combination) The shaded parts are for the interface to external equipment.

#### 8.3. Configuring the GPIO module (register settings)

#### 8.3.1 Input /Output Signal Selector

GPIO is used to determine which signal is assigned which terminal. For the details, please refer to Register Map, Digital I/O, Acquisition and Trigger Control and Pulse Generator.

#### Line Selector

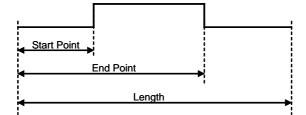
| 🗆 Digital I/O                       |                                      |
|-------------------------------------|--------------------------------------|
| 🗖 Line Selector                     | Camera Trigger 0                     |
| Line Source                         | Camera Trigger 0                     |
| Line Polarity                       | Camera Trigger 1                     |
| Software Trigger 0                  | GPIO PORT 1<br>GPIO PORT 2           |
| Software Trigger 1                  | GPIO PORT 3                          |
| Software Trigger 2                  | GPIO PORT 4                          |
| Software Trigger 3                  | Pulse Generator 0                    |
| GigE Vision Transport Layer Control | Pulse Generator 1<br>TimeStamp Reset |
| Payload Size                        | Sequence Table Reset                 |
| GigE Major Version                  |                                      |
| ALC REAL AND A                      |                                      |

#### Line Source

| 🗆 Digital I/O                       |                                         |
|-------------------------------------|-----------------------------------------|
| Line Selector                       | Camera Trigger 0                        |
| Line Source                         | Off                                     |
| Line Polarity                       | Off                                     |
| Software Trigger 0                  | LVAL                                    |
| Software Trigger 1                  | DVAL<br>FVAL                            |
| Software Trigger 2                  | EEN                                     |
| Software Trigger 3                  | GPIO Port In 1                          |
| GigE Vision Transport Layer Control | GPIO Port In 2                          |
| Payload Size                        | GPIO Port In 3<br>GPIO Port In 4        |
| GigE Major Version                  | Software Trigger 0                      |
| GigE Minor Version                  | Software Trigger 1                      |
| Is Big Endian                       | Software Trigger 2                      |
| Character Set                       | Software Trigger 3<br>Pulse Generator 0 |
| MAC Address                         | Pulse Generator 1                       |
| Supported LLA                       |                                         |
| Supported DHCP                      | 210                                     |

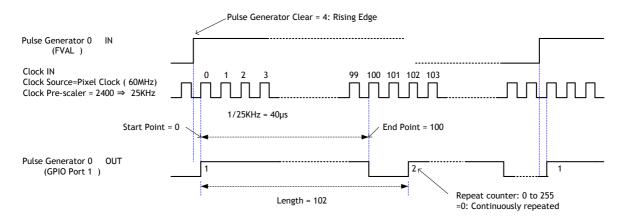
#### Line Polarity

| 🗆 Digital I/O      |                  |   |
|--------------------|------------------|---|
| Line Selector      | Camera Trigger 0 |   |
| Line Source        | Off              |   |
| Line Polarity      | Active High      | X |
| Software Trigger 0 | Active High      | 4 |
| Software Trigger 1 | Active Low       |   |
| Software Trigger 2 | 0                |   |
|                    | -                |   |


#### 8.3.2 12 bit counter

| Address | Internal Name          | GenlCam Name   | Access | Size | Value (Range)                                                                              |
|---------|------------------------|----------------|--------|------|--------------------------------------------------------------------------------------------|
| 0xB004  | Counter Dividing Value | ClockPreScaler | R/W    | 4    | 0x000: Bypass<br>0x001: 1/2 Dividing<br>0x002: 1/3 Dividing<br> <br>0xFFF: 1/4096 Dividing |




8.3.4 Pulse generators (20 bit x 4)

There are 4 pulse generators (designated 0 through 1) that can be used to create various timing scenarios by programming start point, endpoint, length and repeats.



The following drawing is an example of settings.

FVAL is used for the input of a pulse generator 0 and the clock, after the rising edge of FVAL, counts 100 clocks for the high period of the pulse and 102 clocks for the pulse length. As 2400 is for Clock Pre-scaler, the output of the 12 bit counter is 25 KHz, which is 40µs. Thus, pulse generator 0 creates a 4 ms pulse.



The following shows JAI SDK Camera Control Tool for setting Pulse Generators.

| Pulse Generators                      |                          |   |
|---------------------------------------|--------------------------|---|
| Clear Mode for the Pulse Generators   | Free Run                 | × |
| Clock Pre-scaler                      | Free Run                 |   |
| Clock Source for the Pulse Generators | High Level               |   |
| Pulse Generator End Point             | Low Level<br>Rising Edge |   |
| Pulse Generator Length                | Falling Edge             |   |
| Pulse Generator Repeat Count          | 0                        |   |
| Pulse Generator Selector              | Pulse Generator 0        |   |
| Pulse Generator Start Point           | 0                        |   |

For the details of Pulse Generator register, refer to Register Map.

#### 8.4. GPIO programming examples

8.4.1 GPIO Plus PWC shutter

Example: 20µs unit pulse width exposure control (PWC). Pixel clock is 33.75MHz. 675 clocks (775-100) equal 20µs. These are settings for the color sensor. For the NIR sensor, trigger 2-0 should be set in the same manner.

|   | Address | Register                   | Value                         |
|---|---------|----------------------------|-------------------------------|
|   | 0xA040  | Trigger Mode               | 2 = PWC (Pulse Width Control) |
| 1 | 0xB090  | Pulse Generator 0 Selector | 4 =OPT IN 1                   |
|   | 0xB000  | Clock Choice               | 1 = Pixel Clock (33.75MHz)    |
| 2 | 0xB004  | Counter Dividing Value     | 0 = Pass through              |
|   | 0xB008  | Length Counter 0           | 1000 Clocks                   |
|   | 0xB00C  | Start point Counter 0(1)   | 100 Clocks                    |
|   | 0xB010  | Start point Counter 0(2)   | 1                             |
|   | 0xB014  | End point Counter 0        | 775 Clocks                    |
|   | 0xB018  | Counter Clear 0            | 4 = Rising Edge Clear         |
| 3 | 0xB060  | CAMERA TRIGGER Selector    | 16 = pulse generator 0        |
| 1 | 0xB090  | Pulse Generator 0 Selector | 4 =OPT IN 1                   |

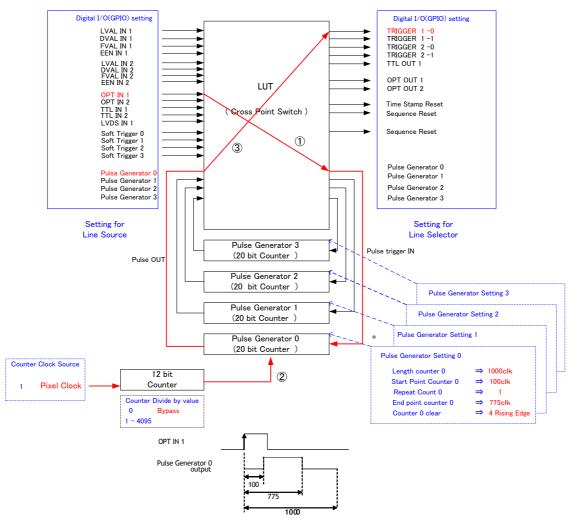



Fig.14 Pulse Generator Timing Example 1



#### 8.4.2 Internal Trigger Generator

Example: Create a trigger signal and trigger the camera. These are settings for the color sensor. For the NIR sensor, trigger 2-0 should be set in the same manner.

|   | Address | Register                  | Value                   |
|---|---------|---------------------------|-------------------------|
|   | 0xA040  | Trigger Mode              | 1 = EPS                 |
| 1 | 0xB000  | Clock Choice              | 1 = Pixel Clock         |
|   | 0xB004  | Counter Dividing Value    | 1419= 1/1420(Line Rate) |
|   | 0xB008  | Length Counter 0          | 1000 Clocks             |
|   | 0xB00C  | Start point Counter 0 (1) | 100 Clocks              |
|   | 0xB010  | Start point Counter 0 (2) | 0 = Infinite            |
|   | 0xB014  | End point Counter 0       | 500 Clocks              |
|   | 0xB018  | Counter Clear 0           | 0 = Free Run            |
| 2 | 0xB060  | CAMERA TRIGGER Selector   | 16 = pulse generator 0  |

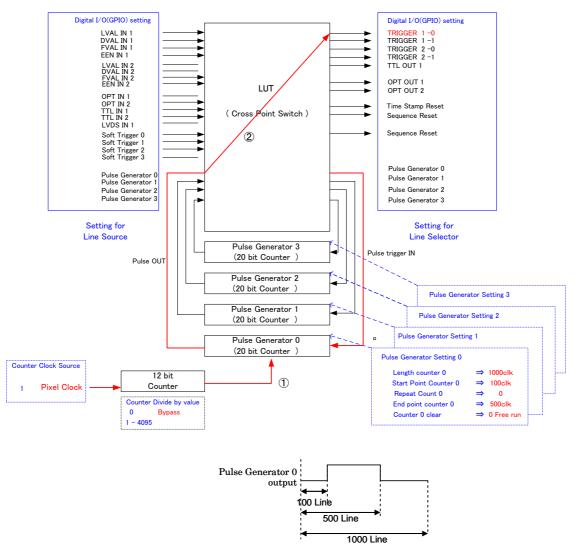
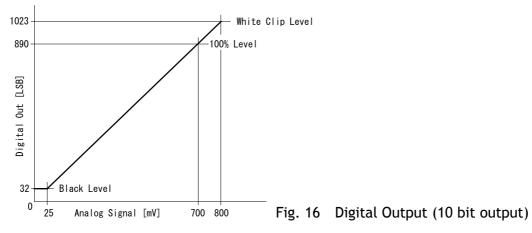



Fig.15 Pulse Generator 0 timing Example 2

# 9. GigE Vision Streaming Protocol (GVSP)


9.1. Digital Video Output (Bit Allocation)

Although the AD-080GE is a digital camera, the image is generated by an analog component, the CCD sensor.

The table and diagram below show the relationship between the analog CCD output level and the digital output.

| CCD out | Analog Signal *  |         | Digital Out |          |
|---------|------------------|---------|-------------|----------|
|         | Analog Signal    | 8 bit   | 10 bit      | 12 bit   |
| Black   | Setup 3.6%, 25mV | 8 LSB   | 32 LSB      | 128 LSB  |
| 200mV   | 700mV            | 222 LSB | 890 LSB     | 3560 LSB |
| 230mV   | 800mV            | 255 LSB | 1023 LSB    | 4095 LSB |

The standard setting for 10-bit video level is 890 LSB. A 200 mV CCD output level equals 100% video output.



9.2. Bit Allocation (Pixel Format / Pixel Type) - (monochrome sensor)

In the GigE Vision Interface, GVSP (GigE Vision Streaming Protocol) is used for an application layer protocol relying on the UDP transport layer protocol. It allows an application to receive image data, image information and other information from a device.

As for the monochrome sensor in the AD-080GE, the following pixel types supported by GVSP are available.

With regard to the details of GVSP, please refer to the GigE Vision Specification available from the AIA (<u>www.machinevisiononline.org</u>).

9.2.1 GVSP\_PIX\_MONO8 (8bit)

| 1 Byte    | Z     | Byte |   |     |   | 3 | Byt | e |   |   |   |    |   |   |   |
|-----------|-------|------|---|-----|---|---|-----|---|---|---|---|----|---|---|---|
| Y0        |       |      |   | Y1  |   |   |     |   |   |   | Y | ΄2 |   |   |   |
| 0 1 2 3 4 | 5 6 7 | 0 1  | 2 | 3 4 | 5 | 6 | 7   | 0 | 1 | 2 | 3 | 4  | 5 | 6 | 7 |

9.2.2 GVSP\_PIX\_MONO10 (10bit)

| 1 Byte  |         | 2 Byte    | 3 E | Byte    | 4 By    | te                |
|---------|---------|-----------|-----|---------|---------|-------------------|
| Y       | 0       | Y0        |     | Y       | '1      | Y1                |
| 0 1 2 3 | 4 5 6 7 | 8 9 X X X | XXX | 0 1 2 3 | 4 5 6 7 | 8 9 X X X X X X X |



| 9.2.3<br>1 Byte | GVSP_PIX_MONO<br>2 Byte | 010_PACKED (10 bit)           | 3 Byte                          | 4 Byte                        |
|-----------------|-------------------------|-------------------------------|---------------------------------|-------------------------------|
| 2 3 4           | Y0<br>5 6 7 8 9 0 1 X X | Y1<br>0 1 X X 2 3 4 5 6 7 8   | Y2<br>9 2 3 4 5 6 7 8 9 0 1 X > | Y3<br>0 1 X X 2 3 4 5 6 7 8 9 |
| 9.2.4<br>1 Byte | GVSP_PIX_MONO           | 012 (12 bit)<br>2 Byte        | 3 Byte                          | 4 Byte                        |
| 0 1 2           | Y0<br>2 3 4 5 6 7       | Y0<br>8 9 10 11 X X X X       | Y1<br>0 1 2 3 4 5 6 7           | Y1<br>8 9 10 11 X X X X       |
| 9.2.5<br>1 Byte | GVSP_PIX_MONC           | 012_PACKED (12 bit)<br>2 Byte | 3 Byte                          | 4 Byte                        |

 Y0
 Y1
 Y2
 Y3

 4
 5
 6
 7
 8
 9
 10
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

| Address | Internal Name     | Access | Size | Value                                                                                                              |
|---------|-------------------|--------|------|--------------------------------------------------------------------------------------------------------------------|
| 0xA410  | Pixel Format type | R/W    | 4    | 0x01080001:Mono8<br>0x01100003:Mono10<br>0x010C0004:Mono10 Packed<br>0x01100005:Mono12<br>0x010C0006:Mono12 Packed |

9.3. Bit Allocation (Pixel Format / Pixel Type) - (Bayer mosaic color sensor) In the GigE Vision Interface, GVSP (GigE Vision Streaming Protocol) is used for an application layer protocol relying on the UDP transport layer protocol. It allows an application to receive image data, image information and other information from a device.

As for the Bayer mosaic color sensor in the AD-080GE, the following pixel types supported by GVSP are available.

With regard to the details of GVSP, please refer to the GigE Vision Specification available from the AIA.

9.3.1 GVSP\_PIX\_BAYRG8 "BayerRG8"

| Odd Line          | 2                        |                 |                 |  |  |  |  |  |
|-------------------|--------------------------|-----------------|-----------------|--|--|--|--|--|
| 1 Byte            | 2 Byte                   | 3 Byte          |                 |  |  |  |  |  |
| R0                | G1                       | R2              |                 |  |  |  |  |  |
| 0 1 2 3 4 5 6     | <b>7</b> 0 1 2 3 4 5 6 7 | 0 1 2 3 4 5 6 7 |                 |  |  |  |  |  |
| Even Line         |                          |                 |                 |  |  |  |  |  |
| 1 Byte            | 2 Byte                   | 3 Byte          | -               |  |  |  |  |  |
| G0                | B1                       | G2              |                 |  |  |  |  |  |
| 0 1 2 3 4 5 6     | 7 0 1 2 3 4 5 6 7        | 0 1 2 3 4 5 6 7 |                 |  |  |  |  |  |
| 9.3.2 GVSP_PIX_BA | YRG10 "Bayer RG10"       |                 |                 |  |  |  |  |  |
| Odd Line          |                          |                 |                 |  |  |  |  |  |
| 1 Byte            | 2 Byte                   | 3 Byte          | 4 Byte          |  |  |  |  |  |
| R0                | R0                       | G1              | G1              |  |  |  |  |  |
| 0 1 2 3 4 5 6     | 7 8 9 X X X X X X X      | 0 1 2 3 4 5 6 7 | 8 9 X X X X X X |  |  |  |  |  |
| Even Line         |                          |                 |                 |  |  |  |  |  |
| 1 Byte            | 2 Byte                   | 3 Byte          | 4 Byte          |  |  |  |  |  |
| G0                | G0                       | B1              | B1              |  |  |  |  |  |
| 0 1 2 3 4 5 6     | 7 8 9 X X X X X X        | 0 1 2 3 4 5 6 7 | 8 9 X X X X X X |  |  |  |  |  |

#### 9.3.3 GVSP\_PIX\_BAYRG12 "Bayer RG12"

Odd Line

| 1 Byte          | 2 Byte 3          | Byte 4          | 4 Byte            |  |  |  |  |  |  |
|-----------------|-------------------|-----------------|-------------------|--|--|--|--|--|--|
| R0              | R0                | G1              | G1                |  |  |  |  |  |  |
| 0 1 2 3 4 5 6 7 | 8 9 10 11 X X X X | 0 1 2 3 4 5 6 7 | 8 9 10 11 X X X X |  |  |  |  |  |  |
| Even Line       |                   |                 |                   |  |  |  |  |  |  |
| 1 Byte          | 2 Byte            | 3 Byte          | 4 Byte            |  |  |  |  |  |  |
| G0              | G0                | B1 B1           |                   |  |  |  |  |  |  |
| 0 1 2 3 4 5 6 7 | 8 9 10 11 X X X X | 0 1 2 3 4 5 6 7 | 8 9 10 11 X X X X |  |  |  |  |  |  |

#### 9.3.4 GVSP\_PIX\_BAYGB8 "Bayer GB8"

% If the even line is set by ROI, the pixel format is automatically changed to this format.  $\underline{\rm Odd\ Line}$ 

|     |     |     | G | i0 |   |   |   |    |   |   | В | 1 |   |   |   | G2 |    |   |   |   |   |   |   |  |
|-----|-----|-----|---|----|---|---|---|----|---|---|---|---|---|---|---|----|----|---|---|---|---|---|---|--|
| 0   | 1   | 2   | 3 | 4  | 5 | 6 | 7 | 0  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0  | 1  | 2 | 3 | 4 | 5 | 6 | 7 |  |
| Eve | n L | ine |   |    |   |   |   |    |   |   |   |   |   |   |   |    |    |   |   |   |   |   |   |  |
|     | R0  |     |   |    |   |   |   | G1 |   |   |   |   |   |   |   |    | R2 |   |   |   |   |   |   |  |
| 0   | 1   | 0   | 2 | Λ  | 5 | 6 | 7 | 0  | 1 | 2 | 2 | Λ | 5 | 6 | 7 | 0  | 1  | 2 | 2 | Λ | 5 | 6 | 7 |  |

9.3.5 GVSP\_PIX\_BAYGB10 "Bayer GB10"

※ If the even line is set by ROI, the pixel format is automatically changed to this format. Odd Line

| 1 Byte        | 2 Byte 3          | Byte            |  |  |  |  |  |  |  |
|---------------|-------------------|-----------------|--|--|--|--|--|--|--|
| G0            | B1                | G2              |  |  |  |  |  |  |  |
| 0 1 2 3 4 5 6 | 7 0 1 2 3 4 5 6 7 | 0 1 2 3 4 5 6 7 |  |  |  |  |  |  |  |
| Even Line     |                   |                 |  |  |  |  |  |  |  |
| 1 Byte        | 2 Byte 3          | 3 Byte          |  |  |  |  |  |  |  |
| R0            | G1                | R2              |  |  |  |  |  |  |  |
| 0 1 2 3 4 5 6 | 7 0 1 2 3 4 5 6 7 | 0 1 2 3 4 5 6 7 |  |  |  |  |  |  |  |

9.3.6 GVSP\_PIX\_BAYGB12 "Bayer GB12"

% If the even line is set by ROI, the pixel format is automatically changed to this format. Odd Line

| 1 Byte          | 2 Byte            | 3 Byte          | 4 Byte          |  |  |  |  |  |
|-----------------|-------------------|-----------------|-----------------|--|--|--|--|--|
| GO              | G0                | B1              | B1              |  |  |  |  |  |
| 0 1 2 3 4 5 6 7 | 8 9 X X X X X X X | 0 1 2 3 4 5 6 7 | 8 9 X X X X X X |  |  |  |  |  |
| Even Line       |                   |                 |                 |  |  |  |  |  |
| 1 Byte          | 2 Byte            | 3 Byte          | 4 Byte          |  |  |  |  |  |
| R0              | R0                | G1              | G1              |  |  |  |  |  |
| 0 1 2 3 4 5 6 7 | 8 9 X X X X X X   | 0 1 2 3 4 5 6 7 | 8 9 X X X X X X |  |  |  |  |  |

#### 9.3.7 GVSP\_PIX\_RGB8\_PACKED "RGB 8Packed"

| 1 By | yte |   |   |   |   |   |   | Byte |   | _ |   |    |   | 3 | Byt | е |   |   |   |   |   | 4 By | /te |
|------|-----|---|---|---|---|---|---|------|---|---|---|----|---|---|-----|---|---|---|---|---|---|------|-----|
|      |     |   | R | 0 |   |   |   |      |   |   | C | i0 |   |   |     |   |   |   | В | 0 |   |      |     |
| 0    | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 0    | 1 | 2 | 3 | 4  | 5 | 6 | 7   | 0 | 1 | 2 | 3 | 4 | 5 | 6    | 7   |



| 9.3.8  | G  | GVSP_PIX_RGB10V1_PACKED "RG |   |   |   |    |   |        | RGE | GB 10V1 Packed" |   |   |   |   |       |   |   |   |        |   |   |   |   |   |   |   |   |   |   |   |
|--------|----|-----------------------------|---|---|---|----|---|--------|-----|-----------------|---|---|---|---|-------|---|---|---|--------|---|---|---|---|---|---|---|---|---|---|---|
| 1 Byte |    | 2 Byte                      |   |   |   |    |   | 3 Byte |     |                 |   |   |   |   |       |   |   |   | 4 Byte |   |   |   |   |   |   |   |   |   |   |   |
| R0     | G0 | GO BO RO                    |   |   | 0 | G0 |   |        |     |                 |   |   |   |   | 30 B0 |   |   |   |        |   |   |   |   |   |   |   |   |   |   |   |
| 0 1    | 0  | 1                           | 0 | 1 | Χ | Χ  | 0 | 1      | 2   | 3               | 4 | 5 | 6 | 7 | 0     | 1 | 2 | 3 | 4      | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

#### 9.3.9 GVSP\_PIX\_RGB10V2\_PACKED "RGB 10V2 Packed"

| 1 B | yte |   |   |   | 2 Byte |   |   |   |   | 3 Byte |   |   |            |   |   |   |   |   |   |   |   |   | 4 By | yte |   |   |   |   |   |   |   |
|-----|-----|---|---|---|--------|---|---|---|---|--------|---|---|------------|---|---|---|---|---|---|---|---|---|------|-----|---|---|---|---|---|---|---|
|     |     |   | R | 0 |        |   |   |   |   |        |   | C | <b>i</b> 0 |   |   |   |   |   |   |   |   |   |      |     |   |   | В | 0 |   |   |   |
| 0   | 1   | 2 | 3 | 4 | 5      | 6 | 7 | 8 | 9 | 0      | 1 | 2 | 3          | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3    | 4   | 5 | 6 | 7 | 8 | 9 | X | Χ |

| Address | Internal Name     | Access | Size | Value                                                                                                                                          |
|---------|-------------------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xA410  | Pixel Format type | R/W    | 4    | 0x01080009:BAYRG8<br>0x0110000D:BAYRG10<br>0x01100011:BAYRG12<br>0x02180014:RGB8Packed<br>0x0220001C:RGB10V1Packed<br>0x0220001D:RGB10V2Packed |

Note: Although BAYGB8, BAYGB10 and BAYGB12 are not listed in the above table, if the start line of ROI is set at even line, GB pixel format is automatically output instead of RG pixel format.

# 10. Functions and Operations

#### 10.1. GigE Vision Standard Interface

The AD-080GE is designed in accordance with the GigE Vision standard. Digital images are transmitted over Cat5e or Cat6 Ethernet cables. All camera functions are also controlled via the GigE Vision interface.

The camera can operate in Continuous mode, providing an endless stream of images. For capturing individual images related to a specific event, the camera can also be triggered. For precise triggering, it is recommended to use a hardware trigger applied to the Hirose 12-pin connector. It is also possible to initiate a software trigger through the GigE Vision interface. However, when using a software trigger, certain latency inherent to the GigE interface must be expected. This latency, which manifests itself as jitter, greatly depends on the general conditions and traffic on the GigE connection. The frame rate described in this manual is for the ideal case and may deteriorate depending on conditions.

When using multiple cameras (going through a switch and/or a single path) or when operating in a system with limited transmission bandwidth the Delayed Readout Mode and Inter-Packet Delay functions can be useful.

#### 10.2. Recommended Network Configurations

Although the AD-080GE conforms to Gigabit Ethernet (IEEE 802.3) not all combinations of network interface cards (NICs) and switches/routers are suitable for use with the GigE Vision compliant camera.

JAI will endeavor to continuously verify these combinations, in order to give users the widest choice of GigE components for their system design.

#### 10.2.1 Verified Network Interface Cards (NICs)

At the time of publishing this document these combinations have been verified:

| NIC<br>manufacturer | Model                                      | PCI Bus   | PCI-X Bus | PCI-Express<br>Bus |
|---------------------|--------------------------------------------|-----------|-----------|--------------------|
| Intel               | PRO/1000MT<br>(PWLA8490MT)                 | √ (33MHz) | √(100MHz) | _                  |
| Intel               | PRO/1000GT<br>(PWLA8391GT)                 | √ (33MHz) | √ (33MHz) | _                  |
| Intel               | PRO/1000PT<br>(EXPI9300PT)                 | _         | _         | $\sqrt{(x1)}$      |
| Intel               | Gigabit CT Desktop adaptor<br>(EXPI9301CT) | _         | _         | $\sqrt{(x1)}$      |
| Intel               | PRO/1000PT Quad port<br>(EXPI9404PT)       | _         | _         | $\sqrt{(x4)}$      |
| Intel               | PRO/1000PT Dual port<br>(EXPI9402PT)       | _         | _         | $\sqrt{(x4)}$      |



Minimum PC requirements are as follows in order to fulfill the above conditions:

- Intel Core 2 Duo, 2.4 GHz or better
- At least 2 GB memory
- Video Card with PCI Express Bus x 16, VRAM better than DDR2 with 256 MB or more, and display capability of 2560 x 1600
- Windows XP, SP2 (32bit)
- Functions such as screen saver and power save should not be used. Unnecessary applications such as Word, Excel or others should not be used.

Note: Pentium 4 type PC is not recommended due to dependency on chip set bus performance.

| 10.2.2 | Video data rate | (network bandwidth) |
|--------|-----------------|---------------------|
|        |                 |                     |

The video bit rate for the AD-080GE in Continuous mode is:

| Model      | Pixel Type                     | Packet data volume<br>(assumes the packet size is 1428) |
|------------|--------------------------------|---------------------------------------------------------|
| AD-080GE   | MONO8                          | 196 Mbit/s                                              |
| Monochrome | MONO10_PACKED<br>MONO12_PACKED | 294 Mbit/s                                              |
|            | MONO10                         | 392 Mbit/s                                              |
|            | MONO12                         |                                                         |
| AD-080GE   | BAYRG8                         | 196 Mbit/s                                              |
| Color      | BAYRG10Packed<br>BYRG12Packed  | 294 Mbit/s                                              |
|            | BAYRG10,BAYRG12                | 725 Mbit/s                                              |
|            | RGB8Packed                     | 588 Mbit/s                                              |
|            | RGB10V1Packed<br>RGB10V2Packed | 784 Mbit/s                                              |

- In the case of using Jumbo Frames (16K), the packet data will be improved by 2%.
- For AD-080GE, the jumbo frame size can be a maximum 16020 Bytes (factory setting is 1428 Bytes). The NIC must also be set to support Jumbo Frames (see chapter 10.2.4).
- Based on the Pixel Type, the packet size may be automatically adjusted inside the camera to its most suitable value .

To ensure the integrity of packets transmitted from the camera, it is recommended to follow these simple guidelines:

- 1. Whenever possible use a peer-to-peer network.
- 2. When connecting several cameras going through a network switch, make sure it is capable of handling jumbo packets and that it has sufficient memory capacity.
- 3. Configure inter-packet delay to avoid congestion in network switches.
- 4. Disable screen saver and power save functions on computers.
- 5. Use high performance computers with multi-CPU, hyper-thread and 64-bit CPU, etc.
- 6. Only use Gigabit Ethernet equipment and components together with the camera.
- 7. Use at least Cat5e and preferably Cat6 Ethernet cables.
- 8. Whenever possible, limit the camera output to 8-bit.

#### <u>Note for setting packet size</u>

The packet size is set to 1476 as the factory default. Packet size can be modified in the GigE Vision Transport Layer Control section of the camera control tool (see below). For AD-080GE, users may enter any value for the packet size and the value will be internally adjusted to an appropriate, legal value that complies with the GenICam standard. Thus, the actual packet size may be different than the value entered by the user.

Caution: do not set the packet size larger than the maximum setting available in the NIC or switch to which the camera is connected (see section 10.2.4). Doing so will cause output to be blocked.

Regarding data transfer rate, a larger packet size produces a slightly lower data transfer rate. AD-080GE can support a maximum of 16020 byte packets provided the NIC being used has a Jumbo Frames function with a setting of a 16020 bytes or larger.

#### Note for calculation of Data Transfer Rate

Setting parameter

| Item                                                          | Unit      | Symbol |
|---------------------------------------------------------------|-----------|--------|
| Image Width                                                   | [pixels]  | Α      |
| Image Height                                                  | [pixels]  | В      |
| Bits per Pixel                                                | [bits]    | С      |
| Frame Rate                                                    | [fps]     | D      |
| Packet Size                                                   | [Bytes]   | Е      |
| Number of Packets (including Data Leader & Trailer<br>Packet) | [packets] | G      |
| DataTransfer Rate                                             | [Mbit/s]  | J      |
| Fixed value                                                   |           |        |
| Item                                                          | Unit      | value  |
| Data Leader Packet Size                                       | [Bytes]   | 90     |
| Data Trailer Packet Size                                      | [Bytes]   | 62     |

#### Formula to calculate Data Transfer Rate

#### <u>J= {90+62+(E+18)\*(G-2)} \*8\*D/1000000</u>

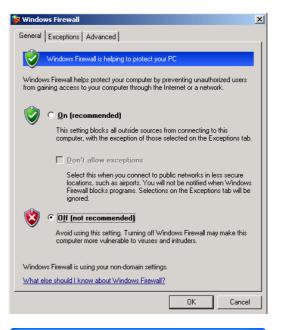
#### Where, $G=ROUNDUP\{A*B*C/8/(E-36)\}+2$

The following table shows Bits per Pixel which depends on the pixel format.

| Pixel format  | Bit |
|---------------|-----|
|               | DIL |
| MONO8         | 8   |
| MONO10        | 16  |
| MONO10Packed  | 12  |
| MONO12        | 16  |
| MONO12Packed  | 12  |
| BAYRG8        | 8   |
| BAYRG10       | 16  |
| BAYRG12       | 16  |
| RGB8          | 24  |
| RGB10V1Packed | 32  |
| RGB10V2Packed | 32  |

See the possibilities

#### Calculation example: AD-080GE Pixel type Mono8


| Item                                                       | Unit      | Symbol | Setting |
|------------------------------------------------------------|-----------|--------|---------|
| Image Width                                                | [pixels]  | А      | 1024    |
| Image Height                                               | [pixels]  | В      | 768     |
| Bits per Pixel                                             | [bits]    | С      | 8       |
| Frame Rate                                                 | [fps]     | D      | 30.01   |
| Packet Size                                                | [Bytes]   | E      | 1428    |
| Number of Packets (including Data Leader & Trailer Packet) | [packets] | G      |         |
| Transfer Data Rate                                         | [Mbit/s]  | J      |         |

G=ROUNDUP { $(1024 \times 768 \times 8 / 8 / (1428-36)) + 2 = 565 + 2 = 567$ J={90+62+(1428+18)x(567-2)} x 8 x 30.12 / 1000000 = 196 Mbit/s

#### 10.2.3 Disable Firewalls

To ensure proper functions of the JAI SDK & Control Tool, all firewalls must be disabled. This also includes the Windows firewall.

Click [Start], [Control Panel] for accessing the Windows firewall configuration.



10.2.4 Enabling Jumbo Frames

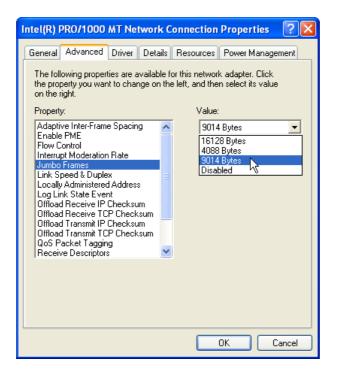
- (1) Click [Start] and click [Control Panel].
- (2) Click [Performance and Maintenance].
- (3) Click [System].
- (4) Click [Hardware] tab.
- (5) Click [Device Manager].



- (6) Expand [Network adapters].(7) Select target NIC, right-click, and click [Properties].

| 🚇 Device Manager                      |                           |   |
|---------------------------------------|---------------------------|---|
| File Action View Help                 |                           |   |
| ← →   12   12 🖨   12   33             | 2 🔀 😹                     |   |
| 🖃 🚚 GIGE-DEVELOP                      |                           | ~ |
| 🕂 🖳 😼 Computer                        |                           |   |
| 🕂 🝲 Disk drives                       |                           |   |
| 🗄 🧝 Display adapters                  |                           |   |
| 🕀 🥝 DVD/CD-ROM drives                 |                           |   |
| 🕀 📹 Floppy disk controllers           |                           |   |
| 🕀 y Floppy disk drives                |                           |   |
| 主 🖾 Human Interface Devices           |                           |   |
| IDE ATA/ATAPI controllers             |                           |   |
| 🕀 🥪 IEEE 1394 Bus host control        | ers                       | = |
| 🕀 🦢 Keyboards                         |                           |   |
| ⊕ ∑ Mice and other pointing dev     ■ | rices                     |   |
| 🗄 🖉 Monitors                          |                           |   |
| Betwork adapters                      |                           |   |
| 1394 Net Adapter                      |                           |   |
| Intel(R) PRO/1000 MT                  | Update Driver             |   |
| Intel(R) PRO/1000 N                   | Disable                   |   |
| 🗄 💯 Ports (COM & LPT)                 | Uninstall                 |   |
| 🕀 🔿 Processors                        |                           |   |
| 🕀 🏀 SCSI and RAID controlle           | Scan for hardware changes | _ |
| 🗄 👰 Sound, video and game 🔤           |                           | ~ |
| Opens property sheet for the curren   | Proprinties               |   |

Note: Intel 1000 is used in this example.


If different NICs are used, the following setup tabs will likely be different. Follow the tabs associated with the specific NIC used.

(8)Click [Advanced] tab.

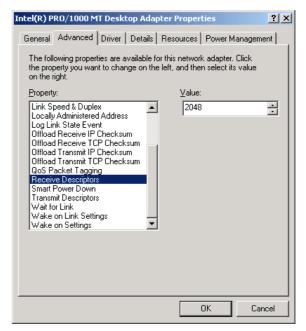
| Intel(R) PRO/1000 MT Networ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rk Connection Properties 🛛 🛛 🔀 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| General         Advanced         Driver         Deta           The following properties are availat<br>the property you want to change or<br>on the right.         Property:           Adaptive Inter-Frame Spacing         Enable PME           Flow Control         Interrupt Moderation Rate           Jumbo Frames         Link Speed & Duplex           Locally Administered Address         Log Link State Event           Offload Receive IP Checksum         Offload Transmit IP Checksum           Offload Transmit TCP Checksum         Offload Transmit TCP Checksum           QoS Packet Tagging         Receive Descriptors | Value:                         |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OK Cancel                      |



(9) Select Jumbo Frames property, and select 16128 under Value.



(10)Click [OK].


(11)Close [Device Manager].

(12)Close [System Properties] by clicking [OK].

10.2.5 Setting Receive Descriptors

If the Network Connection Properties list contains a property called Receive Descriptors, then change its property to the maximum value supported by the NIC installed in the computer.

Click "OK" to save the property.



10.2.6 Interrupt Moderation rate If the Network Connection Properties list contains a property called Interrupt Moderation Rate, then it is possible to set the preferred value. When it is changed from Minimal, to Medium, High and Extreme, the number of interruptions is decreased to get better performance. Set it to "Extreme".

Click "OK" to save the property.

Intel(R) PRO/1000 MT Desktop Adapter Properties ? X General Advanced Driver Details Resources Power Management The following properties are available for this network adapter. Click the property you want to change on the left, and then select its value on the right. Property Value: Enable PME Extreme ٠ • Flow Control Gigabit Master Slave Mode Interrupt Moderation Rate Jumbo Frames Link Speed & Duplex Locally Administered Address Log Link State Event Offload Receive IP Checksum Offload Receive TCP Checksum Offload Transmit IP Checksum Offload Transmit TCP Checksum QoS Packet Tagging Receive Descriptors **•**| пκ Cancel

10.2.7 Calculating and setting Inter-Packet Delay

When connecting several cameras to one network interface card via a switching hub, it is important to optimize the Inter-Packet Delay of the cameras to avoid congestion in the switch. A sure sign of congestion is the loss of packets.

Since increasing the inter-packet delay also adds overhead to the data transfer it is important to calculate the optimal setting in order to make best use of the video bandwidth.

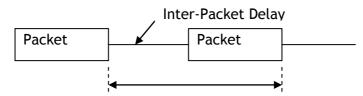
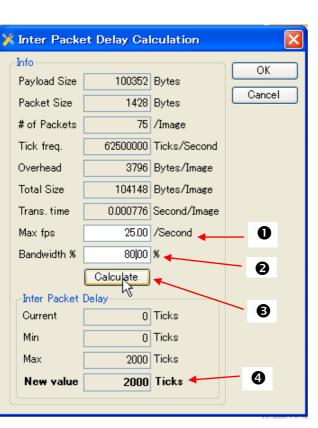



Fig.17 Duration of the entire packet, with delay


JAI Control Tool has a built in wizard for calculating Inter-Packet Delay.

When the Inter-Packet Delay function is activated, a button appears on the right hand side of the bar.

Click the button to open the calculation wizard window.

| □ GigE Vision Transport La | ver Control |    |
|----------------------------|-------------|----|
| Payload Size               | 100352      |    |
| Packet Size                | 1428        |    |
| Packet Delay               | 0           |    |
| 🗆 Image Format Control     |             | T. |
| Sensor Width               | 1620        |    |

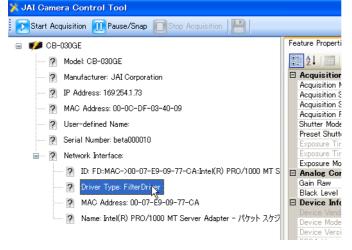
# AD-080GE



 Type in the frame rate of the connected camera. AD-080GE operates at 30 fps.

See the possibilities

- 2. Set the bandwidth at 80%.
- 3. Click the calculation tab.
- 4. New value is calculated.
- 5. Click OK. The value shown is automatically transferred to the Packet Delay column of the Control Tool.


#### 10.2.8 Confirm the Filter Driver is used

📷 JAI SDK

The filter driver is installed as an optional function when JAI SDK is installed. If the filter driver is not installed at that time, it can be installed from, All Programs ⇒ JAI SDK ⇒ GigE Vision Filter Driver ⇒ Install GigE Vision Filter Driver.



• If the Filter Driver is installed properly, the Camera Control Tool indicates "Driver Type Filter Driver" in the Network Interface.



If it is not shown, confirm the setting in the "Settings" window. Access the "Settings" window by clicking on the "Settings Tab" icon.

|                                                    | _ <b>- -</b> × |
|----------------------------------------------------|----------------|
| 🎽 Settings                                         | 2.             |
|                                                    |                |
| 🖂 Feature Properties                               |                |
| Visibility Beginner                                |                |
| Transport Layer                                    | <u>^</u>       |
| PreferredDriverType FilterDriver 🛛                 |                |
| FilterDriver                                       |                |
| SocketDriver                                       |                |
| k                                                  |                |
| -                                                  |                |
| PreferredDriverType                                |                |
| Preferred Driver Type used when opening the camera |                |
| connection                                         |                |
|                                                    |                |
| Save and Close                                     |                |
|                                                    |                |
|                                                    |                |

- 10.2.9 Others
  - IF "Receive Descriptor" is set at its maximum value, picture disturbance may occur due to "Hyper Threading" mode. If this happens, check that "Hyper Threading" is set at OFF. This is set in BIOS.
  - When the image is being captured, if the frame rate decreases, change the packet size. Each packet contains the header data and when the packet size is small, the total data including header information will increase. Depending on the performance of the computer used, the frame rate may be decreased. Confirm the packet size is increased. It can be set in the Camera Control Tool provided in JAI SDK.
- 10.2.10 Note for 100BASE-TX connection
  - In order to use 100Mbps network, 100BASE-TX and Full Duplex are available. Half Duplex cannot be used.
  - In the case of connecting on 100BASE-TX, the maximum packet size should be 1500 bytes.
  - In the case the of connecting on 100BASE-TX, the specifications such as frame rate, trigger interval and so on described in this manual cannot be satisfied.

| Pixel Type                    | Frame rate at Full Frame scan[fps] |
|-------------------------------|------------------------------------|
| MONO8, BAYRG8, BAYGB8         | Approx. 12                         |
| MONO10_PACKED,MONO12_PACKED   | Approx. 8                          |
| MONO10, MONO12, BAYRG10,      | Approx. 6                          |
| BAYGB10, BAYRG12, BAYGB12     |                                    |
| RGB8_Packed                   | Approx. 4                          |
| RGB10V1_Packed,RGB10V2_Packed | Approx. 3                          |

Note: The above frame rates are based on approx. 70Mbps of total data.



#### 10.3. Basic functions

The AD-080GE is based on a dichroic prism, allowing precise separation of the visible (color) and near-infrared parts of the spectrum into two separate channels. The visible (color) channel is referred to as Channel 1 and the near-infrared channel is referred to as Channel 2. Channel 1 and 2 can be configured to operate separately or synchronously. When operating separately each channel can be triggered independently.

The AD-080GE can operate in Continuous (free-run) mode or in triggered modes. The variable partial scan mode provides higher frame rates at lower vertical resolution.

#### 10.3.1 CCD optical assembly

The dichroic prism incorporated in the AD-080GE separates the visible (color) part of the spectrum into a wavelength band from 400nm to 650nm (Channel 1) and the near-IR part into a band ranging from 760 nm to 1000 nm (Channel 2).

The figure below shows the concept of the separation into visible and near-IR bands.

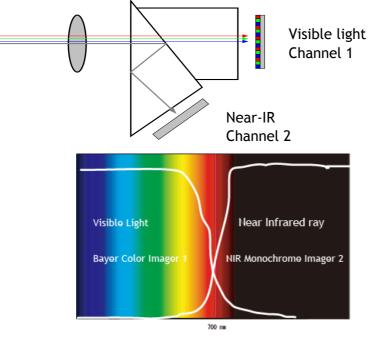



Fig.18 Conceptual diagram for 2CCD prism optics

10.3.2 RJ-45 outputs

The AD-080GE has two RJ-45 connectors, one for color sensor output and the other for the monochrome NIR sensor. The output for the color sensor is through GigE-1 and monochrome NIR output is through GigE-2. These two outputs can be set at synchronous (0:SYNC) or asynchronous (1:ASYNC) in Sync Mode command.

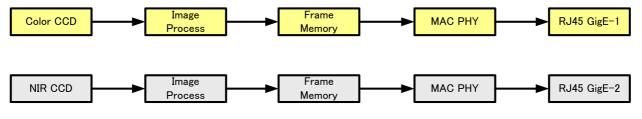
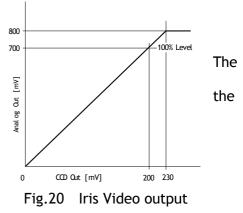



Fig.19 RJ-45 output system

## 10.3.3 Sync Mode (Register 0xA098)

AD-080GE has two sensors inside and these two sensors can be synchronized or operated independently. This mode selection is activated by "Sync mode command (register 0xA098)". Factory default setting is "Async".

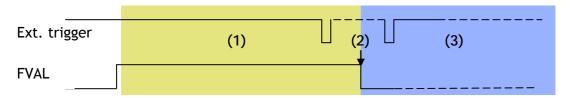

| Sync<br>mode | Video out<br>(Pixel format)  | Trigger in                                          | Read out<br>(Partial, Smearless)             | Functions<br>(Shutter,others) |
|--------------|------------------------------|-----------------------------------------------------|----------------------------------------------|-------------------------------|
| Sync         | Sensor 1 and 2<br>can be set | Trigger to<br>senspor1<br>operates sensor<br>2.     | Settings to Sensor 1<br>applies to sensor 2. | Sensor 1 and 2 can be set     |
| Async        | independently                | Input trigger to<br>Sensor 1 and 2<br>independently | Sensor 1 and 2 can be set independently      | independently                 |

| Functions     | 0:5            | SYNC                                 | 1 : ASYNC      |               |
|---------------|----------------|--------------------------------------|----------------|---------------|
| FUNCTIONS     | RJ-45(GigE 1)  | RJ-45(GigE 2)                        | RJ-45(GigE 1)  | RJ-45(GigE 2) |
| Sensor        | Bayer(sensor1) | NIR(sensor2)                         | Bayer(sensor1) | NIR(sensor2)  |
| Trigger input | 0              | ←<br>Triggered by GigE1              | 0              | 0             |
| Output        | Bayer<br>RGB   | Monochrome                           | Bayer<br>RGB   | Monochrome    |
| Shutter       | 0              | 0                                    | 0              | 0             |
| Partial scan  | 0              | ←<br>Follow the setting of<br>GigE 1 | 0              | 0             |
| Smear less    | 0              | ←<br>Follow the setting of<br>GigE 1 | 0              | 0             |

In Sync mode, the trigger to Bayer also triggers to NIR. For details on each mode, please refer to 10.6.Operation Mode and Functions matrix.

#### 10.3.4 Iris Video output

The lens-iris video output level at pin 4 of the 12-pin Hirose connector is 700 mV for 100% video output level. iris video signal is taken after the gain circuit. However, negative compensation is applied to the iris circuit, thus gain setting has no influence for controlling auto iris lenses. It is without sync.

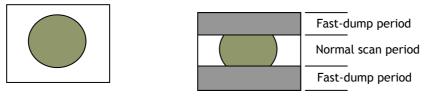





## 10.3.5 Auto-detect LVAL-sync / async accumulation

This function replaces the manual setting found in older JAI cameras. Whether accumulation is synchronous or asynchronous in relationship to LVAL depends on the timing of the trigger input. When a trigger is received while FVAL is high (during readout), the camera works in LVAL-synchronous mode, preventing reset feed-through in the video signal. There is a maximum jitter of one LVAL period from issuing a trigger to accumulation start. When an external trigger is received during FVAL low, the camera works in LVAL-asynchronous (no delay) mode.

This applies to both Pre-Select (PS) trigger and Pulse Width trigger (PW) modes.




- (1) In this period camera executes trigger at next LVAL (prevents feed-through noise)
- (2) Avoid trigger at FVAL transition (+/- 1 LVAL period), as the function may randomly switch between "next LVAL" and "immediate".
- (3) In this period camera executes trigger immediately (no delay)

Fig. 21 Auto-detect LVAL sync /a-sync accumulation

## 10.3.6 Partial scan (Fast Dump ON)

Partial scan allows higher frame rates by reading out a smaller center portion of the image, reducing vertical resolution. This is particularly useful when inspecting objects that do not fill the whole height of the image. In order to activate this function, Fast Dump register should be ON.



Full scanPartial ScanFig.22Conceptual drawing for partial scan

The partial scan mode for AD-080GE is variable. The first line and the last line to be read out can be set. For Bayer color, the start line should set on an odd line and the last line is set so that the height is an even number. It should be noted that if an even start line is set, the pixel format is automatically changed to GB pixel format.

The variable scan read out is connected with the ROI settings.

- 1. If ROI is set, these settings are applied to the partial scan settings.
- 2. If the multi ROI is used, the smallest number of the line and the largest number of the line define the partial scan area.
- 3. In the case of sequence trigger, it is the same as for multi ROI. The smallest line and the largest line define the partial scan.

In order to execute the partial scan, the fast dump should be ON.

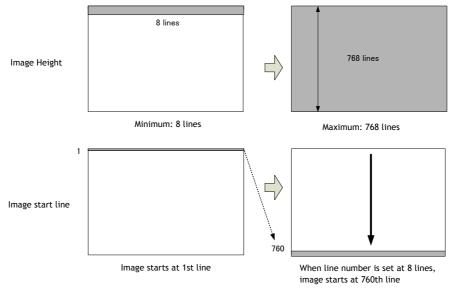



Fig.23 variable partial scan

How to calculate total line number and frame rate on variable partial scan mode

| Variable partial scan The start line setting 1 <sup>st</sup> line to 760 <sup>th</sup> line<br>Read out height 8 lines to 768 lines                                                                                                                                                                                                                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Total lines = ①OB period in the upper part of the frame (L) + ②Fast Dump period in the upper part of the frame (L) + ③Readout lines(L) + ④Fast dump period in the lower part of frame(L) +⑤Dummy transfer period Where,                                                                                                                                    |  |  |  |
| (1) OB period in the upper part of the frame= $3L$                                                                                                                                                                                                                                                                                                         |  |  |  |
| (2) Fast dump period for the upper part= Round up $\frac{4+3+(Start line No1)}{4} + 1$                                                                                                                                                                                                                                                                     |  |  |  |
| (3) Read out lines = Effective lines + 4L                                                                                                                                                                                                                                                                                                                  |  |  |  |
| ④ Fast dump period for the lower part= Round up $\frac{(768-End line No.) + 3)}{4}$ + 2                                                                                                                                                                                                                                                                    |  |  |  |
| ⑤ Dummy transfer period = 4L                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Frame rate (fps) = Horizontal Frequency / Total lines<br>where, Horizontal Frequency 23.768KHz                                                                                                                                                                                                                                                             |  |  |  |
| Calculation example<br>Read out: 1/2 partial at the center (384L), Start line (193), End line (576)                                                                                                                                                                                                                                                        |  |  |  |
| OB period in the upper part of the frame 3L<br>Fast dump period for the upper part = $(4+3+193-1) \div 4+1 = 49.75+1 = 50.75 \rightarrow 51$<br>Readout lines = $384 + 4 = 388$<br>Fast dump period for the lower part = $(768 - 576 + 3) \div 4+2 = 50.75 \rightarrow 51$<br>Total lines = $3+51+388+50+4 = 497$<br>Frame rate = 23.768 ÷ 497 = 47.82 fps |  |  |  |



#### 10.3.7 Bayer color sequence

Channel 1 of the AD-080GE uses a Bayer mosaic color CCD sensor. The color image reconstruction is done in the host PC when the camera is configured for raw Bayer output.

The right hand drawing shows the color sequence at the image start.

On the AD-080GE, the start line should be set at RG sequence. Refer to chapter 10.3.5.

The starting line number is shown from FVAL. The first active pixel is offset 9 pixels from LVAL, when DVAL rises.

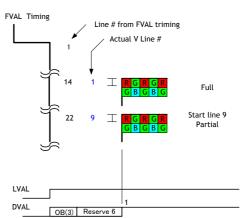



Fig.24 Bayer color mosaic

## 10.3.8 Electronic shutter

The AD-080GE has three shutter modes: programmable exposure, GenlCam standard Exposure Time Abs, and auto shutter.

Programmable Exposure

Exposure time can be controlled in 1 L unit ( $42.07\mu$ s) from 0L to 792L. As the overhead of 0.5L is added, the actual shutter time is from 0.5L to 791.5L in the range from 0L to 791L. 792 L is the shutter OFF. The actual shutter speed for each operation mode is shown below.

| Mode                   | Read Out      | Minimum shutter speed                                    | Maximum shutter speed |
|------------------------|---------------|----------------------------------------------------------|-----------------------|
| Continuous,<br>EPS/RCT | Full, Partial | 20µs at PE=0 (1/50,000)                                  | 1 Frame               |
| PWC                    | Full, Partial | 42.07μs x 2L+20μs( 0.5L)=<br>104.14μs (approx. 1/9,600s) | 60 Frames (2 seconds) |

Note: In Pulse Width mode, the minimum trigger pulse width must be >2LVAL.

Exposure Time Abs (GenlCam Standard)

This is a function specified in the GenlCam standard.

The shutter speed can be entered as an absolute exposure time in microseconds ( $\mu$ s) in register address 0xA018. The entered absolute time (Time Abs) is then converted to programmable exposure (PE) value inside the camera.

The below calculating formula shows the relationship between the PE value used by the camera for the different readout modes and the value entered in register 0xA018. Due to round down figure, some discrepancies may occur.

The relation between PE value and Time Abs

Normal readout PE= INT (Exposure time) µs / (1420/33750000)

(Note: INT means round down.)

Note: The minimum value in normal readout is 20 µs.

## Auto shutter

Auto shutter works in the range of 1/30 to 1/10000 sec depending on the incoming light.

GPIO in combination with Pulse Width trigger

More precise exposure time can be obtained by using GPIO in combination with Pulse Width mode. The clock generator and counter can be programmed in very fine increments. For an example, refer to chapter 8.4.1.

| Shutter speed (sec) | PE  | Exposure Time Aps (µs) |
|---------------------|-----|------------------------|
| 1/50000             | 0   | 20                     |
| 1/16000             | 1   | 62                     |
| 1/10000             | 2   | 104                    |
| 1/4000              | 5   | 230                    |
| 1/2000              | 11  | 482                    |
| 1/1000              | 23  | 987                    |
| 1/500               | 47  | 1997                   |
| 1/250               | 95  | 4017                   |
| 1/120               | 127 | 5363                   |
| 1/100               | 197 | 8308                   |
| 1/60                | 395 | 16639                  |
| 1/30                | 792 | 33319                  |

#### 10.3.9 Shading correction

The AD-080GE features a shading correction circuit that can be used for reducing shading resulting from illumination, lens vignetting or prism shading caused by lenses with a wide output aperture.

The shading correction circuit divides the image into horizontal and vertical fields, and adjusts these regions in relationship to the image center.

In the internal memory, factory data is stored. When the shading correction is ON, factory data is loaded. If it is OFF, the calibration can be activated and the result can be stored in the user area for reuse. Each channel is treated separately. The shading correction works with all pixel formats, raw Bayer color, RGB color and monochrome.

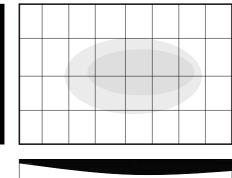



Fig.25 Conceptual drawing for calculating histogram

#### 10.3.10 Knee compensation

If the relation of input and output is linear (1:1), the output level will be clipped at a certain input level and cannot reproduce the details in the clipped area. The knee compensation circuit can keep the linear relation until the knee point, while after the knee point, the input signal is compressed to reproduce the details. This compression area can be set by knee slope. The AD-080GE can compress up to 200% input video level. The factory default is OFF. Users may set the appropriate values for knee point and slope according to their applications.

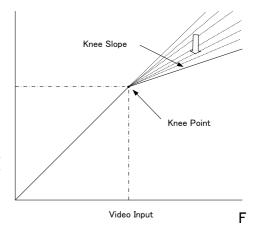



Fig.26 Knee characteristics

| Function   | Length | Setting range                   |
|------------|--------|---------------------------------|
| Knee Point | 10bit  | 0LSB ~ 1023LSB                  |
| Knee Slope | 12bit  | $0(x0.0005) \sim 4095(x2.0000)$ |



### 10.3.11 White balance

When using the RGB 24-bit and RGB 30-bit output mode, the white balance function is available. It can be used in 3 ways:

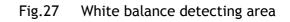
- 1) Continuous (tracking) Automatic White Balance, AWB
- 2) One-push AWB
- 3) Manual white balance setting

Manual white balance is achieved by optimizing the manual gain settings for R channel and B channel.

| Items                   | Continuous (tracking) AWB <sup>(1)</sup> | One-push AWB <sup>(2)</sup> | Manual WB    |
|-------------------------|------------------------------------------|-----------------------------|--------------|
| Adjusting range         | -6dB to +6dB                             | -6dB to +6dB                | -6dB to +6dB |
| Possibility to store WB | No                                       | Yes                         | Yes          |
| settings                |                                          |                             |              |

1): When using Continuous AWB, results depend on the surface properties of the object.

2): One-push AWB may take up to 3 seconds to complete.


Note: When the master gain is set at -3dB, the sensor level will be saturated at the adjusting range of -6dB to -3dB for R and B channels. In order to respond to a wider range of white balance, the master gain should be set at 0dB.

#### White Balance Measuring area

The user can select from the following 16 areas to use for detecting the area of white balance measurement. Each one can be selected at the same time and if the entire area is used for white balance detection, all 16 areas can be selected.

| 4 | 2 | 4 |  |
|---|---|---|--|
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |

### 10.3.12 Blemish compensation



The AD-080GE has a blemish compensation function.

In the factory, the data for blemish compensation is stored in the factory data. When the blemish compensation is set to ON, the factory data is loaded. The user can store the compensation data in the user area (1 to 3). When executing a blemish compensation, it can be done for white and black blemishes. The user can also set the threshold of detecting blemishes. Up to 32 blemishes can be compensated.

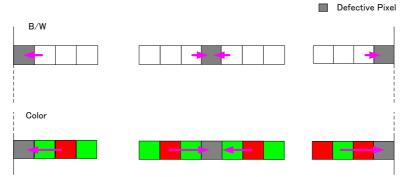



Fig 28. Blemish compensation

## 10.3.13 Color matrix

AD-080GE has a color matrix circuit to reproduce an appropriate color for the color sensor. It can be done by the color phase relation

#### 10.3.14 Rear Panel Indicator

The rear panel mounted LED provides the following information:

| <ul> <li>Amber</li> <li>Steady green</li> <li>Flashing green</li> </ul> | : Power connected - initiating<br>: Camera is operating in Continuous mode<br>: The camera is receiving external trigger |  |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <ul> <li>Steady green</li> <li>Flashing green</li> <li>Amber</li> </ul> | : Connecting 1000Base-T:Link<br>: Connecting 100Base-T/10Base-T:Link<br>: GigE Network:Act                               |  |  |  |  |
|                                                                         | Nata la AORACE Transmission de simulia autorit                                                                           |  |  |  |  |

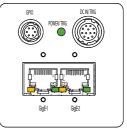



Fig.29 Rear panel

Note: In 10BASE-T connection, no signal is output.

#### 10.3.15 Test signal generator

The AD-080GE has the following test generators built-in.

| Address | Function    | Read/Write | Size | Value                  |
|---------|-------------|------------|------|------------------------|
| 0xA13C  | Test stream | RO         | 4    | 0=OFF                  |
|         |             |            |      | 4=H Ramp scale         |
|         |             |            |      | 5=V Ramp scale         |
|         |             |            |      | 6=Moving Ramp scale    |
|         |             |            |      | 8=Color bar (Normal)   |
|         |             |            |      | 9=Color bar (Vertical) |
|         |             |            |      | 10=Moving color bar    |



## 10.4 Sensor Layout and Timing

## 10.4.1 Sensor Layout

The CCD sensor layout, with respect to vertical and horizontal pixels used in full frame read-out, is shown below. For Bayer color sequence, refer to chapter 7.2.1.

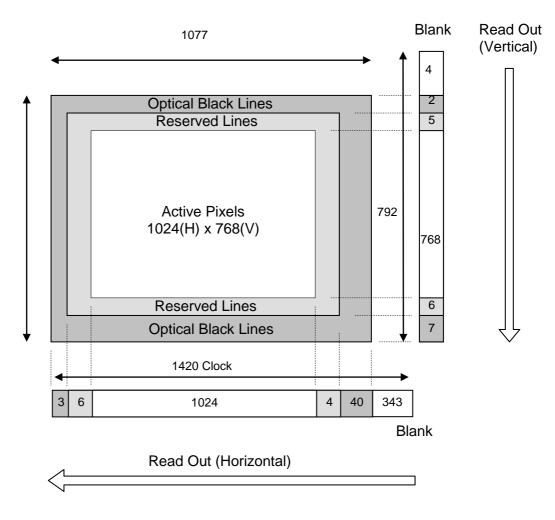
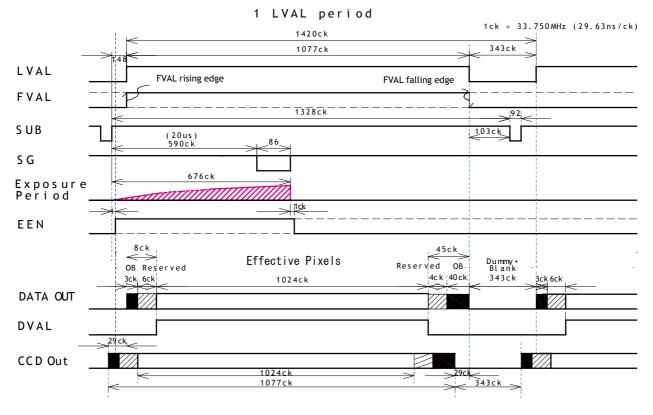



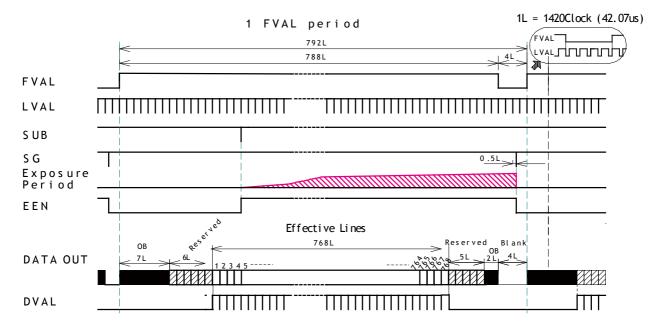

Fig.30 Sensor layout and video output image

## 10.4.2 Horizontal Timing

The horizontal timing for Continuous mode, full frame and partial scan are shown below. This is common for both Bayer color imager and monochrome IR imager.



1CLK: 1 Pixel clock period OB: Optical black LVAL is HIGH in the period of optical black and effective video periods DVAL is HIGH in the effective video period


Fig.31 Horizontal Timing

# AD-080GE



## 10.4.3 Vertical Timing

The vertical timing for Continuous mode and full frame scan are shown below. This is common for both Bayer color imager and monochrome IR imager.



1L : 1 LVAL period OB: optical black FVAL is HIGH in the optical black and effective video periods LVAL is always output DVAL is output during the effective lines

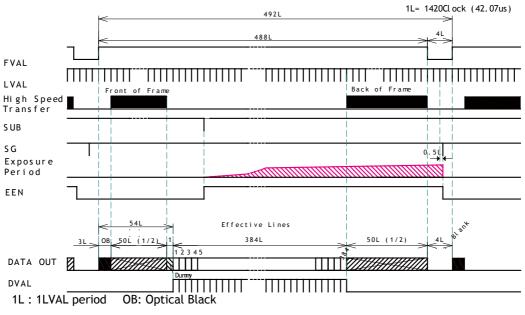
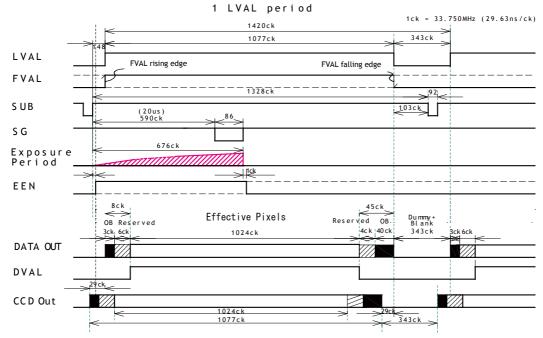

This timing chart shows camera timing. The output through GigE interface is only effective lines.

Fig.32 Vertical Timing

10.4.4 Partial Scan (When the start line is set at 193rd)


The following chart shows the partial scanning which starts at 193rd line in 1/4 height (384 lines). The horizontal timing for partial scan is the same as full scan. This is common for Channel 1 (visible, color) and Channel 2 (near-IR)

#### Vertical



#### Fig.33 Vertical Timing for 1/2 partial scan

#### Horizontal



LVAL is high during the period of optical black and effective pixels. DVAL is high during effective pixels.

#### Fig. 34 Horizontal Timing for partial scan



## 10.5 Operation Mode

AD-080GE has the following 8 operation modes and OB transfer and ROI modes.

- 1 Continuous
- 2 Edge Pre-Select Trigger
- 3 Pulse Width Control Trigger
- 4 Reset Continuous Trigger
- 5 Sequence EPS
- 6 Delayed readout EPS
- 7 Delayed readout PWC
- 8 Smearless
- 9 OB transfer mode
- 10 ROI mode

Pre-selected exposure Pre-selected exposure Pulse width controlled exposure Pre-selected exposure Pre-selected exposure Pulse controlled exposure Effective for EPS and PWC

#### 10.5.1 Continuous mode

For applications not requiring asynchronous external triggering, this mode should be used for continuous operation.

For timing details, refer to fig. 31 through fig. 34.

To use this mode

Set function:

| Trigger mode         | Continuous                                       |
|----------------------|--------------------------------------------------|
| Sync mode            | Sync or async                                    |
| Output Select        | 8-bit, 10-bit, 12-bit                            |
|                      | Bayer or RGB and Monochrome                      |
| Scanning             | Full/Partial/ROI                                 |
| Shutter              | Programmable, Exposure Time Abs,<br>Auto shutter |
| Programmable Shutter | 1L to 792L (1L unit)                             |
| Other functions      | · · · ·                                          |

## 10.5.2 Edge Pre-Select (EPS) trigger mode

An external trigger pulse initiates the capture, and the exposure time (accumulation time) is the fixed shutter speed set by registers. The accumulation can be LVAL synchronous or LVAL asynchronous. The resulting video signal will start to be read out after the selected shutter time.

For timing details, refer to fig. 31 through fig. 38.

#### To use this mode:

| Set function: | Trigger mode         | Edge Pre-select (EPS)                 |
|---------------|----------------------|---------------------------------------|
|               | Sync mode            | Sync or async                         |
|               | Output Select        | 8-bit, 10-bit, 12-bit                 |
|               |                      | Bayer or RGB and Monochrome           |
|               | Scanning             | Full/Partial/ROI                      |
|               | Shutter              | Programmable, Exposure Time Abs       |
|               | Programmable Shutter | 0.5 to 792 L (1L unit)                |
|               | Accumulation(Auto)   | LVAL sync/LVAL async                  |
|               | Other functions      |                                       |
| Input:        | External Trigger     | GigE I/F, Hirose 12-pin, Hirose 6-pin |

#### Important Note:

| Γ | 1 | The minimum duration of the trigger is 2L. The minimum period of trigger is as follows.       |               |                                                    |  |  |  |
|---|---|-----------------------------------------------------------------------------------------------|---------------|----------------------------------------------------|--|--|--|
|   |   | Sync mode:                                                                                    | Smearless OFF | FVAL(792L) + 3L + (Difference shutter time between |  |  |  |
|   |   | Sync                                                                                          |               | Bayer and IR)                                      |  |  |  |
|   |   |                                                                                               | Smearless ON  | Smearless Time(198L)+1+ (longer exposure time      |  |  |  |
|   |   |                                                                                               |               | between color and IR) + FVAL(792L) + 3L            |  |  |  |
|   |   | Sync mode:                                                                                    | Smearless OFF | FVAL(792L) + 3L                                    |  |  |  |
|   |   | Async                                                                                         | Smearless ON  | Smearless Time(198L)+1+FVAL(792L)+3L               |  |  |  |
|   |   | FVAL(792L) is the FVAL period of continuous operation.                                        |               |                                                    |  |  |  |
|   | 2 | In case that "Sync mode" is set to "SYNC", the trigger input for Sensor 1 (Color) is used for |               |                                                    |  |  |  |

In case that "Sync mode" is set to "SYNC", the trigger input for Sensor 1 (Color) is used for both channels. The exposure time can be set individually, but the output timing is synchronized with the longest exposure time.

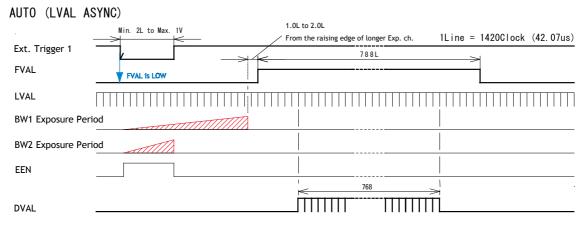
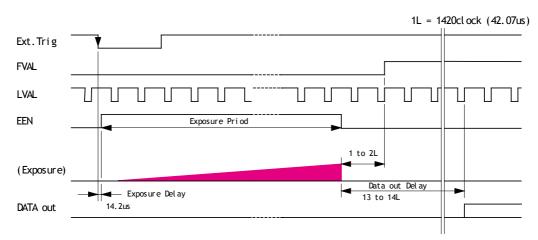




Fig. 35 Edge Pre-select LVAL asynchronous

# AD-080GE



See the possibilities





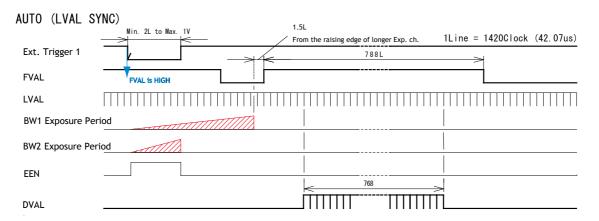
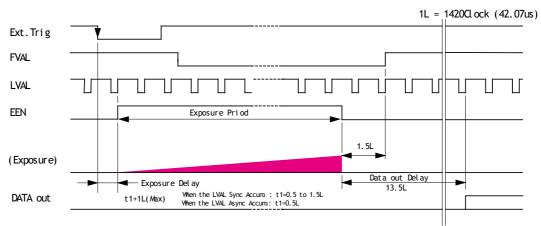




Fig. 37 Edge Pre-select LVAL synchronous





#### Note for setting Exposure Time

For instance, in case that the exposure time for the color channel is 1/30 sec and that of the monochrome IR channel is 1/50,000 sec, the picture quality of the monochrome IR channel may not be acceptable due to CCD's operational principle. Accordingly, in EPS mode, each channel's exposure time should be set the same. If it is necessary to set different exposure times, please confirm the picture quality in advance of usage.

## 10.5.3 Pulse Width Control (PWC) trigger mode

In this mode the accumulation time is equal to the trigger pulse width. Here it is possible to have a long time exposure. The maximum recommended time is <60 frames. In PWC mode, only LVAL asynchronous accumulation is effective.

For timing details, refer to fig. 31 through fig. 341 and fig. 39 and 40.

| To use this mode: |                  |                                       |
|-------------------|------------------|---------------------------------------|
| Set function:     | Trigger mode     | Pulse Width Control (PWC)             |
|                   | Read out mode    | Sync or async                         |
|                   | Output Select    | 8-bit, 10-bit, 12-bit                 |
|                   |                  | Bayer or RGB and Monochrome           |
|                   | Scanning         | Full/Partial/ROI                      |
|                   | Accumulation     | LVAL async                            |
|                   | Other functions  |                                       |
| Input:            | External Trigger | GigE I/F, Hirose 12-pin, Hirose 6-pin |

#### Important Note:

The minimum duration of the trigger is 2L. The minimum period of trigger is as follows. 1

| Sync mode:                                             | Smearless OFF | Exposure time - 792L + 3L               |  |  |  |
|--------------------------------------------------------|---------------|-----------------------------------------|--|--|--|
| Sync                                                   | Smearless ON  | Exposure time( Min:199L+2L) + 792L + 2L |  |  |  |
| Sync mode:                                             | Smearless OFF | Exposure time - 792L + 3L               |  |  |  |
| Async                                                  | Smearless ON  | Exposure time( Min:199L+2L) + 792L + 3L |  |  |  |
| FVAL(792L) is the FVAL period of continuous operation. |               |                                         |  |  |  |

AL(792L) IS LITE FVAL period or continuous operation.

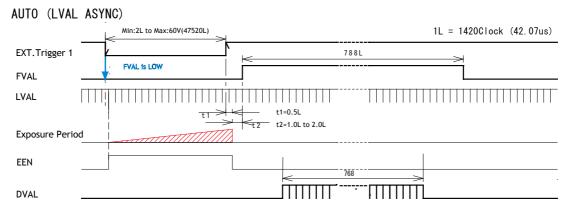
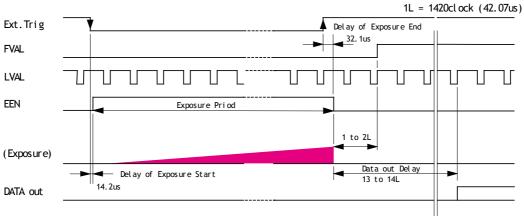




Fig. 39 Pulse Width Control LVAL asynchronous

# AD-080GE





#### Fig.40 Pulse Width Control LVAL asynchronous details

In PWC mode, when "Smearless ON" is selected, the actual accumulation time is the trigger pulse width minus Smearless active period (199L+2L). If the trigger pulse width is shorter than 199L, the exposure is not active.

## 10.5.4 Reset Continuous Trigger (RCT) mode

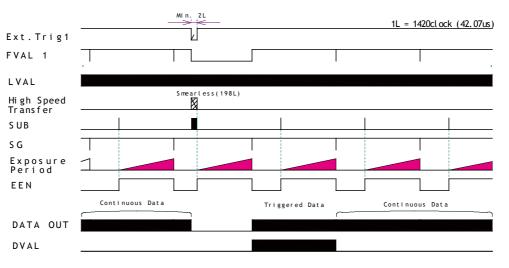
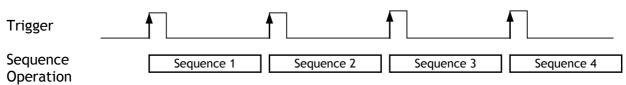
The RCT mode operates like EPS (edge pre-select) mode with smearless function. An external trigger pulse will immediately stop the video read out, reset and restart the exposure, then operate as normal mode until the next trigger. After the trigger pulse is input, a fast dump read out is performed. In the AD-080GE, this period is 8.32ms which is 198L. The exposure time is determined by the pre-set shutter speed. If no further trigger pulses are applied, the camera will continue in normal mode and the video signal is not output. The fast dump read out has the same effect as "smearless read out". Smear over highlight areas is reduced for the trigger frame. The Reset Continuous Trigger mode makes it possible to use triggering in conjunction with a lens with video controlled iris.

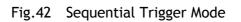
| To use this mode: |                      |                                       |
|-------------------|----------------------|---------------------------------------|
| Set function:     | Trigger mode         | Reset Continuous (RCT)                |
|                   | Read out mode        | Sync or async                         |
|                   | Output Select        | 8-bit, 10-bit, 12-bit                 |
|                   |                      | Bayer or RGB and Monochrome           |
|                   | Scanning             | Full/Partial                          |
|                   | Shutter              | Programmable, Exposure Time Abs       |
|                   | Programmable Shutter | 0.5 to 792 L (1L unit)                |
|                   | Accumulation(Auto)   | LVAL async                            |
|                   | Other functions      |                                       |
| Input:            | External Trigger     | GigE I/F, Hirose 12-pin, Hirose 6-pin |
|                   |                      |                                       |

#### Important notes on using this mode

The minimum duration of the trigger is 2 LVAL. The minimum period of the trigger input is the following.

| Sync mode:<br>Sync  | Smearless time(198L)+1+ (Longer exposure time between color and NIR) + 792L + 3L |
|---------------------|----------------------------------------------------------------------------------|
| Sync mode:<br>Async | Smearless time(198L)+1+ 792L + 3L                                                |



Fig.41 Reset Continuous Trigger



10.5.5 Sequential Trigger Mode (EPS)

This mode allows the user to define a preset sequence of up to 10 images, each with its own ROI, Shutter and Gain values. As each trigger input is received, the image data with the preset sequence is output as described below.





Signals added to a trigger can be selected by 0xB060 Camera Trigger Selector in the register map via GPIO. The camera will function on the rising edge of the trigger and Negative or Positive should be determined accordingly.

The following default settings can be modified by the user to define a sequence. This table is effective for both Bayer color sensor and monochrome sensor

|    |       | R      | 01     |   |         |      | Repeat      |
|----|-------|--------|--------|---|---------|------|-------------|
| ID | Width | Height | Offset |   | Shutter | Gain | For each ID |
|    |       |        | Х      |   |         |      | (1 to 50)   |
| 1  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 2  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 3  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 4  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 5  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 6  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 7  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 8  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 9  | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |
| 10 | 1024  | 768    | 0      | 1 | 792     | 0    | 1           |

The following registers are used to configure the sequence.

0xC0F4 Sequence Repetitions (Number of Repetitions - note: 0 = repeat indefinitely)

0xC0F8 Sequence Ending Position (Ending Position)

0xC0F0 Sequence Reset Command (1 only)

0xB060 Selection for camera trigger 0

0xA040 Trigger mode selection and 0x09 for Sequential PS mode

#### Example of settings

Setting: Repeat 5 times from ID 1 through ID 8

0xC0F4 Set to 0x05

0xC0F8 Set to 0x08

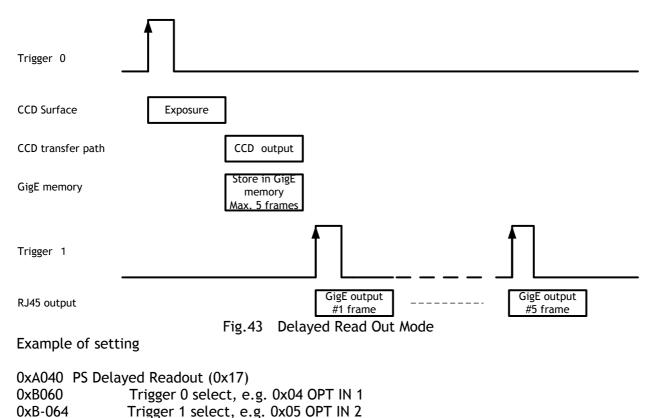
0xB060 For instance, 12p #6 for Optical IN 1

0xA040 Sequential PS (9)

0xA604 Set video sending flag to1 for start

0xA604 Set video sending flag to 0 for stop

Please refer to the detailed register description on the Camera Register Map which is included in the SDK.


#### Important Notes:

- When this mode is used, at first set the video sending flag to OFF (Acquisition end). Then set the trigger mode to "Continuous". Set the shutter mode to "Sequential Trigger". After setting those functions, set the video sending flag to ON (Acquisition start).
- If the change of the trigger mode is done while the trigger is input, the order of the sequence might be shifted. The trigger mode should be changed while the trigger is not input and after that, execute the sequence reset to send 0xC0f0 command.
- In this mode, while the acquisition is ON, saving to user area 1 to 3 is not available.
- While this mode is in operation, the shutter mode (0xA000) should not be changed.

## 10.5.6 Delayed Readout EPS and PWC Modes (EPS and PWC)

This mode can be used to delay the transmission of a captured image. When several cameras are triggered simultaneously and connected to the same GigE interface, it allows the cameras to be read out in sequence, preventing congestion.

The image data is not transmitted directly by the trigger 0 and is stored in the memory located at the Ethernet Interface. By the falling edge of the soft trigger 1, the image data is output. AD-080GE has up to 5 memories to store, and the stored image data can be output at the consecutive timing of trigger 1.



This mode can work in EPS mode and PWC mode.

For the details of Registers, please refer to the Camera Register Map which is included in the SDK.



## 10.5.7 Smearless mode

This function can be used to reduce the smear coming from bright parts of the object. This is effective for both EPS and PWC trigger modes. Before the accumulation starts, any charge that is stored in the pixel is dumped by a high-speed transfer. This can reduce the smear at the upper part of the object but the lower part is unaffected.

At the falling edge of the trigger pulse the high speed transfer starts. This period is 8.32ms which is 198L. Thereafter the residual charge in the horizontal CCD register is read out in 1L and the new exposure starts. This function is available for both full scan and partial scan.

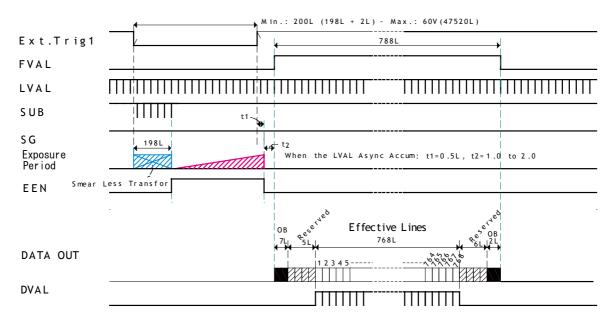



Fig 44. PWC timing chart with Smearless ON

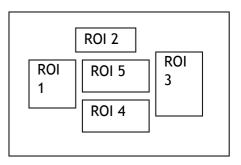
In PWC mode, when "Smearless ON" is selected, the actual accumulation time is the trigger pulse width minus the Smearless active period (199L+2L). If the trigger pulse width is shorter than 199L, the exposure is not active.

## 10.5.8 Optical Black transfer mode

It is possible for the user to decide whether the optical black (OB) portion of the image will be transferred or not. The optical black part can be used for black reference in the application software. Setting register 0xA41C turns the optical black transfer ON or OFF. The default condition is OFF.

|                | OB Transfer Mode OFF |      | OB Transfer Mode C | DN                                        |
|----------------|----------------------|------|--------------------|-------------------------------------------|
| Normal Scan    |                      |      |                    |                                           |
|                | 1                    | 1024 | 1                  | 1024 1040                                 |
|                | 1                    | 7    | 1                  |                                           |
|                |                      |      |                    | 16 pixels for<br>horizontal<br>are added. |
|                |                      |      | 768                |                                           |
|                | 768                  |      | / 00               |                                           |
| Fast Dump      |                      |      |                    |                                           |
| (Partial Scan) | 1                    | 1024 | 1                  | 1024 1040                                 |
|                | 1                    |      | 1                  | 16 pixels for<br>horizontal are<br>added  |

Note: The menu for ON or OFF of OB transfer mode is found on the Image Format Control of the JAI SDK Camera Control Tool.


| 🗉 Image Format Control |             |
|------------------------|-------------|
| Sensor Width           | 1392        |
| Sensor Height          | 1040        |
| Width Max              | 1392        |
| Height Max             | 1040        |
| Width                  | 1392        |
| Height                 | 1038        |
| Offset X               | 0           |
| Offset Y               | 1           |
| Line Pitch             | 1392        |
| Partial Scan           | Full Frame  |
| Pixel Format           | 8 Bit BAYGB |
| Test Image Selector    | Off         |
| OB Transfer Mode       | Off         |
| 3 Pulse Generators     | Off<br>On N |
| Clock Source           | On          |
|                        | l           |

10.5.9 Multi ROI mode (Multi Region of Interest)

In this trigger mode, up to 5 ROIs located on one image can be output by one trigger input. By using this mode, the data stream can be smaller.

Each ROI can be overlapped.

Please note that if the accumulated data size is bigger than the data size of 1 frame, the frame rate will be reduced.





## 10.6. Operation Mode and Functions matrix

| Ser                  | nsor                               |                   | Bayer(channel1)   |                     |                   | Monochrome(channel2) |                     |                   |  |
|----------------------|------------------------------------|-------------------|-------------------|---------------------|-------------------|----------------------|---------------------|-------------------|--|
| Trigger              | · Inoput                           | Tri               | Trigger 1 : Valid |                     |                   | Trigger 2 : Invalid  |                     |                   |  |
| ID Value<br>(Note 1) | Mode                               | Shutter           | Partial           | Smear<br>less       | Shutter           | Partial              | Smear<br>less       | output<br>(note2) |  |
| 0x00                 | Continuous                         | Yes               | Yes               | No                  | Yes               | ←<br>(note1)         | No                  | Yes               |  |
| 0x01                 | Edge<br>Pre-select<br>(EPS)        | Yes               | Yes               | Yes                 | Yes               | $\leftarrow$         | ←                   | No                |  |
| 0x02                 | Pulse<br>Width<br>Control<br>(PWC) | Not<br>applicable | Yes               | Yes                 | Not<br>applicable | ←                    | ←                   | No                |  |
| 0x04                 | RCT                                | Yes               | Yes               | Automatically<br>ON | Yes               | $\leftarrow$         | Automatically<br>ON | Yes               |  |
| 0x09                 | Sequentia<br>l EPS                 | Yes               | Yes               | No                  | Yes               | $\leftarrow$         | No                  | No                |  |
| 0x17                 | Delayed<br>Readout<br>EPS          | No                | Yes               | Yes                 | No                | Ļ                    | ←                   | No                |  |
| 0x18                 | Delayed<br>Readout<br>PWC          | Not<br>applicable | Yes               | Yes                 | Not<br>applicable | ¥                    | ←                   | No                |  |

## 10.6.1. Sync Mode (0xA098) 0:SYNC

Note 1: " $\leftarrow$ " means that the setting depends on channel 1.

Note 2: Video signal for auto iris uses the output from Bayer (channel 1).

## 10.6.2 SYNC Mode (0xA098) 1:ASYNC

| Ser                  | nsor                              | Bayer(channel1)   |                   |                     | Monochrome(channel2) |                     |                     | Auto Iris         |
|----------------------|-----------------------------------|-------------------|-------------------|---------------------|----------------------|---------------------|---------------------|-------------------|
| Trigger              | · Inoput                          | Tri               | Trigger 1 : Valid |                     |                      | Trigger 2 : Invalid |                     |                   |
| ID Value<br>(Note 1) | Mode                              | Shutter           | Partial           | Smear<br>less       | Shutter              | Partial             | Smear<br>less       | output<br>(note2) |
| 0x00                 | Continuous                        | Yes               | Yes               | No                  | Yes                  | Yes                 | No                  | Yes               |
| 0x01                 | Edge<br>Pre-select<br>(EPS)       | Yes               | Yes               | Yes                 | Yes                  | Yes                 | Yes                 | No                |
| 0x02                 | Pulse<br>Width<br>Control<br>(PW) | Not<br>applicable | Yes               | Yes                 | Not<br>applicable    | Yes                 | Yes                 | No                |
| 0x04                 | RCT                               | Yes               | Yes               | Automatically<br>ON | Yes                  | Yes                 | Automatically<br>ON | Yes               |
| 0x09                 | Sequentia<br>l EPS                | Yes               | Yes               | No                  | Yes                  | ←<br>(note1)        | No                  | No                |
| 0x17                 | Delayed<br>Readout<br>EPS         | No                | Yes               | Yes                 | No                   | ←                   | ←                   | No                |
| 0x18                 | Delayed<br>Readout<br>PWC         | Not<br>applicable | Yes               | Yes                 | Not<br>applicable    | $\leftarrow$        | <b>~</b>            | No                |

Note 1: " $\leftarrow$ " means that the setting depends on channel 1.

Note 2: Video signal for auto iris uses the signal from Bayer (channel 1).

## 10.7. Special note for settings

#### 10.7.1 When the image size is changed

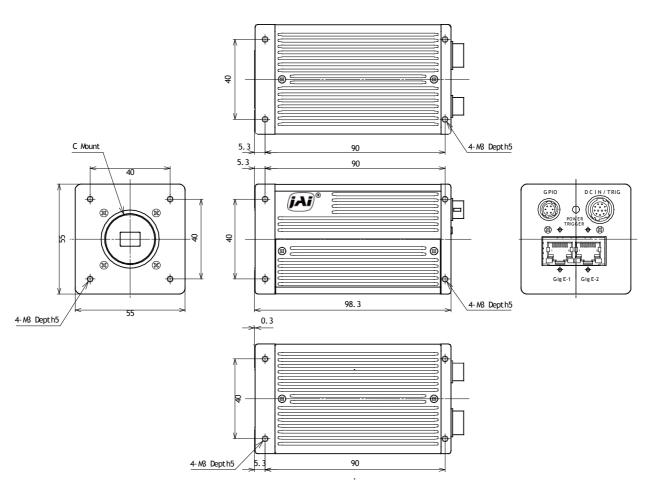
When the image size needs to be changed while the image is being captured, you must stop image capturing by pressing "Stop Acquisition". Then change the value. It is possible to change the shutter value and gain settings while watching the picture on the screen.

## 10.7.2 When the image is captured

While capturing images, if the frame rate is decreased, please check packet size. Each packet contains header information. If the packet size is small, total data bandwidth is affected by all the headers that must be added to packets. Accordingly, the frame rate may be decreased. If so, it is recommended to set the packet size to a higher value. Please note that the packet size is not stored, and it is necessary to set it on every start up. The current frame rate is shown at the bottom of the camera control tool.

|                                                 | Device ID<br>Device Lloor ID                                  | B000014  |
|-------------------------------------------------|---------------------------------------------------------------|----------|
|                                                 | Device Vendor Name<br>Device Vendor Name from the Bootstrap F | Register |
| BM-141GE 30.8fps, Timestamp = 15185279822 ticks | :                                                             |          |

(Note: the above figure is from BM/BB-141GE)


#### 10.7.3 Acquisition frame rate

Acquisition frame rate is a function to set the frame rate of image capturing. The frame rate can be set at full, 1/2, 1/4 and 1/8. This is only useful in "Continuous" mode. If a trigger mode is used, it is strongly recommended to use the full frame rate. Otherwise, the trigger frequency will also be divided according to the frame rate setting.

| Feature Properties Feature Tr | ee Information |                                |
|-------------------------------|----------------|--------------------------------|
| 🚉 🤶 📔 🔤 🛛 Guru                | 🚽 🕕 Node Info  |                                |
| 🗆 Acquisition and Trigger     | Control        |                                |
| Acquisition Mode              |                | Continuous                     |
| Acquisition Start             |                | Push to Execute Command>       |
| Acquisition Stop              |                | Push to Execute Command>       |
| Acquisition Frame Rate        |                | 15.05 fps                      |
| Shutter Mode                  |                | Programmable Exposure in lines |
| Preset Shutter                |                | Shutter off                    |
| Exposure Time Raw             |                | 490                            |
| Exposure Time (us)            |                | 66442                          |
| Exposure Mode                 |                | Continuous trigger             |
| Analog Control                |                |                                |

(Note: The above figure shows an example from BM/BB-500GE.)





# 11. External Appearance and Dimensions

Fig. 45 Dimensions

# 12. Specifications

12.1. Spectral response

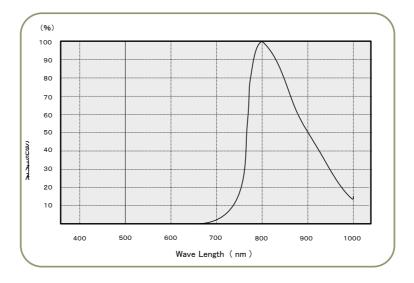



Fig. 46 Total spectral response including prism and sensor (Monochrome IR)

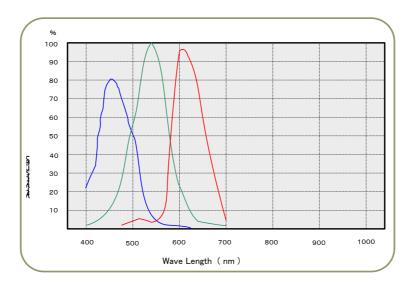



Fig. 47 Total spectral response including prism and sensor ( Color )



## 12.2. Specification Table

| TZ.Z. Specification rabi                                                                                       |                                                                                                              | AAAAF                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Specifications                                                                                                 |                                                                                                              | 080GE                                                                                                                        |
| •                                                                                                              | Color Imager channel                                                                                         | Monochrome Near-IR Imager ch.                                                                                                |
| Scanning system<br>Frame Rate Full scan                                                                        |                                                                                                              | essive scan<br>ogressive (768 lines/frame)                                                                                   |
| Pixel clock                                                                                                    |                                                                                                              | 75MHz                                                                                                                        |
| Line frequency                                                                                                 |                                                                                                              | 0 pixel clocks / line)                                                                                                       |
| Image sensor                                                                                                   | 1/3 inch Bayer color IT CCD                                                                                  | 1/3 inch Monochrome IR IT CCD                                                                                                |
| Sensing area                                                                                                   | 4.76 (H) x                                                                                                   | 3.57 (V) mm                                                                                                                  |
| Cell size                                                                                                      | 4.65 (H) >                                                                                                   | κ 4.65 (V) μm                                                                                                                |
| Active pixels                                                                                                  | 1024(H                                                                                                       | ) x 768 (V)                                                                                                                  |
| Pixels in Video output Full<br>Variable Partial                                                                | Scan height                                                                                                  | 01 fps. H = 23.768 kHz<br>8 to 768 lines,<br>Bayer color 2 lines step)                                                       |
|                                                                                                                | 0.5 lux                                                                                                      | 1.0 µW / cm <sup>2</sup> at 800nm                                                                                            |
| Sensitivity on sensor                                                                                          | Max. Gain, Shutter                                                                                           | OFF, 50% Video Level                                                                                                         |
| S/N ( dB)                                                                                                      | More than 54dB (G-ch, 0dB)                                                                                   | More than 54 dB (0dB)                                                                                                        |
| Iris video output, Analogue                                                                                    |                                                                                                              | (without Sync)                                                                                                               |
| Digital Video Output                                                                                           | Via RJ-45-1(GigE1)<br>BayRG8, BayRG10, BayRG12,<br>RGB8Packed , RGB10V1_Packed,<br>RGB10V2_Packed            | Via RJ-45-2 (GigE2)<br>Mono8, Mono10, Mono10_Packed,<br>Mono12_Packed, Mono12                                                |
| White balance                                                                                                  | Gain range: -3dB to +6dB<br>Manual: 3000K to 6500K<br>One-push: 3000K to 6500K<br>Continuous: 3000K to 6500K | Not applicable                                                                                                               |
| Input signals                                                                                                  | (TTL/75Ω) x2, LVDS x 1 and 0                                                                                 | DPT x2 HIROSE 12-pin and 6-pin                                                                                               |
| Output signals                                                                                                 | Hirose 12-pin: OPT x 2<br>Hirose 6-pin : TTL x 1                                                             |                                                                                                                              |
| Gain                                                                                                           | Manual Gain:-3dB to +21dB<br>R,B Gain : -6dB to +6dB<br>AGC: -3dB to +21dB                                   | Manual Gain: -3dB to +21dB<br>AGC: -3dB to +21dB                                                                             |
| Knee compensation                                                                                              | For RGB 24-bit/30-bit<br>Knee point, Knee slope                                                              | For Mono 8, 10 and 12-bit<br>Knee point, Knee slope                                                                          |
| LUT/Gamma                                                                                                      | 1.0/0.6                                                                                                      | /0.45/LUT                                                                                                                    |
| Shading compensation                                                                                           | ON/OFF (Cold                                                                                                 | or RGB and Mono)                                                                                                             |
| Synchronization                                                                                                | Int                                                                                                          | . X-tal                                                                                                                      |
| GPIO Module<br>Input /Output switch<br>Clock Generator(one)<br>Pulse generator (Four)<br>Hardware Trigger mode | 12 bit counter b<br>20-bit counter programmable for l                                                        | -in / 14-out switch<br>based on pixel clock<br>ength, start point, stop point , repeat<br>introl, RCT, Frame delay, Sequence |
| OB area transfer mode                                                                                          |                                                                                                              | / OFF                                                                                                                        |
|                                                                                                                | UN                                                                                                           |                                                                                                                              |
| Event message                                                                                                  | Exposure start, Exposure end,                                                                                | Trigger IN, Video start, Video end                                                                                           |
| Electronic Shutter<br>Programmable Exposure<br>Exposure Time Abs<br>GPIO plus Pulse width<br>Auto shutter      | µsec - user definal<br>Max. 2 sec (fine setting with<br>1/30 to                                              | 33.3ms) in 1L step<br>ble. Same range as PE<br>n GPIO and pulse width control)<br>1/10000 sec                                |
| Accumulation                                                                                                   | LVAL synchronous or LVAL as                                                                                  | synchronous automatic selection                                                                                              |
| Control interface                                                                                              | Gigabit Ethernet (IEEE802.3, A                                                                               | ATA GigE Vision Standard) 2 lines                                                                                            |
|                                                                                                                | 1                                                                                                            |                                                                                                                              |

|                                                   | -                                                                                                                                           |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Functions controlled via GigE<br>Vision Interface | Shutter, Gain, Black Level, Trigger mode, Read out mode,<br>GPIO setup, ROI (GenICam mandatory functions)                                   |
| GigE Vision Streaming Control                     | Packet size, Delayed (Frame) read-out, inter-packet delay<br>Jumbo frame can be set at max. 16K (16020) , Default packet size is 1476 Byte. |
| Indicators on rear panel                          | Power, Hardware trigger, GigE Link, GigE activity                                                                                           |
| Lens Mount                                        | C-Mount (Rear protrusion less than 4mm). Designed For 3CCD camera                                                                           |
| Operating temperature                             | -5°C to +45°C                                                                                                                               |
| Operating humidity                                | 20 to 80% (non-condensing)                                                                                                                  |
| Storage temperature/humidity                      | -25°C to +60°C / 20% to 80% (non-condensing)                                                                                                |
| Vibration                                         | 3G (15Hz to 200Hz XYZ)                                                                                                                      |
| Shock                                             | 50G                                                                                                                                         |
| Regulatory                                        | CE (EN61000-6-2, EN61000-6-3), FCC Part 15 Class B, RoHS                                                                                    |
| Power                                             | DC +10.8V to +26.4V, 7.0W (Typical, normal operation, +12VDC in)<br>7.2W(1/8 partial scan, +12VDC in)                                       |
| Dimensions                                        | 55 (H) x55 (W) x 98.3(D) mm                                                                                                                 |
| Weight                                            | 320 g                                                                                                                                       |

Note: Above specifications are subject to change without notice. Note: Approximately 30 minute pre-heat required to meet specifications.



## **Register Map**

The table below provides detailed information for the hardware registers used for controlling the camera and obtaining information on the status of the camera. The content of this register map is also found in the XML file, as stipulated by the GenICam standard. (Note: this register map is for both the AD-080GE and AD-081GE cameras. Items noted in the Value or Description columns as pertaining to the AD-081GE will be ignored by the AD-080GE.)

#### **Device Information**

| Address | Display Name<br>(JAI Control Tool) | GenICam name           | Read /<br>Write | Size | Value / Range of value                                                                                                                                                      | Description                                                        | Default<br>value |
|---------|------------------------------------|------------------------|-----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|
| 0x0048  | Device Vendor Name                 | DeviceVendoeName       | R               | 32   |                                                                                                                                                                             | Manufacture of this device                                         |                  |
| 0x0068  | Device Model Name                  | DeviceModelName        | R               | 32   |                                                                                                                                                                             | Model Name of this device                                          |                  |
| 0x0088  | Device Version                     | DeviceVersion          | R               | 32   |                                                                                                                                                                             | Version of this device                                             |                  |
| 0x00A8  | Device Manufacturer<br>Info        | DeviceManufacturerInfo | R               | 48   |                                                                                                                                                                             | Provides extended<br>manufacturer information<br>about the device. |                  |
| 0x00D8  | Device ID                          | DeviceID               | R               | 16   |                                                                                                                                                                             | Camera serial number                                               |                  |
| 0x00E8  | Device User ID                     | DeviceUserID           | RW              | 16   |                                                                                                                                                                             | User assignable string (16<br>Byte)                                |                  |
| 0xA714  | FPGA version                       | DeviceFPGAVersion      | R               | 4    |                                                                                                                                                                             |                                                                    |                  |
| 0xA034  | Sensor Type                        | SensorType             | R               | 4    | 0=AD-080GE Color<br>Sensor(Interface #0)<br>1=AD-080GE Mono<br>Sensor(interface #1)<br>2=AD-081GE Mono<br>Sensor1(interface #0)<br>3=AD-081GE Mono<br>Sensor2(Interface #1) |                                                                    |                  |
| 0xA640  | Device Reset                       | DeviceReset            | W               | 4    | Command=1                                                                                                                                                                   |                                                                    |                  |
| 0xA1FC  | Temperature                        | Temperature            | R               | 4    | 0.0625° step                                                                                                                                                                | -55 °C ~ 150 °C                                                    |                  |

#### Image Format Control

| Address | Display Name<br>(JAI Control Tool) | GenICam name | Read /<br>Write | Size | Value / Range of value                                                                                                                                                                                                                                                                                                                                                                                                       | Description                                                                                                                                                                            | Default<br>value  |
|---------|------------------------------------|--------------|-----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 0xA400  | Width Max                          | WidthMax     | R               | 4    | 1024                                                                                                                                                                                                                                                                                                                                                                                                                         | Width max                                                                                                                                                                              | 1024              |
| 0xA404  | Height Max                         | HeightMax    | R               | 4    | 768                                                                                                                                                                                                                                                                                                                                                                                                                          | Height max                                                                                                                                                                             | 768               |
| 0xA410  | Pixel Format                       | PixelFormat  | RW              | 4    | Mono CCD(080/081)           0x01080001           0x010C0004           0x01100005           0x010C0006           Bayer CCR(080)           0x01080009           0x010000D           0x010000D           0x010000D           0x010000D           0x010000D           0x010000D           0x010000D           0x010000D           0x01000011           0x01000028           0x02180014           0x0220001C           0x0220001D | Mono8<br>Mono10Packed<br>Mono0<br>Mono12<br>Mono12Packed<br>BayerRG8<br>BayerRG10<br>BayerRG10Packed<br>BayerRG12Packed<br>RGB8Packed<br>RGB8Packed<br>RGB10V1Packed<br>RGBV10V2Packed | Mono8<br>BayerRG8 |
| 0xA500  | ROI Mode                           | ROIMode      | RW              | 4    | 1 to 5                                                                                                                                                                                                                                                                                                                                                                                                                       | 1:ROI disable<br>2 to 5: Enable                                                                                                                                                        | 1                 |
| 0xA504  | ROI 1 Width                        | Width        | RW              | 4    | 8 - 1024                                                                                                                                                                                                                                                                                                                                                                                                                     | Width                                                                                                                                                                                  | W.Max             |

| 0xA508 | ROI 1 Height        | Height             | RW | 4 | 8 - 768                                                                                                                                | Height                                | H.Max |
|--------|---------------------|--------------------|----|---|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|
| 0xA50C | ROI 1 Offset X      | OffsetX            | RW | 4 | 0 - 1016                                                                                                                               | Horizontal offset                     | 0     |
| 0xA510 | ROI 1 Offset Y      | OffsetY            | RW | 4 | 0 - 760                                                                                                                                | Vertical offset                       | 0     |
| 0xA514 | ROI 2 Width         | Width2             | RW | 4 | 8 - 1024                                                                                                                               | Width 2                               | W.Max |
| 0xA518 | ROI 2 Height        | Height2            | RW | 4 | 8 - 768                                                                                                                                | Height 2                              | H.Max |
| 0xA51C | ROI 2 Offset X      | OffsetX2           | RW | 4 | 0 - 1016                                                                                                                               | Offset X2                             | 0     |
| 0xA520 | ROI 2 Offset Y      | OffsetY2           | RW | 4 | 0 - 760                                                                                                                                | Offset Y2                             | 0     |
| 0xA524 | ROI 3 Width         | Width3             | RW | 4 | 8 - 1024                                                                                                                               | Width 3                               | W.Max |
| 0xA528 | ROI 3 Height        | Height3            | RW | 4 | 8 - 768                                                                                                                                | Height 3                              | H.Max |
| 0xA52C | ROI 3 Offset X      | OffsetX3           | RW | 4 | 0 - 1016                                                                                                                               | Offset X3                             | 0     |
| 0xA530 | ROI 3 Offset Y      | OffsetY3           | RW | 4 | 0 - 760                                                                                                                                | Offset Y3                             | 0     |
| 0xA534 | ROI 4 Width         | Width4             | RW | 4 | 8 - 1024                                                                                                                               | Width 4                               | W.Max |
| 0xA538 | ROI 4 Height        | Height4            | RW | 4 | 8 - 768                                                                                                                                | Height 4                              | H.Max |
| 0xA53C | ROI 4 Offset X      | OffsetX4           | RW | 4 | 0 - 1016                                                                                                                               | Offset X4                             | 0     |
| 0xA540 | ROI 4 Offset Y      | OffsetY4           | RW | 4 | 0 - 760                                                                                                                                | Offset Y4                             | 0     |
| 0xA544 | ROI 5 Width         | Width5             | RW | 4 | 8 - 1024                                                                                                                               | Width 5                               | W.Max |
| 0xA548 | ROI 5 Height        | Height5            | RW | 4 | 8 - 768                                                                                                                                | Height 2                              | H.Max |
| 0xA54C | ROI 5 Offset X      | OffsetX5           | RW | 4 | 0 - 1016                                                                                                                               | Offset X 5                            | 0     |
| 0xA550 | ROI 5 Offset Y      | OffsetY5           | RW | 4 | 0 - 760                                                                                                                                | Offset Y 5                            | 0     |
| 0xA080 | Fast Dump           | FastDumpEnable     | RW | 4 |                                                                                                                                        | For enabling variable<br>partial scan |       |
| 0xA084 | Binning Vertical    | BinningVertical    | RW | 4 | 1=Binning OFF<br>2=1/2 V Binning                                                                                                       | Only AD-081GE                         | 1     |
| 0xA098 | Sync Mode           | SyncMode           | RW | 4 | 0=Sync<br>1=Async<br>2=High transfer Rate<br>3=High dynamic Range<br>4=High S/N                                                        | 2, 3, 4 only for AD-081GE             |       |
| 0xA13C | Test Image Selector | TestImageSeleector | RW | 4 | 0=OFF<br>4=H Rmap Scale<br>5=V Ramp Scale<br>6= Moving Ramp Scale<br>8=Normal Color bar<br>9=Vertical Color Bar<br>10=Moving Color Bar | 8,9,10 only for AD-080GE color sensor | 0     |
| 0xA41C | OB Transfer Enable  | OBTransferEnable   | RW | 4 |                                                                                                                                        |                                       |       |



## Acquisition and Trigger Control

| Address | Display Name<br>(JAI Control Tool) | GenlCam name         | Read /<br>Write | Size | Value / Range of value                                                                                                                                                                                                                             | Description                                                                                                                                                                                                                                                                                            | Default<br>value |
|---------|------------------------------------|----------------------|-----------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0xA604  | Acquisition Mode                   | AcquisitionMode      | RW              | 4    | 0=Stop 1=Start                                                                                                                                                                                                                                     | Acquisition start and stop                                                                                                                                                                                                                                                                             | 0                |
| 0xA414  | Acquisition frame rate             | AcquisitionFrameRate | RW              | 4    | 0=Full speed<br>1=1/2 speed<br>2=1/4 speed<br>3=1/8 speed                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        | 0                |
| 0xA000  | Shutter mode                       | ShutterMode          | RW              | 4    | 1= Programmable<br>exposure in line<br>2=Programmable<br>exposure(us)<br>3=Auto Exposure<br>Constantly                                                                                                                                             | Sets exposure time for image capture.                                                                                                                                                                                                                                                                  | 1                |
| 0xA008  | Exposure Time Raw                  | ExposureTimeRaw      | RW              | 4    | 0 to 792 (OFF)                                                                                                                                                                                                                                     | Flexible setting of exposure<br>time ranging from 20 µs to<br>33.31 ms using the LVAL<br>period (L) as increment. 1L<br>is 42.071us.                                                                                                                                                                   | 792              |
| 0xA018  | Exposure Time (us)                 | ExposureTimeAbs      | RW              | 4    | 20 to 33333 ( OFF)                                                                                                                                                                                                                                 | Actual exposure time in<br>microseconds, μs.<br>The camera will round<br>value off to match LVAL<br>increments.                                                                                                                                                                                        | 33333            |
| 0xA030  | Auto exposure value                | AutoExposureValue    | R               | 4    |                                                                                                                                                                                                                                                    | Exposure time on Auto exposure mode                                                                                                                                                                                                                                                                    |                  |
| 0xA040  | Exposure Mode                      | ExposureMode         | RW              | 4    | 00=Continuous trigger<br>01=Edge pre-select<br>02=Pulse-width control<br>04=RCT mode<br>09=Sequential EPS<br>trigger<br>17=Delayed readout EPS<br>trigger<br>18=Delayed readout<br>PWC trigger<br>32=PIV mode 1<br>64=PIV mode 2<br>128=PIV mode 3 |                                                                                                                                                                                                                                                                                                        | 0                |
| 0xB060  | Camera Trigger 0                   | CameraTrigger0       |                 |      | Trigger Source<br>Bit31 ~ Bit25                                                                                                                                                                                                                    | Trigger Source<br>127=OFF                                                                                                                                                                                                                                                                              |                  |
| 0xB064  | Camera Trigger 1                   | CameraTrigger1       |                 |      | Bit24:Trigger Activation                                                                                                                                                                                                                           | 9=Line4-OpticalIn 1<br>10=Line5-optical In 2                                                                                                                                                                                                                                                           |                  |
| 0xB0A0  | TimeStamp Rest Trigger             | TimeStampReset       |                 |      | 0=Rising Edge(Active<br>High)                                                                                                                                                                                                                      | 12=Line6-TTL In 1<br>13=Line7-TTL In 2                                                                                                                                                                                                                                                                 |                  |
| 0xB0A4  | Sequence Table Reset<br>Trigger    | SequenceTableRest    |                 |      | 1=Falling Edge(Active<br>Low)                                                                                                                                                                                                                      | 11=Line8-LVDS In<br>16=Pulse Generator0<br>17=Pulse Generator2<br>19=Pulse Generator3<br>20=User Output 0<br>(Software trigger 0)<br>21=User Output1<br>(Software trigger10)<br>22=User Output 2<br>(software trigger 2)<br>23=User Output 3<br>(Software trigger 3)<br>Add 0x80 makes [Active<br>Low] | 127              |

| 0xA04C | Smearless Enable | SmearlessEnable | RW | 4 | 0:OFF | 1:0N |  |
|--------|------------------|-----------------|----|---|-------|------|--|

#### Video Control

| Address | Display Name<br>(JAI Control Tool)     | GenICam name                  | Read /<br>Write | Size | Value / Range of value                                                                                                                                                      | Description                                                                       | Default<br>value |
|---------|----------------------------------------|-------------------------------|-----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------|
| 0xA0A0  | Digital Gr                             | DigitalGr                     | RW              | 4    | 8192 ~ 65535                                                                                                                                                                | 8192(-6dB) 32768 (+6dB)<br>Value 16384 = 0dB<br>Only for AD-080GE color<br>sensor | 16384            |
| 0xA0A4  | Digital Gb                             | DigitalGb                     | RW              | 4    | 8192 ~ 65535                                                                                                                                                                | 8192(-6dB) 32768 (+6dB)<br>Value 16384 = 0dB<br>Only for AD-080GE color<br>sensor | 16384            |
| 0xA0A8  | Digital Red                            | DigitalRed                    | RW              | 4    | 8192 ~ 65535                                                                                                                                                                | 8192(-6dB) 32768 (+6dB)<br>Value 16384 = 0dB<br>Only for AD-080GE color<br>sensor | 16384            |
| 0xA0AC  | Digital Blue                           | DigitalBlue                   | RW              | 4    | 8192 ~ 65535                                                                                                                                                                | 8192(-6dB) 32768 (+6dB)<br>Value 16384 = 0dB<br>Only for AD-080GE color<br>sensor | 0                |
| 0xA0B0  | Gain Auto                              | GainAuto                      | RW              | 4    | 0=OFF<br>1=continuous                                                                                                                                                       |                                                                                   | 0                |
| 0xA0B4  | AGC Reference                          | AGCReference                  | RW              | 4    | 0 to 8191                                                                                                                                                                   | Reference value for AGC as well as Auto shutter                                   | 0                |
| 0xA0C4  | Analog All                             | AnalogAll                     | RW              | 4    | -84 to 588                                                                                                                                                                  | Analog all<br>-89(—3dB) 588(+21dB)<br>1 step=0.0358dB<br>Value 0=0dB              | 0                |
| 0xA0C8  | Auto Gain Value                        | AutoGainValue                 | RO              | 4    |                                                                                                                                                                             | See the gain raw value<br>while AGC is being<br>performed                         |                  |
| 0xA71C  | Digital Sensor 2                       | DigitalSensor2                | RW              | 4    | -1024 to 1023                                                                                                                                                               | Fine tuning on Digital<br>sensor2                                                 |                  |
| 0xA150  | Black Level Selector(ALL)              | BlackLevelRaw[DigitalALL<br>] | R<br>W          | 4    | 0 to 1023                                                                                                                                                                   |                                                                                   |                  |
| 0xA154  | Black Level<br>Selector(Digital Red)   | BlackLevelRaw[DigitalR]       | R<br>W          | 4    | 0 to 1023                                                                                                                                                                   | Only for AD-080GE Color sensor                                                    |                  |
| 0xA158  | Black Level<br>Selector(Digital Green) | BlackLevelRaw[DigitalG]       | R<br>W          | 4    | 0 to 1023                                                                                                                                                                   | Only for AD-080GE Color sensor                                                    |                  |
| 0xA15C  | Black Level<br>Selector(Digital Blue)  | BlackLevelRaw[DigitalB]       | R<br>W          | 4    | 0 to 1023                                                                                                                                                                   | Only for AD-080GE Color sensor                                                    |                  |
| 0xA0C0  | Balance White Auto                     | BalanceWhiteAuto              | RW              | 4    | 0=Manual or one push<br>1=Continuous<br>2=3200K<br>3=4600K<br>4=5600K                                                                                                       |                                                                                   |                  |
| 0xA0D0  | Balance White Auto<br>Once             | BalanceWhiteAutoOnce          | w               | 4    | Command=0                                                                                                                                                                   |                                                                                   | 0 only           |
| 0xA0D8  | Status of video processing             | StatusOfProcessing            | R               | 4    | 0=Complete successfully<br>1=Busy<br>2=Too high level<br>3=Too low level<br>4=Time-out error<br>5=Reaching a limit of<br>Feature's value<br>6=Inappropriate trigger<br>mode | For auto white balance,<br>Exposure Mode should be<br>0=Continuous.               |                  |
| 0xA0D4  | AWB Area Enable                        | AWBAreaEnable                 | RW              | 4    | 0 ~ 65535                                                                                                                                                                   | Block 0 ~ Block 15<br>Image is divided in 16.画面<br>16 分割                          | 65535            |



|        |                         |                      |    | - |                        |                                |      |
|--------|-------------------------|----------------------|----|---|------------------------|--------------------------------|------|
| 0xA17C | Color Matrix Mode       | ColrMatrixMode       | RW | 4 | 0=Linear<br>3=User Set | Only for AD-080GE Color sensor |      |
| 0xA180 | Matrix RR               | MatrixRR             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 1024 |
| 0xA184 | Matrix RG               | MatrixRG             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 0    |
| 0xA188 | Matrix RB               | MatrixRB             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 0    |
| 0xA18C | Matrix GR               | MatrixGR             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 0    |
| 0xA190 | Matrix GG               | MatrixGG             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 1024 |
| 0xA194 | Matrix GB               | MatrixGB             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 0    |
| 0xA198 | Matrix BR               | MatrixBR             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 0    |
| 0xA19C | Matrix BR               | MatrixBG             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 0    |
| 0xA1A0 | Matrix BB               | MatrixBB             | RW | 4 | -2048 ~ 2047           | Only for AD-080GE Color sensor | 1024 |
| 0xA718 | Iris Signal Output Mode | IrisSignalOutputMode | RW | 4 | 0=CCD1<br>1=CCD2       |                                | 0    |

#### **Digital Processing**

| Address                         | Display Name<br>(JAI Control Tool)   | GenICam name                      | Read /<br>Write | Size | Value / Range of value                                            | Description                                      | Default<br>value |  |
|---------------------------------|--------------------------------------|-----------------------------------|-----------------|------|-------------------------------------------------------------------|--------------------------------------------------|------------------|--|
| 0xA0EC                          | Gamma Set(Mono/Bayer)                | GammaSet[Mono_Bayer]              | RW              | 4    | 0=OFF 1=0.9<br>2=0.8 3=0.75<br>4=0.6 5=0.55<br>6=0.5 7=0.45       |                                                  | 0                |  |
| 0xA0F0                          | Gamma Set(RGB)                       | GammaSet[RGB]                     | RW              | 4    | 0=OFF 1=0.9<br>2=0.8 3=0.75<br>4=0.6 5=0.55<br>6=0.5 7=0.45       | Only for AD-080GE RGB pixel formats              | 0                |  |
| 0xA11C                          | Shading Correction Enable            | ShadingCorrectionEnable           | RW              | 4    | 0=OFF<br>1=On                                                     |                                                  | 0                |  |
| 0xA120                          | Shading Correction Mode              | ShadingCorrectionMode             | R               | 4    | 0=Flat shading<br>1=Color shading                                 |                                                  |                  |  |
| 0xA128                          | Blemish Reduction Enable             | BlemishReductionEnable            | RW              | 4    | 0=Disable<br>1=Black blemish<br>2=White blemish<br>3=Both blemish |                                                  | 0                |  |
| 0xA130                          | Perform Flat Shading<br>Calibration  | PerformFlatShadingCalibr ation    |                 | wo   | 4                                                                 | Command=0                                        |                  |  |
| UXATSU                          | Perform Color Shading<br>Calibration | PerformColrShadingCalibr ation    | WO              | 4    | Command=1                                                         | Only for AD-080GE Color sensor                   |                  |  |
| 0x10000<br> <br>0x10CE<br>0     | Shading Data Selector<br>(Red/Mono)  | ShadingDataSelector[Red<br>_Mono] | R               | 4    | 0 ~ 65535                                                         | Index=0~824                                      | 0                |  |
| 0x10CE<br>4<br> <br>0x119C<br>4 | Shading Data Selector<br>(Green)     | ShadingDataSelector[Gree<br>n]    | R               | 4    | 0 ~ 65535                                                         | Index=0~824<br>Only for AD-080GE color<br>sensor | 0                |  |
| 0x119C<br>8<br> <br>0x126A8     | Shading Data Selector<br>(Blue)      | ShadingDataSelector[Blue<br>]     | R               | 4    | 0 ~ 65535                                                         | Index=0~824<br>Only for AD-080GE color<br>sensor | 0                |  |

|                             | Perform Black Blemish<br>Reduction Calibration | PerformBlackBlemishCali<br>bration    |    | ] | Command=0      |                                                |      |
|-----------------------------|------------------------------------------------|---------------------------------------|----|---|----------------|------------------------------------------------|------|
| 0xA138                      | Perform White Blemish<br>Reduction Calibration | PerformWhiteBlemishCali<br>bration    | W  | 4 | Command=1      | -                                              |      |
| 0x14000<br> <br>0x1407<br>C | Blemish Data Selector<br>(Black Blemish)       | BlemishDataSelector[Blac<br>kBlemish] | R  | 4 | 0 ~ 0xFFFFFFFF | Index=0~31                                     | 0    |
| 0x14080<br> <br>0x140F<br>C | Blemish Data Selector<br>(White Blemish)       | BlemishDataSelector[Whit<br>eBlemish] | R  | 4 | 0 ~ 0xFFFFFFFF | Index=0~31<br>Only for AD-080GE colr<br>sensor | 0    |
| 0xA1A4                      | Knee Enable                                    | KneeEnable                            | RW | 4 | 0=0FF 1=0N     |                                                | 0    |
| 0xA1A8                      | Knee Slope (Mono/Bayer)                        | KneeSlope[Mono_Bayer]                 | RW | 4 | 0 - 16383      |                                                | 2347 |
| 0xA1AC                      | Knee Slope (Red)                               | KneeSlope[Red]                        | RW | 4 | 0 - 16383      | Only for AD-080GE color sensor                 | 2347 |
| 0xA1B0                      | Knee Slope (Green)                             | KneeSlope[Green]                      | RW | 4 | 0 - 16383      | Only for AD-080GE color sensor                 | 2347 |
| 0xA1B4                      | Knee Slope (Blue)                              | KneeSlope[Blue]                       | RW | 4 | 0 - 16383      | Only for AD-080GE color sensor                 | 2347 |
| 0xA1B8                      | Knee point(Mono/Bayer)                         | KneePoint[Mono_Bayer]                 | RW | 4 | 0 - 32767      |                                                | 6864 |
| 0xA1BC                      | Knee point(Red)                                | KneePoint[Red]                        | RW | 4 | 0 - 32767      | Only for AD-080GE color sensor                 | 6864 |
| 0xA1C0                      | Knee point(Green)                              | KneePoint[Green]                      | RW | 4 | 0 - 32767      | Only for AD-080GE color sensor                 | 6864 |
| 0xA1C4                      | Knee point(Blue)                               | KneePoint[Blue]                       | RW | 4 | 0 - 32767      | Only for AD-080GE color sensor                 | 6864 |

## Digital IO

| Address | Display Name<br>(JAI Control Tool)   | GenlCam name       | Read /<br>Write | Size | Value / Range of value                                                                                   | Description                                                                                                                  | Default<br>value |
|---------|--------------------------------------|--------------------|-----------------|------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0xA600  | User Output Selector                 | UserOutputSelector | RW              | 4    | Bit31=User Output 0<br>Bit30:User Output 1<br>Bit29:User output 2<br>Bit28:User Output 3<br>0=Low 1=HIGH | This was called Software<br>Trigger.                                                                                         | 0                |
| 0xB070  | Line Selector<br>Line1-TTL Out 1     | Line1              | RW              | 4    | Line Source<br>Bit31 ~ Bit25                                                                             | Line Source                                                                                                                  |                  |
| 0xB078  | Line Selector<br>Line2-Optical Out 1 | Line2              | RW              | 4    | Bit24:Line Inverter                                                                                      | 1:LVAL 1<br>2:LVAL2                                                                                                          |                  |
| 0xB07C  | Line Selector<br>Line3-Optical Out 2 | Line3              | RW              | 4    | 0=False (Active High)<br>1=True(Active Low)                                                              | 3:DVAL1<br>4:DVAL2<br>5:FVAL1                                                                                                |                  |
| 0xB080  | Line Selector<br>Line4-Optical In 1  | Line4              | RW              | 4    |                                                                                                          | 6:FVAL2<br>7:EEN1                                                                                                            |                  |
| 0xB084  | Line Selector<br>Line5-Optical In2   | Line5              | RW              | 4    |                                                                                                          | 8:EEN2<br>9:Line4-Ooptical In 1<br>10:Line5-Optical In 2                                                                     |                  |
| 0xB088  | Line Selector<br>Line6-TTL In 1      | Line6              | RW              | 4    |                                                                                                          | 11:Line8-LVDS IN<br>12:Line6-TTL In 1                                                                                        |                  |
| 0xB08C  | Line Selector<br>Line7-TTL In 2      | Line7              | RW              | 4    |                                                                                                          | 13:Line7-TTL In 2<br>16:Pulse Generator 0<br>17:Pulse Generator 1                                                            |                  |
| 0xB090  | Line Selector<br>Line8-LVDS In       | Line8              | RW              | 4    |                                                                                                          | 18:Pulse Generator 2<br>19:Pulse Generator 3<br>20:User Output 0<br>21:User Output 1<br>22:User Output 2<br>23:User Output 3 |                  |
|         | Line Mode                            | LineMode           |                 |      | 0=Input 1=Output                                                                                         |                                                                                                                              |                  |

# AD-080GE



|        | Line Format | LineFormat |   |   | 0=Internal Logic Signal<br>1=TTL<br>2=LVDS<br>3=Opto-coupled |                                       |  |
|--------|-------------|------------|---|---|--------------------------------------------------------------|---------------------------------------|--|
| 0xB0B0 | Line status |            | R | 4 |                                                              | See the current input and output line |  |

#### **Pulse Generator**

| Address | Display Name<br>(JAI Control Tool)      | GenICam name                   | Read /<br>Write | Size | Value / Range of value                                                           | Description                                                 | Default<br>value |
|---------|-----------------------------------------|--------------------------------|-----------------|------|----------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|
| 0xB004  | Clock Pre-scaler                        | ClockPreScaler                 | RW              | 4    | 0x000<br>0x001<br>0x002<br> <br>0xFFF                                            | Bypass<br>Divide by 2<br>Divide by 3<br> <br>Divide by 4096 | 0                |
| 0xB008  | Pulse Generator Length 0                | PulseGeneratorLength0          | RW              | 4    | 1~1048575                                                                        | Defines the length of the counter 0                         | 1                |
| 0xB00C  | Pulse Generator Start<br>Point 0        | PulseGeneratorStartPoint<br>0  | RW              | 4    | 0~1048574                                                                        | Defines the starting point of the counter 0                 | 0                |
| 0xB010  | Pulse Generator Repeat<br>Count 0       | PulseGeneratorRepeatCo<br>unt0 | RW              | 4    | 0 - 255                                                                          | Defines the repeat count of the counter 0                   | 0                |
| 0xB014  | Pulse Generator End Point<br>0          | PulseGeneratorEndPoint0        | RW              | 4    | 1~1048575                                                                        | Defines the end point of the counter 0                      | 1                |
| 0xB018  | Clear Mode for the Pulse<br>Generator 0 | PulseGeneratorClear0           | RW              | 4    | 0 :Free Run<br>1:High Level<br>2: Low Level<br>4: Rising Edge<br>8: Falling Edge |                                                             | 0                |
| 0xB01C  | Pulse Generator Length 1                | PulseGeneratorLength1          | RW              | 4    | 1~1048575                                                                        | Defines the length of the counter 1                         | 1                |
| 0xB020  | Pulse Generator Start<br>Point 1        | PulseGeneratorStartPoint<br>1  | RW              | 4    | 0~1048574                                                                        | Defines the starting point of the counter 1                 | 0                |
| 0xB024  | Pulse Generator Repeat<br>Count 1       | PulseGeneratorRepeatCo<br>unt1 | RW              | 4    | 0 - 255                                                                          | Defines the repeat count of the counter 1                   | 0                |
| 0xB028  | Pulse Generator End Point<br>1          | PulseGeneratorEndPoint1        | RW              | 4    | 1~1048575                                                                        | Defines the end point of the counter 1                      | 1                |
| 0xB02C  | Clear Mode for the Pulse<br>Generator 1 | PulseGeneratorClear1           | RW              | 4    | 0 :Free Run<br>1:High Level<br>2: Low Level<br>4: Rising Edge<br>8: Falling Edge |                                                             | 0                |
| 0xB030  | Pulse Generator Length 2                | PulseGeneratorLength2          | RW              | 4    | 1~1048575                                                                        | Defines the length of the counter 2                         | 1                |
| 0xB034  | Pulse Generator Start<br>Point 2        | PulseGeneratorStartPoint<br>2  | RW              | 4    | 0~1048574                                                                        | Defines the starting point of the counter 2                 | 0                |
| 0xB038  | Pulse Generator Repeat<br>Count 2       | PulseGeneratorRepeatCo<br>unt2 | RW              | 4    | 0 - 255                                                                          | Defines the repeat count of the counter 2                   | 0                |
| 0xB03C  | Pulse Generator End Point<br>2          | PulseGeneratorEndPoint2        | RW              | 4    | 1~1048575                                                                        | Defines the end point of the counter 2                      | 1                |
| 0xB040  | Clear Mode for the Pulse<br>Generator 2 | PulseGeneratorClear2           | RW              | 4    | 0 :Free Run<br>1:High Level<br>2: Low Level<br>4: Rising Edge<br>8: Falling Edge |                                                             | 0                |
| 0xB044  | Pulse Generator Length 3                | PulseGeneratorLength3          | RW              | 4    | 1~1048575                                                                        | Defines the length of the counter 3                         | 1                |

# AD-080GE

| 0xB048 | Pulse Generator Start<br>Point 3              | PulseGeneratorStartPoint<br>3  | RW | 4 | 0~1048574                                                                        | Defines the starting point of the counter 3                                                                                                                                                                                                                                                                                       | 0 |
|--------|-----------------------------------------------|--------------------------------|----|---|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 0xB04C | Pulse Generator Repeat<br>Count 3             | PulseGeneratorRepeatCo<br>unt3 | RW | 4 | 0 - 255                                                                          | Defines the repeat count of the counter 3                                                                                                                                                                                                                                                                                         | 0 |
| 0xB050 | Pulse Generator End Point 3                   | PulseGeneratorEndPoint3        | RW | 4 | 1~1048575                                                                        | Defines the end point of the counter 3                                                                                                                                                                                                                                                                                            | 1 |
| 0xB054 | Clear Mode for the Pulse<br>Generator 3       | PulseGeneratorClear3           | RW | 4 | 0 :Free Run<br>1:High Level<br>2: Low Level<br>4: Rising Edge<br>8: Falling Edge |                                                                                                                                                                                                                                                                                                                                   | 0 |
| 0xB090 | Pulse Generator Selector<br>Pulse Generator 0 | PulseGenerator0                | RW | 4 | Pulse Generator Source<br>Bit 31 ~ 25                                            | Pulse Generator Source<br>127:OFF                                                                                                                                                                                                                                                                                                 |   |
| 0xB094 | Pulse GeneratorSelector<br>Pulse Generator 1  | PulseGenerator1                | RW | 4 | Bit24:Inverter                                                                   | 1: LVAL IN 1 (I/F#0)<br>2:LVAL IN 2 (I/F#1)<br>3:DVAL IN 1 (I/F#0)                                                                                                                                                                                                                                                                |   |
| 0xB098 | Pulse Generator Selector<br>Pulse Generator 2 | PulseGenerator2                | RW | 4 | 0:False (Active high)<br>1:True(Active Low)                                      | 4:DVAL IN 2 (I/F#1)<br>5:FVAL IN 1 (I/F#0)                                                                                                                                                                                                                                                                                        |   |
| 0xB09C | Pulse Generator Selector<br>Pulse Generator 3 | PulseGenerator3                | RW | 4 |                                                                                  | 6:FVAL IN 2 (I/F#1)<br>7:EEN 1 (I/F#0)<br>8:EEN 2 (I/F#1)<br>9:LINE4(OPT IN 1)<br>10:LINE5(OPT IN 2)<br>11:LINE8(LVDS In)<br>12:LINE6(TTL IN 1)<br>13:LINE7(TTL IN 2)<br>16:Pulse Gen. 0<br>17:Pulse Gen.1<br>18*Pulse Gen.2<br>19:Pulse Gen.3<br>20:User Output 0<br>21: User Output 1<br>22: User Output 1<br>22: User Output 3 |   |

#### Sequence Acquisition Mode

| Address | Display Name<br>(JAI Control Tool) | GenICam name                | Read /<br>Write | Size | Value / Range of value                                                                                                                                                      | Description                                                                   | Default<br>value |
|---------|------------------------------------|-----------------------------|-----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|
|         | Sequence Selector                  | SequenceSelector            |                 |      | Sequence Selector<br>Value<br>0=Sequence 1<br>1=Sequence 2<br>2=Sequence 3<br>3=Sequence 4<br>4=Sequence 5<br>5=Sequence 6<br>7=Sequence 8<br>8=Sequence 9<br>9=Sequence 10 | Sequence Selector value is<br>the INDEX for each<br>sequence。                 |                  |
| 0xC000  | Sequence Exposure Time<br>Raw      | SequenceExposureTimeRa<br>w | RW              | 4    | 0 - 792                                                                                                                                                                     | Shutter value Base Address<br>INDEX=0 to 9<br>(Base Address + Index *4)       | 792              |
| 0xC078  | Sequence Master Gain<br>Raw        | SequenceMasterGain          | RW              | 4    | -84 to 588                                                                                                                                                                  | Gain value Base Address<br>INDEX=0 to 9<br>(Base Address + Index *4)          | 0                |
| 0xC0FC  | Sequence ROI Size X                | SequenceROISizeX            | RW              | 4    | 8 - 1024                                                                                                                                                                    | ROI width value Base<br>Address<br>INDEX=0 to 9<br>(Base Address + Index *4)  | Width<br>max     |
| 0xC124  | Sequence ROI Size Y                | SequenceROISizeY            | RW              | 4    | 8 - 768                                                                                                                                                                     | ROI Height value Base<br>Address<br>INDEX=0 to 9<br>(Base Address + Index *4) | Height<br>Max    |



See the possibilities

| 0xC14C | Sequence ROI Offset X        | SequenceROIOffsetX                     | RW | 4 | 0 - 1016 | ROI H Offset value Base<br>Address<br>INDEX=0 to 9<br>(Base Address + Index *4)          | 0 |
|--------|------------------------------|----------------------------------------|----|---|----------|------------------------------------------------------------------------------------------|---|
| 0xC174 | Sequence ROI Offset Y        | SequenceROIOffsetY                     | RW | 4 | 0 - 760  | ROI V Offset value Base<br>Address<br>INDEX=0 to 9<br>(Base Address + Index *4)          | 0 |
| 0xC19C | Repeat Count in Each Step    | Sequence Repeat Count In E<br>ach Step | RW | 4 | 1 to 255 | Sequence repeat count<br>value Base Address<br>INDEX=0 to 9<br>(Base Address + Index *4) | 0 |
| 0xC0F0 | Reset Sequence Settings      | SequenceResetCommand                   | RW | 4 | 1 only   | Sequence3 reset                                                                          | 1 |
| 0xC0F4 | Sequence Repetition<br>Count | SequenceRepetitions                    | RW | 4 | 0 to 255 | Sequence repeat count                                                                    | 0 |
| 0xC0F8 | Last Sequence                | SequenceEndingPosition                 | RW | 4 | 1 to 10  | Last sequence number setting                                                             | 1 |

## GigE Transport Layer

| Address | Display Name<br>(JAI Control Tool)        | GenICam name                              | Read /<br>Write | Size | Value / Range of value          | Description                                                                                                           | Default<br>value |
|---------|-------------------------------------------|-------------------------------------------|-----------------|------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|
| 0xA418  | Payload size                              | PayloadSize                               | R               | 4    |                                 | Return image size of 1<br>frame                                                                                       |                  |
|         | GigE Major Version                        | GevVersionMajor                           |                 |      |                                 | Version of the GigE<br>Standard to which the                                                                          | 0001             |
| 0x0000  | GigE Minor Version                        | GevVersionMinor                           | R               | 4    |                                 | device is<br>compliant.                                                                                               | 0000             |
| 0.0004  | ls Big Endian                             | GevDeviceModeIsBigEndia<br>n              |                 |      | 0:Littel-endian<br>1:Big-endian | 0:Little endian 1:Big endian                                                                                          | 1                |
| 0x0004  | Character set                             | GevDeviceModeCharacter<br>Set             | R               | 4    | 0:Unknown ,1:UTF-8              | 1:UTF-8                                                                                                               | 1                |
| 0x0008  | MAC address                               | GevMacAddress                             | R               | 4    |                                 | Upper 4 bytes of the MAC<br>address                                                                                   |                  |
| 0x000c  | MAC address                               | GevMacAddress                             | R               | 4    |                                 | Lower 4 bytes of the MAC address                                                                                      |                  |
|         | Support LLA                               | GevSupportedIPConfigura<br>tionLLA        |                 |      | Bit 31: persistent              | Bits can be OR-ed. All other                                                                                          |                  |
| 0x0010  | Support DHCP                              | GevSupportedConfigurati<br>onDHCP         | R               | 4    | Bit 30: DHCP<br>Bit 29: LLA     | bits are reserved and set to<br>0. DHCP and LLA bits must                                                             | All True         |
|         | Support Persistent IP                     | GevSupportedConfigurati<br>onPersistentIP |                 |      | DIT 27. LEA                     | be on.                                                                                                                |                  |
|         | Current IP configuration                  | GevCurrentIPConfiguratio<br>nLLA          |                 |      | Bit 31: persistent              | Bits can be OR-ed. LLA is                                                                                             | LLA is           |
| 0x0014  | Current IP configuration<br>DHCP          | GevCurrentIPConfiguratio<br>nDHCP         | RW              | 4    | Bit 30: DHCP<br>Bit 29: LLA     | always activated and is read<br>only.                                                                                 | always<br>true   |
|         | Current IP configuration<br>Persistent IP | GevCurrentIPConfiguratio<br>nPersistentIP |                 |      | DIC 29. LLA                     | onty.                                                                                                                 | tiue             |
| 0x0024  | Current IP address                        | GevCurrentIPAddress                       | R               | 4    |                                 |                                                                                                                       |                  |
| 0x0034  | Current Subnet Mask                       | GevCurrentSubnetAddress                   | R               | 4    |                                 |                                                                                                                       |                  |
| 0x0044  | Current Default Gteway                    | GevCurrentDefaultGatew<br>ay              | R               | 4    |                                 |                                                                                                                       |                  |
| 0x0200  | First URL                                 | GevFirstURL                               | R               | 512  |                                 | File extension .XML<br>indicates uncompressed<br>text file. File extension .ZIP<br>indicates compressed using<br>ZIP. |                  |
| 0x0400  | Second URL                                | GevSecondURL                              | R               | 512  |                                 |                                                                                                                       |                  |
| 0x0600  | Number Of Interfaces                      | GevNumberOfInterfaces                     | R               | 4    |                                 | Indicates the number of<br>physical network interfaces<br>on<br>this device.                                          |                  |
| 0x064C  | Persistent IP Address                     | GevPersistentIPAddress                    | RW              | 4    |                                 | Valid if Persistent IP is enabled                                                                                     |                  |

| 0x065C | Persistent Subnet Mask                                        | GevPersistentSubnetMask                                            | RW  | 4                                                    |                                                                                                           | Valid if Persistent IP is<br>enabled                                                                                                    |     |
|--------|---------------------------------------------------------------|--------------------------------------------------------------------|-----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0x066C | Persistent Default<br>Gateway                                 | GevPersistentDefaultGate way                                       | RW  | 4                                                    |                                                                                                           | Valid if Persistent IP is enabled                                                                                                       |     |
| 0x0900 | Message Channel Count                                         | GevMessageChannelCount                                             | R   | 4                                                    |                                                                                                           | number of available<br>message channel                                                                                                  |     |
| 0x0904 | Stream Channel Count                                          | GevStreamChannelCount                                              | R   | 4                                                    |                                                                                                           | number of available stream channel                                                                                                      |     |
|        | Supported Optional<br>Commands User-defined<br>Name           | GevSupportedOptionalCo<br>mmandsUser-definedNam<br>e               |     |                                                      |                                                                                                           |                                                                                                                                         |     |
|        | Supported Optional<br>Commands Serial number                  | GevSupportedOptionalCo<br>mmandsSerialnumber                       |     |                                                      | Bit 31:multiple read<br>Bit 30:WRITEMEM                                                                   |                                                                                                                                         |     |
|        | Supported Optional<br>Commands EVENTDATA                      | GevSupportedOptionalCo<br>mmandsEVENTDATA                          |     |                                                      | Bit29:<br>PACKETRESEND                                                                                    | This is a capability register<br>indicating which one of the                                                                            |     |
| 0x0934 | Supported Optional<br>Commands EVENT                          | GevSupportedOptionalCo<br>mmandsEVENT                              | R 4 | Bit 28:EVENT<br>Bit 27:EVENTDATA<br>Bit 1:Serial No. | non-mandatory GVCP<br>commands are supported by                                                           |                                                                                                                                         |     |
|        | Supported Optional<br>Commands PACKET<br>RESEND               | GevSupportedOptionalCo<br>mmandsPACKETRESEND                       |     | Bit 0:User defined name                              | this<br>device.                                                                                           |                                                                                                                                         |     |
|        | Supported Optional<br>Commands WRITEMEM<br>Supported Optional | GevSupportedOptionalCo<br>mmandsWRITEMEM<br>GevSupportedOptionalCo |     |                                                      | 1=True                                                                                                    |                                                                                                                                         |     |
|        | Commands Concatenation                                        | mmandsConcatenation                                                |     |                                                      |                                                                                                           |                                                                                                                                         |     |
| 0x0938 | Heartbeat Timeout                                             | GevHeartbeatTimeout                                                | RW  | 4                                                    | 0 ~4294967295                                                                                             |                                                                                                                                         | 0   |
| 0x093C |                                                               | GevTimestampTickFreque<br>ncy                                      | R   | 4 rounded accordi                                    | In milliseconds.<br>Internally, the heartbeat is<br>rounded according to the<br>clock used for heartbeat. |                                                                                                                                         |     |
| 0x0940 | - Timestamp Tick<br>Frequency                                 | GevTimestampTickFreque<br>ncy                                      | R   | 4                                                    | timestamp is not<br>supported.                                                                            | 64-bit value indicating the<br>number of timestamp clock<br>ticks in 1 second. This<br>register holds the most<br>significant<br>bytes. |     |
|        | Timestamp control Latch                                       | GevTimestampcontrolLat<br>ch                                       |     |                                                      | Command 2                                                                                                 | This register holds the least significant bytes.                                                                                        |     |
| 0x0944 | Timestamp control Reset                                       | GevTimestampcontrolRes<br>et                                       | W   | 4                                                    | Command 1                                                                                                 | Used to latch the current<br>timestamp value. No need<br>to clear to 0.                                                                 |     |
| 0x0948 | - Timestamp Tick Value                                        | GevTimeStampValue                                                  | R   | 4                                                    | High                                                                                                      | Latched value of the<br>timestamp (most significant<br>bytes)                                                                           |     |
| 0x094C | Thirdstanp Tick Value                                         | GevTimeStampValue                                                  | R   | 4                                                    | Low                                                                                                       | Latched value of the<br>timestamp (least significant<br>bytes)                                                                          |     |
| 0x0A00 | Control Channel Privilege<br>Feature                          | GevCCP                                                             | R   | 4                                                    | 0:Open Access<br>1:Exclusive<br>2:Control<br>3:Exclusive Control                                          | control channel privilege<br>register                                                                                                   | 0   |
| 0x0B00 | Message Channel Port                                          | GevMCPHostPort                                                     | R   | 4                                                    |                                                                                                           | message channel port<br>register                                                                                                        | 0   |
| 0x0B10 | Message Channel<br>Destination Address                        | GevMCDA                                                            | R   | 4                                                    |                                                                                                           | message channel<br>destination address register                                                                                         |     |
| 0x0B14 | Message Channel<br>Transmission Timeout                       | GevMCTT                                                            | R   | 4                                                    |                                                                                                           | message channel transfer<br>timeout: ms                                                                                                 | 300 |
| 0x0B18 | Message Channel Retry<br>Count                                | GevMCRC                                                            | R   | 4                                                    |                                                                                                           | message channel retry<br>count                                                                                                          | 2   |
| 0x0D00 | Stream Channel Port                                           | GevSCPHostPort                                                     | R   | 4                                                    |                                                                                                           | primary stream port<br>register                                                                                                         |     |

# AD-080GE



See the possibilities

| 0xD04  | Fire Test Packet                     | GevSCPSFireTestPacket | RW | 4 | 1                 | The device will fire one test<br>packet of size specified by<br>the packet size. The don't<br>fragment bit of IP header<br>must be set for this test<br>packet.                                        |      |
|--------|--------------------------------------|-----------------------|----|---|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        | Packet Size                          | GevSCPSPacketSize     |    |   | 1476 ~16020       | primary stream channel<br>packet size register/packet<br>size includes IP, UDP&GVSP<br>Header                                                                                                          | 1476 |
| 0x0D04 | Do Not Fragment                      | GevSCPSDoNotFragment  | RW | 4 | 0=False<br>1=True | This bit is copied into<br>the "don't fragment Ebit of<br>IP header of each stream<br>packet. It can be used by<br>the application to prevent<br>IP fragmentation of packets<br>on the stream channel. | 1    |
| 0x0D08 | Packet Delay                         | GevSCPD               | RW | 4 | 0 ~ 125000        | Set the delay in between packets                                                                                                                                                                       | 0    |
| 0x0D18 | Strem Channel<br>Destination Address | GevSCDA               | R  | 4 |                   | primary stream channel destination address register                                                                                                                                                    |      |

#### LUT Controls

| Address               | Display Name<br>(JAI Control Tool)      | GenICam name    | Read /<br>Write | Size | Value / Range of value | Description | Default<br>value |
|-----------------------|-----------------------------------------|-----------------|-----------------|------|------------------------|-------------|------------------|
| 0xA200                | LUT Enable                              | LUTEnable       | R<br>W          | 4    |                        |             |                  |
| 0xD000<br> <br>0xD7FC | LUT Value (Red)                         | LUTValue[Red]   | R<br>W          | 4    | 0 ~ 65535              |             | 0                |
| 0xD800<br> <br>0xDFFC | LUT Value(Green,Bayer or<br>Monochrome) | LUTValue[Green] | R<br>W          | 4    | 0 ~ 65535              |             | 0                |
| 0xE000<br> <br>0xD7FC | LUT Value (Blue)                        | LUTValue[Blue]  | R<br>W          | 4    | 0 ~ 65535              |             | 0                |

#### **Event Generation**

| Address | Display Name<br>(JAI Control Tool)    | GenICam name            | Read /<br>Write | Size | Value / Range of value | Description          | Default<br>value |
|---------|---------------------------------------|-------------------------|-----------------|------|------------------------|----------------------|------------------|
|         | Event Selector<br>Acquisition Trigger | GevEventtreigger        |                 |      | Selector Value<br>0    |                      | 0                |
|         | Exposure Start                        | GevEventStartOfExposure |                 |      | 1                      |                      | 0                |
|         | Exposure End                          | GevEventEndOfExposure   |                 |      | 2                      |                      | 0                |
|         | Frame Transfer Start                  | GevEventStartOfTransfer |                 |      | 3                      |                      | 0                |
| 0xA610  | Frame Transfer End                    | GevEventEndOfTransfer   | RW              | 4    | 4                      | Event message ON/OFF | 0                |
|         | Any Lines Any Edges                   | AnyLineAynyEdge         |                 |      | 17                     |                      | 0                |
|         | Updated All Features                  | UpdatedAllFeatures      |                 |      | 18                     |                      | 1                |
|         | Processing Done                       | ProcessingDone          |                 |      | 19                     |                      | 1                |
|         | Video Parameters<br>Changed           | VideoParamsChanged      |                 |      | 20                     |                      | 1                |

# AD-080GE

| Opposite Channel<br>Parameters changed | DioTrigParamsChanged |  | 21                    | 1 |
|----------------------------------------|----------------------|--|-----------------------|---|
| Device Reset                           | DeviceReset          |  | 31                    | 1 |
| Event Notification                     | EventNotification    |  | 0=Disable<br>1=Enable |   |

#### **User Sets**

| Address | Display Name<br>(JAI Control Tool) | GenICam name    | Read /<br>Write | Size | Value / Range of value                                                             | Description                                                                                 | Default<br>value |
|---------|------------------------------------|-----------------|-----------------|------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|
| 0xA300  | UserSet Save                       | UserSetSave     | w               | 4    | 1=User area1                                                                       | Allows use to save all<br>camera settings. Last<br>used area number<br>becomes new default. | 1                |
| 0xA304  | UserSet Load                       | UserSetLoad     | w               | 4    | 0=Factory area<br>1=User area1                                                     | Allow the user to recall all camera settings.                                               | 0                |
| 0xA308  | UserSet Selector                   | UserSetSelector | RW              | 4    | Whenreceiving<br>following<br>commands,store the<br>parameters<br>0xA300<br>0xA304 | Check the used data,<br>0=Factory or1=User                                                  | 0                |



# Appendix

## 1. Precautions

Personnel not trained in dealing with similar electronic devices should not service this camera. The camera contains components sensitive to electrostatic discharge. The handling of these devices should follow the requirements of electrostatic sensitive components.

Do not attempt to disassemble this camera.

Do not expose this camera to rain or moisture.

Do not face this camera towards the sun, extreme bright light or light reflecting objects, including laser sources.

When this camera is not in use, put the supplied lens cap on the lens mount. Handle this camera with the maximum care.

Operate this camera only from the type of power source indicated on the camera. Remove power from the camera during any modification work, such as changes of jumper and switch settings.

## 2. Typical Sensor Characteristics

The following effects may be observed on the video monitor screen. They do not indicate any fault of the camera, but do associate with typical sensor characteristics.

## V. Aliasing

When the camera captures stripes, straight lines or similar sharp patterns, jagged image on the monitor may appear.

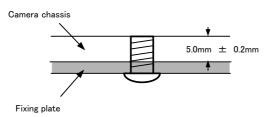
## Blemishes

All cameras are shipped without visible image sensor blemishes.

Over time some pixel defects can occur. This does not have a practical effect on the operation of the camera. These will show up as white spots (blemishes).

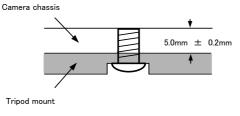
Exposure to cosmic rays can cause blemishes to appear on the image sensor. Please take care to avoid exposure to cosmic rays during transportation and storage. It is recommended that sea shipment instead of air flight be used in order to limit the influence of cosmic rays on the camera. Pixel defects/blemishes also may emerge due to prolonged operation at elevated ambient temperature, due to high gain setting or during long time exposure. It is therefore recommended to operate the camera within its specifications.

## Patterned Noise


When the sensor captures a dark object at high temperature or is used for long time integration, fixed pattern noise may appear in the image.

## 3. Caution when mounting a lens on the camera

When mounting a lens on the camera dust particles in the air may settle on the surface of the lens or the image sensor of the camera. It is therefore important to keep the protective caps on the lens and on the camera until the lens is mounted. Point the lens mount of the camera downward to prevent dust particles from landing on the optical surfaces of the camera. This work should be done in a dust free environment. Do not touch any of the optical surfaces of the camera or the lens.


4. Caution when mounting the camera

When you mount the camera on your system, please make sure to use screws of the recommended length described in the following drawing. Longer screws may cause serious damage to the PCB inside the camera.



Mounting the camera to fixing plate

If you mount the tripod mounting plate, please use the provided screws.



Attaching the tripod mount

#### 5. Exportation

When exporting this product, please follow the export regulation of your own country.

- 6. References
- 1. This manual for AD-080GE can be downloaded from www.jai.com
- 2. Datasheet for AD-080GE can be downloaded from www.jai.com
- 3. JAI SDK software can be downloaded from www.jai.com

# AD-080GE



#### See the possibilities

## Index

# Α

| aberration             | . 10 |
|------------------------|------|
| asynchronous5, 12, 14, |      |
| Auto-detect LVAL2,     | , 13 |

# В

| Blemishes 4 | 6 |
|-------------|---|
|-------------|---|

# С

| Camera Control Tool3, 37, | 38, 40   |
|---------------------------|----------|
| CCD sensor                | .19, 47  |
| Continuous operation 2,   | , 12, 25 |
| Cross hair generator      | 2, 17    |

# D

| Dichroic Prism |      | 6 |
|----------------|------|---|
| Digital Output | . 2, | 7 |

# Е

| Electronic shutter | 2,  | 15 |
|--------------------|-----|----|
| external trigger   | 17, | 25 |

# F

| frame grabber | <sup>.</sup> 10, | 38 |
|---------------|------------------|----|
|---------------|------------------|----|

# G

| Gain  | 31 |
|-------|----|
| Gamma | 44 |

## Η

| Hirose | <br>7, 31 |
|--------|-----------|
| 1      |           |

| internal switch     | 12 |
|---------------------|----|
| Iris Video 2, 7, 8, | 13 |

## Κ

| Knee | .2, | 15, | 16, | 35, | 36, | 44 |
|------|-----|-----|-----|-----|-----|----|
| L    |     |     |     |     |     |    |

| -    |    |     |    |
|------|----|-----|----|
| LVDS | 7, | 30, | 44 |

# Μ

# Ν

Near-IR ...... 4, 5, 8, 9, 10, 11, 15, 17, 21, 44

# 0

| optical | assembly . |  | 2, | 11 |
|---------|------------|--|----|----|
|---------|------------|--|----|----|

# Ρ

| Partial scan           | 2,    | 14, 22, 23 | 5 |
|------------------------|-------|------------|---|
| Pixels in video output | ••••• |            | ŀ |
| Preset Shutter         | ••••• | 44         | ŀ |

# S

| Serial communication | 30       |
|----------------------|----------|
| Shading correction   | . 15, 36 |
| smear                | 29       |
| Synchronization      | 44       |

# Т

| Trigger input       | 31 |
|---------------------|----|
| Trigger polarity    |    |
| triggered operation |    |

# V

## W

| White balance | 2, 16, 44 |
|---------------|-----------|
|---------------|-----------|

# Change History

| Month/Year | Revision | Changes<br>New issue |
|------------|----------|----------------------|
| Oct.2009   | 1.0      | New issue            |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |
|            |          |                      |





## **User's Record**

| Camera type: | AD-080GE |
|--------------|----------|
| Revision:    | ••••••   |

Serial No. .....

Firmware version. .....

For camera revision history, please contact your local JAI distributor.

User's Mode Settings.

User's Modifications.

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners. JAI A-S cannot be held responsible for any technical or typographical errors and reserves the right to make changes to products and documentation without prior notification.

Europe, Middle East & Africa Asia Pacific

Phone +45 4457 8888 Fax +45 4491 3252

Phone +81 45 440 0154 Fax +81 45 440 0166

#### Americas

Phone (toll-free) +1 800 445 5444 Phone +1 408 383 0300



# Visit our web site at www.jai.com